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Abstract

One of the most frequently quoted ecosystem services of seagrass meadows is their value for coastal protection. Many
studies emphasize the role of above-ground shoots in attenuating waves, enhancing sedimentation and preventing erosion.
This raises the question if short-leaved, low density (grazed) seagrass meadows with most of their biomass in belowground
tissues can also stabilize sediments. We examined this by combining manipulative field experiments and wave
measurements along a typical tropical reef flat where green turtles intensively graze upon the seagrass canopy. We
experimentally manipulated wave energy and grazing intensity along a transect perpendicular to the beach, and compared
sediment bed level change between vegetated and experimentally created bare plots at three distances from the beach.
Our experiments showed that i) even the short-leaved, low-biomass and heavily-grazed seagrass vegetation reduced wave-
induced sediment erosion up to threefold, and ii) that erosion was a function of location along the vegetated reef flat.
Where other studies stress the importance of the seagrass canopy for shoreline protection, our study on open, low-biomass
and heavily grazed seagrass beds strongly suggests that belowground biomass also has a major effect on the
immobilization of sediment. These results imply that, compared to shallow unvegetated nearshore reef flats, the presence of
a short, low-biomass seagrass meadow maintains a higher bed level, attenuating waves before reaching the beach and
hence lowering beach erosion rates. We propose that the sole use of aboveground biomass as a proxy for valuing coastal
protection services should be reconsidered.

Citation: Christianen MJA, van Belzen J, Herman PMJ, van Katwijk MM, Lamers LPM, et al. (2013) Low-Canopy Seagrass Beds Still Provide Important Coastal
Protection Services. PLoS ONE 8(5): e62413. doi:10.1371/journal.pone.0062413

Editor: Richard K.F. Unsworth, Swansea University, United Kingdom

Received December 28, 2012; Accepted March 21, 2013; Published May 28, 2013

Copyright: � 2013 Christianen et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: Research by MJAC is funded by the Netherlands Organization for Scientific Research – Science for Global Development (NWO-WOTRO), grant W84-645
(appointed to MJAC). The work of JvB and TJB is supported by the THESEUS project on innovative technologies for safer European coasts in a changing climate,
which is funded by the European Union within FP7-THEME 6 – Environment, including climate (contract no. 244104). The funders had no role in study design, data
collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: marjolijn.christianen@gmail.com

Introduction

Biological structures located in coastal sub- and intertidal

ecosystems can attenuate waves and as a result directly contribute

to coastal protection [1–3]. Both reef forming taxa such as corals

[4], mussels [5] and oysters [6] and macroalgae and macrophytes

such as kelp [7], seagrass [8], mangrove [9] and salt-marsh

vegetation [10–12], are well known for their capacity to attenuate

waves (see [1] for a review). As a consequence of the reduction of

hydrodynamic energy, macrophyte vegetation typically accumu-

lates sediment causing the water above the fore- or nearshore to

become shallower [14,15] (but see [16,17]). Such sediment

accretion also contributes to coastal protection, because wave

attenuation increases with decreasing relative water depth [18].

The bathymetric wave-attenuating effect of vegetation-induced

sediment accretion becomes especially important for those

vegetation types that have a relatively small direct wave

attenuating effect via their aboveground biomass. This applies

for example to meadows of relatively short and highly flexible

seagrass plants, which have limited wave-attenuating capacity by

their canopy compared to stiffer vegetation [12]. If the structural

complexity of such short vegetation is degraded further, e.g. due to

a high grazing intensity, it becomes unclear to which extent they

can still contribute to coastal protection.

Although sediment stabilization is often acknowledged as an

important ecosystem service of seagrasses [19,20] and anecdotic

evidence points at increased erosion after a seagrass meadow has

been lost (e.g. [13,21]), experimental evidence for the exact

mechanisms involved in sediment stabilization remains scarce.

Seagrass meadows have been shown to attenuate hydrodynamic

energy from currents [22,23] and waves [12,24,25] and thereby

trap suspended sediment and cause sediment accretion [14,26–

30]. However, with respect to sediment stabilization, most studies

only refer to the effect of the canopy in the reduction of the

hydrodynamic forces that may reach the sediment and impose a

bed shear stress (tb) to the sediment [31]. It has been suggested

that belowground biomass of rhizomes and roots can stabilize

sediments by altering the erodability as the critical bed shear stress

(tcrit) is increased [31]. However, the relative importance of this

mechanism is generally hard to study without disturbing the

seagrass meadow and is, therefore, generally not addressed when

studying the role of these macrophytes for coastal protection.
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In the tropics, seagrass meadows typically occur on shallow reef

flats in subtidal nearshore areas. In general, seagrass growth is

often controlled by temperature, light availability and freshwater

input but also by physical disturbance from waves and associated

sediment movement [32,33]. Top-down effects can also drive

seagrass growth by the foraging of large herbivores. Recent studies

in Bermuda, India and Indonesia reported intense grazing of

green turtles on seagrasses [34–36], with harvesting rates up to

100% of the daily leaf production [36]. As a consequence, these

heavily grazed meadows can have an extremely sparse cover with

a low aboveground biomass (610 g DW m22) and short (,5 cm)

canopy, while maintaining a high belowground biomass (650 g

DW m22) [36]. This is in strong contrast to ungrazed meadows,

where the aboveground biomass can be at least 10 times higher

(e.g. biomass 118 g DW m22, canopy height 625 cm, described in

[37]. Such grazing-induced alteration of the canopy structure

makes these meadows interesting models to study the contribution

of belowground tissues to coastal defense.

In this study, we therefore question i) if intensively grazed

seagrass meadows with a very low-biomass canopy contribute to

coastal protection by stabilizing the sediment against wave induced

erosion, ii) if the importance of the sediment stabilizing effect of

seagrass changes along a cross-shore profile and iii) if the sediment

stabilization by seagrass meadows depends on the height of the

canopy. To answer these questions, we experimentally manipu-

lated seagrass above- and below-ground cover, wave forcing and

grazing intensity along a transect between the reef and the beach.

Methods

Field site
The study was conducted on a subtidal seagrass meadow that

covers the fringing reef flat of Derawan Island (Fig. 1a), Indonesia

(2u17’19’N, 118u14’53’E; see [36] for a map and more details).

The seagrass meadows are dominated by Halodule uninervis

(Ehrenberg, Ascherson) growing on carbonate sediment. The

carbonate substrate had a median grain size of 591630 mm (d50,

mean 6 SE, Malvern Laser Particle Sizer) and did not differ

significantly between stations. The canopy was of low structural

complexity as a result of intensive grazing by green sea turtles

(Chelonia mydas, 20.6 individuals 62.2 ha21, [38]). The hair-like

leaves were short (,5 cm), narrow (,1 mm) and thin (,0.2 mm).

Shoot density was 33356224 shoots m22 and shoots only had

1.860.1 leaves per shoot [36]. Aboveground biomass was

11.460.7 g DW m22, and belowground biomass 52.064.5 g

DW m22. During the experiment (December 2011 –February

2012) spring tidal range was 2.9 m.

Survey of reef flat depth profile
We mapped a cross-shore depth profile during slack low tide

from the beach starting at the low water line, over the reef flat, to

the coral reef. Water depth along the profile was measured by

dragging a pressure logger (Sensus ultra, Reefnet Inc., Ontario,

Canada) over the seabed at a fixed speed and simultaneous logging

of time and position using a hand held GPS (GPSMAP 60CSx,

Garmin, Olathe, USA). We averaged depth readings (obtained

with a frequency of 1 Hz), using a sliding window over a

60 second interval, to reduce noise as a result of water level

fluctuations caused by waves and methodological errors. Finally,

the cross-shore depth profile is recalculated, based on the average

burst reading by the wave gauges (see below ‘Wave measure-

ments’), to get the average water depth over time.

Wave measurements
We measured hydrodynamic forcing along the reef flat as a

result of waves at four stations along the depth profile given in

Fig. 1, using self-logging pressure sensors (Wave gauge: OSSI-10-

003C, Ocean Sensor Systems, Coral Springs, USA). The

instruments were placed at a height of 0.1 m above the bed.

Three pressure sensors were placed in the seagrass meadow on the

reef flat, and one sensor measured the waves coming in from the

ocean over the reef crest at increasing distance from the shore

(stations ‘A’ 45 m, ‘B’ 262 m, ‘C’ 513 m,‘Coral’ 712 m from the

shore; see Fig. 1b). Wave heights were measured under a range of

offshore wave conditions and tidal elevations during the whole

experiment. A total of 3140 recording bursts were collected at a

sampling rate of 10 Hz for 4 minutes, every 20-minutes.

Recordings comprise a total of 209 hours of wave measurements

(over a 44 day period, during rainy season). During the

deployment of the wave gauges we caught a storm event (January

27, 2012, bursts 2879 to 3074), with peak wind speeds reaching

19 m s21 from the north – northwest (6335u). We calculated wave

attenuation values relative to the waves coming in at the reef

station (Coral) for each station at the vegetated reef flat.

The obtained high frequency wave records were processed

according to the following sequence: (1) pressure readings were

converted to water level fluctuations (g), (2) erroneous spikes, shifts

and corrupted bursts were removed from the data, (3) low-

frequency tidal components were removed from each burst by

detrending the water level fluctuations using a polynomial fit (4)

from the detrended data significant wave heights (Hs) (cf. e.g.

[10,39]) were calculated (c.f. [40]):

Hs~4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Sg2

n

� �s
ð1Þ

in which n is the number of water level records in each burst

(n = 2400). In addition, we corrected the calculated significant

wave height for the attenuation of the wave pressure field with

depth and wave period [39]. From the detrended data, peak wave

periods (Tz) were computed based on zero-upcrossings [41].

A~
Hs StationCoralð Þ{Hs Stationxð Þ

Hs StationCoralð Þ |100% ð2Þ

Bottom shear stress calculation (tb)
Because the influence of waves on the sediment bed strongly

depends on water depth, we calculated the wave-related bottom

shear stress (tb) over time (c.f. [42,43]):

tb~0:5rf2:5Uw
2 ð3Þ

where r is the water density, f2.5 is the grain roughness friction

factor calculated as 2.5d50. The wave height related orbital

velocity at the bed (Uw) was estimated using [44]:

Uw~
Hs

2h

ffiffiffiffiffi
gh

p
ð4Þ

in which g is the gravitational acceleration, and h is the mean

water depth.
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Experiments to test and clarify sediment stabilization by
seagrass

To test effects of seagrass presence on sediment stabilization, we

compared the changes in sediment level inside bare sediment gaps

(i.e., 60630 cm) to those inside a grazed seagrass meadow at T0

(n = 5). These measurements were repeated at 3 stations, station A,

B and C (for description see section ‘‘wave measurements’’) to test

for possible effects of different hydrodynamic forcing along the reef

flat. Gaps were created at day 1 of the experiment by cutting the

roots and rhizomes around a frame (60630 cm) and removing all

plant biomass within this frame. The size of the gaps was scaled to

plant size and to dimensions of turtle gaps.

To test if waves were driving the erosion, we manipulated wave

action entering the plots. Wave reduction was achieved by

constructing bunkers of sandbags (50 kg) which were piled up

(W:H; 5:3 bags; 63:0.75 m) in a semi-circular shape to protect

plots that were situated 30 cm behind the bunker (Fig. 2c). We

compared plots with and without this wave reduction treatment,

by measuring 5 replicate plots at three stations (n = 15, in total).

To study the effect of canopy leaf surface area on sediment

stabilization we compared sediment bed level in grazed plots with

ungrazed plots that were protected from turtle grazing for

2 months (Fig. 3a). Measurements for both treatments were

replicated 5 times for each station. Plots comprised seagrass strips

(60615 cm) bordered by 2 bare sediment gaps (60630 cm). We

used exclosures (1.261.260.3 m, 5 cm mesh, Fig. 3a) that were

designed to maximize light passage and minimize wave attenua-

tion while excluding grazing of green turtles. Exclosures consisted

of fishing net attached to the tops of four steel poles that were

connected to ropes [36], and were inspected and cleaned trice a

week. Wave attenuation by exclosures was minimal as weight loss

of plaster sticks placed in and outside cages exposed to waves did

not differ significantly. The seagrass canopy height was deter-

mined by measuring lengths of 28 shoots from cores (Ø 23 cm) in

grazed (n = 35) and ungrazed seagrass plots (n = 15).

The experimental plots were selected at a location with

homogeneous seagrass substrate, with minimum distances of

15 m between them. The plots of each station were located in a

zone with minimal differences in water depth (20 cm) and were

placed at a line parallel to the shore. Treatments were randomly

assigned to the plots.

Evaluation of sediment change
Quantitative measurements of changes in bed level were

obtained using a sediment elevation bar method (SEB, e.g.

[45,46]) at the start and the end of the experiment. A long metal

pin (150 cm) was inserted into the sediment as a reference at the

start of the experiment. A horizontal bar of 150 cm, attached to a

second vertical pin was placed on top of the vertical reference pin

at each measurement until the horizontal bar touched the

reference pin and was level. The distance between the horizontal

bar and the bed surface was measured at 9 points, at a diagonal

line over each experimental plot, during each measurement. The

relative erosion during the experiment was determined as the

difference between T0 and Tend values. This method was

estimated to have an accuracy of 5 mm.

Figure 1. Location and depth-profile of the experimental site. (A) Aerial photo of the field site showing the locations of the stations, the
seagrass bed on the reef flat in the subtidal nearshore area (light blue), and the coral drop off (transition to dark blue). See [36] for a more elaborate
map. Waves are coming predominantly from the north (right). (B) Depth profile at increasing distance from the beach. Location of stations are
indicated including their mean water depths.
doi:10.1371/journal.pone.0062413.g001
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During the experiments the sediment erosion in the gaps was

also scored visually in a semi-quantitative way (unchanged: ‘2’,

minimal erosion: ‘6’, medium erosion: ‘+’, strong erosion ‘++’).

These estimates were performed every 3rd day during mainte-

nance checks of all experimental plots, and data were converted to

sediment erosion rates using a conversion factor that we derived

from plots with both quantitative and semi-quantitative measure-

ments for the same day.

Evaluation of the wave reduction treatment
To evaluate the wave reducing effect of the sandbag bunkers,

without having more wave loggers available, we compared weight

loss of plaster sticks deployed inside and outside a bunker, at 3

locations along the reef flat. Relative weight loss by dissolution of

the plaster is considered a proxy for hydrodynamic forcing and

integrates effects from tidal currents and waves [47,48]. Sticks

were placed at seagrass canopy level at the seagrass – gap border

(n = 5 for each seagrass station) on a day with a large tidal

difference, with sticks staying submerged continuously. Plaster

sticks were molded using 20 ml of model plaster attached to the

Figure 2. The effect of seagrass presence on sediment stabilization. Sediment levels in unvegetated gaps compared to levels in the seagrass
meadow at T0 for two treatments: gaps exposed to waves (black circles) or exposed to waves reduced by wave bunkers (white circles). Seagrass
stabilizes sediment both (A) directly after a storm and (B) 4 weeks after a storm. The inlay shows the setup of a bunker to reduce wave energy to
seagrass and unvegetated gaps behind (left of) the bunkers. Significant differences between stations are indicated by different letters, and between
wave exposed and wave-reduced plots by stars.
doi:10.1371/journal.pone.0062413.g002

Figure 3. Effect of canopy length on sediment stabilization. (A) Turtle exclosure. (B) Difference in sediment bed level between grazed and
ungrazed seagrass strips for the three stations (A, B, C) after 2 months protection by the turtle exclosure. The difference in leaf length of the canopy
in turtle exclosures was a factor 2.6 longer (117.8616.6 mm) than in grazed meadows (45.8611.6 mm).
doi:10.1371/journal.pone.0062413.g003
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plungers of 60 ml syringes of which tips had been cut off. The

sticks were weighted before and after 24 hours of placement at the

plots, after drying until constant weight.

Statistical analyses
A one-way ANOVA was used to analyze differences in wave

height between stations. Two way ANOVA’s were used to analyze

the effect of station and wave reduction on sediment erosion and

current velocity, and to analyze the effect of canopy length on

sediment bed level. Data were log-transformed when necessary to

meet assumptions for the ANOVAs. To evaluate possible

differences between stations, we used Tukey HSD post hoc tests

and for all hydrodynamic parameters we used Dunnett’s post hoc

tests for which we report P-values. Differences at P,0.05 were

considered significant. R (version 2.15.1, June 2012) was used for

all analyses. Results are presented as means 6 their standard

errors, unless stated otherwise.

Results

Hydrodynamic forcing
Mean significant wave heights (Hs) differed significantly between

stations along the reef flat, except for stations A and C (Table 1).

During normal conditions (periods without storms), significant

wave height from waves coming in from the sea onto the reef (at

station Coral) was on average 0.19 m with an average peak period

of 6.06 s (Table 1). During the storm in January, incoming

significant wave height increased to an average of 0.40 m, with a

peak value of 0.78 m (incoming waves at the station Coral, see

Table 1). Typically, wave height decreased from the coral, over the

vegetated reef flat, towards the beach as is shown by the lower

average significant wave heights at stations C to A and the average

relative wave attenuation (% in Table 1). Because there was very

little standing canopy biomass to attenuate wave energy, this must

be mainly the consequence of the decreasing water depth (Fig. 1b).

However, at certain configurations of wave height and water

depth, wave height started to increase, which is a typical

consequence of shoaling or wave breaking. This increase in wave

height was observed at all three stations on the reef flat (stations A,

B and C Table 1; shoaling is wave attenuation ,0), but at the

station nearest to the beach (A) it occurred most frequently. Here,

significant wave height could increase up to 1.8 fold (wave

attenuation of -88.2% in Table 1) relative to the incoming wave

height. Such increase is most probably due to wave breaking.

The impact of waves on the reef-flat bed, estimated as the

bottom shear stress (BSS), showed roughly the same trend as the

significant wave heights. That is, BSS differed significantly

between stations (P,0.05, Table 1). The relative wave height

(the significant wave height relative to the water depth, Hs/h) at

station A was exceptionally high compared to the other stations,

which means that the wave height was not yet accommodated to

the local water depth. As a consequence, wave friction with the

seabed might cause wave breaking, resulting in high turbulence

and (swash and rip) currents at station A.

The wave bunker treatment (Fig. 2c) was effective in that it

significantly reduced weight loss from the plaster sticks, indicati0ng

that hydrodynamic energy was significantly lower behind the

sandbags compared to plots fully exposed to waves (P = 0.01).

Sediment stabilization
Seagrasses significantly reduced sediment erosion by waves,

although the degree of the erosion reduction strongly depended on

the location along the reef flat (Fig. 2a and b). After a period of

2 months, stations A and C showed significant erosive bed level

change in artificially created bare plots (P,0.01, Fig. 2b). At

station B the sediment was not significantly eroded, which is in line

with the lower hydrodynamic forcing measured at this station

(Table 1). After a storm event, the sediment erosion was higher

(Fig. 2a). The effect of waves on sediment erosion was largest at the

nearshore, ‘swash’, zone around station A and close to the reef

crest, ‘breaker’, zone around station C. This was demonstrated by

the markedly lower sediment bed level at station A, than that at

station B (P = 0.02) and station C (P,0.001)(Fig. 2b). When

exposed to waves, sediment level in the unvegetated gaps was

eroded with, on average, 5.1 cm at station A, 6.3 cm at station C

and only 1.3 cm at station B in 66 days (Fig. 2b). Right after the

storm event, the sediment erosion in wave exposed plots at station

A was a factor 2.5 higher (213.0 vs. 25.1 cm, P,0.001)

compared to erosion four weeks after the storm (Fig. 2a and b),

but erosion was not significantly higher for station B and C after

the storm.

Interestingly, the turtle exclosures revealed that grazed and

ungrazed seagrass vegetation stabilize the sediment equally well.

That is, excluding grazing did not cause any difference in sediment

bed level compared to the grazed treatment (Fig. 3b), even though

leaf length of the canopy in grazing exclosures was a factor 2.6

longer (117.8616.6 mm) than in grazed meadows

(45.8611.6 mm).

The wave bunker treatment was effective in that it significantly

reduced weight loss from the plaster balls, indicating that

hydrodynamic energy was lower behind the sandbags compared

to plots fully exposed to waves (P = 0.01,).

Table 1. Summary of the measured significant wave height (Hs), peak wave period (Tz) and bed shear stress (BSS) along a cross-
shore seagrass profile (Fig. 1).

Station Hs Mean Hs Maximum Tz

Wave attenuation
(normal) BSS Mean BSS Maximum

normal
(m)

storm
(m)

normal
(m)

storm
(m) (s) min normal max normal (Pa) storm (Pa)

normal
(Pa) storm (Pa)

A 0.15a 60.09 0.23as 60.19 0.52 0.68 5.13c61.96 -88% 18% 100% 0.046a60.034 0.111abs60.101 0.22 0.40

B 0.13b60.07 0.24abs 60.17 0.45 0.72 5.27b61.84 –45% 30% 100% 0.026b60.020 0.083bs60.077 0.14 0.36

C 0.16a60.07 0.30cs 60.17 0.48 0.74 5.27b61.53 –28% 11% 100% 0.034c60.026 0.113bs60.086 0.19 0.38

Coral 0.19c60.07 0.40ds60.12 0.49 0.78 6.06 a61.41 0.044a60.034 0.207cs60.115 0.23 0.66

Means with their standard deviations and maximum significant wave heights are given for normal conditions (n = 2945, ‘‘normal’’ = periods without storms) and during
the storm (n = 195). Wave attenuation values less than 0 indicate wave shoaling.
doi:10.1371/journal.pone.0062413.t001
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Discussion

Coastal protection and sediment stabilization by seagrass is

often valued as an important ecosystem service, which generally

has been attributed to seagrass canopy properties

[12,24,25,29,30]. This raises the question to which extent seagrass

meadows that have very little canopy and have most of their

biomass in belowground tissue can still contribute to coastal

defense by stabilizing sediments. Present results convincingly

demonstrate that even intensively grazed subtidal seagrass

meadows, with a very short canopy, can still stabilize sediments

effectively. This effect could be due to the remainder of the

canopy, but although the seagrass has a relatively high density

(63000 shoots m22), the leaves are extremely short and narrow.

The aboveground biomass is minimal (610 g m22) and the

percentage cover of the sediment is very low (,25 %). It is much

more likely, therefore, that the difference in erosion between

grazed vegetation and bare soil under high wave conditions is due

to the role played by the relatively high belowground biomass.

Roots and rhizomes can stabilize the sediment by reducing its

erodability. This is an important novel addition to the findings of

previous studies, which identified the hydrodynamic effect of the

canopy as the only essential mechanism in sediment stabilization

[12,22].

The sediment stabilizing effect of grazed seagrass, which can

even occur by low-biomass meadows, is expected to have

important implications for both coastal protection and ecosystem

functioning. With respect to coastal protection, by reducing

sediment erodability, seagrass fields maintain a higher bed

elevation that will help to attenuate waves. We have schematized

these results in a conceptual diagram (Fig. 4). The sediment

anchoring effect by short, grazed seagrass vegetation, which has

most of its biomass in roots and rhizomes (Fig. 4c), increases the

critical bed shear stress that is needed for bed erosion. We

speculate that the presence of a dense mat of rhizomes and roots

can have similar effects at the sediment-water interface as

described for other biota that reduce erosion, such as biofilms of

microphytobenthos [31]. Seagrass cover causes the sediment level

to remain higher compared to eroded unvegetated gaps. In our

study this was up to 13 cm, in others 18 cm [49](Zostera marina).

Over longer time scales, this difference in erodability of the

sediment is expected to seriously affect the form of the cross-shore

height profile. The shallower profile of seagrass beds, compared to

situations without seagrass, may imply that more wave energy is

absorbed before waves reach the coastal strip (Fig. 4b), because

dissipation of wave energy is a direct function of water depth [1].

As a result, it is expected that less wave energy can propagate over

the nearshore towards the beach (Fig. 4b). It should however be

detailed how this picture is influenced by wave breaking. In our

study we observed wave breaking at the station closest to the shore,

at least during part of the tidal cycle. Preferential zones of wave

breaking could locally experience higher bottom shear stress and

smaller-scale variations in the profile could arise, but this effect will

decrease with the vegetation-induced stabilization of the sediment.

With respect to ecosystem functioning, armoring of the

sediment can have profound implications for the subtidal seagrass

community by the reduction of the amount of sediment that is

resuspended. Biotic communities are known to suffer from

sediment movement, due to processes such as direct smothering

[50] or burial [51], and abrasion of tissues [52,53]. The prevention

of erosion by seagrass as a foundation species [54](Hughes et al.

2009) is further critical for burrowing fauna like shrimps that need

stable sediment environments to reinforce their burrows [55].

Armoring by seagrasses may also indirectly protect the adjacent

coral reef community that can suffer critically from sedimentation,

by lowering sediment concentrations in the water column [4,56].

More generally, our results show the stabilizing effects of

macrophytes even when canopies are strongly reduced. This could

also have important implications for other vegetated coastal

ecosystems, such as salt marshes and dunes, as well. In our system,

grazing by turtles was the main driver minimizing the canopy, but

many other processes can have a similar effect, e.g. seasonal

changes in aboveground biomass, shedding of leaves in autumn

and winter or degradation due to high turbidity, epiphyte cover or

eutrophication. We show, however, that these changes in canopy

morphology do not automatically mean that seagrass beds have

completely lost their coastal protection value. Although the relative

Figure 4. Conceptual model showing how erosion is decreased
along a nearshore seagrass bed with a minimal canopy due to
the combination of increased critical shear stress and resulting
shallowness. Sediment erosion occurs when bed shear stress (force
per unit area of the flow acting on the bed) exceeds a critical bed shear
stress (tb . tcrit). (A) A typical depth gradient of a nearshore habitat
where waves break above the coral reef, are then further reduced in the
surf zone and ‘‘swash’’ onto the beach. Sediment stabilization by
seagrass (green line) increases sediment bed levels compared to a
situation with seagrass (yellow). (B) As a consequence of the reduction
of the water depth by sediment stabilization of seagrass (green line),
more wave energy is attenuated while travelling towards the shore
compared to unvegetated areas (yellow), and less wave energy can
reach the shore in the surf zone. This highlights the importance of
seagrass with respect to coastal defense. (C) In the grazed seagrass
meadow with short leaves and low-biomass, the low structural
complexity of shoots in combination with the relative high root and
rhizome biomass increases the critical bed shear stress that is needed
for erosion (tcrit.).
doi:10.1371/journal.pone.0062413.g004
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value of seagrasses for coastal protection is strongly species

dependent, with e.g. climax species (e.g. Enhalus acoroides) generally

having a higher value than more ephemeral species (e.g. Halodule

univervis) that can be highly variable in biomass and cover [57],

even presence of low-canopy sea grass beds is significant.

Therefore, when valuating seagrass habitats for coastal defense

purposes, the idea of using aboveground biomass as a proxy for

wave attenuation should be reconsidered. Such approach could

greatly underestimate the coastal protection service of seagrass

with canopies of low structural complexity. Seemingly insignificant

low-biomass seagrass meadows that cover wide reef flats, may still

offer significant coastal protection services, and should be valued

as such. This ecosystem service is expected to become even more

important in the near future, as storm frequencies are expected to

increase and natural coastal protection structures like reefs are

under on-going degradation [58].
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