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Samenvatting

De klassieke Algemene Relativiteitstheorie biedt een onbetwiste beschrijving van
de zwaartekracht, tussen sub-millimeter en de cosmologische schalen. Echter, tot
op heden blijft het verenigen van de zwaartekracht en de kwantummechanica een
open probleem in de theoretische natuurkunde. Dit proefschrift levert een bij-
drage aan de constructie van een consistente en voorspellende theorie van de kwan-
tumzwaartekracht in de context van kwantumveldentheorie. Hierin behandelen we
op expliciete wijze de niet-perturbatieve aspecten van de stroom van de renormal-
isatiegroep (RG) van Kwantum Einstein zwaartekracht (QEG) en projecteerbare
Hor̆ava-Lifschitz zwaartekracht (HLG), samen met een aantal fenomenologische
toepassingen ervan.

QEG vorm een implementatie van Weinbergs scenario van ‘Asymptotische Vei-
ligheid’, welke stelt dat de UV-afwerking van zwaartekracht gebaseerd moet zijn op
een niet-Gaussisch vast punt van de RG-stroom. Om in overeenstemming te zijn
met experimentele waarnemingen, moet het RG-pad dat de Natuur beschrijft over
een zogenoemd klassiek regime beschikken, waar de Algemene Relativiteitstheo-
rie een goede benadering vormt. We classificeren de RG-stroom van de Einstein-
Hilbert actie en een veralgemenisering daarvan, waarin er een hogere-afgeleide op-
erator R2 aan toegevoegd is. De resulterende fasediagrammen worden in detail
bestudeerd, waarbij de nadruk wordt gelegd op de trajecten die beginnen bij een
niet-Gaussisch vast punt in het UV-regime en bij lage energieën de overgang maken
naar een klassiek regime. Deze classificaties vormen de basis voor elke femomenol-
ogische toepassing.

Als een eerste voorbeeld wordt de spectrale dimensie van de effectieve QEG-
ruimtetijd bepaald. De ruimtetijd beschikt over een multi-fractale structuur, in de
zin dat de spectrale dimensie afhangt van de RG-schaal, en verschillende plateaus
vormt. Het bestaan van deze plateaus wordt herleid tot de universele eigenschappen
van de onderliggende RG-stroom, welke gedirigeerd wordt door een vast punt of
singuliere punten. Aangetoond wordt dat dit beeld overeind blijft na toevoeging
van hogere-afgeleide operatoren.

Dit werk voert tevens voor het eerst een studie uit naar RG-stromen in pro-
jecteerbare HLG. Deze theorie verschilt van QEG in de zin dat zijn gereduceerde
symmetriegroep een asymmetrie toestaat tussen tijd en ruimte. Voor deze context
is een nieuwe, anisotropische, functionale RG-vergelijking van het Wetterich-type
ontwikkeld. Op basis van deze vergelijking worden de bèta-functies geconstrueerd
die op lage energieën de schaal-afhankelijkheid van HLG vatten. Deze bèta-functies
bevatten het volgende:
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a) de overgang van een Euclidische signatuur naar een Lorentz-signatuur heeft
slechts een klein effect op de Asymptotische Vrijheid,

b) de RG-stroom van projecteerbare HLG beschikt over een niet-Gaussisch vast
punt, waarvan de eigenschappen vergelijkbaar zijn met die van QEG,

c) sommige van de trajecten die voortvloeien uit dit niet-Gaussisch vast punt
van HLG maken de overgang naar een klassiek regime.

Hiermee toont dit proefschrift aan dat QEG en projecteerbare HLG over tra-
jecten beschikken die in overeenstemming zijn met experimentele waarnemingen,
zodat beide theorieën consistente kandidaten zijn voor een theorie van de kwan-
tumzwaartekracht.
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Summary

Classical General Relativity provides a well established description of the gravita-
tional force from sub-millimeter up to cosmological scales. Unifying gravity and
Quantum Mechanics however is still an outstanding problem in theoretical physics
today. This thesis contributes to the construction of a consistent and predictive
quantum theory of gravity within the framework of Quantum Field Theory. Ex-
plicitly we discuss non-perturbative aspects of the Renormalisation Group (RG)
flows of Quantum Einstein Gravity (QEG) and projectable Hořava-Lifshitz gravity
(HLG) together with some phenomenological applications.

QEG implements Weinberg’s Asymptotic Safety scenario, which states that
the UV completion of gravity is based on a non-Gaussian fixed point of the RG
flow. In order to be compatible with experimental observations the RG trajectory,
describing Nature, must posses a classical regime where General Relativity provides
a good approximation. We classify the RG flow of the Einstein-Hilbert action and
its generalisation including a higher-derivative R2 operator. The resulting phase
diagrams are analysed in detail with the main focus on those trajectories which start
from a non-Gaussian fixed point in the UV and cross over to a classical regime at
low energies. These classifications provide the foundation for any phenomenological
application.

As a first example the spectral dimension of the effective QEG spacetime is
constructed. The spacetime possesses a multi-fractal structure in the sense that
the spectral dimension varies with the RG scale and develops various plateaus. The
existence of these plateaus is traced back to universal features of underlying RG
flow, controlled by fixed point or singular loci. This picture is shown to be robust
against the inclusion of the higher-derivative operator.

This work also performs the first study of RG flows in projectable HLG. This
theory differs from QEG in the sense that its reduced symmetry group admits
an asymmetry between space and time. For this framework a novel, anisotropic,
Wetterich type, functional RG equation is constructed. Based on this equation
the beta functions capturing the scale-dependence of HLG at low energies are
constructed explicitly. These entail that

a) the change from Euclidean to Lorentzian signature has only a marginal effect
on Asymptotic Safety,

b) the RG flow of projectable HLG possesses a non-Gaussian fixed point whose
properties are similar to the one observed in QEG,

c) some trajectories emanating from this non-Gaussian HLG fixed point cross
over to a classical regime.
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Thus, this thesis establishes that QEG and projectable HLG possess trajectories
which are compatible with experimental observations so that both theories are
consistent candidates for a quantum theory of gravity.

X



Contents

Introduction 1

I The Method and the Scenario 7

1 The Wilsonian Approach to Renormalisation 9

2 The Functional Renormalisation Group Equation 15

2.1 The Wetterich Equation for Scalars . . . . . . . . . . . . . . . . . . . 15

2.2 The Wetterich Equation for Gauge Fields . . . . . . . . . . . . . . . 18

3 The Asymptotic Safety Scenario 21

II Metric Gravity 25

4 Motivation 27

5 Flow Equations for Metric Gravity 31

5.1 The Einstein-Hilbert Truncation . . . . . . . . . . . . . . . . . . . . 31

5.2 The R2 Truncation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

6 The Phase Diagram of Metric Gravity 43

6.1 Phase Diagram of the Einstein-Hilbert Truncation . . . . . . . . . . 43

6.2 Phase Diagram of the R2 Truncation . . . . . . . . . . . . . . . . . . 49

7 The Spectral Dimension 63

7.1 The Notion of Dimension . . . . . . . . . . . . . . . . . . . . . . . . 63

7.2 Spectral Dimension within the Einstein-Hilbert Truncation . . . . . 66

7.3 Spectral Dimension within the R2 Truncation . . . . . . . . . . . . . 70

XI



III Foliated Gravity 75

8 Motivation 77

8.1 Field Content and Symmetry . . . . . . . . . . . . . . . . . . . . . . 77
8.2 An Excursion to Hořava-Lifshitz Gravity . . . . . . . . . . . . . . . . 79

9 The Wetterich Equation for Foliated Spacetimes 83

10 Flow Equations for Foliated Gravity 87

10.1 A Versatile Truncation . . . . . . . . . . . . . . . . . . . . . . . . . . 87
10.2 Evaluating the Functional Traces . . . . . . . . . . . . . . . . . . . . 92

11 RG Flows of Foliated Gravity 99

11.1 Phase Diagram of the Foliated Einstein-Hilbert Truncation . . . . . 99
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Introduction

Today’s theoretical physicists are facing many problems in a wide range of topics
ranging from High Energy Physics over Solid State Physics to General Relativity
(GR). The complexity of all areas is increasing in time and thus one is tempted to
go back ”to the roots” and review the great advances in physics of the 20th century.
The development of quantum physics on the one hand and GR on the other hand
mark two major breakthroughs in the understanding of Nature. Both theoretical
frameworks are confirmed experimentally with outstanding precision. The success
of these theories raises hope that availing oneself of the underlying concepts may
shed some light on current problems as well. Therefore it seems reasonable to start
with a brief retrospect, see [1] for an extensive overview.

In 1901 the century started with the quantum hypothesis of Max Planck. He
suggested that energy might be exchanged between radiation and matter in dis-
crete portions, called quanta. This is the birth of quantum physics. After the
particle-wave-duality proposal of de Broglie in 1924, Heisenberg, Born and Jor-
dan developed the matrix formulation of Quantum Mechanics in 1925. Afterwards
Schrödinger found his wave equation and explained the connection to the matrix
formulation in 1926. One year later Dirac quantised the electromagnetic field, uni-
fying the quantum-mechanical ideas with the theory of Special Relativity invented
by Einstein in 1905. This leads to the theory of Quantum Electrodynamics (QED)
and marks the advent of Quantum Field Theory (QFT). At the end of the 60s
Salam, Glashow and Weinberg combined QED with the weak interaction to the
electroweak theory. The advances of experimental physics in the 50s and 60s re-
vealed a growing amount of new particles. For the understanding of this particle zoo
the proton and neutron as elementary particles were insufficient. Therefore Gell-
Mann and Zweig independently proposed quarks as fundamental particles in 1964.
These interact with each other and with the gluons via the strong force, described
by Quantum Chromodynamics (QCD). The combination of the electroweak theory
and QCD is called the standard model of particle physics and is experimentally
verified to very high precision. Notably, recent experiments at the Large Hadron
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Collider (LHC) observed a new bosonic particle which is very likely to be the Higgs
particle, the last particle of the standard model which has not been observed be-
fore [2, 3]. This collection of theories forms the basis of today’s understanding of
matter and its interaction via the electromagnetic, weak and strong force.

The fourth known force in Nature, the gravitational interaction, is not included
in the standard model of particle physics. Gravity is described by the theory of GR,
invented by Einstein in 1915. Many predictions of this theory have been verified
since then. Its breakthrough was the verification that light is deflected by the sun
in 1919 by Eddington. Other predictions, as the perihelion shift of planets or the
gravitational redshift, are observed too.

These passed tests of GR have been performed at scales comparable to the size
of the solar system. However, going to larger scales GR faces some experimental
results it can not explain. Examples are the flattening of galaxy rotation curves
or the accelerated expansion of the universe. One possibility to explain these
phenomena is to introduce dark matter and dark energy. At very small scales on
the other hand, the situation is even worse. Here we know that the quantum-
mechanical effects have to be considered. The standard model of particle physics
teaches us that matter is quantised and thus one might wonder if spacetime should
be considered as a classical object, or also follows the rules of Quantum Mechanics.

However, a quantisation similar to the procedure in the standard model of
particle physics does not work for GR. A crucial difference between the interactions
of the standard model and gravity is that the coupling constants, determining
the strength of interactions, are dimensionless in the standard model, while the
Newton constant has negative mass dimension. Therefore gravity is perturbatively
non-renormalisable [4–6]. Nevertheless, quantum effects of GR can be treated in
an effective-field-theory approach (see [7–9] for an introduction). As the name
suggests, effective field theories are effective theories, valid up to some energy
scale. Beyond this scale such a treatment would be insufficient. However the
conflicts between GR and QFT arise at very high energies (at the Planck scale if
we exclude theories with extra dimensions) and therefore it would be of interest
to have a complete quantised theory of GR which is valid at arbitrary high energy
scales. Such a theory very often is called Quantum Gravity (QG), but following the
author of [10] one should say ”Quantum Gravity denotes a problem, not a theory”.
In fact there are several approaches towards a consistent theory of QG, and each
approach has its own strengths and weaknesses.

The failure of a perturbative quantisation of GR together with the lack of exper-
imental guidance has spawned many ideas how a quantum theory of gravity could
look like. One possible suggestion would be the introduction of new physics, as it
is done in String Theory [11, 12]. Another possibility would be to adjust the rules
of quantisation, which is done in Loop Quantum Gravity [13]. A more conservative
point of view would be the assumption that the failure of perturbative renormalisa-
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tion is an artefact of perturbation theory. According to a proposal of Weinberg [14]
a theory might be non-perturbatively renormalisable despite being perturbatively
non-renormalisable. The corresponding scenario is called Asymptotic Safety and
the analysis of some of its aspects is the aim of this thesis. Yet another possible
solution would be the relaxation of the symmetry principles underlying the theory.
This is done in Hořava-Lifshitz gravity (HLG), which was introduced by Hořava in
2009 [15, 16].

As this thesis does not discuss all these approaches, we will sketch only those
ideas, which will be relevant in the following. Starting with the Asymptotic Safety
scenario, we notice that non-perturbative tools are necessary to reveal the quan-
tum nature of gravity within this scenario. One non-perturbative tool is the lattice.
However, the lattice calculations known from QFT on flat backgrounds are not ap-
plicable for gravitational theories, as the metric itself is a dynamical variable. A
possible solution is based on the work by Regge in 1961 [17], called Regge calcu-
lus. Here the discretised version of spacetime is constructed by gluing together
four-simplices. A modification of this was introduced by Ambjørn, Jurkiewicz and
Loll, [18–20], and is called Causal Dynamical Triangulation (CDT). The main dif-
ference is that CDT uses a causal structure of spacetime. Therefore it is possible to
restrict the geometries considered in the path integral to those, which are causally
well behaved. For a review of discrete approaches see [21] and for a more recent
introduction to CDT see [22]. Furthermore Euclidean Dynamical Triangulations
(EDT) seems to reproduce many results known from CDT by introducing a non-
trivial measure term within the gravitational path integral [23–25].

In contrast to these discrete methods, this thesis employs continuum Functional
Renormalisation Group (FRG) techniques introduced and reviewed in [26–28]. As
in the discrete approaches we suppose that the failure of the perturbative renormal-
isation of gravity is a shortcoming of perturbation theory. The non-perturbative
renormalisability can then be established by finding a suitable non-trivial fixed
point in the Renormalisation Group (RG) running of the couplings. If in addi-
tion the theory is invariant under diffeomorphisms it is called Quantum Einstein
Gravity (QEG).

The second proposal considered within this thesis is HLG. Within this approach
the perturbative renormalisability is restored by assuming that the diffeomorphism
invariance, as the symmetry underlying GR, is broken at high energies and re-
placed by the so-called foliation-preserving diffeomorphism invariance. The latter
allows the introduction of an asymmetry between space and time. The full diffeo-
morphism invariance, which is experimentally very well verified, has to be restored
dynamically at low energies.

At the first sight it might be surprising that, for decades, an incredible amount
of approaches try to explain the same thing, while it has not been possible so
far to exclude some of them. The reason for this becomes obvious if we compare
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the development of the field of QG to the development of the standard model.
The latter was mainly driven by new experimental results, especially the collider
experiments in the 50s and 60s, which could not be explained by the established
theories of that time. In contrast to this, experiments of quantum-gravitational
effects are not yet available. Furthermore the complexity of the different approaches
makes it hard to do solid predictions. Therefore an exclusion of candidate theories
is possible only by internal inconsistencies or a conflict with GR. This might be
interpreted pessimistically as a drawback. An optimistic viewpoint would consider
it a feature, as it enables us to compare the various approaches and in this way
possibly discover predictions shared by different theories. This might open the door
towards a deeper understanding of spacetime and its quantisation.

Following this line, we compare the FRG analysis of the Asymptotic Safety
scenario with HLG. Therefore we start to discuss first the metric formulation of
QEG on the spacetime manifold M. Here the degrees of freedom are carried by the
spacetime metric g̃µν and, motivated by GR, we assume the theory to be invari-
ant under spacetime diffeomorphisms Diff(M). One possible bridge between QEG
and other QG candidates is the spectral dimension of the resulting spacetimes.
The interest in this topic actually is twofold. First, the spectral dimension and
dynamical dimensional reduction give us information about the spacetime itself.
Secondly and probably more rewarding is the possibility to compare the results
to other approaches to QG. Besides the FRG approach [29–31], the spectral di-
mension was investigated in many other approaches. This topic was dicussed first
within CDT [32–34]. Further research was done e.g. in EDT [23], HLG [35], Loop
Quantum Gravity and spin foam models [36–38] and in spacetimes with a minimal
length [39]. For a better understanding toy models of spacetime, as e.g. quantum
spheres, κ-Minkowski space and others [40] or multigraph ensembles [41, 42], have
been discussed. The author in [43,44] used the strong coupling limit of the Wheeler-
DeWitt equation to work on this subject, the dispersion relation corresponding to
the scale-dependent spectral dimension was discussed in [45, 46] and a fractional
differential calculus [47] was used to equip spacetime with spectral features seen by
many approaches to quantum gravity (see e.g. [48] and references therein).

For the analysis of the spectral dimension within the FRG framework we utilise
RG-improved diffusion processes. Such RG improvements were already used to
study consequences of running coupling constants in various settings. Examples
are black holes [49–55], galaxy rotation curves [56,57], various scattering processes
in gravitational theories with large extra dimensions [54, 58–63] and cosmology
[64–80]. A general discussion of the RG improvement can be found in [81]. Among
the various applications of RG improvement we will concentrate on the spectral
dimension as a very interesting one. The analysis of the latter requires a sufficient
knowledge about the space of all action functionals under consideration. Therefore
we extensively discuss the corresponding space underlying QEG. This analysis is
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interesting in its own right as it is necessary for finding a suitable low-energy limit
of the quantum theory. By suitable we mean that at low energies the theory of GR
has to be reproduced in order to meet the experimentally verified effects.

Besides the comparison of predictions, as the spectral dimension, a treatment
of HLG within the FRG setting is an interesting way of discussing its quantisation.
Therefore we investigate anisotropic effects between space and time by introducing
a foliation structure of the manifold M, causing a split of the spacetime metric g̃µν
into the lapse function Ñ , the shift vector Ñi and the spatial metric σ̃ij . Sticking
to the diffeomorphism invariance Diff(M) we arrive at the foliated formulation of
QEG. This setting can be used to switch the signature of the metric and for the
first time investigate Asymptotic Safety in a Lorentzian setting. Besides the switch
of signature, the foliation structure enables us to introduce an asymmetry between
space and time as proposed by Hořava . In this thesis we discuss the low-energy
limit of HLG where one expects to find the limit of GR. In terms of symmetries this
means the restoration of invariance under Diff(M) is expected. This requirement
is used to identify those RG trajectories which are most likely compatible with the
experimental data.

The thesis is organised as follows. In Appendix A we fix the notation and con-
ventions used here. During the main text we do not comment on conventions and
the interested reader can find the details in this appendix. Apart from the appendix
the thesis is divided into three parts. The first discusses the FRG techniques and
introduces the notion of Asymptotic Safety in a general context. After this general
introductory part we specify, within the following considerations, to gravitational
theories. Explicitly we are discussing gravity in two different formulations. Starting
with Part II we discuss the metric formulation, where the degrees of freedom are
encoded in the spacetime metric. Part III covers the foliated formulation, where
the metric is split into lapse function, shift vector and spatial metric. Part II and
Part III are written such that they can be read independently.

Part II starts with a short motivation in Chapter 4. Afterwards, the flow
equation of the Einstein-Hilbert truncation and the R2 truncation are discussed
in Chapter 5. Here we concentrate on the former, for simplicity, and reduce the
discussion of the latter to the main conceptual issues. Technical details are provided
in the Appendices B, C and D. In Chapter 6 the phase diagrams corresponding
to the flow equations of Chapter 5 are analysed. The discussion of the phase
diagram corresponding to the R2 truncation constitutes one of the main results of
this thesis. The last chapter of Part II uses the results of Chapter 6 to analyse the
spectral dimension. We start with a brief introduction to the notion of dimension
before discussing the spectral dimension emerging in the Einstein-Hilbert and the
R2 truncation.

The structure of Part III is similar to the one of Part II. Again we start with
a short motivation, where we discuss the field content and symmetry of HLG on
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foliated spacetimes. A short overview of HLG is included as well. Chapter 9 gives
a detailed derivation of the Wetterich equation in the foliated formulation while
Chapter 10 discusses its simplest truncation. Again the technical details have been
moved to Appendices E and F. Within the last chapter the phase diagram of
the low-energy limit of HLG is discussed and a comparison of foliated QEG with
Lorentzian and Euclidean metric is given. The conclusion finally summarises the
results of the main text and gives an outlook for possible future developments based
on these findings.



Part I

The Method and the

Scenario

7





Chapter 1

The Wilsonian Approach to

Renormalisation

Different types of theories will be discussed within this thesis. Some of them are
introduced just for pedagogical reasons as e.g. the scalar theory. The metric and
the foliated formulation of QEG on the other hand are the topic of this thesis and
are discussed extensively.

Throughout this work we will adopt a Wilsonian viewpoint on renormalisation.
In this framework, a theory is defined by the field content and its symmetry. As an
example let us discuss the scalar theory. Its field contents is the scalar field ϕ̃ and
it satisfies the Z2 symmetry. The corresponding Euclidean, microscopic action1

S[ϕ̃] satisfies this symmetry and all physical information of such a theory, as e.g.
amplitudes of scattering processes, are stored in the correlation functions. If we
consider exemplary a scattering process with two incoming and (n − 2) outgoing
particles we have to discuss the n-point correlation function. Using the Euclidean
path integral, this is defined as

〈ϕ̃(x1) . . . ϕ̃(xn)〉 = N
∫

Λ

Dϕ̃ ϕ̃(x1) . . . ϕ̃(xn)e
−S[ϕ̃] (1.1)

with a suitable normalisation N and the microscopic action S[ϕ̃] in the exponent.
The index Λ at the integral denotes a UV cutoff, required for a well-defined path
integral. Here we consider a simple sharp cutoff in the sense that we do not integrate
over fields ϕ̃(p) with |p| > Λ. The generating functional for all n-point correlation
functions is the partition function Z[J ], which is defined as

Z[J ] =

∫

Λ

Dϕ̃ e−S[ϕ̃]+
∫

dDx J(x)ϕ̃(x) . (1.2)

1We are working with the Euclidean setting and the Minkowski analog can be found by ana-
lytical continuation.

9
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The n-point correlators (1.1) contain contributions from connected and discon-
nected physical processes. The latter can be factored out by considering only the
connected Green functions. The generating functional for them is the Schwinger
functional W [J ] = lnZ[J ]. An even more efficient way to store the information
are the one-particle irreducible (1PI) vertex functions. Their generating functional
is the Effective Action (EA) Γ[ϕ] which is the Legendre transformation of the
Schwinger functional

Γ[ϕ] = sup
J

(∫

dDxJ(x)ϕ(x) −W [J ]

)

. (1.3)

Here ϕ(x) = δW [J]
δJ(x) = 〈ϕ̃〉J is the classical or averaged field. In the following we

will abbreviate the nth derivative with respect to the field with an upper index
(n). Thus the nth derivative of the EA action reads

Γ(n)(p1, . . . , pn) =
δnΓ[ϕ]

δϕ(p1) . . . δϕ(pn)
. (1.4)

Here ϕ(p) denotes the Fourier transform of ϕ(x) and the Γ(n) constitute the 1PI
n-point function of the theory, containing all quantum effects.

After having introduced these basics of QFT for fixing the notation, we can
proceed and discuss the renormalisation of our exemplary scalar theory. We start
with the perturbative setting before contrasting it with the Wilsonian setting. More
details can be found in any standard text book as [82].

To start with, we introduce the classical action of the scalar ϕ̃4 theory. It reads

S[ϕ̃] =

∫

dDx

(

1

2
(∂µϕ̃)

2 +
m2

0

2
ϕ̃2 +

λ0

4!
ϕ̃4

)

(1.5)

with the spacetime dimension D. Here we find the kinetic and the mass term corre-
sponding to a free theory and the last terms, including the coupling λ0, introduces
an interaction into the system. Note that we used a lower index 0 on m2

0 and λ0

in order to show that these are the constants corresponding to the classical action.
The perturbative expansion of the EA corresponding to the classical action (1.5),
up to 1-loop, reads

Γ[ϕ] = S[ϕ] + Γ1−loop[ϕ] , Γ1−loop[ϕ] =
1

2
Tr lnS(2) . (1.6)

Evaluating the Feynman diagrams at 1-loop order in D = 4 we find that Γ(2)1−loop

has a divergence proportional to Λ2 where Λ denotes the UV cutoff. Additionally
we find a divergence proportional to lnΛ in Γ(4)1−loop. However, this does not mean
that the QFT is ill defined. The source of these divergences are fluctuations at all
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scales and thus the right question to ask is: Is it useful to determine a quantity to
be measured with correlation functions depending on parameters of the microscopic
action, although the measurement might take place at a macroscopic scale? The
answer is: No. Indeed the parameters m2

0 and λ0 of our microscopic action do
not correspond to the measured quantities. In contrast, the latter ones are related
to the renormalised couplings, which we will denote by m2

r and λr. Furthermore
we introduce the renormalised field ϕr via ϕ = Z1/2ϕr with the wave-function
renormalisation Z. These renormalised quantities can be used to eliminate the
bare couplings m2

0 and λ0. Therefore we define δZ , δm and δλ, in order to fix the
relation between the bare quantities and the renormalised ones, via

δZ = Z − 1 , δm = m2
0Z −m2

r , δλ = λ0Z
2 − λ . (1.7)

The insertion of these expressions into the classical action (1.5) leads to

S[ϕ] =

∫

dDx

(

1

2
(∂µϕr)

2 +
m2

r

2
ϕ2
r +

λr

4!
ϕ4
r

)

+

∫

dDx

(

δZ
2
(∂µϕr)

2 +
δm
2
ϕ2
r +

δλ
4!
ϕ4
r

)

. (1.8)

The first integral is exactly the classical action, but with the renormalised quan-
tities. In the second integral we find the so-called counter terms which can be
adjusted such that they contain the divergences identified before.

To make sense out of the relation between the bare and the renormalised quan-
tities (1.7) we have to specify the definition of the renormalised ones. As discussed
abovem2

r and λr are determined via an experiment. This experiment takes place at
a typical scale µ. Let us consider e.g. µ = 0. At this scale we find m2

r = Γ(2)(0, 0)
and λr = Γ(4)(0, 0, 0, 0), with the second and fourth derivative of Γ defined in (1.4).
These are the so-called renormalisation conditions. The important point to notice
here is that the identification at a different scale µ would lead to different renor-
malised couplings. Of course, the choice of the renormalisation scale should not
affect physics. Moving from one scale to another, we can adapt the renormalised
couplings without changing physics. This is called the renormalisation group (RG)
and the relation between the renormalised couplings at different scales is described
by renormalisation group equations as e.g. the Callan-Symanzik equation.

In contrast to this perturbative discussion, this thesis is based on the Wilsonian
idea of renormalisation. Although the ansatz is very different from the perturba-
tive viewpoint above, we will find the same scale dependent couplings as in the
perturbative setting. Starting with the partition function (1.2) we can split the
field modes into modes within a momentum shell of large momenta and soft modes
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with small momenta according to ϕ̃(p) = ϕ̃′(p) + ϕ̃′′(p) with

ϕ̃′(p) = ϕ̃(p) θ
(

(Λb )
2 − p2

)

,

ϕ̃′′(p) = ϕ̃(p)
[

θ
(

Λ2 − p2
)

− θ
(

(Λb )
2 − p2

)]

. (1.9)

Here θ denotes the Heaviside step function and the ϕ̃′ are soft modes with momenta
|p| < Λ

b where b is a constant parameter. The modes marked with two primes on

the other hand are the modes of the momentum shell Λ
b < |p| < Λ. Inserting this

decomposition into the partition function we find

Z[J ] =

∫

Λ/b

Dϕ̃′
∫

Λ/b<|p|<Λ

Dϕ̃′′ e
−S[ϕ̃′,ϕ̃′′]+

∫ dDp
(2π)D (J′(p)ϕ̃′(p)+J′′(p)ϕ̃′′(p))

=

∫

Λ/b

Dϕ̃′ e
−SW[ϕ̃′]+

∫ dDp
(2π)D J′(p)ϕ̃′(p)

(1.10)

where the modes of the momentum shell have been integrated out in the second
line. The resulting action, SW, in the exponent determines the dynamics of the soft
modes and is called the Wilsonian effective action. As the high momentum modes
have been integrated out, SW contains their quantum effects. Note that therefore
it can contain terms different from those of the microscopic action. Within our
exemplary scalar theory its general form is

SW[ϕ̃′] =

∫

dDx
[1

2
(1 + ∆Z)(∂µϕ̃

′)2 +
1

2
(m2 +∆m2)ϕ̃′2 +

1

4!
(λ +∆λ)ϕ̃′4

+
1

6!
∆λ6 ϕ̃

′6 +∆Z2(∂µϕ̃
′)4 + . . .

]

. (1.11)

Here the dots denote all further terms which might be produced. In Figure 1.1
an example for the generation of higher-order operators is depicted. Explicitly it
shows, how a ϕ̃6 operator is generated by the ϕ̃4 operator, while the modes of the
momentum shell are integrated out. Note that also higher-order derivative terms
are induced as indicated by the last term in (1.11).

For a concrete comparison of S and SW we perform a rescaling. Explicitly the
rescaling reads

p′ = bp , x′ = x
b , ⇒

∫

dDx =

∫

dDx′ bD ,

∫

|p|<Λ/b

Dϕ̃′ =

∫

|p′|<Λ

Dϕ̃′ . (1.12)

An additional redefinition of the scalar field according to ϕ̃ = [bD−2(1+∆Z)−1]1/2ϕ̃′

leads us to the following rescaled Wilsonian action

SW[ϕ̃] =

∫

dDx′
[1

2
(∂′

µϕ̃)
2 +

m′2

2
ϕ̃2 +

λ′

4!
ϕ̃4 +

λ′
6

6!
ϕ̃6 + Z ′

2(∂
′
µϕ̃)

4 + . . .
]

. (1.13)
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ϕ̃

ϕ̃

ϕ̃

ϕ̃ϕ̃

ϕ̃

Figure 1.1: Depicted is a graph illustrating the dynamical generation of a ϕ̃6

interaction from the classical ϕ̃4 operator. Within the loop, modes
of the momentum shell are circulating.

Besides the redefinition of the field, we also introduced rescaled couplings. The
new couplings, marked with a prime, in terms of the old couplings read

(m′)2 =(m2 +∆m2)(1 + ∆Z)−1 b2 ,

λ′ =(λ+∆λ)(1 + ∆Z)−2 b4−D ,

λ′
6 =(λ6 +∆λ6)(1 + ∆Z)−3 b6−2D ,

Z ′
2 =(Z2 +∆Z2)(1 + ∆Z)−2 b−D ,

... (1.14)

To summarise, we started with the microscopic action and separated the modes
with momenta in a thin momentum shell, from the soft modes with low momenta.
We integrated out the former and rescaled the latter. Furthermore we rescaled the
couplings to find an expression of the Wilsonian action which can be compared to
the microscopic action. This can be interpreted as a transformation on the space
of actions and thus constitutes a RG transformation. Repeating this procedure
iteratively one can integrate out all quantum fluctuations step by step. Choosing
the parameter b infinitesimal close to 1 this transformation becomes continuous
and we can find a continuous RG flow for the couplings.

This momentum-shell-wise integration shows very well that the divergences
which appeared in the perturbative analysis above are caused by the fact that
modes at all scales are contributing to a potentially diverging expression. This
makes the Wilsonian approach to renormalisation very well suited to address the
issue of these divergences. Therefore we will use this viewpoint in the rest of this
thesis, starting with the derivation of an equation describing the aforementioned
RG flow.
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Chapter 2

The Functional

Renormalisation Group

Equation

2.1 The Wetterich Equation for Scalars

Within this section we derive and discuss the functional renormalisation group
equation (FRGE) for the so-called effective average action (EAA) within a scalar
theory. This equation was first derived in [83] and thus is also called the Wetterich
equation. It is used as a tool to implement a suitable version of the Wilsonian
approach to renormalisation, see Chapter 1, which we discuss in the following from
a more technical perspective.

Starting point for our considerations is the k-dependent partition function

Zk[J ] =

∫

Dϕ̃ exp

[

−S[ϕ̃]−∆Sk[ϕ̃] +

∫

dDxJ(x)ϕ̃(x)

]

. (2.1)

Here S[ϕ̃] denotes the microscopic action of the theory and J is the source corre-
sponding to the scalar field ϕ̃. Note that this expression is similar but not exactly
the same as (1.2). The crucial ingredient, making the difference, is the regulator
term ∆Sk[ϕ̃]. The index k denotes the RG scale in the sense that ∆Sk modifies
the path integral such that the field modes ϕ̃ with momenta p2 > k2 are integrated
out. In contrast, the integration over field modes with p2 < k2 are suppressed.
Therefore it is solely this term which implements the Wilsonian idea and passes
the k dependence to the partition function.

In order to find a modification of the path integral as described above, we
choose the regulator term to be quadratic in the field ϕ̃. This can be interpreted as
a k-dependent mass term, suppressing the low energy modes with p2 < k2. Thus

15
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the regulator term reads

∆Sk[ϕ̃] =
1

2

∫

dDp

(2π)D
ϕ̃(−p)Rk(p)ϕ̃(p) . (2.2)

In order to meet the Wilsonian idea, the regulator Rk(p) has to satisfy three
conditions.

(1) lim
k2/p2→0

Rk = 0

(2) lim
k2→Λ2→∞

Rk → ∞

(3) lim
p2/k2→0

Rk > 0 . (2.3)

Condition (1) tells us that for k → 0 the regulator term vanishes and we regain our
standard partition function Z = limk→0 Zk. This implies that Z computed from
Zk will be independent of the explicit form of Rk. The other extreme k → ∞ is
given by condition (2). It tells us that the regulator term gives rise to a divergent
mass term which suppresses all fluctuations in the path integral. Therefore no
quantum fluctuations are integrated out. Between these two extrema, parts of the
quantum fluctuations are integrated out and we can treat the resulting generating
functional, described by Zk, as an effective one at the scale k. Condition (3) causes
the regulator to be non vanishing in the limit p2/k2 → 0 which thus serves as an IR
regularisation. Note that typically Rk ∼ k2 for p2 ≪ k2, which gives a k-dependent
mass ∼ k. This motivates the introduction of the so-called profile function R(0)

depending on p2/k2 via

Rk(p) = k2R(0)( p
2

k2 ) . (2.4)

Apart from the three conditions (2.3) the regulator can be chosen freely. An
example is depicted in Figure 2.1. It uses a smeared Heaviside function, which is
useful to demonstrate the properties of the regulator. The conditions (1) and (2)
are very well visible. Furthermore one realises that the logarithmic scale derivative
k d
dk of the regulator is peaked around p2 = k2. However during the calculation we

will use the so-called Litim cutoff [84,85] which is related to the Heaviside function
itself and reads

RLitim
k = (k2 − p2)θ(1 − p2

k2 ) . (2.5)

Instead of the scale-dependent partition function Zk we would like to examine
the EAA which is the k-dependent version of the EA. Thus we first introduce the
k-dependent Schwinger functional Wk via eWk = Zk. Next we take the logarithmic
derivative with respect to the scale k. For briefness we introduce the (RG) time t
as

t = ln(k/k0) ⇒ ∂t = k
d

dk
(2.6)
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p2
k2

1
R(0)

k d
dkRk

Figure 2.1: Illustration of the profile function R(0) (full line) and the log-
arithmic derivative of the regulator with respect to the scale k

(dashed line). The depicted example is a smeared Heaviside func-
tion R(0) = 1− 1

1+exp[−c( p2

k2 −1)]
with a constant c.

with a reference scale k0. The logarithmic derivative of Wk thus reads

∂tWk[J ] = − 1

2Zk

∫

Dφ̂

∫

dDp

(2π)D
ϕ̃(−p)∂tRk(p)ϕ̃(p)e

−S−∆Sk+
∫

dDxJ(x)ϕ̃(x)

= −1

2

∫

dDp

(2π)D
W

(2)
k (p)∂tRk(p) + ∂t∆Sk[ϕ] . (2.7)

Here W
(2)
k denotes the second functional derivative of Wk with respect to the

sources and ϕ = 〈ϕ̃〉 denotes the expectation value of the fluctuation field. The
EAA is then defined as the modified Legendre transformation of Wk.

Γk[ϕ] = sup
J

(∫

dDxJ(x)ϕ(x) −Wk[J ]

)

−∆Sk[ϕ] . (2.8)

At the supremum the expectation value satisfies the relation ϕ = δWk/δJ and thus

we get δϕ/δJ = W
(2)
k . The quantum equations of motion read J = δΓk/δϕ+Rkϕ.

Taking another derivative with respect to the expectation value reveals

δJ

δϕ
= Γ

(2)
k +Rk (2.9)

with Γ
(2)
k being the second functional derivative of the EAA with respect to ϕ.

Combining (2.9) with δϕ/δJ = W
(2)
k gives us

1 =
(

Γ
(2)
k +Rk

)

W
(2)
k . (2.10)
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Thus Γ
(2)
k + Rk is the inverse of W

(2)
k . At this point we have all ingredients to

derive the flow equation for the EAA by using the Legendre transformation (2.8)
for fixed ϕ at the supremum of the source J , inserting (2.7) and simplifying the
result by using (2.10). We find

∂tΓk[ϕ] = −∂t Wk[J ]|ϕ +

∫

(∂tJ)ϕ− ∂t∆Sk[ϕ]

= −∂t Wk[J ]|J − ∂t∆Sk[ϕ]

=
1

2

∫

dDp

(2π)D
W

(2)
k (p)∂tRk(p) . (2.11)

Substituting W
(2)
k (p) by (2.10), the final form of the flow equation reads

∂tΓk[ϕ] =
1

2
Tr
[

(Γ
(2)
k +Rk)

−1∂tRk

]

. (2.12)

The important result (2.12) is the FRGE or Wetterich equation which will
be the main technical tool of this thesis. It is an exact equation capturing the
scale dependence of the EAA Γk. Note that in (2.12) the regulator appears twice.
Therefore, in comparison with Figure 2.1, we find that it simultaneously serves as a
UV regulator (numerator) and as an IR regulator (denominator). The contribution
of the trace is peaked, as depicted in Figure 2.1, and thus the flow is driven by
fluctuations at k2 ∼ p2.

The Wetterich equation can be interpreted in a QFT context. One can use a
microscopic theory S as a starting point ΓΛ at some high UV scale Λ. Integrating
down towards k → 0, the EAA flows to the EA thus defining the quantum theory.
This limit is independent of the regulator although the trajectory from the UV
to the IR is not. Note however that it is not clear a priori which interaction
terms are created during the renormalisation group running, as discussed in (1.11).
Thus one has to consider all terms satisfying the symmetry constraints. These
are infinitely many and therefore we have to stick to truncations. Examples are
the derivative expansion or the vertex expansion. Since these approximations are
non-perturbative, in the sense that they do not rely on an expansion in a small
coupling, we will use this technique of truncating Γk when performing explicit
computations. Unfortunately such an approximation spoils the fact that the IR
limit is independent of the regulator. To come as close as possible to the true result
one can use optimised regulators, see [86] for a detailed discussion.

2.2 The Wetterich Equation for Gauge Fields

After having derived the Wetterich equation for a scalar theory in Section 2.1 we
generalise the construction to gauge symmetries, see [87–90] for the original work
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and [91] for an introduction. As the derivation is analogous to the preceding section
we stay brief here and concentrate on the main differences.

These differences are caused by the presence of gauge freedom, which leads to
an ill-defined path integral due to the integration over physically equivalent field
configurations. To get a well-defined path integral one can use the gauge-fixing
procedure. The Jacobians produced by it can be dealt with by introducing ghost
fields. More details can be found in Appendix B.1. This appendix shows that the
microscopic action has to be complemented by a gauge-fixing and a ghost action.
All three of them shall be summarised and denoted by S in the rest of this section.

In the following, the field content of our theory is denoted by Φ̃ and collects the
quantum fields of the theory as well as the ghost fields. To handle the symmetry
during the RG flow we use the Background Field Method (BFM), explained in
Appendix B.2. Therefore we split the field Φ̃ linearly into the sum of a background
field Φ̄ and the fluctuations Φ̂ via Φ̃ = Φ̄ + Φ̂. Here the fluctuations Φ̂ are not
assumed to be small in any sense. Furthermore, the background Φ̄ is merely a
technical tool and no physical meaning should be attributed to it. Within this
notation the k-dependent partition function reads

Zk[J, Φ̄] =

∫

DΦ̂ exp

[

−S[Φ̂, Φ̄]−∆Sk[Φ̂, Φ̄] +

∫

dDxJ(x)Φ̂(x)

]

. (2.13)

Here J collects the sources corresponding to the field content of the theory. Be-
sides these sources Zk depends parametrically on the background Φ̄. To get a
momentum-shell-wise integration we introduced a regulator term ∆Sk into the ex-
ponent which passes a k dependence to the partition function and is quadratic in
the fluctuation fields. Again the regulator has to satisfy the three conditions (2.3),
but will depend on the background field. It can be constructed such that it is
compatible with the background transformation.

The transition from the k-dependent partition function to the Background Ef-
fective Average Action (BEAA), which is the background dependent version of
the EAA, can be performed analogously to Section 2.1. The main difference is
that all quantities receive a background-field dependence. Therefore the Legendre
transformation reads

Γk[Φ; Φ̄] = sup
J

(∫

JΦ−Wk[J ; Φ̄]

)

−∆Sk[Φ; Φ̄] (2.14)

with Φ = Φ̄+ 〈Φ̂〉 being the expectation value of the fluctuation. Following further
the derivation of the Wetterich equation in Section 2.1 and keeping track of the
background-field dependence we find the exact FRGE for a gauge theory

∂tΓk[Φ; Φ̄] =
1

2
STr

[

(

Γ
(2)
k +Rk

)−1

∂tRk

]

. (2.15)



20 2 The Functional Renormalisation Group Equation

An important point which should be stressed is that the supertrace STr includes
a trace over field space and all further internal indices as well as a momentum
integration. Furthermore it encodes a minus sign for fermionic field contributions
as, e.g., the ghost fields.

Integrating the Wetterich equation (2.15) from a microscopic scale k = Λ down
to k = 0 we find the background effective action (BEA) Γ[Φ, Φ̄]. It is invariant
under background gauge transformations, as the BEAA is. The ordinary EA can
be found if we set Φ = Φ̄ as discussed in Appendix B.2. With this choice the EA
regains the invariance under the initial gauge symmetry and describes the quantised
theory.



Chapter 3

The Asymptotic Safety

Scenario

This chapter introduces the Asymptotic Safety scenario, first formulated by S.
Weinberg [14,92] to handle the cumbersome UV divergences appearing in the quan-
tisation of gravitational theories. This scenario proposes a way of constructing a
well-defined QFT without resorting to perturbative renormalisability. Therefore it
constitutes a possible UV completion in the sense that it gives a consistent and
predictive quantum theory of gravity valid on all length scales.

In order to motivate the scenario, we start with a brief discussion of QCD, the
theory of quarks, gluons and the strong interaction. This theory is perturbatively
renormalisable and the beta function of the coupling constant g, to lowest order in
the perturbative expansion, depends on the number of flavours Nf

β(g) =
g3

16π2

(

−11 +
2Nf

3

)

. (3.1)

Here we work in four dimensions and thus g is dimensionless. According to the
standard model of particle physics we assume Nf = 3 in (3.1) and find β(g) < 0.
This corresponds to a decreasing coupling constant for increasing energy scale.
Therefore, in the high-energy limit, we find g → 0. As the beta function vanishes
in this limit, the point g∗ = 0 is a fixed point. Furthermore, the coupling constant
vanishes at the fixed point, which is referred to as the Gaussian Fixed Point (GFP).
This behaviour is called asymptotic freedom and renders the theory well defined
at arbitrarily high energy scales, in the sense that the coupling constant stays
finite. This is in contrast to, e.g., the gauge coupling of QED which diverges at the
Landau pole. It is crucial that the finiteness holds for the dimensionless couplings,
as these are the ones appearing in observables. The corresponding dimensionful
counterparts might still diverge, but do so in a controlled way.

The Asymptotic Safety scenario can be considered a generalisation of asymp-
totic freedom. Instead of decreasing continuously and asymptotically running to-

21
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wards the GFP g∗ = 0, the dimensionless coupling constant might run towards a
non-Gaussian fixed (NGFP) point g = g∗ 6= 0. Therefore the scenario requires a
non-perturbative tool as the FRGE, discussed in Chapter 2. In the following, we
discuss the Asymptotic Safety scenario within the Wilsonian approach in terms of
the EAA and the Wetterich equation.

In Chapter 1 we have seen that the momentum-shell-wise integration of modes
potentially produces an infinite amount of field monomials. The set of all action
functionals, build from the field content Φ and compatible with the symmetry
constraints, is called theory space. Assuming a basis On[Φ], any theory might be
described by an EAA given as an expansion in this basis

Γk[Φ] =
∑

n

ḡn,kOn[Φ] , (3.2)

with an infinite sum and dimensionful coupling constants ḡn,k corresponding to the
field monomials On[Φ]. The dimensionless counterparts of the coupling constants,
denoted by gn,k, vary with the scale and the dependence on the latter is described
by the beta functions

βn(g1,k, g2,k, . . .) = ∂t gn,k . (3.3)

Here t denotes the RG time defined in (2.6). Within this notation a GFP would be
given for a suitable definition of the couplings if we find βn(g

∗
1 , g

∗
2 , . . .) = 0 for all

n and g∗1 = g∗2 = . . . = 0. On the other hand, a fixed point is called non-Gaussian,
if at least one coupling does not vanish.

Note that a GFP is not sufficient for asymptotic freedom, as we have seen in
the example of QCD. To clarify this, consider a beta function depending on one
coupling constant given by

β(gk) = cgk , (3.4)

where c is a constant. Obviously the point g∗ = 0 is a GFP. Nevertheless, if the
constant c is positive, the coupling constant increases for increasing energy and
thus the corresponding theory would not be asymptotically free. To arrive at the
GFP at high energies one would have to start already at g = 0 in the IR. This
simple example demonstrates that the fixed point alone does not suffice to get an
asymptotically free or asymptotically safe theory. Besides the fixed point itself,
one has to investigate the critical behaviour close to it.

Considering again a general theory described by the EAA (3.2), the running
close to a proposed fixed point (g∗1 , g

∗
2 , . . .) is described by a linearisation of the

beta functions around the fixed point. This linearisation reads

∂tgi,k ≈
∑

j

B j
i (gj,k − g∗j ) , B j

i =
∂βi

∂gj,k

∣

∣

∣

∣

g∗

(3.5)
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with the so-called stability matrix B j
i . Diagonalising this system of linearised flow

equations gives us the critical exponents θi as the negative of the eigenvalues of the
stability matrix. The solution of the linearised system reads

gi,k = g∗i +
∑

j

cjv
j
i

(

k0

k

)θj
(3.6)

with v j
i as the right eigenvectors of B j

i . Furthermore k0 is a reference scale and
the cj denote some constants of integration. For a positive critical exponent the
corresponding eigendirection is UV-attractive, in the sense that the behaviour close
to the fixed point would be similar to the behaviour of (3.4) with negative c. The
flow is attracted towards the fixed point for increasing RG scale, independent of the
starting value at low energies. This is called a UV-relevant direction. In contrast
to this, the eigendirections corresponding to a negative critical exponents are UV-
repulsive, similar to (3.4) with positive c. These directions are called UV-irrelevant.
For vanishing critical exponents one has to consider higher orders in (3.5) to decide
whether the corresponding direction is marginal-relevant or marginal-irrelevant.
Note that the behaviour is mirrored if we turn the flow and consider decreasing
energy. Therefore UV-relevant directions are IR-irrelevant and vice versa.

Performing a stability analysis as explained above, gives us very important
information about a theory connected to a fixed point. The IR value of a coupling
constant that corresponds to a UV-repulsive direction is a prediction of the theory
itself. The requirement of this coupling to approach the fixed point in the UV
fixes its IR value. Coupling constants corresponding to a UV-attractive direction
on the other hand can have any value in the IR. Therefore these couplings have
to be determined by experiment. The space which is spanned by all UV-relevant
directions is called UV-critical surface SUV . It is a hypersurface in the infinite-
dimensional theory space spanned by all couplings.

The predictions that arise from requiring a finite dimensionality of the UV-
critical surface provide the opportunity to test Asymptotic Safety. Consider a
theory with at least one UV-repulsive direction. The IR-value of the corresponding
coupling constant is determined by the requirement of reaching the fixed point in
the UV. Clearly, this prediction has to match the experimental results.

Let us summarise the conditions for an asymptotically safe theory in the context
of gravity. To define a theory of Quantum Gravity from the Wilsonian viewpoint
we have to find a QFT of the gravitational degrees of freedom, well defined at
arbitrary high energy scales. Such an asymptotically safe theory has to meet three
requirements. Most importantly, a NGFP is needed capable of controlling the
theory at high energies. Secondly, the predictivity of the theory requires that the
UV-critical hypersurface of the NGFP is finite dimensional. Finally this NGFP has
to be connected to a classical regime, where GR constitutes a good approximation.
If the theory, beyond that, is invariant under diffeomorphisms it is called QEG.
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Since the introduction of Asymptotic Safety several theories have been found,
whose UV completion can be implemented by means of this scenario. Besides
gravity, this includes scalar field theory at the Wilson-Fisher fixed point [93],
four-fermion models [94–97], Yukawa systems [98–102], non-linear sigma mod-
els [103–108] and gauge theories in extra dimensions [109]. Notably the influence of
asymptotically safe gravity on the standard model predicts a Higgs mass [110,111]
compatible with the recent measurements at the Large Hadron Collider (LHC)
[112].
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Metric Gravity

This part of the thesis is based on the publication
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Chapter 4

Motivation

This part of the thesis covers the metric formulation of QEG, the first Asymptotic
Safety related investigation in the context of gravity. This theory, described by
a spacetime metric carrying the degrees of freedom, is invariant under spacetime
diffeomorphisms. Finding a suitable NGFP as described in Chapter 3 would render
such a theory asymptotically safe and thus it would be a viable candidate for a
quantum theory of gravity.

The Wetterich equation, derived in Chapter 2, using the FRG techniques, con-
stitutes an exact equation. It describes the scale dependence of the EAA and thus
the scale dependence of the coupling constants of the theory. The EAA is con-
structed from the interaction monomials respecting the symmetry of the theory
which span the theory space, coordinatised by the corresponding coupling con-
stants. In general this theory space is infinite dimensional and it is not known how
to deal with all coupling constants. Therefore, from a technical point of view we
have to restrict ourselves to a finite set of interaction monomials and truncate the
infinite-dimensional theory space.

For the metric formulation of gravity the simplest truncation uses the diffeo-
morphism invariant Einstein-Hilbert action which reads

SEH[gµν ] =
1

16πGN

∫

dDx
√
g (R− 2Λ) (4.1)

with the D-dimensional spacetime metric gµν and the corresponding determinant
g, the Newton constant GN, the cosmological constant Λ and the Ricci scalar R.
Here we used two distinguished terms which are invariant under spacetime diffeo-
morphisms, the constant term −2Λ and the curvature term R. Note that the Ricci
scalar depends on the spacetime metric gµν and contains two derivatives. Besides
these two terms there are infinitely many further terms respecting the symme-
try. These further terms can be ordered depending on the number of derivatives
contained, as it was done in [113] and is shown in Table 4.1. The Einstein-Hilbert
truncation, corresponding to the two lowest lines, was investigated in the pioneering

27
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...

∂10 R5
...

...
...

∂8 R4

∂6 R3 C ρσ
µν C κλ

ρσ C µν
κλ R∆R 7 more terms

∂4 R2 CµνρσC
µνρσ RµνR

µν

∂2 R
∂0 1

Table 4.1: Diffeomorphism invariant terms ordered depending on the number
of derivatives appearing in them. Here ∆ denotes the contracted
second covariant derivative, R is the Ricci scalar, Rµν the Ricci
tensor and Cµνρσ the Weyl tensor.

work of Martin Reuter in 1996 [114]. Since these days a lot of extended truncations
have been considered. Higher derivative gravity, corresponding to the ∂4 line in
Table 4.1, was discussed in [115] and [116] with and without a one-loop approxi-
mation respectively. The first truncation beyond the Einstein-Hilbert analysis was
an inclusion of the R2 term in [117–119]. The first column in Table 4.1 was studied
further in [120,121] up to R8, in [74] up to R10 and in [122] up to R35. A more gen-
eral truncation of the form f(R) was used to investigate logarithms and negative
powers of the Ricci scalar in [123]. The function f(R) itself was studied in [124]
and [125, 126]. Since the calculation for improved truncations become harder the
authors of [127] proposed an automatisation, which they call the universal renor-
malisation group machine. The techniques necessary for such an automatisation
was studied in [128,129]. A check of the automatisation was performed within the
Einstein-Hilbert truncation [127] and the machine was used for investigations of
higher derivative gravity [130].

Besides the purely gravitational improvement of the truncation some other as-
pects have been studied as well. Examples are boundary terms [131, 132], the
ghost sector [133–135], coupling to matter [102, 136–144] and coupling to gauge
fields [145–147]. All these extensions of the truncation support the Asymptotic
Safety scenario for the metric version of QEG. Although there is no rigorous
proof found yet, these works form a serious evidence that gravity might be non-
perturbatively renormalisable.

The search for a possible non-Gaussian fixed point, although very important, is
not the only task within the Asymptotic Safety approach to QG. There are other
interesting aspects which partly have been investigated. As explained in Chapter
3 it is important to study the behaviour of the flow equations close to the fixed
point for the analysis of the UV critical hypersurface. Furthermore the Asymptotic
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Safety scenario requires a suitable classical regime. To find such a regime, the flow
equations given by the beta functions for the coupling constants can be solved
with suitable starting values. The resulting trajectories can be depicted in phase
diagrams and classified according to their behaviour. This was done so far only for
the Einstein-Hilbert truncation. An extensive analysis can be found in [148]. The
trajectory compatible with observations was singled out in [149], again using the
simplest truncation.

However, all theoretical investigations of QG candidates share one main prob-
lem. Unfortunately all observations available for the gravitational interaction are
restricted to the classical level. The predictions of quantum-gravitational effects,
so far, can not be checked with experiments. Here we do not consider scenarios
with extra dimensions where observations of a fixed-point behaviour might be pos-
sible as explained in [61–63]. Thus we do not have any observation at hand to
discriminate any QG approach. This is one reason for the variety of candidate
theories as e.g. string theory, loop quantum gravity, HLG, CDT and many others.
Although a discrimination of candidate theories is not possible one can at least
compare the different approaches to see, whether or not, some of them lead to
the same predictions. This might lead to further insights and developments in the
different approaches.

Within this part of the thesis we will recapitulate the derivation of the beta
functions for the simplest truncation of the metric formulation of QEG along the
lines of [114, 150]. This introduces some basic technical aspects of the FRG tech-
nique on the level of a rather simple example. Afterwards, the phase diagram
corresponding to these flow equations is analysed, by following [148]. This picture
is extended to the R2 truncation, where we omit most of the technical details and
concentrate on the analysis of the three-dimensional phase diagram [31]. In the last
chapter of this part we introduce and analyse the spectral dimension. This is a pre-
diction incorporating quantum-gravitational effects and can be compared to other
approaches to a quantum theory of gravity. We summarise the findings within the
Einstein-Hilbert truncation [30] and extend the results to the R2 truncation [31].
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Chapter 5

Flow Equations for Metric

Gravity

5.1 The Einstein-Hilbert Truncation

In this section we derive the beta functions for the Newton constant and the cos-
mological constant with the FRG techniques along the lines of [114,150]. A metric
formulation of a quantum theory of gravity within the path-integral framework is
described by the functional integral

∫

Dg̃µν exp

[

−Sgrav[g̃µν ] +

∫

dDx
√

g̃ tµν g̃µν

]

(5.1)

with the quantum spacetime metric g̃µν , the corresponding source t
µν and a gravita-

tional action Sgrav. This serves as a starting point for the following considerations.
The first important fact to notice is that GR, as the desired classical limit of

our quantum theory, is invariant under D-dimensional diffeomorphisms, where D
denotes the spacetime dimension. Thus the microscopic action S is supposed to be
invariant under the corresponding transformation, which reads

g̃µν → g̃µν + δg̃µν , δg̃µν = Lv g̃µν . (5.2)

Here Lv denotes the Lie derivative with respect to the D-dimensional vector v.
As the diffeomorphism invariance is a gauge symmetry, the path integral in (5.1)
is ill-defined due to the integration over gauge-equivalent field configurations. As
explained in Appendix B.1 this problem can be circumvented by introducing a
gauge-fixing and a ghost term. Thus our partition function, defining the quantum
theory, reads

Z =

∫

Dg̃µνDω̄µDωµ exp
[

−Sgrav − Sgf − Sgh + Ssource
]

. (5.3)

31



32 5 Flow Equations for Metric Gravity

Here the source term Ssource contains sources for the metric as well as for the ghost
fields.

The next step, within the FRG approach, consists of introducing a regulator
insertion ∆Sk in the exponent. It depends on the RG scale k that discriminates
between modes of high and low momenta. As described in Chapter 2 this regulator
insertion is chosen quadratic in the fields and contains a regulator Rk which has
to satisfy the three conditions (2.3). The full quantum theory is found in the limit
k → 0 since the regulator vanishes due to the first condition and thus we find
the partition function (5.3). In this limit we would like to find invariance under
gauge transformations. As described in Appendix B.2 this is true if the classical
action as well as the regulator insertion is invariant. However, the regulator term
∆Sk in general is not invariant, which leaves us with the two options discussed in
Appendix B.2. The first is a clever choice of the initial condition at large scales k.
The second is the one we will follow here, the BFM. Following the appendix we split
the quantum metric into a fixed but arbitrary background ḡµν and fluctuations ĝµν
around it via

g̃µν = ḡµν + ĝµν . (5.4)

Note that the fluctuations are not assumed to be small in any sense. With this
split we can distinguish two versions of the original gauge transformation g̃µν →
g̃µν + δg̃µν . The first is called the quantum gauge transformation and the second
is called the background gauge transformation. They read

Quantum: ĝµν → ĝµν + δ̂ĝµν ḡµν → ḡµν ,

Background: ĝµν → ĝµν + δ̄ĝµν ḡµν → ḡµν + δ̄ḡµν . (5.5)

As explained in Appendix B.2 we find a theory invariant under the gauge trans-
formation, independent of the initial condition at large scales in the following way.
First, we ask the gravitational action, the ghost action, the gauge fixing term and
the regulator insertion to be invariant under background gauge transformations
and derive the beta functions. Afterwards, we integrate them from large scales
down to small scales and finally set ĝµν = 0. This last step turns the invariance
under background gauge transformations into an invariance under the initial gauge
transformation.

Summarising the previous considerations we start with a scale-dependent par-
tition function Zk, given in terms of a path integral, which reads

Zk =

∫

DĝµνDω̄µDωµe−Sgrav[ĝ;ḡ]−Sgf [ĝ;ḡ]−Sgh[ĝ,ω̄,ω;ḡ]−∆Sk[ĝ,ω̄,ω;ḡ]+Ssource

. (5.6)

For convenience we would like to analyse the BEAA Γk instead of the scale de-
pendent partition function Zk. Thus we introduce the scale dependent Schwinger
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functional Wk via Zk = eWk and take its modified Legendre transform, as in (2.8),
to find

Γk[hµν , c̄µ, c
µ; ḡµν ] with hµν = 〈ĝµν〉 , c̄µ = 〈ω̄µ〉 , cµ = 〈ωµ〉 . (5.7)

As discussed above we have to stick to a truncation. Following [114] we use
the simplest ansatz, the Einstein-Hilbert truncation, that includes the invariants
of GR. It is given in terms of the classical metric gµν = ḡµν+hµν , contains the scale
dependent Newton constant Gk and the scale dependent cosmological constant Λk

and reads

ΓEH
k =

1

16πGk

∫

dDx
√
g [−R+ 2Λk] + Sgf + Sgh . (5.8)

Here we follow [114] and use the classical gauge-fixing and ghost terms Sgf and Sgh.
For the gauge fixing we use the background harmonic gauge condition, containing
the covariant derivative with respect to the background metric denoted by ∇̄µ.
This gauge condition reads

Fµ =

√
2√

32πGk

(δβµ ḡ
αγ∇̄γ − 1

2
ḡαβ∇̄µ)hαβ = 0 (5.9)

and leads us to the following gauge-fixing action

Sgf =
1

2α

∫

dDx
√
ḡ ḡµνFµFν (5.10)

with the gauge parameter α. Along the lines of [114] we stick to the Feynman-’t
Hooft gauge α = 1. Note that there are arguments for α = 0 being an IR-attractive
fixed point [151] and thus our choice is an approximation of the physical gauge.
The corresponding ghost action can be derived as explained in Appendix B.1 and
reads

Sgh = −
√
2

∫

dDx
√
ḡ c̄µ

(

ḡµρḡσλ∇̄λ(gρν∇σ+gσν∇ρ)− ḡρσ ḡµλ∇̄λgσν∇ρ

)

cν (5.11)

with the covariant derivative with respect to the classical metric gµν = ḡµν + hµν

denoted by ∇µ.
Following the derivation in Section 2.2 we finally find the Wetterich equation

for the metric formulation of QEG which reads

∂tΓk =
1

2
Tr

[

∂tRgrav
k

δ2Γk

δh2 +Rgrav
k

]

− Tr

[

∂tRgh
k

δ2Γk

δc̄δc +Rgh
k

]

. (5.12)

Here δ2Γk

δh2 denotes the second variation of Γk with respect to the metric fluctuation

hµν and δ2Γk

δc̄δc the variation of Γk with respect to the ghost and anti-ghost fields.
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The regulator function Rk has been separated into Rgrav
k and Rgh

k such that off
diagonal terms, mixing gravitational and ghost contributions, do not contribute in
(5.12). The specification of Rgrav

k and Rgh
k shall be postponed for the moment.

For the evaluation of the second variations in (5.12) we use two simplifications,
explained in Appendix C.2. The first one is a special choice of the background. As
discussed in Appendix B.2 this background is arbitrary and can be chosen freely.
For convenience we choose the spherical one which uses a constant background
curvature scalar R̄ and simplifies the background Riemann tensor R̄µνρσ and the
background Ricci tensor R̄µν according to

R̄µν =
1

D
ḡµνR̄ , R̄µνρσ =

1

D(D − 1)
(ḡµρḡνσ − ḡµσ ḡνρ)R̄ . (5.13)

Using this background, the second variation with respect to the ghost fields is
obvious from (5.11). At gµν = ḡµν we find

Sgh
∣

∣

g=ḡ
=

√
2

∫

dDx
√
ḡ c̄µ

(

∆− R̄

D

)

cµ (5.14)

with the Laplace operator given as ∆ = −∇µ∇µ. As the ghost action (5.11) does
not depend on the fluctuation metric hµν , it can be separated from the evalua-
tion of the second variation with respect to the metric. Therefore, we split the
truncated BEAA (5.8) into the ghost action and the rest. The latter contains the
Einstein-Hilbert action as well as the gauge-fixing part and we denote it with Γgrav

k .
Using the spherical background we write the gravitational part of our truncation
as Γgrav

k [hµν ; ḡµν ] = Γgrav
k [0; ḡµν ] +

1
2δ

2Γgrav
k [hµν ; ḡµν ] where we omit terms linear

in the fluctuation hµν as well as higher terms. The quadratic term reads

δ2Γgrav
k =

1

16πGk

∫

dDx
√
ḡ
1

2
hµν

(

∆− 2Λk +
D2−3D+4
D(D−1) R̄

)

hµν

− 1

16πGk

∫

dDx
√
ḡ
1

4
hµν ḡ

µν
(

∆− 2Λk +
D2−5D+8
D(D−1) R̄

)

ḡρσh
ρσ (5.15)

and shows in the second line that it is not diagonal in the metric fluctuation.

In order to invert δ2Γk

δh2 + Rgrav
k in (5.12) we diagonalise the second variation

in a second step. Therefore we use the transverse traceless (TT) decomposition of
hµν , explained in Appendix C.2. It consists in the split

hµν = hTT
µν + ∇̄µξν + ∇̄νξµ + ∇̄µ∇̄νς −

1

D
ḡµν∇̄2ς +

1

D
ḡµνφ (5.16)

where hTT
µν is transverse and traceless, φ is the trace of hµν and ξµ is a transverse

vector. Thus we find

ḡµνhTT
µν = 0 , ∇̄µhTT

µν = 0 , ∇̄µξµ = 0 , ḡµνhµν = φ . (5.17)
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This split seems a bit like taking a sledgehammer to crack a nut. Indeed the simpler
split into traceless and trace part as hµν = hT

µν +D−1ḡµνφ would be sufficient, as
shown in [114]. However, we will use the TT decomposition to show some technical
details at the level of the rather simple Einstein-Hilbert truncation. Using this split,
the quadratic term (5.15) in terms of the fluctuation field hTT

µν , ξµ, ς and φ reads

δ2Γgrav
k =

ZNk

16πG0

∫

dDx
√
ḡ
1

2
hTT
µν

(

∆− 2Λk +
D2−3D+4
D(D−1) R̄

)

hTTµν

+
ZNk

16πG0

∫

dDx
√
ḡ ξµ

(

∆− 2Λk +
D−3
D R̄

)

(

∆− R̄
D

)

ξµ

+
ZNk

16πG0

∫

dDx
√
ḡ D−1

2D ς
(

∆− 2Λk +
D−4
D R̄

)

(

∆2 − R̄
D−1∆

)

ς

− ZNk

16πG0

∫

dDx
√
ḡ D−2

4D φ
(

∆− 2Λk +
D−4
D R̄

)

φ . (5.18)

Here we traded the k-dependent Newton constant for the wave function renormal-
isation ZNk by Gk = G0/ZNk. This expression for the second variation makes
obvious that a further simplification can be achieved by performing a momentum-
dependent field redefinition. Explicitly, we use

ξµ → 1
√

∆− R̄
D

ξµ , ς → 1
√

∆2 − R̄
D−1∆

ς . (5.19)

Besides the simplifications in (5.18) these field redefinitions have a second advan-
tage. So far we did not mention the fact that a change of integration variable un-
der the path integral from hµν to hTT

µν , φ, ς, ξµ produces a Jacobian. However, this
Jacobian is identically cancelled by the Jacobian corresponding to the momentum-
dependent field redefinition as shown in [119]. Thus we do not consider these
Jacobians any further. Note that this cancellation is true only for spherical back-
grounds. If one uses non-spherical backgrounds the Jacobians can be exponentiated
by introducing auxiliary fields. This, of course, makes the calculation much more
complicated. Summarising our findings for the second variations we write

δ2Γk

δh2

∣

∣

∣

∣

TT

=
ZNk

32πG0

(

∆− 2Λk +
D2−3D+4
D(D−1) R̄

)

,

δ2Γk

δh2

∣

∣

∣

∣

ξξ

=
ZNk

16πG0

(

∆− 2Λk +
D−3
D R̄

)

,

δ2Γk

δh2

∣

∣

∣

∣

ςς

=
ZNk

32πG0

D − 1

D

(

∆− 2Λk +
D−4
D R̄

)

,

δ2Γk

δh2

∣

∣

∣

∣

φφ

= − ZNk

64πG0

D − 2

D

(

∆− 2Λk +
D−4
D R̄

)

,
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δ2Γk

δc̄δc
=

√
2
(

∆− 1
D R̄
)

. (5.20)

Now we can discuss the last missing ingredient on the right hand side of the
Wetterich equation (5.12), the regulator. As we have seen in Chapter 2 the regu-
lator can be chosen freely as long as the conditions (2.3) are fulfilled. We utilise

this freedom and choose the regulators Rgrav
k and Rgh

k such that the Laplace oper-

ators appearing in δ2Γk

δφ2 , δ
2Γk

δς2 , . . . and δ2Γk

δc̄δc , in (5.20), combine with the regulator
to become

Pk = ∆+Rk , Rk = k2R0( ∆
k2 ) (5.21)

in δ2Γk

δφ2 +Rk, . . .. Still there is the freedom to choose the shape function R(0). Here

we will stick to the Litim cutoff R0(z) = (1 − z)θ(1 − z) with the Heaviside step
function θ [84, 85], see also Appendix C.4. Thus, we use

Rk|TT =
ZNkk

2R0( ∆
k2 )

32πG0
, Rk|ξξ =

ZNkk
2R0( ∆

k2 )

16πG0
, Rk|c̄c =

√
2k2R0( ∆

k2 ) ,

Rk|ςς =
ZNkk

2R0( ∆
k2 )

32πG0

D − 1

D
, Rk|φφ = −ZNkk

2R0( ∆
k2 )

64πG0

D − 2

D
. (5.22)

In summary the right hand side of the truncated flow equation (5.12) consists of
five different parts. These are the TT trace, the ξξ trace, the two scalar traces with
respect to φφ and ςς and finally the ghost trace. These are now purely diagonal
terms and read

TTT =
1

2
Tr(2T)





∂t(ZNkk
2R0( ∆

k2 ))

ZNk

1

∆− 2Λk +
D2−3D+4
D(D−1) R̄



 ,

Tξξ =
1

2
Tr

′

(1T)

[

∂t(ZNkk
2R0( ∆

k2 ))

ZNk

1

∆− 2Λk +
D−3
D R̄

]

,

Tςς =
1

2
Tr

′′

(0)

[

∂t(ZNkk
2R0( ∆

k2 ))

ZNk

1

∆− 2Λk +
D−4
D R̄

]

,

Tφφ =
1

2
Tr(0)

[

∂t(ZNkk
2R0( ∆

k2 ))

ZNk

1

∆− 2Λk +
D−4
D R̄

]

,

Tc̄c =− Tr(1)

[

∂t(k
2R0( ∆

k2 ))

∆− 1
D R̄

]

. (5.23)

The notation has to be understood in the following way. The index (2T) at the
trace marks that the trace is taken with respect to transverse traceless tensors. Ac-
cordingly (1T) denotes transverse vectors, (1) marks unconstrained vectors and (0)
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is placed for scalar traces. Furthermore the primes denote that the lowest eigenval-
ues are excluded from the trace. One prime means the very lowest eigenvalue has
to be excluded and two primes mean that the two lowest eigenvalues are excluded.
This is necessary since not all modes of ξµ and ς of the TT decomposition con-
tribute to the full metric, as discussed in detail in Appendix C.2. The constrained
traces are analysed in Appendix C.3.

Before evaluating these functional traces let us investigate the left hand side of
the truncated flow equation (5.12). The t derivative acts on the scale dependent
cosmological constant Λk and the wave function renormalisation, ZNk, carrying the
running of the inverse Newton constant. As the next step we have to identify the
background with the full metric. Note that this identification is the single-metric
approximation. Treating the background metric dynamically leads to bimetric
truncations discussed in [152–154]. However, here we stick to the single-metric
approximation which corresponds to vanishing fluctuations. Thus, the left hand
side of the truncated flow equation (5.12) with the fluctuations set to zero reads

∂tΓk =
1

16πG0

∫

dDx
√
ḡ
[

−R̄ ∂tZNk + 2∂t(ZNkΛk)
]

. (5.24)

This shows that we can derive the beta function for the Newton constant by com-
parison of the terms proportional to R̄ on the left and the right hand side of the
Wetterich equation. The running of the cosmological constant is determined by
the terms proportional to the volume. All higher terms in the curvature scalar R̄
can be neglected.

Since we are only interested in the two lowest orders of the expansion in the Ricci
scalar we can perform such an expansion on the right hand side. This simplifies
the evaluation of the traces. Thus (5.23) gets

TTT =
1

2
Tr(2T)

[

∂t(ZNkk
2R0( ∆

k2 ))

ZNk

(

1

∆− 2Λk
− D2 − 3D + 4

D(D − 1)

R̄

(∆− 2Λk)2

)

]

,

Tξξ =
1

2
Tr

′

(1T)

[

∂t(ZNkk
2R0( ∆

k2 ))

ZNk

(

1

∆− 2Λk
− D − 3

D

R̄

(∆− 2Λk)2

)

]

,
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2
Tr
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2R0( ∆
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ZNk

(

1
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− D − 4

D

R̄

(∆− 2Λk)2

)

]

,
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2
Tr(0)

[

∂t(ZNkk
2R0( ∆

k2 ))

ZNk

(

1

∆− 2Λk
− D − 4

D
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(∆− 2Λk)2
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]

,

Tc̄c =− Tr(1)

[

∂t(k
2R0( ∆

k2 ))

(

1

∆
+

1

D

R̄

∆2

)]

(5.25)
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where we omitted terms of higher order in the scalar curvature R̄. Now all traces are
of the form discussed in Appendix C.4. Instead of writing the result in terms of the
threshold functions φp,q

l (w) defined in (C.31), we use qp,ql (w) = φp,q
l (w) − 1

2ηNφ̃
p,q
l

with the anomalous dimension ηN = −∂t lnZNk. We finally find the right hand
side to be

TTT + . . .+ Tc̄c =
1

(4π)D/2

∫

dDx
√
ḡ kD

[

D
2 (D + 1)q1,0D/2(−2Λ̄k)− 2Dφ1,0

D/2(0)

+
R̄

k2

(

C1q
1,0
D/2−1(−2Λ̄k)− C2q

2,0
D/2(−2Λ̄k)− D

3 φ
1,0
D/2−1(0)− 2φ2,0

D/2(0)
)]

(5.26)

where we switched, for convenience, to dimensionless quantities

Λ̄k = k−2Λk , Ḡk = kD−2Gk . (5.27)

Furthermore we introduced

C1 = D4−13D2−24D+12
12D(D−1) , C2 = D4−2D3−D2−4D+2

2D(D−1) . (5.28)

Note that in general terms proportional to the Kronecker delta δD,2 appear for
traces over constrained fields. However, here all these terms cancel each other.
Explicitly the terms appearing as corrections to the traces, denoted by the prime,
are minus the terms appearing as δD,2 corrections in the heat-kernel coefficient.
For details see Appendix C.

After evaluating the different parts, the comparison of the left (5.24) and the
right hand side (5.26), to order R̄, yields an expression for the anomalous dimension
ηN = −∂t lnZNk

ηN =
16πḠk

(4π)D/2

(

C1q
1,0
D/2−1(−2Λ̄k)− C2q

2,0
D/2(−2Λ̄k)

− D
3 φ

1,0
D/2−1(0)− 2φ2,0

D/2(0)
)

. (5.29)

For the other terms we find

1

k2
∂t(ZNkk

2Λ̄k)

ZNk
=

8πḠk

(4π)D/2

[

D
2 (D + 1)q1,0D/2(−2Λ̄k)− 2Dφ1,0

D/2(0)
]

. (5.30)

This last equation gives us the beta function for the dimensionless cosmological con-
stant in terms of the dimensionless couplings Λ̄k, Ḡk and the anomalous dimension
ηN

∂tΛ̄k = (ηN − 2)Λ̄k +
Ḡk

(4π)D/2−1

[

D(D + 1)q1,0D/2(−2Λ̄k)− 4Dφ1,0
D/2(0)

]

. (5.31)
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For the beta function of the dimensionless Newton constant, in terms of Λ̄k, Ḡk

and the anomalous dimension, we find

∂tḠk = ∂t

(

kD−2 G0

ZNk

)

= (D − 2 + ηN)Ḡk . (5.32)

At the end we still need an expression for the anomalous dimension. This can be
derived by solving (5.29) for ηN (recall that the q functions contain the anomalous
dimension by definition). The final result reads

ηN =
ḠkB1(Λ̄k)

1− ḠkB2(Λ̄k)
(5.33)

with

B1 = 16π
(4π)D/2

(

C1φ
1,0
D/2−1(−2Λ̄k)− C2φ

2,0
D/2(−2Λ̄k)− D

3 φ
1,0
D/2−1(0)− 2φ2,0

D/2(0)
)

B2 = 8π
(4π)D/2

(

C1φ̃
1,0
D/2−1(−2Λ̄k)− C2φ̃

2,0
D/2(−2Λ̄k)

)

. (5.34)

Summarising, we find a system of coupled flow equations for the dimensionless
Newton constant Ḡk and the dimensionless cosmological constant Λ̄k by inserting
the anomalous dimension (5.33) into (5.32) and (5.31). This system is given by

βΛ̄(Ḡk, Λ̄k) = (ηN − 2)Λ̄k +
Ḡk

(4π)D/2−1

[

D(D + 1)q1,0D/2(−2Λ̄k)− 4Dφ1,0
D/2(0)

]

,

βḠ(Ḡk, Λ̄k) = (D − 2 + ηN)Ḡk (5.35)

with ηN given in (5.33). The flow corresponding to these beta functions will be
analysed in Section 6.1.

5.2 The R2 Truncation

This section is devoted to the beta functions of QEG within the R2 truncation.
After the very explicit derivation of the beta functions within the Einstein-Hilbert
truncation we will be brief here. The main techniques have been explained in
Section 5.1 and we just go through the important steps and mention the differences
between the Einstein-Hilbert and the R2 truncation. The final result will be given
and the interested reader might be referred to [117–119] for the technical details
and all intermediate steps.

The truncation involves the field monomials associated to the Newton constant
and the cosmological constant as in the Einstein-Hilbert truncation of Section 5.1.
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Furthermore, it includes an R2 term with a coupling βk in front. So, in total, the
ansatz reads

ΓR2

k =

∫

dDx
√
g

[

1

16πGk
(−R+ 2Λk) + βkR

2

]

+ Sgf + Sgh (5.36)

with the gauge fixing and ghost term as they are given in the Einstein-Hilbert
analysis (5.10), (5.11).

Next we proceed to the evaluation of the right hand side of the flow equation
(5.12). As in Section 5.1 the first task is to find the second variation of the ansatz
with respect to the fields. This is very lengthy, but mainly analogous to the previous
section. Again we use the TT decomposition

hµν = hTT
µν + ∇̄µξν + ∇̄νξµ + ∇̄µ∇̄νς −

1

D
ḡµν∇̄2ς +

1

D
ḡµνφ (5.37)

and the spherical background described in Appendix C.2. In contrast to the
Einstein-Hilbert calculation here the simple split into the traceless and trace part
is not sufficient to diagonalise the second variation, which would simplify the inver-

sion of Γ
(2)
k +Rk considerably. Within this truncation, even the TT decomposition

is not able to diagonalise the second variation. This is prevented by the R2 term.
The best one can get is a block diagonal form where the fields φ and ς mix. How-
ever, such a block-diagonal matrix can be inverted anyway, one just has to take
into account that the two fields have different expansions in eigenfunctions of the
Laplace operator as discussed in Appendix C.2. Again, we stick to the Feynman-’t
Hooft gauge α = 1.

Before inverting the matrix we have to specify the cutoff Rk. In the last section
we chose the cutoff such that any Laplace operator that appeared in the second
derivative was replaced by Pk.

∆ → Pk = ∆+Rk , Rk = k2R(0)
(

∆
k2

)

. (5.38)

Note that there are other choices given in [121], where the authors classify several
possibilities. Within this notation our choice is called Type I. Again we use the
Litim cutoff for the shape function R(0)(z) = (1−z)θ(1−z). Next we can explicitly

invert Γ
(2)
k +Rk.

Due to the TT decomposition the trace on the right hand side of the flow equa-
tion (5.12) splits into a trace over transverse-traceless tensors, another trace over
transverse vectors and finally the scalar trace where one should pay attention to the
different expansions of φ and ς . Note that the block-diagonal form leads to a 2× 2
operator matrix in the scalar sector. Nevertheless, these traces can be evaluated
with the help of the heat-kernel techniques explained in Appendix C. Again, we
have to deal with constrained fields and thus the heat-kernel coefficients contain
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terms proportional to δD,2. Since we have to take into account one higher order in
the heat-kernel expansion, in comparison to the Einstein-Hilbert truncation, terms
proportional to δD,4 appear as well. Furthermore we have to exclude the lowest
eigenvalues from the constrained traces and consider the different expansions of φ
and ς in terms of the eigenfunctions. This again leads to terms proportional to
δD,2 and δD,4.

The evaluation of the left hand side of the flow equation (5.12) is straightforward
and leads to

∂tΓk[ḡ; ḡ] =

∫

dDx
√
ḡ

[

1

16πG0

(

2∂t(ZNkΛk)− R̄∂tZNk

)

+ R̄2∂tβk

]

. (5.39)

Here we identified the full metric with the background metric as we did in Section
5.1. Now we can compare the different orders in R̄ on the left and the right hand
side of the Wetterich equation. The terms proportional to R̄ finally lead to an
expression for the anomalous dimension ηN, which governs the running of Newton’s
constant Gk. The terms proportional to the volume can be used to derive the beta
function for the cosmological constant Λk. Finally the terms proportional to R̄2

are responsible for the running of the coupling βk.
The flow equations can be expressed in terms of the dimensionless quantities

Ḡk = kD−2Gk , Λ̄k = k−2Λk , β̄k = k4−Dβk (5.40)

and the anomalous dimensions

ηN = −∂t lnZNk , ηβ = −∂t lnβk . (5.41)

The final result for the beta functions reads

βḠ(Ḡk, Λ̄k, β̄k) = ∂tḠk = (D − 2 + ηN)Ḡk ,

ββ̄(Ḡk, Λ̄k, β̄k) = ∂tβ̄k = (4−D − ηβ)β̄k ,

βΛ̄(Ḡk, Λ̄k, β̄k) = ∂tΛ̄k = A1 +A2 ηN +A3 ηβ (5.42)

with ηN and ηβ given as

ηN = Ḡk
B1(β̄k + C3)− C1B3

(1− ḠkB2)(β̄k + C3) + ḠkC2B3
,

ηβ = − C1(1 − ḠkB2) + ḠkB1C2

(1− ḠkB2)(β̄k + C3) + ḠkC2B3
. (5.43)

Here all functions Ai, Bi and Ci depend on Ḡk, Λ̄k and β̄k. Their explicit form can
be found in Appendix D and the interested reader might be referred to the original
work [117–119] for more technical details. The flow corresponding to this system
of beta functions is analysed in Section 6.2.
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Chapter 6

The Phase Diagram of

Metric Gravity

6.1 Phase Diagram of the Einstein-Hilbert Trun-

cation

After deriving the flow equations in Chapter 5 we proceed to analyse them in detail.
This section is devoted to the analysis of the beta functions of the Einstein-Hilbert
truncation. They have been derived in Section 5.1 and the final result is given in
(5.35).

As discussed in Chapter 3 we need a non-Gaussian fixed point (NGFP) for a
possible Asymptotic Safety scenario. Inspecting the flow equations, the first point
of vanishing beta functions ∂tḠk = 0 and ∂tΛ̄k = 0, is the GFP at the origin
(Ḡ∗

GFP, Λ̄
∗
GFP) = (0, 0). Besides this trivial fixed point the system of flow equations

gives rise to a non-trivial fixed point, which in four spacetime dimensions is situated
at

(Ḡ∗, Λ̄∗) = (0.698, 0.166) . (6.1)

This result is in accordance with previous calculations [114, 150]. Numerical dif-
ferences appear due to differences in the choice of the regulator and the gauge
fixing.

Besides the existence of a non-trivial fixed point the Asymptotic Safety scenario
asks for a finite-dimensional UV-critical hypersurface. Since we are using a trunca-
tion with only two distinguished coupling constants the hypersurface can have at
most two dimensions.1 However it is interesting to evaluate the critical exponents,
since they do not just give us the number of relevant and irrelevant directions, but
also give us information about the behaviour close to the fixed point. Therefore

1The dimension of the critical surface within the infinite dimensional f(R) truncation was
discussed in [155].

43
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we evaluate the linearisation of the beta functions
(

∂tΛ̄k

∂tḠk

)

≈
(

∂Λ̄k
βΛ̄ ∂Ḡk

βΛ̄

∂Λ̄k
βḠ ∂Ḡk

βḠ

)∣

∣

∣

∣

Λ̄∗,Ḡ∗

(

Λ̄k − Λ̄∗

Ḡk − Ḡ∗

)

(6.2)

and the matrix is called stability matrix. The negative of their eigenvalues are the
critical exponents θ1/2 and read in four dimensions

θ1/2 = 1.72± 2.39 ı . (6.3)

Both real parts are positive and thus correspond to UV-attractive directions. This
means that the IR value has to be measured by an experiment and is not a predic-
tion of the theory, as discussed in Chapter 3. The fact that the critical exponents
build a complex pair tells us that the RG flow close to the fixed point is a spiral
in the two dimensional theory space spanned by Λ̄k and Ḡk. A similar analysis at
the GFP leads to critical exponents +2 and −2 in four dimensions. As expected
these are the canonical dimensions of the coupling constants. Therefore the GFP
has one UV-relevant and one UV-irrelevant direction which can be interpreted as
IR-irrelevant and IR-relevant respectively.

The last missing ingredient of the Asymptotic Safety scenario is a classical limit
at low energies in order to reproduce GR. Explicitly we have to find a region within
the theory space where the dimensionful couplings stay constant over a large range
of scales. In terms of the dimensionless couplings we are looking for a region where
Ḡk and Λ̄k are equipped with a pure dimensional running. Indeed such a region
exists close to Ḡk = 0. To show this we expand the beta functions in powers of the
dimensionless Newton coupling. To lowest order we find

∂tḠk = 2Ḡk , ∂tΛ̄k = −2Λ̄k (6.4)

which is exactly the sought-after dimensional running. Thus at low energies we
have to end up with Ḡk ≪ 1 in order to find a classical regime.

However, such a classical regime is useless as long as we do not connect it to the
NGFP. Thus we have to find trajectories running from the NGFP at high energies
towards small values of Ḡk at low energies. Before searching for explicit flows it is
useful to discuss the range of validity of the beta functions. It is obvious from (5.33)
that the anomalous dimension ηN, and thus the flow equations itself, diverge for
1− ḠkB2(Λ̄k) = 0. This equation can be solved for Ḡk to give in four dimensions

Ḡpole
k =

72π(1− 2Λ̄k)
2

29− 9Λ̄k
. (6.5)

At this line the validity of the beta functions breaks down and we should not trust
them any more. However, away from this line and within our approximation, the
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Figure 6.1: The phase diagram of the Einstein-Hilbert truncation, including
the GFP, the NGFP and some specific trajectories. The pole
of diverging anomalous dimension ηN is depicted in red and the
arrows point from UV to IR.

flow equations are valid and we can look for trajectories possibly connecting the
fixed point with a classical regime and thus serving an Asymptotic Safety scenario.

Integrating the full beta functions with some suitable starting values of the
coupling constants gives rise to trajectories in the truncated theory space, being
the Ḡk - Λ̄k plane in the Einstein-Hilbert truncation. These can be depicted in a
two-dimensional plot as shown in Figure 6.1. This plot illustrates the vector field
of the beta functions on the two-dimensional theory space. The arrows point from
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the UV to the IR and the axes are rescaled in order to display the behaviour also
for large values of the couplings.

This phase space was analysed extensively for the first time in [148] and a
comparison to the phase space of a minisuperspace approximation can be found
in [156]. In the following discussion we mainly follow the former work but point
out the differences. These appear since the authors of [148] used the beta functions
derived without the TT decomposition and furthermore used a different regulator.

In Figure 6.1 one can see various things. Highlighted in red is the pole of the
anomalous dimension ηN given in (6.5). There the beta functions diverge and are
not valid. The GFP at the origin and the non-Gaussian one, given in (6.1), are
depicted as black dots. Close to the NGFP one can see the spiral form of the
vector field caused by the complex pair of critical exponents (6.3). Close to the
GFP the two eigendirections are visible. Since the trajectories on the Λ̄k axis are
pulled into the GFP, the Λ̄k direction is the UV-attractive one. The UV-repulsive
eigendirection is in the direction of the second highlighted trajectory attached to
the GFP.

These specific, thick trajectories serve another purpose. They separate the
different types of trajectories. Their classification and the corresponding nomen-
clature shall be done along the lines of [148] and will be extended. The whole
classification is summarised in Table 6.1. As a useful starting point we choose the
trajectory which connects the GFP with the NGFP, given as a thick black line in
Figure 6.1. It is called separatrix and shall appear in our classification as the single
trajectory of Type IIa.

There is another specific trajectory which we will call Type IVa. It is the trajec-
tory connecting the NGFP at high energies with the point (Ḡk, Λ̄k) = (6π/7,−∞).
This trajectory is marked as a thick black line in Figure 6.1 as well. Note that,
due to the rescaling of the axes, this trajectory looks as if it was going towards
Ḡk = ∞. That the trajectory reaches exactly this point follows from

lim
Λ̄k→−∞

∂tḠk =
1

3
Ḡk

(

6− 7Ḡk

π

)

. (6.6)

The trajectories to the left of the Type IIa and Type IVa trajectories in Figure
6.1 are called Type Ia. They start at the NGFP at high energies and spiral out
due to the complex critical exponents. Afterwards they cross the line Λ̄k = 0 and
turn to negative values of the cosmological constant. At very low energies they
tend towards the point (Ḡk, Λ̄k) = (0,−∞).

The next class of trajectories is called Type IIIa. This class collects those flows
which are on the right of the Type IIa and Type IVa trajectories and are connected
to the NGFP, where all of them start in the UV. In the IR they run into the pole
where the beta functions are ill defined. However it is a Type IIIa trajectory which
would describe Nature the best. Explicitly it is a trajectory which passes by the
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Type IR limit UV limit

Ia (Ḡk, Λ̄k) = (0,−∞) NGFP

IIa GFP NGFP

IIIa pole NGFP

IVa (Ḡk, Λ̄k) = (6π/7,−∞) NGFP

Va pole pole

VIa pole pole

VIIa (Ḡk, Λ̄k) = (0,∞) pole

VIIIa (Ḡk, Λ̄k) = (6π/7,∞) pole

IXa pole pole

Ib (Ḡk, Λ̄k) = (0,−∞) (Ḡk, Λ̄k) = (−∞,∞)

IIb GFP (Ḡk, Λ̄k) = (−∞,∞)

IIIb
(Ḡk, Λ̄k) = (0,∞)

via (Ḡk, Λ̄k) = (0, 1/2)
(Ḡk, Λ̄k) = (−∞,∞)

IVb (Ḡk, Λ̄k) = (0,∞) (Ḡk, Λ̄k) = (−∞,∞)

Ic (Ḡk, Λ̄k) = (0,−∞) GFP

IIIc (Ḡk, Λ̄k) = (0,∞) GFP

Table 6.1: The various types of trajectories are classified according to their IR
and UV values.
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GFP very closely. There we find the classical regime as discussed above including
a positive cosmological constant. The trajectory compatible with measurements in
the IR was discussed in detail in [149].

One of the Type IIIa trajectories is marked as a thick black line in Figure 6.1.
This separates the Type IIIa trajectories from the trajectories we will call Type
Va. On the right side they are bordered by the pole. This pole is reached by them
at high energies and at low energies.

The last four classes on the upper half plane have not been classified in [148].
The first of them shall be called Type VIa and contains those trajectories which
run from pole to pole and are bordered by the pole from below. These trajectories
can be found in the middle region of the first quadrant in Figure 6.1. Next, those
trajectories on the upper half plane which run between (Ḡk, Λ̄k) = (0,∞) and
the pole are called Type VIIa. As for negative cosmological constant we find a
special trajectory which we depicted as a thick black line. It connects the pole
with the point (Ḡk, Λ̄k) = (6π/7,∞) and shall be called Type VIIIa. Finally all
other trajectories of the upper half plane are called Type IXa and run from pole to
pole and are bordered by the Type VIIIa trajectory from below and the pole itself
from above.

In the lower half plane our classification will differ much from the one given
in [148]. Within their calculations the authors found another pole at Ḡk = −6π/5.
Since we do not find such a pole our flow behaves differently for negative Ḡk.
However we will follow their notation as close as possible.

Again we can start with a single trajectory. It is highlighted as a thick black
line in Figure 6.1 and connects the GFP at the origin with (Ḡk, Λ̄k) = (−∞,∞).
This shall be called Type IIb.

To the left of it one finds the Type Ib trajectories. At low energies they reach
the point (Ḡk, Λ̄k) = (0,−∞). For increasing scale they change the sign of the
cosmological constant and finally turn towards (Ḡk, Λ̄k) = (−∞,∞).

On the very right side of the lower half plane one finds the flows classified as
Type IVb. Their IR value is (Ḡk, Λ̄k) = (0,∞) and the corresponding UV limit
reaches (Ḡk, Λ̄k) = (−∞,∞). Note that this class was not considered in [148].

The left-over trajectories of the lower half plane are called Type IIIb and have
to be discussed carefully. The reason is the point (Ḡk, Λ̄k) = (0, 1/2). This point
recently is under debate and might serve as an IR fixed point. We will not go
too much into detail here and the interested reader might be referred to [157–159].
To clarify the occurring problem note that the discussed point is part of the pole
(6.5) depicted in red in Figure 6.1. Therefore the flow at this point depends on the
direction from which it is approached. An approach from above or from below gives
∂tΛ̄k = 2. In contrast to this, an approach along the Λ̄k axis gives ∂tΛ̄k = −1.
As ∂tḠk = 0 for Ḡk = 0, we will leave this cumbersome point in Λ̄k direction,
independent of the direction we approached it. Therefore we stick to ∂tΛ̄k = −1.
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Assuming this behaviour at the cumbersome point, the Type IIIb trajectories find
(Ḡk, Λ̄k) = (−∞,∞) at high energies and tend towards (Ḡk, Λ̄k) = (0, 1/2) while
lowering the scale. From this point they run along the Λ̄k axis towards (Ḡk, Λ̄k) =
(0,∞) in the deep IR.

The very last two classes shall be called Type Ic and Type IIIc. They correspond
to the trajectory trapped on the Λ̄k axis and running from (Ḡk, Λ̄k) = (0,−∞)
in the IR to the GFP in the UV and from (Ḡk, Λ̄k) = (0,∞) in the IR to the
GFP. Here we assumed the behaviour discussed above for the cumbersome point
(Ḡk, Λ̄k) = (0, 1/2). These two classes have not been discussed in [148].

6.2 Phase Diagram of the R2 Truncation

In the last section we analysed the beta functions of the Einstein-Hilbert trun-
cation. We found a NGFP suitable for the Asymptotic Safety scenario with the
corresponding critical exponents. Furthermore we investigated in detail the phase
diagram of the two-dimensional theory space. In this section we will follow the
same procedure and analyse the beta functions of the R2 truncation. The discus-
sion significantly extends earlier investigations by Rechenberger and Saueressig [31]
and constitutes one of the main results of this thesis.

The beta functions under consideration in this section have been derived in
[117–119] for the first time and the main aspects of their derivation can be found
in Chapter 5. Their final form is given in (5.42). For simplicity we start to anal-
yse the beta functions in D = 3 spacetime dimensions. The case of D = 4 and
its complications will be discussed below. The first task is the search for fixed
points suitable for an Asymptotic Safety scenario. One might expect that the
point (Ḡk, Λ̄k, β̄k) = (0, 0, 0) serves as a GFP. However, the beta function for the
coupling constant β̄k does not vanish at this point but reads ∂tβ̄k(0, 0, 0) =

79
864π2 .

Therefore the proposed point is not a fixed point which was already stated in [119].
Nevertheless, the GFP did not vanish. It can be found by trading the coupling β̄k

in front of the R2 term in our truncation for its inverse

b̄k =
1

β̄k
, ∂tb̄k = −b̄2k∂tβ̄k . (6.7)

Since the action is in the exponent of our path integral, with a minus sign in front,
β̄k = 0 as well as b̄k = 0 removes the R2 term. Thus, one is as good as the other
and indeed, the point (Ḡk, Λ̄k, b̄k) = (0, 0, 0) serves as a GFP.

Besides this GFP a numerical analysis shows that the R2 truncation in three
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spacetime dimensions gives rise to four NGFPs situated at

NGFP3D
1 : (Ḡk, Λ̄k, b̄k) =(0.19, 0.02, 126.41) ,

NGFP3D
2 : (Ḡk, Λ̄k, b̄k) =(0.15, 0.36, 18.17) ,

NGFP3D
3 : (Ḡk, Λ̄k, b̄k) =(0.22, 0.10, 18.84) ,

NGFP3D
4 : (Ḡk, Λ̄k, b̄k) =(0, 0,− 864π2

79 ) . (6.8)

The analysis of the stability properties at these fixed points reveals that the critical
exponents corresponding to the NGFPs read

NGFP3D
1 : (θ1, θ2, θ3) =(8.39, 1.86, 1.35) ,

NGFP3D
2 : (θ1, θ2, θ3) =(−9.85, 1.56+ 4.84 ı, 1.56− 4.84 ı) ,

NGFP3D
3 : (θ1, θ2, θ3) =(1.68, 0.19 + 0.97 ı, 0.19− 0.97 ı) ,

NGFP3D
4 : (θ1, θ2, θ3) =(2,−1,−1) . (6.9)

Therefore the first and the third NGFP are UV-attractive in all three directions,
where the third will show a spiraling behaviour close to the fixed point due to the
complex pair of critical exponents. The second fixed point as well has a complex
pair of critical exponents, but is UV-repulsive in one and UV-attractive in two
directions. The opposite is true for the fourth NGFP which does not show a
complex pair. Please note that the critical exponents corresponding to the latter
are the canonical mass dimensions. This behaviour is usually found at the GFP.

As we did in Section 6.1 we next determine the singular loci of the beta functions
before we analyse possible trajectories. Again we find poles where some or all of
the flow equations diverge. At these poles the system of flow equations loses its
validity. Of course, the beta functions here are much more complicated compared
to those of the Einstein-Hilbert truncation and therefore it is not surprising that
the pole structure is also more complicated. As an extension of [31], we elucidate
the complete pole structure within some two-dimensional subspaces of the three-
dimensional theory space. Due to the complicated structure, a complete three-
dimensional plot of the singular loci is too elusive and thus we stick to the two-
dimensional projections given in Figure 6.2. In these plots we show slices of constant
Ḡk and slices of constant Λ̄k, where we rescaled the axes in order to show the full
range on a finite interval. Furthermore we added a relative rescaling of a factor 100
for the β̄k axis for better readability of the plots. The values of the constant Ḡk and
Λ̄k increase from top to bottom and correspond to the NGFP values. Explicitly
the middle left and the upper right plot correspond to NGFP3D

1 , the upper left and
the bottom right plot correspond to the NGFP3D

2 and finally the bottom left and
the middle right plot correspond to NGFP3D

3 . The poles appear as red lines in the
projections and become two-dimensional hypersurfaces of the three-dimensional
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Ḡk
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Figure 6.2: Phase-diagram slices of the R2 truncation in D = 3 for constant
Ḡk (left) and Λ̄k (right). Depicted are the poles (red lines) and the
NGFPs (black dots). The arrows of the vector field point towards
low energies.
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theory space if we leave the projection. The form of these hypersurfaces follows
from the two orthogonal projections given in Figure 6.2. Please note that the
NGFP3D

1 and the NGFP3D
2,3 are situated on different sides of the singular locus.

We proceed as we did in the Einstein-Hilbert truncation and discuss possible
trajectories in theory space. We start in three dimensions with the limit Ḡk = 0.
In this limit the beta functions simplify considerably and we find

∂tḠk

∣

∣

Ḡk=0
= 0 ,

∂tΛ̄k

∣

∣

Ḡk=0
= −2Λ̄k ,

∂tβ̄k

∣

∣

Ḡk=0
= −−79− 1290Λ̄k + 3132Λ̄2

k − 1752Λ̄3
k − 864π2β̄k(1− 2Λ̄k)

3

864π2(1 − 2Λ̄k)3
,

∂tb̄k
∣

∣

Ḡk=0
= − b̄k(864π

2(1− 2Λ̄k)
3 + b̄k(79 + 1290Λ̄k − 3132Λ̄2

k + 1752Λ̄3
k))

864π2(1− 2Λ̄k)3
.

(6.10)

Note that the complicated pole structure shown in Figure 6.2 simplifies according
to the limits of the flow equations (6.10) and becomes a straight line at Λ̄k = 1/2.
This simplified pole and the corresponding slices of the phase diagram, using β̄k

and b̄k respectively, are depicted in Figure 6.3. The limit of the flow equation
for the dimensionless Newton constant becomes zero and thus the trajectories are
trapped on the slice Ḡk = 0. In other words, the solution Ḡk = 0 is self-consistent.
In Section 6.1 we used the name ”Type c” and we will stick to this notation here
as well. A list of the types of trajectories discussed in the following can be found
in Table 6.2. Similar to the Einstein-Hilbert truncation we find a Type Ic and
a Type IIIc trajectory connecting the GFP with (Ḡk, Λ̄k, b̄k) = (0,−∞, 0) and
(Ḡk, Λ̄k, b̄k) = (0,∞, 0) respectively. The R2 truncation gives us a third direction in
theory space and thus we can define a Type IIc trajectory running from the GFP at
high energies towards the NGFP3D

4 at low energies. Furthermore we find Type IVc
and Type VIc trajectories connecting the point (Ḡk, Λ̄k, b̄k) = (0,−∞, 288π2/73)
in the IR with the GFP and the NGFP3D

4 in the UV respectively. The Type Vc
and Type VIIc trajectories find this pole as an IR limit while the UV limit is
the GFP and the NGFP3D

4 respectively. At very large values of Λ̄k we find the
Type VIIIc trajectories with the pole as a UV limit and the point (Ḡk, Λ̄k, b̄k) =
(0,∞, 288π2/73) as the IR limit.

Besides the limit Ḡk = 0 there is another interesting limit, which is b̄k = 0. At
this limit the beta functions as well as the pole structure simplifies considerably.
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Figure 6.3: Two-dimensional slices of the phase diagram for the R2 truncation
in D = 3. The plots show slices of constant Ḡk = 0, using β̄k (left
plot) and b̄k (right plot) respectively. The singular locus of the
beta functions and the fixed points correspond to the red line and
the black dots respectively. The arrows of the vector field point
towards low energies.

Most importantly we find
∂tb̄k

∣

∣

b̄k=0
= 0 . (6.11)

Therefore, similar to Ḡk = 0 we find the self-consistent solution b̄k = 0. The
slice of the phase diagram, corresponding to this limit, can be found in Figure 6.4.
Depicted is the GFP as a black dot and the pole as a red line. Note that none of
the NGFPs are visible, as they are not situated in the b̄k = 0 plane. Concentrating
on the line Ḡk = 0 in this plot reveals a fixed point at Λ̄k = 3/5. Note that we did
not see any fixed point at the line b̄k = 0 in the right plot of Figure 6.3 depicting
the slice Ḡk = 0. The reason is that the Λ̄k axis lies on the pole depicted in Figure
6.2. The situation thus is similar to the point (Ḡk, Λ̄k) = (0, 1/2) in the Einstein-
Hilbert truncation. The beta function on the Λ̄k axis of the R2 truncation depends
on the way we approach this line. The two limits discussed above correspond to

lim
b̄k→0

lim
Ḡk→0

∂tΛ̄k = −2Λ̄k , lim
Ḡk→0

lim
b̄k→0

∂tΛ̄k =
2

3
Λ̄k

(

−3 + 5Λ̄k

)

. (6.12)

This explains the difference and tells us that we have to be careful with the beta
functions on the Λ̄k axis. There is even another issue addressed by these two limits,
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Type IR limit UV limit

Ia (Ḡk, Λ̄k, b̄k) = (0,−∞, 288π2/73) NGFP3D
1

IIIa pole NGFP3D
1

IVa (Ḡk, Λ̄k, b̄k) = (9π/76,−∞, 288π2/73) NGFP3D
1

Ic (Ḡk, Λ̄k, b̄k) = (0,−∞, 0) GFP

IIc NGFP3D
4 GFP

IIIc (Ḡk, Λ̄k, b̄k) = (0,∞, 0) GFP

IVc (Ḡk, Λ̄k, b̄k) = (0,−∞, 288π2/73) GFP

Vc pole GFP

VIc (Ḡk, Λ̄k, b̄k) = (0,−∞, 288π2/73) NGFP3D
4

VIIc pole NGFP3D
4

VIIIc (Ḡk, Λ̄k, b̄k) = (0,∞, 288π2/73) pole

Table 6.2: Some types of trajectories in three dimensions are classified accord-
ing to their IR and UV values.

the classical regime. Recall that within the Einstein-Hilbert truncation the classical
limit was found close to Ḡk = 0. Now we can see that within the R2 truncation
it is important how we are approaching the regime of Ḡk ≪ 1. The first limiting
process in (6.12) gives us the dimensional running and thus is the correct side of
the pole.

If we leave the specific slice of Ḡk = 0 it is helpful, for a better understanding
of the behaviour at small b̄k or large β̄k, to have the plots of Figure 6.2 depending
on b̄k rather than on β̄k. These plots can be found in Figure 6.5. We start with
those trajectories which are connected to the NGFP3D

1 at high energies. This fixed
point is depicted in the middle plot on the left hand side and the upper plot on the
right hand side of Figures 6.2 and 6.5. First we realise that there is no Type IIa
trajectory which would connect the NGFP3D

1 with the GFP. Such a trajectory is
prevented by the pole structure. Note that, although a separatrix does not exist,
we can find trajectories passing by the GFP very close with negative as well as
positive values for the coupling constant b̄k.

In comparison to the Einstein-Hilbert truncation we find trajectories similar to
those of Type Ia and of Type IVa in Section 6.1. Recall that they reached Λ̄k → −∞
at low energies. To find the corresponding classification in our R2 truncation we
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Figure 6.4: Two-dimensional slice of the phase diagram for the R2 truncation
in D = 3. The plot shows the slice of constant b̄k = 0. Depicted is
the pole of the beta functions (red line) and the GFP (black dot).
The arrows of the vector field point towards low energies.

have to investigate the limits Λ̄k → −∞ of our beta functions. These read

lim
Λ̄k→−∞

∂tḠk = Ḡk − 76Ḡ2
k

9π
, lim

Λ̄k→−∞
∂tb̄k = −b̄k +

73b̄2k
288π2

. (6.13)

The two possible IR limits with b̄k = 0 are not reachable from the NGFP3D
1 since

the b̄k direction is IR repulsive in both cases and thus the pole structure prevents
us from running into these points. Besides these two points we find two other
possible IR limits with b̄k = 288π2/73. There are trajectories which connect the
NGFP3D

1 with the point (Ḡk, Λ̄k, b̄k) = (9π/76,−∞, 288π2/73) and we will call
these trajectories Type IVa. Furthermore we find trajectories flowing from the
NGFP3D

1 at high energies towards the point (Ḡk, Λ̄k, b̄k) = (0,−∞, 288π2/73) at
low energies. These trajectories shall be called Type Ia. However, the trajectory
describing our universe should have a positive cosmological constant at low energies.
Therefore, it will not belong to the described classes. We will classify all trajectories
running from the NGFP3D

1 at high energies to one of the poles at low energies as
Type IIIa. Therefore the most interesting one, describing our universe, would
belong to this class.

For a better visualisation we give a three-dimensional plot of a sample of Type
Ia and Type IIIa trajectories in Figure 6.6. Here we used the coupling constant
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Figure 6.5: Phase-diagram slices of the R2 truncation in D = 3 for constant
Ḡk (left) and Λ̄k (right), using b̄k. Depicted are the poles (red
lines) and the NGFPs (black dots). The arrows of the vector field
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Figure 6.6: Three-dimensional plot of a sample of Type Ia and Type IIIa
trajectories of the R2 truncation in three spacetime dimensions.
Depicted are the fixed points as black dots and a sample of tra-
jectories as blue lines. Two trajectories are labeled as A and B
for later purpose.

b̄k to show the behaviour close to the GFP as well. Depicted are the fixed points
as black dots and a sample of trajectories as blue and black lines. All trajectories
start at high energies at the NGFP3D

1 and run towards the GFP for positive b̄k.
However, before reaching the latter the pole redirects the trajectories. Sooner or
later all those who stay at positive cosmological constant receive a strong running
in b̄k direction. If we would have used β̄k instead of b̄k it would be obvious that
the R2 coupling changes sign. Here this behaviour causes a disappearance of the
trajectories at b̄k → ∞ and a reappearance at b̄k → −∞. Afterwards the depicted
Type IIIa trajectories come close to the point (Ḡk, Λ̄k, b̄k) = (0, 1/2, 0) where they
hit the pole. Those trajectories which run towards negative cosmological constant
after leaving the GFP are of Type Ia. They finally reach the point (Ḡk, Λ̄k, b̄k) =
(0,−∞, 288π2/73).

While inspecting Figure 6.5 we see that the trajectories connected to NGFP3D
1
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and NGFP3D
2 are not compatible with a classical limit at low energies, as they

are on the wrong side of the pole. Therefore we refrain from classifying them
here. Furthermore there are many trajectories which are not connected to any
fixed point. These are not interesting for an Asymptotic Safety scenario and thus
we skip the classification of these trajectories as well.

The situation in D = 4 spacetime dimensions is similar, but worse. Neverthe-
less, we start to analyse possible fixed points of the beta functions. First of all we
find again the GFP at (Ḡk, Λ̄k, b̄k) = (0, 0, 0). Besides this trivial solution of the
flow equations we find two NGFPs, which read

NGFP4D
1 : (Ḡk, Λ̄k, b̄k) =(0.74, 0.16, 341.81) ,

NGFP4D
2 : (Ḡk, Λ̄k, b̄k) =(0.70, 0.17, 437.53) . (6.14)

Following the analysis in three spacetime dimensions we evaluate the critical expo-
nents as the next step and start with the GFP. Unfortunately the GFP is situated
on top of the pole, similar to the point (Ḡk, Λ̄k) = (0, 1/2) in the Einstein-Hilbert
truncation. Therefore the linearisation depends on the limiting process with which
we approach this fixed point. However, since the GFP is not suitable for an Asymp-
totic Safety scenario, we are not interested in its critical exponents and move on
to the NGFPs. Their critical exponents read

NGFP4D
1 : (θ1, θ2, θ3) =(3.49, 1.65 + 3.10 ı, 1.65− 3.10 ı) ,

NGFP4D
2 : (θ1, θ2, θ3) =(25.56, 1.40 + 2.78 ı, 1.40− 2.78 ı) . (6.15)

Both fixed points are UV-attractive in all three directions and show a complex
pair of critical exponents. These will cause a spiralled behaviour as we have seen
already within the Einstein-Hilbert truncation.

Before we search for trajectories connected to the NGFPs we analyse the struc-
ture of the flow equations to find the limits of their validity. Again we find singular
loci similar to those given in Figure 6.2. However, the main difference between
D = 3 and D = 4 appears due to the terms proportional to the Kronecker delta
δD,4 in the beta functions. Recall that these zero-mode contributions arise due to
the York decomposition discussed in Appendix C.2 and can be found as part of the
functions C1, C2 and C3 given in Appendix D. Unfortunately these terms induce
an additional pole in the beta functions. In Figure 6.7 we show a slice of the phase
space of the four-dimensional R2 truncation similar to those of Figure 6.2. The
situation in four dimensions is similar to the one in three dimensions and thus we
refrain from giving further plots here. The left plot in Figure 6.7 shows the phase
diagram resulting from beta functions without the terms proportional to δD,4. The
flow shown in the second plot includes the zero-mode contributions. The poles
appearing in both cases correspond to the red lines, while the new pole, present
only if we include the zero-mode contributions, appears as a black line. As this
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Figure 6.7: Two-dimensional slice of the phase diagram obtained from the R2

truncation. The first plot shows the slice of constant Ḡk = 0.754
in D = 4 − ǫ. Depicted are the poles of the beta functions (red
lines) and the NGFP (black dot). The arrows of the vector field
point towards low energies. The flow in the right plot corresponds
to D = 4 and zooms onto the NGFP.

new pole appears close to the NGFP, we magnify this region in the second plot.
Furthermore we depict the NGFP4D

1 as a black dot situated between the two poles.
This makes the numerical analysis of trajectories connected to this NGFP almost
impossible and we will circumvent this problem by analysing the beta functions
without the zero-mode contributions.2 To simplify our discussion we will discuss
in the following the R2 truncation in D = 4 − ǫ dimensions instead of D = 4 to
circumvent the tedious new pole.

In D = 4 − ǫ spacetime dimensions we find again the GFP on top of the pole
at (Ḡk, Λ̄k, b̄k) = (0, 0, 0). Furthermore we find a unique NGFP at

NGFP4Dǫ : (Ḡk, Λ̄k, b̄k) = (0.75, 0.17, 336.25) (6.16)

which is depicted in the left plot of Figure 6.7. The corresponding critical exponents
are

NGFP4Dǫ : (θ1, θ2, θ3) = (3.95, 1.57 + 3.31 ı, 1.57− 3.31 ı) (6.17)

2Note that, in principle, one could rederive the beta functions without the decomposition.
This would lead to the absence of the tedious second pole.
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and therefore the fixed point is UV-attractive in all three directions. Furthermore
it shows a complex pair which causes a spiralled behaviour close to the fixed point.
Notably the value of the first critical exponent differs considerably from the one
evaluated in [119] with an exponential cutoff. There the authors found θ1 = 28.8.
This discrepancy is caused by the fact that we are working in D = 4−ǫ dimensions.

Let us elaborate on this non-trivial issue a bit more. The NGFP4D
1 is depicted in

the right plot of Figure 6.7 and turns into NGFP4Dǫ when removing the zero-mode
contributions. Comparing the critical exponents, the second fixed point, NGFP4D

2 ,
seems to be related to the one found in [119]. However, removing the zero-mode
contributions this fixed point vanishes. Following our argument that the zero-mode
contributions are a technical artefact, this NGFP might be unphysical.

There are two further arguments supporting this reasoning. First, we can use
a strength of the functional renormalisation group technique, the ability to change
the dimension continuously. This was already used in [160] where the author finds
the appearance of new fixed points while lowering the dimension in a Z2-effective
potential. Starting in three spacetime dimensions in the R2 truncation and contin-
uously changing the dimension towardsD = 4, we find that NGFP3D

2 and NGFP3D
3

annihilate each other at D = 3.84. Furthermore we find that the NGFP3D
1 is con-

tinuously connected with NGFP4Dǫ. This continuity serves as one argument that
the zero-mode contributions are unphysical. The second argument considers higher
orders in the polynomial expansion of the scalar curvature in the truncation (see
first row in Table 4.1). The new critical exponent θ1 = 3.949 fits much better to
the critical exponents in higher truncations given e.g. in [121]. There the authors
find θ1 = 2.068 for the R3 truncation, θ1 = 1.546 for the R4 truncation, and so on.
Of course these two arguments are no proof and one should resort to beta functions
without the York decomposition to resolve the fate of NGFP4D

2 .

However it would be interesting to have a glance at D = 4 − ǫ spacetime
dimensions, where we are able to find trajectories connected to the NGFP4Dǫ. The
situation is at least similar to the one in three dimensions. The most important
difference is that, although we have an analog of NGFP3D

1 , which is NGFP4Dǫ,
we do not have an analogue of the other NGFPs in three dimensions, neither
NGFP3D

2/3, nor NGFP3D
4 . The resulting classification of trajectories restricted to

Ḡk = 0 and trajectories connected to the NGFP4Dǫ will not be discussed in detail
but are summarised in Table 6.3. Again we give a three-dimensional plot for a
better visualisation of some Type Ia and Type IIIa trajectories in 4− ǫ spacetime
dimensions in Figure 6.8. The most peculiar difference between Figure 6.6 and
Figure 6.8 is the characteristic spiralled approach towards the NGFP in 4 − ǫ
spacetime dimensions due to the complex pair of critical exponents (6.17). Besides
this obvious feature there is another difference which is not directly visible in the
plot. Between the NGFP4Dǫ and the GFP the trajectories switch the sign of
the cosmological constant for a finite interval. This feature does not appear in
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Type IR limit UV limit

Ia (Ḡk, Λ̄k, b̄k) = (0,−∞, 288π2/73) NGFP4Dǫ

IIIa pole NGFP4Dǫ

IVa (Ḡk, Λ̄k, b̄k) = (9π/76,−∞, 288π2/73) NGFP4Dǫ

Ic (Ḡk, Λ̄k, b̄k) = (0,−∞, 0) GFP

IIc GFP GFP

IIIc (Ḡk, Λ̄k, b̄k) = (0,∞, 0) GFP

Vc pole GFP

Table 6.3: Some types of trajectories in (4 − ǫ) dimensions are classified ac-
cording to their IR and UV values.

three spacetime dimensions. Note that a similar effect has been seen in [161] in a
completely different context. Again two of the Type IIIa trajectories are marked
as A and B. These two and the two of Figure 6.6 are singled out in order to use
them as exemplary trajectories to evaluate the spectral dimension in the following
section.
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for later purpose.



Chapter 7

The Spectral Dimension

7.1 The Notion of Dimension

The last two chapters have been devoted to the flow equations itself and the analysis
of the corresponding phase space. Based on this, the present chapter discusses
structural properties of the effective quantum spacetime implied by scale dependent
coupling constants.

In [119, 150] it was shown that, for QEG, the spacetime becomes self-similar
at high energies and the graviton propagator is effectively two dimensional. These
are fingerprints that the spacetime at small scales is effectively a fractal. For this
reason it is useful to generalise the notion of dimension in order to capture the
dynamical dimensional reduction of spacetime. In particular we will discuss the
spectral dimension. However, before we analyse the latter with the FRG tools we
will start with some general remarks. For the details the interested reader might
be referred to [162]. For briefness we will follow [30] for the introduction of the
most important terms of the following considerations.

We start with the so-called Hausdorff dimension. For the sake of simplicity we
do not give a mathematically rigorous definition, but discuss a simple example in
order to get an intuition of the Hausdorff dimension. Thinking of a set of points
embedded into a metric space, this dimension is given with the help of balls of
radius R. The number of such balls N(R), necessary to cover the set of points,
definitely depends on their radius and in the limit of vanishing radius the relation
can be given as

N(R) ∼ R−dH for R → 0 . (7.1)

The number dH in the exponent defines the Hausdorff dimension of the set of
points. If we consider a smooth line and cover it with circles of radius R, we find
the Hausdorff dimension to be 1 as one expects from a line. However, the situation
is different if we consider fractals instead of a smooth line.

The name fractals has been introduced by Mandelbrot and probably the most

63
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famous example is the coast line of Britain [163]. Typical properties of a fractal
are self-similarity and scale invariance. These properties have been found in QEG
at short scales [119, 150] and thus, spacetime has at least fractal features at high
energies. Therefore raising the question about dimensionality of spacetime forces
us to discuss the notion of dimension on less-regular sets.

Let us consider the coast line of Britain as an example. If we ask for its length
the paradox arises that the result of a measurement depends on the length of
the yardstick used to measure it [164]. This paradox is related to the fact that
the Hausdorff dimension is not equal to one. Again we use circles of radius R
and decrease this radius while counting the number of balls necessary to cover
the coast line. While decreasing the radius we have to zoom in and find a more
and more refined structure. This causes a Hausdorff dimension between 1 and 2.
Although being a line, due to its non-smoothness the coast line of Britain is not
one-dimensional. Note that the same statement is true for any other coast line.

The definition of the Hausdorff dimension is a static one. In contrast to this
we can define a dimension in a dynamical way by using diffusion processes. On a
Riemannian manifold a Brownian motion and thus the diffusion process is described
by the heat equation

∂TK(x, x′, T ) = −∆K(x, x′, T ) (7.2)

and the corresponding heat kernelK(x, x′, T ). Here ∆ denotes the Laplace operator
of the metric gµν with which the manifold is equipped. In the special case of flat
space the well known solution reads

K(x, x′, T ) =

∫

dDp

(2π)D
eik(x−x′)e−p2T . (7.3)

In curved manifolds, of course, the solution is not that easy. However, assuming the
knowledge about the heat kernel we can define the return probability of our random
walker P (T ) depending on the time of the walk as the trace per unit volume

P (T ) =

∫

dDx
√

g(x)K(x, x, T )
∫

dDx
√

g(x)
. (7.4)

In the limit of short random walks the spectral dimension Ds is defined by the T
dependence of the return probability as

P (T ) ∼ T−Ds/2 for T → 0 ⇒ Ds = −2
d

d lnT
lnP (T )

∣

∣

∣

∣

T=0

. (7.5)

For a D-dimensional, smooth manifolds the return probability satisfies an early
time expansion which reads

P (T ) =
1

(4πT )D/2

∞
∑

n=0

AnT
n (7.6)
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whereD is the dimension of the manifold and An are the Seeley-DeWitt coefficients
or heat-kernel coefficients [165, 166] (see also Appendix C.1). In this case the
spectral dimension Ds equals the dimension D of the manifold. In the context of
QG one needs different effective dimensions on different length scales. Therefore
it is useful to generalise the definition of the spectral dimension (7.5) into a T -
dependent version which we will use in the following. It reads

Ds(T ) = −2
d

d lnT
lnP (T ) . (7.7)

This definition used a random walk and thus is a dynamical definition, in con-
trast to the Hausdorff dimension. Using the Brownian motion a further notion of di-
mension can be introduced, the so-called walk dimension Dw. It is defined through
the average square distance of the random walker and given by 〈r2〉 ∼ T 2/Dw . All
these notions of dimension discussed above show that the concept of dimension
has to be taken with care, but can be handled on smooth manifold as well as on
less-regular sets. Thus we have everything at hand to discuss the dimension of
effective spacetime in the context of QG.

In the following we will concentrate on the spectral dimension. We start to
equip the definition with a scale dependence in order to discuss the spacetime at
different energy scales. For this purpose we use an RG improvement of the heat
equation (7.2) as it was proposed in [30]

∂TK(x, x′, T ) = −∆(k)K(x, x′, T ) . (7.8)

Here we replaced the Laplace operator in (7.2) by a scale-dependent version in
order to take into account that at each scale we have a different metric. Note that
we assumed here that the scale k is the only relevant scale for the diffusion process.
For the solution of the heat equation (7.8) we introduce a reference scale k0 which
we choose to be at low energies. Denoting the Laplace operator at this scale by
∆(k0) we can relate it to the Laplace operator at scale k via a function F (k2) by

∆(k) = F (k2)∆(k0) . (7.9)

In order to be physical, our theory has to become classical at low energies and
thus we can approximate the spacetime metric at the scale k0 with the flat metric.
In this case we know that the eigenvalues of the Laplace operator are p2 and the
eigenfunctions are plane waves. After substituting ∆(k) by (7.9) we use them to
find

P (T ) =

∫

dDp

(2π)D
e−p2F (p2)T =

1

(4π)D/2Γ(D2 )

∫ ∞

0

dz zD/2−1 e−zF (z)T . (7.10)

Note that we identified p with k here. This can be motivated by the fact that the
plane waves probe length scales of order 1/|p| and thus p is the relevant scale.
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Without considering the RG improvement we find the classical F (z) = 1. In-
serting this into (7.10) leads to P (T ) = (4πT )−D/2 and (7.7) finally leads us to the
expected classical result Ds = D.

However, we are interested in non-trivial functions F (z) incorporating the in-
formation about the scale dependence of the spectral dimension. Since a general
treatment is very hard we concentrate here on the special case that F (k2) follows
a power law on a long range of scales. Based on this assumption we find

F (k2) ∼ kδ ⇒ Ds =
2D

2 + δ
(7.11)

which relates a constant spectral dimension to the spacetime for this range of scales.
Note that δ = 0 corresponds to the classical case. In the following we will discuss
the form of the function F (k2) in detail and use it to find numerical results for the
spectral dimension.

7.2 Spectral Dimension within the Einstein-Hilbert

Truncation

At the end of the last section we showed that we can find the scale-dependent
spectral dimension if we know the function F (k2) relating the Laplace operator at
the scale k with the one at a reference scale k0 chosen in the IR. In the following
we will derive an expression for this function F (k2) within the Einstein-Hilbert
truncation along the lines of [30]. The ansatz for the EAA is given in (5.8) and at
vanishing fluctuations and ghost it reads

ΓEH
k

∣

∣

g=ḡ,c=0
=

1

16πGk

∫

dDx
√
g [−R+ 2Λk] . (7.12)

This ansatz includes the scale-dependent cosmological constant Λk and the scale-
dependent Newton constant Gk. It gives us a single-metric expression working as
the analog of the EA at the scale k. The corresponding field equation is given by

Rµν(〈g〉k) =
2

2−D
Λk〈gµν〉k (7.13)

with 〈gµν〉k denoting the effective metric at the scale k and Rµν(〈g〉k) as the Ricci
tensor corresponding to it. Note that, apart from the k dependencies, these are
Einstein’s field equations.

In order to finally find the function F (k2) we are interested in the solution of
(7.13) for the effective metric 〈gµν〉k to find its k dependence. For this goal we
introduce the reference scale k0 mentioned above to rewrite (7.13) as

Λk0

Λk
Rµ

ν(〈g〉k) =
2

2−D
Λk0δ

µ
ν . (7.14)
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Utilising the fact that Rµ
ν(cg) = c−1Rµ

ν(g) for an arbitrary constant c > 0 and
comparing the result to (7.13) at the scale k0 gives us Rµ

ν(〈g〉k0 ) =
2

2−DΛk0δ
µ
ν =

Rµ
ν(

Λk

Λk0
〈g〉k). At the end we find the relation between 〈gµν〉k and 〈gµν〉k0 reading

〈gµν〉k =
Λk0

Λk
〈gµν〉k0 , 〈gµν〉k =

Λk

Λk0

〈gµν〉k0 . (7.15)

This can be translated into a relation between the Laplace operator at k and the
one at k0 reading

∆(k) =
Λk

Λk0

∆(k0) ⇒ F (k2) =
Λk

Λk0

. (7.16)

Now that we know the explicit form of the function F (k2) we see that its k depen-
dence is governed by the running of the cosmological constant Λk. This of course
depends on the RG trajectory we choose to describe the theory. For different RG
trajectories we will find different k dependencies of the spectral dimension. Further-
more we learn from (7.16) that the power-law behaviour of F (k2), which we asked
for in (7.11), is not true in general. However, we will stick to this approximation,
since it captures the most important information, as we will see below.

Based on the assumption that δ, defined in (7.11) depends on k only weakly,
we can solve F (k2) = Λk/Λk0 = kδ for δ to find

δ(k) = k∂k ln Λk . (7.17)

Inserting this into (7.11), gives us the correct spectral dimension as long as Λk and
therefore F (k2) undergoes the supposed power-law scaling. If this is not the case
the result for the spectral dimension has to be taken with care. For convenience we
introduce the dimensionless cosmological constant Λ̄k = k−2Λk in order to analyse
the trajectories discussed in Section 6.1. Therefore we find

δ(k) = k∂k ln(k
2Λ̄k) = 2 +

1

Λ̄k
∂tΛ̄k (7.18)

which gives us the scale-dependent spectral dimension Ds(k) depending on the
cosmological constant and the corresponding beta function, via (7.11). If we express
the beta function as a function of the coupling constants (see (5.31)) we finally get
the spectral dimensions depending on the dimensionless Newton constant and the
dimensionless cosmological constant

Ds(Ḡk, Λ̄k) =
2D

4 + Λ̄−1
k ∂tΛ̄k(Ḡk, Λ̄k)

. (7.19)

Integrating the beta functions with suitable starting points we find the scale
dependence of the coupling constants along the corresponding trajectory. Insert-
ing this into (7.19) we find Ds(t), where t denotes the RG time. As mentioned
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Figure 7.1: A typical Type IIIa trajectory (upper left plot), a zoom into the
region close to the GFP (upper right plot) and the spectral di-
mension corresponding to this trajectory (lower plot).

before, the trajectory describing our world would be of Type IIIa (see Section 6.1)
and pass by the Gaussian fixed point very close. Such a trajectory and the cor-
responding spectral dimension is depicted in Figure 7.1. Explicitly, the trajectory
was evaluated with the starting point (Ḡk, Λ̄k) = (10−8, 0.2) at t = 0. The latter
one was chosen in the IR for technical simplicity. We find three plateaus where
Ds is approximately scale-independent. This corresponds to a constant δ(k) and
according to our discussion above these regions are reliable. In contrast to this, the
regions of strongly varying Ds should be taken with care. However, we concentrate
on the plateaus and ignore the other regions.

Starting in the IR (small t) we see that the spectral dimension agrees with the
dimension of the manifold. This regime extends up to t ≈ 4, which is marked in
the upper right plot of Figure 7.1 with a black dot. Thus the trajectory is close
to the Λ̄k axis and therefore we are in the classical regime discussed in Section
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Figure 7.2: Three Type IIIa trajectories (left plot) with different distance to
the GFP and the spectral dimension corresponding to them (right
plot).

6.1. The result Ds = 4 can be understood by inspecting the beta function in this
region. We have seen that the dimensionless cosmological constant has a purely
dimensional running ∂tΛ̄k = −2Λ̄k. Inserting this into (7.19) results in Ds = 4.
From a more physical perspective we can argue in the following way. We know that
in the classical regime the dimensionful cosmological constant is independent of the
scale. Therefore we find F (k2) ∼ k0 in (7.11), which gives us δ = 0 and Ds = D.
Thus, the result Ds = D is a consequence of the classical behaviour within the
Einstein-Hilbert truncation.

In contrast to this classical regime we find Ds = 2 in the UV (t & 12). The
point t = 12 is marked in the upper left plot of Figure 7.1 with a black dot close
to the NGFP. Thus the right plateau corresponds to the NGFP regime, where
the dimensionful coupling constants run with their canonical dimension. Therefore
δ = 2 holds exactly in (7.11) and is a consequence of the existence of the NGFP,
without using any approximations.

The last plateau in the middle extends from t & 6 up to t . 9, depicted as black
dots in the upper left plot of Figure 7.1. This regime shall be called semi-classical
and corresponds to the range of the trajectory where it runs along the UV-repulsive
eigendirection of the GFP, where Λk ∼ kD. Therefore we find δ = D = 4 and thus
Ds = 4/3.

To demonstrate that the classical and the semi-classical plateau are related to
the GFP and the Λ̄k axis, we can choose other trajectories with the starting value of
Λ̄k = 0.2 and the starting value for Ḡk = 10−6, 10−4, 10−2. The corresponding tra-
jectories close to the GFP are depicted in the left plot of Figure 7.2 as solid, dashed
and dotted lines respectively. One can see that the trajectory passing by the GFP
very closely produces three very well established plateaus. The dashed trajectory,
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Figure 7.3: The left plot shows the separatrix (solid line) and a Type Ia tra-
jectory (dashed line) passing by close to the GFP. The right plot
depicts the spectral dimension corresponding to them.

although showing three distinguished plateaus, has less pronounced classical and
semi-classical plateaus. Finally the trajectory passing by the GFP with quite some
distance neither shows a classical nor a semi-classical plateau. Note that going to
smaller scales, not depicted in the plot, we run into the pole discussed in Section
6.1 before a classical plateau is established.

As a last interesting feature we would like to leave the Type IIIa trajectories
and investigate the Type IIa and a Type Ia trajectory. These are depicted in the
left plot of Figure 7.3 and the corresponding spectral dimension is given in the right
plot. The separatrix connects the NGFP with the GFP and thus it is not surprising
that we do not find any classical plateau. Here Λk ≃ Λ0 + akδ with Λ0 = 0 and
a constant a. Thus the semi-classical plateau extends to arbitrary small scale t or
k, respectively. The Type Ia trajectory shows a NGFP plateau at high energies,
since the trajectory runs towards the NGFP. Going to smaller scales, the trajectory
passes by the GFP very close and thus develops a semi-classical plateau. However,
the trajectory leaves the GFP regime in direction of negative cosmological constant.
Therefore, we find a pole in (7.19) and the spectral dimension diverges. However,
as we discussed above, the regime of strongly varying Ds is not trustworthy and
thus no physical properties should be attributed to this feature. Finally at very
small scales the trajectory runs close to the Λ̄k axis and we find Ds = 4 again.

7.3 Spectral Dimension within the R2 Truncation

After discussing the scale-dependent spectral dimension within the simplest trun-
cation in Section 7.2 we now proceed to discuss the influence of higher derivative
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terms. Explicitly we will discuss the scale dependence of the spectral dimension
within the R2 truncation. For this purpose we will use the trajectories of Type IIIa
discussed in Section 6.2. However, before analysing the spectral dimension along
these trajectories we have to find an expression analogous to (7.19), defining the
spectral dimension depending on the coupling constants.

Therefore, we start to rewrite the ansatz of the R2 truncation given in (5.36)
at vanishing fluctuations and ghost fields. It reads

ΓR2

k

∣

∣

∣

g=ḡ,c=0
=

∫

dDx
√
g

[

1

16πGk
(−R+ 2Λk) + βkR

2

]

. (7.20)

The equations of motion corresponding to this ansatz read
(

−R+ 2Λk +
16πGkR

2

bk

)

gµν +
(

2− 64πGkR
bk

)

Rµν

+ 64πGk

bk
(∇µ∇νR+ (∆R)gµν) = 0 (7.21)

where we integrated by part and dropped appearing surface terms. In order to
find the scale dependence of the metric gµν , we solve these equations of motion, for
fixed scale k. For this purpose we substitute the ansatz

Rµν(〈g〉k) = ck
D 〈gµν〉k , (7.22)

implying R(〈g〉k) = ck, into the equations of motion and find that the second line
vanishes. The first line simplifies to

2Λk − 1
D (D − 2)ck +

1
D (D − 4)16πGk

bk
c2k = 0 (7.23)

which can be solved for ck. Note that the ansatz (7.22) is similar to (7.13), so that
we can do the same manipulations as in Section 7.2 to find

〈gµν〉k =
ck0
ck

〈gµν〉k0 , 〈gµν〉k = ck
ck0

〈gµν〉k0

⇒ ∆(k) = ck
ck0

∆k0 ⇒ F (k2) = ck
ck0

. (7.24)

This result for F (k2) is equivalent to (7.16), apart from Λk being replaced by ck,
which depends on the coupling constants.

At this point it becomes useful to distinguish the cases D = 4 and D 6= 4 to
discuss them separately. We start with D = 4 and find the solution of (7.23) to be

ck|D=4 = 4Λk ⇒ F (k2)|D=4 =
Λk

Λk0

. (7.25)

Formally, this result seems identical to the one of the Einstein-Hilbert truncation
and thus we get the same expression for the scale-dependent spectral dimension

Ds(Ḡk, Λ̄k, b̄k)|D=4 =
2D

4 + Λ̄−1
k ∂tΛ̄k(Ḡk, Λ̄k, b̄k)

. (7.26)
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Note that, although we find the same expression for Ds, the final result differs,
since the beta function is different.

In D 6= 4 the situation is a bit more complicated. Here the quadratic equation
(7.23) has the two solutions

c±k =
(D − 2)bk

32π(D − 4)G− k

(

1±
√

1− hDGkΛk

bk

)

(7.27)

with

hD =
128πD(D − 4)

(D − 2)2
. (7.28)

In the following we discard the solution c+k and concentrate on c−k . The reason is
that the solution c−k has a well defined limit D → 4 where it reduces to (7.25).
Therefore, selecting the c−k branch leads to a definition of the spectral dimension
continuous in D. The latter one can be derived by inserting (7.27) into (7.24) to
find

F (k2) =
Gk0bk
Gkbk0

1−
√

1− hDGkΛk/bk

1−
√

1− hDGk0Λk0/bk0

. (7.29)

Using δ(k) = ∂t ln(F (k2)) we find

δ = 2− ∂tḠk

Ḡk
+

∂tb̄k

b̄k
+

hD

2

(

Ḡk

b̄k
∂tΛ̄k − ḠkΛ̄k

b̄2k
∂tb̄k +

Λ̄k

b̄k
∂tḠk

)

(

1−
√

1− hDḠkΛ̄k/b̄k

)

√

1− hDḠkΛ̄k/b̄k
. (7.30)

This is the final expression for δ and depends on the dimensionless coupling con-
stants. Thus the former attributes a value for the spectral dimension, via (7.11),
to any point in theory space.

Now we can use the expressions for the spectral dimension depending on the
coupling constants in D = 4 and D = 3 to evaluate the scale dependent spectral
dimension along specific trajectories. Starting with D = 4 we will use the trajec-
tories A and B depicted as thick black lines in Figure 6.8. The spectral dimension
depending on the logarithmic RG scale t and corresponding to these Type IIIa
trajectories are depicted in Figure 7.4. The left plot depicts the spectral dimen-
sion of trajectory A in Figure 6.6. At high energies the trajectory starts at the
NGFP4Dǫ where we find Ds = 2. This is exactly the result of the Einstein-Hilbert
truncation. The same statement is true for low energies, where we find a classical
regime withDs = D = 4. The spectral dimension associated with the semi-classical
plateau differs from the one in Section 7.2, however. Although this plateau appears
again between the GFP and the NGFP the corresponding value for Ds differs from
the one observed in Section 7.2. Within the Einstein-Hilbert truncation we found
Ds = 4/3 while the inclusion of R2 leads to Ds ≃ 1.5. The difference is that this
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Figure 7.4: The spectral dimension corresponding to the trajectories A (left
plot) and B (right plot) of Figure 6.8.

time the scaling behaviour kδ with δ ≃ 3.3 is not caused by the GFP but by the
pole of the beta functions discussed extensively in Section 6.2. Between the NGFP
and the GFP the trajectory A passes by very closely to this pole which leads to
the formation of the semi-classical plateau.

The second plot in Figure 7.4 depicts the spectral dimension corresponding
to trajectory B in Figure 6.8. Again we find a NGFP plateau with Ds = 2 at
high energies and a classical plateau with Ds = 4 at low energies. This time the
semi-classical plateau develops at Ds = 4/3 which is the value we found within
the Einstein-Hilbert truncation. This indicates that the plateau is caused by the
GFP and not by the pole as for trajectory A. Indeed, if we investigate the part of
the trajectory where the intermediate plateau develops we find that this does not
happen between the NGFP and the GFP. Here the situation is as follows. If we
start at high energies close to the NGFP and flow towards the IR, the trajectory
does not spend enough RG time in the vicinity of the pole to form a plateau. Right
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Figure 7.5: The spectral dimension corresponding to the trajectories A (left
plot) and B (right plot) of Figure 6.6.
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after passing by the GFP the semi-classical plateau depicted in the right plot of
Figure 7.4 develops. In this region the GFP causes a k4 scaling and we find the
spectral dimension Ds = 4/3.

For completeness, we shall discuss the situation in three spacetime dimensions
as well. The plots in Figure 7.5 show the scale-dependent spectral dimension cor-
responding to the trajectories A and B in Figure 6.6. The former is depicted in
the left plot and shows three distinguished plateaus. In the UV we find the NGFP
plateau corresponding to the scaling behaviour close to the NGFP3D

1 , which re-
alises Ds = D/2 = 1.5. In the IR we find the classical plateau with Ds = D = 3
caused by a classical running of the couplings. The intermediate plateau develops
at Ds ≃ 1.3. As in D = 4 this is caused by the trajectory running close to the pole.

The right plot in Figure 7.5 corresponds to trajectory B in Figure 6.6. It shows
four distinguished plateaus where the very left is the classical one with Ds = 3 and
the very right one is the NGFP plateau with Ds = 1.5. In between we find two
semi-classical plateaus which are caused by the pole (Ds ≃ 1.3) and by the GFP
(Ds ≃ 0.85) respectively.
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Chapter 8

Motivation

8.1 Field Content and Symmetry

In Part II of this thesis we discussed QEG within the metric formulation. This
means we started from a path integral where we integrated over the spacetime
metric g̃µν as the degrees of freedom describing the theory. The classical theory
might be described by the Einstein-Hilbert action

SEH[g̃µν ] =
1

16πGN

∫

dDx
√

g̃
(

(D)R− 2Λ
)

(8.1)

with the Ricci scalar in D dimensions (D)R, the cosmological constant Λ and the
Newton constant GN. g̃ denotes the determinant of the metric.

At the classical level, however, the gravitational degrees of freedom can be
encoded in a different set of fields, without affecting the dynamics of the theory.
A very well known example is the tetrad formulation where the metric is replaced
with the vielbeins ẽaµ, by g̃µν = ηabẽ

a
µẽ

b
ν . In this case the integration in the path

integral would be over the vielbein fields instead of the metric. Other examples are
unimodular gravity or the Arnowitt-Deser-Misner (ADM) decomposed version of
GR. Within this part of the thesis we discuss the latter one, see [167–169]. Note
that, even though the formulation of gravity in terms of different variables are
classically equivalent, the same is not necessarily true at the quantum level. The
rest of this chapter discusses the field content and the symmetry on the classical
level. The quantisation is discussed in the following chapters.

The ADM decomposed formulation of gravity encodes the degrees of freedom in
the lapse function Ñ , the shift vector Ñ i and the spatial metric σ̃ij . The relation
between the metric formulation and this foliated version is given by the ADM
decomposition, explained in detail in AppendixE. The final result of the appendix
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is an expression for g̃µν in terms of Ñ , Ñ i, σ̃ij (see (E.5)) and reads

g̃µν =

(

εÑ2 + ÑiÑ
i Ñj

Ñi σ̃ij

)

, g̃µν =

(

1
ε Ñ2

− Ñj

ε Ñ2

− Ñi

ε Ñ2
σ̃ij + ÑiÑj

ε Ñ2

)

. (8.2)

Here and in the following we denote spacetime indices with Greek symbols µ, ν, . . .
and spatial indices on the slices of constant time τ are denoted by Latin labels
i, j, . . .. The latter ones are raised and lowered with the spatial metric on the
slices σ̃ij . Therefore a spacetime vector vµ reads, in the foliated notation, vµ =
(v0, vi). Note that the symbol ε, appearing in (8.2), is a signature parameter which
distinguishes Euclidean (ε = +1) from Lorentzian (ε = −1) signature as explained
in Appendix A.

The next question arising naturally would be: What does the classical action
(8.1) look like when using the new variables? Since investigations of higher order
truncations within the foliated formulation is above the scope of this thesis, it
suffices to consider the classical Einstein-Hilbert action given in (8.1). First of
all we encounter the square root of the determinant of the spacetime metric

√
g̃.

Taking into account the parameter ε to define the signature we get
√

g̃ =
√
εÑ

√
σ̃ . (8.3)

The second object depending on the spacetime metric is the D-dimensional scalar
curvature (D)R. The transformation to the new variables is not complicated but
lengthy and thus we refrain from giving the detailed calculation here. The inter-
ested reader might find a detailed discussion in [170]. We just give the result in
terms of the extrinsic curvature Kij of the spatial slices

Kij =
1

2Ñ

(

∂τ σ̃ij −∇iÑj −∇jÑi

)

. (8.4)

Here we denote the covariant derivative in d dimensions, constructed from the spa-
tial metric σ̃ij , as ∇i. Introducing furthermore the d-dimensional scalar curvature
(d)R leads us to the following decomposition of the D-dimensional Ricci scalar

(D)R = (d)R− 1

ε

(

KijKij −K2
)

. (8.5)

This, in turn, leads us to the foliated formulation of the Einstein-Hilbert action
(8.1), reading

SfEH =

√
ε

16πGN

∫

dDx
√
σ̃Ñ

(

(d)R − 2Λ− 1

ε

(

KijKij −K2
)

)

. (8.6)

Here K = σ̃ijKij denotes the trace of the extrinsic curvature. Note that the three
terms (d)R,KijKij and K2 have to appear with the ratio of (8.5) to satisfy D-
dimensional diffeomorphism invariance. As these symmetries will play a crucial
role later on, it is worthwhile to discuss them in detail.
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Classical GR, based on the Einstein-Hilbert action (8.1), is invariant with re-
spect to spacetime diffeomorphisms Diff(M), where M denotes the spacetime man-
ifold. Therefore, we ask the action within the metric formulation, (8.1), to be
invariant under

g̃µν → g̃µν + δg̃µν , δg̃µν = Lv g̃µν . (8.7)

Here Lv denotes the Lie derivative with respect to the D-dimensional vector v(xµ).
To reformulate this in foliated terms we have to split the vector v into its compo-
nents perpendicular and tangential to the spatial slices as

vµ(xµ) =
(

f(τ, xi), ζi(τ, xi)
)

, f = tµvµ , ζi = eiµv
µ . (8.8)

The definition of tµ and eiµ, which are introduced in Appendix E, can be found
in (E.1). Now we can insert (8.2) and (8.8) into (8.7) to get the variation of the
lapse function Ñ , the shift vector Ñ i and the spatial metric σ̃ij under Diff(M).

For completeness we give the variations of Ñi and σ̃ij as well. The variations read

δÑ = ∂τ (fÑ) + ζk∂kÑ − ÑÑ j∂jf ,

δÑ i = ∂τ (fÑ
i) + ζk∂kÑ

i − Ñk∂kζ
i + ∂τ ζ

i + Ñ iÑk∂kf + εÑ2σ̃ik∂kf ,

δÑi = ∂τ (fÑi) + ζk∂kÑi + Ñk∂iζ
k + σ̃ki∂τζ

k + ÑkÑ
k∂if + εÑ2∂if ,

δσ̃ij = f∂τ σ̃ij + ζk∂kσ̃ij + σ̃jk∂iζ
k + σ̃ik∂jζ

k + Ñj∂if + Ñi∂jf ,

δσ̃ij = f∂τ σ̃
ij + ζk∂kσ̃

ij − σ̃jk∂kζ
i − σ̃ik∂kζ

j − σ̃ikÑ j∂kf − σ̃jkÑ i∂kf . (8.9)

This variation acting on (d)R,KijKij and K2 separately shows that it vanishes only
if one combines them with the prefactors given in (8.5).

There are two important observations to make. Firstly, while Diff(M) acts
linearly on the spacetime metric g̃µν the action on the component fields Ñ , Ñ i

and σ̃ij is non linear. Secondly, the gauge freedom in (8.9) can be fixed with the
proper-time gauge choice [171]

Ñ(τ, xi) = 1 , Ñ i(τ, xi) = 0 . (8.10)

The residual freedom is a coordinate transformation satisfying ∂τf = 0 and ∂τζ
i+

εσ̃ij∂jf = 0. This corresponds to the freedom of choosing a coordinate system on
the initial slice of the foliation. At the level of the path integral this is fixed by the
boundary conditions. The interested reader might find more details in [172, 173].
Possible surface effects are beyond the scope of this thesis and thus we do not
consider this leftover freedom any further.

8.2 An Excursion to Hořava-Lifshitz Gravity

It is very well known that GR is perturbatively non-renormalisable, neither in the
metric nor in the foliated formulation. Thus Hořava proposed a theory, called
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Hořava-Lifshitz Gravity (HLG), which uses foliation-preserving diffeomorphisms
Diff(M,Σ), instead of Diff(M), as the fundamental symmetry. Weakening the
symmetry requirements makes it possible to include higher spatial derivatives with-
out adding higher time derivatives and thus might render the theory perturbatively
renormalisable. For the perturbative renormalisability one has to pay the price of a
relaxation of the symmetry constraints. However, on observational scales we know
that the world is invariant under Diff(M). This can be matched by assuming that
the fundamental symmetry is Diff(M,Σ) and the RG running reestablishes the
diffeomorphism invariance at observational scales dynamically. This, in short, is
the idea of HLG and the interested reader finds more details in [15, 16].

As it will play a crucial role in the following, we next discuss the foliation-
preserving diffeomorphisms. The difference between Diff(M) and Diff(M,Σ) is
that, for the latter, the function f in (8.8) does not depend on space but is a
function of time τ only. Since Ñ and Ñ i can be interpreted as gauge fields of
Diff(M,Σ) their dependencies should correspond to those of the generators f, ζi.
Thus the lapse function as well should be space independent. This interpretation
is called the projectable version of HLG. Another possibility would be to insist on
the spacetime dependence of the lapse function. This would lead to the so-called
non-projectable version of HLG. A comparison of these two cases to yet another
version with non-relativistic general covariance can be found in [174].

In the following we will focus on the projectable version of HLG. In this case
the variation of the component fields under Diff(M,Σ) results from (8.9) by asking
f and Ñ to be space-independent. It reads

δÑ = ∂τ (fÑ) ,

δÑ i = ∂τ (fÑ
i) + ζk∂kÑ

i − Ñk∂kζ
i + ∂τζ

i ,

δÑi = ∂τ (fÑi) + ζk∂kÑi + Ñk∂iζ
k + σ̃ik∂τ ζ

k ,

δσ̃ij = f∂τ σ̃ij + ζk∂kσ̃ij + σ̃jk∂iζ
k + σ̃ik∂jζ

k ,

δσ̃ij = f∂τ σ̃
ij + ζk∂kσ̃

ij − σ̃jk∂kζ
i − σ̃ik∂kζ

j . (8.11)

Important to notice is that, under Diff(M,Σ), the variation acts linearly on the
component fields. This observation makes the foliation-preserving diffeomorphism
the natural symmetry for the Wetterich equation formulated for the component
fields Ñ , Ñ i and σ̃ij . This will be explained in more detail later on. While gauge
fixing with the proper-time gauge (8.10) the residual transformations ∂τf = 0 and
∂τζ

i = 0 are left. Again, this corresponds to the coordinate choice on the initial
slice.

Now let us come back to the decomposition of the Einstein-Hilbert action (8.1).
We have seen that the invariance under Diff(M) requires the ratios in (8.5) between
the d-dimensional Ricci scalar (d)R and the extrinsic curvature terms KijKij and
K2. However, if we consider the Diff(M,Σ) variations in (8.11) we realise that all
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theory theory space gravitational fields symmetry

mQEG T mQEG g̃µν(x
µ) Diff(M)

fQEG T fQEG Ñ(τ, xi) , Ñi(τ, x
i) , σ̃ij(τ, x

i) Diff(M)

pHL T pHL Ñ(τ) , Ñi(τ, x
i) , σ̃ij(τ, x

i) Diff(M,Σ)

npHL T npHL Ñ(τ, xi) , Ñi(τ, x
i) , σ̃ij(τ, x

i) Diff(M,Σ)

Table 8.1: Definition of the gravitational theory spaces T corresponding to the
metric (mQEG) and the foliated (fQEG) formulation of QEG and
the projectable (pHL) and non-projectable (npHL) version of HLG.
According to their precise field content and underlying symmetry
group the latter constitute natural generalisations of the theory
space underlying metric QEG.

three terms are invariant on their own. Thus relaxing the symmetry from Diff(M)
to Diff(M,Σ) allows us to take independent coupling constants in front of each
invariant term. The generalisation of the Einstein-Hilbert action therefore reads

SHL =

√
ε

16πGN

∫

dDx
√
σ̃ Ñ

[

(d)R − 2Λ− 1

ε

(

λ1K
ijKij − λ2K

2
)

]

. (8.12)

For λ1 = λ2 = 1 this action becomes SfEH and is invariant under D-dimensional
diffeomorphisms. Different values for λ1 or λ2 break this symmetry. As higher
derivative terms are negligible in the IR, the action (8.12) constitutes a natural
low-energy limit of HLG. Therefore it shall be called Hořava-Lifshitz action in the
following. Note that, in [15, 16], the second part of this action, constructed out of
the extrinsic curvature, was introduced as the most general kinetic term according
to the generalised Wheeler-DeWitt metric. The other two terms would correspond
to the potential in [15, 16].

Recalling that the lapse function Ñ is just a gauge degree of freedom, we can
rescale it and thus arrange the ratio between the d-dimensional Ricci scalar and the
purely spatial extrinsic-curvature terms at our will. Thus we are left with only one
additional coupling constant, which might be λ = λ2 as in [15, 16]. Note that at a
quantum level this argument is not true any more. More explicitly, it is possible to
arrange the ratio at a single scale. However, the potentially different beta functions
for the couplings λ1 and λ2 lead to a scale-dependent ratio between them.

Summarising this chapter, the Hořava-Lifshitz action (8.12) enables us to study
Diff(M)-invariant foliated Quantum Einstein Gravity (fQEG) by using λ1 = λ2 =
1. Its beta functions are derived in Chapter 10 and analysed in Section 11.1.
Here we concentrate on the comparison of Euclidean and Lorentzian signature, see
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[167,168]. Furthermore, we are enabled to analyse Diff(M,Σ)-invariant projectable
HLG by using λ1 and λ2 arbitrary. In the next chapter we derive the corresponding
beta functions. Note that the beta functions of fQEG arises as the limit λ1, λ2 → 1
of the beta functions for projectable HLG. Here we restrict ourselves to one new
coupling, λ = λ2, and use λ1 = 1 for technical simplicity. This new coupling breaks
Diff(M) invariance and thus enables us to investigate the breaking of Diff(M)
invariance for the low-energy limit of HLG. This is done in Section 11.2. In order
to analyse the perturbative renormalisability of HLG one has to introduce higher
powers of the d-dimensional Ricci scalar, constituting a further source of Diff(M)
breaking. However, this natural extension is beyond the scope of this thesis and
shall be left for future work. The different theories are summarised in Table 8.1.
This table opposes the metric formulation of QEG with its foliated formulation and
the projectable and non-projectable version of HLG. Explicitly, the field content
and symmetry corresponding to the different theories are contrasted. Moreover,
the second row in Table 8.1 denotes the space of all action functionals invariant
under the symmetry under consideration. The field content and the symmetry lead
us to the following relation between these theory spaces

T mQEG = T fQEG ⊂ T pHL ⊂ T npHL . (8.13)

In Part II of this thesis we discussed two truncations of the T mQEG, while the
present part concentrates on the simplest truncation of T fQEG and T pHL.



Chapter 9

The Wetterich Equation for

Foliated Spacetimes

Motivated by Hořava’s idea, discussed in Section 8.2, we are interested in a theory
which encodes the gravitational degrees of freedom in the lapse function Ñ , the
shift vector Ñ i and the spatial metric σ̃ij . As the underlying symmetry group we
choose foliation-preserving diffeomorphisms, Diff(M,Σ). This data defines the the-
ory space of projectable HLG. In this chapter we construct the Wetterich equation
capturing the RG flow on this space. Based on this novel flow equation we will de-
rive the beta functions of the foliated Einstein-Hilbert truncation and a truncation
governing the IR behaviour of HLG in Chapter 10.

Analogous to the metric construction we start from the partition function given
by a gravitational path integral in terms of the ADM variables as

Z =

∫

Dµ e−Sgrav+Ssource

. (9.1)

Here Ssource denotes the source terms corresponding to the decomposed fields and
the measure Dµ denotes a functional integration with respect to the latter as well
as a gauge fixing with the corresponding ghost contribution according to Appendix
B.1. These are necessary to prevent the integration over gauge-equivalent field con-
figurations. Moreover, Sgrav denotes a generic Diff(M,Σ)-invariant gravitational
action constructed from the component fields Ñ , Ñ i and σ̃ij . This class of ac-
tions is larger than in the metric case, as we are considering Diff(M,Σ) instead of
Diff(M). To preserve this symmetry on the quantum level we use the background
field method described in Appendix B.2. This enables us to handle the symmetry
during the RG flow and finally get an invariant effective action.

The first step of the background field method splits the quantum fields into fixed
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but arbitrary background plus fluctuations around the latter. This split reads

Ñ(τ) = N̄(τ) + N̂(τ) ,

Ñ i(τ, xi) = N̄ i(τ, xi) + N̂ i(τ, xi) ,

σ̃ij(τ, x
i) = σ̄ij(τ, x

i) + σ̂ij(τ, x
i) . (9.2)

Collecting the fields in multiplets χ̃ = {Ñ, Ñ i, σ̃ij}, χ̄ = {N̄ , N̄ i, σ̄ij} and χ̂ =

{N̂, N̂ i, σ̂ij}, these expressions can collectively be written as χ̃ = χ̄+ χ̂. Here the
fluctuations χ̂ are not assumed to be small in any sense. Note that we used a linear
split in Ñ i and not Ñi. As the indices are raised and lowered with σ̃ij we get a

non-trivial split in Ñi and σ̃ij .
According to Appendix B.2 the underlying symmetry variation δ can be split

in two different ways. The first is called the quantum gauge transformation δ̂ and
reads

δ̂N̄ = 0 , δ̂N̂ , = ∂τ

(

fÑ
)

,

δ̂N̄ i = 0 , δ̂N̂ i = ∂τ

(

fÑ i
)

+ ∂tζ
i + Lζ(Ñ

i) ,

δ̂σ̄ij = 0 , δ̂σ̂ij = f∂τ σ̃ij + Lζ(σ̃ij) . (9.3)

This is the symmetry to be fixed. Secondly we can introduce the background gauge
transformation δ̄ as

δ̄N̄ = ∂τ
(

fN̄
)

, δ̄N̂ , = ∂τ

(

fN̂
)

,

δ̄N̄ i = ∂τ
(

fN̄ i
)

+ ∂τζ
i + Lζ(N̄

i) , δ̄N̂ i = ∂τ

(

fN̂ i
)

+ Lζ(N̂
i) ,

δ̄σ̄ij = f∂τ σ̄ij + Lζ(σ̄ij) , δ̄σ̂ij = f∂τ σ̂ij + Lζ(σ̂ij) , (9.4)

with the spatial Lie derivative with respect to ζi denoted by Lζ . This background
gauge transformation is merely a technical tool. As explained in Appendix B.2
we demand the invariance under these transformations during the calculations and
gain back the invariance with respect to the underlying symmetry at the end by
setting the fluctuations to zero.

The next step consist of gauge fixing the quantum symmetry by introducing an
appropriate gauge fixing and ghost term (see Appendix B.1 for more details). The
gauge-fixing action should implement the background proper-time gauge N̂/N̄ =
0, N̂ i/N̄ = 0 and preserve the background symmetry. This can be achieved by

Sgf =
1

2

√
ε

∫

dDx N̄
√
σ̄

[

N̂2

αL N̄2
+

N̂ i σ̄ij N̂
j

αS N̄2

]

. (9.5)
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The corresponding ghost action can be derived by calculating the quantum gauge
transformation of the gauge condition and replacing the parameters f, ζi by the
ghost fields ω, ωi. The result has to be contracted with the corresponding anti-
ghosts and an integration gives

Sgh =
√
ε

∫

dDx
√
σ̄
[

ω̄∂τ (Ñω) + ω̄i(δ
i
j∂τ − δijÑ

k∂k + (∂jÑ
i))ωj

]

. (9.6)

The variation of the ghost fields under background transformations has to be chosen
such that this ghost action is invariant. A straightforward calculation reveals that
this might be achieved by using

δ̄ω =f ∂τω − ω∂τf , δ̄ω̄ = f ∂τ ω̄ ,

δ̄ωj =f ∂τω
j + Lζ(ω

j) , δ̄ω̄i = f ∂τ ω̄i + Lζ(ω̄i) . (9.7)

Summarising these findings, the gauge-fixed partition function includes, besides
the gravitational action itself, the gauge-fixing action (9.5), the ghost action (9.6)
and the sources. It reads

Z =

∫

Dχ̂Dω̄DωDω̄iDωi exp
[

−Sgrav − Sgf − Sgh + Ssource
]

. (9.8)

Here Dχ̂ denotes the integration over the lapse function, shift vector and spatial
metric. The source term now includes sources for the ghosts, η̄, η, η̄i, η

i, and reads

Ssource =
√
ε

∫

dDx
√
σ̄ N̄(tÑ + tiÑ

i + tij σ̃ij + η̄ω + ω̄η + η̄iω
i + ω̄iη

i) . (9.9)

Note that the invariance of the source term under background transformations can
be achieved by choosing suitable variations for the sources. We refrain from giving
them here explicitly, since they will not play an essential role in the following.

To get a scale-dependent partition function we insert a regulator term −∆Sk

into the exponent as explained in Chapter 2. First of all it should be quadratic
in the fluctuation fields to allow for practical computations. For convenience we
separate the gravitational field content from the ghosts by writing

∆Sk =

√
ε

2

∫

dDxN̄
√
σ̄ χ̂Rgrav

k [χ̄] χ̂

+
√
ε

∫

dDx N̄
√
σ̄ (ω̄, ω̄i) Rgh

k [χ̄]
(

ω, ωj
)T

. (9.10)

Here we leave the cutoff operators Rgrav
k and Rgh

k arbitrary for the time being.
They will be specified later on and we just ask them to satisfy the conditions (2.3).
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The derivation of the Wetterich equation then follows the manipulations out-
lined in Section 2.2. While performing the Legendre transformation to find the
effective average action (EAA) we have to introduce the expectation values of the
fluctuation fields χgrav = (h, hi, hij) = (〈N̂〉, 〈N̂ i〉, 〈σ̂ij〉) and χgh = (c̄, c, c̄i, c

i) =
(〈ω̄〉, 〈ω〉, 〈ω̄i〉, 〈ωi〉) for the gravitational fields and the ghosts respectively. As the
final equation we find

∂tΓk =
1

2
STr

[

(

Γ
(2)
k +Rk

)−1

∂tRk

]

. (9.11)

Here the supertrace STr includes a trace over field space and all further internal
indices as well as a momentum integration. Furthermore it encodes a minus sign
for fermionic field contributions as e.g. the ghost fields. The second variation of
Γk is given by

(

Γ
(2)
k

)

ab
= (−1)[c]

1

ε N̄2
√

σ̄(x, τx) σ̄(y, τy)

δ2Γk

δχa(x, τx)δχb(y, τy)
. (9.12)

Here the index [c] is zero for commuting and one for anti-commuting fields respec-
tively. The resulting background EAA is by construction invariant under back-
ground transformations. For vanishing fluctuation fields it reduces to the EAA,
which in turn becomes the effective action Γ for k → 0. The latter one is finally
invariant under the supposed Diff(M,Σ) due to the limit of vanishing fluctuations
as explained in Appendix B.2.



Chapter 10

Flow Equations for Foliated

Gravity

10.1 A Versatile Truncation

After deriving the Wetterich equation in the last section we will introduce a first
truncation for an explicit analysis of a Diff(M,Σ) invariant theory. The necessity
of using truncations has been explained in Chapter 2 and, to be precise, we will
discuss in the following a truncation containing the monomials of the Hořava-
Lifshitz action (8.12). This action will serve as an ansatz for the gravitational
part of the EAA, Γgrav

k , by inserting scale dependent coupling constants Gk for
the Newton constant, Λk for the cosmological constant and λk for the coupling λ2

potentially encoding an explicit breaking of the Diff(M) symmetry. Note that we
consider only λ2 for technical simplicity. However, since it introduces an explicit
invariance between space and time it is sufficient to investigate many interesting
aspects. The consideration of the second coupling, λ1, appearing in (8.12) is beyond
the scope of this thesis and shall be left for future work.

Besides the gravitational part, we have to add the gauge-fixing and ghost action
which we approximate by their classical versions (9.5) and (9.6) respectively. Thus
our truncation reads Γk = Γgrav

k + Sgf + Sgh with

Γgrav
k =

√
ε

16πGk

∫

dDxN
√
σ

[

1

ε

(

KijK
ij − λkK

2
)

− (d)R+ 2Λk

]

. (10.1)

The field N denotes the classical version of the quantum field Ñ . Analogously we
define N i and σij via

N = N̄ + 〈N̂〉 , N i = N̄ i + 〈N̂ i〉 , σij = σ̄ij + 〈σ̂ij〉 . (10.2)

Depending on these fields the extrinsic curvature reads

Kij =
1

2N
(∂τσij −∇iNj −∇jNi) . (10.3)
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The covariant derivative∇ and the Ricci scalar (d)R are constructed from the spatial
metric σij . Here and in the following we omit the superscript d for the Ricci scalar
since the D-dimensional version will not play any role.

The truncation (10.1) is a very versatile ansatz, as it allows for the investiga-
tion of two completely different aspects. The first appears in the limit λk = 1,
which makes Γgrav

k invariant under Diff(M). Although the whole truncation is not
invariant under spacetime diffeomorphisms, this foliated Einstein-Hilbert trunca-
tion serves as an approximation of a Diff(M) invariant theory. Within this setting
one can compare the results of the metric Einstein-Hilbert truncation with the
Euclidean signature and the Lorentzian one of the foliated formulation by utilising
the signature parameter ε. Besides the approximation of the usual Einstein-Hilbert
truncation the ansatz (10.1), including the asymmetry coupling λk, serves as a low
energy approximation of HLG, including all terms with two spatial derivatives.
All terms with higher orders in spatial derivatives are subleading and thus do not
contribute to the IR limit of HLG. The ansatz (10.1) then allows to test if the RG
flow of HLG restores Diff(M) dynamically and approaches classical GR in the IR.

The derivation of the beta functions encoding the scale dependence of the cou-
plings contained in (10.1) proceeds as follows. Firstly, we observe that the calcu-
lation can be simplified considerably by two adaptations. The first is the use of
Landau gauge. Choosing αL, αS → 0, the gauge fixing action becomes two delta
functions, δ(N̂) and δ(N̂ i), under the path integral. Thus we can freeze N̂ and
N̂ i to zero. The second adaptation, simplifying the calculations, is the choice of a
special background. This choice is almost arbitrary since the background is only
a technical tool, serving as a bookkeeping device during the calculation. The only
condition it has to match is that it should enable us to distinguish the different
interaction monomials. For tracking the RG flow of the couplings contained in
(10.1), the following choice suffices

N̄ = 1 , N̄ i = 0 , σ̄ij(τ, x) = χ(τ)σ̄ij(x)|Sd . (10.4)

Here, σ̄ij(x)|Sd is the metric of the time-independent d-dimensional sphere and
in the following we denote σ̄ij(τ, x) by σ̄ij for briefness. Whenever we use the
time-independent sphere, the metric is marked with an index Sd. The maximal
symmetry of the sphere Sd simplifies the Ricci tensor and the Riemann tensor to
give

R̄ij =
R̄

d
σ̄ij , R̄ijkl =

R̄

d(d− 1)
(σ̄ikσ̄jl − σ̄ilσ̄jk) . (10.5)

Note that here the curvature scalar R̄ is, in contrast to the considerations in Ap-
pendix C.2, time dependent. Explicitly the Ricci scalar is proportional to χ−1(τ).
Evaluating the gravitational part of our truncation, (10.1), within the Landau
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gauge and on this background we find

Γgrav
k |back =

√
ε

16πGk

∫

dDx
√

σ̄|Sd χd/2

[

dγ2

4ε
(1− dλk)−

R̄|Sd

χ
+ 2Λk

]

(10.6)

with γ = ∂τ lnχ. Note that the KijK
ij term and the K2 term get the same

proportionality. This shows that our background is sufficient to distinguish the
extrinsic curvature terms from the intrinsic term but is not general enough to
distinguish between the two extrinsic terms. Therefore within this background
we can discuss three couplings. The cosmological constant Λk corresponds to the
volume term, the Newton constant Gk is related to the scalar curvature term and
the last coupling, λk, is associated with the parameter γ2.

The Landau gauge and the background (10.4) can be used to calculate the right
hand side of the foliated Wetterich equation (9.11) within our truncation. We start

with the second variation of the EAA with respect to the gravitational fields δ2Γk

δχ2
grav

.

Note that due to the gauge fixing, the lapse function and shift vector are fixed and
we are left with the spatial metric 〈σ̂ij〉 = hij . The calculation of the second
variations is lengthy but straightforward. Therefore we just give the result here
and explain the details in Appendix F.1. For the following steps it is convenient
to organise the terms quadratic in the fluctuations according to the components.
Thus we write Γgrav

k [σij ] = Γgrav
k [σ̄ij ] +

1
2δ

2Γgrav
k [hij ; σ̄ij ] + . . .. The terms linear

in the fluctuations as well as terms with more than two powers of the fluctuation
field are not required, since they do not enter into the present computation. The
quadratic term separated by the field content as derived in Appendix F.1 reads

δ2Γgrav
TT =

√
ε

16πGk

∫

dDx
√
σ̄ 1

2h
TT
ij

[

∆+ C2TR̄− 2Λk − 1
ε∂

2
τ

+ γ
4dλk − d− 4

2ε
∂τ + γ2 d

2λk + 4− d

4ε

]

hTTij , (10.7)

δ2Γgrav
ξξ =

√
ε

16πGk

∫

dDx
√
σ̄ ξi

[

d−2
d R̄− 2Λk − 1

ε∂
2
τ

+ γ
4dλk − d− 4

2ε
∂τ + γ2 (d

2 + 4d)λk − d− 1

4ε

]

ξi , (10.8)

δ2Γgrav
ςς =

√
ε

16πGk

∫

dDx
√
σ̄ 1

2 ς
[

− C0(∆− R̄)− 2(d−1)
d Λk − d−1

dε ∂2
τ

+ γ
(d− 1)(4dλk − d− 4)

2dε
∂τ + γ2 (d− 1)((d2 + 8d)λk − d− 8)

4dε

]

ς , (10.9)
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δ2Γgrav
hh =

√
ε

16πGk

∫

dDx
√
σ̄ 1

2h
[

− C0∆− (d−2)(d−4)
2d2 R̄+ d−2

d Λk +
dλk−1

dε ∂2
τ

− γ
(d− 4)(dλk − 1)

2dε
∂τ − γ2 (d

2 − 2d− 16)(dλk − 1)

8dε

]

h , (10.10)

δ2Γgrav
hς = −

√
ε

16πGk

∫

dDx
√
σ̄ C0h

[

∆2 − 1
d−1R̄∆

]1/2

ς . (10.11)

Here ∆ = −σ̄ij∇̄i∇̄j denotes the background Laplacian, C0 = (d−2)(d−1)
d2 and

C2T = d2−3d+4
d(d−1) . Furthermore we used the TT decomposition [175] as well as a field

redefinition [150]. The latter ones are described in detail in the appendix and can
be summarised in

hij = hT
ij +

1

d
σ̄ijh , σ̄ijhT

ij = 0 (10.12)

with

hT
ij = hTT

ij +2∇̄(i

[

∆− 1
d R̄
]−1/2

ξj)+
[

∇̄i∇̄j − 1
d σ̄ij

][

∆(∆− 1
d−1 R̄)

]−1/2

ς . (10.13)

The second variations with respect to the component fields (10.7)-(10.11) are
not yet diagonal, but we can handle the mixing term in the scalar sector as shown
below. Note as well that δ2Γgrav

ξξ is independent of the spatial Laplacian, since this
will be important in the following. To complete the information about the second
variation of the EAA we give the results for the ghost part. Here it is important
that we used the Landau gauge and all fluctuating lapse functions and shift vectors
vanish. This simplifies the ghost action (9.6) considerably and the part quadratic
in the ghost fluctuations for vanishing background ghost fields reads

δ2Γgh
c̄c =

√
ε

∫

dDx
√
σ̄ c̄ ∂τ c , δ2Γgh

c̄icj
=

√
ε

∫

dDx
√
σ̄ c̄i ∂τ ci . (10.14)

As we have seen for δ2Γgrav
ξξ we do not get any dependencies on the spatial Laplacian.

After gathering all information for Γ
(2)
k the next object on the right hand side

of (9.11) is the regulator Rk. This regulator should serve mainly two purposes.
First it should implement a momentum-shell-wise integration and second it should
act as an IR regulator. The only restrictions for the form of the regulator is
the invariance under background transformations (9.4). Note that this symmetry
allows us to handle the fluctuations in spatial and time direction separately. We
use this and introduce a regulator Rk which is purely spatial and thus regulates
only the spatial fluctuations. The fluctuations in time direction will be considered
afterwards. One advantage of this treatment is that we can investigate Lorentzian
signatures. This is very hard for spacetime-symmetric regulators since they have
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to be positive definite for all values of k. Such regulators have been investigated
in [176].

Now we can have a closer look at the cutoff term Rk. First of all we separate
Rk into the matrix part (in field space) and a scalar function Rk as

[Rk]ij = [Zk]ij Rk = [Zk]ij k
2R(0)

(

∆
k2

)

. (10.15)

We choose a cutoff of Type I according to the nomenclature in [121]. This prescrip-

tion constructs Rk in such a way that Laplacians in Γ
(2)
k are dressed up with the

k-dependent mass term Rk according to ∆ → Pk = ∆ + Rk. Note that all terms
independent of the spatial Laplacian do not get any regulator contributions and
therefore drop out of the right hand side of the flow equation (9.11). Thus we get
no ghost contributions and no vector contributions. We are left with the following
regulator

Rk =





RTT
k

Rhh
k Rhς

k

Rςh
k Rςς

k



 (10.16)

with

Rhh
k = Rςς

k = − 1

32πGk
C0Rk ,

Rςh
k = Rhς

k = − 1

32πGk
C0

[

(

P 2
k − 1

d−1R̄Pk

)1/2

−
(

∆2 − 1
d−1R̄∆

)1/2
]

,

RTT
k =

1

32πGk
12TRk . (10.17)

Here 12T denotes the d2T-dimensional unit matrix with d2T = 1
2 (d + 1)(d − 2).

The scalar profile function R(0), interpolating smoothly between R(0)(0) = 1 and
R(0)(∞) = 0, is kept arbitrary here and will be specified to the optimised version
later on.

Combining the second variations (10.7)-(10.11) and the regulator (10.16) we
can write the foliated Wetterich equation (9.11) as

∂tΓk = TTT + Tscalar (10.18)

with the TT part

TTT =
32πGk

2
TrD

[(

Pk+C2TR̄−2Λk− 1
ε∂

2
τ+γ 4dλk−d−4

2ε ∂τ+γ2 d2λk+4−d
4ε

)−1

∂tRTT
k

]

.

(10.19)
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The scalar part is a bit more involved since it is not diagonal. However we can just
treat the scalar part as matrix valued in field space to find

Tscalar =
1

2
TrD

[

(

Γ
(2)
hh Γ

(2)
hς

Γ
(2)
ςh Γ

(2)
ςς

)−1

∂t

(

Rhh
k Rhς

k

Rςh
k Rςς

k

)

]

=
1

2
TrD

[Γ
(2)
ςς ∂tRςς

k + Γ
(2)
hh∂tRhh

k − 2Γ
(2)
hς ∂tRhς

k

Γ
(2)
hhΓ

(2)
ςς − Γ

(2)
hς Γ

(2)
ςh

]

. (10.20)

Here the index D at the traces highlights that the momentum integral, correspond-
ing to it, is actually D-dimensional.

10.2 Evaluating the Functional Traces

Up to this point we regulated only the spatial fluctuations but ignored the fluc-
tuations in time direction. As promised in the last section we will treat them
separately here. For this purpose we follow a completely different approach com-
pared to the regulator insertion. We follow the lines of finite-temperature flow
equations [176–178] and introduce a finite length β of the time direction with pe-
riodic boundary conditions. This can be use to Fourier expand the τ -dependent
fields with a discrete Fourier transformation

φ(τ, x) =

∞
∑

n=−∞
φn(x)e

2πınτ/β ⇒ φn(x) =
1

β

∫ β

0

dτ φ(τ, x)e−2πınτ/β . (10.21)

The complex coefficients φn(x) satisfy the reality constraint φn(x) = φ∗
−n(x). Note

the right hand side of the foliated Wetterich equation (9.11) contains τ integrals
(if we use the heat-kernel expansion (C.4)) as well as τ derivatives. Furthermore
we encounter τ -dependent backgrounds which might be the volume, the volume
multiplied with the Ricci scalar and the volume multiplied with γ2 = (∂τ lnχ)

2.
To analyse the Fourier transform of the right hand side we specify the background
to be slowly varying in time. Thus we use

χ(τ) = exp(− τ
θ ) , ⇒ R̄ = R̄|Sd exp( τθ )

⇒
∫

ddx
√
σ̄ =

∫

ddx
√

σ̄|Sd exp(− dτ
2θ ) , γ = − 1

θ (10.22)

where the terms with a lower index Sd are evaluated on the time-independent,
d-dimensional sphere. Here the time constant θ is chosen as θ ≫ β. Note that
we are using a non-periodic function χ(τ) on a periodic manifold. However, the
background is just a tool and does not have a physical interpretation. Thus we keep



10.2 Evaluating the Functional Traces 93

this background τ dependence with a discontinuity at τ = 0 = β. Using (10.22)
we can perform the following approximation

√
σ̄ =

√

σ̄|Sd e−dτ/2θ =
√

σ̄|Sd +O( τθ ) ,√
σ̄ R̄ =

√

σ̄|Sd R̄|Sde−(d−2)τ/2θ =
√

σ̄|Sd R̄|Sd +O( τθ ) ,
√
σ̄ γ2 =

√

σ̄|Sd e−dτ/2θ 1

θ2
=
√

σ̄|Sd

1

θ2
+O( τθ ) . (10.23)

Here we keep only terms of order τ0. Higher orders in τ are beyond our trunca-
tion and within the order τ0 the parameter θ suffices to discriminate between the
extrinsic and intrinsic terms in our truncation.

The trace over time-like fluctuations and the time derivative turn into

TrD → √
ε

∞
∑

n=−∞
Trd , ∂τ → ı

(

2πn

β

)

. (10.24)

Here Trd denotes the leftover trace which contains the spatial operator trace and
the trace in field space. Since all the traces appearing in the following are d-
dimensional, the index d will be suppressed. The last adaptation due to the

discretisation affects the second variations Γ
(2)
k . So far this denoted the second

variation with respect to the τ -dependent fields and changes now to become the
second variation with respect to the field modes. For quadratic terms we find

∫

dτφ(τ)φ(τ) = β
∑

n

φnφ−n (10.25)

and thus the second variations receive an additional prefactor β. The same holds
for the regulator as it was adapted to the second variation.

Finally we have to explain, how this discretisation is able to implement a cutoff.
Note that the finite length of the time direction automatically acts as a IR cutoff
and a UV cutoff can be implemented by simply restricting the sum over Matsubara
modes. Thus the Fourier transformation gives us an alternative implementation to
the regulator insertion used in the spatial direction.

If we evaluate the derivative with respect to the RG time t on the left hand side
of the FRGE (9.11) and take into account the special background (10.22) we find
that (10.6) becomes

∂tΓk=

√
ε

16π

∫

ddx
√

σ̄|Sd

[dγ2

4ε

(

∂t
β
Gk

− d∂t
βλk

Gk

)

− R̄|Sd∂t
β
Gk

+ 2∂t
βΛk

Gk

]

(10.26)

where we evaluated the t derivative at vanishing fluctuations. Note that we used
the expansion (10.23) and furthermore evaluated the τ integral, leading to a factor
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β. Since we would like to keep the possibility of a t-dependent time-interval length,
we moved this factor under the t derivatives. As we have seen in (10.6), the running
couplings are encoded in the coefficients of the terms proportional to a constant,
proportional to R and proportional to γ2.

Finally we are interested in the beta functions of the coupling constants of
our truncation. The flow equation for the Newton constant Gk can be found by
projections onto the terms proportional to R̄. The one for the cosmological constant
Λk follows from the constant terms and finally the flow equation for the asymmetry
coupling λk can be found by projecting onto terms proportional to γ2. All higher
orders in R̄ and γ are outside the truncation and can be dropped. This can be used
to evaluate the right hand side (10.18). Before analysing the scalar contribution we
start with an expansion of the denominator of the transverse traceless part which
is given in (10.19) and has the form

TTT =
1

2

√
ε
∑

n

Tr2T

[

∂t(βZNkRk)

βZNk

1

Pk + b1 + b2R̄+ b3γ + b4γ2

]

. (10.27)

Here we introduced the wave function renormalisation ZNk carrying the running of
the inverse of the Newton constant, Gk = Z−1

NkG0. The coefficients b1, . . . , b4 are
given by

b1 = −2Λk +
1
ε

(

2πn
β

)2

, b2 = C2T ,

b3 = ı 4dλk−d−4
2ε

(

2πn
β

)

, b4 = d2λk+4−d
4ε . (10.28)

The expansion in R̄ and γ leads to

TTT =
1

2

√
ε
∑

n

Tr2T

[∂t(βZNkRk)

βZNk

( 1

Pk + b1
− b2

(Pk + b1)
R̄

− b4
(Pk + b1)2

γ2 +
b23

(Pk + b1)3
γ2
)]

+ . . . . (10.29)

Here and in the following, the dots denote irrelevant terms, not contributing to the
present truncation. Now all appearing traces are of the form discussed in Appendix
C. Therefore we can write the result in terms of the threshold functions Φ given in
(C.31). For convenience we again combine them to qp,qn (w) = Φp,q

n (w)− 1
2ηN Φ̃p,q

n (w)
with the anomalous dimension of the Newton constant given by ηN = −∂t ln(βZNk).
The result reads

TTT =
d2T

√
ε

(4π)d/2

∑

n

∫

ddx
√
σ̄kd

[

q1,0d/2 +
R̄
k2

(

(d+2)(d−5)
6(d−1)(d−2)q

1,0
d/2−1 − C2Tq

2,0
d/2

)

+ γ2

k2

(

− (4dλk−d−4)2

4

(

2πn
βk

)2

q3,0d/2 − d2λk+4−d
4ε q2,0d/2

)]

+ . . . . (10.30)
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Two comments are in order. Firstly, a term proportional to δd,2, given in Appendix
C.3, is ignored since we will concentrate on d = 3 later on. Secondly (10.30) differs
from the expression given in [168], where the wrong heat-kernel coefficients have
been used. All q functions in (10.30) are evaluated at

w2T = −2Λ̄k +
1

ε
m2n2 (10.31)

with the dimensionless cosmological constant Λ̄k and the Kaluza-Klein mass m
defined as

Λ̄k =
Λk

k2
, m =

2π

βk
, Ḡk = Gkk

d−1 . (10.32)

For completeness we also defined the dimensionless Newton constant Ḡk via a
multiplication with a suitable power of the scale k.

The scalar trace can be evaluated along the lines of the TT calculation. However
it is more involved and very lengthy. Thus the details have been relegated to
Appendix F.2. At this point we just state the final result

Tscalar = − 2
√
ε

(4π)d/2

∑

n

∫

ddx
√
σ̄kd

[

a1q
1,0
d/2

+
R̄

k2

(

a1

6 q1,0d/2−1 + a2Xq1,0d/2 + (a3 + a4m
2n2)Xq2,0d/2 + a5Xq2,−1

d/2

)

+
γ2

k2

(

a6Xq1,0d/2 + (a7 + a8m
2n2 + a9Xm2n2 + a10Xm4n4)Xq2,0d/2

+ (a11 + a12Xm2n2)Xq2,−1
d/2

+ (a13 + a14m
2n2 + a15m

4n4)X2m2n2q3,0d/2

+ (a16 + a17m
2n2)X2m2n2q3,−1

d/2 + a18X
2m2n2q3,−2

d/2

)

]

+ . . . . (10.33)

Here all q functions are understood to be evaluated at

w0 =
1

Λ̄k − 1−λk

ε m2n2

(

−2Λ̄2
k +

d−4+2dλk

(d−2)ε Λ̄km
2n2 − (dλk−1)

(d−2) m4n4
)

. (10.34)

The prefactors a1, . . . , a18 depend on the dimension and the coupling constants and
are given in (F.26).

At this stage, we are left with the sums over the Matsubara modes in (10.30)
and (10.33). These can be evaluated analytically as explained in Appendix F.3.
The result can be given in terms of the summed threshold functions T and S defined
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in this appendix and reads

TTT =
d2T

√
ε

(4π)d/2

∫

ddx
√
σ̄kd

[

T 1,0
d/2 +

R̄
k2

(

(d+2)(d−5)
6(d−1)(d−2)T

1,0
d/2−1 − C2TT

2,0
d/2

)

− γ2

k2

(

(4dλk−d+4)2

4 T 3,1
d/2 +

d2λk+4−d
4ε T 2,0

d/2

)]

,

Tscalar=− 2
√
ε

(4π)d/2

∫

ddx
√
σ̄kd

[

a1S
1,0
d/2,0

+ R̄
k2

(

a1

6 S1,0
d/2−1,0+ a2S

1,0
d/2,1 + (a3 + a5)S

2,0
d/2,1 + a4S

2,1
d/2,1

)

+ γ2

k2

(

a6S
1,0
d/2,1 + (a7 + a11)S

2,0
d/2,1 + a8S

2,1
d/2,1 + (a9 + a12)S

2,1
d/2,2

+ a10S
2,2
d/2,2 + (a13 + a16 + a18)S

3,1
d/2,2 + (a14 + a17)S

3,2
d/2,2 + a15S

3,3
d/2,2

)

]

.

(10.35)

This final right hand side, given in terms of the summed q functions T and S, has
to be compared to the left hand side (10.26). Evaluated at vanishing fluctuations
the latter one reads

∂tΓk =

√
ε

16πG0

∫

ddx
√

σ̄|Sd

[dγ2

4ε
(∂t(βZNk)− d∂t(βZNkλk))

− ∂t(βZNk)R̄|Sd + 2∂t(βZNkΛk)
]

(10.36)

where we replacedGk = G0/ZNk. Again the index Sd denotes the evaluation on the
time-independent, d-dimensional sphere. For convenience we switch to dimension-
less coupling constants (10.32). Therefore the beta function for the dimensionless
Newton constant can be given as

∂tḠk = (d− 1 + ηN + ∂tβ
β )Ḡk (10.37)

with the anomalous dimension ηN = −∂t ln(βZNk). For the derivation of the beta
function for the cosmological constant we compare the terms proportional to the
volume on the left (10.36) and the right hand side (10.35) of the Wetterich equation.
We find

∂t(βZNkΛk)

βZNk
= ∂tΛk − ηNΛk =

2Ḡk

(4π)d/2−1β
k
[

d2TT
1,0
d/2 − 2a1S

1,0
d/2,0

]

⇒ ∂tΛ̄k = (ηN − 2)Λ̄k +
4mḠk

(4π)d/2

[

d2TT
1,0
d/2 − 2a1S

1,0
d/2,0

]

. (10.38)
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Next we are interested in the beta function of the anisotropy parameter λk. This
is derived by the comparison of the terms proportional to γ2. We find

∂tλk =
dλk − 1

d
ηN − 32εmḠk

d2(4π)d/2

[

d2T

(

− (4dλk−d+4)2

4 T 3,1
d/2 − d2λk+4−d

4ε T 2,0
d/2

)

− 2
(

a6S
1,0
d/2,1 + (a7 + a11)S

2,0
d/2,1 + a8S

2,1
d/2,1 + (a9 + a12)S

2,1
d/2,2 + a10S

2,2
d/2,2

+ (a13 + a16 + a18)S
3,1
d/2,2 + (a14 + a17)S

3,2
d/2,2 + a15S

3,3
d/2,2

)]

. (10.39)

The anomalous dimension on the other hand is derived by a comparison of the
terms proportional to R̄ on the left (10.36) and the right hand side (10.35) and
reads

ηN =
8mḠk

(4π)d/2

[

d2T

(

(d+2)(d−5)
6(d−1)(d−2)T

1,0
d/2−1 − C2TT

2,0
d/2

)

− 2
(

a1

6 S1,0
d/2−1,0 + a2S

1,0
d/2,1 + (a3 + a5)S

2,0
d/2,1 + a4S

2,1
d/2,1

) ]

. (10.40)

Note that the S and T functions, defined in (F.50) and (F.34) respectively, depend
on ηN. Splitting S and T into Ψ, Ψ̃, Υ and Υ̃ defined in Appendix F.3 leads to

ηN =
mḠkB1(Λ̄k, λk)

1 +mḠkB2(Λ̄k, λk)
(10.41)

with

B1 =
8

(4π)d/2

[

− 2
(

a1

6 Ψ1,0
d/2−1,0 + a2Ψ

1,0
d/2,1 + (a3 + a5)Ψ

2,0
d/2,1 + a4Ψ

2,1
d/2,1

)

+ d2T

(

(d+2)(d−5)
6(d−1)(d−2)Υ

1,0
d/2−1 − C2TΥ

2,0
d/2

) ]

B2 =
4

(4π)d/2

[

− 2
(

a1

6 Ψ̃1,0
d/2−1,0 + a2Ψ̃

1,0
d/2,1 + (a3 + a5)Ψ̃

2,0
d/2,1 + a4Ψ̃

2,1
d/2,1

)

+ d2T

(

(d+2)(d−5)
6(d−1)(d−2)Υ̃

1,0
d/2−1 − C2TΥ̃

2,0
d/2

) ]

. (10.42)

Finally we arrived at a non-linear system of beta functions for the dimensionless
Newton constant Ḡk, the dimensionless cosmological constant Λ̄k and the asym-
metry parameter λk which reads

∂tḠk = βḠ(Ḡk, Λ̄k, λk,m) ,

∂tΛ̄k = βΛ̄(Ḡk, Λ̄k, λk,m) ,

∂tλk = βλ(Ḡk, Λ̄k, λk,m) . (10.43)
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Note that the beta functions here, in contrast to the metric formulation, depend
parametrically on the Kaluza-Klein mass m. The explicit expressions are given in
(10.37), (10.38) and (10.39). They read

βḠ = (d− 1 + ηN + ∂tβ
β )Ḡk ,

βΛ̄ = (ηN − 2)Λ̄k +
4mḠk

(4π)d/2

[

d2TT
1,0
d/2 − 2a1S

1,0
d/2,0

]

,

βλ =
dλk − 1

d
ηN − 32εmḠk

d2(4π)d/2

[

d2T

(

− (4dλk−d−4)2

4 T 3,1
d/2 − d2λk+4−d

4ε T 2,0
d/2

)

− 2
(

a6S
1,0
d/2,1 + (a7 + a11)S

2,0
d/2,1 + a8S

2,1
d/2,1 + (a9 + a12)S

2,1
d/2,2 + a10S

2,2
d/2,2

+ (a13 + a16 + a18)S
3,1
d/2,2 + (a14 + a17)S

3,2
d/2,2 + a15S

3,3
d/2,2

)]

. (10.44)

This set of beta functions represents a novel type of flow equations and constitutes
a main result of this thesis. The first novelty is encoded in the ε dependence and
enables us to analyse the effect of different signatures. The second novelty is the
inclusion of an explicit asymmetry between space and time allowing us to discuss
the low-energy behaviour of HLG in the next chapter.



Chapter 11

RG Flows of Foliated

Gravity

11.1 Phase Diagram of the Foliated

Einstein-Hilbert Truncation

The last chapter was dedicated to the derivation of the beta functions for foliated
gravity. The resulting system of flow equations is given in (10.43). The properties
of it shall be analysed within this section in the symmetric limit λk = 1. Thus, we
discuss the beta functions corresponding to the foliated Einstein-Hilbert truncation
containing two couplings, the Newton constant and the cosmological constant. The
most obvious difference to the metric formulation is the parametric dependence on
the Kaluza-Klein mass m. In (10.32) it is given as m = 2π

βk and thus depends
on both the size of the time circle and the RG scale k. Within an Asymptotic
Safety scenario one would expect that m finds a fixed point m∗ for k → ∞. In
the following we will concentrate on two different options. The first is given by
constant length of the time circle β and thus is called the Gaussian fixed-point
scenario, since m → m∗ = 0 for k → ∞. The second scenario approximates the
Kaluza-Klein mass at all scales by a supposed NGFP value m = m∗ 6= 0. This
scenario is called floating fixed-point scenario and passes a k dependence to the
length of the time circle β.

Notably, the beta functions of the foliated case are much more complicated than
the ones encountered in metric gravity. Foremost, this complicated structure arises
due to the summation of Matsubara modes. According to (F.29) we find hyperbolic
functions, well defined on the entire real axis, or trigonometric functions, giving
rise to poles depending on the argument. In Appendix F.3 we have seen that
the argument is either arg2T for TT sector or arg± for the scalar sector. These
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ε Λ̄k < −4C0 −4C0 < Λ̄k < 1/2 1/2 < Λ̄k

+1 hyperbolic mixture trigonometric

−1 trigonometric mixture hyperbolic

Table 11.1: The analytic structure of the beta functions is given in terms of
the signature of spacetime ε and the value of the cosmological
constant Λ̄k. We distinguish the regions where the beta functions
are constructed from hyperbolic or trigonometric functions only
or contain both types of terms.

arguments read

arg2T =
π

m

√

ε(1− 2Λ̄k) ,

arg± = π

√

√

√

√

εΛ̄k

m2

(

3d−4
2(d−1) ±

√

(

3d−4
2(d−1)

)2

+ (d−2)(1−2Λ̄k)

(d−1)Λ̄k

)

. (11.1)

The analytic structure arising from these arguments depends on the signature and
the value of the cosmological constant and is collected in Table 11.1. For Λ̄k > 1/2
the argument of the hyperbolic functions, arg2T, becomes imaginary for Euclidean
and real for Lorentzian signature. The converse holds for the argument of the
trigonometric functions, arg±. Therefore the beta functions become trigonomet-
ric for Euclidean signature and hyperbolic for Lorentzian signature. Next we can
discuss the case Λ̄k < −4C0. There we find that arg2T is real or imaginary for Eu-
clidean and Lorentzian signature respectively. Again we find the converse for arg±
and therefore, the beta functions become hyperbolic for Euclidean and trigonomet-
ric for Lorentzian signature. Between Λ̄k = −4C0 and Λ̄k = 1/2 we find a mixture
of trigonometric and hyperbolic functions.

Let us elaborate a bit more on the central region −4C0 < Λ̄k < 1/2, as this
is the most interesting one in the metric formulation. For the sake of comparison
to the latter we concentrate on ε = +1. In (11.1) we see that the TT sector
contributes hyperbolic function, while the pole-producing trigonometric functions
originate from the scalar sector. Tracing back the reason for that we find that it
relates to the wrong relative sign between the kinetic and potential part of the
conformal mode. This is the conformal factor problem, very well known in the
metric formulation. We expect that it will be cured by higher-derivative terms, not
considered in the present truncation.

After discussing the analytic structure of the beta functions we can discuss
consequences of hyperbolic and trigonometric structures in more detail. We start
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with the Gaussian fixed-point scenario corresponding to a constant time-interval
length β. The most interesting case, of course, is the decompactification limit β →
∞, as it leads us to a familiarD-dimensional spacetime. In this limit the Matsubara
sums in (F.29) become continuous integrals and thus the trigonometric functions
lead to divergent expressions. According to Table 11.1 we find well defined beta
functions only in two regions, Λ̄k < −4C0 in Euclidean and Λ̄k > 1/2 in Lorentzian
signature. In these two regions a numerical analysis did not reveal any NGFP
suitable for an Asymptotic Safety scenario. This complies with the expectation, as
the interesting region, according to the metric analysis, is the central one.

Although the decompactification limit did not reveal any fixed point we might
find some in the opposite limit β → 0. Within this compactification limit the time
circle collapses. Consequently, the Matsubara modes become infinitely heavy and
decouple. This, in turn, leads us to an essentially d-dimensional flow. As we are
effectively reducing the dimension, we have to redefine the Newton constant via

G
(d)
k = G

(D)
k β−1 ⇒ Ḡ

(d)
k =

m

2π
Ḡ

(D)
k (11.2)

to capture the correct physics. The beta function for Ḡ
(d)
k can be derived from the

one for Ḡ
(d)
k easily and finally applying the compactification limit m → ∞ leads to

∂tḠ
(d)
k = β

(d)

Ḡ
(Ḡ

(d)
k , Λ̄k) , ∂tΛ̄k = β

(d)

Λ̄
(Ḡ

(d)
k , Λ̄k) (11.3)

with

β
(d)

Ḡ
=
(

d− 2 + η
(d)
N

)

Ḡ
(d)
k ,

β
(d)

Λ̄
=
(

η
(d)
N − 2

)

Λ̄k +
2Ḡ

(d)
k

(4π)d/2−1

(

d2T + 1
)(

Φ1,0
d/2 −

1

2
η
(d)
N Φ̃1,0

d/2

)

. (11.4)

Here the threshold functions Φ and Φ̃ are defined in (C.32) and evaluated at −2Λ̄k.

Furthermore the d-dimensional anomalous dimension η
(d)
N reads

η
(d)
N =

2πḠ
(d)
k B1(Λ̄k)

1 + 2πḠ
(d)
k B2(Λ̄k)

(11.5)

with the functions B1 and B2 given as

B1 =
8

(4π)d/2

[ (

1 + (d−5)(d+2)(d+1)
12(d−1)

)

Φ1,0
d/2−1 − d−2
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Φ1,0

d/2

−
(

(d+1)(d−2)(d2−3d+4)
2d(d−1) + (d−3)4Λ̄k−d+2

2dΛ̄k

)

Φ2,0
d/2

]

B2 =
4

(4π)d/2

[ (

1 + (d−5)(d+2)(d+1)
12(d−1)

)

Φ̃1,0
d/2−1 − d−2
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−
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(d+1)(d−2)(d2−3d+4)
2d(d−1) + (d−3)4Λ̄k−d+2

2dΛ̄k

)

Φ̃2,0
d/2

]

. (11.6)
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d Ḡ
(d)
∗ Λ̄∗ τ∗ θ1,2 τcomp

∗ θcomp
1,2

3 0.19 0.13 0.005 1.77± 1.10i - -

4 0.76 0.21 0.16 2.81± 3.03i 0.14 1.48± 3.04i

5 3.24 0.24 0.53 4.32± 4.89i 0.48 2.69± 5.15i

6 15.7 0.26 1.03 6.20± 6.66i 0.96 4.33± 7.14i

7 86.1 0.28 1.66 8.37± 8.36i 1.54 6.27± 9.05i

Table 11.2: Fixed point values, the universal product τ∗ and corresponding
critical exponents of the compactification limit within the foliated
Einstein-Hilbert truncation for 3 ≤ d ≤ 7. Remarkably the results
are very similar to the results obtained in the metric formulation
[179]. For comparison the latter are given in the last two columns.

Here again the threshold functions are evaluated at −2Λ̄k.

We find that the beta functions simplified considerably. Explicitly the signature
dependence dropped out completely. This was expected as the information about
the signature is stored in the time circle, which collapsed. Note that the simplified
beta functions are governed by the spatial TT metric and a scalar field, as the
transverse spatial vector within the York decomposition did not contribute. Thus
the decoupling of the latter, which was somewhat surprising at the beginning, is
necessary to find the d-dimensional gravity in the compactification limit.

Next, we determine the FPs of the flow equations (11.3), since these are central
for establishing a possible Asymptotic Safety scenario. First of all we find the

obvious GFP at the origin (Ḡ
(d)
k , Λ̄k) = (0, 0). Besides this trivial fixed point we

find a NGFP. For 3 ≤ d ≤ 7 its values and the corresponding critical exponents
are given in Table 11.2. The critical exponents have been calculated as explained
in Chapter 3. Furthermore, the universal scaling variable

τ∗ = Λ̄∗
(

Ḡ
(d)
∗
)2/(d−2)

(11.7)

is given. Notably the results given in Table 11.2 are very similar to known results,
which have been obtained within the metric Einstein-Hilbert truncation [179]. Thus
it is very likely that the two descriptions correspond to the same universality class.
To fortify this statement we can investigate the phase diagram resulting from the
beta functions (11.3) in d = 4, given in Figure 11.1. The comparison of it to the
phase diagram in Figure 6.1 corresponding to the metric formulation shows that
these two phase diagrams are virtually indistinguishable. The main difference is
the slight change of the pole structure. Most importantly, we find again the Type



11.1 Phase Diagram of the Foliated Einstein-Hilbert Truncation 103

0 0.2 0.4 0.6 1 ¥-0.2-0.4-0.6-1-¥

0

0.2

0.4

0.6

1

¥

-0.2

-0.4

-0.6

-1

-¥

Λ̄k

Ḡk

Figure 11.1: The phase diagram of the foliated Einstein-Hilbert truncation
in the compactification limit for d = 4. The pole of diverging
anomalous dimension η

(d)
N is depicted in red and the arrows point

from UV to IR.

IIIa trajectories, starting close to the NGFP, passing by close to the GFP and
staying at positive cosmological constant.

Up to this point we considered the Gaussian fixed-point scenario of constant β.
As mentioned above, the property of NGFPs that dimensionless couplings become
constant motivates to also study the case of a constant Kaluza-Klein mass m.
This floating fixed point scenario is interesting, since a constant m leads to β
proportional to the inverse of the RG scale k. Thus the time circle decompactifies
in the IR as it is necessary for a theory reproducing GR at low energies. At high
energies on the other hand the time circle collapses and the situation is likely to
be similar to the compactification limit discussed above. According to Figure 11.1
the most interesting parameter range would therefore be 0 < Λ̄k < 1/2, where the
NGFP arising in the metric formulation is situated. However, Table 11.1 states
that this region is potentially troublesome. Therefore we elaborate on the pole



104 11 RG Flows of Foliated Gravity

ε Ḡ∗ Λ̄∗ Ḡ∗Λ̄∗ θ1,2

+1 0.18 0.13 0.023 1.78± 1.06i

−1 0.20 0.13 0.026 1.75± 1.13i

Table 11.3: Fixed point values, universal product and corresponding critical
exponents within the foliated Einstein-Hilbert truncation for m =
2π in d = 3.

structure a bit more detailed, before analysing possible NGFPs.
To start with, we discuss arg2T given in (11.1). For Euclidean signature it is

real if Λ̄k < 1/2 and thus not troublesome since it is the argument of hyperbolic
functions. In Lorentzian signature on the other hand arg2T becomes imaginary
and therefore the hyperbolic function turns into a trigonometric one potentially
leading to poles. These poles appear if the argument becomes nπ with n an integer
number. Therefore they appear at

Λ̄k = −1

4
m2n2 +

1

2
. (11.8)

Thus the interesting region 0 < Λ̄k < 1/2 is free of poles, as long as m >
√
2. For

a better understanding the physical interpretation of these poles is in order. Their
appearance is caused by the propagator going onshell. Denoting the mass with M
its typical structure is εm2n2 + ~p 2 + M2. As the poles appear if this expression
vanishes they are found only for Lorentzian signature.

A similar analysis for the scalar sector shows that the central region is free of
divergences as long as

m >

√

3d− 4

2(d− 1)
. (11.9)

Combining this critical value for the Kaluza-Klein mass m with the critical value√
2 from the TT sector shows that

√
2 constitutes the critical limit if we assume

d ≥ 2.
As an example let us discuss the specific case d = 3,m = 2π. Within this

setting the interesting region does not show any divergences of the beta functions.
Therefore we can investigate the corresponding flow equations without considering
potentially ill-defined regions. Remarkably we find a NGFP in both signatures.
The FP values and the corresponding critical exponents are given in Table 11.3.
As the beta functions are well defined between Λ̄k = 0 and Λ̄k = 1/2 we can
draw the phase diagram restricted to this region. It is given in Figure 11.2 for
Euclidean as well as Lorentzian signature. Notably the difference between the two
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Figure 11.2: The phase diagram of the foliated Einstein-Hilbert truncation
for m = 2π in d = 3. The left plot shows the result within the
Euclidean signature and the right plot depicts the result for the
Lorentzian signature. The NGFP is depicted as a black dot and
the arrow point towards low energies.

plots is only marginal. The main difference results from the diverse FP values
given in Table 11.3. Moreover the resulting plots are very similar to the first
quadrant of the phase diagram resulting from the compactification limit, given in
Figure 11.1, and the one resulting from the metric formulation, given in Figure
6.1. This demonstrates that the signature effects play a sub-dominant role and
therefore supports the mainly Euclidean results obtained in the past. Additionally
our foliated setting gives further support for the results of the metric formulation.

However, the specific value m = 2π was chosen without any physical input and
therefore it is worth discussing the changes resulting from a varying Kaluza-Klein
mass m. Sticking to d = 3, the region 0 < Λ̄k < 1/2 is free of divergences within
the beta functions as long as m >

√
2. Evaluating the fixed point values and the

corresponding critical exponents for various values of m leads to the results shown
in Figure 11.3. In the upper left plot the FP values for the D-dimensional Newton

constant Ḡ
(D)
k and the cosmological constant Λ̄k are depicted. Here the blue dots

correspond to Euclidean and the red dots to the Lorentzian signature. It is visible
that for increasing Kaluza-Klein mass m the FP values converge towards each
other. This is expected, since increasing m is related to decreasing time circle and
therefore signature effects are expected to be less important. The upper right plot
depicts the corresponding critical exponents, where we decomposed the complex
valued exponents according to θ1/2 = θ′ ± θ′′. Again the resulting values approach
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Figure 11.3: The upper left plot shows the FP values depending on m for
Lorentzian (red dots) as well as Euclidean (blue dots) signature.
For increasing Kaluza-Klein mass the FP values for the different
signatures approach each other. The upper right plot shows the
m dependence of the real part (θ′) and the imaginary part (θ′′)
of the corresponding critical exponents. The lower plot depicts
the m dependence of the FP values for the cosmological constant
and the d-dimensional Newton constant.

each other for increasingm. Notably the FP value for Ḡ
(D)
k tends towards Ḡ

(D)
k = 0

for larger masses m. This can be understood as a hint that one has to change to

the d-dimensional version Ḡ
(d)
k , since we are approaching the compactification limit.

The m dependence for the d-dimensional Newton constant and the cosmological
constant is depicted in the lower plot of Figure 11.3. For very large masses m the
m-dependent NGFP converges to the FP evaluated in the compactification limit
given in Table 11.2.

In summary, we discussed the beta functions of the foliated Einstein-Hilbert
truncation within two scenarios. The Gaussian fixed-point scenario uses a constant
time-interval length β and we concentrated on the limits β → ∞ and β → 0.
The former did not reveal a NGFP due to divergent expressions within the beta
functions. Recalling that the ill-definiteness in the central region is related to the
conformal factor problem, one should not interpret this as a failure of Asymptotic
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Safety. In contrast it is a hint that the simple Einstein-Hilbert truncation might be
insufficient within this treatment. Nevertheless, the inclusion of higher derivative
terms is beyond the scope of this thesis and shall be postponed to future work.
Within the compactification limit β → 0 the situation was found to be independent
of the signature and similar to the metric case in three spacetime dimensions.

Within the floating fixed-point scenario the results were found to depend on
the Kaluza-Klein mass m and tend towards those of the compactification limit for
m → ∞. For finite m the signature plays a sub-dominant role. All these results
support the possibility that the foliated and the metric formulation of QEG are in
the same universality class.

11.2 Phase Diagram of Hořava-Lifshitz Gravity

After studying the RG flow of the foliated Einstein-Hilbert truncation we now
enlarge the truncation space under consideration by including the asymmetry cou-
pling λk. As discussed above, this setting corresponds to the low-energy limit of
projectable HLG. Therefore the asymmetry between space and time should be small
and we concentrate on values for λ̄k close to λ̄k = 1. The fixed point proposed by
Hořava will not be considered here, since this requires the introduction of higher
spatial-derivative terms which are beyond our truncation.

In Section 11.1 we have seen that the situation changes only slightly by varying
the dimension. Therefore we restrict ourselves, for simplicity, within this section
to d = 3. This is the most interesting case as it corresponds to a four-dimensional
spacetime. As we did in the last section, we start to discuss the analytic structure of
the beta functions. Again these are constructed from trigonometric and hyperbolic
functions with the respective arguments arg± and arg2T. These depend on the
Kaluza-Klein mass m, the cosmological constant Λ̄k and the asymmetry coupling
λ̄k and read

arg2T =
π

m

√

ε(1− 2Λ̄k) ,

arg± = π

√

(1−6λk)Λ̄k+1−λk

(1−3λk)2εm2 ±
√

(

(1−6λk)Λ̄k+1−λk

(1−3λk)2m2

)2

− Λ̄k(1−2Λ̄k)
(1−3λk)m4 . (11.10)

In the limit λ̄k = 1 they reduce to (11.1). These arguments might turn imaginary
and thus change the trigonometric into hyperbolic functions and vice versa. This
leads us to the analytic structure of the beta functions given in Table 11.4. As in
Section 11.1 we find only trigonometric functions for Λ̄k > 1/2 in Euclidean or for
Λ̄k < Λ̄crit(λk) in Lorentzian signature. The situation is inverted for hyperbolic
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ε Λ̄k < Λ̄crit(λk) Λ̄crit(λk) < Λ̄k < 1/2 1/2 < Λ̄k

+1 hyperbolic mixture trigonometric

−1 trigonometric mixture hyperbolic

Table 11.4: Analytic structure of the beta functions for the low-energy limit of
HLG in d = 3. Depending on the signature and the cosmological
constant they are constructed out of trigonometric functions, hy-
perbolic functions or a mixture. The critical value Λ̄crit

k depends
on λ̄k and is given in (11.11).

functions and the critical value for the dimensionless cosmological constant reads

Λ̄crit =
1 + λk − 6λ2

k + 2
√
2
√

−1 + 7λk − 16λ2
k + 12λ3

k

9(1− 4λk + 4λ2
k)

. (11.11)

For Λ̄crit(λk) < Λ̄k < 1/2 we find a mixture of trigonometric and hyperbolic func-
tions. Notably the situation is completely analogous to Section 11.1 and we find
again that the interesting region 0 < Λ̄k < 1/2 contains a mixture. For a better
visualisation the analytic structure is depicted in Figure 11.4.

Although we find a mixture it might be possible that this region is free of poles
if the poles produced by the trigonometric functions are outside this region. As
the argument arg2T did not change compared to Section 11.1 we find again that m
has to be larger than

√
2 to get poles of trigonometric functions at Λ̄k > 1/2. The

hyperbolic

mixture

trigonometric

-2 -1 0 1 2
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Figure 11.4: Analytic structure of the beta functions for the low-energy limit
of HLG in d = 3 depending on the dimensionless cosmological
constant Λ̄ and the asymmetry coupling λ.



11.2 Phase Diagram of Hořava-Lifshitz Gravity 109

ε Ḡ∗ Λ̄∗ λ̄∗ θ1,2 θ3

+1 0.18 0.13 0.44 1.79± 1.11i 2.40

−1 0.20 0.12 0.44 1.74± 1.08i 2.48

Table 11.5: NGFP values and corresponding critical exponents within the low-
energy limit of HLG for m = 2π in d = 3.

same analysis for the second argument gives us

m >

√

8λ̄k − 3
√

2(3λ̄k − 1)
, (11.12)

which is smaller than
√
2 if we are close to λ̄k = 1. Thus choosing m >

√
2 is

sufficient to find a region 0 < Λ̄k < 1/2 without poles.
As an example we can choose again m = 2π and search for fixed points. First

of all the beta functions give rise to a GFP. It is situated at

GFP: (Ḡ∗, Λ̄∗, λ̄∗) = (0, 0, 1) . (11.13)

Besides this GFP it is worth searching for a NGFP, since the high-energy behaviour
of our truncation might be interesting in comparison to the symmetric discussion of
Section 11.1 and also as a benchmark for future results including higher derivative
terms. Specifying d = 3 and m = 2π, the beta functions give rise to a novel NGFP
for Lorentzian as well as Euclidean signature. Their values and the corresponding
critical exponents are given in Table 11.5. We find that this NGFP is UV-attractive
in all three directions and the FP values as well as the critical exponents differ only
slightly while changing the signature. This difference again decreases if we increase
the Kaluza-Klein mass m. The FP values and the critical exponents depending on
m are depicted in Figure 11.5. It is very well visible that for increasing mass m
the Euclidean and the Lorentzian signature approach each other. Explicitly, the

values of Ḡ
(d)
k and Λ̄k and the critical exponents θ1/2 tend towards the values of

the compactification limit discussed in Section 11.1 (see Table 11.2). Moreover,
the third critical exponent approaches θ3 = 2.44. The last plot in Figure 11.5
illustrates two facts. First, as one would expect from the other plots, the signature
dependence vanishes for large Kaluza-Klein masses m. Second, unexpectedly the
decompactification limit m → 0, corresponding to β → 0, does not lead to a FP
λ̄k = 1. In contrast, the FP known from the compactification limit in the symmetric
analysis is lifted to λ̄∗ = 0.44.

At this point, a closer analysis of the plane λ̄k = 1 is in order. For simplicity
we restrict ourselves to the case of Euclidean signature with m = 2π and d = 3. In
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Figure 11.5: Properties of the NGFP emerging in projectable HLG for
Lorentzian (red dots) as well as Euclidean (blue dots) signature.
The upper left plot shows the FP values of the D-dimensional
Newton constant and the cosmological constant depending on m.
For increasing Kaluza-Klein mass the FP values for the different
signatures approach each other. The upper right plot shows the
m dependence of the real part (θ′) and the imaginary part (θ′′)
of the corresponding critical exponents θ1/2. The middle left plot
depicts the m dependence of the FP values for the cosmological
constant and the d-dimensional Newton constant and the middle
right plot shows the m dependence of the third critical exponent.
The lowest plot finally depicts the FP values for the cosmological
constant and the asymmetry coupling. Again the values for the
different signatures approach each other for increasing m.



11.2 Phase Diagram of Hořava-Lifshitz Gravity 111
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Figure 11.6: Line of vanishing βλ̄ for λ̄k = 1, m = 2π and ε = 1. The black
dot denotes the NGFPsym, where βλ̄ does not vanish.

Section 11.1 we found a NGFP in the symmetric limit given in Table 11.3. In the
following it shall be denoted by

NGFPsym : (Ḡ∗, Λ̄∗) = (0.18, 0.13) . (11.14)

Evaluating the third beta function at this point we find βλ̄ = −1.35. Thus the
hypersurface λ̄k = 1 is not invariant under RG flows. However, there are points
in the plane λ̄k = 1 where βλ̄ vanishes. Within the most interesting region 0 <
Λ̄k < 1/2 it is actually a line, depicted in Figure 11.6. Notably this line passes by
the NGFPsym with quite some distance. However, for different values of m this
line looks different. More precisely, for increasing m the line is lowered. However,
for increasing m the NGFPsym is lowered as well. Thus there is no NGFP in the
three-dimensional theory space for λ̄k = 1 and 0 < Λ̄k < 1/2.

Besides a NGFP, the attraction of trajectories towards the symmetric plane
might be achieved by the GFP (11.13). In order to analyse the behaviour of the
RG flow in the vicinity of this GFP we linearise the beta functions. Therefore we
expand them around λ̄k = 1 end expand the two lowest coefficients in Ḡk and Λ̄k.
The result reads

βḠ ≈ AḠ
0 +AḠ

1 (λ̄k − 1)

βΛ̄ ≈ AΛ̄
0 +AΛ̄

1 (λ̄k − 1)

βλ̄ ≈ Aλ̄
0 +Aλ̄

1 (λ̄k − 1) (11.15)

with

AḠ
0 = Ḡ , AḠ

1 = 0 , AΛ̄
0 =

2

3

(

Ḡm

π2
− 3Λ̄ +

2Ḡ

π tanh
(

π
m

)

)

, AΛ̄
1 = − Ḡ

9m
,

(11.16)
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and

Aλ̄
0 = − Ḡ

9

(

46m

π2
+

28π2

45m3
+

32π4

2835m5

− 13

3π tanh
(

π
m

) − 73

3m sin2
(

π
m

) +
98π

3m2 tanh
(

π
m

)

sin2
(

π
m

)

)

,

Aλ̄
1 = − Ḡ

3

(

199m

9π2
+

1

9m
+

74π2

135m3
+

104π4

2835m5
+

8π6

14175m7

− 10

π tanh
(

π
m

) − 20

m sin2
(

π
m

) +
112π

3m2 tanh
(

π
m

)

sin2
(

π
m

)

)

. (11.17)

This linearisation shows that the GFP indeed is a fixed point, as βλ̄ vanishes as
well. Nevertheless, as soon as we leave the GFP the running in direction of λ̄k

sets in. Thus the plane λ̄k = 1 is not a fixed plane. The running in direction of
λ̄k can be minimised by choosing a suitable value for the Kaluza-Klein mass m.
Demanding

d

dm
Aλ̄

0

∣

∣

∣

∣

m=mcrit

= 0 (11.18)

we find the critical value numerically to be mcrit = 1.31.
For illustrative purposes we specify to this critical value for the Kaluza-Klein

mass in the following. Within this setup we can find trajectories emanating from
the NGFP with a crossover to the GFP. A sample of such trajectories is depicted in
Figure 11.7. This plot of the three dimensional theory space shows the NGFP at the
bottom as the origin of all trajectories. The hypersurface λ̄k = 1 is highlighted and
the trajectories on the right side of the plot pierce through it in the vicinity of the
GFP. If they pass by the GFP very close and spend a sufficiently large RG time
in the vicinity of λ̄k = 1 they might develop a classical regime. As an example
we consider the highlighted trajectory running close to Ḡk = 0 in the IR a bit
further. The scale dependence of the dimensionful couplings corresponding to this
trajectory are depicted in Figure 11.8. The first two plots show the RG running of
the dimensionful Newton constant Ḡk and the dimensionful cosmological constant
Λ̄k. At low energies, corresponding to small RG time t, they develop a scale-
independent value over a long range of scales. This is required for the formation
of a classical regime. The corresponding values achieved in this regime depend
on the starting values at high energies and might be tuned to values compatible
with observations. The third plot in Figure 11.8 shows the scale dependence of
the asymmetry coupling λ. At small scales this coupling turns towards λ = 1 and
stays at this value for a long RG time. This is another requirement for a classical
regime. Notably the running of the asymmetry coupling seems to be monotonic
which might be related to the c-theorem.
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Figure 11.7: Depicted is a sample of trajectories in the Euclidean setting for
d = 3 and m = mcrit. They emanate from the NGFP and pass
by the GFP very close. This behaviour allows for a long classical
IR regime where GR constitutes a good approximation.
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Figure 11.8: Depicted is the scale dependence of the dimensionful couplings
corresponding to the highlighted trajectory in Figure 11.7.

Summarising, we found trajectories which emanate from a NGFP and thus
are candidates for an Asymptotic Safety scenario. Furthermore they provide a
crossover from the NGFP to the GFP. The latter attracts the trajectories to the
plane λ̄k = 1. Therefore a classical regime develops where GR constitutes a good
approximation. This constitutes a quantum theory of gravity which breaks dif-
feomorphism invariance at high energies and reestablishes it dynamically at low
energies via the RG flow. This marks the most remarkable result of this thesis.
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Conclusion and Outlook

In this thesis we performed a Functional Renormalisation Group (FRG) analysis of
Quantum Einstein Gravity (QEG) and projectable Hořava-Lifshitz gravity (HLG).
The central aim is to establish a consistent and predictive theory of Quantum
Gravity (QG) within the framework of Quantum Field Theory (QFT). The validity
of such a construction requires

a) a fixed point of the Renormalisation Group (RG) flow which controls the
theory’s UV behaviour and renders physical quantities save from unphysical
divergences,

b) a finite number of relevant parameters ensuring the predictivity of the con-
struction,

c) the emergence of a classical limit which connects the theory to the experi-
mental successes of General Relativity (GR).

This work presented novel insights to all three of these points. We start to sum-
marise our findings for metric gravity before highlighting the results for projectable
HLG.

Within the QEG we derived the beta functions for the Einstein-Hilbert trun-
cation. Explicitly, we used the York decomposition for the metric fluctuations as
it was done for the first time in [150]. The ghost sector on the other hand was
treated along the lines of the pioneering work [114]. These beta functions give rise
to a single non-Gaussian fixed point (NGFP) with all the properties required for
Asymptotic Safety. To complete this scenario it is necessary to find a trajectory in
theory space which connects the NGFP with a suitable low-energy limit. In order
to identify such a trajectory we discussed in detail the pole structure in the theory
space to find the points where the beta functions are ill defined. The resulting divi-
sion of the theory space led to a complete classification of all possible trajectories,
see Figure 6.1, and extends considerably earlier results [148]. The class containing
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the trajectory connecting the NGFP with a suitable classical regime was found as
well and is called Type IIIa.

This investigation laid the groundwork for a similar study, also including the
higher-derivative operator βkR

2. The beta functions of this so-called R2 truncation
have been derived in [117–119]. Therefore, we did not present all details, but
concentrated on the main steps for giving the resulting flow equations. The detailed
analysis of the flow pattern corresponding to these beta functions was done for
the first time and constitutes one of the main results of this thesis. Part of the
results have been published in [31] and the thesis extended the discussion of the
singular loci contained in the beta functions considerably. As expected the beta
functions possess a Gaussian fixed point (GFP). Notably it is found to be situated
at vanishing bk, where bk = 1

βk
. In three and four spacetime dimensions the beta

functions additionally give rise to four and two NGFPs respectively. Focusing on
D = 3, it was shown that one NGFP is separated from the others by a singular
locus. As a consequence the latter can not be connected to a suitable low energy
regime. The first NGFP on the other hand can be connected to a regime where
classical General Relativity (GR) is a good approximation. This identifies this fixed
point as the one featuring Asymptotic Safety. Exemplary trajectories connected to
it are depicted in Figure 6.6.

In four spacetime dimensions the situation was found to be more complicated.
The reason is a second singular locus, introduced by the zero-modes of the York
decomposition. Besides the new pole and the GFP we find two NGFPs, situated
close to each other. One of them corresponds to the NGFP found in the original
work [117–119] and both are separated by the singular locus. Unfortunately the
second singular locus lies very close to the first one and one of the NGFPs is located
between them. Thus the evaluation of trajectories is extremely hard. However, the
second pole results from the York decomposition, which is just a technical tool.
Assuming this to be a technical artefact we turned off the zero-mode contributions
responsible for the troublesome pole as a first approximation. This simplification
caused the vanishing of one of the two NGFPs. More explicitly, the one known
from the original work disappeared. Remarkably, the surviving NGFP and its
critical exponents fit better into the table of higher polynomial f(R) truncations
and can be used for the construction of an Asymptotic Safety scenario. As this
scenario requires the connection of this NGFP to a suitable low energy regime via
a trajectory in theory space we discussed some of them and depicted a selection
of the most interesting ones in Figure 6.8. Notably it is easy to find trajectories
where the corresponding R2 couplings are compatible with experimental bounds
[180,181]. Furthermore it is worth mentioning that the R2 coupling of the trajectory
describing our universe changes sign during the RG running.

As a first application of our classification we analysed the spectral dimension of
the effective QEG spacetimes. Within this thesis we started with recapitulating the
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results of [30]. There it was shown that the spectral dimension, if the definition is
generalised to a scale-dependent version, changes with the RG scale. Explicitly the
authors analysed the spectral dimension along some specific trajectories within the
Einstein-Hilbert truncation. They found that a trajectory describing our universe
would develop a classical plateau, extending over a large range of scales, where the
spectral dimension is the topological dimension of the manifold. This behaviour is
triggered by the typical running of the dimensionless cosmological constant in the
classical regime. Furthermore they showed that fixed points might cause a plateau
structure as well. Explicitly the NGFP causes a plateau with spectral dimension
equal to D/2, where D denotes the spacetime dimension. Another plateau with
spectral dimension equal to 2D/(2+D) is caused by the GFP. Notably, a reasonable
agreement between the results of Causal Dynamical Triangulations and QEG was
found.

As the second novelty contained in this thesis we extended this analysis to the
R2 truncation. The results have been published in [31]. Most importantly we have
been able to confirm the NGFP plateau with spectral dimension equal to D/2 and
the classical plateau with spectral dimension equal to D. The intermediate regime
revealed a novel possible cause for the development of a plateau with constant
spectral dimension over a long range of scales. Besides the fixed points, a singular
locus can produce such a behaviour. In this sense we have shown that it is possible
to find two intermediate regimes, one corresponding to the GFP and one to the
singular locus. As a drawback, the resulting scale-dependent spectral dimension
develops poles. However, these poles appear between the plateaus and since the
spectral dimension is well defined in regimes where it is approximately constant,
no physical meaning should be attributed to these poles.

Besides the metric formulation, we used the Functional Renormalisation Group
Equation (FRGE) in a foliated setup for the first investigation of RG flows on the
theory space of projectable HLG. This theory proposes the introduction of an ex-
plicit asymmetry between space and time to save perturbative renormalisability.
First results of this foliated formulation have been published in [167], the corre-
sponding technical details for the derivation of the flow equations are published
in [168] and a third work [169] is currently in progress. Within this new formula-
tion the spacetime metric was decomposed according to the Arnowitt-Deser-Misner
formalism. The gravitational degrees of freedom are then carried by the lapse func-
tion, the shift vector and the spatial metric. Although the formulation of gravity
within these new fields is classically equivalent to GR, it might differ at the quan-
tum level. The natural symmetry of the theory space constructed from the new
variables is the invariance under foliation-preserving diffeomorphisms which build
a subgroup of the spacetime diffeomorphisms.

We started by deriving the FRGE for foliated spacetimes. Therefore we intro-
duced an alternative formulation for regulating the quantum fluctuations in time
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direction as it is known in finite temperature field theory. In contrast to the usual
regulator insertion we used a finite length of the time direction β which becomes a
circle by introducing periodic boundary conditions. The spatial quantum fluctua-
tion have been regulated in the standard way by introducing a regulator insertion.
This construction resulted in a flow equation for the projectable version of Hořava-
Lifshitz Gravity.

Building on the FRGE we studied the RG flow of the foliated Einstein-Hilbert
truncation (10.1). It contains a volume term, an intrinsic curvature term and
two extrinsic curvature terms. These three terms have to appear with a specific
ratio to preserve the D-dimensional diffeomorphism invariance. The inclusion of
an asymmetry coupling λk enabled us to change the ratio between the intrinsic and
the extrinsic part of the truncation. Thus for λk = 1 the gravitational part of our
truncation is diffeomorphism invariant and λk 6= 1 breaks this symmetry explicitly
and leads to an invariance under foliation preserving diffeomorphisms. The beta
functions have been derived for the latter case and the former can be found in the
limit λk = 1. Notably the foliated framework enabled us to introduce a signature
parameter ε, which was used to switch from Euclidean (ε = +1) to Lorentzian
signature (ε = −1). Thus, the resulting beta functions depend on the coupling
constants themselves as well as on the signature parameter ε and the Kaluza-Klein
mass m. The latter is proportional to the inverse of the length of the time interval
β. Thus we found a scale dependence of m or respectively β without any further
information in form of an additional beta function.

These flow equations of the foliated formulation have been discussed first in
the limit λk = 1 where we kept ε as a free parameter. We analysed the analytic
structure and found that it depends on the signature as well as on the value of the
cosmological constant. Depending on them the beta functions might be constructed
of trigonometric or hyperbolic functions only. There is also a region, where the flow
equations are constructed from both types of functions. As the scale dependence of
the Kaluza-Klein mass m or respectively the time-interval length β was still at our
disposal we used first a scale-independent β. More explicitly we discussed the com-
pactification limit β → 0 and the decompactification limit β → ∞. The latter one
did not reveal any suitable fixed points that could give rise to Asymptotic Safety.
In the former limit however, the dependence on trigonometric and hyperbolic func-
tions of the flow equations vanishes and the simplified beta functions indeed give
rise to a NGFP. As the time circle collapses in this limit we found an effectively
(D−1)-dimensional theory and the signature dependence disappeared. The result-
ing fixed points have been compared to known results in various dimensions and
showed an excellent agreement with previous computations using the metric for-
mulation. The numerical differences are of the typical size expected from working
with different choices of the regulator.
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As a second scenario we analysed the beta functions for scale-independent mass
m. Again we found a NGFP whose properties depend on this parameter. In the
limit of m → ∞ the NGFP turned into the one found in the compactification limit.
As an example we analysed the system with m = 2π in detail. We found that
the corresponding phase space shows only minor difference between the Euclidean
and the Lorentzian version. Moreover, both are similar to the phase space known
from the metric formulation. This demonstrates that the signature plays a minor
role for the high energy behaviour of Quantum Einstein Gravity. This statement
constitutes the next main result of this thesis.

The final topic addressed in this thesis is the low-energy limit of projectable
HLG. Again we started with the analysis of the analytic structure of the flow
equations and found that it is similar to the one encountered for λ̄k = 1. Next, the
discussion of the scenario with a scale-independent Kaluza-Klein mass m revealed
a NGFP. This seems to be the fixed point found in the limit λ̄k = 1, lifted to a
value of λ̄k 6= 1. For increasing m the fixed-point values for the Lorentzian and
the Euclidean signature tend towards each other. In the compactification limit the
signature dependence again vanishes. We showed that the Newton constant and
the cosmological constant find the fixed-point values of the foliated Einstein-Hilbert
truncation in this limit, but the fixed-point value of the asymmetry coupling λ̄k does
not approach λ̄k = 1. Moreover, we demonstrated explicitly that the Gaussian fixed
point can be used as an attractor for trajectories of asymmetric theories. Choosing
suitable starting values, these trajectories can develop a classical regime where
General Relativity constitutes a good approximation. This statement constitutes
another important result of this thesis.

Besides the results obtained in this thesis the techniques and insights obtained
here can be used to investigate further interesting questions. One interesting task
for future work would be an alternative calculation of the beta functions for the
R2 truncation within the metric formulation of Quantum Einstein Gravity. A
derivation which circumvents the York decomposition is likely to find beta functions
without the second singular locus and might shed some light on the fate of the
second NGFP found in four dimensions. Within this truncation it might also be
interesting to investigate cosmological consequences of the observed effect as the
running of the R2 coupling or the change of the sign of the cosmological constant.

The novel FRGE for gravity on foliated spacetimes also opens up a wide range of
possible applications. The most interesting one is the inclusion of higher orders in
the spatial curvature within the truncation in order to investigate the high energy
behaviour of Hořava-Lifshitz Gravity as well. Based on this extension the open
question concerning the conjectured perturbative renormalisability of HLG may
finally be settled.
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Appendix A

Notation and Conventions

In the following we will summarise the notations and conventions used throughout
the thesis.

Most importantly we set the Planck constant ~ and the speed of light c equal to
one for simplicity. This simplifies many equations considerably and is commonly
used throughout the cited literature. Using this convention, the following identities
for the units hold

~ = 1 = c ⇒ [length] = [time] = [mass]−1 = [energy]−1 . (A.1)

This thesis discusses gravitational theories and thus we have to fix some con-
ventions for the curved spacetime. The first difference to standard notation is the
nomenclature of the dimension. As we frequently encounter the spacetime dimen-
sion as well as the spatial dimension we denote the former by D and the latter by
d. The second important convention considers the metric itself. Throughout the
high-energy-physics literature mainly the timelike convention for the metric is used,
which is (+,−,−, . . .). However, the GR literature is dominated by the spacelike
convention (−,+,+, . . .). Within this thesis we stick to the latter one in order to
save ε’s which are used to switch the signature. Thus we utilise the following

signature: (ε,+,+, . . .) , ε =

{

+1 Euclidean

−1 Lorentzian
. (A.2)

Note that in Part II we are using the spacetime metric gµν and its inverse gµν

defined via gµνg
νρ = δρµ, where δρµ denotes the Kronecker delta. However, in Part

III the spatial metric, denoted by σij , and its inverse σij with σijσ
jk = δki is used.

Throughout the thesis we will employ Greek indices for spacetime coordinates and
Latin indices for purely spatial coordinates.

For the spacetime metric gµν we define the Christoffel symbols Γ λ
µν and the
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Constant D2T d2T C0 C2T

Definition (D+1)(D−2)
2

(d+1)(d−2)
2

(d−2)(d−1)
d2

d2−3d+4
d(d−1)

Table A.1: List of frequently used constants.

Riemann tensor R λ
µνρ according to

Γ λ
µν = 1

2g
λσ(∂µgνσ + ∂νgµσ − ∂σgµν) ,

R λ
µνρ = ∂νΓ

λ
µρ − ∂µΓ

λ
νρ + Γ σ

µρ Γ λ
νσ − Γ σ

νρ Γ λ
µσ . (A.3)

Finally, the Ricci tensor and the Ricci scalar are the contractions of the Riemann
tensor and read Rµν = R λ

µλν and R = gµνRµν . The last frequently used object
is the covariant derivative, which we call ∇µ. Its commutator is related to the
Riemann tensor via

[∇µ,∇ν ]Aλ = R ρ
µνλ Aρ ,

[∇µ,∇ν ]Hλσ = R ρ
µνλ Hρσ +R ρ

µνσ Hλρ , (A.4)

where Aµ is an arbitrary 1-form and Hλσ denotes a (0, 2) tensor. The objects
corresponding to the spatial metric are defined analogously.

This thesis uses the FRGE for the EAA and thus we have to handle different
versions of the same field. First of all we use the quantum fields which are marked
with a tilde on top. The quantum spacetime metric e.g. reads g̃µν . As we are
using the background field method (see Appendix B.2), the quantum fields are
split into background fields and fluctuations. The former are marked with a bar on
top and the latter with a hat. Thus the quantum spacetime metric splits according
to g̃µν = ḡµν + ĝµν . Finally, our main object of interest is the EAA and therefore
we use the averaged fields. These are not marked at all and the averaged spacetime
metric, as an example, is denoted by hµν = 〈ĝµν〉. Note that this notation differs
from the one usually used in the literature.

For those who just skim the thesis we give an overview over some frequently
used constants defined in the text, so the reader does not have to search for their
definition. The list can be found in Table A.1.



Appendix B

Gauge Symmetry and

Quantisation

B.1 The Faddeev-Popov Method

This appendix is dedicated to the treatment of gauge symmetries within the path
integral approach. Let us begin by briefly discussing the problem. The physical
information of a theory can be extracted completely out of the partition function

Z[J ] =

∫

Dϕ̃ exp

[

−S[ϕ̃] +

∫

dDxJ(x)ϕ̃(x)

]

, (B.1)

Here ϕ̃ denotes the field content of our theory, J is the corresponding source and
S[ϕ̃] is the classical action. In case, the theory under consideration possesses a
gauge symmetry, this partition function is ill-defined since we are integrating over
gauge-equivalent field configurations. As these are describing the same physics we
would like to count only one per set of gauge-equivalent configuration within the
path integral. This can be achieved along the line proposed by Faddeev and Popov
in 1967 [182]. In the following we will summarise this idea and thereby follow [82].

Let us denote the spacetime-dependent parameter of the gauge transformation
with γ(x), and G[ϕ̃] shall be the functional which fixes the gauge by demanding
G[ϕ̃] = 0. In order to single out one field configuration from the orbit of physically
equivalent ones we would like to insert a δ(G[ϕ̃]) under the path integral. Without
changing the partition function this can be done by inserting a 1 which we write
as

1 =

∫

Dγ(x) δ (G(ϕ̃)) det

(

δG(ϕ̃γ)

δγ

)

, (B.2)

with ϕ̃γ denoting the transformed field. This expression is nothing but a gen-
eralisation of 1 =

∫

dx δ(f(x))|∂f/∂x|. Note that, as long as G is linear, the
determinant is independent of γ and thus the integration with respect to γ gives
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just a normalisation N . If we insert this expression into the partition function we
find

Z = N
∫

Dϕ̃ e−S[ϕ̃]+
∫

dDxJϕ̃ δ (G(ϕ̃)) det

(

δG(ϕ̃γ)

δγ

)

= N
∫

Dϕ̃Dω̄Dω e−S[ϕ̃]−
∫

G∗G
2α −

∫

ω̄Mω+
∫

(Jϕ̃+η̄ω+ω̄η) . (B.3)

Here we exponentiated the determinant by introducing the Grassmann valued ghost
and anti-ghost fields ω, ω̄, including the corresponding sources η̄, η. We intro-
duced M as an abbreviation for δG(ϕ̃γ)/δγ and suppressed the measure dDx of
the exponentiated integrals. Furthermore we replaced the delta distribution with
exp[−

∫

G∗G
2α ] where α is called gauge parameter. Typical gauges are the Landau

gauge α → 0 or the Feynman-’t Hooft gauge α → 1.
The partition function (B.3) now can serve as a starting point for further in-

vestigations, since the unphysical overcounting of equivalent field configurations
is controlled by the introduction of the gauge-fixing action Sgf =

∫

G∗G
2α and the

corresponding ghost action Sgh =
∫

ω̄Mω.

B.2 The Background Field Method

In Appendix B.1 we have seen that the quantisation of a gauge theory within the
path-integral formalism asks for the introduction of a gauge-fixing and a ghost term.
By construction these terms explicitly break the underlying gauge symmetry, as e.g.
in Landau-gauge QCD, where the gauge condition reads ∂µA

µ = 0. Nevertheless,
any observable quantity will be independent of the chosen gauge. On the other
hand, quantities without a physical interpretation, as e.g. Green functions, will not
be invariant. Especially Green functions, instead of respecting the gauge symmetry,
satisfy Slavnov-Taylor identities.

At the level of the EAA the gauge symmetry leads to modified Ward identities,
derived as follows. Starting point is the scale-dependent partition function

Zk[J ] =

∫

DΦ̃ exp

[

−S[Φ̃]−∆Sk[Φ̃] +

∫

dDxJ(x)Φ̃(x)

]

. (B.4)

Here Φ̃ denotes the field content of the theory. Thus it includes the field of the
microscopic action as well as the ghost fields, appearing due to the Faddeev-Popov
method. The corresponding sources are summarised as J and we added the regu-
lator term ∆Sk[Φ̃]. Assuming that the field Φ̃ transforms as Φ̃ → Φ̃ + δΦ̃ and that
the measure of the path integral is invariant, the variation of (B.4) reads

0 =

∫

DΦ̃

(

−δ(S[Φ̃] + ∆Sk[Φ̃])

δΦ̃
δΦ̃ + J δΦ̃

)

e−S−∆Sk+
∫

dDx JΦ̃ . (B.5)
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Explicitly, we are not interested in the properties of the k-dependent partition
function but of the EAA. Thus we have to switch to the k-dependent Schwinger
functional Wk[J ] = lnZk[J ] and perform the Legendre transformation thereof.
Starting with (B.5) we find

0 =
1

Zk

∫

DΦ̃

(

−δ(S[Φ̃] + ∆Sk[Φ̃])

δΦ̃
δΦ̃ + J δΦ̃

)

e−S−∆Sk+
∫

dDxJΦ̃

= −
〈

δ(S +∆Sk)

δΦ̃
δΦ̃

〉

J

+ e−Wk[J]

∫

dDx J δΦ̃
∣

∣

∣

Φ̃= δ
δJ

eWk[J] . (B.6)

The Legendre transformation of this at the supremum of the source, Jsup, reads

0 = −〈 δ(S+∆Sk)

δΦ̃
δΦ̃〉Jsup +

∫

dDx δΓ[Φ]
δΦ δΦ + δ∆Sk

⇒ δΓk = 〈δ(S +∆Sk)〉Jsup − δ∆Sk . (B.7)

Here Φ denotes the expectation value of Φ̃ and Γk is the EAA. The final result in
(B.7) is called modified Ward identity and includes the ordinary Ward identity,

δΓ = 〈δS〉Jsup , (B.8)

as the limit k → 0. An equivalent expression is true at any scale for symmetric
regulator terms. However, in general the regulator term is non symmetric and thus,
the initial conditions in the UV have to be chosen such that the non-symmetric
terms at the initial point are cancelled during the flow towards the IR. This is
anything but simple. To circumvent this problem, and the problem of non-covariant
S due to gauge-fixing and ghost terms, one can use the Background Field Method
(BFM) explained in the following. For an introduction see [183]. In the context of
the FRG, the interested reader might also be referred to [91] or, for gravitational
theories, [184].

The BFM is a tool which enables us to retain the gauge symmetry for non-
observable quantities and we will concentrate on the example of the EAA. As the
name suggests a crucial ingredient is the background field. We split the quantum
field Φ̃ into an arbitrary, non-dynamical background Φ̄ and fluctuations Φ̂ around
it via Φ̃ = Φ̄+Φ̂. Now the functional integration over the quantum field is replaced
by an integration over the fluctuations, which are not assumed to be small in any
sense. The variation Φ̃ → Φ̃ + δΦ̃ can be decomposed in different ways

Quantum: Φ̂ → Φ̂ + δ̂Φ̂ , Φ̄ → Φ̄ (B.9)

Background: Φ̂ → Φ̂ + δ̄Φ̂ , Φ̄ → Φ̄ + δ̄Φ̄ (B.10)

where δΦ̃ = δ̂Φ̂ = δ̄(Φ̄+Φ̂). We call (B.9) the quantum gauge transformations and
(B.10) background gauge transformations. Note that the former is the one which
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has to be fixed, while the latter is an auxiliary symmetry and should merely be
treated as a technical tool. The next step is to find a classical action (including
gauge-fixing and ghost term) which breaks the quantum gauge transformation but
is invariant under the background version. To use again the above example, we can
replace the Landau gauge condition ∂µA

µ = 0 by the Landau-DeWitt condition

∇̄µÂ
µ = 0 with the fluctuation Â and the covariant derivative ∇̄µ constructed from

the background field Āµ. The ghost action can be adapted similarly.
Starting from the k-dependent partition function (this time with an integra-

tion with respect to φ̂) we finally get the so-called Background Effective Average
Action (BEAA) Γk[Φ, Φ̄]. This, in contrast to the standard EAA, depends on
the background field Φ̄ and the classical field reads Φ = Φ̄ + 〈Φ̂〉. Note that the
BEAA breaks the quantum gauge transformation (B.9) but preserves the back-
ground gauge transformation (B.10) if we adapt the regulator term, ∆Sk, such
that it preserves (B.10). This gives us RG flows invariant under the background
gauge transformations. In the limit k → 0 we find the Background Effective Action
(BEA) Γ[Φ, Φ̄] explicitly depending on the background Φ̄. Setting Φ = Φ̄, the in-
variance of the BEA under (B.10) implies that the EA is invariant under the initial
gauge symmetry

0 = δ̄Γ[Φ, Φ̄]
∣

∣

Φ=Φ̄
= δΓ[Φ] . (B.11)

We refrain from giving an explicit proof that the BEA at Φ = Φ̄ indeed is the usual
EA. For more details see e.g. [91] and references therein.

Summarising the BFM, we start by introducing an arbitrary, non-dynamical
background field. We impose that the classical, gauge-fixed action (including ∆Sk)
is invariant under background gauge transformations (B.10). Finally, after integrat-
ing towards the IR, we identify the background with the expectation value of the
quantum field to find an EA, which is invariant under the initial gauge symmetry.



Appendix C

The Heat-Kernel Technique

C.1 The Early-Time Expansion

The main technical tool of this thesis is the Wetterich equation (2.15). On the right
hand side we encounter operator traces over functions of the covariant Laplacian
∆. In the following we will stick to a general D-dimensional metric gµν and follow
the appendices in [119] and [121]. However, the d-dimensional analog, used in Part
III, can be obtained easily by replacing D by d.

Generally, we encounter traces of the form Tr[W (∆)] where Tr denotes an oper-
ator trace as well as a trace in field space. The Laplace operator acts on the metric
gµν which can be expanded in terms of its eigenfunctions [185, 186]. Denoting the
eigenvalues with Λn, this leads to

Tr [W (∆)] = tr
∑

n

W (Λn) (C.1)

with tr denoting the left-over trace in field space. However, it is extremely hard to
solve the traces this way. Thus, we will use an approximation called the early-time
expansion also known as the heat-kernel expansion [165, 166].

Before we give the explicit form of this expansion we define the Laplace-anti
transform W̃ (s) for the general function W according to

W (z) =

∫ ∞

0

ds W̃ (s) e−zs . (C.2)

Note that for functions W encountered in this thesis it is a well-defined transfor-
mation. Using (C.2) we can rewrite the trace such that, instead of the trace of the
general function W , we now have to handle the trace of the heat kernel e−s∆

Tr [W (∆)] =

∫ ∞

0

ds W̃ (s)Tr
[

e−s∆
]

. (C.3)
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Although we find Laplace operators of the form ∆ = −∇2 throughout the main
text, it is easy, useful, and indeed necessary (see Appendix C.3), to generalise
to a dependence on ∆ + qR. Here q is a real number and R denotes the scalar
curvature. In order to evaluate the trace of the heat kernel we use the early-time
expansion [165, 166] which reads in general

Tr
[

e−s(∆+qR)
]

=
1

(4πs)D/2

∫

dDx
√
g
[

tr a0 + s tr a2 + s2 tr a4 + . . .
]

. (C.4)

Here again tr denotes the left-over trace in field space and the ai are the heat-kernel
coefficients. The first two of them read

a1 = 1 , a2 =

(

1

6
− q

)

R1 (C.5)

with 1 being the unit matrix in field space. Therefore we find tr1 to be 1, D and
D
2 (D + 1) for scalars, vectors and symmetric tensors, respectively.

However, the heat-kernel coefficients differ from those given in (C.5), if we
consider fields with constraints. In Appendix C.2 we explain, how such constraints
enter our calculations. Afterwards, in Appendix C.3, we derive the new coefficients.

C.2 The York Decomposition and Spherical

Backgrounds

This appendix introduces a decomposition of the metric fluctuations which is used
in Part II and Part III of this thesis. It is the so-called transverse-traceless (TT)
or York decomposition [175]. Note that in Part II the fluctuation of the spacetime
metric, hµν , is decomposed while in Part III the fluctuation of the spatial metric,
hij , is decomposed. The explanation here will concentrate on the spacetime-metric
case in the sense that we use indices µ, ν, . . . and D for the dimension. However
the purely spatial version is analog and can be achieved by using spatial indices
and dimension d instead.

The York decomposition is used to evaluate the right hand side of the Wetterich
equation (2.15), which consists of traces of functions of operator structures as
discussed in Appendix C.1. Although it simplifies the inversion of the operator

structure Γ
(2)
k +Rk one has to be careful, while evaluating the functional traces.

The most important operator within our calculation is the Laplacian ∆ = −∇2.
Here ∇µ denotes the covariant derivative with respect to the metric, which we
split into a fixed background metric ḡµν and fluctuations around it hµν . The TT
decomposition of the latter reads

hµν = hTT
µν + ∇̄µξν + ∇̄νξµ + ∇̄µ∇̄νς −

1

D
ḡµν∇̄2ς +

1

D
ḡµνφ . (C.6)
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Here D denotes the spacetime dimension and ∇̄µ is the covariant derivative with
respect to the background metric ḡµν . Furthermore hTT

µν denotes the transverse
traceless part of the metric, φ is the trace and ξµ is a transverse vector. Thus we
have

ḡµνhTT
µν = 0 , ∇̄µhTT

µν = 0 , ∇̄µξµ = 0 , ḡµνhµν = φ . (C.7)

Having a closer look at the decomposition (C.6) we find that not all vectors ξµ
and not all scalars ς contribute to the physical field hµν . The ones which do
not contribute are those satisfying the Killing equation and the conformal Killing
equation, respectively

∇̄µξν + ∇̄νξµ = 0 , ∇̄µ∇̄νς −
1

D
ḡµν∇̄2ς = 0 . (C.8)

Note that the solution of these equations depends on the background. This will be-
come important if we calculate e.g. traces in field space on a spherical background.

Within this thesis the appearing traces are evaluated on special backgrounds.
These are maximally symmetric, compact spaces with constant curvature R̄. Thus
the Riemann tensor and Ricci tensor assume the form

R̄µνρσ =
R̄

D(D − 1)
(ḡµρḡνσ − ḡµσ ḡνρ) , R̄µν =

R̄

D
ḡµν . (C.9)

Here the Ricci scalar R̄ is a constant and related to the radius of the sphere by

R̄ =
D(D − 1)

r2
,

∫

dDx
√
ḡ =

Γ(D/2)

Γ(D)
(4πr2)D/2 . (C.10)

The second part of this equation relates the volume to the radius via the Gamma
function Γ.

Coming back to the trace of the decomposed metric we can now expand the
component fields in terms of the spherical harmonics T lm, T lm

µ and T lm
µν . These

constitute eigenfunctions of the covariant background Laplacian ∆ = −∇̄2 and
form an orthogonal basis. Therefore we find

∆T lm(x) = Λl(D, 0)T lm(x) ,

∆T lm
µ (x) = Λl(D, 1)T lm

µ (x) ,

∆T lm
µν (x) = Λl(D, 2)T lm

µν (x) . (C.11)

The eigenvalues Λl(D, s) depend on the spin s of the field and correspond to the
Laplacian acting on this field. Thus l takes the values s, s+1, . . . and m counts the
multiplicity Dl(D, s) of the degenerate eigenvalues. The eigenvalues and degenera-
cies have been derived in [185, 186] and are given in Table C.1.
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s Λl(D, s) Dl(D, s) l

0 l(l+D−1)
D(D−1) R̄

(2l+D−1)(l+D−2)!
l!(D−1)! 0, 1, . . .

1 l(l+D−1)−1
D(D−1) R̄ l(l+D−1)(2l+D−1)(l+D−3)!

(D−2)!(l+1)! 1, 2, . . .

2 l(l+D−1)−2
D(D−1) R̄ (D+1)(D−2)(l+D)(l−1)(2l+D−1)(l+D−3)!

2(D−1)!(l+1)! 2, 3, . . .

Table C.1: Eigenvalues Λl(D, s) and degeneracies Dl(D, s) of the background
Laplace operator ∆ = −∇̄2 acting on fields with spin s.

Using (C.11), the expansions of the scalar (spin-0) field φ and the spin-2 field
hTT
µν read

φ(x) =

∞
∑

l=0

Dl(D,0)
∑

m=1

φlmT lm(x) , hTT
µν (x) =

∞
∑

l=2

Dl(D,2)
∑

m=1

hTT
lm T lm

µν (x) . (C.12)

The situation changes if we consider the spin 0 field ς . Here we have to exclude
those modes satisfying the conformal Killing equation (C.8). Thus, in comparison
to the expansion of φ we find

ς(x) =

∞
∑

l=2

Dl(D,0)
∑

m=1

ςlmT lm(x) . (C.13)

The expansion of the spin 1 field ξµ has to be treated similarly. The expansion
does not start at l = 0, as we have to exclude the solutions of the Killing equation
(C.8). Thus we find

ξµ(x) =

∞
∑

l=2

Dl(D,1)
∑

m=1

ξlmT lm
µ (x) . (C.14)

For more details see e.g. [119] and references therein. These exclusions within
the expansion of ς and ξµ will become important when we evaluate traces of the
Laplacian acting on these constrained fields (see Appendix C.3).

C.3 Heat-Kernel Coefficients for Fields with

Constraints

In Appendix C.1 we explained how to evaluate the traces appearing on the right
hand side of the Wetterich equation with the heat-kernel expansion. Afterwards
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we discussed in Appendix C.2 the York decomposition of the metric fluctuations
and we had to deal with unphysical zero modes. In the following we will elaborate
on the consequences of the decomposition for the heat-kernel coefficients.

As we did in Appendix C.2, we use the background split of the metric into the
background metric ḡµν and fluctuations hµν , where the background is specified to
the spherical one explained in (C.9).

According to (C.3), the main task is to evaluate the trace of the heat kernel
Tr exp[−s∆]. Here the background Laplacian ∆ acts on the metric fluctuations
which we decompose, according to the York decomposition (C.6), into the TT part
hTT
µν , transverse vectors ξµ and scalars ς and φ. As discussed in Appendix C.2, ξµ

and ς are constrained fields in the sense that those modes satisfying the Killing
equation and conformal Killing equation (C.8) do not contribute to the full metric.
This effects the heat-kernel expansion considerably and the consequences will be
explained in the following.

Acting with the Laplacian on the Killing equation and using the commutation
relation we find

∆(∇̄µξν + ∇̄νξµ) = ∇̄µ

(

∆− D+1
D(D−1) R̄

)

ξν + ∇̄ν

(

∆− D+1
D(D−1) R̄

)

ξµ . (C.15)

Correspondingly we find for the conformal Killing equation

∆
(

∇̄µ∇̄ν + 1
D ḡµν∆

)

ς =
(

∇̄µ∇̄ν + 1
D ḡµν∆

)

(

∆− 2
D−1 R̄

)

ς . (C.16)

This helps us to rewrite Tr
[

e−s∆
]

, where the Laplacian acts on the metric, as a
sum over traces where the Laplacian acts on the component fields. This sum of
traces reads

Tr e−s∆
∣

∣

h
=Tr e−s∆

∣

∣

hTT+Tr e−s∆
∣

∣

φ
+Tr e

−s(∆− D+1
D(D−1) R̄)

∣

∣

∣

∣

ξ

+Tr e
−s(∆− 2

D−1 R̄)

∣

∣

∣

∣

ς

− e
s

2
D−1 R̄ − (D + 1)e

s
1

D−1 R̄ − D(D + 1)

2
e
s

2
D(D−1) R̄ (C.17)

where the terms in the second line take into account that the Killing vectors do
not contribute to the full metric. This gives us an expression for the trace with
respect to the constrained field hTT

µν depending on the traces with respect to the
unconstrained fields hµν , φ, ς and the transverse vector ξµ. The letter is constrained
as well and we can use a similar trick to express the corresponding trace in terms
of unconstrained traces.

Considering a vector field Aµ = AT
µ + ∇̄µϕ, split into transverse part AT

µ and

longitudinal part ∇̄µϕ, we can use

∆∇̄µϕ = ∇̄µ

(

∆− R̄

D

)

ϕ (C.18)
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to find

Tr e−s∆
∣

∣

A
= Tr e−s∆

∣

∣

AT + Tr e−s(∆− R̄
D )

∣

∣

∣

∣

ϕ

− es
R̄
D (C.19)

where the last term again takes into account that constant scalars do not contribute.
Reordering this result gives us the trace with respect to transverse vectors in terms
of scalar traces and unconstrained vector traces. This can be inserted into (C.17)
to result in an expression for the trace with respect to transverse traceless tensors
in terms of unconstrained traces.

Tr e−s∆
∣

∣

hTT =Tr e−s∆
∣

∣

h
− Tr e−s∆

∣

∣

φ
− Tr e

−s(∆− D+1
D(D−1) R̄)

∣

∣

∣

∣

A

+ (D + 1)e
s

1
D−1 R̄ +

D(D + 1)

2
e
s

2
D(D−1) R̄ . (C.20)

Note that, due to these manipulations we now encounter traces of the form
Tr e−s(∆+qR̄) with a constant q, instead of Tr e−s∆. We discussed traces of this
form in Appendix C.1 and their expansion is given in (C.4). Inserting (C.4) into
(C.20) we find

Tr e−s∆
∣

∣

hTT =
1

(4πs)D/2

∫

dDx
√
ḡ
[

D2T + sR̄ (D+2)(D+1)(D−5)
12(D−1)

]

+ (D + 1)e
s

1
D−1 R̄ +

D(D + 1)

2
e
s

2
D(D−1) R̄ (C.21)

with D2T = (D−2)(D+1)
2 , where we suppressed terms of order R̄2 and higher.

To adapt the terms in the second line we can insert a clever choice of a ”1”,
which gives us the integral. Thus we use (C.10) and insert

1 =

∫

dDx
√
ḡ
Γ(D)

Γ(D2 ) (4π)
D/2

(

R̄

D(D − 1)

)D/2

. (C.22)

Next, we expand the exponential in the second line of (C.21) in terms of R̄ as
∑

m bmR̄m and keep only the two lowest orders. Therefore we have to use those
coefficients bm with D/2 + m = 0, 1. Thus we get a contribution to R̄1 for D =

2,m = 0. The new term is sR̄
(D+2)(D+1)3δD,2

12(D−1) and thus we obtain

Tr e−s∆
∣

∣

hTT =
1

(4πs)D/2

∫

dDx
√
ḡ
[

D2T + sR̄
(D+2)(D+1)(D−5+3δD,2)

12(D−1)

]

. (C.23)

Note that one gets further terms proportional to δD,4 if one takes into account R̄2

terms. This is very important for the discussion in Section 5.2.
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field tr a0 tr a2

S 1 1
6 R̄

V D D
6 R̄

TV D − 1
(D+2)(D−3)+6δD,2

6D R̄

ST D(D+1)
2

D(D+1)
12 R̄

STTT (D−2)(D+1)
2

(D+1)(D+2)(D−5+3δD,2)
12(D−1) R̄

Table C.2: The first two heat-kernel coefficients of the Laplacian on spherical
backgrounds for scalars (S), vectors (V), transverse vectors (TV),
symmetric tensors (ST) and symmetric transverse traceless tensors
(STTT).

The derivation for the trace with respect to the constrained transverse vector
is completely analog and thus we skip the details and just give the result. It reads

Tr e−s∆
∣

∣

ξ
=

1

(4πs)D/2

∫

dDx
√
ḡ
[

D − 1 + sR̄
(D+2)(D−3)+6δD,2

6D

]

. (C.24)

To summarise, Table C.2 lists the two lowest heat-kernel coefficients for constrained
as well as unconstrained fields. The third coefficient, relevant for the R2 truncation,
can be found in Table C.3. For more details see e.g. [121].

At the end of this appendix we will discuss the effective changes appearing
while excluding the lowest eigenmodes of the trace. This is necessary for con-
strained fields, since the lowest modes are unphysical, as discussed in Appendix
C.2. Explicitly we will encounter constrained scalar traces which we denote by

Tr
′′

(0) and constrained traces with respect to transverse vectors, denoted by Tr
′

(1T).
Here the number of primes n, counts the number of modes excluded

Tr
′...′ [W (∆)] = Tr[W (∆)]− tr

∑

l∈{l1,...,ln}
Dl(D, s)W (Λl(D, s)) (C.25)

with l counting the excluded modes, s denoting the spin of the field and Λl(D, s)
and Dl(D, s) the eigenvalues and degeneracy respectively. The latter ones are given
in Table C.1. Since the eigenvalues are functions of the scalar curvature R̄ we can
perform an expansion and keep only the lowest order (sufficient for the Einstein-
Hilbert truncation). For higher orders see e.g. [119]. Taking into account the R̄
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field tr a4

S 5D2−7D+6
360D(D−1) R̄

2

V 5D3−7D2+6D−60
360D(D−1) R̄2

TV
5D4−12D3−47D2−186D+180+360δD,2+720δD,4

360D2(D−1) R̄2

ST 5D4−2D3−D2−114D−240
720D(D−1) R̄2

STTT
(D+1)(5D4−22D3−83D2−392D−228+1440δD,2+3240δD,4)

720D(D−1)2 R̄2

Table C.3: The third heat-kernel coefficients of the Laplacian on spherical
backgrounds for scalars (S), vectors (V), transverse vectors (TV),
symmetric tensors (ST) and symmetric transverse traceless tensors
(STTT).

dependence of the volume element we find

Tr
′

(1T )[W (∆)] =Tr(1T )[W (∆)]− δD,2

8π

∫

dDx
√
ḡ 3W (0)R̄ ,

Tr
′′

(0)[W (∆)] =Tr(0)[W (∆)]− δD,2

2π

∫

dDx
√
ḡ W (0)R̄ . (C.26)

Again we find contributions proportional to δD,2. However, considering higher
orders in the truncation one finds further terms. Within the R2 truncation, for
example, terms proportional to δD,4 occur, as explained in [119].

C.4 The Threshold Functions

After evaluating the trace over the heat kernel we are left with an integral over
W̃ (s). For convenience we introduce so-called threshold functions and evaluate
them for a specific cutoff.

Inserting (C.23) and (C.24) into (C.2) gives us an expansion of the sought-after
trace in the background Ricci scalar

Tr [W (∆)]hTT =

=
1

(4π)D/2

∫

x

∫ ∞

0

ds s−D/2 W̃ (s)
[

(D−2)(D+1)
2 + sR̄

(D+2)(D+1)(D−5+3δD,2)
12(D−1)

]

=
1

(4π)d/2

∫

x

[

(D−2)(D+1)
2 QD/2[W ] +

(D+2)(D+1)(D−5+3δD,2)
12(D−1) R̄QD/2−1[W ]

]
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Tr [W (∆)]ξ =
1

(4π)D/2

∫

x

∫ ∞

0

ds s−D/2 W̃ (s)
[

D − 1 + sR̄
(D+2)(D−3)+6δD,2

6D

]

=
1

(4π)d/2

∫

x

[

(D − 1)QD/2[W ] +
(D+2)(D−3)+6δD,2

6D R̄ QD/2−1[W ]
]

(C.27)

where we introduced the Q functional as the standard nomenclature in the litera-
ture. This is a Mellin transform and defined as

Ql[W ] =

∫ ∞

0

ds s−l W̃ (s) =
1

Γ(l)

∫ ∞

0

dz zl−1W (z) . (C.28)

Here the second equality holds only for positive l and Γ(l) is the gamma function.

During our analysis in Part II and Part III we findW functions of a special form.
Restricting to this form we can evaluate the traces even further. The appearing W
functions have the pattern

W p,q
1 (w) =

∂tRk

(Pk + w)p (Pk)
q , W p,q

2 (w) =
Rk

(Pk + w)p (Pk)
q . (C.29)

In the main text we already defined Pk = ∆+Rk and Rk = k2R(0)(∆/k2). Inserting
this into (C.28) leads to

Ql[W
p,q
1 ] = 2k2(l−p−q+1) Φp,q

l (w/k2) ,

Ql[W
p,q
2 ] = k2(l−p−q+1) Φ̃p,q

l (w/k2) (C.30)

with the threshold functions Φ and Φ̃ defined as

Φp,q
l (w) =

1

Γ(l)

∫ ∞

0

dz zl−1 R(0)(z)− zR(0)′(z)
(

z +R(0)(z) + w
)p (

z +R(0)(z)
)q ,

Φ̃p,q
l (w) =

1

Γ(l)

∫ ∞

0

dz zl−1 R(0)(z)
(

z +R(0)(z) + w
)p (

z +R(0)(z)
)q . (C.31)

Here the profile function R(0) is kept arbitrary. However, throughout this thesis we
will stick to the optimised cutoff introduced by Litim [84, 85]. It reads R(0)(z) =
(1−z)θ(1−z) with the Heaviside step function θ. Using this regulator the threshold
functions can be analytically determined to

Φp,q
l (w) =

1

Γ(l + 1)

1

(1 + w)p
, Φ̃p,q

l (w) =
1

Γ(l + 2)

1

(1 + w)p
. (C.32)
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For the beta functions of the R2 truncation in Section 5.2 we need a generali-
sation of the threshold functions Φ and Φ̃ [119]. Their definition is given by

Ψp,q
l,m(v, w) =

(−1)i

Γ(l + i)

∫ ∞

0

dz zl+i−1

∂i

∂zi
(z +R(0)(z))m(R(0)(z)− zR(0)′(z))

(z +R(0)(z) + w)p(32πv(z +R(0)(z))2 − D−2
2(D−1) (z +R(0)(z) + w))q

,

Ψ̃p,q
l,m,n(v, w) =

(−1)i

Γ(l + i)

∫ ∞

0

dz zl+i−1 (C.33)

∂i

∂zi
(z + R(0)(z))m(2z +R(0)(z))nR(0)(z)

(z +R(0)(z) + w)p(32πv(z +R(0)(z))2 − D−2
2(D−1) (z +R(0)(z) + w))q

where i is non-negative and has to satisfy i > −l. Note that the threshold functions
Φ, Φ̃ and Ψ, Ψ̃ are related by Φp,0

l (w) = Ψp,0
l,0 (v, w) and Φ̃p,0

l (w) = Ψ̃p,0
l,0,0(v, w). The

definitions of the generalised threshold functions simplify if we use the optimised
cutoff. In this case we find

Ψp,q
l,m(v, w) =

1

Γ(l + 1)

1

(1 + w)p(32πv − D−2
2(D−1) (1 + w))q

Ψ̃p,q
l,m,0(v, w) =

1

Γ(l + 2)

1

(1 + w)p(32πv − D−2
2(D−1) (1 + w))q

Ψ̃p,q
l,m,1(v, w) =

2

(l + 2)Γ(l+ 1)

1

(1 + w)p(32πv − D−2
2(D−1) (1 + w))q

. (C.34)

Here we just give the expressions for Ψ̃p,q
l,m,n with n = 0, 1, since these are the only

ones needed.



Appendix D

The Coefficient Functions

for the

R2 Truncation

This appendix summarises the building blocks of the beta functions, capturing the
RG flow of the R2 truncation, studied in [117–119]. The coefficient functions Ai,
Bi and Ci, depend on the coupling constants Ḡk, Λ̄k and β̄k. Furthermore, they
contain dimension-dependent factors hi given below and are given in terms of the
threshold functions Φ, Φ̃,Ψ and Ψ̃, which are defined in (C.32) and (C.34). The
coefficient functions Ai read

1

A1 = −2Λ̄k +
2Ḡk

(4π)
D
2

−1

(

h8Φ
1
D/2(−2Λ̄k)− 2DΦ1

d/2(0)

+ 64πḠkβ̄kΨ
0,1
D/2,1(Ḡkβ̄k,−2Λ̄k)− h1Ψ

0,1
D/2,0(Ḡkβ̄k,−2Λ̄k)

+ 32πḠkβ̄kΨ
1,1
D/2,2(Ḡkβ̄k,−2Λ̄k)

)

, (D.1)

A2 = Λ̄k − Ḡk

(4π)
D
2

−1

(

h8Φ̃
1
D/2(−2Λ̄k)− h1Ψ̃

0,1
D/2,0,0(Ḡkβ̄k,−2Λ̄k)

+ 32πḠkβ̄kΨ̃
1,1
D/2,2,0(Ḡkβ̄k,−2Λ̄k)

)

, (D.2)

A3 = − 8Ḡ2
kβ̄k

(4π)
D
2

−2
Ψ̃0,1

D/2,0,1(Ḡkβ̄k,−2Λ̄k) . (D.3)

1Note that the sign of the second term in A2 differs between the preprint version and the
published version of [119]. Here we use the correct sign, which appears in the published version.
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The coefficient functions Bi and Ci on the other hand read2

B1 = 4

(4π)
D
2

−1

[

h9Φ
1
D/2−1(−2Λ̄k) + h10Φ

1
D/2−1(0)

+ 32πḠkβ̄k

3 Ψ0,1
D/2−1,1(Ḡkβ̄k,−2Λ̄k)− 1

6h1Ψ
0,1
D/2−1,0(Ḡkβ̄k,−2Λ̄k)

+
16πḠkβ̄k

3
Ψ1,1

D/2−1,2(Ḡkβ̄k,−2Λ̄k)− 32πḠkβ̄kh11Φ
1
D/2(−2Λ̄k)

+ 32πḠkβ̄kh11Ψ
2,0
D/2,1(Ḡkβ̄k,−2Λ̄k) + h12Φ

2
D/2(−2Λ̄k) + h13Φ

2
D/2(0)

+ 32πḠkβ̄kh19Ψ
1,1
D/2,1(Ḡkβ̄k,−2Λ̄k) + h4Ψ

1,1
D/2,0(Ḡkβ̄k,−2Λ̄k)

+ 32πḠkβ̄kh3Ψ
0,1
D/2,0(Ḡkβ̄k,−2Λ̄k)− (32πḠkβ̄k)

2h19Ψ
1,2
D/2,3(Ḡkβ̄k,−2Λ̄k)

− 64πḠkβ̄kh4Ψ
1,2
D/2,2(Ḡkβ̄k,−2Λ̄k)− 2(32πḠkβ̄k)

2h3Ψ
0,2
D/2,2(Ḡkβ̄k,−2Λ̄k)

+ 32πḠkβ̄kh1h19Ψ
0,2
D/2,1(Ḡkβ̄k,−2Λ̄k) + h1h4Ψ

0,2
D/2,0(Ḡkβ̄k,−2Λ̄k)

− (32πḠkβ̄k)
2h2Ψ

2,2
D/2,4(Ḡkβ̄k,−2Λ̄k)

]

, (D.4)

B2 =− 2

(4π)
D
2

−1

[

h9Φ̃
1
D/2−1(−2Λ̄k)− 1

6h1Ψ̃
0,1
D/2−1,0,0(Ḡkβ̄k,−2Λ̄k)

+ 16πḠkβ̄k

3 Ψ̃1,1
D/2−1,2,0(Ḡkβ̄k,−2Λ̄k) + 32πḠkβ̄kh11Ψ̃

2,0
D/2,1,0(Ḡkβ̄k,−2Λ̄k)

+ h12Φ̃
2
D/2(−2Λ̄k) + 32πḠkβ̄kh3Ψ̃

1,1
D/2,1,0(Ḡkβ̄k,−2Λ̄k)

+ h4Ψ̃
1,1
D/2,0,0(Ḡkβ̄k,−2Λ̄k)− (32πḠkβ̄k)

2h3Ψ̃
1,2
D/2,3,0(Ḡkβ̄k,−2Λ̄k)

− 64πḠkβ̄kh4Ψ̃
1,2
D/2,2,0(Ḡkβ̄k,−2Λ̄k) + 32πḠkβ̄kh1h3Ψ̃

0,2
D/2,1,0(Ḡkβ̄k,−2Λ̄k)

+ h1h4Ψ̃
0,2
D/2,0,0(Ḡkβ̄k,−2Λ̄k)− (32πḠkβ̄k)

2h2Ψ̃
2,2
D/2,4,0(Ḡkβ̄k,−2Λ̄k)

]

,

(D.5)

B3 =− 2

(4π)
D
2

−1

[

16πḠkβ̄k

3 Ψ̃0,1
D/2−1,0,1(Ḡkβ̄k,−2Λ̄k)− 32πḠkβ̄kh11Φ̃

1
D/2(−2Λ̄k)

+ 32πḠkβ̄kh2Ψ̃
1,1
D/2,0,1(Ḡkβ̄k,−2Λ̄k) + 32πḠkβ̄kh3Ψ̃

0,1
D/2,0,0(Ḡkβ̄k,−2Λ̄k)

− (32πḠkβ̄k)
2h2Ψ̃

1,2
D/2,2,1(Ḡkβ̄k,−2Λ̄k)− (32πḠkβ̄k)

2h3Ψ̃
0,2
D/2,1,1(Ḡkβ̄k,−2Λ̄k)

− 32πḠkβ̄kh4Ψ̃
0,2
D/2,0,1(Ḡkβ̄k,−2Λ̄k)

]

, (D.6)

2Again a discrepancy between the preprint version and the published version of [119] appears
in the second term of B1. We used the correct sign, which appeared in the preprint version.
Furthermore, the preprint version contains a typing error. Instead of the factor h3 in the 10th
term of C2 the factor h19 appears. Here we corrected this misprint.
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C1 =(4π)−
D
2

[

h14Φ
1
D/2−2(−2Λ̄k)− h16Φ

1
D/2−2(0)

+ 64πḠkβ̄kh15Ψ
0,1
D/2−2,1(Ḡkβ̄k,−2Λ̄k)− h1h15Ψ

0,1
D/2−2,0(Ḡkβ̄k,−2Λ̄k)

+ 32πḠkβ̄kh15Ψ
1,1
D/2−2,2(Ḡkβ̄k,−2Λ̄k)− 32πḠkβ̄kh17Φ

1
D/2−1(−2Λ̄k)

+ 16πḠkβ̄k

3 h3Ψ
0,1
D/2−1,0(Ḡkβ̄k,−2Λ̄k) +

16πḠkβ̄k

3 h19Ψ
1,1
D/2−1,1(Ḡkβ̄k,−2Λ̄k)

+ 1
6h4Ψ

1,1
D/2−1,0(Ḡkβ̄k,−2Λ̄k) + 32πḠkβ̄kh17Ψ

2,0
D/2−1,1(Ḡkβ̄k,−2Λ̄k)

− h18Φ
2
D/2−1(−2Λ̄k)− h20Φ

2
D/2−1(0)− (32πḠkβ̄k)

2

6 h19Ψ
1,2
D/2−1,3(Ḡkβ̄k,−2Λ̄k)

− 32πḠkβ̄k

3 h4Ψ
1,2
D/2−1,2(Ḡkβ̄k,−2Λ̄k)− (32πḠkβ̄k)

2

3 h3Ψ
0,2
D/2−1,2(Ḡkβ̄k,−2Λ̄k)

+ 16πḠkβ̄k

3 h1h19Ψ
0,2
D/2−1,1(Ḡkβ̄k,−2Λ̄k) +

1
6h1h4Ψ

0,2
D/2−1,0(Ḡkβ̄k,−2Λ̄k)

− (32πḠkβ̄k)
2

6 h2Ψ
2,2
D/2−1,4(Ḡkβ̄k,−2Λ̄k)− (32πḠkβ̄k)

2h11Ψ
2,0
D/2,1(Ḡkβ̄k,−2Λ̄k)

+ 32πḠkβ̄kh25Φ
2
D/2(−2Λ̄k) + (32πḠkβ̄k)

2h11Ψ
3,0
D/2,2(Ḡkβ̄k,−2Λ̄k)

− 32πḠkβ̄kh11h21Ψ
3,0
D/2,1(Ḡkβ̄k,−2Λ̄k) + h23Φ

3
D/2(−2Λ̄k) + h24Φ

3
D/2(0)

− (32πḠkβ̄k)
2h2Ψ

1,1
D/2,1(Ḡkβ̄k,−2Λ̄k) + 32πḠkβ̄kh2h26Ψ

1,1
D/2,0(Ḡkβ̄k,−2Λ̄k)

+ (32πḠkβ̄k)
3h2Ψ

1,2
D/2,3(Ḡkβ̄k,−2Λ̄k)− (32πḠkβ̄k)

2h27Ψ
1,2
D/2,2(Ḡkβ̄k,−2Λ̄k)

+ 32πḠkβ̄kh4(d)h28Ψ
1,2
D/2,1(Ḡkβ̄k,−2Λ̄k)− 3

2h
2
4Ψ

1,2
D/2,0(Ḡkβ̄k,−2Λ̄k)

− (32πḠkβ̄k)
2h29Ψ

0,2
D/2,1(Ḡkβ̄k,−2Λ̄k)− 32πḠkβ̄kh4h26Ψ

0,2
D/2,0(Ḡkβ̄k,−2Λ̄k)

+ (32πḠkβ̄k)
3

2 h2Ψ
2,2
D/2,4(Ḡkβ̄k,−2Λ̄k) +

2(32πḠkβ̄k)
2

3 h2h28Ψ
2,2
D/2,3(Ḡkβ̄k,−2Λ̄k)

− 48πḠkβ̄kh2h4Ψ
2,2
D/2,2(Ḡkβ̄k,−2Λ̄k) + 2(32πḠkβ̄k)

3h2
3Ψ

0,3
D/2,3(Ḡkβ̄k,−2Λ̄k)

− 3(32πḠkβ̄k)
2h1h3h30Ψ

0,3
D/2,2(Ḡkβ̄k,−2Λ̄k)

+ 64πḠkβ̄k

3 h1h4h28Ψ
0,3
D/2,1(Ḡkβ̄k,−2Λ̄k)− h1h

2
4Ψ

0,3
D/2,0(Ḡkβ̄k,−2Λ̄k)

+ 3(32πḠkβ̄k)
3h3h30Ψ

1,3
D/2,4(Ḡkβ̄k,−2Λ̄k)

− 4(32πḠkβ̄k)
2

3 h4h28Ψ
1,3
D/2,3(Ḡkβ̄k,−2Λ̄k) + 96πḠkβ̄kh

2
4Ψ

1,3
D/2,2(Ḡkβ̄k,−2Λ̄k)

− 2(32πḠkβ̄k)
3

3 h2h28Ψ
2,3
D/2,5(Ḡkβ̄k,−2Λ̄k)

+ 3(32πḠkβ̄k)
2h2h4Ψ

2,3
D/2,4(Ḡkβ̄k,−2Λ̄k)

+ (32πḠkβ̄k)
3h2

2Ψ
3,3
D/2,6(Ḡkβ̄k,−2Λ̄k)

+
(

− 1
2R

(0)′(0)− 96πḠkβ̄k

(1−2Λ̄k)
+ 11R(0)′ (0)+192πḠkβ̄k

2(1−2Λ̄k)2

)

δD,2
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+
(

288πḠkβ̄k−1
4(144πḠkβ̄k−(1−2Λ̄k))

+ 1
4(1−2Λ̄k)

− 96πḠkβ̄k−1
2(96πḠkβ̄k−(1−2Λ̄k))

− 24πḠkβ̄k

(1−2Λ̄k)(96πḠkβ̄k−(1−2Λ̄k))

)

δD,4

]

, (D.7)

C2 =− 1

2(4π)
D
2

[

h14Φ̃
1
D/2−2(−2Λ̄k)− h1h15Ψ̃

0,1
D/2−2,0,0(Ḡkβ̄k,−2Λ̄k)

+ 32πḠkβ̄kh15Ψ̃
1,1
D/2−2,2,0(Ḡkβ̄k,−2Λ̄k) +

16πḠkβ̄k

3 h3Ψ̃
1,1
D/2−1,1,0(Ḡkβ̄k,−2Λ̄k)

+ 1
6h4Ψ̃

1,1
D/2−1,0,0(Ḡkβ̄k,−2Λ̄k) + 32πḠkβ̄kh17Ψ̃

2,0
D/2−1,1,0(Ḡkβ̄k,−2Λ̄k)

− h18Φ̃
2
D/2−1(−2Λ̄k)− (32πḠkβ̄k)

2

6 h3Ψ̃
1,2
D/2−1,3,0(Ḡkβ̄k,−2Λ̄k)

− 32πḠkβ̄k

3 h4Ψ̃
1,2
D/2−1,2,0(Ḡkβ̄k,−2Λ̄k) +

16πḠkβ̄k

3 h1h3Ψ̃
0,2
D/2−1,1,0(Ḡkβ̄k,−2Λ̄k)

+ 1
6h1h4Ψ̃

0,2
D/2−1,0,0(Ḡkβ̄k,−2Λ̄k)− (32πḠkβ̄k)

2

6 h2Ψ̃
2,2
D/2−1,4,0(Ḡkβ̄k,−2Λ̄k)

+ 32πḠkβ̄kh22Φ̃
2
D/2(−2Λ̄k) + (32πḠkβ̄k)

2h11Ψ̃
3,0
D/2,2,0(Ḡkβ̄k,−2Λ̄k)

− 32πḠkβ̄kh11h21Ψ̃
3,0
D/2,1,0(Ḡkβ̄k,−2Λ̄k) + h23Φ̃

3
D/2(−2Λ̄k)

+ 32πḠkβ̄kh6Ψ̃
1,1
D/2,0,0(Ḡkβ̄k,−2Λ̄k)− (32πḠkβ̄k)

2h7Ψ̃
1,2
D/2,2,0(Ḡkβ̄k,−2Λ̄k)

− 96πḠkβ̄kh3h4Ψ̃
1,2
D/2,1,0(Ḡkβ̄k,−2Λ̄k)− 3

2h
2
4Ψ̃

1,2
D/2,0,0(Ḡkβ̄k,−2Λ̄k)

+ 32πḠkβ̄kh1h6Ψ̃
0,2
d/2,0,0(Ḡkβ̄k,−2Λ̄k) +

(32πḠkβ̄k)
3

2 h2Ψ̃
2,2
D/2,4,0(Ḡkβ̄k,−2Λ̄k)

− 2(32πḠkβ̄k)
2h2h3Ψ̃

2,2
D/2,3,0(Ḡkβ̄k,−2Λ̄k)

− 48πḠkβ̄kh2h4Ψ̃
2,2
D/2,2,0(Ḡkβ̄k,−2Λ̄k)

− (32πḠkβ̄k)
2h1h

2
3Ψ̃

0,3
D/2,2,0(Ḡkβ̄k,−2Λ̄k)

− 64πḠkβ̄kh1h3h4Ψ̃
0,3
D/2,1,0(Ḡkβ̄k,−2Λ̄k)− h1h

2
4Ψ̃

0,3
D/2,0,0(Ḡkβ̄k,−2Λ̄k)

+ (32πḠkβ̄k)
3h2

3Ψ̃
1,3
D/2,4,0(Ḡkβ̄k,−2Λ̄k)

+ 4(32πḠkβ̄k)
2h3h4Ψ̃

1,3
D/2,3,0(Ḡkβ̄k,−2Λ̄k)

+ 96πḠkβ̄kh
2
4Ψ̃

1,3
D/2,2,0(Ḡkβ̄k,−2Λ̄k)

+ 2(32πḠkβ̄k)
3h2h3Ψ̃

2,3
D/2,5,0(Ḡkβ̄k,−2Λ̄k)

+ 3(32πḠkβ̄k)
2h2h4Ψ̃

2,3
D/2,4,0(Ḡkβ̄k,−2Λ̄k)

+ (32πḠkβ̄k)
3h2

2Ψ̃
3,3
D/2,6,0(Ḡkβ̄k,−2Λ̄k)

+
(

− 11R(0)′ (0)
2(1−2Λ̄k)

+ 192πḠkβ̄k+11R(0)′ (0)
2(1−2Λ̄k)2

)

δD,2
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+
(

− 1
4(144πḠkβ̄k−(1−2Λ̄k))

+ 1
4(1−2Λ̄k)

+ 1
2(96πḠkβ̄k−(1−2Λ̄k))

− 24πḠkβ̄k

(1−2Λ̄k)(96πḠkβ̄k−(1−2Λ̄k))

)

δD,4

]

, (D.8)

C3 = − 1

2(4π)
D
2

[

32πḠkβ̄kh15Ψ̃
0,1
D/2−2,0,1(Ḡkβ̄k,−2Λ̄k)− 32πḠkβ̄kh17Φ̃

1
D/2−1(−2Λ̄k)

+ 16πḠkβ̄k

3 h3Ψ̃
0,1
D/2−1,0,0(Ḡkβ̄k,−2Λ̄k) +

16πḠkβ̄k

3 h2Ψ̃
1,1
D/2−1,0,1(Ḡkβ̄k,−2Λ̄k)

− (32πḠkβ̄k)
2

6 h2Ψ̃
1,2
D/2−1,2,1(Ḡkβ̄k,−2Λ̄k)− (32πḠkβ̄k)

2

6 h3Ψ̃
0,2
D/2−1,1,1(Ḡkβ̄k,−2Λ̄k)

− 16πḠkβ̄k

3 h4Ψ̃
0,2
D/2−1,0,1(Ḡkβ̄k,−2Λ̄k)− (32πḠkβ̄k)

2h11Ψ̃
2,0
D/2,1,0(Ḡkβ̄k,−2Λ̄k)

+ 16πḠkβ̄kh11h21Φ̃
2
D/2(−2Λ̄k)− (32πḠkβ̄k)

2h5Ψ̃
1,1
D/2,0,1(Ḡkβ̄k,−2Λ̄k)

− 2(32πḠkβ̄k)
2

d2 Ψ̃1,1
D/2,1,0(Ḡkβ̄k,−2Λ̄k) + 32πḠkβ̄kh2h3Ψ̃

1,1
D/2,0,0(Ḡkβ̄k,−2Λ̄k)

+ (32πḠkβ̄k)
3

2 h2Ψ̃
1,2
D/2,2,1(Ḡkβ̄k,−2Λ̄k)− 2(32πḠkβ̄k)

2h2h3Ψ̃
1,2
D/2,1,1(Ḡkβ̄k,−2Λ̄k)

− 48πḠkβ̄kh2h4Ψ̃
1,2
D/2,0,1(Ḡkβ̄k,−2Λ̄k)− (32πḠkβ̄k)

2h2h3Ψ̃
1,2
D/2,2,0(Ḡkβ̄k,−2Λ̄k)

− (32πḠkβ̄k)
2h6Ψ̃

0,2
D/2,0,1(Ḡkβ̄k,−2Λ̄k)− (32πḠkβ̄k)

2h2
3Ψ̃

0,2
D/2,1,0(Ḡkβ̄k,−2Λ̄k)

− 32πḠkβ̄kh3h4Ψ̃
0,2
D/2,0,0(Ḡkβ̄k,−2Λ̄k)− (32πḠkβ̄k)

2h2
2Ψ̃

2,2
D/2,2,1(Ḡkβ̄k,−2Λ̄k)

+ (32πḠkβ̄k)
3h2

3Ψ̃
0,3
D/2,2,1(Ḡkβ̄k,−2Λ̄k)

+ 2(32πḠkβ̄k)
2h3h4Ψ̃

0,3
D/2,1,1(Ḡkβ̄k,−2Λ̄k) + 32πḠkβ̄kh

2
4Ψ̃

0,3
D/2,0,1(Ḡkβ̄k,−2Λ̄k)

+ 2(32πḠkβ̄k)
3h2h3Ψ̃

1,3
D/2,3,1(Ḡkβ̄k,−2Λ̄k)

+ 2(32πḠkβ̄k)
2h2h4Ψ̃

1,3
D/2,2,1(Ḡkβ̄k,−2Λ̄k)

+ (32πḠkβ̄k)
3h2

2Ψ̃
2,3
D/2,4,1(Ḡkβ̄k,−2Λ̄k)

− 96πḠkβ̄k

(1−2Λ̄k)
δD,2 +

(

36πḠkβ̄k

144πḠkβ̄k−(1−2Λ̄k)
− 24πḠkβ̄k

96πḠkβ̄k−(1−2Λ̄k)

)

δD,4

]

. (D.9)

All these coefficient functions A1, A2, A3, B1, B2, B3, C1, C2 and C3 depend on the
D-dependent prefactors hi, i = 1, . . . , 47 reading

h1 = D−2
D−1 , h2 = D−4

D , h3 = D2−8D+4
2D(D−1) , h4 = − (D−2)(D−4)

D(D−1) , h5 = D2−4D−2
2D2 ,

h6 = (D−4)2

2D(D−1) , h7 = 5D4−48D3+148D2−112D+16
4D2(D−1)2 , h8 = D2+D−4

2 ,

h9 = (D+3)(D+2)(D2−5D+2)
12D(D−1) , h10 = −D2−6

3D , h11 = (D+1)(D−2)
2 ,

h12 = −D4−2D3−5D2+16D−14
2D(D−1) , h13 = − 2(D+1)

D ,

h14 = 5D6−7D5−139D4−545D3−898D2+504D−360
720D2(D−1)2 , h15 = 5D2−7D+6

360D(D−1) ,
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h16 = 5D4−7D3−54D2−180D+180
180D2(D−1) , h17 = (D+2)(D+1)(D−5)

12(D−1) ,

h18 = (D+2)(D5−5D4−5D3+43D2−68D+18)
12D2(D−1)2 , h19 = 5D2−28D+20

2D(D−1) ,

h20 = (D+3)(D−2)
3D2 , h21 = 2D2−3D+4

D(D−1) , h22 = (D−3)(D3−D2−4D+8)
4D(D−1) ,

h23 = D6−5D5+3D4+31D3−86D2+98D−50
2D2(D−1)2 , h24 = −2D+3

D2 ,

h25 = 3D4−12D3+9D2+24D−40
4D(D−1) , h26 = D2−6D+2

D(D−1) ,

h27 = 15D4−178D3+628D2−632D+176
4D2(D−1)2 , h28 = − 9(D2−6D+4)

2D(D−1) ,

h29 = 5D4−52D3+168D2−128D+16
4D2(D−1)2 , h30 = 3D2−16D+12

2D(D−1) ,

h31 = 5D6−27D5−71D4−405D3−342D2−960D+360
720D2(D−1)2 ,

h32 = −D6−3D5−7D4+5D3+26D2−82D+12
12D2(D−1)2 ,

h33 = D6−5D5+7D4−13D3+42D2−42D+2
2D2(D−1)2 ,

h34 = 5D6−7D5−119D4−593D3−846D2+480D−360
360D2(D−1)2 ,

h35 = −D6−3D5−11D4+9D3+54D2−134D+36
3D2(D−1)2 ,

h36 = 3D6−5D5+7D4−9D3+46D2−62D+14
D2(D−1)2 , h37 = (D+2)(D3−6D2+3D−6)

3D(D−1) ,

h38 = −2D4−2D3+3D2−4D−2
D(D−1) , h39 = 5D2−7D+6

45D(D−2) ,

h40 = 30D5−115D4−362D3+721D2+182D+264
90D(D−1)(D−2) ,

h41 = −2 3D6−17D5+25D4+39D3−166D2+224D−96
3D2(D−1)(D−2) , h42 = 4 (D−1)(D−4)2

D(D−2) ,

h43 = − (D+2)(D3−6D2+3D−6)
3D(D−1)(D−2) , h44 = 2D4−2D3+3D2−4D−2

D(D−1)(D−2) ,

h45 = D4−3D3+32D−32
D2 , h46 = −D4−13D2−24D+12

6D(D−1) , h47 = D4−2D3−D2−4D+2
D(D−1) .

(D.10)



Appendix E

The Arnowitt-Deser-Misner

Decomposition

In this appendix we explain the relation between the metric formulation of gravity
and the foliated version of it, known as the Arnowitt-Deser-Misner (ADM) de-
composition [187]. The former is based on a D-dimensional manifold M and the
corresponding spacetime metric g̃µν . At this point we do not specify the signature,
it might be Euclidean (+,+, . . .) or Lorentzian (−,+,+, . . .). To distinguish these
two cases we introduce the signature parameter ε = sig g̃µν = ±1.

The foundation of the ADM decomposition is a foliation of M, which is con-
structed as follows. We start by defining a time function τ(x), which assigns a time
τ to every spacetime point x. This can be used to divide the spacetime manifold
M into a stack of spatial slices Στi = {x : τ(x) = τi}. The hypersurfaces Στi

have the spatial dimension d = D − 1 and are equipped with a normal vector nµ.
If we assume the vector field ∂µτ to be timelike for Lorentzian signature we can
define the normal vector nµ to be future directed by demanding nµ∂µτ > 0. The
normalisation reads g̃µν n

µnν = ε. The relation between these two vector fields is

given by nµ = εÑ∂µτ , where we introduced the lapse function Ñ for normalisation.
Besides the normal vector nµ we introduce a vector field tµ satisfying tµ∂µτ = 1.

Furthermore, in addition to the spacetime coordinates xµ we introduce coordinates
yi on the spatial slices. Note that we are using letters from the middle of the Greek
alphabet µ, ν, . . . for spacetime indices and letters from the middle of the Roman
alphabet i, j, . . . for spatial indices. Using integral curves γ along the vector field
tµ we can relate the coordinate systems on neighbouring slices by choosing yi to
be constant along such a curve. To translate the coordinate system xµ into the
system (τ, yi) one has to use the Jacobian

tµ =
∂xµ

∂τ

∣

∣

∣

∣

yi

, eµi =
∂xµ

∂yi

∣

∣

∣

∣

τ

. (E.1)

The new objects eµi span the tangent space of the spatial slices and are thus per-

143



144 E The Arnowitt-Deser-Misner Decomposition

γ(τ)

Στ2

Στ1

∂µτ tµ

eµi

xµ

Figure E.1: The foliation of spacetime into spatial slices Στi . Depicted are
the integral curve γ along the vector field tµ, the basis e

µ
i on

the spatial slice and the vector field ∂µτ perpendicular to the
hypersurface.

pendicular to the normal vector of the hypersurfaces nµ e
µ
i = 0. The vector tµ

on the other hand is neither tangential nor perpendicular to the spatial slices, but
tangential to the curve γ. Thus it can be decomposed into components as

tµ = Ñnµ + Ñ ieµi . (E.2)

The lapse function Ñ is the length of tµ in time direction and the shift vector Ñ i

is the projection of tµ onto the spatial slice. A sketch of this decomposition with
the various introduced objects can be found in FigureE.1.

Finally we can rewrite the infinitesimal squared line element ds2 in terms of the
new quantities. To see this we start with the replacement within the coordinate
one-form. From (E.1) we get

dxµ = tµdτ + eµi dy
i = Ñnµdτ +

(

dyi + Ñ idτ
)

eµi . (E.3)
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Squaring this one-form with the spacetime metric g̃µν , we encounter the projection
of this metric to the spatial slice σ̃ij = g̃µνe

µ
i e

ν
j . Using this, the line element reads

ds2 = g̃µνdx
µdxν = εÑ2dτ2 + σ̃ij

(

dyi + Ñ idτ
)(

dyj + Ñ jdτ
)

. (E.4)

To give this final result of this appendix in a more readable way we write the
relation between the spacetime metric g̃µν and the new fields Ñ , Ñ i, σ̃ij in matrix
notation.

g̃µν =

(

εÑ2 + ÑiÑ
i Ñj

Ñi σ̃ij

)

, g̃µν =

(

1
ε Ñ2

− Ñj

ε Ñ2

− Ñi

ε Ñ2
σ̃ij + ÑiÑj

ε Ñ2

)

. (E.5)

Here the contraction of spatial indices is understood to be with respect to the
spatial metric σ̃ij .
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Appendix F

The Right Hand Side of the

Foliated Flow Equation

F.1 The Second Variations of the Anisotropic

Gravitational Action

In this appendix we evaluate the second variation of the anisotropic gravitational
action (10.1) of Section 10.1. To organise the evaluation of the variation we split
the truncation (10.1) into four parts. Therefore we have to vary the following terms

I1 =

∫

dτddx
√
σKij

[

σikσjl
]

Kkl , I2 =

∫

dτddx
√
σKij

[

σijσkl
]

Kkl ,

I3 =

∫

dτddx
√
σ , I4 =

∫

dτddx
√
σ R . (F.1)

Here σ denotes the determinant of the spatial metric and, R is the corresponding
spatial scalar curvature and Kij is the extrinsic curvature given in (10.3). We
evaluate the second variation of the four terms I1, . . . , I4 and, for convenience, de-
compose the fluctuation metric hij = 〈σ̂ij〉 into a traceless and trace part according
to

hij = hT
ij +

1

d
σ̄ijh , σ̄ijhT

ij = 0 . (F.2)

Implementing the gauge fixing leads to vanishing shift vector and a lapse function
equal to one. Thus the result of the variation reads

δ2I1 =

∫

D

[

− 1
2 h

Tij ∂2
τ h

T
ij − 1

2d h ∂
2
τ h + (∂τ lnχ)

(

d−4
4d h ∂τh − d+4

4 hTij ∂τ h
T
ij

)

+ (∂τ lnχ)
2
(

d2−2d−16
16d h2 − d−4

8 hTij hT
ij

) ]

,

147
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δ2I2 =

∫

D

[

− 1
2 h ∂

2
τ h + (∂τ lnχ)

(

d−4
4 h ∂τh − d hTij ∂τ h

T
ij

)

+ (∂τ lnχ)
2
(

d2−2d−16
16 h2 − d2

8 hTij hT
ij

) ]

,

δ2I3 =

∫

D

[

− 1
2 h

Tij hT
ij +

d−2
4d h2

]

,

δ2I4 =

∫

D

[

h
(

(d−2)(d−1)
2d2 ∆+ (d−2)(d−4)

4d2 R̄
)

h− 1
2h

T
ij

(

∆+ d2−3d+4
d(d−1) R̄

)

hTij

+ d−2
d h∇̄i∇̄jh

Tij − hTik∇̄k∇̄lh
Tlj σ̄ij

]

. (F.3)

Here we abbreviated
∫

D
=
∫

dτ ddx
√
σ̄ and ∇̄ denotes the covariant derivative

with respect to σ̄ij . Furthermore ∆ = −σ̄ij∇̄i∇̄j is the corresponding Laplace
operator. Obviously there is still an off-diagonal term in δ2I4 which makes our life

harder when we want to evaluate the inverse of Γ
(2)
k +Rk. Thus we decompose the

metric a bit further and will use the TT decomposition, also known as the York
decomposition [175].

hT
ij = hTT

ij + ∇̄iξj + ∇̄jξi + ∇̄i∇̄jς +
1
d σ̄ij∆ς . (F.4)

The new fields satisfy σ̄ijhTT
ij = 0, ∇̄ihTT

ij = 0 and ∇̄iξi = 0. Inserting this
decomposition into the second variations is a lengthy exercise and it helps to use
the following intermediate results

∫

D

hTij hT
ij =

∫

D

{

hTTijhTT
ij + 2ξi

[

∆− 1
d R̄
]

ξi +
d−1
d ς

[

∆2 − 1
d−1 R̄∆

]

ς
}

,

∫

D

hTij∆hT
ij =

∫

D

{

hTTij∆hTT
ij + 2ξi

[

∆− 1
d R̄
]

[

∆− d+1
d(d−1)R̄

]

ξi

+ d−1
d ς

[

∆2 − 1
d−1R̄∆

] [

∆− 2
d−1R̄

]

ς
}

,
∫

D

hTik∇̄k∇̄lhT
li = −

∫

D

{

ξi
[

∆− 1
d R̄
] [

∆− 1
d R̄
]

ξi

+ (d−1)2

d2 ς
[

∆2 − 1
d−1R̄∆

] [

∆− 1
d−1 R̄

]

ς
}

,
∫

D

h∇̄i∇̄jhT
ij =

∫

D

d−1
d h

[

∆2 − 1
d−1R̄∆

]

ς . (F.5)

At this point it becomes apparent that it is useful to redefine the fields ξi and ς
according to

ς 7→
√
∆
√

∆− 1
(d−1) R̄ ς , ξj 7→

√

∆− 1
d R̄ ξj . (F.6)

Note that at this point we already did two field redefinitions. We started with the
York decomposition hij → (hTT

ij , ξi, ς, h) which was followed by (F.6). Both cause
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a change of integration variables in the path integral and thus produce Jacobians.
However, it was shown in [150] that the Jacobians corresponding to these two field
redefinitions cancel each other for the spherical background (10.5). Now we can
combine the field redefinition (F.6) and the intermediate formula (F.5) and insert
this into the second variations (F.3). To shorten the notation we introduce

C2T =
d2 − 3d+ 4

d(d− 1)
, C0 =

(d− 2)(d− 1)

d2
(F.7)

to finally find the second variations of the monomials I1, . . . , I4 to become

δ2I1 = − 1
2

∫

D

{

hijTT∂2
τh

TT
ij + d−1

d ς ∂2
τ ς + 2ξj ∂2

τ ξj +
1
d h ∂

2
τ h

+ (∂τ lnχ)
[

d+4
2 hTTij ∂τ h

TT
ij − d−4

2d h ∂τh + (d+ 4)ξi ∂τ ξi

+ (d+4)(d−1)
2d ς ∂τ ς

]

+ (∂τ lnχ)
2
[

d−4
4 hTTij hTT

ij − d2−2d−16
8d h2 + d+1

2 ξi ξi

+ (d+8)(d−1)
4d ς ς

]}

,

δ2I2 = − 1
2

∫

D

{

h ∂2
τ h

+ (∂τ lnχ)
[

2dhTTij ∂τ h
TT
ij − d−4

2 h ∂τh+ 4d ξi ∂τ ξi

+ 2(d− 1)ς ∂τ ς
]

+ (∂τ lnχ)
2
[

d2

4 hTTij hTT
ij − d2−2d−16

8 h2 + d2+4d
2 ξi ξi

+ (d+8)(d−1)
4 ς ς

]}

,

δ2I3 =

∫

D

{

− 1
2h

ijTT hTT
ij − d−1

2d ς2 − ξj ξj +
d−2
4d h2

}

,

δ2I4 =

∫

D

{

1
2C0h

[

∆+ d−4
2(d−1)R̄

]

h− 1
2h

TT
ij

[

∆+ C2TR̄
]

hijTT − d−2
d R̄ ξi ξ

i

+ 1
2C0ς

[

∆− R̄
]

ς + C0 h
[

∆2 − 1
d−1R̄∆

]1/2

ς
}

. (F.8)

Here we used that the spatial Laplacian is time independent and thus commutes
with ∂τ . It is convenient to organise the terms quadratic in the fluctuations ac-
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cording to the components. Abbreviating ∂τ lnχ = γ we find

δ2Γgrav
TT =

√
ε

16πGk

∫

dDx
√
σ̄ 1

2h
TT
ij

[

∆+ C2TR̄− 2Λk − 1
ε∂

2
τ

+ γ
4dλk − d− 4

2ε
∂τ + γ2 d

2λk + 4− d

4ε

]

hTTij ,

(F.9)

δ2Γgrav
ξξ =

√
ε

16πGk

∫

dDx
√
σ̄ ξi

[

d−2
d R̄− 2Λk − 1

ε∂
2
τ

+ γ
4dλk − d− 4

2ε
∂τ + γ2 (d

2 + 4d)λk − d− 1

4ε

]

ξi ,

(F.10)

δ2Γgrav
ςς =

√
ε

16πGk

∫

dDx
√
σ̄ 1

2 ς
[

− C0(∆− R̄)− 2(d−1)
d Λk − d−1

dε ∂2
τ

+ γ
(d− 1)(4dλk − d− 4)

2dε
∂τ + γ2 (d− 1)(d+ 8)(dλk − 1)

4dε

]

ς ,

(F.11)

δ2Γgrav
hh =

√
ε

16πGk

∫

dDx
√
σ̄ 1

2h
[

− C0∆− (d−2)(d−4)
2d2 R̄+ d−2

d Λk +
dλk−1

dε ∂2
τ

− γ
(d− 4)(dλk − 1)

2dε
∂τ − γ2 (d

2 − 2d− 16)(dλk − 1)

8dε

]

h ,

(F.12)

δ2Γgrav
hς = −

√
ε

16πGk

∫

dDx
√
σ̄ C0h

[

∆2 − 1
d−1 R̄∆

]1/2

ς . (F.13)

This final result of our second variation is not diagonal yet in the fields. However,
we find a block diagonal form where each block can be inverted on its own. The
off-diagonal terms in the scalar sector can be handled separately and the inversion
as well as the evaluation of the trace is done in Appendix F.2.

F.2 The Scalar Trace

In this appendix we evaluate the scalar trace appearing in Section 10.2. The
starting point is (10.20) which reads

Tscalar =
1

2
TrD

[Γ
(2)
ςς ∂tRhh

k + Γ
(2)
hh∂tRςς

k − 2Γ
(2)
hς ∂tRhς

k

Γ
(2)
hhΓ

(2)
ςς − Γ

(2)
hς Γ

(2)
ςh

]

(F.14)
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with the second variations given in (10.9) - (10.11) and the regulators given in
(10.16). The index D at the trace shows that it includes a D-dimensional momen-
tum integral.

Note that the field ς is constrained as discussed in Appendix C.2 and thus has
a different expansion in eigenmodes than the field φ. Explicitly the lowest two
eigenmodes of ς do not contribute and thus we should be careful with mixed terms
as we are considering them here. However these effects have been investigated in
detail in [119]. There the authors show that all effects are proportional to δd,2 and
δd,4. As we are interested in d = 3, these subtleties do not affect our computation
and will not be considered any further

Finally we are not interested in the complete trace, but only in constant terms,
terms proportional to the background scalar curvature R̄ and terms proportional to
γ2 = (∂τ lnχ)

2. Thus we use an expansion for R̄ and γ and omit all higher-order
terms.1 Therefore we start to investigate the denominator in (F.14) which is a
function of both parameters

√
ε

16πGk
f(R̄, γ) = Γ

(2)
hhΓ

(2)
ςς − Γ

(2)
hς Γ

(2)
ςh . (F.15)

In order to expand the expression under the trace we have to calculate f(0, 0),
∂R̄f(0, 0), ∂γf(0, 0) and ∂2

γf(0, 0). These can be evaluated to

f(0, 0) = f1
00Pk + f2

00 , ∂R̄f(0, 0) = f1
10Pk + f2

10 ,

∂γf(0, 0) = f1
01Pk + f2

01 , ∂2
γf(0, 0) = f1

02Pk + f2
02 (F.16)

with the prefactors f r
pq given in terms of the spatial dimension d and the dimen-

sionless quantities

Λ̄k =
Λk

k2
, m =

2π

βk
, Ḡk = Gkk

d−1 , λk . (F.17)

Explicitly the prefactors read

f1
00 =C0

(

k2Λ̄k −
1− λk

ε
m2n2k2

)

,

f2
00 =C0

(

k2Λ̄k −
1− λk

ε
m2n2k2

)

w0k
2 ,

f1
10 =− d− 2

2d
C0 ,

f2
10 =

2(d− 3)

d
C0Λ̄kk

2 − d− 6 + 2dλk

2dε
C0m

2n2k2 ,

1Note that here R̄ and γ are merely bookkeeping devices and no dynamical objects.
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f1
01 =ıC0

−3dλk + d+ 2

2ε
mnk ,

f2
01 =− ı

2(d− 1)(dλk − 1)(dλk − 2)

d2
m3n3k3

+ ı
(d− 1)((6d2 − 16d)λk − d2 − 4d+ 16)

2d2ε
Λ̄kk

3mn ,

f1
02 =− C0

(d+ 16)(dλk − 1)

4ε
,

f2
02 =

(d− 1)(d2 + 2d− 16)(dλk − 1)

d2ε
Λ̄kk

2

+
(d− 1)(dλk − 1)(6d(d− 8)λk − 3d2 + 4d+ 64)

4d2
m2n2k2 . (F.18)

Here we introduced w0 in the second line as

w0 =
1

Λ̄k − 1−λk

ε m2n2

(

−2Λ̄2
k +

d−4+2dλk

(d−2)ε Λ̄km
2n2 − (dλk−1)

(d−2) m4n4
)

. (F.19)

This can be used to perform the expansion in R̄ and γ

1

a+ bR̄
=

1

a
− bR̄

a2
+O(R̄2) ,

1

a+ bγ + cγ2
=

1

γ
− bγ

a2
+

b2 − ac

a3
γ2 +O(γ3) . (F.20)

Furthermore we need
1

(a+ bγ + cγ2)2
=

1

a2
+O(γ) . (F.21)

To evaluate these expansions systematically we decompose Tscalar, for convenience,
according to

Tscalar = T I
scalar + T II

scalar + T III
scalar . (F.22)

These three parts can be expanded separately in R̄ and γ to give

T I
scalar =

1

2
TrD

[ Γ
(2)
ςς ∂tRhh

k

Γ
(2)
hhΓ

(2)
ςς − Γ

(2)
hς Γ

(2)
ςh

]

= −C0

2

√
ε
∑

n

Trd

{

∂t(βZNkRk)
βZNk

[

−C0Pk+b1
f(0,0) + R̄

(

b2
f(0,0) − −C0Pk+b1

f(0,0)2 ∂R̄f(0, 0)
)

+ γ2
(

2b4
f(0,0) − b3

f(0,0)2 ∂γf(0, 0) +
−C0Pk+b1

2

(

− ∂2
γf(0,0)

f(0,0)2 + 2
(∂γf(0,0))

2

f(0,0)3

))]}

,
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T II
scalar =

1

2
TrD

[ Γ
(2)
hh∂tRςς

k

Γ
(2)
hhΓ

(2)
ςς − Γ

(2)
hς Γ

(2)
ςh

]

= −C0

2

√
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∑

n

Trd
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βZNk

[
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(
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)
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(
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f(0,0)2 + 2
(∂γf(0,0))

2
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T III
scalar =

1

2
TrD

[ −2Γ
(2)
hς ∂tRhς
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hhΓ
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(2)
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]

= −C2
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√
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Trd
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∂t(βZNkRk)
βZNk

[

Pk
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(
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(
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2
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f(0,0)2 + 2
Pk(∂γf(0,0))
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. (F.23)

Here we omitted irrelevant terms and introduced for better readability the abbre-
viations

b1 = −2(d− 1)

d
Λ̄kk

2 +
d− 1

dε
m2n2k2 , b5 =

d− 2

d
Λ̄kk

2 − dλk − 1

dε
m2n2k2 ,

b2 = C0 , b6 = − (d− 2)(d− 4)

2d2
,

b3 = ı
(d− 1)(4dλk − d− 4)

2dε
mnk , b7 = −ı

(d− 4)(dλk − 1)

2dε
mnk ,

b4 =
(d− 1)(d+ 8)(dλk − 1)

4dε
, b8 = − (dλk − 1)(d2 − 2d− 16)

8dε
. (F.24)

These should not be confused with the abbreviations introduced in the main text.
We used the same symbols here, since a confusion is very unlikely.

Now all traces appearing in (F.23) are of the form discussed in Appendix C.
Thus we can evaluate the traces and combine the result for T I

scalar, T II
scalar and T III

scalar.
The result is very lengthy and thus again we introduce abbreviations, labeled with
ak, k = 1, . . . , 14, to improve the readability. The result, after evaluating the trace,
reads

Tscalar =− 2
√
ε

(4π)d/2

∑

n

∫

ddx
√
σ̄kd

[

a1q
1,0
d/2

+
R̄

k2

(

a1

6 q1,0d/2−1 + a2Xq1,0d/2 + (a3 + a4m
2n2)Xq2,0d/2 + a5Xq2,−1

d/2

)
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+
γ2

k2

(

a6Xq1,0d/2 + (a7 + a8m
2n2 + a9Xm2n2 + a10Xm4n4)Xq2,0d/2

+ (a11 + a12Xm2n2)Xq2,−1
d/2 + (a13 + a14m

2n2 + a15m
4n4)X2m2n2q3,0d/2

+ (a16 + a17m
2n2)X2m2n2q3,−1

d/2 + a18X
2m2n2q3,−2

d/2

)

]

. (F.25)

Here the q functions are defined as qp,qn (w) = Φp,q
n (w)− 1

2ηNΦ̃
p,q
n (w) and understood

to be evaluated at w0, given in (F.19). The anomalous dimension reads ηN =
−∂t ln(βZNk), the threshold functions Φ, Φ̃ can be found in Appendix C.4 and the
prefactors read

X =
(

Λ̄k − 1−λk

ε m2n2
)−1

,

a1 = − 1
2 , a2 = d−2

4d , a3 = d−3
d Λ̄k , a4 = − d−6+2dλk

4dε , a5 = − d−2
4d ,

a6 = (d+16)(dλk−1)
16ε , a7 = (d2+2d−16)(dλk−1)Λ̄k

4ε(d−2) ,

a8 = (dλk−1)(6d(d−8)λk−3d2+4d+64)
16(d−2) , a9 =

(3dλk−d−2)((6d−16)dλk−d2−4d+16)Λ̄k

8(d−2) ,

a10 = − (dλk−1)(dλk−2)(3dλk−d−2)
2ε(d−2) , a11 = − (d+16)(dλk−1)

16ε , a12 = − (3dλk−d−2)2

8 ,

a13 =
((6d2−16d)λk−d2−4d+16)2Λ̄2

k

8(d−2)2 , a14 = − ((6d2−16d)λk−d2−4d+16)Λ̄k(dλk−1)(dλk−2)
ε(d−2)2 ,

a15 = 2(dλk−1)2(dλk−2)2

(d−2)2 , a16 = − (3dλk−d−2)((6d2−16d)λk−d2−4d+16)Λ̄k

4(d−2) ,

a17 = (3dλk−d−2)(dλk−1)(dλk−2)
(d−2)ε , a18 = (3dλk−d−2)2

8 . (F.26)

The scalar trace (F.25) constitutes the final result of this appendix. Added to
the TT trace in Section 10.2 it gives the right hand side of the foliated Wetterich
equation (9.11).

F.3 Summing the Matsubara Modes

This appendix treats the sums over Matsubara modes which are left after per-
forming the operator traces in Section 10.2. Due to simplicity we start with the
TT sector, before turning to the Matsubara sums in the scalar sector. The sums
appearing in (10.30) are of the form

∑

n(m
2n2)rqp,ql (w2T) where

w2T = −2Λ̄k + ε−1m2n2 . (F.27)

The q functions have been defined in Section 10.2 and read

qp,ql (w) = Φp,q
l (w) − 1

2ηN Φ̃p,q
l (w) , ηN = −∂t ln(βZNk) . (F.28)
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The threshold functions are given in Appendix C and we specify to the simple
result (C.32) reached for the optimised cutoff. Therefore all sums are of the form
∑

n n
2r(1 +w2T)

−p with w2T given in (F.27). The infinite sums can be performed
by utilising the master formulas

∞
∑

n=−∞

1

n2 + x2
=

π

x tanh(πx)
,

∞
∑

n=−∞

1

n2 − x2
= − π

x tan(πx)
. (F.29)

To shorten the notation we introduce the following summed threshold functions for
r ≤ p− 1

Υp,r
l =

∞
∑

n=−∞

(

m2n2
)r

Φp,q
l (w2T) , Υ̃p,r
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∞
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)r

Φ̃p,q
l (w2T) . (F.30)

There are only few combinations of p and r appearing in (10.30), which are (p, r) =
(1, 0), (2, 0), (3, 1). The summation of Υ1,0

l is fairly simple since it is a direct
implementation of the master formula (F.29). The evaluation gives

Υ1,0
l =

1
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π

m
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) . (F.31)

The next summed threshold functions, Υp,0
l , p > 1, can be deduced iteratively from

the first one by considering Υp+1,0
l = 1

2p∂Λ̄k
Υp,0

l . This leads to
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. (F.32)

Terms with higher values for r can be found recursively via Υp+1,r+1
l =

− ε
2pm (m2)r+1∂m(Υp,r

l /(m2)r). This iteration gives us the last missing summed
threshold function, which reads
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. (F.33)

The threshold functions denoted with a tilde are related to the ones above by

Υ̃p,r
l = Γ(l+1)

Γ(l+2)Υ
p,r
l . Finally, for convenience, we introduce the summed version of

the q functions which we denote by

T p,r
l = Υp,r

l − 1
2 ηN Υ̃p,r

l . (F.34)
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Similar considerations have to be done for the scalar part. However this is more
involved since w0 is a polynomial of second order in n2 and thus the master formula
(F.29) can not be applied directly. To boil the appearing terms down to the form
(F.29) we use the partial fraction decomposition. Therefore we write

1 + w0 =
κ1Λ̄k−2κ2Λ̄

2
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∣
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(F.35)

where we introduced five auxiliary parameters κ1, . . . , κ5. The zeros w± are given
as

w±=− d−2
2(1−dλk)m2κ4

(
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(F.36)

and can be used to evaluate the partial fraction decomposition of (1 +w0)
−1. The

result reads

1
1+w0

= d−2
(1−dλk)m4κ4

[ 1
w+−w−

(1−λk
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n2 − w+

]

(F.37)

which finally contains two terms of the form of the master formula. For the rest we
can follow the lines of the TT part. The end of Appendix F.2, or (10.33), shows
that terms of the following form appear on the right hand side of the flow equation

Ψp,r
l,s =

∞
∑

n=−∞
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l (w0) . (F.38)

Starting with the easiest one, we can use the partial fraction decomposition (F.37)
to sum the threshold function Φ1,0

l (w0). The summed threshold function, with all
auxiliary parameters set to one, reads

Ψ1,0
l,0 = 1

Γ(1+l)
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√
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]

. (F.39)
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However, we need further summations, which are more complicated. Investigating
the result at the end of Appendix F.2 we find that the following combinations are
needed: (p, r, s) = (1, 0, 1), (2, 0, 1), (2, 1, 1), (2, 1, 2), (2, 2, 2), (3, 1, 2), (3, 2, 2), (3, 3, 2).
To find all these terms we start with Ψ1,0

l,1 . This can be found by taking one deriva-
tive with respect to the parameter κ5. Afterwards we set it to one, since we will
not need it again. We use 1
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For all further terms we can use the following rules, which use the other auxiliary
parameters κ1, . . . , κ4

Ψp+1,r
l,s = −1

p
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Applying these rules we determine
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l,2 =− 1

Γ(1+l)
π(d−2)3

8m10ε(1−dλk)3(w−−w+)5

[

− 3m2w+(λk−1)(w2
−
+10w−w++5w2

+)−εΛ̄k(w
2
−
−14w−w+−35w2

+)

w
3/2
+ tan(π

√
w+)

+
3m2w−(λk−1)(5w2

−
+10w−w++w2

+)+εΛ̄k(35w
2
−
+14w−w+−w2

+)

w
3/2
−

tan(π
√
w−)

− 2π2(w−−w+)2(m2w+(λk−1)+εΛ̄k)√
w+ tan(π

√
w+) sin(π

√
w+)2 + 2π2(w−−w+)2(m2w−(λk−1)+εΛ̄k)√

w− tan(π
√
w−) sin(π

√
w−)2

+ π(w−−w+)(m2w+(5w−+7w+)(λk−1)+εΛ̄k(w−+11w+))
w+ sin(π

√
w+)2

+ π(w−−w+)(m2w−(7w−+5w+)(λk−1)+εΛ̄k(11w−+w+))
w− sin(π

√
w−)2

]

, (F.47)

Ψ3,2
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,

(F.48)
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Ψ3,3
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. (F.49)

Similar to the transverse traceless sector we note that Ψ̃p,r
l,s = Γ(l+1)

Γ(l+2)Ψ
p,r
l,s . Further-

more, for convenience, we introduce the summed version of the q functions which
we denote by

Sp,r
l,s = Ψp,r

l,s − 1
2 ηN Ψ̃p,r

l,s . (F.50)

In Section 10.2 the flow equations are given in terms of (F.34) and (F.50). This is
a very compact notation and makes the beta functions readable.
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of Hořava-Lifshitz gravity at low energies. 2013.

[170] R. M. Wald. General Relativity. University of Chicago Press, 1984.

[171] A. Dasgupta and R. Loll. A Proper time cure for the conformal sickness in
quantum gravity. Nucl.Phys., B606:357–379, 2001, arXiv:0103186.

[172] C. Teitelboim. Quantum Mechanics of the Gravitational Field. Phys.Rev.,
D25:3159, 1982.



BIBLIOGRAPHY 173

[173] C. Teitelboim. The Proper Time Gauge in Quantum Theory of Gravitation.
Phys.Rev., D28:297, 1983.

[174] P. Horava and C. M. Melby-Thompson. General Covariance in Quantum
Gravity at a Lifshitz Point. Phys.Rev., D82:064027, 2010, arXiv:1007.2410.

[175] Jr. York, J. W. Conformatlly invariant orthogonal decomposition of symmet-
ric tensors on Riemannian manifolds and the initial value problem of general
relativity. J.Math.Phys., 14:456–464, 1973.

[176] S. Floerchinger. Analytic Continuation of Functional Renormalization Group
Equations. JHEP, 1205:021, 2012, arXiv:1112.4374.

[177] D. F. Litim. Wilsonian flow equation and thermal field theory. 1998,
arXiv:9811272.

[178] D. F. Litim and J. M. Pawlowski. Non-perturbative thermal flows and re-
summations. JHEP, 0611:026, 2006, arXiv:0609122.

[179] P. Fischer and D. F. Litim. Fixed points of quantum gravity in extra dimen-
sions. Phys.Lett., B638:497–502, 2006, arXiv:0602203.

[180] A. De Felice and S. Tsujikawa. f(R) theories. Living Rev.Rel., 13:3, 2010,
arXiv:1002.4928.

[181] C. P.L. Berry and J. R. Gair. Linearized f(R) Gravity: Gravitational Radia-
tion and Solar System Tests. Phys.Rev., D83:104022, 2011, arXiv:1104.0819.

[182] L.D. Faddeev and V.N. Popov. Feynman Diagrams for the Yang-Mills Field.
Phys.Lett., B25:29–30, 1967.

[183] L.F. Abbott. Introduction to the Background Field Method. Acta

Phys.Polon., B13:33, 1982.

[184] M. Niedermaier and M. Reuter. The Asymptotic Safety Scenario in Quantum
Gravity. Living Rev.Rel., 9:5, 2006.

[185] M. A. Rubin and C. R. Ordonez. Eigenvalues and Degeneracies for n-
Dimensional Tensor Spherical Harmonics. 1983.

[186] M. A. Rubin and C. R. Ordonez. Symmetric Tensor Eigen Spectrum of the
Laplacian on n Spheres. J.Math.Phys., 26:65, 1985.

[187] R. L. Arnowitt, S. Deser, and C. W. Misner. Dynamical Structure and
Definition of Energy in General Relativity. Phys.Rev., 116:1322–1330, 1959.

[188] D. Adams. ”So Long, and Thanks for All the Fish”. Del Rey, 1999.



174 BIBLIOGRAPHY



Acknowledgement

At the end I would like to take the opportunity to spread my gratitude among the
various people, who contributed directly or indirectly to this thesis.

First and foremost my special thanks goes to Frank Saueressig for giving me the
opportunity to join his group as a PhD student. I would like to thank for his con-
tinuous support and abundance of patience with me. It is mainly his credit that
this thesis came into being with the current quality and quantity.

Secondly I would like to thank Renate Loll for the possibility to submit this thesis
to the Radboud University. Her comments on the manuscript shall be acknowl-
edged as well.

Furthermore, special thanks goes to Martin Reuter. I benefitted much from his
seemingly all-embracing knowledge. Moreover I have to thank him for many inter-
esting and funny anecdotes during several lunches and dinners.

In addition I would like to thank all my collaborators for working with me and
explaining me a huge amount of things I should have known before. In alphabetic
order these are Jacqueline A. Bonnet, Adriano Contillo, Holger Gies, Kai Groh,
Elisa Manrique, Jan M. Pawlowski, Michael M. Scherer, Luca Zambelli and Omar
Zanusso.

Among them, I would like to single out my office mates Kai Groh and Adriano Con-
tillo. I enjoyed many interesting discussions with them, where the topics ranged
far beyond physics.

Special thanks go as well to Daniel Becker, Maximilian Demmel, Andreas Nink
and Gregor Schollmeyer for carefully proofreading parts of this thesis. Their com-
ments and suggestions improved this text considerably.

Another thanks go to Ulrich Harst for all the discussions during the train trav-
els between Mainz and Frankfurt making them enjoyable.

I would like to thank the whole group including Alessandro Codello for the en-
joyable atmosphere in the offices and the mensa. Especially I would like to thank
for the various group events, which often contained conversations about physics.
As my time in this great group ends I am tempted to cite Douglas Adams [188]
and say ”So long, and thanks for all the fish”.



Last but not least I would like to acknowledge the financial support by the Deutsche
Forschungsgemeinschaft (DFG), who supported my Ph.D. position within the Emmy-
Noether program (Grant SA/1975 1-1).



Curriculum Vitae

Stefan Rechenberger was born on the 1st of September 1983 in Dresden, Ger-
many Democratic Republic. His secondary education ended at the Gymnasium
Senftenberg in 2003 with the receipt of the general qualification for university en-
trance. After nine months of military service he started his undergraduate studies
in mathematics and physics at the Friedrich-Schiller-Universität Jena. He grad-
uated in 2010 with a diploma thesis on ”Asymptotic Safety of Yukawa Systems”
under the supervision of Prof. Dr. Holger Gies. Subsequent he joined the group of
Frank Saueressig at the Johannes Gutenberg-Universität Mainz which went to the
Radboud Universiteit Nijmegen in spring 2013. Under his supervision he did his
doctoral research about asymptotically safe quantum gravity. The result of this
work is subsumed in the present thesis.




