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Optimization Problem
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Transport Aircraft Performance

Mission profile (simplified):
distance vs. altitude

http://www.airliners.net/photo/Lufthansa/Airbus-A330-343X/2054700

Transport aircraft:
passengers (airliners) or
cargo (freighters).

aerodynamics

structure

propulsion

Possible design goals for cruise:
- maximize distance (range)

- minimize fuel expenditure
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Aerodynamic Cruise Performance

Force balance in horizontal flight:

L−W=0
T−D=0
M p=0

L→C L

D →CD

M P →CM

M R →C R

steady flight
equations

non-dim.
quantities

Maximize Mach-scaled lift-to-drag ratio, at several near-design flight 
Mach numbers (multi-point optimization):
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Under the constraints (with signs of moments as pictured):
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By modifying the aircraft outer shape through design parameters:

Di , i=1..n
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Optimization Method
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Character of The Optimization Problem

Small number of cost functions (goal and constraints) ~ O(10).

Large (compared to #CF) number of design parameters ~ O(100).

Very high computational cost of cost function evaluation:

CFD simulation based on RANS equations.

Simulation run-time in hours, using O(100) CPU cores.

The requirements on the optimization algorithm:

The algorithm must converge using small number of cost function 
evaluations → gradient-based.

Algorithm internal computation and storage cost (e.g. linear 
system) is insignificant compared to cost function evaluation.

Constraints must be handled explicitly (not e.g. as penalties).

Therefore, we use:

SQP (sequential quadratic programming) as the optimizer.

Evaluation of the cost function gradients by the adjoint method.
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Adjoint Gradient Computation Theory

D design parameters
W flow state
X CFD mesh points

J (W , X ) cost function(C L ,CD , ...)
R(W , X )=0 flow state equations (RANS, SA turb.)
T (X ,D)=0 mesh state equations (linear elasticity)

construct J̃=J+R Λf+T Λm (≡J )

with Λ f ,Λm arbitrary fields on X
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Optimization Workflow: Optimizer Loop

DLR in-house optimization
framework Pyranha
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Optimization Workflow: Design Evaluation
DLR in-house

flow solver TAU
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Application Examples
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Transonic Wing: Setup and Convergence

Simple problem, but every mesh surface node a design parameter.

Optimization setup:

Objective: maximize M CL / CD.

CL implicitly constrained through 
flow solver fix-point iteration.

Internal volume explicitly 
constrained.

Free-node (z-direction),
3250 design parameters.

Trailing edge nodes fixed.

LANN wing:

AR = 7.9, n = 0.4, t/c = 0.12,
Λ = 25°, supercritical sections.

M = 0.82, Re = 7.3 M, CL = 0.53.
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Transonic Wing: Results
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Transonic Wing-Body: Setup

Wing-body based on the Do-728.

Design point:
M = 0.80, Re = 21 M, CL = 0.55.

CFD mesh:
hybrid-unstructured, 3 M points.

Parametrization: 80 FFD (free-form 
deformation) control pts. on the wing.

Single- and multi-point optimization:
SP: M = 0.80
MP 3: M = 0.78, 0.80, 0.82
MP 5: M = 0.76, 0.78, 0.79, 0.80, 0.81

Goal: maximize sum(M CL / CD).

CL implicitly constrained through flow 
solver fix-point iteration.

Wing thickness implicitly constrained 
by linking upper-lower control points.

Explicit constraints: CM (every point), 
CR (design point).

Resources for MP 5:
CPU: 480 cores
Wall time: ~36 hrs
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Transonic Wing-Body: Convergence, Performance
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Transonic Wing-Body: Spanwise and Section Load
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Issues and Outlook
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Issues and Outlook

Issues:

Cost function evaluation always “noisy” in practice (e.g. due to 
less-than-perfect convergence of flow/adjoint simulations).

Optimizer “cheats” as much as possible (exploits any insufficient 
constraining or non-considered operating conditions).

Not quite “user-friendly” optimization tool chain.

Ongoing work:

Find gradient-based optimization algorithms that are:

more robust in face of noise in cost function value/gradient;

preserving feasibility as much as possible during cycles.

Find a way to pick relevant operating conditions to consider in 
multi-point optimization (not too many, but significant).

Add more “primitive” cost functions (value and gradient).

Assemble well-documented and deployable optimization tool chain 
(also with a GUI).
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Thank you for your attention!
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