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Thermopower, entropy, and the Mott relation in HgSe:Fe
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We have investigated the quantum oscillations in the diffusion thermopower of a HgSe crystal doped with
about 1% Fe. The high concentration of Fe has provided sufficient attenuation of phonon-drag quantum
oscillations to allow clear observation of oscillations in the diffusion thermopower of a degenerate semicon-
ductor. At high magnetic fields the diffusion oscillations are well represented by the entropy per unit charge,
though the measured amplitude is larger than expected by about 50%. At low fields the oscillations shift in
phase and agree with those predicted from the electronic relaxation time using the Mott relation.

DOI: 10.1103/PhysRevB.65.035201 PACS number~s!: 72.20.Pa

I. INTRODUCTION

In the absence of phonons, thermopower is closely con-
nected to carrier diffusion in a temperature gradient and
therefore can, in principle, give direct access to fundamental
thermodynamic properties of conductors. However, phonon
interactions also give a contribution to thermopower, phonon
drag, which typically masks the more fundamental diffusion
contribution. In this paper we discuss results on diffusion
thermopower on a specially chosen HgSe sample where the
effect of phonons has been greatly reduced.

It has long been known, see, for example, Ioffe,1 that
diffusion thermopowerSd is related to the entropy of the
charge carriers,S ~defined here as the entropy per unit vol-
ume!, for simple semiconductors. If electron-scattering ef-
fects can be ignored~in practice it is sufficient if the electron
scattering is independent of energy! and with no magnetic
field present,Sd is equivalent to the electronic entropy per
unit charge, i.e.,

Sd52S/nueu, ~1!

wheren is the electron density andueu the magnitude of the
electronic charge, the negative sign assumes that electrons
rather than holes are the charge carriers. This result is known
to be valid in the limits of degenerate and classical statistics
of the carriers, but is probably valid for any degeneracy
though we have seen no proof for the general case. It is also
valid in both three and two dimensions and appears to re-
main true whatever the electron scattering in transverse, clas-
sically high magnetic fields. ‘‘Classically high magnetic
fields’’ means that Landau quantization is ignored and this
restriction arises because the result is based on the Boltz-
mann transport equation, which becomes invalid when Lan-
dau levels are dominant. Assuming sufficient symmetry in
the xy plane and with a transverse magnetic fieldB alongz,
there are two independent components of the thermopower
tensor, the thermopowerSxx and the Nernst-Ettingshausen
coefficient Syx . The entropy result applies only to the
former.

Obraztsov2 showed that Eq.~1! is also valid forSxx
d in

three dimensions~3D! in a magnetic field for the case of zero

scattering of the electrons and applies to both the oscillatory

part S̃xx
d and the smooth backgroundS̄xx

d . ~Throughout we
will use a bar and tilde to indicate monotonic and oscillatory
components of the coefficients.! The Boltzmann equation
cannot be applied to this situation regardless of the strength
of the magnetic field. Later the result was extended to the
case with electron scattering3 and was shown to remain valid
but correction terms appear. We note that for negatively
charged carriers the oscillations inSxx

d are in antiphase with
the oscillations in the electronic density of states, which, in
turn, are in phase with those in the resistivityr̃xx . The cal-
culations have also been extended to 2D for zero and weak
scattering4 but we will not consider this case further except
to say that the entropy component has not been definitively
observed there as yet.

Because Eq.~1! had been known for many years, it was
not surprising that it should also hold when quantum effects
dominate at high fields. Nevertheless, there is another result
that has invariably been used in analyzingSd in degenerate
systems, the Mott relation. This relatesSd to the derivative of
the conductivity with respect to electron energy. Although
this was originally based on the Boltzmann equation, an
analogous result has been shown to remain valid even in
strong magnetic fields.5 In 3D this approach leads to the
prediction thatS̃xx

d is shifted in phase byp/2 compared to
entropy oscillations,6 and also has a different field depen-
dence. Although the situation is not completely clear, the
theoretical work5,3 appears to suggest that the two contribu-
tions, Mott and entropy, should both exist, in general, at least
at high fields when the scattering is not too strong. Only the
entropy component would exist when there is no electronic
scattering and the Mott component can be considered to be
correction to allow for the effects of electronic scattering.

Given the phase shift and generally different amplitudes
between the Mott and entropy results in 3D, one might ex-
pect that it would be a straightforward matter to distinguish
the two contributions experimentally, but this has not proved
to be the case. The main reason is that there is another con-
tribution to thermopower, the phonon dragSg due to non-
equilibrium phonons in the temperature gradient pumping
momentum into the electron system via electron-phonon col-
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lisions. ClassicallySxx
g is predicted7 to be independent ofB

but in reality the electron-phonon relaxation time also oscil-
lates in the presence of Landau levels. There are no theoret-
ical results dealing with the resulting quantum oscillations in
Sxx

g , but for negative carriers they are expected to be in
antiphase with the oscillations in the density of states and
this has experimentally been seen to be the case whenSxx

g is
completely dominant.6 This means that they are not easily
distinguishable from entropy oscillations inSxx

d .
Although this is a long-standing problem, as far as we are

aware there are only two previous papers concerned with
experimentally investigating the oscillations in the ther-
mopower of 3D semiconductors. Schroder and Landwehr8

made an early study ofS̃xx in HgSe specifically to check the
Obraztsov entropy result. They found that the oscillations
were in antiphase withr̃xx as predicted and, with a suitable
choice of various parameters, the field dependence of the
oscillations could also be made to agree with the Obraztsov
result. However, the absolute magnitude ofS̃xx

d was not mea-
sured and the presence ofS̃xx

g was not appreciated at the
time. Thus there remains some doubt as to the significance of
those measurements.

More recently, Tiekeet al.6 made detailed measurements
on both components ofSi j and of the resistivityr i j for HgSe
doped with 0.03% Fe. It was found thatSg was very large at
low temperatures. The oscillatory partS̃xx

g was probably
dominant up to about 20 K and could not be ignored up to
temperatures of order 50 K so thatS̃xx

d could not be evalu-
ated. Interestingly,Syx

g is predicted to be zero7 and it was
found that the experimental results onSyx , which were then
presumably onlySyx

d , could be accurately reproduced by cal-
culations based on the Mott relation at all fields and tempera-
tures. Recall that there is no entropy component inSyx

d .
Clearly the key to the experimental problem of observing

S̃xx
d is to reduceSg and therebyS̃xx

g . In general, this can be
done by adding impurities that strongly scatter phonons. Un-
fortunately, this also usually reduces the electron mobility
very rapidly so that quantum oscillations are no longer vis-
ible. Tiekeet al.6 chose the system HgSe10.03% Fe because
Fe impurity can be added to HgSe to give a high electron
concentration, and thus many oscillations, while retaining a
high mobility. However, it is known that the HgSeFe system
is unusual in that considerably more Fe may be introduced,
up to at least 1%, with relatively little effect on either elec-
tron mobility or density~for a recent review, see Ref. 9!.
Such a large Fe content has also been shown10 to give a
strong decrease inSg.

Owing to these attractive properties, we have investigated
the thermopower of HgSe sample doped with about 1% Fe
and the present paper reports our results. Briefly, the ex-
pected reduction ofSg was observed, and we find strong
evidence that both contributions toS̃xx

d exist in magnetic
fields, with the entropy and Mott results being dominant at
high and low fields, respectively.

II. THEORY

This section introduces the main theoretical results that
are required to analyze the data. Because we are interested in

the relative phases ofS̃xx
d and r̃xx , it was necessary to ex-

perimentally investigate the latter in some detail. Resistivity
oscillations reflect the oscillations in the electronic density of
states at the Fermi energy«F via changes in the relaxation
time t of the electrons. For degenerate electrons with spheri-
cal energy surfaces and elastic scattering, it is predicted11

that

rxx5 r̄xx1 r̃xx5r0F11
5

2 S B

2 f D
1/2

(
r 51

`
~21!r

r 1/2 D~rX !

3cosS 2p f

B
r 2

p

4 DexpS 2
gTD

B
r D G , ~2!

wherer0 is the resistivity at zero field,D(X)5X/ sinhX is a
thermal damping factor withX52p2kB

2T/\vc andvc being
the cyclotron frequency, andTD is the Dingle temperature
that accounts for collision broadening of the Landau levels.
The ratio f /B5«F /\vc . We have dropped a small extra
oscillatory term, which is negligible in this work, and also
ignored a spin-splitting term that will be introduced later.

Although the oscillations inryx are very small and have
not attracted much experimental attention~the most compre-
hensive set of data seem to be those of Mani, Anderson, and
Johnson12!, they are required to give a complete picture of
the thermopower oscillations. Equations for the Hall conduc-
tivity sxy have been given by Horton,13 Guseva and
Zyryanov,14 and Zyryanov and Kuleyev15 ~the last two pa-
pers give a result only for the fundamental component at
zero temperature!. Horton gives

sxy5s̄xy1s̃xy52
nueu
B

1
nueu

B~11b2!

3F11
7&

8 S B

2 f D
1/2

(
r 51

`
~21!r

r 1/2 D~rX ! cosS 2p f

B
r

2
p

4 DexpS 2
gTD

B
r D G , ~3!

whereb5vct. We useryx5sxy /(sxy
2 1sxx

2 ) wheresxx is
obtained from Eq.~2! ~using a similar relation betweensxx
andrxx! and find forb2@1

ryx5 r̄yx1 r̃yx52
B

nueu F12
3

2 S B

2 f D
1/2 1

b2 (
r 51

`
~21!r

r 1/2

3D~rX !cosS 2p f

B
r 2

p

4 DexpS 2
gTD

B
r D G . ~4!

It is possible that these results may not be complete for the
case of HgSe:Fe because it has been postulated that for suf-
ficient Fe content~as here! the Fermi energy«F is pinned in
the conduction band by the Fe impurity state.16 If this is
correct, and if it remains valid under dynamic conditions at
low temperature, then the number of electrons will oscillate
with changing magnetic field and will result in another con-
tribution to r̃yx .
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The thermopower is defined byEi5Si j“Tj , whereĒ is
the measured electric field and“T is the temperature gradi-
ent. The situation is complicated by the fact that the present
sample has a relatively large contribution to the thermal con-
ductivity from the electrons,l i j

e , which gives a finite trans-
verse temperature gradient“Ty . With no transverse heat
current, “Ty /“Tx52bl0

e/@lg(11b2)1l0
e#'2l0

e/blg,
assuming free-electron results and elastic scattering forl i j ,
with l0

e being the electronic thermal conductivity at zero
field. This gives a measured thermopower

Sxx
m 'Sxx1Syx~l0

e/blg!, ~5!

which we shall use below. The thermal conductivity at zero
field is lg1l0

e . Whenb2@1 we expect a measured thermal
conductivity of 'lg1(l0

e/b2)@11(l0
e/lg)#, which ap-

proacheslg as;1/B2 for b@1.
The semiclassical~Mott! results for the diffusion compo-

nents S̄i j
d with elastic scattering and degenerate electrons

are6,17

S̄xx
d 52

p2kB
2T

3ueu«F
F3

2
1

p

11b2G , ~6!

S̄yx
d 52

p2kB
2T

3ueu«F
F pb

11b2G , ~7!

wherep5(] ln t /] ln «)«F
. Using Eq.~5! we see that, what-

ever the value ofl0
e/lg, the limiting high-field result forS̄xx

d

reduces to2p2kB
2T/2ueu«F , which is the entropy per unit

charge, i.e., Eq.~1!, thoughlxx
e might have some effect on

how Sxx
M makes the transition from low to high field.

There is an extension of the Mott result to oscillatory
components, which are found to be6

S̃xx
d 52

a

11b2 S r̃xx

r̄xx
1b2

r̃yx

r̄yx
D , ~8!

S̃yx
d 52

ab

11b2 S r̃xx

r̄xx
D , ~9!

where a5 i (pkB /ueu)D8(rX)/D(rX) and D8(rX)5@1
2rX coth(rX)#/ sinh(rX) is the thermal damping factor for
thermopower oscillations andi signifies that there is a phase
shift of p/2 betweenr̃ i j and S̃i j

d . Although these last results
were first derived using the Boltzmann equation, theoretical
results by Smrc˘ka and Str˘eda5 suggest that they are more
general. In support of this view we note that Eq.~9! has been
shown to be accurately obeyed in HgSe:Fe under similar
conditions of temperature and field as used here.6 @Note that
the signs ofS̃xx

d andS̃yx
d given in Eqs.~6a! and~6b! of Ref. 6

should both have been negative as above.# We shall refer to
the measured thermopower from this source as the Mott con-
tribution S̃xx

M , which from Eqs.~5!, ~8!, and~9! is given by

S̃xx
M 52

a

11b2 S r̃xx

r̄xx
F11

l0
e

lgG1b2
r̃yx

r̄yx
D . ~10!

Finally, using Eqs.~2! and ~4!, S̃xx
M is predicted to be

S̃xx
M 5

pkB

ueu
11~5l0

e/2lg!

11b2 S B

2 f D
1/2

(
r 51

`
~21!r

r 1/2 D8~rX !

3sinS 2p f

B
r 2

p

4 DexpS 2
gTD

B D . ~11!

Obraztsov2 studied the case of no electronic scattering
where Eq.~11! gives a zero result. He found the following,
which we refer to asSxx

O ~there is no contribution toSyx!,

Sxx
O 5S̄xx

d 1S̃xx
d 52

p2kB
2T

2ueu«F
1

3kB

2ueu S B

2 f D
3/2

(
r 51

`
~21!r

r 3/2

3D8~rX !cosS 2p f

B
r 2

p

4 D . ~12!

This equation is equivalent to the entropy of the electrons per
unit charge. We assume that when the Landau levels are
broadened by scattering, a collision-broadening term,
exp(2grTD /B), must be included in the oscillatory part. Be-
causeD8(X) is a negative quantity,S̃xx

O as predicted by Eq.

~12! is in antiphase withr̃xx as given by Eq.~2!. Also S̃xx
O is

distinguishable fromS̃xx
M given by Eq.~10!, which isp/2 out

of phase. Finally note thatS̄xx
d is the same as that given by

Eq. ~6! whenb→`.

III. EXPERIMENTAL TECHNIQUES AND RESULTS

A sample was cut from a single crystal of HgSe doped
with nominally 1% Fe using a diamond impregnated wire
saw and lapped to a rectangular shape about 832.3
30.9 mm3. This was a rather small sample that should help
to minimize any problems with inhomogeneity. It was pol-
ished with 1% Br in methanol and, after cleaning with ben-
zene, given a 10 min dip at 40 °C in an acid etch recom-
mended by Warekoiset al.18 Following this treatment the
sample was readily soldered with indium. Six 25-mm-
diameter gold leads were attached as current and potential
probes, and these in turn were soldered to 50-mm manganin
leads to provide thermal isolation. The indium contacts all
had very low resistance. Finally the sample was indium sol-
dered at one end to the cold sink. The remaining setup was
similar to that used by Tiekeet al.6

The small sample combined with the finite width of the
indium contacts means that the resistivity could be in error
by about 15%. However, we will only need the ratio of
r̃xx /r0 @see Eq.~2!#, which we would expect to be much
more accurate unless the effective contact spacing is field
dependent. The thermopower needs the extra measurement
of the length between the thermometer probes. This raises
the overall uncertainty to about 20–25 %. In the analysis we
will use the high-field limit of the smooth part of the ther-
mopower to normalize the data so that the resulting error on
the absolute magnitude should be much lower.

The electron density was found from Hall data to be 5.2
31024m23(61%) and independent of temperature. The mo-

THERMOPOWER, ENTROPY, AND THE MOTT RELATION . . . PHYSICAL REVIEW B65 035201

035201-3



bility was somewhat temperature dependent ranging from
5.2 m2/V s at 4He temperatures to 4.0 m2/V s at 42 K. Figure
1 shows data on the thermal conductivityl of the present
sample, together with data from the study by Tiekeet al.6 on
a HgSe sample with nominally 0.03% Fe. The extra Fe has
greatly increased phonon scattering in the present sample,
thereby strongly decreasinglg. As a result the electronic
part l0

e is relatively much larger in the present sample. The
line gives an estimate ofl0

e assuming the validity of the
Wiedemann-Franz law, but it is known that the Lorenz num-
ber begins to drop rapidly in the region of interest.19 We can
obtain a better estimate ofl0

e/lg using the magnetic-field
dependence of the measuredl. Over the range 20–40 K the
ratio is only weakly temperature dependent and has an aver-
age value of about 0.4.

The thermopower at zero field for both samples is given
in Fig. 2. The straight line is the estimated diffusion ther-
mopowerSd ~assuming that the high-temperature asymptote
gives a good guide! and is essentially the same for both
samples. We attribute deviations from this line toSg. The
strong reduction seen inl is also seen inSg. In the present
sampleSg becomes very small above about 20 K. Although
there are no predictions concerning the magnitude ofS̃xx

g , a

consideration of their physical origin suggestsS̃xx
g /S̄xx

g

<r̃xx / r̄xx . It follows that S̃xx
g should be negligible above

;20 K so the data onS̃xx should be dominated byS̃xx
d in this

region; we shall assume this in what follows.
To obtain the field dependence of bothrxx andSxx it was

necessary to take field sweeps with both6B and evaluate
the even parts, e.g.,Sxx5@Sxx(1B)1Sxx(2B)#/2. Similarly
we used the odd part in evaluatingryx . Measurements were
made only during sweeps with increasing field to minimize
any hysteresis problems with the superconducting magnet.
Finally, all data for bothrxx and Sxx were taken with the
same pair of voltage probes on the sample because we re-
quire the relative phases of the oscillations in each of these
coefficients and this arrangement minimizes, or even elimi-
nates, inhomogeneity effects.

We will not show examples of raw data forrxx because
they are very similar to those given by Tiekeet al.6 The
current in the sample was limited to<5 mA to avoid any
temperature gradient~we can detect about 1 mK! and un-
wanted admixture of a thermopower signal.

Figure 3 showsSxx ~which we now take to beSxx
d ! as a

function of magnetic field at various fixed temperatures from
about 22–44 K. The upper temperature limit of the measure-
ments was dictated by the thermometers becoming too insen-
sitive. At low fields whereSxx varies rapidly, the thermal
conductivity also has a strong magnetic-field dependence due
to the presence ofl i j

e . This leads to the temperature and
temperature gradient of the sample being functions of field.
Our interest is primarily in the data at high fields where these
corrections decrease as 1/B2 and become very small. Hence
we have not corrected the results for these effects at low
fields. With this proviso in mind, the smooth backgrounds of
the data are consistent with the field dependence predicted by

FIG. 1. Thermal conductivityl at zero field as a function of
temperature. The closed symbols are for the present sample and the
open symbols are from the earlier work of Tiekeet al.6 The line is
an upper estimate for electronic thermal conductivity calculated us-
ing the measured conductivity at 4.2 K,s0 , and the Sommerfeld
value of the Lorenz numberL0 .

FIG. 2. ThermopowerS at zero field as a function of tempera-
ture. The symbols are defined in Fig. 1. The line is the estimated
diffusion componentSd.
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Eq. ~6! and are similar to those seen by Tiekeet al.6 How-
ever, it is noticeable that the oscillations in the present data
are always smaller than those reported in this previous work
at similar temperatures. This is in accord with the fact that
we expectS̃xx

g to be significant in the earlier sample. The

saturation values ofS̄xx
d will be mentioned again in the fol-

lowing section.

IV. ANALYSIS

The goal of the analysis is to compare the experimental
data onS̃xx

d in Fig. 3 with Eqs.~10! and~12!. We first analyze
r̃xx to give the reference frequencies and phases that we need
to distinguish the two contributions to the thermopower.

The de Haas–Shubnikov oscillations at the lowest tem-
perature of 7.6 K have more than one frequency component
~see the data of Tiekeet al.6!. Fourier analysis shows that
there are two close frequencies near 91 T of approximately
equal amplitude, and also second and third harmonics of
these frequencies. To simplify the analysis we first removed
the harmonics by filtering using a pass band of 50–150 T.
This procedure also removes the smooth backgrounds though
it was found to be better to first eliminate most of the back-
ground by fitting to a low-power polynomial. The results are
shown in Fig. 4 as a function of 1/B where it is seen that
there is now a simple beat pattern arising from the two close
frequencies.

These two frequencies do not have their origin in a non-
spherical Fermi surface, but rather in the lack of inversion

symmetry of the crystal lattice, which causes an energy dif-
ference between electrons of opposite spin.20 This has been
extensively studied in previous work~see Ref. 21 and refer-
ences therein!. If we take the components from opposite spin
to have the same amplitude and assume that the spin-up and
-down components simply act in parallel, we can use Eq.~2!
to write the fundamental components as

r̃xx

r0
52

5

4 S B

2 f avg
D 1/2

D~X!FcosS 2p f 1

B
2f1D

1cosS 2p f 2

B
2f2D GexpS 2

gTD

B D
52

5

2 S B

2 f avg
D 1/2

D~X!cosS 2p f avg

B
2favgD

3cosS 2pD f

B
2Df DexpS 2

gTD

B D , ~13!

where f avg5( f 11 f 2)/2, D f 5( f 12 f 2)/2, etc. and we have
made no assumptions about the values off1 andf2 .

As Fig. 4 shows, Eq.~13! gives an excellent fit to the
experimental data at 7.6 K using as variablesf avg, D f , favg,
Df, TD , and the amplitude, and fixingm* 50.065me . This

FIG. 3. ThermopowerSxx as a function of field at the various
temperatures used in these experiments. These data are believed to
be almost totallySxx

d .

FIG. 4. Examples of the resistivity oscillationsr̃xx as a function
of inverse field. Note the scale change for the data at 40.2 K. The
dots represent 25% of the measured data points and the curves
through the points were fitted as described in the text.
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value ofm* was used by Tiekeet al.6 and is consistent with
that of Miller and Reifenberger21 who give (0.067
60.01)me for samples with similar Fe content and electron
density. The second form of the equation was much easier to
fit to experimental data than the first.

As one might expect, the value of the amplitude depends
somewhat on the value ofm* assumed, though the depen-
dence is not very strong at 7.6 K because the damping func-
tion D(X) becomes independent ofX for small X. We ob-
tained an amplitude range of 2.9560.10 for a range ofm*
5(0.06570.02)me . ~Note that the amplitude is a relative
measurement in terms ofr0 and so the size of the potential
contacts should not be relevant provided their effective sepa-
ration is not a function of the field.! It is difficult to put a
precise uncertainty on the absolute amplitude from all other
sources, but it is expected to be less than 10%. This result is
in good agreement with the predicted value of5

2. Although
many papers exist dealing with the various terms in Eq.~2!,
we know of no previous measurement of the absolute ampli-
tude of r̃xx . We foundTD5(1.860.1) K for the same range
of m* , which is also in good agreement with that of Miller
and Reifenberger for a similar sample.21

The oscillations inrxx at higher temperatures were also
separated from the background and filtered in the same way.
The resulting data are also shown in Fig. 4. Because there are
fewer oscillations, the Fourier transforms are broadened and
do not indicate whether the two frequencies are still present.
Nevertheless, these data cannot be satisfactorily fitted to a
single frequency as in Eq.~2!, but Eq.~13! still provides an
excellent representation using the same values off avg, D f ,
andTD as found above. The phases,favg andDf, were left
as adjustable constants. This was essential in the case of the
latter, which smoothly increases by about 1 rad over the
range 7–42 K. On the other handfavg is constant within
60.1 rad. The fact thatDf varies with temperature has been
noted previously22 and attributed to interactions between the
electron spin and crystal magnetization. The average abso-
lute amplitude for all the data, except those at 7.6 K treated
above, is 2.5660.16 withm* 50.065me , where the error is
the statistical uncertainty. This agrees well with the predicted
value of 5

2 but at these higher temperatures the value of the
amplitude depends sensitively onm* . A change inm* of
60.002me , a reasonable range given in previous work,
gives a change in amplitude of613%. Although small errors
in T are more serious at these higher temperatures, the con-
sistency in the data suggests that the additional error in the
absolute amplitude is probably still no more than about 10%.

At this point the data onr̃xx have been completely param-
etrized and we are now able to considerS̃xx

d . We removed
most of the smooth background by fitting to Eq.~6!, and
filtered the remainder with the same passband as forr̃xx .
Some of the results are shown in Fig. 5. A close examination
of the oscillations shows that2S̃xx

d is almost in phase with
r̃xx at high fields but the phase smoothly changes until it is
shifted by almostp/2 at the lowest fields; this is particularly
noticeable in the case of the data at 22.4 K, which extend to
the lowest fields. One might question whether this could be
due to sample inhomogeneities affecting resistivity and ther-

mopower slightly differently even though the same sample
contacts were used for both. Against this it is found that at
about 7 K where S̃xx

g dominates, the oscillations remain in
phase much more accurately over the whole field range.

We have analyzed the data quantitatively as follows. The
entropy contribution will also have two frequency compo-
nents and so we write the fundamental of Eq.~12! in the
form of Eq. ~13!, i.e.,

Sxx
O 52

3kB

2ueu S B

2 f D
3/2

D8~X!cosS 2p f avg

B
2favgD

3cosS 2pD f

B
2Df DexpS 2

gTD

B D . ~14!

Again allowing for the two frequencies in the Mott result
~10! we obtain

S̃xx
M 52

pkB

ueu
~115l0

e/2lg!

11b2 S B

2 f D
1/2

D8~X!sinS 2p f avg

B

2favgD cosS 2pD f

B
2Df DexpS 2

gTD

B D . ~15!

FIG. 5. Examples of the thermopower oscillationsS̃xx as a func-
tion of inverse field. Note the scale changes and the vertical offsets.
25% of the measured points are shown as dots and the lines are
calculated as explained in the text. The lowest curves show the
fitted components at 22.4 K with the solid line being the entropy
part ~dominant at high fields! and the dashed line the Mott part
~dominant at low fields!.
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We first show how the two components contribute to the
measuredS̃xx as a function ofB. The separation was made by
fitting successive single periods of the oscillations using the
following function, which retains only the basic oscillatory
terms of Eqs.~14! and ~15!:

S̃xx5C1FCO cosS 2p f avg

B
2favgD1CM sinS 2p f avg

B

2favgD GcosS 2pD f

B
2Df D , ~16!

where the phasesfavg and Df are those determined from
fitting r̃xx at nominally the same temperature, andCO and
CM correspond to the amplitudes of the parts in phase and
p/2 out of phase withr̃xx , i.e., the entropy and Mott com-
ponents, respectively;C is a simple constant that is close to
zero. These amplitudes are, of course, field dependent but for
single periods this expression gives excellent fits and gives
the average amplitude of the two components at the field
corresponding to the center of the oscillation. The results for
CO andCM are shown in Fig. 6 for the data at 22.4 K. The
amplitudes below about 2.5 T become unreliable due to
noise. The curves through the data points are the best fits
using the theoretical expressions for the field dependence of
CO andCM from Eqs.~14! and ~15!, with only the absolute
amplitudes left as adjustable constants~see below!. These fits
to the two components are reasonable indicating that they
have been identified correctly. They also show that the
Obraztsov~entropy! term dominates at high fields and the
Mott term dominates at low fields. This results from the fac-

tor 11b2;B2 in the denominator of Eq.~15! and the extra
factor of B in the numerator of Eq.~14!.

The data at all the other temperatures have been analyzed
in the same manner with similar results, but we will not
present them here because the signal-to-noise ratio decreases
at higher temperatures. Instead, we found it better to utilize
all the data at each temperature simultaneously by fitting to
the sum of Eqs.~14! and ~15!, leaving only the individual
amplitudes, sayAO and AM as adjustable constants. Using
the measured value off avg591.5 T, the expected amplitudes
are given by

AO52
3kB

2ueu S 1

2 f avg
D 3/2

520.052mV/K T3/2, ~17!

AM52
pkB

m2ueu ~115l0
e/2lg!S 1

2 f avg
D 1/2

52~40/m2! mV T3/2/K ~18!

with l0
e/lg'0.4. In the case ofAM, m2 appears in the am-

plitude because the factor 11b2'b25m2B2.
The fits were always excellent and examples are plotted in

Fig. 5. The average experimental value we obtain forAO is
(20.09060.008)mV/K T1/2, where the uncertainty quoted
is only the statistical error. There is no obviousT dependence
that might arise if there was a significant admixture ofS̃xx

g .
There are also uncertainties;25% from the probe and ther-
mometer spacing that must be added. However, it seems rea-
sonable that these may be allowed for as follows. We believe
that the high field value ofS̄xx52p2kB

2T/2ueu«F given by
either Eq.~12! or Eq. ~6! is a reliable prediction. For our
sample we expect2p2kB

2/2ueu«F520.225mV/K. The aver-
age experimental value over the range 20–40 K is
(20.26460.020)mV/K ~again with noT dependence!. As-
suming thatAO is incorrect by the same factor gives a cor-
rected AO5(20.07660.008)mV/K T3/2. This amplitude is
almost 50% higher than the expected value. It seems prob-
able that there might still be systematic errors of the order of
about 10% from errors onT and other causes, but the fact
that the absolute amplitude of the resistivity oscillations
agrees with theory so well suggests that there are no major
sources of error. We should mention that if the Dingle factor
is omitted when we analyze the data, as in Obraztsov’s origi-
nal result~12!, the experimental amplitude agrees well with
that predicted. However, the Dingle factor appears to be nec-
essary on physical grounds.

The average experimental value ofAM5(25.5
61.0)mV T3/2/K. In this case we might have expected aT
dependence fromm but the scatter on the results appears to
be random. We correct this experimental value as we did
with AO to giveAM524.760.8mV T3/2/K. The measuredm
decreases from 4.6 to 4.0 m2/V s over the range 20–40 K,
giving a predicted range ofAM521.9 to22.5 m2/V s. There
is a discrepancy of about a factor of 2. Because we have
normalized the values to the expected result for the back-
ground, we cannot ascribe any remaining error to thermom-
eter or contact spacing. We note, however, that the Mott
contribution is small over most of the field range, which

FIG. 6. Local amplitudes of the components ofS̃xx
d at 22.4 K

that are in phase (CO) and p/2 out of phase (CM) with r̃xx as a
function of field. The solid lines are the expected variations with the
overall absolute amplitudes adjusted to give the best fits.
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probably implies that it has larger absolute errors than the
entropy term. Nevertheless the discrepancy is certainly real.
There are several possible reasons why there could be dis-
crepancies between the experimental and theoretical values
of both AM andAO.

First, specifically for the case ofAM, we know from pre-
vious work6 that m obtained fromr0 is too large to obtain
good fits toSyx

d . This seems to be related with the presence
of inelastic electron scattering.19 It is not a small effect and
results in an effectivem that is 50% smaller than that mea-
sured at 50 K, with smaller differences at lowerT. Agree-
ment between the experimental and predicted results onAM

requires an averagem;2.9 m2/V s. This is not unreasonable
and suggests that this is probably the major source of the
discrepancy.

The second, which applies equally to bothAM andAO, is
that the effective massm* 50.065me , which we are using
for the analysis might be in error. There is a decrease in both
AM and AO by about26.5% for each decrease inm* by
0.001me . However, it would also decrease the experimental
amplitude ofr̃xx by the same amount and destroy the good
agreement with theory that we obtain there.

A final possibility is that Eq.~4! for r̃yx , which is used in
Eq. ~10!, is not correct for HgSe:Fe. Equations~2! and ~4!
show that the contributions fromr̃xx andr̃yx to Eq.~8! are of
opposite sign with the latter being35 times the magnitude of
the former. As we have already mentioned, Eq.~4! would be
incomplete, or even invalid, if«F is pinned so that the num-
ber of electrons varies periodically with field. We did, in fact,
experimentally investigater̃yx . As expected the amplitude is
very small withr̃yx / r̄yx,0.001 forT.20 K. Unfortunately,
we were unable to determine the phase ofr̃yx because dif-
ferent sets of probes yielded slightly different phases, even
though the amplitudes were quite reproducible. Presumably
this arises from small inhomogeneities in the crystal and the
fact thatryx cannot not be measured on the probes used for
Sxx and rxx . ~We also tested the data of Tiekeet al.6 but
these had the same problem!. The field dependence of the
amplitude could not be satisfactorily fitted to Eq.~4! suggest-
ing that this equation is either invalid or incomplete. There

remains a possibility that the actual phase was not the same
asr̃xx . If there is a component shifted by6p/2, there would
be a corresponding Mott component ofS̃xx

d indistinguishable
from the entropy component and leading to incorrect values
for both AM and AO. There is some theoretical support for

this possibility. When\vc /eF5B/ f ;1 the phase ofr̃yx is

expected to shift byp/2 relative to that ofr̃xx .14,15Although
this has been seen experimentally,12,23 it should be a small
effect in the present case whereB/ f <0.1. However, a similar
phase difference is also expected when the scattering poten-
tial is long range,24 a situation that might well occur in
HgSeFe. Clearly this is a problem that deserves further ex-
perimental and theoretical study.

V. CONCLUSIONS

This paper has presented experimental data on oscillations
in the diffusion thermopower of a degenerate semiconductor,
which are essentially free of phonon drag. We have shown
that the oscillations have two components, the usual one that
can be traced to oscillations in the electronic relaxation time,
which we refer to as the Mott contribution, and one originat-
ing from the oscillatory magnetization of the sample, which
reflects the entropy per unit charge. Due to different field
dependences, the former is dominant at low fields and the
latter at high fields. The components are separable because
they have different phases compared to resistivity oscilla-
tions. The measured amplitudes of the two components, es-
pecially the entropy term, are higher than expected but all
other features are in accord with predictions. In the process
of carrying out the above, we also investigated the oscilla-
tions in the resistivity. These were found to obey the theoret-
ical predictions in all respects, including their absolute am-
plitude.
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