

UNIVERSITI TEKNOLOGI MARA

FACILITATING NOVICES’
PROGRAM COMPREHENSION IN

PROGRAM SLICING VIA
A KNOWLEDGE-BASED AND
PROGRAM SLICING TOOL

Mohd Zanes Bin Sahid
2011895944

Dissertation submitted in partial fulfillment of the requirement
for the degree of

Master of Science (Computer Science)

Faculty of Computer & Mathematical Sciences

January 2013

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UTHM Institutional Repository

https://core.ac.uk/display/18462953?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

iii

ABSTRACT

Most novice programmers cannot comprehend program code effectively due to
lack of knowledge, skill and domain experience. Their program comprehension
capabilities are fragile, and performed at the lower syntax level of program code
only, whereas experts have the capability to comprehend program code effectively
at the higher semantic level. This is primarily due to two major factors – the
experts’ ability to abstract code effectively based on their vast programming and
problem domain knowledge, and their application of program slicing technique
during program comprehension. Therefore, a new programming pedagogy semi-
automated program comprehension tool called Knowledge-Based Slicer (KBS)
that utilizes both knowledge-based and program slicing is designed and developed
to support and improve program comprehension of novice programmers. The tool
is developed based on adaptation and integration of two open-source tools;
Simian, a program code similarity analyzer, and Indus-Kaveri, a static program
slicing tool. KBS integrates them on top of a knowledge-based, and is deployed as
a new Eclipse’s plugin with simplified user interfaces and new features tailored
mainly for novice programmers. KBS consists of two components, the KBS
Analyzer and KBS Slicer. The knowledge-based in the KBS Analyzer is
developed in the form of Basic Program Plans that covers three basic algorithms,
which are total, maximum and average. To test the effectiveness of the KBS, four
phases of testing have been performed. The first, second and third phases testing
were performed on the individual component of KBS against 30 sample program
codes and 54 randomly selected actual novices’ program codes. In the final fourth
phase integrated testing, program codes are firstly sliced by manually choosing the
last computation result as the slicing criteria. This is followed and compared with
the slices based on the criteria automatically suggested by KBS Analyzer. The
precision of all matching are more than 0.7. Thus suggest that the KBS is able to
assist novices in program comprehension by facilitating the selection of slicing
criteria. The three main contributions of this research are the program
comprehension tool for novices in applying program slicing with facilitated
selection of slicing criteria, the first known demonstration of practical viability of
integrating program slicing and knowledge-based technique for novices’ program
comprehension, and local experimental data on knowledge-based cum program
slicing program comprehension tool. The future works of this project include the
expansion of the Program Plans to include more computing algorithms, and actual
implementation of KBS in Java programming courses.

v

TABLE OF CONTENTS

AUTHOR’S DECLARATION ii

ABSTRACT iii

ACKNOWLEDGEMENTS iv

TABLE OF CONTENTS v

LIST OF TABLES viii

LIST OF FIGURES ix

CHAPTER I INTRODUCTION 1

1.1 Background 1

1.2 Research Motivation 3

1.3 Problem Statements 5

1.4 Objectives 6

1.5 Scope 7

1.6 Significances 8

CHAPTER II LITERATURE REVIEW 9

2.1 Theories of Program Comprehension 9

2.2 Program Comprehension of Novice Programmers 12

2.3 Program Slicing for Program Comprehension 13

2.3.1 Program Slicing Basic Steps 14

2.3.2 Different Types of Program Slicing Techniques 16

2.3.3 Three Classes of Program Slicing Techniques 17

2.3.4 Program Slicing Tools 19

2.4 Knowledge-Based Support for Program Comprehension 21

2.5 The Pedagogically-based Model of Program Comprehension 23

vi

2.6 Discussions 24

CHAPTER III RESEARCH METHODOLOGY 28

3.1 Research Design 29

3.1.1 Theoretical Study 30

3.1.2 Tool Design and Integration Planning 30

3.1.3 Tool Development and Integration 31

3.1.4 Tool Evaluation 31

3.2 Tool Design and Integration Planning 33

3.3 Tool Development and Integration 40

3.4 Tool Evaluation 44

CHAPTER IV FINDINGS AND ANALYSIS 48

4.1 First Phase Testing 48

4.2 Second Phase Testing 54

4.3 Third Phase Testing 56

4.4 Fourth Phase Testing 58

CHAPTER V CONCLUSIONS 67

5.1 Research Summary 67

5.2 Contributions 68

5.3 Research Significances 69

5.4 Limitations 69

5.5 Future Works 70

5.6 Summary 70

REFERENCES 71

APPENDIX A 76

vii

APPENDIX B 78

APPENDIX C 83

APPENDIX D 104

APPENDIX E 107

APPENDIX F 125

viii

LIST OF TABLES
Table Description Page

Table 3.1 Research framework and the respective activities 32

Table 3.2 A comparison between CPD and Simian code similarity analyzers 35

Table 3.3 Description of keywords used in Table 3.2 35

Table 3.4 Initial Knowledge-based of Program Plans 42

Table 3.5 KBS Analyzer Configuration Parameters 43

Table 4.1 Expected output of sample program code 49

Table 4.2 Actual output of sample program code 50

Table 4.3 New addition of Program Plans 52

Table 4.4 Actual output of repeated sample program code 53

Table 4.5 Expected output of actual novices’ program code 54

Table 4.6 Actual output of actual novices’ program code 55

Table 4.7 Sliced code of basic program code 57

Table 4.8 Sliced code of extraneous program code 57

Table 4.9 The expected output of sliced extraneous program code 59

 and novices’ program code without knowledge-based assistance

Table 4.10 The actual output of sliced extraneous program codes 64

 and novices’ program codes with knowledge-based assistance

Table 4.11 The performance evaluation measures of KBS 66

 knowledge-based assisted program slicing

ix

LIST OF FIGURES
Figure Description Page

Figure 2.1 Examples of program slice 15

Figure 2.2 An example of static and dynamic slicing 18

Figure 2.3 Example of a program slice to be described 26

Figure 2.4 A possible low-level comprehension by a novice programmer 26

Figure 2.5 A possible high-level comprehension by an expert programmer 26

Figure 3.1 The research design for the development and evaluation of the tool 29

Figure 3.2 Reengineering process of Simian source codes 36

Figure 3.3 Reengineering process of Indus-Kaveri source codes 37

Figure 3.4 KBS Components Architecture 38

Figure 3.5 KBS Interaction Diagram 39

Figure 3.6 Jimple representations for Java 41

Figure 3.7 Comparison between Basic Code and Extraneous Code 46

Figure 4.1 Screen shot of initial step to run KBS Slice on a given code 61

Figure 4.2 The knowledge-based assistance is offered 61

Figure 4.3 The tool display relevant code and description of matched 62

Program Plan

Figure 4.4 The program slicing calculation in progress 62

Figure 4.5 The code that relevant to slicing criteria suggested by 63

knowledge-based is highlighted

1

CHAPTER I

INTRODUCTION

1.1 Background

Program comprehension is an activity where a person will read a set of

program codes and understand what the meaning or purpose of the program

(Rugaber, 1995). Program comprehension is part of software engineering sub-

activity, where it may be employed by a person during enhancement, debugging

and re-engineering (Rugaber, 2000).

During enhancement, the program comprehension may be used to help the

programmer to gain knowledge on the existing program codes before he/she is

able to write more program codes (Mayrhauser & Vans, 1997b). During

debugging, a programmer or software maintainer must have understood the

program codes very well before he/she can locate the bug and do the fixing

(Mayrhauser & Vans, 1997a). Whereas in re-engineering, one surely will have to

gain a complete understanding of the program codes before he/she can extract out

the software design and system specification from the program (Chikofsky &

Cross, 1990).

The activity of program comprehension is known to be hard, especially to

someone who have little knowledge and experience in programming. This is due

2

to the characteristics of program codes that act as a bridge between real world

application and programming language (Rugaber, 1995). Similarly, Brooks (1987)

had mentioned that the underlying properties of a software system has made the

program codes to be complex, and this has made the program comprehension a

tough task.

It has been realized that in real life, programmers spent more time reading

and understanding program codes rather than writing new codes (Fjeldstad &

Hamlen, 1983). As per mentioned previously, to perform program comprehension

is not an easy task. This means that more focus should be put to enrich

programmers’ skill and knowledge in program code reading and understanding,

rather than on writing. Therefore, a lot of research has been focused to study the

technique and strategy on program code reading and understanding.

Over the past few decades, a number of research findings have been

reported, and various theory and tools have been revealed that can help one to

understand and improve the program comprehension activity (R. Brooks, 1983;

Letovsky, 1987; Mayrhauser & Vans, 1993; Pennington, 1987; Shneiderman &

Mayer, 1979). Some of the researches were focused on novices, some other focus

on expert programmers.

One of the main obstacles in program comprehension is due to the large

number of statements in program codes. Most of the program comprehension tasks

are only concern will certain function and modules of the program code.

Therefore, program slicing has been recognized as an enabling approach to

improve the program comprehension work (Francel & Rugaber, 1999; Lanubile &

Visaggio, 1993).

3

Program slicing is a technique of program code analysis that has been

developed to assist programmer to analyze program codes. Program slicing is an

activity where the program code will be sliced into a smaller form based on certain

parameter and targeted program line (Weiser, 1984). Basically, the idea of

program slicing is to identify those program statements that are only relevant to

the context of slicing, and remove other statements that are not relevant. The

context of slicing is here defined as slicing criteria, which is a subset of variable of

interest and at a specified line of program codes. Three types of program slicing

are available; backward slicing, forward slicing and dicing. In backward slicing,

the program slice is computed by working backwards from the point of interest.

Forward slicing works by tracing forwards from the point of interest, whereas,

dicing combines both backward and forward slicing.

This research work proposes Knowledge-Based Slicer (KBS), a tool that

function to guide novice programmers in their program comprehension activities.

KBS will be realized by integrating currently available Java open source program

slicing tool, known as Indus-Kaveri, with a knowledge-based component built

using a source code similarity analyzer, Simian, and both will be deployed as

Eclipse plugin.

1.2 Research Motivation

The motivation behind this research is driven by the needs to offer a tool

that is suitable to be utilized in the learning of program comprehension of novice

programmers in local universities. Program comprehension knowledge and skill is

crucial in helping programmers to carry out their duties. Therefore, formal

4

introduction and exposure of program comprehension is deemed important in the

pedagogy of Computer Science.

Experiment reported by Francel and Rugaber (1999) shows that program

comprehension is more effective for programmers that slice the program code than

programmers that do not slice during debugging. Thus, program slicing is viewed

as an effective technique to achieve better program comprehension. However,

Gold et al. (2005) have reported that one of the obstacles in applying program

slicing is the difficulty in identifying slicing criteria. Therefore, guided selection

of slicing criteria is deemed as necessary element in order to facilitate

programmers in applying program slicing.

On the other hand, Aljunid (2009) highlighted that his cognitive model of

program comprehension can be utilized as a means for learning of program

comprehension by having knowledge-based support and utilizing the program

slicing technique. In the context of novices, knowledge-based support is

considered crucial to help novices to better understand the program codes. This is

due to the novices’ fragile knowledge that is defined as inadequate and partially

memorized knowledge, and hard to be retrieved (Perkins & Martin, 1986).

Whereas program slicing can be utilized to reduce the program code complexity

by focusing on parts relevant to certain contexts.

Many program slicing tools have been developed, and among the open-

source tool for Java is the Indus (Jayaraman, Ranganath, & Hatcliff, 2005) a static

program slicer. This tool is available as either standalone program or as Eclipse’s

plugin known as Kaveri (Jayaraman, et al., 2005). Among its purpose is to assist

5

program comprehension and debugging. However it is only implemented solely

based on program slicing technique.

Based on reviewed literature, there is no known program comprehension

tool that utilized both knowledge-based and program slicing, whereas such a tool

can be beneficial to the pedagogy of program comprehension for novice

programmers. Therefore, this research will propose that tool by extending the

Indus-Kaveri slicing tool with knowledge-based support. This tool can be used by

novices in the learning of program comprehension, by leveraging the

constructivist-based cognitive model of program comprehension as proposed by

Aljunid (2009).

1.3 Problem Statements

i). General Problem Statements

- Program comprehension skill is crucial but neglected in

Computer Science teaching and learning.

- Program comprehension is a complex yet crucial task for

novices, therefore an effective program comprehension tool for

novices is required.

- Novice programmers are lack of several crucial types of

knowledge compared to experts, which hamper their

comprehension and programming, thus knowledge-based support

considered crucial to temporarily support them.

- Available tools only provide program slicing technique without

knowledge-based support.

6

ii). Specific Problem Statements

- Most novices does not know nor apply the program slicing when

comprehending, whereas studies have shown that experts and

effective novices can comprehend program better by applying

program slicing.

- One of the obstacles in applying program slicing is the difficulty

in identifying slicing criteria.

- No known program comprehension tool offer program slicing

technique with knowledge-based support, whereas these dual

complementary techniques can be used in tandem to improve

novices’ comprehension.

1.4 Objectives

The objectives of this research are as follows:

i. To facilitate novices in applying program slicing technique by providing

guided selection of slicing criteria.

ii. To extend and integrate the existing Indus-Kaveri slicing tool with

knowledge-based component built using Simian source code similarity

analyzer.

iii. To evaluate the program comprehension effectiveness of the proposed tool.

7

1.5 Scope

i. The subject of research is focused only to novice programmers, i.e

Computer Science and Information Technology undergraduate students

having basic knowledge in programming.

ii. In program comprehension, the type of external artifact to be considered is

only text based and not graphical (diagram) of the program code.

iii. The program slicing technique is based on backward static slicing.

iv. The knowledge-based known as Program Plans, will be limited to three

basic novices’ algorithm i.e (1) Calculating Total, (2) Calculating Average,

and (3) Calculating Maximum.

v. The testing will be conducted based on the relevant self-written and actual

novice program codes.

vi. The selected programming language to be analyzed is limited to Java,

containing only single procedure.

vii. The input for tool testing and evaluation will be of 2 types: (1) Sample

Programs, and (2) Real Novices’ Code, and the maximum line of codes is

50 lines.

8

1.6 Significances

Two research significances have been identified for this research work:

i. To assist instructors and lecturers in conducting program comprehension

topics for CS students, especially in practical part.

ii. To expose the program comprehension technique using program slicing

and knowledge-based approach to novices for them to be able to perform

better task in their future career.

9

CHAPTER II

LITERATURE REVIEW

2.1 Theories of Program Comprehension

Programmer is commonly known as a profession where the main activities

are to write and compile programs. But, in reality, apart from writing and

compiling, they have to read and understand the pre-written program codes, in

order to enable them to perform other tasks, such as debugging, enhancing, and re-

engineering. The activity of reading and understanding program codes is known as

Program Comprehension.

Program comprehension topic has been discussed much early by the

software engineering society in the first software engineering workshop (Naur &

Randell, 1968). A couple of decade has passed, and numerous discussions and

research findings have been achieved in program comprehension field. The

movement was driven by a similar goal, which is to develop and propose methods

and tools that can be utilized by the software engineering community in the

diverse software engineering activities, such as inspection, reusing, debugging,

enhancement and re-engineering.

Brooks (1977) was among the first who proposed the program

comprehension model which was based on the context of various knowledge about

the programming language and the application domain. Pennington (1987) also

10

proposed a model which was inspired by various knowledge base and it was

blended with the theoretical concept of how one read and comprehend texts.

Quite a number of literatures have been published proposing the cognitive

models of program comprehension. The motivation of these models is to explain

the process that takes place in the programmers mind when they read program

codes. A lot of discussions and reviews have been presented by previous

researchers to further elaborate the cognitive models in various perspectives

(Exton, 2002; Storey, 2006; Tilley, 2007). Basically, the cognitive models of

program comprehension can be categorized into 5 models, (1) top-down model,

(2) bottom-up model, (3) knowledge-based model, (4) opportunistic strategies

model, and (5) integrated models.

For the top-down model, Brooks (1983) mentioned that programmer tends

to understand program code in a top-down approach. To gain the specific idea of

the program code, it starts with general idea of the background of the program.

This general idea will be refined in a hierarchical structure, to a more focused idea.

It is evaluated further down the hierarchy, as more program codes are being read,

until the specific idea of the program code has been captured. The information

used in each level of hierarchy are including beacons (R. Brooks, 1983), code

features and code structures. The notion of idea is known as hypothesis. Soloway

and Ehrlich (1984) observed that expert programmers use the information to

decompose goals and plans into lower-level goals and plans.

In the bottom-up model, Shneiderman and Mayer (1979) proposed

cognitive models that differentiate between syntactic and semantic knowledge of

programs. They mentioned that understanding a program involves creation of

11

multilevel internal semantic structures in a bottom-up manner. This means that the

programmers understand the function of a group of statements, consolidate them

together to get higher levels of information until the entire program codes is

understood. Whereas Pennington (1987) perceived that programmers will initially

develop a control-flow of the program codes which captures the sequence of

operations. Once this has been achieved, the data-flow abstractions of program

will be established to construct the knowledge on the program goal. This is being

proposed as the program model and situation model of thinking process.

Letovsky (1987) has proposed the knowledge-based model, where the

process involves in the program understanding is made up of a recurring series of

inquiry activities. This has been described as to make reasoning on the conclusion

based on questions asked. The purpose of some variables or expressions in

program code can be asked, and the answer can be found by conjecturing, which

later will be verified by searching through the program codes or external

documentation. Letovsky also perceived that this model can be achieved by

exploiting both the top-down and bottom-up approach. There are three

components that make up this model; (1) knowledge base which was defined as

the programmers’ expertise and background knowledge, (2) mental model is being

defined as the programmers’ current understanding on the program, and (3)

assimilation process that described how the mental model developed using the

current knowledge-based supplemented with the program codes.

The opportunistic strategies model has been coined by Letovsky (1987).

According to him, programmers can be regarded as “opportunistic processor”.

They can easily change their program comprehension strategies in response to

12

external evidence. This dynamic ability is a crucial success factor that contributed

to the effectiveness and efficiency on program comprehension demonstrated by

expert programmers.

The fifth model is integrated model proposed by Mayrhauser and Vans

(1993) combining the models mentioned previously, especially the models by

Brooks (1977), Letovsky (1987), and Pennington (1987). Mayrhauser and Vans

claimed that the models used may vary depending on the tasks and the

programmers’ command of knowledge on the problem domain and programming

language. Programmers with a better understanding of domain are more likely to

take the top-down model, while those with less programming knowledge prefer

bottom-up model in program comprehension. But, they may also employ a hybrid

model, where they will simultaneously switching between models as they progress

between different levels of abstraction.

2.2 Program Comprehension of Novice Programmers

Comparison between novices and expert programmers in program

comprehension have been studied and proposed in various models including

Berlin (1993), Pennington (1987). Soloway and Ehrlich (1984) highlighted that

expert programmers employ high-level plans, while Koenemann and Robertson

(1991) concluded that experts programmers were frequently use top-down model.

Holt et al. (1987) examined programmers’ cognitive model by making

modification to the program, either a simple one, or a complicated one. It was

achieved using three different design methodologies. Whereas Burkhar and

13

Wiedenbeck (1998) analyzed object-oriented program comprehension by novices

and experts in three dimensions of comprehension strategies. The strategies are (1)

the scope of the comprehension, (2) the top-down versus bottom-up direction of

the processes, and (3) the guidance of the program comprehension activity. They

found strong evidence of top-down, inference-driven behaviors, as well as

multiple guidance in expert programmers’ comprehension.

Robins et al. (2003) highlighted that there are three area of interest that one

can find the gap between novices and expert programmers, which is by (1) their

knowledge representation, (2) problem solving strategies, and (3) mental models.

On the other hand, in Vessey’s (1985) exploratory study of programmer’s

debugging processes, she had classified programmers as expert or novice based on

their ability to chunk effectively. She mentioned that expert programmers used

breadth-first approaches. At the same time, they were able to adopt a system view

of the problem area. Whereas novices used breadth-first approaches but were

unable to think in system view (Vessey, 1985).

2.3 Program Slicing for Program Comprehension

Program Slicing is a technique that allows programmer to view a subset of

program codes by slicing out program codes that are not relevant to the

programmer’s interest. The resulting subset of program is called as program slice.

The reduced program slice is achieved by analyzing either the data flow, or control

flow of the program code. Even though the original program codes have been

partially removed, the behavior or computation of the program is still equal to the

14

computation of the original program codes (Weiser, 1984). This is however

dependent on the meaning of the slicing criteria, which is a subset of variable of

interest and at a specified line of program codes.

The motivation behind program slicing is to aid debugging and program

comprehension by reducing the program codes complexity. In debugging, when

program slicing technique is applied, the total errors debugged and total errors

found are slightly increased (Shuhaidan, 2006). The technique that has been

employed is to remove program code lines from the source code that do not affect

or being affected by the values of variables at a specified program code line. There

are many ways to achieve this (Bergeretti & Carre, 1985; J. R. Lyle & Weiser,

1987; Weiser, 1984), but generally, they all will achieve the same result.

2.3.1 Program Slicing Basic Steps

As mentioned before, a program slice is computed based on slicing

criteria. The slicing criterion is based on two attributes, which is (1) a specific

point of interest, and (2) a set of variables. The approach to compute a program

slice by Weiser is based on iterative data flow analysis (Weiser, 1979, 1984).

Another important approach was proposed by Ferrante et al. (1987) is by using

reachability analysis in Program Dependence Graphs (PDG).

PDG mainly consist of nodes which represent the statement of a

program code, and edges which represent the control and data dependency.

Either using the first or second approach, the program slice will be achieved by

containing only statements that are affecting and affected by the values of the

variables at the given point of interest.

15

The program slice is the reduced version of the original program code,

as shown in Figure 2.1. Weiser (1984) mentioned that even though it has been

sliced, it should be executable. Some program features are difficult to be sliced

and some are easy. Unstructured control flow such as ‘goto’ statements are

very difficult to be sliced. Indirection in a program such as pointer and array

also makes slicing more difficult. As a matter of fact, in the general case

program slicing is a an undecidable problem (Weiser, 1984).

Figure 2.1 Examples of program slice
 Source: (Weiser, 1984)

In order to carry out program slicing, one has to define it in such a way

that a slice is only equivalent to the original program when the original

program terminates. Furthermore, a strictly minimal slice cannot be found, and

only an approximation can be computed. However, the approximation output

16

is usually good enough and program slicing is still a useful technique in

reducing a program code complexity.

2.3.2 Different Types of Program Slicing Techniques

There are several different techniques for program slicing that have

been proposed for the past thirty years. The most common form of program

slicing technique is backward slicing. In backward slicing, the program slice is

computed by working backwards from the point of interest. The process is to

find all statements that can affect the value of specified variables at the

targeted point of interest, and slicing out other statements deem irrelevant.

Another technique of program slicing is forward slicing. As the name

implies, the process of forward slicing is the inversion of backward slicing, in

which the process objective is to find all statements that can be affected by

changes made in the specified variables at the point of interest. Bergeretti and

Carre (1985) were the first to define the notion of a forward slice. The

terminology was further elaborated by Reps and Bricker (1989).

Apart from that, J. R. Lyle and Weiser (1987) had introduced another

technique called dicing. This technique will combine the result of different

program slices, each was computed with respect to different variables. By

combining these results, the combined program slice will expose more

information on the possibility of the value of one variable is being affected by

another value.

The scope of this research is limited to backward static slicing. The

reason behind this undertaking is that the research is focusing on teaching and

17

learning of program comprehension targeting at novice programmers. To make

things simpler, novices will be introduced with backward slicing by

identifying the last statement containing final result of a specific calculation.

From there, the slicing will be calculated by identifying previous statements

that are affecting the last statement. In the remaining part of this thesis, term

‘slicing’ will be used to represent ‘backward static slicing’.

2.3.3 Three Classes of Program Slicing Techniques

The previously mentioned different techniques can be categorized into

3 classes, (1) Static Slicing, (2), Dynamic Slicing, and (3) Hybrid Slicing.

Basically, Static Slicing works by statically analyzing the code, which means

examining some representation of the source code without actually executing

the program being analyzed. Whereas in Dynamic Slicing programmers will

analyze the code by executing the program. To dynamically slice the program,

one has to provide an input as part of the program criterion, therefore, the

resulting program slice is only correct for a specific input. By contrast, a static

slice is correct for all input. Example of static and dynamic slicing is depicted

in Figure 2.2.

18

Figure 2.2 An example of static and dynamic slicing
 Source: (Krinke, 2005)

As the name suggest, Hybrid Slicing is an approach that combine static

and dynamic slicing. Part of the program codes are sliced using static slicing,

whereas another part of the program codes are sliced using dynamic slicing.

Quasi-static and Conditional Slicing are two types of Hybrid Slicing. Quasi-

static slicing was introduced by Venkatesh (1991), in which he suggested the

program slice to be computed with respect to an initial prefix of the input

sequence to the program. Canfora et al. (1994) had proposed a notion of

Conditioned Slice. Basically, the result of Conditioned Slice is a subset of

program codes which preserves the behavior of the original program. It is

computed with respect to a slicing criterion for a given set of execution paths.

All approaches to program slicing discussed so far have been

developed based on the syntax preserving concept. The property of these

approaches is the computation will leave the syntax of the original program

largely untouched and simply remove irrelevant statements to create the

19

program slice. Another approach to program slicing where the syntax

preserving aspect is being ignored is proposed as Amorphous Slicing (Harman

& Danicic, 1997). By using this approach, the slicing process will utilize a

code transformation program that will alter the program code to make it

simpler. However, it still preserves the behavior of the program with respect to

the slicing criterion. The main advantage of Amorphous Slicing is that the

produced program slice is considerably smaller than their syntax preserving

counterparts.

2.3.4 Program Slicing Tools

Different algorithms have been devised to implement program slicing

based on different approach presented in the previous section. Each algorithm

is language independent, however they might need some tweaking for the

specific language they intended to slice, due to the different constructs and

paradigms present in different programming language. As the result, many

tools have been developed based on similar or different algorithms and

program slicing techniques to demonstrate its usefulness.

Among the earliest developed tool was Wisconsin Program Slicer

("Wisconsin Program-Slicing," 1996), developed based on the System

Dependence Graph (Horwitz, Reps, & Binkley, 1988) for interprocedural

slicing. The tool has the can be used to perform forwards and backwards

slicing of C programs, however, it only supports static slicing. The initial

version of Wisconsin Program Slicer was distributed freely, which later being

taken over by GrammaTech ("Static Analysis," 2000), Inc. and developed

20

further with a different name, coined as Codesurfer ("Code Browser," 2007)

and promoted as a commercial tool.

Another widely known tool is Unravel ("The Unravel," 1998). It

supports only static backward slicing of C programs, but without support of

the goto construct (J. Lyle & Wallace, 1997). It is freely available slicing tool

which runs under a UNIX/Linux environment.

The Kansas State University had developed a slicing tool for Java

program, published as Indus (Ranganath & Hatcliff, 2007). It was developed

based on Bandera (Corbett et al., 2000) program analysis framework from the

same university. Indus program slicer has been presented as an Eclipse plugin

called Kaveri (Jayaraman, et al., 2005). This program slicer support static

forward and backward slicing. It can handle concurrent program codes.

Be the first publicly available Java implementation of program slicing,

the Indus has been developed to support static forward and backward slicing.

Apart from that, it allows one to slice concurrent programs, by considering

data interference and other synchronization related aspect that are present in

the concurrent programs. However, it does not support some advance Java

features including dynamic class loading, native method and reflection

(Jayaraman, et al., 2005).

The modularity attribute of Indus allows it to be utilized as command

line program, or embedded inside another Java program as sub-component. To

quickly utilize its power, especially in an integrated development environment

(IDE) program, Kaveri has been developed as Eclipse plugin. Eclipse is well-

known and widely used program development, deployment and analysis tool.

21

Kaveri contributes the following features to Eclipse, (1) viewing the program

slice in the Java editor, (2) choosing slice criteria, (3) chasing dependencies

(Jayaraman, et al., 2005) to support program comprehension, and (4)

performing context-sensitive slicing.

2.4 Knowledge-Based Support for Program Comprehension

Knowledge-based technique has been accepted as another effective

approach that can assist programmers in their program comprehension activities.

This technique works by providing high-level support and explanation as per

human expert level assistance to programmers. A number of previous works had

proposed knowledge-based program comprehension (AlOmari, 1999; Harandi &

Ning, 1988; Johnson & Soloway, 1985; Murray, 1989; Sani, Zin, & Idris, 2009).

The findings by Harandi and Ning (1988) mentioned that knowledge-based

systems are able to provide syntactic and semantics aspects of program codes, and

also to recognize familiar patterns of program codes that can be utilized by

programmers to gain understanding of a particular program codes. The basic idea

of knowledge-based program comprehension approach is by comparing the input

source code and the code snippets from the library or repository. These code

snippets are often called plans, clichés, chunks, etc. Since the description and

meaning of plans is already known, one can easily say what a piece of source code

does, if one can find a match between that piece of the source code and a plan

(Taherkhani, 2011).

Finding a match between source code and program plan can also be

considered as finding similarities between two different program codes. Detecting

22

program similarities has been a research motivation in the area of clone detection

and plagiarism (Taherkhani, 2011). The initial objective of this technique is to

reveal plagiarism between students work (Taherkhani, 2011), and clone detection

can be employed to assist programmers in software maintenance activities, such as

refactoring (Mishne & De Rijke, 2004).

There are few program similarity tools that have been developed to find

similar chunk of codes from a given collection of program codes. These tools are

referred here as similarity analyzer. Some tools find the similarity by using

pattern-based technique (CPD, 2004; Simian, 2004), whereas other analyzers

implement code signature technique (Ghosh, Verma, & Nguyen, 2002; Jones,

2001; Schleimer, Wilkerson, & Aiken, 2003).

Simian and CPD are pattern-based analyzers that finds similarities between

lines of codes by using two phase of program code analysis. In the first phase, the

program code is transformed into internal atomic code representation. Then, using

pattern matching algorithm i.e. Karp-Rabin matching algorithm and tiling

algorithm, Simian will calculate every possible combination of the transformed

program code (Mishne & De Rijke, 2004). Whereas, the code-signature analyzers

find similarities only if the source code contains code signatures that mark similar

piece of code. Since code-signature analyzers require program codes to be

decorated with signatures or annotations, it is limited to be used for analyzing

program codes that adhere to certain coding convention (Mishne & De Rijke,

2004). In the learning of program comprehension, novices are more exposed to

program codes that are non-uniform in nature. Hence, pattern-based analyzer,

which is Simian, is more suitable for the proposed tool.

23

Therefore, based on proposals made by Taherkhani (2011), in order to find

matching between given source code and plans, adaptation of similarity-finding

technique of source codes and plans are seen as plausible technique in detecting

the meaning of source codes. In the remaining sections of this thesis, code snippets

resembled in the form of plans will be referred as program plans.

2.5 The Pedagogically-based Model of Program Comprehension

Cognitive models of program comprehension proposed by various

researchers (R. Brooks, 1983; Letovsky, 1987; Mayrhauser & Vans, 1993;

Pennington, 1987; Soloway & Ehrlich, 1984) had be focusing around the

understanding of the programmers’ mental processes that takes place during

carrying out of some specific tasks, and mostly focused to expert programmers. As

of this moment, none of those surveyed models have the inclination towards

pedagogically-based model of program comprehension, except the constructivist-

based cognitive model by Aljunid (2009).

Aljunid’s (2009) mentioned that the pedagogy of program comprehension

and debugging for novice programmer can be achieved by an iterative process of

assisted understanding and debugging using knowledge-based, and code

localization using program slicing. By applying these techniques over time, the

novice programmers should be able to perform program comprehension and

debugging by further neglecting the assisted understanding and debugging from

knowledge-based (Aljunid, 2009:173).

24

2.6 Discussions

Program comprehension is what majority Computer Science students will

do in their future profession as a computer programmer. Currently, this skill will

be developed slowly as the students’ progress in the real world arena of software

development. However, during the initial stage of their career, they will find it

very hard to comprehend program codes coming from unfamiliar software

system(Bohnet & Dollner, 2007). Most program codes given to them are those

having complex structure and carrying a lot of domain-specific meaning which

they have not experienced before. Therefore, it is perceived that this branch of

knowledge of program comprehension should be taught explicitly; theoretically

and practically, in the university Aljunid (2009:3).

Program slicing is a technique that allows programmers to comprehend the

program codes by reducing its complexity. The complexity of program codes is

contributed by the presence of various statements to achieve various computation

goals in the program design. Most of programmers’ tasks are driven by a problem

reduction, in which a real life problem such as finding logical error in a program

will eventually result in correcting a few line of program codes. Therefore,

reducing the problem space which is from thousand or even million lines of codes

into a reasonable number of lines to be read will ease programmers’ effort.

The rationale behind program slicing is that the technique will produce a

subset of program codes by slicing out program codes that are not relevant to the

programmer’s interest. As mentioned in the previous section, the resulting subset

of program is called as program slice. The reduced program slice is achieved by

analyzing either the data flow, or control flow of the program code.

71

REFERENCES

 Aljunid, S. A. (2009). A cognitive Model of Automated Program Comprehension

Cum Debugging for Novices. Unpublished PhD, Universiti Kebangsaan
Malaysia.

AlOmari, H. M. d. A. (1999). CONCEIVER: A Program Understanding System.

Universiti Kebangsaan Malaysia, Bangi.

Bergeretti, J.-F., & Carre, B. A. (1985). Information-flow and data-flow analysis of

while-programs. ACM Trans. Program. Lang. Syst., 7(1), 37-61.

Berlin, L. M. (1993). Beyond program understanding: A look at programming

expertise in industry. in Empirical Studies of Programmers: Fifth Workshop,
p. 8-25.

Bohnet, J., & Dollner, J. (2007, 24-25 June 2007). Facilitating Exploration of

Unfamiliar Source Code by Providing 21/2D Visualizations of Dynamic Call
Graphs. Paper presented at the 4th IEEE International Workshop on
Visualizing Software for Understanding and Analysis, 2007. VISSOFT 2007.

Brooks, F. P. (1987). No Silver Bullet Essence and Accidents of Software

Engineering. Computer, 20(4), 10-19.

Brooks, R. (1977). Towards a theory of the cognitive processes in computer

programming. International Journal of Man-Machine Studies, 9, 737–751.

Brooks, R. (1983). Towards a theory of the comprehension of computer programs.

International Journal of Man-Machine Studies, 18(6), 543-554.

Burkhar, F. D. J.-M., & Wiedenbeck, S. (1998). The Effect of Object-Oriented

Programming Expertise in Several Dimensions of Comprehension Strategies.
Paper presented at the Proceedings of the 6th International Workshop on
Program Comprehension.

Canfora, G., Cimitile, A., Lucia, A. D., & Lucca, G. A. D. (1994). Software Salvaging

Based on Conditions. Paper presented at the Proceedings of the International
Conference on Software Maintenance.

Chikofsky, E. J., & Cross, J. H. (1990). Reverse Engineering and Design Recovery: A

Taxonomy. IEEE Softw., 7(1), p 13-17.

Code Browser Static Analysis Tool for C and C++ - GrammaTech CodeSurfer.

(2007). from http://www.grammatech.com/products/codesurfer/overview.html

72

Corbett, J. C., Dwyer, M. B., Hatcliff, J., Laubach, S., Pasareanu, C. S., Robby, et al.

(2000). Bandera: extracting finite-state models from Java source code. Paper
presented at the Proceedings of the 22nd international conference on Software
engineering.

CPD. (2004). PMD. Project Mess Detector. Retrieved October, 2012, from

http://pmd.sourceforge.net/

Exton, C. (2002, 2002). Constructivism and program comprehension strategies. Paper

presented at the Program Comprehension, 2002. Proceedings. 10th
International Workshop.

Ferrante, J., Ottenstein, K. J., & Warren, J. D. (1987). The program dependence graph

and its use in optimization. ACM Trans. Program. Lang. Syst., 9(3), 319-349.

Fjeldstad, R. K., & Hamlen, W. T. (1983). Application Program Maintenance Study:

Report to Our Respondents. Paper presented at the Proceedings GUIDE 48,
Philadelphia, PA.

Francel, M. A., & Rugaber, S. (1999, 1999). The relationship of slicing and

debugging to program understanding. Paper presented at the Seventh
International Workshop on Program Comprehension, 1999. Proceedings.

Ghosh, M., Verma, B. K., & Nguyen, A. T. (2002). An Automatic Assessment

Marking and Plagiarism Detection System. Paper presented at the First
International Conference on Information Technology and Applications.

Gold, N. E., Harman, M., Binkley, D., & Hierons, R. M. (2005). Unifying program

slicing and concept assignment for higher-level executable source code
extraction: Research Articles. Softw. Pract. Exper., 35(10), 977-1006.

Harandi, M. T., & Ning, J. Q. (1988, 24-27 Oct 1988). PAT: a knowledge-based

program analysis tool. Paper presented at the Software Maintenance, 1988.,
Proceedings of the Conference.

Harman, M., & Danicic, S. (1997). Amorphous Program Slicing. Paper presented at

the Proceedings of the 5th International Workshop on Program
Comprehension (WPC '97).

Holt, R. W., Boehm-Davis, D. A., & Shultz, A. C. (1987). Mental representations of

programs for student and professional programmers. In M. O. Gary, S. Sylvia
& S. Elliot (Eds.), Empirical studies of programmers: second workshop (pp.
33-46): Ablex Publishing Corp.

Horwitz, S., Reps, T., & Binkley, D. (1988). Interprocedural slicing using dependence

graphs. SIGPLAN Not., 23(7), 35-46.

73

Jayaraman, G., Ranganath, V., & Hatcliff, J. (2005). Kaveri: Delivering the Indus Java
Program Slicer to Eclipse. In M. Cerioli (Ed.), Fundamental Approaches to
Software Engineering (Vol. 3442, pp. 269-272): Springer Berlin Heidelberg.

Johnson, W. L., & Soloway, E. (1985). PROUST: Knowledge-Based Program

Understanding. Software Engineering, IEEE Transactions on, SE-11(3), 267-
275.

Jones, E. L. (2001). Metrics based plagarism monitoring. J. Comput. Sci. Coll., 16(4),

253-261.

Koenemann, J., & Robertson, S. P. (1991). Expert problem solving strategies for

program comprehension. Paper presented at the Proceedings of the SIGCHI
conference on Human factors in computing systems: Reaching through
technology.

Krinke, J. (2005). Program Slicing, Handbook of Software Engineering and

Knowledge Engineering, Vol. 3: Recent Advances (pp. p. 307-332): World
Scientific Publishing.

Lanubile, F., & Visaggio, G. (1993). Function recovery based on program slicing In

Proceedings of the Conference on Software Maintenance CSM-93, p 396-404.
Letovsky, S. (1987). Cognitive processes in program comprehension. Journal of

Systems and Software, 7(4), 325-339.

Lyle, J., & Wallace, D. (1997). Using the Unravel Program Slicing Tool to Evaluate

High Integrity Software. Paper presented at the Proceedings of Software
Quality Week.

Lyle, J. R., & Weiser, M. (1987). Automatic bug location by program slicing. In.

Proceedings of the Second International Conference on Computers and
Applications, p 877–883.

Mayrhauser, A. v., & Vans, A. M. (1993). From Code Understanding Needs to

Reverse Engineering Tool Capabilities. In Proceedings of the 6th International
Workshop on Computer-Aided Software Engineering, p. 230–239.

Mayrhauser, A. v., & Vans, A. M. (1997a). Program understanding behavior during

debugging of large scale software. Paper presented at the Papers presented at
the seventh workshop on Empirical studies of programmers.

Mayrhauser, A. v., & Vans, A. M. (1997b). Program understanding behaviour during

enhancement of large-scale software. Journal of Software Maintenance, 9(5),
299-327.

Mishne, G., & De Rijke, M. (2004). Source code retrieval using conceptual similarity.

Paper presented at the Proceeding of the 2004 Conference on Computer
Assisted Information Retrieval (RIAO’04).

74

Murray, W. R. (1989). Automatic Program DeBugging for Intelligent Tutoring

Systems: Morgan Kaufmann Publishers Inc.

Naur, P., & Randell, B. (1968). Software Engineering: Report of a conference

sponsored by the NATO Science Committee. Garmisch, Germany: Scientific
Affairs Division, NATO, Retrieved 2008-2012-2026.

Pennington, N. (1987). Stimulus structures and mental representations in expert

comprehension of computer programs. Cognitive Psychology, 19(3), 295-341.

Perkins, D. N., & Martin, F. (1986). Fragile knowledge and neglected strategies in

novice programmers. Paper presented at the Papers presented at the first
workshop on empirical studies of programmers on Empirical studies of
programmers.

Ranganath, V., & Hatcliff, J. (2007). Slicing concurrent Java programs using Indus

and Kaveri. International Journal on Software Tools for Technology Transfer
(STTT), 9(5), 489-504.

Reps, T., & Bricker, T. (1989). Illustrating interference in interfering versions of

programs. SIGSOFT Softw. Eng. Notes, 14(7), 46-55.

Robins, A., Rountree, J., & Rountree, N. (2003). Learning and Teaching

Programming: A Review and Discussion. Computer Science Education, 13(2),
137-172.

Rugaber, S. (1995). Program comprehension. Encyclopedia of Computer Science and

Technology, 35(20), p 341–368.

Rugaber, S. (2000). The use of domain knowledge in program understanding. Ann.

Softw. Eng., 9(1-4), 143-192.

Sani, N. F. M., Zin, A. M., & Idris, S. (2009). Implementation of CONCEIVER++:

An Object-Oriented Program Understanding System. Journal of Computer
Science, 5(12), 1009-1019.

Schleimer, S., Wilkerson, D. S., & Aiken, A. (2003). Winnowing: local algorithms for

document fingerprinting. Paper presented at the Proceedings of the 2003 ACM
SIGMOD international conference on Management of data.

Shneiderman, B., & Mayer, R. (1979). Syntactic/semantic interactions in programmer

behavior: A model and experimental results. International Journal of Parallel
Programming, 8(3), 219-238.

Shuhaidan, S. M. (2006). The Effectiveness of Program Slicing as a Debugging

Technique for Novices: an Experimental Study. Universiti Teknologi MARA.

75

Simian. (2004). Simian, Similarity Analyser. Retrieved October, 2012, from
http://simian.dev.java.net/

Soloway, E., & Ehrlich, K. (1984). Empirical Studies of Programming Knowledge.

Software Engineering, IEEE Transactions on, SE-10(5), 595-609.

Static Analysis for C and C++ - GrammaTech. (2000). from

http://www.grammatech.com/

Storey, M.-A. (2006). Theories, tools and research methods in program

comprehension: past, present and future. Software Quality Control, 14(3), 187-
208.

Taherkhani, A. (2011). Automatic Algorithm Recognition Based on Programming

Schemas. Proceedings of the 23th Annual Workshop of the Psychology of
Programming Interest Group (PPIG'11), University of York, York.

Tilley, S. (2007, 26-29 June 2007). 15 Years of Program Comprehension. Paper

presented at the Program Comprehension, 2007. ICPC '07. 15th IEEE
International Conference.

The Unravel Program Slicing Tool. (1998). from http://hissa.nist.gov/unravel/

Venkatesh, G. A. (1991). The semantic approach to program slicing. Paper presented

at the Proceedings of the ACM SIGPLAN 1991 conference on Programming
language design and implementation.

Vessey, I. (1985). Expertise in debugging computer programs: A process analysis.

International Journal of Man-Machine Studies, 23(5), 459-494.

Weiser, M. (1979). Program slices: formal, psychological, and practical investigations

of an automatic program abstraction method". PhD Thesis, University of
Michigan.

Weiser, M. (1984). Program Slicing. IEEE Transactions on Software Engineering,

10(no. 4), p 352-357.

Wisconsin Program-Slicing Project. (1996). The Wisconsin Program-Slicing

Tool, Version 1.0.1., from http://www.cs.wisc.edu/wpis/slicing_tool/

