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Abstract—Structural operational semantics provides a well-
known framework to describe the semantics of programming
languages, lending itself to formalization in theorem provers. The
formalization of syntactic SOS rule formats, which enforce some
form of well-behavedness, has so far received less attention. GSOS
is a rule format that enjoys the property that the operational
semantics and denotational semantics, both derived from the same
set of GSOS rules, are consistent. The present paper formalizes
the underlying theory in the theorem prover C0Q, and proves
the consistency property, also known as the adequacy theorem.
The inspiration for our work has been drawn from the field of
bialgebraic semantics.

I. INTRODUCTION

Operational and denotational semantics are two well-
known approaches to assigning a meaning to programming
languages and process algebras. Around fifteen years ago, Turi
and Plotkin [17] developed a framework that unifies both these
styles. Using the language of category theory, they managed
to strip away language-specific details such as concrete syntax
and behavior. Given a set of operational rules, they have shown
how to derive both the operational and denotational semantics
from a distributive law corresponding to a set of operational
rules. Their result pertains to several syntactic operational rule
formats [2], [6], but the GSOS format [4] is the most prominent
one of them [2], [10]. For instance, classic languages such
as basic process algebra and the language WHILE [3] can
be described by the GSOS format. Although implementations
based on Turi and Plotkin’s work have previously been de-
veloped in HASKELL by Hutton [7], Jaskelioff, Hutton and
Ghani [9], and Hinze and James [6], formalized proofs in a
theorem prover have not yet been provided.

The contributions of this paper are the following.

e It provides an implementation of both an operational
and a denotational semantics derived from a set of
GSOS rules, and a proof of their consistency (called
the adequacy theorem), fully developed in the theo-
rem prover COQ [16], using novel theorem proving
techniques.

e A generic theory for syntactic terms, also fully devel-
oped in CoQ, which is needed for the proof of the
adequacy theorem.

e It lays out the foundations for further work on the
formalization of bialgebraic semantics.

The advantage of a development in the constructive logic of
CoQ is that it enables both the execution of and formal proofs
about the semantics at hand. The work in this paper is heavily
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inspired by Turi and Plotkin’s bialgebraic semantics. The
presented formalization is a shallow embedding into COQ’s
Type (i.e. the type of types), and does not possess the
full generality of Turi and Plotkin’s category theoretic work.
However, it is still far more general than previous work on
programming language semantics in theorem provers which
usually concentrates on the study of a concrete language, such
as [3].

An important tenet of most theorem provers, including
CoQ, is that every function must terminate, otherwise the
underlying logic would be inconsistent. This seemingly su-
perficial difference with HASKELL has profound implications
for the development presented in this paper. In order to satisfy
the syntactic checks which COoQ performs on definitions to
guarantee termination, the types representing the syntax and
behavior of the language must be chosen carefully. As we
will see, COQ’s support for dependent types can be put to
good use. The semantic domain potentially consists of infinite
objects, as shown in the examples provided in this paper. In
contrast to HASKELL, there is a clear distinction between finite
and infinite worlds in CoQ. The standard syntactic equality of
CoQ is not general enough for serious proofs about infinite
objects. We have based the CoQ formalization on the use of
setoids, i.e. a Type packaged with a user-defined notion of
equality and a proof of well-behavedness of the equality.

To make the content in this paper accessible to readers with
limited exposure to the field of bialgebraic semantics and COQ,
we explain the computational side of this work in Section II,
using a simple language for the construction of streams as
our running example. Furthermore, we start off with a more
limited rule format to sketch the main ideas, and then treat
the GSOS format. The reader is expected to have a modest
amount of familiarity with category theory. All definitions and
theorems in this paper have been formalized and proved in
Co0Q. The interested reader can step through each of the proofs
in the COQ-script available on the web via http://www.cs.ru.
nl/~kmadlene/adequacy/.

II. A SIMPLE STREAM LANGUAGE

In this section we discuss the relation between operational
and denotational semantics similar to the way they arise in the
framework of Turi and Plotkin [17]. We use a simple language
about streams (also used by Klin [10] in his introduction to
bialgebraic semantics) as our running example, allowing us to
explain the basics and provide some hints towards the COQ
implementation. An example of a more involved language
featuring non-determinism will be given in Section V. This
section is almost exclusively limited to the computational side
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Fig. 1. A simple language for streams.

of our work, and the code presented in this section is perfectly
executable within COQ.

Consider the simple stream language defined by the op-
erational rules in Figure 1. For now we disregard the opera-
tion Zip. These rules inductively define a transition relation
between terms, composed of the operations AS, BS, Alt,
and a label, a or b. The operations AS and BS respectively
generate the streams aaaa--- and bbbb - - -, and the operation
Alt generates the alternation between its two provided streams.

The syntax of the language is specified by its signature: a
set of function symbols each equipped with a fixed arity. Such
a signature is encoded as a functor which we will call the
signature functor. If ¥ denotes the signature functor, then the
terms are least fixpoint of X, usually denoted as T" := u X, ¥ X.
The corresponding types are:

Inductive ¥ X := AS | BS | Alt (z y: X)
Inductive T :=app (6: X T)

Here X is a Type, and app is a constructor of T with
the type ¥ T — T. The separation of X from T will be
important in the rest of the paper. We provide the function
map corresponding to the signature functor as well. This is an
instance of the type-class SFmap (i.e. setoid function map),
which will be discussed in more depth in Section IV-A.

Class SFmap (M : Type — Type) :=
sfmapy VXY (X =>Y) MX—>MY
Instance : SFmap ¥ :=
AXY (f:X > Y)u,
match z with

|AS = AS

| BS = BS

| Alt zy = Alt (f z) (f y)
end

A. Operational Semantics

To encode the transition relation we also have to represent
the behavior of the system. This again is done with a functor,
which we call a behavior functor. The data type L corresponds
to our label set.

Inductive L:=a| b
Definition B X :=L x X

Instance : SFmap B :=
AMNAB(f:A— B) a,
let (I,z):=ain (I,f z)

We can now define a transition system as a B-coalgebra, i.e. a
pair consisting of a state-space, in this case 7', and a structure
map of type " — B T'. In this paper we refer to the structure
map as the coalgebra.

Fixpoint OM (¢: T): B T :=
sfmap g app (
match ¢t with
| app AS = (a, AS)
| app BS = (b, BS)
| app (Alt zy) =
let (I,2') := OM zin
let (m,y’) := OM yin (I, Alt y' ')
end)

One may think of OM as a model of the operational semantics
of the language in question (cf. the rules in Figure 1), as it
specifies for each state what the next step would be. We can
run a term by coiteratively unfolding OM, resulting in a stream
of labels. The streams are actually the greatest fixpoint of the
present behavior functor [8], usually denoted as v X, BX. This
leads to the following definitions:

Colnductive Zg :=ing (z: B Zp)

CoFixpoint unfoldg ‘(¢: X - B X) (z:X):Zp:=
inpg (sfmapg (unfoldg c) (c x))

Definition run := unfold ; OM

Thus, inp is the constructor of the streams Zp, and has type
B Zp — Zp. We call run the operational semantics, which
is derived from OM, the operational model.

In this paper we will only consider behavior functors B that
have a final coalgebra. The existence of final coalgebras is a
subtle matter; in HASKELL it is possible to define the greatest
fixpoint of an arbitrary functor (which acts as the state-space of
the final coalgebra), but in COQ the same definition is illegal
due to the inability of COQ to guarantee the termination of
every function in that case. The same goes for the least fixpoint
operator, for the terms. The least and greatest fixpoint operators
in HASKELL-code would be respectively (the argument f being
the functor):

datap f =p(f (1f))
codatav f=v (f (vf))

However, because there is no distinction in HASKELL between
finite and infinite worlds, these operators are exactly the same.!

The structure map of the final coalgebra is called outp:

Definition outp (2: Zg): B Zp :=
match z with
| ing z =z
end

An important property of the final coalgebra is that unfold  is
the only function that makes the following diagram commute?,

'In HASKELL, the keywords data and codata are only used to indicate
the intended use of the datatype, but can be interchanged.

’In the diagrams of this paper we will adopt the categorical notation
for functors by writing F' instead of sfmapp, for some functor F, i.e.,
we explicitly indicate the instance type, and leave sfmapp itself implicit.
Moreover, we omit parentheses in the notation of types.



and this function is run (= unfold g OM).

unfoldg OM

r—-————=-=—--- ~Zp
OM (finality) outp
BT BZp

B (unfoldg OM)

The intuition behind the above diagram for the concrete
behavior functor B for streams, used in this section, is that
splitting a label off the stream generated by unfolding OM is
the same as performing one step and unfolding OM on the
resulting term.

B. Denotational Semantics

As in [17] we consider the denotational semantics as a
dual version of the operational semantics. The underlying
denotational model actually operates directly on elements of
the semantic domain of our stream language, i.e. the streams
Zp. For the present example this means that it prescribes
how the operations of the language, which receive streams
as arguments, yield new streams. The semantic functions
corresponding to each of the operations are:

CoFixpoint denAS : Zp :=ingp (a, denAS)
CoFixpoint denBS : Zp :=ing (b, denBS)
CoFixpoint denAlt (zx y:Zp): Zp =

match (z, y) with

| (ing (I, 2"),ing (=, y")) = inp (I, denAlt y' ')

end

From the above functions we can define the full denotational
model:

Definition DM (0 :X Zg): Zp :=
match o with

| AS = denAS

| BS = denBS

| Alt ¢y = denAlt z y
end

In a fashion dual to the operational side, the denotational
semantics evaluates a term, by folding the algebra DM over
that term.

Fixpoint fold ‘(h: X X — X) (¢t: T): X :=
match ¢ with
| app o = h (sfmapy, (fold h) o)
end

Definition eval : T — Zp := fold DM

The terminology is that DM is the denotational model, while
eval is the denotational semantics. Likewise, there is a unique
function making the following diagram commute, and this
function is eval (= fold DM).

S (fold DM
T otd DM) 75
app (initiality) DM
=== " fold DM >Zp

III. FRAMEWORK

The adequacy theorem in the case of the simple stream
example says that executing run and eval on the same term
yields the same stream. With the definitions as they stand,
a proof of it would proceed by induction on the terms of the
stream language, and would therefore be rather ad hoc. A more
structured development will be laid out in the present section,
based on the use of a distributive law to represent operational
rules. From this distributive law we derive both operational
and denotational models.

As we have detailed in the previous section, it is not
possible to take arbitrary fixpoints in COQ due to limitations
imposed by its logic. To develop our theory independent of
a particular signature or type of behavior, we will assume
the existence of least/greatest fixpoints with the appropriate
properties. That is, the fixpoints and their properties are
parameters of the theory we develop in this paper. This is
all possible in COQ as proofs and programs are in the same
syntactic class, in true Curry-Howard style. The question is
then how to realize these fixpoints in a fairly generic fashion.
We do this for the terms in the present paper.

A. Generic Terms

A more general version of 7" that does not directly depend
on a specific signature can not be obtained by making 7'
parametric in the signature in COQ, as we have explained
earlier. Instead, we fix 7' on the signature 3, and X should
have a certain shape. We will discuss the details of this
in Section IV-B. To allow for open terms (used later on
to represent meta-variables X in the operational rules) the
constructor var : X — T X has been added.

Inductive T X :=var (z: X) | app (6: % (T X))

T is also called the free monad generated by X.. 1t is straightfor-
ward to generalize the fold provided earlier to the new version
of T.

Fixp. fold (k: X - Y)(h: XY > Y)(t: T X): Y :=
match ¢ with
| var © =k x
| app o = h (sfmapsy;, (fold k h) o)
end

The fold operation provides a recursive definition principle
that avoids explicit recursion (see e.g. [12]): one only has to
specify a mapping of the variables k: X — Y, and an algebra
h:¥ Y — Y. This result is attributed to the following lemma.

Lemma 1. Let k: X — Y, and h: X Y — Y. Then fold k h
is the unique function making the following diagram commute:

var app

TX XTX

X

lz (fold k h)

Y<~—7—"3%Y

The equalities fold k h o var = k and fold k h o app =
h-% (fold k h) depicted in the above diagram should be
interpreted extensionally. Through the use of type-classes we



have overloaded the standard notion of equality in COQ to
be the extensional equality, and moreover, using equality with
respect to custom notions of the equality that might be defined
on the types involved (setoids). See also Section IV-A.

If we choose the empty type (i.e. the type False) for X,
then we obtain the set of closed terms (as in Section II). In
that case, the left part of the diagram can be ignored, and the
remaining square says precisely that app : ¥ (T Fualse) —
T False is the initial algebra for functor 3. Observe that the
diagram at the end of Section II can then be obtained by taking
Zp for Y, and DM for h.

Finally, it is straightforward to provide a function mapping
for T, to turn it into a functor:

Instance : SFmap T :=
AXY (f: X = Y), fold (var Yof) (app Y)

B. Distributive Laws

Before we treat the GSOS, we will first consider simple
distributive laws, ones that distribute a functor over another
functor. Distributive laws (in the simple format) are functions
A:YXoB= BoX (ie. of type VX,X (B X) —» B (X X))
that happen to be natural transformations (see Section IV-A).

We will replace the operational as well as the denotational
model introduced in the previous section with models that are
derived from the same distributive law A, which corresponds
to the operational rules.

Definition A: X o B = Bo X :=
A X o,
match o with
| AS = (a, AS)
| BS = (b, BS)
| Alt zy =
let (I,2'):=2z in
let (m,y’):=yin (I, Alt y' ')
end

As a function, A takes an operation (an element from the
signature) as argument. In the case of Alt this operation is
applied to two arguments that both consist of a pairing of an
action and a variable. This corresponds to the premise of a rule.
The result is a pairing of an action and an operation applied to
variables, corresponding to the target of the conclusion of each
rule. The polymorphism in X ensures that A does not depend
on a concrete choice of the set of variables. In summary, the
type of A says that each operation in the language, as it is
applied to behaviors on the variables, yields a behavior on an
operation applied to variables.

C. Operational and Denotational Models

In the standard relational approach to operational seman-
tics, the validity of a transition step is proved by the construc-
tion of a derivation tree. The nodes correspond to applications
of the operational rules, and the leafs correspond applications
of the hypotheses.

We can mimic this with the help of the definition principle
for terms (the fold operation) combined with the semantic

model. Suppose that we have a map H : X — B X,
representing the behavior environment: the hypotheses about
the variables in the premises. If we encounter an application of
an operation, then we apply A, and if we encounter a variable
we apply H. In a diagram,

var app

X TX XTX
HL (1) lOM H @) s (OM H)
BX T oar BTX BYTX <—YYBTX
var B app Arx

which concretely is

Definition OM ‘(H: X - B X): T X - B (T X):=
fold (sfmap g (var X)o H)
(sfmapp (app X) o A (T X))

The denotational model can be obtained in a dual fashion,
by unfolding the semantic model. Assume the existence of a
final coalgebra for the behavior B with state-space Zp and
structure map outpg.

YZg———— 2 -~ > 7p
Y outp
YBZp (3) outp
Azg
BXZg SO BZp

Concretely,

Definition DM : ¥ Zp — Zp :=
unfold 5 (A Zp o sfmapsy, outp)

The denotational model operates directly on elements of the
semantic domain. It tells how the operations of the language,
applied to denotations, form new denotations. We remark that
the hypotheses do not play a role in the denotational model,
but will come into play when we construct the evaluation
function ewval. Running a term according to the operational
model, and evaluating a term according to the denotational
model is defined in same way as in Section II:

Definition run (H: X - B X): T X — Zp:=
unfold g (OM H)

Definition eval (H: X - B X): T X — Zp:=
fold (unfoldg H) DM

The distributivity property of A will be needed to prove the
adequacy of run and eval.

There are many sensible rules that do not fit in the format
of A of this section. For example, consider the operation Zip
of our simple stream language, which zips two input streams
together (see Figure 1). This operation differs slightly from Alt
in the sense that at each transition it does not discard the head
element of the second stream. If we try to encode this rule
in our semantic model, for instance by adding the following
alternative to A:



| Zip x y = let (I,2"):=xin (I, Zip y z’)

then the model does not type check anymore. The main
problem is that variables used on both the left- and right-hand
sides should receive a polymorphic type, which is not the case
for the variable y. Also replacing y by a pattern match, as
in the case for Alt will not work because then we have to
reconstruct the first argument of Zip on the right-hand side out
of the constituents. In Section V we discuss the more liberal
GSOS rule format admitting operations like Zip.

IV. Co0Q FORMALIZATION

In this section we discuss some details of the COQ formal-
ization, and continue the development of the theory for terms.

A. Equational Reasoning with Setoids

Infinite objects, as in most theorem provers, live in a
world separate from finite objects, and do not adhere to
CoQ’s standard notion of equality. One often works instead
with bisimulation, a weaker notion of equality on infinite
objects. COQ does not support user-defined extensions of its
standard notion of equality (i.e. quotient types) as it would
endanger the decidability of type checking. To overcome this
issue, it is common practice to work with seroids, Types
packaged with a user-defined notion of equality and a proof
of well-behavedness of the equality. The commuting diagrams
in Section II use bisimulation as the underlying notion of
equality in the CoQ formalization. Finally, setoid morphisms
are functions whose domain and codomain are setoids and
respect those equalities.

The recent addition of type-classes to COQ [14] enables
the use of canonical names for standard mathematical notation.
These type-classes are first-class as they are powered by proof
search and implicit arguments. Declaring instances of the
Equiv, Setoid and Setoid_Morphism type-classes enables
fluent rewriting modulo setoid equality in proofs. In our
development we have tacitly overloaded the canonical name
“=" with setoid equality.

First, we introduce setoid counterparts for the standard
categorical notions of functor and natural transformation. The
setoid functor is taken from the MATHCLASSES library [15]. It
consists of an object map M and two classes: a class SFmap,
which is the function map, and a class SFunctor carrying
proofs of the setoid functor axioms.?

Class SFunctor (M : Type — Type)
4V Y Equiv X }, Equiv (M X)} {SFmap M }:={...}

For reasons of space, we omit the full definition of SFunctor.
The second argument lifts a notion of equality on X to a
notion of equality on M X. Furthermore, it carries two sanity
properties stating that the object map makes a setoid on X
into a setoid on M X, and that the function map is a setoid
morphism in its function argument (allowing us to rewrite
equivalent functions with one another), and the following two

3Unlike HASKELL, COQ admits variable names starting with an uppercase
letter. Furthermore, the backtick causes COQ to automatically generalize
missing variables.

familiar properties about the function map:

sfmap s id = id
sfmap; (f © g) = sfmapyy [ o sfmapy, g

Given two object maps M and N, one can define a family
of functions:

Notation M = N:=V X M X - N X

The family of functions n: M = N is a setoid natural
transformation if nx is a setoid morphism whenever X is a
setoid, and if it satisfies a commutation law:

Ny o sfmapy, f = sfmapy fonx )]

Again for reasons of brevity, we no not include the correspond-
ing type-class definition SNatural.

B. Dependent Types for Generic Terms

Attempting to encode terms as the least fixpoint p of a
signature functor as is done in the HASKELL code in Section II
results in an error in COQ, as such definitions violate COQ’s
syntactic check for positivity, which guarantees termination of
structurally recursive functions.

We bypass this issue by exploiting the fact that signatures
of binding-free languages have a fairly simple structure. That
is, a term on such a signature is essentially a rose tree, in
which each parent node has an arbitrary number of child nodes,
dictated by the arity of the operation corresponding to the
parent node. A leaf of the tree is either a parent node with
zero children nodes, or a variable, if we consider open terms.

The signature is nothing more than an assignment of an
arity to each of the language’s operations.

Variable Operation : Type
Variable ar : Operation — nat
Definition ¥ X := {z : Operation & vector X (ar z)}

A parent node in the tree is described by a dependent pair,
consisting of the operation z and a vector of length the arity
of x (vector is essentially a richly typed version of list). One
can think of the notation “{ _& _}” as a type-theoretic variant
of set comprehension. Dependent pairs can be crafted using the
notation “(_& _)”, and projT1, projT2 are the corresponding
projections.

The function map for the signature functor is:

Instance: SFmap ¥ :=
A XY (f: X=Y)(0:2X),
match o with
| (s & v) = (s & map f v)
end

The induction principle for T' pushes the use of dependent
types even further. It is the basis for the proofs of the Lemmas
in Section IV-C.

Definition T_induction ‘(P :T X — Type):
(Vz:X,P (var z)) —



Vo :Z{t:T X &P t}, P (app (sfmapy, projT1 z)))
—Vt, Pt

T _induction is essentially a dependently-typed version of
fold: we can re-obtain fold by setting P:= )\ _, Y:

Definition fold ‘(k: X — Y) (h:XY 5 Y):T X = Y
:=T_induction (A _, Y) k (h o (sfmapy, projT2))

C. Theory about Terms

Now that we have the full definitions in place, we can
continue our formalized treatment of the theory about terms.

Lemma 2. ¥ and T are setoid functors.

The proof of Lemma 2 uses the full dependently-typed
induction principle for 7. The full principle has also been
used to prove the properties in this section by induction on
the structure of 7'

In the remainder of this section we show that 7" is a monad
in the categorical sense. To this end, we need to show that it
has a unit, var in this case, and a multiplication, namely:

Definition join X : T (T X) —» T X := fold id (app X)

These satisfy the two standard coherence conditions of mon-
ads.

Lemma 3. The terms form a monad, i.e. the following identi-
ties hold:

joinx o sfmapp joinyx = joinx o joingpx
joinx o sfmapy varx = joiny o varrx = id

It is a well-known fact from category theory that the cate-
gory of X-algebras is isomorphic to the category of algebras
for the term monad. These are “plain” algebras h for the
functor 7', with two additional properties:

howary = id
h o sfmapy h = h o joiny

A T-algebra homomorphism is a homomorphism of the un-
derlying algebra.

We conclude this section by providing an alternative proof
principle for open terms, that differs from Lemma 1.

Lemma 4. Let k: X — Y and h:T Y — Y such that h
is an algebra for the term monad. Set free k h := fold k (h o
appy o sfmapy, (vary)). Then free k h is unique in making
the following diagram commute:

varx Joinx

X TX

|
|,

h ljreekh
\]

Y<——TY
3

TTX

T (free k h)

We have now set up a theory for syntax. Similarly, we could
develop a theory for behavior. We do not pursue this goal for
two reasons. First, since our presentation is essentially a deep

embedding of SOS rules, most of it hinges on a structured
encoding of the terms. Secondly, one may expect that more
variation in the behavior is desired to model phenomena such
as time or probability (see [2]; see also [10] for an overview).
Moreover, finality proofs can be tricky to carry out in COQ
due to guardedness restrictions that it puts on corecursive
definitions.

V. PROVING THE ADEQUACY THEOREM

Our approach to prove the adequacy theorem for the GSOS
rules is to first carry it out for the simple rule format. The proof
for GSOS follows the same proof skeleton, but requires some
additional intermediate verifications.

A. Adequacy Theorem for Rules in Simple Format

Recall how the operational and denotational models are
obtained from a single semantic model. We combine the
diagrams of the operational and denotational models into the
following diagram.

%(OM H —X(run ou
sprx < sy S i ny Rt ypy
app x DM
X i
\;\er unfold H
Arx (2) NS (3) Az
X
OM H (1) i/H out
BX
/ N
B/varx B(unfolg H)
BYXTX B anpx BTX B(ram H) BZ BDM B¥Z

The following theorem holds for open terms, which is a mild
generalization of what has been presented in the literature [17],
(101, [2].

Theorem 5 (Adequacy).
VHt,run Ht=eval H t.

Proof: Consider the following diagram in the category of
B-coalgebras. That is, the objects are pairs (consisting of the
object and the structure map) and the arrows are coalgebra
homomorphisms.

varx app x

(X, H)™S(TX,0M) 22 (STX, Bapp x o A o S(OM H))

run H
unfolk\ l

(Z, out) o (XZ,A o X out)

2 (run H)

Except for the arrow X (run H), it is trivial to see that each
of the arrows are in fact coalgebra homomorphisms, as it can
be directly read off the complete diagram above. To show this
for ¥ (run H), one uses naturality of A and the fact that run
is a coalgebra homomorphism. Commutativity of the diagram
follows from the finality of out. The theorem then follows
from applying the forgetful functor to the above diagram and
the definition principle used to define eval H. [ ]
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Fig. 2. Basic process algebra.

B. The GSOS Format

Consider the process algebra language of Figure 2. The
parallel composition operation “LJ” and the possibility of a state
not having any outgoing transitions clearly make this a non-
deterministic language. We use the fin type family to define the
behavior functor; fin n consists of the first n natural numbers.

Definition B X :={n:nat& finn - A x X}
ColInductive cotree := node : B cotree — cotree

The object of the corresponding final coalgebra consists of the
cotrees.

Lemma 6. cotree is the object of the final coalgebra for the
functor B.

As an aside, it may seem more natural to set B X :=list (A X
X), but one runs into problems trying to provide a guarded
corecursive definition of unfold for that choice of B.

Note that the sequencing operation “e” does not fit in the
simple rule format for the same reasons as Zip in Section III-C.
Moreover, the second rule in Figure 2 has a transition to a
variable in its conclusion, which is neither supported in the
simple format.

The operational rules of basic process algebra can however
be encoded in the GSOS format. Let B be arbitrary and X be
constrained to the conditions set out in Section IV-B, and set
D X :=X x B X. The abstract GSOS format are natural
transformations of the following type:*

p:XoD=BoT

The difference with the simple format is that the arguments of
each operation are now pairings consisting of both the variable
and the behavior on that variable, and each rule yields a term.

For reference we include the encoding of the rules of
Figure 2 in abstract GSOS:

Definition p: ¥ oD = Bo T :=
A X o,
match o with
[la = (1& (X (a, app Done)))
|z U y= (& merge ([id,var] o projT2 (rg z))
([id, var] o projT2 (72 y)))
[ (- (0& ) o (- b)

= sfmappg var b
| (0) e (y,-)

4Literature on process algebra often considers just the case where B is the
finite power set and calls that the GSOS format.

= sfmapg (A ', app (var ' @ var y)) b
| Done = (0 & casel _)
end

Here merge and case0 have the following types:

Definition merge ‘(f : fin n — X) ‘(g : fin m — X):
fin(n+m) =X
Definition case0 (f : fin 0 — Type) (i: fin 0),f @

C. From GSOS to Distributive Laws

Recall that the symmetry of the (co)domains was vital to
the proof of the adequacy theorem. The rules p need to undergo
a two-step transformation to obtain a distributive law of T" over
D. First expand p’s codomain:

Definition 7: X oD = Do T :=
A X, (app X o sfmapy, (var X omy),p).

To obtain A we apply fold.

Definition A: ToD = Do T :=
A X, fold (sfmapp (var X))
(sfmapp (join X)o7 (T X))

A general proof (included in the CoQ development) shows
that the definition principle for terms yields natural transfor-
mations. From this fact, together with the assumption that p is
a natural transformation, it is straightforward to show that A is
natural as well. The obtained distributive law, which distributes
the term monad over the copointed functor D, enjoys more
structure than the plain distributive laws, as we will prove in
Proposition 7.

Proposition 7. The following two identities hold:

Ax owvarpx = sfmapp, varx
Ax ojoinpx = sfmapp joinx o Arx o sfmapr Ax

The first identity says that the law should behave trivially on
variables. The second identity characterizes compositionality
of the semantics. Proposition 7 is a key ingredient in the proof
of Lemma 8 and Lemma 9. Lenisa, Power and Watanabe [11]
prove that the GSOS format corresponds precisely to a dis-
tributive law of a monad over a copointed functor, but for the
adequacy theorem it is sufficient to show that a GSOS rule
implies such a law.

D. Adequacy Theorem for the GSOS Format

The proof of the adequacy theorem for GSOS is analogous
to the situation in Theorem 5, but B should be replaced by D,
3 by T, and app by join and entails more proof obligations
due to the richer structure on A. We adopt the definitions of
the operational/denotational models and semantics to this new
situation. Recall that we used the definition principle of terms
to obtain an operational model from the plain distributive laws.
We repeat this construction for distributive laws that stem from
GSOS rules, with the difference that we use the alternative
definition principle.



Def. OM gsos “(H: X D X): T X — D (T X):=
free (sfmap p (var X)o H)
(sfmapp (join X)o A (T X))

As in the proof, we need to verify that each of the relevant
arrows are coalgebra homomorphisms, but for the functor D
instead of B. For the arrow corresponding to join this follows
from the following fact:

Lemma 8. sfmapp joiny o Arx, used in OM gsos, is an
algebra for the term monad.

The D-coalgebras are isomorphic to the B-coalgebras,
and it is straightforward to verify that if out is a final B-
coalgebra, then (id,out) is a final D-coalgebra (with the
same state-space). Hence, the denotational model for GSOS
rules and rungsos can be obtained by finality, analogous
to Section III-B. We obtain evalgsos by making use of the
alternative definition principle for terms.

Def. rungsos (H: X - D X): TX - D (T X):=
unfoldD (OMGSOS H)

Definition DMGSOS : T ZD — ZD =
unfold, (A Zp o sfmap outp)

Def. evalgsos (H: X - D X): T X - D (T X):=
free (unfold, H) DM gsos

Recalling Lemma 4, to ensure the uniqueness of evalgsos,
we need to verify the following fact:

Lemma 9. DM gsos is an algebra for the term monad.

We can now conclude the following:

Theorem 10 (Adequacy for GSOS rules).

VH t, runGsos Ht= B’UG,ZGSOS Ht.

VI. RELATED WORK

The work in this paper is part of a line of research
called bialgebraic semantics, initiated by the work of Turi and
Plotkin [17]. Bialgebras appear in the present paper in the
form of diagrams (2) and (3). Hinze and James [6] give a pen
and paper proof of the adequacy theorem based on HASKELL
definitions for several rule formats, using proof techniques
similar to ours. The most powerful rules distribute a monad
over a comonad and also appear in [17], [2]. Although these
laws provide the most abstract perspective of well-behaved
rules, they have not yet been applied in concrete studies of
rule formats [10].

An implementation of Turi and Plotkin’s work has been
developed by Hutton [7] in HASKELL and extended for mod-
ularity by Jaskelioff, Ghani and Hutton [9]. Both papers define
the terms and and the final coalgebra as the greatest fixpoint
of a functor. Direct translations to COQ are not possible; in
this paper we have presented an alternative approach based on
dependent types.

Niqui [13] extends the class of productive specifications
definable in COQ by developing the A-coiteration scheme in
CoQ, based on Bartels’ work [2]. In the further work section of
his paper he mentions that adding monadic, pointed or cofree

structure on the bialgebraic nature of A-coiteration can help to
build even more powerful schemes.

Aceto et al. [1] have developed a tool, called the PREG
AXIOMATIZER, to prove the bisimilarity of two ground terms
written in a language specified in GSOS extended with predi-
cates. It derives a sound set of axioms from the GSOS rules,
and uses that to prove the bisimulation.

VII. CONCLUSIONS

We have shown how operational and denotational seman-
tics can be obtained from operational rules in the GSOS format
in the theorem prover C0OQ. Moreover, we have formally
proved the theorem that says that these forms of semantics are
consistent. Our formalization facilitates both formal reasoning
about and the execution of programming language semantics.

Directions of further work would be to add support for
variable binding, which requires the use of a different base
category [5] (the present formalization is based on Type),
and further generalization to support different rule formats, as
in [2], [6].
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