
PDF hosted at the Radboud Repository of the Radboud University

Nijmegen

The following full text is a publisher's version.

For additional information about this publication click this link.

http://hdl.handle.net/2066/116980

Please be advised that this information was generated on 2017-12-05 and may be subject to

change.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Radboud Repository

https://core.ac.uk/display/18465813?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://hdl.handle.net/2066/116980

Delft University of Technology
Software Engineering Research Group

Technical Report Series

Evaluating Usefulness of Software Metrics
- an Industrial Experience Report

Eric Bouwers, Arie van Deursen, Joost Visser

Report TUD-SERG-2013-003

SERG

TUD-SERG-2013-003

Published, produced and distributed by:

Software Engineering Research Group
Department of Software Technology
Faculty of Electrical Engineering, Mathematics and Computer Science
Delft University of Technology
Mekelweg 4
2628 CD Delft
The Netherlands

ISSN 1872-5392

Software Engineering Research Group Technical Reports:
http://www.se.ewi.tudelft.nl/techreports/

For more information about the Software Engineering Research Group:
http://www.se.ewi.tudelft.nl/

Note: Accepted for publication in the Software Engineering in Pratice track (SEIP) of the International
Conference on Software Engineering, IEEE, 2003. http://dl.acm.org/citation.cfm?id=2486914

Accepted for publication by IEEE. c© 2013 IEEE. Personal use of this material is permitted. Permis-
sion from IEEE must be obtained for all other uses, in any current or future media, including reprint-
ing/republishing this material for advertising or promotional purposes, creating new collective works, for
resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other
works.

http://dl.acm.org/citation.cfm?id=2486914

Evaluating Usefulness of Software Metrics
- an Industrial Experience Report -

Eric Bouwers∗‡, Arie van Deursen‡ and Joost Visser∗§

∗ Software Improvement Group, Amsterdam, The Netherlands
E-mail {e.bouwers,j.visser}@sig.eu

‡ Delft University of Technology, Delft, The Netherlands
E-mail {Arie.vanDeursen,E.M.Bouwers}@tudelft.nl

§ Radboud University, Nijmegen, The Netherlands

Abstract—A wide range of software metrics targeting various
abstraction levels and quality attributes have been proposed by
the research community. For many of these metrics the evaluation
consists of verifying the mathematical properties of the metric,
investigating the behavior of the metric for a number of open-
source systems or comparing the value of the metric against other
metrics quantifying related quality attributes.

Unfortunately, a structural analysis of the usefulness of metrics
in a real-world evaluation setting is often missing. Such an
evaluation is important to understand the situations in which a
metric can be applied, to identify areas of possible improvements,
to explore general problems detected by the metrics and to define
generally applicable solution strategies.

In this paper we execute such an analysis for two architecture
level metrics, Component Balance and Dependency Profiles, by
analyzing the challenges involved in applying these metrics in
an industrial setting. In addition, we explore the usefulness
of the metrics by conducting semi-structured interviews with
experienced assessors. We document the lessons learned both
for the application of these specific metrics, as well as for the
method of evaluating metrics in practice.

I. INTRODUCTION

Software metrics continue to be of interest for researchers
and practitioners. Metrics such as volume [3], McCabe Com-
plexity [26], the C&K metric suite [12] and a wide range
of architecture metrics (see Koziolek [23] for an overview)
are well-known and used in practice. Moreover, new software
metrics continue to be defined by the research community.

The evaluation of a new metric typically consists of corre-
lating the (change in) value of the metric with other quality
indicators such as likelihood of change [25] or its ability to
predict the presence of bugs [28]. In other cases, the evaluation
consists of an analysis of the values of a metric for a set of
open-source systems, either on one single snapshot or over a
period of time [30], [29]. More theoretical approaches of met-
ric evaluation inspect mathematical properties of metrics (see,
for example, Briand et al. [11], [10] and Fenton et al. [15]) or
focus on metrological properties of metrics (see, for example,
Abran [1]).

The focus of these types of evaluation is to determine
whether the designed metric is related to the quality property it
has been designed to quantify, a property known as “construct
validity” [21]. Although this is an important part of the

evaluation of a metric, these types of evaluations cannot be
used to determine whether a metric is useful. For a metric to be
considered useful its value should correspond to the intuition
of an measurer [15] and should be actively used in a decision-
making process [16].

In this paper we evaluate the usefulness of two architec-
ture level metrics, Component Balance [7] and Dependency
Profiles [8], which are designed to quantify the analyzability
and encapsulation within a software system. Evidence of
the construct validity of these metrics has been previously
gathered in small-scale experiments [7], [8]. The large-scale
study presented here aims to gain an understanding of the
usefulness of these two metrics in practice.

The context of this research is the Software Improvement
Group (SIG), a consultancy firm specialized in providing
strategic advice to IT management based on technical findings.
As a first step both metrics are embedded in the measurement
model used to monitor and assess the technical quality of a
large set (500+) of systems developed by (or for) clients of
SIG. The metrics are interpreted by consultants working at
SIG, who fulfill the role of external quality assessors.

Data about the usefulness of the metrics is collected us-
ing two different methods. First, data about the challenges
involved in actually applying the metrics is collected by
observing the quality assessors and documented in the form
of memos. Secondly, semi-structured interviews are conducted
with the quality assessors who interpreted the metrics when
assessing their customers’ software systems.

Our analysis of the collected data leads to two types of
findings. First, we identify in which situations and under which
conditions the metrics are useful. Second, we discover how to
improve the metrics themselves and ways to apply them better.

In addition to reporting on the evaluation of these specific
metrics in this particular context, we reflect upon a general
method for evaluating software metrics in a practical setting.
The challenges involved in designing and executing such a
study are outlined and the generalizability of the results is
discussed. We conclude that despite the inherent limitations
of this type of studies, the execution of such a study is crucial
for the proper evaluation of any software metric.

SERG Bouwers, van Deursen & Visser – Evaluating Usefulness of Software Metrics - an Industrial Experience Report

TUD-SERG-2013-003 1

II. EVALUATION GOAL

The goal of this study is to gain an understanding of the
usefulness of two software metrics. Before we can reason
about the usefulness of a metric the term “usefulness” needs
to be characterized. Different characteristics of usefulness are
available, e.g. a metric is considered useful if the metric:

• corresponds to the intuition of the measurer [15]
• is actively used in a decision making process [16]

In the first definition, a crucial role is played by the person
using the metric. Apart from the experience of the particular
person, the role in which he/she uses the metric, e.g., a
developer, a quality assessor inside a company or an external
quality assessor, has a significant impact on the outcome
of the evaluation. In the second definition, the context in
which the metric is used, e.g., assessing the quality of a
system, analyzing the properties of an architecture or assessing
the performance of developers, has a large influence on the
outcome of the evaluation.

The subjects of this evaluation are the Component Bal-
ance [7] and Dependency Profiles [8] metrics. In our previous
work have evaluated the properties, correlations and statistical
behavior of the metrics [7], [9], but not their usefulness.

Both of these metrics have been designed to quantify
specific properties of the implemented architecture of a soft-
ware system [7], [8], i.e., analyzability and encapsulation.
Such a quality assessment can either be done by an internal
assessor (e.g., working inside a single company) or an external
assessor (employed by, for example, a consultancy firm). In
this research, we choose the viewpoint of external assessors.

Thus we define our evaluation goal in the template from the
GQM approach of Basili et al. [6] as follows:

The objective of the study is to understand the
usefulness of the “Component Balance” and “De-
pendency Profiles” metrics, from the point of view of
external quality assessors, in the context of external
assessments of implemented architectures.

III. EVALUATION METHOD

To answer our research question we use the four step
methodology as outlined in Figure 1. To start, the metrics are
included in the standard operating procedure of the external
assessors. Details about this embedding and the context of the
external assessors are given in Section IV.

In line with recommendations about collecting data in
qualitative research [2], data about the challenges involved in
applying the metrics are gathered using two methods. First, an
observer records real-word experiences of using the metrics in
the form of memos. Secondly, interviews with the assessors are
conducted to determine the perceived usefulness of the metric
as seen by the assessors. Details about this data-gathering
process are given in Section V.

Lastly, the data extracted by both methods is analyzed
and condensed separately, the results of which are given in
Section VI and Section VII. Based on this data, the most

Data gathering!!!!!
Embed!

Observations! Interviews!
Analyze!

Fig. 1. A four-step process for evaluating software metrics in practice

common observations are discussed and possible solution areas
are explored in Section VIII.

Apart from evaluating the metrics we also reflect upon
the benefits and limitations of this evaluation process in
Section IX, discuss related work in Section X, after which
the paper concludes in Section XI.

IV. EVALUATION SETTING

The evaluation took place within the Software Improvement
Group (SIG), a consultancy firm which “. . . translates detailed
technical findings about software-intensive systems into ac-
tionable information for top management”.1

The length of the investigation was six months, from the
start of February 2012 until end of August 2012. At the start
of this period, two system properties based on the Component
Balance and the Dependency Profiles metrics were added to
the company’s software measurement model. Details about
this measurement model and the embedding of the metrics
are given in Section IV-A and Section IV-B.

The measurement model is applied by consultants employed
by SIG on a wide range of customer systems throughout
various services. Details about the consultants interpreting the
metrics are discussed in Section IV-C, while the context of this
research is described in two parts focussing on the services in
which the metrics are used (Section IV-D) and the type of
systems assessed in the services (Section IV-E).

A. Software Measurement Model

A measurement model based on the maintainability aspect
of the ISO/IEC 9126 [19] standard for software quality was
used throughout the services of SIG [18]. This model opera-
tionalizes the standard by decomposing its sub-characteristics
into a set of six system properties, which are quantified by
code-level metrics such as the duplication percentage and
length of units.

These code-level metrics are in turn used to derive a
rating for each system property using a benchmarking-based
methodology [4]. More details about the exact construction of
the model and its application can be found in Baggen et al. [5].

Since the introduction of this model, the ISO/IEC 9126
standard has been replaced by the new ISO/IEC 25010 [20]
standard for software quality. One of the changes of the
new standard is the introduction of the sub-characteristic of
“Modularization”, which is defined as:

[The] degree to which a system or computer program
is composed of discrete components such that a
change to one component has minimal impact on
other components.

1http://www.sig.eu

Bouwers, van Deursen & Visser – Evaluating Usefulness of Software Metrics - an Industrial Experience Report SERG

2 TUD-SERG-2013-003

To capture this new sub-characteristic, the measurement model
was extended with two system properties: Component Bal-
ance and Component Independence. Apart from upgrading to
the latest quality standard, the introduction of these system
properties was expected to stimulate discussions about the
architecture of systems and to incorporate a common view-
point in the assessment of implemented architectures.

B. Component System Properties

The metric used to quantify the system property of Com-
ponent Balance is the metric with the same name as was
introduced in our previous work [7]. The metric used to
quantify the Component Independence system property is the
combination of two categories of the Dependency Profiles
metric [8]. Both metrics were chosen based on the results
of our earlier experiments, which showed that these metrics
outperform other metrics when quantifying the quality char-
acteristics of analyzability [7] and encapsulation [9].

Component Balance: The Component Balance metric con-
sists of two factors, System Breakdown Optimality (SBO) and
Component Size Uniformity (CSU). The SBO provides a value
in the range of [0,1] based on the number of components. The
“optimal” number of components receives a high score which
gradually decreases when a system contains a higher or a lower
number of components. The “optimal” number of components
is currently defined as the median number of components in
a representative benchmark of systems.

The CSU metric provides a value in the range of [0,1] based
on whether the volume of the system is distributed (roughly)
equally amongst the components of the system. More details
about the design of these two metrics and their aggregation
can be found in Bouwers et al. [7].

Component Independence: To quantify Component Inde-
pendence two categories of the Dependency Profiles are used.
A dependency profile categorizes all modules within a com-
ponent into one of four categories based on the dependencies
the module has on modules in other components, as illustrated
in Figure 2. The percentage of code within the system in the
internal category and the outgoing category is combined into
a single percentage that quantifies the volume percentage of
code in each component that is not called from or otherwise
directly depended upon by code in another component. The
higher this percentage the higher the rating for Component
Independence.

Implementation choices: Similar to the existing system
properties, the raw software metric is translated to a rating on a
scale of [0.5,5.5] via a benchmarking based methodology [4],
and these ratings are combined with the ratings for the other
six system properties to calculate an overall rating [5].

To ensure that both metrics can be applied to systems that
are written in multiple programming languages the following
algorithms are used. For Component Balance, the volume of
the components is measured as the sum of Lines of Code for
all programming languages used within a component.

To calculate the categories of the Dependency Profiles,
language-specific call- and hierarchy-dependencies are stat-

B C

A

1

2

3

4

Fig. 2. The four categories of modules as defined within Dependency
Profiles [8]. 1 = hidden, 2 = inbound, 3 = outbound and 4 = transit modules.
Arrows denote dependencies from/to modules within other components.

ically resolved to calculate a percentage per programming
language. The rating obtained per programming language is
aggregated to the system-level using a weighted average,
taking into account the relative volume of each language.

C. Consultants

In this research we observe the consultants working for
SIG. These consultants provide recommendations to clients to
improve the quality of a system in order to mitigate risks, but
are not involved in the execution of these recommendations.
Thus they fulfill the role of external quality assessors.

Two different types of consultants are distinguished, tech-
nical consultants trained in identifying and assessing techni-
cal risks within a software system and general consultants
responsible for translating technical findings into project- and
business risks. By observing both types of consultants we aim
to gain more insight in both the technical usefulness as well
as the usefulness of the metrics on a business level.

D. Services

Four different services are offered by SIG. Two of them,
the Software Risk Assessment (SRA) and the Software Risk
Monitor (SRM), are the main subjects of this research. The
goal of an SRA is to answer a specific research question related
to risks involved in the technical quality of a software system.
A standard investigation lasts 6-8 weeks and is executed by a
team consisting of both general and technical consultants [14].
In an SRM, the identified risks and technical quality of a
system are tracked over a period of time to ensure timely
identification and mitigation of problems [24].

E. Software subjects

In the six-month study period the measurement model has
been used to monitor the technical quality of over 500 systems,
and applied to over 50 systems in the setting of an SRA.
The size of the systems varies from three thousand to several
million lines of code written in a wide range of programming
languages ranging from Object-Oriented and related languages
(e.g., Java, C#, JSP, ASP, JavaScript and various SQL-dialects)
to languages typically deployed in mainframes (e.g., Cobol,
Tandem). The systems originate from different domains in-
cluding banking, insurance, government and logistics.

To gain the most benefits from transferring to the new
model a system needs to have its component defined. These
definitions were made based on information retrieved from the
development teams using interviews and design documents.

SERG Bouwers, van Deursen & Visser – Evaluating Usefulness of Software Metrics - an Industrial Experience Report

TUD-SERG-2013-003 3

V. DATA GATHERING

After the metrics were embedded into the measurement
model, data about the application and usage of the metrics
was gathered using two different methods:

1) Experiences of using the metrics were collected through
observations and documented in the form of memos

2) The opinions of the external assessors about the useful-
ness of the metrics were collected by conducting semi-
structured interviews

Combining these two methods of data-gathering does not
only allow us to triangulate findings, but also reduces the
known limitations of either method. A reflection on this design
decision is given in Section IX.

A. Observations

The objective of using this method is to gain an understand-
ing of the challenges involved in applying the metrics, to gain
insight in the situations in which the metrics can be used and
to identify situations in which the values of the metrics do not
directly correspond to the intuition of the assessor.

During the six month period the first author, who works
as a technical consultants at SIG, collects experiences about
the metrics in the form of written memos. All questions and
remarks about the metrics which are either publicly stated or
directly asked are documented on a daily basis.

Each memo contains a description of the problem/question,
the answer provided/action defined and possible follow-up
actions. After the six month period all memos are manually
analyzed to identify recurring questions and general observa-
tions.

B. Interviews

The objective of using this method is to get an overview of
the usefulness of the metrics as perceived by the external qual-
ity assessors. Eleven software quality assessors with at least
two years of experience with performing metric-based quality
assessments were interviewed to construct this overview.

The interviews are time-boxed to a period of 30 minutes
and are conducted by the second author of the paper. This
author, who is not involved in the daily operations of SIG,
has previous experience in using interviews as a basis for
qualitative research [17] and started each interview with the
following question:

How do you use Component Balance and Compo-
nent Independence?

The discussion based on this question is used to get a
qualitative insight into the usefulness of the metrics. Each
discussion is documented in a report which is validated by
the interviewee.

In order to get a more quantitative insight into usefulness of
the metrics each assessor was asked to answer the following
two questions at the end of the interview:

1) On a scale of 1 to 5 (higher is better), how useful do you
find Component Balance / Component Independence in
your job?

2) On a scale of 1 to 5 (higher is better), does the use of
Component Balance Component / Independence make it
easier to do your job?

The above questions are based on the questions of Davis [13]
and are designed to get an insight into the perceived usefulness
and ease of use of the metrics.

VI. OBSERVATION FINDINGS

Over the period of six months a total of 48 memos were
collected. The memos describe interactions of the first author
with 17 quality assessors (over one third of the available
quality assessors), decomposed into 10 general consultants,
six technical consultants and one internal researcher.

Twenty memos discuss specific systems, 14 different sys-
tems (spanning four different business contexts) where subject
to these discussions. All memos combined involved 11 differ-
ent customers and suppliers.

Note that even though the specific discussions only cover
a fraction of all analyzed systems and clients, the remaining
memos contain discussions about general trends observed by
consultants, which are based on their experience with all
systems as discussed in Section IV-E.

All memos were analyzed together at the end of the six
months period. In this analysis 20 different concepts are
extracted from the memos, which in turn are grouped into
five different categories. Figure 3 shows an overview of the
collected categories and the related concepts, each of which
is discussed in the following sections.

A. Decision making

Indications for the actual use of the two architecture metrics
in a decision making process was found in 16 different memos
and grouped together in three different concepts.

Targeted Improvements: The addition of the metrics to the
measurement model resulted in targeted improvement efforts
being made by development teams, including the development
team employed by the company. Shortly after the introduction
of the architecture metrics one of the internal developers
posted the following message on the internal communications-
channel:

In ”eating-your-own-dogfood-news”, the new com-
ponent independence metric helped us find a rem-
nant of old design in [system-name] that was subse-
quently refactored, resulting in a +0.1 maintainabil-
ity and a +0.85 component independence

Start of discussions: Five memos describe direct questions
posed by development teams on how to improve the rating
for the metrics. In all cases, findings related to the specific
system were discussed and recommendations were defined and
communicated back to the development team.

Communication device: One memo describes a discus-
sion with a development team of a system which is being
monitored. At first the monitoring was focussed on specific
technical issues which required a technical componentization.
However, these technical components did not correspond to
the components used by the developers to reason about the

Bouwers, van Deursen & Visser – Evaluating Usefulness of Software Metrics - an Industrial Experience Report SERG

4 TUD-SERG-2013-003

Decision making

Intuition

Component Definition

Application

Implementation

Targeted improvements

Start of discussions

Communication device

Small systems
Older technologies
Influence of nr of components

File-system versus mental model
System Scope

Subjectivity

Model introduction

Definition of actions
Effect prediction

Steering
Context
Effort prediction

Component Balance

Component
Independence

Linear Equation

Volume metric
Dependency types
False positives
Cross language
dependencies

Fig. 3. An overview of the five categories (displayed in bold/italic font), two sub-categories (displayed in italic font) and their related concepts as collected
via observations.

system. In order to decrease the effort needed to transfer the
system to a new maintenance team the current development
team decided to re-structure the source-code to reflect their
mental components. In this situation, both architecture metrics
were used to communicate the progress of this re-structuring
to project-management.

In summary, the metrics formed a basis for a discussion
about the components, led to the definition of a roadmap to
make the transition of the system easier and provided a way
to track the progress for non-technical personnel.

B. Intuition
As explained by Fenton et al. [15] a metric can be consid-

ered useful if it corresponds to the intuition of the person using
the metric. On three occasions assessors specifically mention
that in some cases the value of the metrics, in particular the
Component Balance metric, does not immediately correspond
to their intuition about the state of the system. One assessor
states that in about half of the cases the ratings are as expected,
while in the other half of the cases the definition of the
components needs to be re-assessed.

More detailed examples of the situations in which the
(change in) the value of the metrics does not correspond to
the intuition of the assessors are described in seven different
memos and grouped into three distinct categories.

Small systems: Four different memos (involving five differ-
ent assessors) describe that smaller systems seem to receive
lower ratings for the architecture metrics faster than larger
systems. One of the assessors hypothesized that this is due to
smaller systems with components related to technical topics
(typically only a few such as database, front-end, services)
because the size of the system does not require a functional
decomposition.

For one assessor this size-related issue was important
enough to sit down together with an internal researcher to
inspect the distribution of the ratings for all eight system
properties to determine whether the distribution of ratings was
indeed different. The result of this inspection was that, apart
from a relatively large spike caused by systems which did not
yet have component definition, the distribution of ratings for
architecture metrics was not different from that of the other
metrics.

Older technologies: On two occasions assessors mentioned
that systems written in older technologies (e.g., Cobol, Tan-
dem, Pascal) seem to receive higher ratings for the component
based metrics more easily than systems written in modern
technologies (e.g., Java and C#).

For Component Balance, one assessor hypothesizes that
this trend could be caused by the way in which components
are solicited from the developers. Because the technologies
themselves do not have a “component”-concept these types of
systems normally do not have any components defined. During
the transfer to the new quality model the sources are grouped
together in components according to functionality after the
metrics are explained, which could lead to a specific steering
towards the “optimal” number of components and thus higher
ratings.

Influence of number of components: For Component Bal-
ance one assessor observes that the number of components
seems to influence the rating for Component Balance more
than the size-distribution, which confirms the observations in
the initial validation of this metric [7].

C. Component Definition

As discussed in Section IV, components needed to be
defined for a system in order to gain the most from the transfer
to the new model. Three concepts are related to this category.

File-system versus mental model: The components of a
system were defined based on either the structure of the file-
system (e.g., the top-level directories are used as components)
or based on interviews with developers about how they view
the system. In the latter case it might well be that files from
different directories are combined into a single component.

To illustrate, one assessor outlined a case in which the
system contained a top-level directory structure depicting
technical components, while the second-level directories con-
tained a functional decomposition. Depending on the view-
point of the developers either the functional or the technical
components can be used to calculate the metrics. However,
it was unclear to the assessor which one of the two is the
best representation of the “real” components of the system
and should thus be used for the current assessment.

Because there may be different components under various
view-points, the value of the rating can diverge, which in turn

SERG Bouwers, van Deursen & Visser – Evaluating Usefulness of Software Metrics - an Industrial Experience Report

TUD-SERG-2013-003 5

can have political consequences (for example if there exists
a contractual agreement to reach a certain rating for each
system property). This type of situation calls for a more clear
definition of what constitutes a component.

On the other hand, one assessor stated that within a SRA
setting it can be helpful to use different component-definitions
(representing different views on the system) to determine risks
with respect to different view-points.

Subjectivity: The lack of a very precise guideline of what
constitutes a component is a reason to view a measure-
ment based on components as subjective in two memos. In
particular, by involving the developer in the definition of
the components there exists a feeling that the value of the
measurement can be easily influenced by using a different
definition of component instead of a change in the code.

System Scope: The question described in one memo was
whether libraries developed inside the company (but in this
case only included as a binary dependency) should be included
as separate components. Even though this issue relates to
the determination of system boundaries as opposed to the
definition of component, it represents an important issue as it
influences the number of components and thus the discussions
based on the metrics. An additional challenge is that some
technologies, e.g., JavaScript, enforce the source-code to be
part of a code-base and thus influence the definition of the
components (and other metrics).

D. Application

Challenges involved in the introduction and application of
the metric are grouped together in six different concepts.

Model Introduction: The transition to the new quality model
has not been without challenges. After the initial introduction
there was an additional need for an elevator pitch for the new
metrics (requested in one memo). In addition, the investment
needed to define components for a large number of systems
written in older technologies, combined with viewing the
definition of components as subjective, made one client decide
not to upgrade yet to the new quality model for their portfolio.

Definition of Actions: On three occasions different assessors
indicate that defining actions based on the architecture met-
rics was more involved than providing advice for code-level
metrics. On the code-level it is relatively straight-forward to
define general actions (e.g., remove this type of duplication
or refactor these long methods), but constructing this type of
advice for the architecture metrics requires more effort because
these recommendations are more context-dependent.

Effect prediction: Related to the definition of actions, four
memos describe that assessors are not always certain about
the effect the implementation of a recommendation has on
the value of the metrics. Especially because the addition of
a component potentially affects both metrics, the results of
implementing a recommendation is seen as harder to predict
and could be smaller or bigger than desired.

For example, according to one assessor the effects of adding
a component to a small system can significantly influence the
overall rating, but one memo describes an example in which

this influence was neglectable. Because of this uncertainty,
assessors ask for tool-support to simulate the implementation
of a recommendation in three different memos.

Steering: One memo describes that the metrics are relatively
stable for systems which are in maintenance mode. Any
change in the metrics is normally the result of a targeted effort
and thus expected. This makes it harder to use the metrics
to steer development on a weekly basis, which is seen as
disappointing.

Context: As indicated in Section VI-A suppliers directly
ask for recommendations to increase the rating for a metric.
In these situations it is tempting to focus on either one of
the metrics to increase only that value. However, five memos
describe discussions which point out that it is important to
keep in mind that the eventual goal is not to have perfect
ratings, but to have an architecture which fits the current needs.

For example, for one system the Component Independence
received a low rating, while the rating for all other system
properties are high. Combining this with the observation that
the system has only one open issue at this time any effort
spend to increase the rating for the this particular aspect is
unneeded.

Effort prediction: In line with the finding about providing
recommendations, the effort prediction related to improving
architectural issues is seen as difficult. Two memos describe
that the effort needed to group components together is deemed
to be lower than the effort required to split up components
in separate chunks of functionality. In some situations a low
rating is related to only a few violations, while in other
situations a large refactoring is needed. Because of this the
assessors experience difficulties in applying a general effort
prediction model.

E. Implementation

Eight memos describe implementation issues regarding
Component Balance (three) or Component Independence
(five).

Component Balance: Two memos (involving one assessor)
describe a discussion about the implementation of the function
to determine the rating for the number of components of a
system. The conclusion of this discussion was that even though
the function could be improved, the impact on the way in
which the metric can be applied would be small. Secondly,
the use of Lines of Code to depict the size of components is,
according to one memo, not always applicable to XML-based
languages.

Component Independence: A first observation is that only
using inter-language dependencies has a high impact on sys-
tems for which one component is implemented in a dif-
ferent technology. For example, in two systems one of the
components was dedicated to an SQL-type language, while
the other components used an Object-Oriented language. In
these situations the rating for Component Independence was
considered to be too high.

Secondly, two memos describe two different systems in
which incorrect call resolving caused false positives, which

Bouwers, van Deursen & Visser – Evaluating Usefulness of Software Metrics - an Industrial Experience Report SERG

6 TUD-SERG-2013-003

0!

1!

2!

3!

4!

5!

1! 2! 3! 4! 5!

Fr
eq
ue
nc
y!

Scores!

Fig. 4. Histogram displaying the distribution of scores related to the
usefulness (black) and ease of use (gray) of the architecture metrics as given
by the eleven interviewees.

in turn results in a rating which is too low (because modules
are put into the wrong category).

Lastly, one memo outlines a conversation between an asses-
sor and a supplier regarding the topic of dependency injection.
As argued by the supplier, the difference in constructing a class
directly or using a framework to construct and inject a class
is small, but using the first approach significantly impacts the
rating for Component Independence in a negative way.

VII. INTERVIEW FINDINGS

A total of eleven quality assessors were interviewed on three
days over a period of one week. During the interviews notes
were taken by the interviewer which formed the basis for a
report of each interview. These reports have been validated by
the interviewees.

The results of the interviews consists of two parts: a
quantitative part based on the scores given by the interviewees
and a qualitative part in which the reports of the interviews are
analyzed. The analyses of the reports has first been done by
the authors on an individual basis, after which the results were
discussed and combined. These results are presented in the
remainder of this section based on the categories and concepts
as displayed in Figure 3. Whenever a new finding could not be
related to an existing concept, but was mentioned by at least
two interviewees, a new concept was introduced.

A. Interviewee scores

An overview of the scores given by the interviewees is
displayed in Figure 4. Scores related to the second question,
whether the metrics are considered to be useful, are displayed
in black, scores related to the third question, whether the
metrics make their job easier, are displayed in gray.

From the distribution of scores we can deduce that overall
the metrics are perceived to be useful, but that the application
of the metrics does not make the job of assessments easier.

Related to the usefulness, nine interviewees indicate that
the metrics provide a starting point for discussions about
the components of a system. In three interviews specific
examples of how the metrics identified problems within a
system were discussed, while in two interviews examples

of the use of the metrics as a communication device were
given. Lastly, three different interviewees provide examples
of targeted improvement efforts.

In relation to making the job of the consultant easier
different types of challenges were brought forward, these
challenges are discussed below.

B. Intuition

The concepts associated with this category were only dis-
cussed briefly. For example, only one interviewee mentions
that smaller systems tend to score lower on the component
metrics. And even though systems implemented in older
technologies were discussed in four interviews, only one in-
terviewee mentioned that they tend to score lower. Additional
insights for this concept are discussed below. The seemingly
large influence of the number of components on the rating was
not discussed in any interview.

Older technologies: One interviewee explained that older
technologies tend to receive a lower rating, which was in-
line with his expectation. Interestingly, another interviewee
mentions that systems with older technologies normally re-
ceive a slightly better rating (an observation also made in the
memos). From this we conclude that the exact influence of the
architecture metrics on systems written in older technologies
varies. Lastly, another interviewee mentions that for older
technologies no meaningful componentization exists, thus the
component metrics should play a less significant role in the
overall assessment.

C. Component definition

The exact definition of components was a substantial topic
in ten of the eleven interviews. In particular, each of the three
concepts as described in the memos were mentioned by at
least three interviewees. Additional insights regarding these
existing concepts are discussed below. In addition, the concept
of Technologies without components is added to cover new
findings in the interviews.

File-system versus mental model: Seven interviewees men-
tion the challenge of choosing the “right” view on the com-
ponents of a system. Apart from the mental model and the
file-system, views related to the deployment of the code or
functional decompositions can be chosen. A decision about
which view should be leading in the calculation of the metrics
is requested.

Subjectivity: The fact that multiple view-points can be
used to calculate the metrics leads to a feeling that the
component definition is subjective. Although this flexibility is
considered to be a good thing in the context of an SRA, where
different view-points lead to different insights, the added
flexibility sometimes leads to unwanted discussions about what
constitutes a component (especially when the rating for the
component metrics is low).

Technologies without components: In three interviews it
was mentioned that for some technologies the concept of a
“component” does not exists. This does not only include older
technologies such as Cobol and Tandem, but also systems

SERG Bouwers, van Deursen & Visser – Evaluating Usefulness of Software Metrics - an Industrial Experience Report

TUD-SERG-2013-003 7

implemented in newer technologies such as SAP. Addition-
ally, visual programming languages, typically used to model
business processes, also do not have an inherent concept of a
component. It is yet unclear what the best way is to apply the
component metrics to systems written in these technologies.

D. Application

With respect to the application of the metrics all concepts
were mentioned in at least one interview. Several new insights
were obtained for two different concepts. In addition, the con-
cept of Responsibility is introduced to capture new findings.

Definition of actions: Nine interviewees mention that the
definition of actions is harder for the architectural metrics than
for the code-level metrics in the model. This is one of the
main reasons why the new metrics do not make it easier to
perform assessments. This increased effort needed to perform
assessments is not necessarily seen as problematic. Definition
of the actions might be harder, but is also seen as more
interesting, challenging and valuable. However, to deal with
common situations more efficiently one assessor suggests to
collect experiences of applying the metrics to derive common
recommendations.

Steering: What is problematic is that in some situations
the advice related to the components metrics can involve a
substantial amount of refactoring. In some situations this leads
to the identification of problems that cannot be solved due to
resource constraints, which limits the usability of the advice
in the setting of an SRA.

In a monitor setting the metrics can initially fluctuate, which
is seen as problematic by one interviewee. However, two other
interviewees do not find this problematic as long as there is a
roadmap towards a stable set of components. One interviewee
mentions that within a monitoring setting it is easier to do
something to improve the underlying architecture, although
this is not necessarily done on a weekly basis.

Responsibility: An additional challenge in the application
of the metrics is that there exist situations in which the
development team does not feel responsible for the compo-
nents of the system. In some cases the components cannot be
changed by the development team because the technology or
framework dictates the component-structure; in other cases the
components are mandated by a person outside the development
team. In these situations a discussion about the value of the
component metrics is considered to be useless by the devel-
opment team, which hinders the application of the metrics.

E. Implementation

Ten interviews mentioned issues related to the implemen-
tation category. Issues related to the definition of Component
Balance mainly revolved around a new concept of Optimal
number of components; issues related to the other two concepts
were not mentioned. With respect to Component Independence
all three concepts were discussed at least once.

Component Balance - Optimal number of components: As
explained in Section IV-B the “optimal” number of compo-
nents is currently defined as the median number of components

in a benchmark, which is currently 7. In five interviews this
number is discussed, in all cases it is questioned whether the
highest rating for SBO should be attached to this number only.

VIII. DISCUSSION OF FINDINGS

The data extracted from the 48 memos and the eleven inter-
views illustrate the usefulness of the Component Balance and
Dependency Profiles metrics in the assessment of implemented
architectures performed by external assessors. Examples show
that the metrics can trigger targeted improvement efforts, start
meaningful discussions and can be used as a communication
device in a number of different situations.

The evaluation also illustrates situations in which the met-
rics perform less than optimal. For example, because the
metrics are relatively stable for systems in maintenance mode
they cannot be used to steer development on a weekly basis.
Moreover, in some situations the recommendations following
from the metrics require a significant amount of effort, which
is not always available due to resource constraints.

In these situations the metrics illustrate a problem that is
not subject to improvement, which reflects upon the perceived
usefulness of the metrics.

Apart from these limitations, several areas of improvements
are identified. We discuss those areas related to the three
most discussed topics: Component Definition, Application and
Intuition.

Component Definition: The need for a strict definition of
what entails a component across technologies is an important
topic of discussion. Even though the ability to use different
view-points is seen as both a positive and a negative aspect,
a strict definition of component is asked for on several
occasions. As illustrated in Section VI-A there is a notion
that the components of a system should be in line with the
structure on the file-system, but the interviews indicate that
such a definition is not applicable to all technologies.

In order to improve on this situation we plan to follow-up
on the advice of one interviewee and collect a representative
set of component definitions for different technologies. Such a
set can be used as a basis for determining the components of
existing systems, and provides an opportunity to derive general
as well as technology-specific guidelines.

Application: With respect to the application of the metrics
both the observations and the interviews indicate that defining
actions based on the value of the metrics is not always straight-
forward. Moreover, estimating the amount of effort involved
in implementing recommendations is considered challenging.

To deal with this problem we plan to build up a body of
knowledge containing common value-patterns and associated
recommendations for the architecture metrics. Having these
common patterns and the effects of implementing the recom-
mendations on the metrics available makes it easier for the
assessors to gain a better feeling for the interpretation and
application of the architecture metrics. The data collected in
this evaluation should be considered a first step towards this
body of knowledge.

Bouwers, van Deursen & Visser – Evaluating Usefulness of Software Metrics - an Industrial Experience Report SERG

8 TUD-SERG-2013-003

Intuition: According to the assessors, the value of the metric
for smaller systems and systems written in specific technolo-
gies are not always as expected. Specific reasons for the mis-
match between value and intuition seem to be the current
determination of the “optimal” number of components for
Component Balance and missing cross-language dependencies
for Component Independence.

The overall intuition of the assessors could indicate that
specific groups of systems should be treated differently by the
metrics. In our future work we will perform statistical analyses
on the values of the metrics in different groups in order to
validate this hypothesis.

To address the specific issues we plan to investigate ways
to implement support for cross-language dependencies in a
cost-efficient manner. In addition, findings ways to make the
resolving of dependencies more precise is deemed to be an
important part of our future work. For Component Balance we
plan to investigate ways to better define the “optimal” number
of components.

IX. REFLECTIONS ON EVALUATION METHODOLOGY

In this section we reflect upon the benefits of evaluating the
usefulness of metrics in practice and the used process.

First of all, the main benefit of performing this type of
evaluation is a better understanding of the usefulness of the
software metrics. Moreover, the effective identification of pos-
sible improvement areas illustrates the benefits of performing
such an evaluation.

However, an important question here is whether the ap-
plication of the metrics brings new insights, or whether all
findings could have been defined before the evaluation. For
example, one could argue that the need for a strict component
definition or the questions related to systems written in differ-
ent technologies could have been defined before the metrics
were applied. Even if this is true, we believe that the relative
importance of the different areas of future work could not have
been determined in a purely academic context.

A second question related to the benefits of this type of
evaluation is whether the results can be generalized to different
contexts. In principle all findings are limited by the context
as defined within Section IV. However, given the depth of
this evaluation we believe that the benefits of the architecture
metrics also apply to external assessors in different settings.

Note that it is important to be able to place the value of the
metrics in a context, for example by the use of a benchmark.
Because of this, the usefulness of the metrics for developers
working on a single system is considered to be limited.

In relation to the followed methodology we make three
important observations. First, the use of two different types
of data-gathering is important to ensure a balanced evaluation.
Secondly, the confidentiality constraints inherent to the evalua-
tion of metrics within an industry setting limits reproducibility
of the results. Lastly, the embedding of metrics within a
standard operating procedure can be challenging.

Balanced Evaluation: Every data-gathering technique has
known limitations. For example, the interviews provide an
indication of the usefulness of the metrics as perceived by
the assessors. As pointed out by Davis [13], perceived use-
fulness is not necessarily the same as objective usefulness.
A limitation of the gathering of observations is the inherent
confirmation bias of the observer.

By combining the data from both methods we believe that
these limitations are partially countered. In addition, the two
methods are executed by two different persons to increase
the possibility of finding new information in both methods.
Furthermore, the interviews are conducted by the one author
that does not have daily interactions with the interviewees to
reduce interviewer bias.

Based on the new findings in the interviews and the dis-
covered areas of future work we believe that combining these
two types of data-gathering leads to a balanced and critical
evaluation of the usefulness of software metrics in practice.

Reproducibility: Due to reasons of confidentiality, the data
collected within the memos and the interviews cannot be made
publicly available. However, we believe that the description
of the data as given in Section VI and Section VII is detailed
enough to support the conclusions drawn from the data.

Metric Embedding: The biggest challenge in executing the
proposed methodology is the embedding of new metrics in
a standard operating procedure on a large scale, a topic that
is out of scope of the current research. However, the benefits
of evaluating metrics in practice as described above and in
Section VIII is intended to assist researchers in acquiring the
needed commitment from industry partners.

X. RELATED WORK

Empirical evaluations of software metrics typically consist
of evaluating the value of a metric against one of three external
properties: quality in terms of faults, effort (either development
or maintenance) or volume [22].

By contrast, theoretical approached of metric evaluation
inspect mathematical properties of metrics [15] or focus on
metrological properties of metrics [1].

These types of evaluation aim to determine whether a metric
is indeed measuring the attribute it was designed for in a
theoretical manner. Kaner et al. [21] stress that this type of
evaluation should also be done using a more practitioners
oriented view-point and defines a framework for evaluating
the validity and risk of a metric in the form of 10 questions.

All of the above evaluation strategies are meant to be done
before a metric is used. Although useful, this pre-deployment
validation covers only part of the 47 different validation crite-
ria for metrics recently summarized in a literature review [27].
Our evaluation of the usefulness of software metrics bests fits
the actionability criteria, which is defined as:

A metric has actionability if it allows a software
manager to make an empirically informed decision
based on the software product’s status [27]

To the best of our knowledge, no empirical evaluation of this
validation attribute has been done for specific metrics.

SERG Bouwers, van Deursen & Visser – Evaluating Usefulness of Software Metrics - an Industrial Experience Report

TUD-SERG-2013-003 9

XI. CONCLUSION

This paper describes a large-scale industrial evaluation of
the usefulness of the Component Balance and Dependency
Profile metrics, in the context of the assessment of imple-
mented architectures, from the view-point of external quality
assessors. Using two different methods for gathering data, a
detailed overview of the benefits and challenges of the two
specific metrics is constructed and discussed.

For SIG, this evaluation identified different areas for im-
proving the application of the metrics which have led to
the definition of concrete improvement actions. For other
practitioners, this evaluation can be used to decide whether or
not the two architecture metrics can be used in their assessment
processes. For the research community, the overview of areas
for future work in Section VIII, and the detailed overview of
the data as discussed in Section VI and Section VII, can be
used as a starting point for conducting new research.

In addition, a methodology for evaluating software metrics
in practice was introduced and the benefits and limitations of
this approach are discussed. For practitioners, the overview of
the insights gained from this type of evaluation is intended to
inspire practitioners to collaborate with researchers to perform
similar types of evaluations. For researchers, the methodology
can serve as a starting point for evaluating the usefulness of
(new) software metrics in practice, and can be reflected upon
to improve the methodology itself.

To summarize, this paper makes the following contributions:
• It introduces a methodology for evaluating the usefulness

of software metric in industry
• It describes the execution of this methodology in an

empirical study towards understanding the usefulness of
two specific software metrics

• It provides an overview of challenges involved in the
application of the two specific software metrics and lists
concrete areas for improvement

• It reflects upon the usefulness of the evaluation method-
ology, concluding that the relative importance of chal-
lenges involved in applying specific metrics cannot be
determined in a purely academic setting.

REFERENCES

[1] A. Abran. Software Metrics and Software Metrology. Wiley-IEEE
Computer Society Pr, 2010.

[2] S. Adolph, W. Hall, and P. Kruchten. Using grounded theory to study the
experience of software development. Empirical Software Engineering,
16(4):487–513, Aug. 2011.

[3] A. Albrecht and J. Gaffney, J.E. Software function, source lines of
code, and development effort prediction: A software science validation.
Software Engineering, IEEE Transactions on, SE-9(6):639 – 648, 1983.

[4] T. L. Alves, J. P. Correia, and J. Visser. Benchmark-based aggregation
of metrics to ratings. In IWSM/Mensura, pages 20–29, 2011.

[5] R. Baggen, K. Schill, and J. Visser. Standardized code quality bench-
marking for improving software maintainability. In 4th International
Workshop on Software Quality and Maintainability (SQM 2010), 2010.

[6] V. R. Basili, G. Caldiera, and H. D. Rombach. The goal question metric
approach. In Encyclopedia of Software Engineering. Wiley, 1994.

[7] E. Bouwers, J. Correia, A. van Deursen, and J. Visser. Quantifying
the analyzability of software architectures. In Proceedings of the 9th
Working IEEE/IFIP Conference on Software Architecture (WICSA 2011).
IEEE Computer Society, 2011.

[8] E. Bouwers, A. van Deursen, and J. Visser. Dependency profiles for
software architecture evaluations. In Proceedings of the 27th IEEE
International Conference on Software Maintenance (ICSM 2011). IEEE
Computer Society, 2011.

[9] E. Bouwers, A. van Deursen, and J. Visser. Quantifying the encapsula-
tion of implemented software architectures. Technical Report TUD-
SERG-2011-031, Delft Software Engineering Research Group, Delft
University of Technology, 2011.

[10] L. C. Briand, J. W. Daly, and J. Wüst. A unified framework for
cohesion measurement in object-orientedsystems. Empirical Software
Engineering, 3(1):65–117, July 1998.

[11] L. C. Briand, S. Morasca, and V. R. Basili. Defining and validating
measures for object-based high-level design. IEEE Transactions on
Software Engineering, 25(5):722–743, 1999.

[12] S. Chidamber and C. Kemerer. A metrics suite for object oriented design.
IEEE Transactions on Software Engineering, 20:476–493, 1994.

[13] F. D. Davis. Perceived usefulness, perceived ease of use, and user
acceptance of information technology. MIS Q., 13(3):319–340, 1989.

[14] A. v. Deursen and T. Kuipers. Source-based software risk assessment.
In ICSM ’03: Proceedings of the International Conference on Software
Maintenance. IEEE Computer Society, 2003.

[15] N. E. Fenton and S. L. Pfleeger. Software Metrics: A Rigorous and
Practical Approach. PWS Publishing Co., Boston, MA, USA, 2nd
edition, 1998.

[16] A. Gopal, T. Mukhopadhyay, and M. Krishnan. The impact of institu-
tional forces on software metrics programs. Software Engineering, IEEE
Transactions on, 31(8):679 – 694, aug. 2005.

[17] M. Greiler, A. van Deursen, and M. Storey. Test confessions: a study
of testing practices for plug-in systems. In Proceedings of the 2012
International Conference on Software Engineering, ICSE 2012, pages
244–254, Piscataway, NJ, USA, 2012. IEEE Press.

[18] I. Heitlager, T. Kuipers, and J. Visser. A practical model for measuring
maintainability. In QUATIC ’07: Proc. 6th Int. Conf. on Quality
of Information and Communications Technology, pages 30–39. IEEE
Computer Society, 2007.

[19] International Organization for Standardization. ISO/IEC 9126-1: Soft-
ware engineering - product quality - part 1: Quality model, 2001.

[20] International Organization for Standardization. ISO/IEC 25010: Systems
and software engineering - Systems and software Quality Requirements
and Evaluation (SQuaRE) - System and software quality models, 2011.

[21] C. Kaner and W. P. Bond. Software engineering metrics: What do they
measure and how do we know? In 10TH International Software Metrics
Symposium - Metrics 2004, 2004.

[22] B. Kitchenham. Whats up with software metrics? A preliminary mapping
study. Journal of Systems and Software, 83(1):37 – 51, 2010.

[23] H. Koziolek. Sustainability evaluation of software architectures: a sys-
tematic review. In Proceedings of the joint ACM SIGSOFT conference –
QoSA and ACM SIGSOFT symposium – ISARCS on Quality of software
architectures – QoSA and architecting critical systems – ISARCS, QoSA-
ISARCS ’11, pages 3–12, New York, NY, USA, 2011. ACM.

[24] T. Kuipers and J. Visser. A tool-based methodology for software
portfolio monitoring. In Software Audit and Metrics, Proceedings of
the 1st International Workshop on Software Audit and Metrics, pages
118–128. INSTICC Press., 2004.

[25] H. Lu, Y. Zhou, B. Xu, H. Leung, and L. Chen. The ability of object-
oriented metrics to predict change-proneness: a meta-analysis. Empirical
Software Engineering, 17:200–242, 2012. 10.1007/s10664-011-9170-z.

[26] T. J. McCabe. A complexity measure. In ICSE ’76: Proceedings of the
2nd international conference on Software engineering. IEEE Computer
Society Press, 1976.

[27] A. Meneely, B. Smith, and L. Williams. Validating software metrics: A
spectrum of philosophies. ACM Transactions on Software Engineering
and Methodology (TOSEM), 21, 2012.

[28] N. Nagappan and T. Ball. Static analysis tools as early indicators of
pre-release defect density. In Proceedings of the 27th international
conference on Software engineering, ICSE ’05, pages 580–586, New
York, NY, USA, 2005. ACM.

[29] S. Sarkar, A. C. Kak, and G. M. Rama. Metrics for measuring the
quality of modularization of large-scale object-oriented software. IEEE
Transactions on Software Engineering, 34:700–720, 2008.

[30] S. Sarkar, G. M. Rama, and A. C. Kak. API-based and information-
theoretic metrics for measuring the quality of software modularization.
IEEE Transactions of Software Engineering, 33(1):14–32, 2007.

Bouwers, van Deursen & Visser – Evaluating Usefulness of Software Metrics - an Industrial Experience Report SERG

10 TUD-SERG-2013-003

TUD-SERG-2013-003
ISSN 1872-5392 SERG

