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Abstract
Probabilistic logics combine the expressive power
of logic with the ability to reason with uncer-
tainty. Several probabilistic logic languages have
been proposed in the past, each of them with their
own features. In this paper, we propose a new
probabilistic constraint logic programming lan-
guage, which combines constraint logic program-
ming with probabilistic reasoning. The language
supports modeling of discrete as well as continuous
probability distributions by expressing constraints
on random variables. We introduce the declara-
tive semantics of this language, present an exact
inference algorithm to derive bounds on the joint
probability distributions consistent with the speci-
fied constraints, and give experimental results. The
results obtained are encouraging, indicating that in-
ference in our language is feasible for solving chal-
lenging problems.

1 Introduction
Probabilistic logics combine the power of logic to represent
knowledge with the ability to deal with uncertainty. In ear-
lier research (e.g. [Bacchus, 1990]), this concerned logics
with formulas such as P>

0.5ϕ, meaning that the ‘agent be-
lieves ϕ with probability strictly greater than 0.5’. While
there has been significant work in this area, these types of
logics are typically both computationally and conceptually
complex. In recent years, powerful probabilistic logics have
been developed that allow for efficient inference and learn-
ing (cf. [Getoor and Taskar, 2007] for an overview). Many
of these languages are based on Sato’s distribution seman-
tics [Sato, 1995], which extends a joint probability distribu-
tion over the facts of a logic program to a distribution over
the set of possible least models of the entire program. Ex-
amples of such languages are ProbLog [Raedt et al., 2007],
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PRISM [Sato and Kameya, 1997], ICL [Poole, 2008], and
CP-logic [Vennekens et al., 2009].

Significant research has also been done to extend logic pro-
gramming (LP) with constraints, which lead to constraint
logic programming (CLP) [Jaffar and Lassez, 1987]. The
general approach supports various constraint theories. For
example, in CLP(FD) [Codognet and Diaz, 1996] constraints
involving variables with a finite domain can be handled. An-
other example is CLP(R) [Jaffar et al., 1992], which intro-
duces constraints on real numbers inside LP.

In this paper, we combine probabilistic with constraint
logic programming, called probabilistic constraint logic pro-
gramming (PCLP), by associating a set of constraints with
a probability distribution. The idea of modeling probabilis-
tic information using constraints was previously explored
in CLP(BN ) [Costa and Cussens, 2003] and an identically
named language [Reizler, 1998], which both use the CLP
mechanism to model a joint probability distribution on the
models of a logic program. The key difference is that instead
of modeling a single joint distribution, we use PCLP to define
constraints on a distribution. Thus, PCLP supports imprecise
probabilities, meaning that some of the probabilistic informa-
tion is unknown, e.g., as in some of the earlier probabilistic
logics, it is possible to specify that the probability of a fact
being true is larger than 0.5.

This way of defining distributions allows PCLP ito deal
with continuous distributions in a powerful way. Although
Hybrid ProbLog [Gutmann et al., 2010] extends ProbLog
with continuously distributed facts, the logical language in-
volving these distributions is heavily restricted, e.g., it is not
possible to compare two random variables. Another approach
is the work on distributional clauses, which extends the ex-
pressiveness of ProbLog further [Gutmann et al., 2011]. Al-
though this language supports arbitrary parameterized distri-
butions, inference is only feasible by sampling. In compari-
son, continuous distributions can be modeled in PCLP by pro-
viding probabilistic information about constraints in CLP(R),
consistent with the actual distribution. The lower and upper
bound of marginal probabilities can be derived using exact
inference. The bounds can serve as approximation with de-
sired precision, which depends on the amount of probabilistic
information encoded by the constraints.

This paper is organized as follows. In the following sec-
tion, PCLP is motivated by means of an example. In Sec-



tion 3, we will formally introduce the syntax and semantics of
PCLP. Section 4 introduces an inference procedure for PCLP,
which we apply in Section 5 to the example. Finally, in Sec-
tion 6, the achievements are summarized and we point out
directions for future research.

2 Motivating Example
To illustrate the expressive power of the new language, we
present an example on the likelihood consumers will buy a
certain kind of fruit, based on [Binder et al., 1997]. Since we
have a first-order formalism, this generalizes easily to an arbi-
trary number of kinds (in the example: apples and bananas).

Yield of fruit is clearly relevant for the price. We model
the yield of fruit with normally distributed random variables
X ∼ N (µ, σ2):

Yield(apple) ∼ N (12000.0, 1000.0)
Yield(banana) ∼ N (10000.0, 1500.0)

The price is also influenced by government support:
Support(apple) ∼ {0.3: yes, 0.7: no}

Support(banana) ∼ {0.5: yes, 0.5: no}
The basic price linearly depends on the yield:

basic price(apple,250− 0.007 ·Yield(apple))
basic price(banana,200− 0.006 ·Yield(banana))

In case the price is supported it is raised by a fixed amount:
price(Fruit ,BPrice + 50)←
basic price(Fruit ,BPrice), Support(Fruit) = yes

price(Fruit ,BPrice)←
basic price(Fruit ,BPrice), Support(Fruit) = no

At which maximum price customers still buy a certain fruit is
modeled by a gamma distribution:

Max price(apple) ∼ Γ(10.0, 18.0)
Max price(banana) ∼ Γ(12.0, 10.0)

Thus, a customer is willing to buy in case the price is equal
to or is less than the maximum price, which can be expressed
by the following first-order rule:

buy(Fruit)← price(Fruit , P ), P ≤ Max price(Fruit)
Based on these constraints, the following probability approx-
imations can be determined:

P (buy(apple)) ≈ 0.464± 0.031
P (buy(banana)) ≈ 0.162± 0.031

P (buy(apple) ∨ buy(banana)) ≈ 0.552± 0.054
The actual probabilities are guaranteed to be within the com-
puted maximum error determined by the constraints and used
approximation scheme.

Besides using the language for approximations, it can also
express imprecise probabilities. For instance, to express that
the probability that the price of apples is supported is in the
interval [0.3, 1], we can write:

Support(apple) ∼ {0.3: yes, 0.7: yes ∨ no}
The bounds on the probability that the consumer buys apples
is now 0.222 ≤ P (buy(apple)) ≤ 0.493. These bounds
represent both the underspecified distribution and the error in
approximating the continuous distributions.

3 The PCLP Language
The probabilistic constraint logic program (PCLP) language
L consists of a constraint language C, the language of rulesR,
and definitions of random variables V . Below, we assume the
language to be fixed. Then, a PCLP T (a “theory”) consists of
random variable definitions VT , and a logical theory LT =
CT ∪ RT , where CT is a constraint theory, related to the
used constraints domains as discussed hereafter, and RT is a
set of acyclic rules.

3.1 Syntax
Constraint Domains
In this paper, we use a language of constraints that is closed
under conjunction and negation. We explore two constraint
domains which are commonly used in constraint logic pro-
gramming — discrete values (DV) and the real numbers (R)
— to model constraints on discrete and continuous random
variables, respectively.

In the constraint domain DV random variables take discrete
values. The constraint language consists of equality (=) and
inequality ( 6=) as basic building blocks. In the example we
used constants such as yes in the definitions as abbreviation
for the constraint that a random variable equals that constant.
The constraint domain is very similar to the finite constraint
domain CLP(FD) [Hentenryck, 1989], with the difference
that we do not require the domain to be defined explicitly.
The domain of all variables is implicitly given by all atoms
occurring in the program, but one can exclude values by not
assigning any probability mass to them. Using DV, one can
represent, for instance, Bayesian networks [Pearl, 1988], but
also first-order formalisms such as CP-logic [Vennekens et
al., 2009].

The R domain is basically the same as in CLP(R) [Jaffar et
al., 1992]. Variables represent real numbers and constraints
consist of linear equalities and inequalities using predicates
such as {=, 6=, <, >,≤,≥} and functions {+,−, ∗}. This
theory can be used to approximate arbitrary continuous dis-
tributions for which the cumulative distribution function is
known by associating probabilities to intervals of the do-
main of the distribution, defining a set of distributions in-
cluding the actually intended one. To do that one can di-
vide the probability space of a single variable in n inter-
vals (l1, u1), · · · , (ln, un) and constrain its distribution as
X ∼ {P (l1 < X < u1) : l1 < X < u1, · · · , P (ln < X <
un) : ln < X < un}. The number of intervals determine the
precision, i.e. the gap between the probability bounds one can
compute.

Rule Language
Rules are (implicitly universally quantified) expressions of
the form: h ← l1, . . . , ln where h is called the head and the
conjunction l1, . . . , ln is called the body of the rule. The head
h is an atom, i.e., an expression of the form p(t1, . . . , tm)
with p a predicate, and l1, . . . , ln are either atoms or con-
straints (elements of C). Constants are denoted by lower-case
letters (a, b, . . . ), while variables start with upper-case letters
(e.g. X , Y , . . . ). As mentioned above, RT is defined as the
set of rules of the PCLP theory T .



Random Variable Definitions
Each random variable definition is of the form:
V (t1, . . . , tn) ∼ {p1 : c1, . . . , pm : cm} where each ti
is a term, i.e., a constant or variable, ci ∈ C is a constraint,
pi ∈ [0, 1] are probabilities such that

∑
i pi ≤ 1. This makes

sure that random variables are defined consistently, together
with the requirement that left-hand sides of definitions
are non-unifiable. Given a substitution θ that grounds
{t1, . . . , tn}, this definition yields constraints on a random
variable V (t1, . . . , tn)θ. The pair pi : ci means that the prior
probability that the value of this random variable satisfies
the constraint ci is at least pi. We define the realization of a
random variable, which formally captures this notion.
Definition 1. Let V be a random variable in a PCLP theory,
where V ∼ {p1 : c1, . . . , pm : cm}. Then, a random variable
X is called the realization of V if for all ci, 1 ≤ i ≤ m, it
holds that

P (ci[V 7→ X]) ≥ pi

where c[V 7→ X] is the constraint c with V substituted by X .
Constraints are not necessarily mutually exclusive; e.g., it

is possible to express that 20% of the balls in an urn are def-
initely blue and 80% are either blue or yellow. However, to
ensure that all the probability mass can be assigned to the do-
main of random variable V we require that the constraints are
satisfiable. To specify the constraints on random variables,
each constraint domain contains at least the associated ran-
dom variables, interpreted logically as constants. To make
sure random variables are defined independently, a constant
in a constraint of the definition of V is either V itself or it
does not unify with any variable in V . For example, we may
include the constraint Support(apple) = yes in the defini-
tion of Support(apple), but not refer to Support(banana).

3.2 Semantics
As the theory T specifies constraints on random variables,
typically there is a class of distributions that satisfies the
constraints. In fact, for a given ground atom q, the theory
specifies an interval [Pmin(q), Pmax(q)] such that Pmin(q) ≤
P (q) ≤ Pmax(q).

Given a finite set of possible grounding substitutions
{θ1, . . . , θn} for each variable V (t1, . . . , tm) from V , we
first define a probability space over a choice function ϕ
which selects for each element of V (t1, . . . , tm)θi either
one of its probability-constraint pair p : cθi or it maps to
(1 −

∑
(pi:ci)∈V pi : true) which represents the remaining

probability mass. We denote the set of grounded variables
by VT , which represents all the random variables in T . A
particular choice is then the set:

CHϕ = {c | V ∈ VT , ϕ(V ) = (p : c)} (1)

As each random variable is independent, the probability Pϕ

attached to a choice ϕ is the product of all selected probabil-
ities:

Pϕ =
∏

V ∈VT , ϕ(V )=(p : c)

p (2)

Each choice can be thought of as a possible world, although
this world is described by constraints. In this world, it is pos-
sible that q is true, although this might depend on the actual

ϕ11 ϕ21 ϕ31

ϕ12 ϕ22 ϕ32

ϕ13 ϕ23 ϕ33

Figure 1: Two-dimensional discretized probability space with
linear constraints.

values of the random variables involved. We say that s ∈ C
is a solution for q given a particular choice ϕ, denoted by
solution(s, q, ϕ) iff

LT ∪ CHϕ ∪ {s} 6|= ⊥ (3)
LT ∪ CHϕ ∪ {s} |= q (4)

Given a particular choice function ϕ, there are three pos-
sibilities: (i) the query is necessarily true in ϕ, i.e.,
solution(true, q, ϕ) holds, denoted by follows(q, ϕ), (ii)
there are no solutions or (iii) there are some constraints
which imply the query, i.e., ∃s : solution(s, q, ϕ), denoted by
possible(q, ϕ).
Example 1. Consider the following program:
X ∼ {0.1: 0 ≤ X ≤ 1, 0.3: 1 ≤ X ≤ 2, 0.6: 2 ≤ X ≤ 3}
Y ∼ {0.1: 0 ≤ Y ≤ 1, 0.3: 1 ≤ Y ≤ 2, 0.6: 2 ≤ Y ≤ 3}
q ← Y < 0.75
q ← Y < 1.25, 0.25X + Y < 1.375

We denote the choice selecting the ith element in the definition
of X and the jth in the definition of Y as ϕij . Those choices
can be represented in a two-dimensional probability space
as depicted in Figure 1. Each rectangle represents an (inde-
pendent) choice of a single constraint from the distribution of
two random variables; the query q is represented by the area
above the line. It holds that follows(q, ϕ11), since for this
choice Y < 1.25, 0.25X + Y < 1.375 always holds. In the
grey areas, there is a possible solution, i.e., possible(q, ϕij).
For instance for the choice ϕ21, Y can be 0 and therefore less
than 0.75. However, not all possible values consistent with
the choice are a solution: Y can be 1 which is greater than
0.75, but less than 1.25. 0.25X + Y however can become 1.5
which is larger than 1.375.

We can use that to define the lower bound of the probabil-
ity distribution, which is the probability mass of choices for
which the query is certainly true. Formally, we say the lower
bound of the probability for q is the sum of the probabilities
of choices which imply q, i.e.,

Pmin(q) =
∑

follows(q,ϕ)

Pϕ (5)

For the program given in Example 1 the lower bound is
Pϕ11 = 0.01.

In contrast, in the upper bound we also include those
choices which, only together with a particular solution, im-
ply q, i.e.,

Pmax(q) =
∑

possible(q,ϕ)

Pϕ (6)



For the program given in Example 1 the upper bounds is
Pϕ11 + Pϕ21 + Pϕ31 + Pϕ12 + Pϕ22 = 0.22.

We now introduce the concept of solution constraints to
relate those intuitive definitions of the lower and upper bound
to the possible realizations of all variables in a program.
Definition 2. Let a solution constraint SC(q) be a con-
straint such that COMP(RT ) ∪ CT |= SC(q) ↔ q, where
COMP(RT ) is Clark’s completion [Clark, 1978] of RT , i.e.,
rules are interpreted as if and only if statements, so that q is
completely characterized by SC(q).

Given the solution constraint, we can now formally define
the probability of q given a realization of the random vari-
ables.
Definition 3. Given the solution constraint SC(q) having
random variables V = {V1, . . . , Vn} and a set of indepen-
dent random variables X = {X1, . . . , Xn} such that Xi is
a realization of Vi, the probability of q, P (q | X), is de-
fined as P (SC(q)[V1 7→ X1, . . . , Vn 7→ Xn]), denoted by
P (SC(q)[V 7→ X]).

The definition of bounds actually corresponds to the prob-
ability given the realizations for which the probability is min-
imal and maximal.
Theorem 1. Given the solution constraint SC(q) and inde-
pendent random variables X = {X1, . . . , Xn} such that Xi

is a realization of Vi, where V = {V1, . . . , Vn} is the set of
random variables which are in SC(q), it holds that Pmin(q)
and Pmax(q) are the most tight bounds for P (q | X), i.e.:

Pmin(q) = inf
X

P (q | X) Pmax(q) = sup
X

P (q | X)

In case the constraints only relate to a single value of
the random variables, then the bounds collapse, as then
follows(q, ϕ)⇔ possible(q, ϕ). In this case, there is a simple
mapping from this logic to, e.g., ProbLog.

Finally, we define negations and conjunctions of queries in
a similar fashion, i.e., a conjunction of literals q is defined by
the constraint SC(q). Note that it follows that Pmax(¬q) =
1− Pmin(q) and vice versa.

We finally define what conditional probabilities mean in
this setting. For each realization of VT conditional probabil-
ities are defined in the obvious way. We then define the min-
imum and maximum conditional probability of a program as
the probability given realizations for which this probability is
minimal and maximal.
Definition 4. We define the probability bounds given evi-
dence as:

Pmin(q | e) = inf
X

P (q ∧ e | X)
P (e | X)

Pmax(q | e) = sup
X

P (q ∧ e | X)
P (e | X)

Example 2. Recall the program introduced in Example 1 and
consider an additional rule e← X < 1.5. Suppose we would
like to compute Pmax(q | e). To illustrate this probability,
consider Figure 2, which is the probability space of Figure 1
with an additional constraint that implies the evidence. Intu-
itively, to determine Pmax(q | e) we need to exclude choices

ϕ11 ϕ21 ϕ31

ϕ12 ϕ22 ϕ32
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Figure 2: Two-dimensional discretized probability space with
linear constraints (solid) and evidence (dashed).

inconsistent with e from the probability space and compute
the probability of q in the remaining space. The choices ϕ31,
ϕ32 and ϕ33 are certainly inconsistent with e and are there-
fore excluded. The choices ϕ21, ϕ22 and ϕ23 are possibly
inconsistent with e, but only ϕ23 is removed. The rationale
is that, since we want to maximize the probability, remov-
ing ϕ23 increases the resulting probability, because for all
possible X it could only contribute to P (e | X) but not to
P (q | X). In contrast, removing ϕ21 and ϕ22 would de-
crease the maximal probability of q. In summary, we com-
pute Pmax(q | e) = Pϕ11+Pϕ21+Pϕ12+Pϕ22

Pϕ11+Pϕ21+Pϕ12+Pϕ22+Pϕ13
≈ 0.73.

Note that even though Pϕ23 would contribute to compute the
upper bound of the evidence alone, it does not contribute to
the partition function of Pmax(q | e).

To compute conditional probabilities in general we have
the following proposition that relates the joint probability to
the conditional probability.

Proposition 1. The probability bounds of a query q given
evidence e, as defined by Definition 4, can be computed as
follows:

Pmin(q | e) =
Pmin(q ∧ e)

Pmin(q ∧ e) + Pmax(¬q ∧ e)

Pmax(q | e) =
Pmax(q ∧ e)

Pmax(q ∧ e) + Pmin(¬q ∧ e)

4 Inference
The inference problem is solved in two steps. We first apply
resolution and derive a proof constraint PC(q) for a query q,
which can be seen as the operational equivalent of the solu-
tion constraint. Using this, we compute a probability for q
by summing over all choices. The advantage of this two-step
approach is that we only need to apply resolution once. After
this, we discuss strategies to reduce the number of choices we
need to sum over.

4.1 PCLP as a satisfiability problem
The collection of a proof constraint is similar to how it is
done in constraint logic programming [Jaffar et al., 1998]
and ProbLog [Raedt et al., 2007]. In brief, the idea is to ap-
ply SLD resolution on the query q, in which the constraints
encountered are collected. In the end, for each proof i, we



Algorithm 1: MAXPROB

Input: proof constraint PC(q) and partial choice CHϕ

Result: Pmax(q | CHϕ)
if ¬SAT( PC(q) ∧ CHϕ) then return 01
if ¬SAT(¬PC(q) ∧ CHϕ) then return 12
if there is some random variable V in PC(q), for which3
there is no choice in CHϕ then

return
∑

ϕ(V )=(p : c)

p ·MAXPROB(PC(q),CHϕ ∪ {c})
4

else return 15

obtain a conjunction of constraints PCi(q) that proves q, i.e.,
RT ∪{PCi(q)} ` q. Then, the complete proof constraint for
q is simply the disjunction of constraints:

PC(q) =
∨

RT ∪{PCi(q)}`q

PCi(q) (7)

Since RT is acyclic, there are a finite number of these proofs,
though this could be generalized to cyclic theories [Man-
tadelis and Janssens, 2010].

Example 3. Consider again the program from Example 1.
The proof constraint for query q is:

PC(q) = Y < 0.75 ∨ (Y < 1.25 ∧ 0.25X + Y < 1.375)

Using PC(q) we compute the bounds on the probability
distribution by applying a satisfiability solver. We start with
the probability of a single positive query atom q, which can be
computed by checking the satisfiability of the proof constraint
with possible choices. We denote sat(C) for CT ∪{C} 6` ⊥.

Lemma 1. For all PCLP theories T , given a positive query
q, it holds that:

Pmax(q) =
∑

sat(PC(q)∧CHϕ)

Pϕ

Pmin(q) =
∑

¬sat(¬PC(q)∧CHϕ)

Pϕ = 1−
∑

sat(¬PC(q)∧CHϕ)

Pϕ

From this lemma, the bounds on negations and conjunc-
tions of queries can be easily derived.

Corollary 1.

Pmax(q) =
∑

sat(
V

qi∈q PC(qi)∧
V
¬qj∈q ¬PC(qj)∧CHϕ)

Pϕ

Example 4. To compute Pmin(q) we make use of the fact that
Pmin(q) = 1− Pmax(¬q) and Corollary 1. It holds that:

¬PC(q) =
¬(Y < 0.75 ∨ (Y < 1.25 ∧ 0.25X + Y < 1.375)) =
Y ≥ 0.75 ∧ (Y ≥ 1.25 ∨ 0.25X + Y ≥ 1.375)

For all ϕ it holds that sat(¬PC(q) ∧ CHϕ), except for ϕ11.
Therefore, Pmin(q) = 1− (1− Pϕ11) = 0.01.

Algorithm 2: MAXPROBDECOMP

Input: proof constraint PC(q)
Result: Pmax(q)
simplify PC(q)1
if exists independent subconstraint C in PC(q) then2

p = MAXPROBDECOMP(C)3
L| C = MAXPROBDECOMP(PC(q)[C 7→ true])
L|¬C = MAXPROBDECOMP(PC(q)[C 7→ false])
return p · L|C + (1− p) · L|¬C

else return MAXPROB(PC(q), ∅)4

4.2 Exact inference for PCLP
Because of the duality of Pmin and Pmax, we will focus here
on computing maximum probabilities. Clearly, by naively
applying Lemma 1, it is necessary to consider all possible
choices, which is exponential in the number of random vari-
ables. However, it is possible that a partial choice CH′

ϕ ⊂
CHϕ is not consistent with or implies the proof constraint
PC(q), which can be exploited during inference. To illustrate,
let ΦV be the possible choice functions for the random vari-
able V ∈ VT only. Then, for a proof constraint such as X >
0∧X+Y > 0, we naively examine |ΦX||ΦY| choices. How-
ever, assuming only half of the choices for X are consistent
with X > 0, we can reduce this to only |ΦX|/2+ |ΦX||ΦY|/2
examinations, if we consider the choices for X first. This ef-
fectively prunes a part of the choice space.

A basic algorithm that exploits this idea is presented in Al-
gorithm 1. Pruning takes place at lines 1 and 2. The efficiency
of the algorithm depends on the order variables are selected
on line 4. As MAXPROB terminates in case an inconsistency
can be found, a simple heuristic is to order random variables
such that Vi < Vj if Vi occurs in an (in)equality constraint
with less variables on average than Vj . For example, in the
constraint X > 0 ∧ X + Y > 0 we first select choices for
X as some of these choices might make the whole constraint
inconsistent.

In the spirit of the well-known RelSAT algorithm [Ba-
yardo and Pehoushek, 2000] for weighted model counting,
we can also observe that in many cases the problem can be
decomposed into subconstraints which do not share any ran-
dom variables. For example, consider the proof constraint
X > 0 ∧ Y > 0. In this case Pmax(X > 0 ∧ Y > 0) =
Pmax(X > 0) · Pmax(Y > 0) which can be computed by ex-
amining |ΦX| + |ΦY| choices only. Also for more complex
queries, independent subconstraints can be found, e.g.,

Pmax((X > 0 ∧Y > 0) ∨X < −3) =
Pmax(Y > 0) · Pmax(X > 0 ∨X < −3)+
(1− Pmax(Y > 0)) · Pmax(X < −3)

which requires to examine |Φy|+2|Φx| choices. An algorithm
that uses this idea is presented in Algorithm 2. Because of the
substitutions, we initially perform some basic simplifications,
e.g., in the previous example (X > 0 ∧ false) ∨ X < −3 is
simplified to X < −3.
Theorem 2. Given a query atom q and its proof constraint
PC(q), then

MAXPROBDECOMP(PC(q)) = Pmax(q).



(a) (b) (c)

Figure 3: (a) Effect of different optimizations on inference time. (b) Scalability of inference by varying the number of queries
(n) in a disjunction. (c) Number of choices needed to achieve maximum approximation error (the x-axis is logarithmic).

i.e., MAXPROBDECOMP computes the upper bound of q.

5 Experiments
In this section, we provide some insight into the behavior of
the proposed algorithm. In particular, we investigate the pro-
posed heuristics and provide some experiments with respect
to scalability. In the implementation we make use of the satis-
fiability modulo theories (SMT) solver YICES [Dutertre and
Moura, 2006], which supports linear arithmetic.

5.1 Heuristics
Continuing the example of Section 2, we will first present
some experiments in the computation of P (buy(apple) ∨
buy(banana) | Max price(apple) < 90). We compare four
algorithms: (i) the naive algorithm where we sum over all
choices, (ii) the pruning algorithm (Algorithm 1), (iii) an al-
gorithm that includes the decomposition of constraints (Al-
gorithm 1), but without pruning, and (iv) the complete algo-
rithm proposed in this paper.

Assuming we give a point prediction as the average of
{Pmin(q), Pmin(q)} then the maximum error we make is
(Pmax(q) − Pmin(q))/2. We varied the number of intervals
into which the continuous variables were discretized and plot-
ted the relationship between the inference time and the maxi-
mum error (cf. Figure 3a).

The result shows that the proposed heuristics improve in-
ference time significantly. In this case, identifying the in-
dependent constraints has more effect on the inference time
than the pruning heuristic, as several independences could be
exploited. However, we also see that the pruning of choices
reduces inference time, although the effect was limited in this
case: only the choices inconsistent with Max price(apple) <
90 were pruned.

5.2 Scalability
To explore how scalable our inference algorithm is we add
n kinds of fruit to the program, for simplicity with the same
characteristics as banana and determine approximations for
P (buy(fruit1) ∨ · · · ∨ buy(fruitn)). The result is shown in
Figure 3b where we show again the relationship between in-
ference time and maximum error.

The result shows an interesting non-monotonic behavior:
while for small n, the maximum error is higher if there are

more fruits, the reverse holds for large n, e.g., if n = 20, then
the error is smaller than for n = 10 given the same infer-
ence time. The first behavior occurs because the maximum
error increases with the number of fruits, given the same total
number of choices (see Figure 3c). So without any heuris-
tics, the maximum error is always higher with larger n given
the same inference time. However, by using the heuristics
the inference time for the choice space is sub-exponential, in
particular because subconstraints are independent. Therefore,
the size of the choice space starts to dominate and the error
can even decrease given the same inference time.

6 Conclusions & Future Work
We introduced a new probabilistic constraint logic programs
framework that combines CLP with probabilistic inference.
Although there are already several approaches where prob-
abilistic information is combined with logic programming,
many approaches are either restricted in their capabilities to
representation (e.g., only to discrete distributions) or to infer-
ence (e.g., using sampling). PCLP overcomes these issues by
using a constraint representation where exact inference is fea-
sible. In general, the language allows for specifying partially
unknown probability distributions.

In this paper, we also introduced an inference algorithm ex-
ploiting state-of-the-art SMT solvers, proved its correctness
with respect to the semantics, introduced several heuristics,
and experimentally evaluated the implementation of the infer-
ence algorithm. We obtained encouraging results indicating
that inference in our language is feasible for solving challeng-
ing problems.

In future research, we aim to improve the inference further
by lifting (in [Gogate and Domingos, 2011] the closely re-
lated RelSAT algorithm is lifted) and dynamically discretiz-
ing the distribution of continuous random variables [Neil et
al., 2007]. Finally, we aim to develop learning methods for
this new language.
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