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Abstract

This paper investigates the design of the relative motion orbits of geostationary satellites in the presence of
geometric constraints. A geometric constraint is defined by a sensor’s pointing direction and field of view.
An analyis was made of the underlying geometry of the relative orbits associated to geometric constraints.
This resulted in the derivation of novel relations between relative orbital elements and geometric constraints.
The paper presents a set of guidelines that can support the design of relative orbits, that use the relations
between the orbital elements and constraints. These guidelines are applied in a characteristic example that
includes a nadir-pointing sensor and a north-looking star sensor. The focus in this paper is on collocated
satellites in geostationary orbits. The results were derived for near-circular orbits, where the satellites share
the same mean argument of longitude. The developed relations can likewise be applied for other types of
collocated satellites.

Keywords: Relative Orbit Design, Collocation, Geometric Constraints, Relative Motion, Sensor
Constraints

1. Introduction

Collocation of geostationary satellites is generally
achieved using the so called eccentricity/inclination
(e/i) vector separation [1]. This method is based on
the fact that estimation, prediction and control of
relative motion in radial and normal direction is
generally more accurate than in tangential direc-
tion [1]. By maximizing the separation in radial di-
rection at zero separation in normal direction, and
vice versa, the risk of collisions is minimized. This
same method is applied in Low Earth Orbit (LEO),
for example for the TerraSAR-X/TanDEM-X for-
mation [2] and the PRISMA mission [3]. The con-
cept is also of high interest for clusters of fraction-
ated spacecraft, where generally no specific forma-
tion geometry requirements are present, apart from
minimum and maximum separation distances [4].

When using the concept of e/i vector separation,
one satellite may enter the field of view of the sen-
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sors on one of the other satellites in the cluster, at
some point in time during relative motion. For a
cluster controlled using the principle of e/i vector
separation this is, e.g., the case for nadir-pointing
sensors (assuming that the satellites are controlled
towards the same mean argument of longitude), but
it may also happen for star sensors. Depending
on the type of sensor that is blocked (or interfered
with) this could, for example, result in an outage
of the signal, an impediment of an observation, or
a loss of attitude information [5]. A potential so-
lution to this problem of sensor interference lies in
the design of specific relative motion orbits which
could avoid such situations.
Relative orbit design methods for formation fly-
ing [6], cluster flight [4] and collocated geosta-
tionary satellites [1] are present in the literature.
However, the problem of sensor interference is not
treated as part of the relative orbit design problem.
The goal of this paper is, based on an analysis of a
set of geometric constraints in terms of a sensor’s
pointing direction and field of view, to provide a set
of guidelines for designing relative motion orbits for
collocated geostationary satellites that respect the
geometric constraints.
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In Section 2, the relative orbits, parameterized in
relative orbital elements, are introduced. In the
same section, the geometric constraint is formally
defined and the underlying geometry is analysed.
Section 3 provides the results of the analysis, in-
cluding a set of guidelines for relative orbit de-
sign in the presence of geometric constraints. A
worked-out example with a nadir-pointing sensor
and a north-looking star sensor is presented as well.
The last part of the paper includes a discussion on
the domain of validity of the results and real-world
considerations, followed by the conclusion and out-
look.

2. Theory of Geometry Constrained Rela-
tive Motion

2.1. Relative Motion

In this paper, the focus is on geostationary or-
bits, and therefore, absolute orbits were chosen to
be defined by the equinoctial orbital elements

E =


a
λ
ex
ey
ix
iy

 =


a

Ω + ω +M
e cos (Ω + ω)
e sin (Ω + ω)

i cos Ω
i sin Ω

 , (1)

where a, e, i, ω, Ω and M are classical Keplerian
elements. Figure 1 illustrates the eccentricity vector
e = (ex, ey)

T
, the inclination vector i = (ix, iy)

T

and the mean argument of longitude λ. The relative
orbital elements between two satellites are obtained
by differencing their absolute orbital elements

∆E =


∆a
∆λ
∆ex
∆ey
∆ix
∆iy

 =


ai − a
λi − λ
exi − ex
eyi
− ey

ixi
− ix

iyi
− iy

 . (2)

Here, the subscript i distinguishes the other satel-
lite(s) from the main satellite. For satellites hav-
ing the same semi-major axis and the same mean
argument of longitude, the relative orbits have an
elliptical shape with one satellite being exactly in
the center of the ellipse. In this case, the relative
motion is completely characterized by the relative
eccentricity and inclination vectors. These vectors
can be written in polar form as [3]

∆e =

(
∆ex
∆ey

)
= δe

(
cosϕ
sinϕ

)
(3)

Figure 1: Eccentricity and inclination vectors in the equato-
rial plane.

∆i =

(
∆ix
∆iy

)
= δi

(
cos θ
sin θ

)
, (4)

where δe = ‖∆e‖ and δi = ‖∆i‖ are the radial po-
lar coordinates and φ and θ are the angular polar
coordinates. The relative phasing angle ψ = ϕ − θ
completely determines the orientation of the rela-
tive motion orbit, while aδe and aδi determine its
size. Projected on the orbital plane, the relative
motion is a 2:1 ellipse, with semi-major axis 2aδe
in tangential direction and semi-minor axis aδe in
radial direction [3]. The motion in cross-track di-
rection is independent of the motion in the orbital
plane and is characterized by a sinusoidal motion
with orbital period and an amplitude equal to aδi.
This causes the relative motion orbits to lie on the
sides of an elliptical cylinder as graphically shown
in Figure 2. The point where the orbit hits the top
of the cylinder (i.e., the point where the cross-track
motion has its maximum) depends on the relative
phasing angle ψ.

2.2. Geometric Constraints

The geometric constraints treated in this paper
are simple conic sensor constraints, defined by a
sensor’s line of sight and a sensor’s half angle, to-
gether constituting the sensor’s field of view. Vio-
lation of the constraint occurs when a satellite en-
ters the field of view of a sensor on another satel-
lite. Figure 3 shows the involved vectors and angles
graphically. The viewing direction is defined by the
unit vector ec and the sensor’s half angle is β/2. In
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Figure 2: Relative orbits are confined to an elliptical cylinder
for ∆a = 0 and ∆λ = 0

.

this paper, the viewing direction is assumed to be
constant in the Hill frame (also known as the Ra-
dial, Tangential, Normal (RTN) frame or a rotated
Local Vertical, Local Horizontal (LVLH) frame),
corresponding to, e.g., a nadir-pointing satellite.
The unit vector e01 points from satellite 0 to satel-
lite 1 and α is the angle between ec and e01, so that
the constraint is defined as follows:

acos (ec · e01 (t)) = α (t) > β/2, (5)

or
ec · e01 (t) < cos (β/2) . (6)

for α, β ∈ [0, π]

Note that since satellite 1 moves with respect to
satellite 0, α is a function of time. This constraint
is referred to as a geometric constraint in the re-
mainder of this paper.

Instead of checking satisfaction of the constraint
for every point in the orbit it would suffice to check
satisfaction of the constraint at the point in the
orbit where α reaches its minimum αmin. Figure 4
shows the relative orbit of satellite 1 around satellite
0.

The angle between the constraint vector and its
projection on the relative orbital plane is the small-
est angle αmin over a full relative orbit. This angle
shall be larger than the sensor’s half angle β/2, as
per Figure 4. The vector e⊥ is the vector perpen-
dicular to the relative orbital plane and defines the
orientation of the relative orbital plane. If this vec-
tor is known, it is easy to check potential violation
of the constraint:

Figure 3: Graphical representation of the parameters in-
volved in defining the geometric constraint

Figure 4: Visualization of αmin and its relation to e⊥
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αmin = π/2− acos (e⊥ · ec) (7)

αmin > β/2 or sin (β/2) < e⊥ · ec (8)

Both unit vectors e⊥ and ec can be defined in
terms of their azimuth and elevation angles, γ and
χ respectively, in the Hill frame. The definition of
these angles is indicated for ec in Figure 5 with the
following domain:

γc ∈ [0, 2π)
χc ∈ [−π/2, π/2]

γ⊥ ∈ [0, 2π)
χ⊥ ∈ [0, π/2],

(9)

i.e., the sensor can point in any direction, while
e⊥ is confined to the hemisphere with a positive
component in Z-direction.

The unit vector perpendicular to the relative or-
bital plane can be derived from the relative orbital
elements. To that end, a circular projection of the
orbit in the (X,Y )-plane of the Hill frame is as-
sumed by dividing the Y -component of relative mo-
tion by two (due to the natural 2:1 ellipse of the
relative motion in (X,Y )-direction). The angle χ′⊥
corresponds to the direction of relative angular mo-
mentum for the orbit with the circularized (X,Y )-
projection. The angle γ⊥ remains unaltered. If ψ is
the relative phasing angle between the inclination
and eccentricity vector, γ⊥ and χ′⊥ are given by

χ′⊥ = atan

(
‖∆e‖
‖∆i‖

)
, γ⊥ = ψ − π

2
. (10)

The unit vector perpendicular to the circular-
ized relative orbit can be obtained from Eqs. 10.
The unit vector of the actual 2:1 elliptical shaped
relative orbit is retrieved by multiplying the Y -
component by a factor 1/2 and normalizing the re-
sult, so that

x⊥ =

 cos (γ⊥) cos (χ′⊥)
0.5 sin (γ⊥) cos (χ′⊥)

sin (χ′⊥)

 (11)

and

e⊥ =
x⊥
‖x⊥‖

. (12)

For fixed δe and δi, the relative motion orbits,
generated by varying ψ, trace out an elliptical cylin-
der as shown in Figure 6. This cylinder is symmet-
ric with respect to X-, Y - and Z-axis. A constraint

Figure 5: Orientation of ec as defined by azimuth γc and
elevation ξc in the Hill frame.

in an arbitrary direction may always be brought
back to a constraint in the positive orthant R3

+,
by mirroring the constraint vector over the (X,Y )-
and/or (X,Z)- and/or (Y,Z)-plane. The same is
true for a result of an analysis for a constraint in
R3

+, it can be brought back to a result for a con-
straint in an arbitrary direction (with the relative
phasing angle ψ as a result). Results for the other
orthants can be derived from results in R3

+ using
the following transformations:

1. Mirroring the constraint over the
(X,Y )-plane: ψ = ψR3

+
+ π

2. Mirroring the constraint over the
(X,Z)-plane: ψ = −ψR3

+

3. Mirroring the constraint over the
(Y,Z)-plane: ψ = −ψR3

+
+ π.

Note that ψ ∈ [0, 2π), which can be enforced by
taking the 2π modulus of ψ. In the remainder of
this paper constraints are assumed to lie in R3

+,
unless specifically mentioned. The domain of the
constraint angles changes to

γc ∈ [0, π/2)
χc ∈ [0, π/2].

(13)

Resulting ψ for constraints in any other direction
can be derived from the results for the positive or-
thant.

2.3. Relative Orbit Design Problem Formulation

The design of relative orbits in the presence of
geometric constraints can be formulated as an opti-
mization problem. If the goal is to design a relative
orbit that minimizes the risk of violating the geo-
metric constraint, this optimization problem can be
formulated as:

max . αmin (ψ) for ψ ∈ [0, 2π) (14)
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Figure 6: Elliptical cylinder from relative motion orbits,
formed by tracing out ψ from 0 to 2π in 50 steps.

Constraints can be added to the problem, such as

• αmin > β/2: respecting the sensor’s field of
view

• ψ < 30 deg: limits on ψ, e.g. if e/i-vector sep-
aration strategy is used

• limits on a‖∆e‖ and a‖∆i‖
Alternatively, the optimization problem could also
be reformulated to a feasibility problem, e.g., find ψ
subject to the contraints. However, by maximizing
αmin, a margin is created, which, in the presence of
uncertainty, can be helpful to ensure satisfaction of
the constraints.

3. Results

One of the key results that can be obtained from
the presented theory can be visualized in two fig-
ures that show the maximum achieveable αmin and
the corresponding relative phase angle ψ for a con-
straint pointing in an arbitrary direction in R3

+.
These figures have been generated for the cases
aδe = aδi. In order to construct these graphs, a
grid was defined in terms of γc and χc, over the
positive orthant. For each node on the grid, αmin

was derived for all relative phase angles ψ between
0 and 2π. The largest αmin and the corresponding
ψ were plotted respectively in Figures 7 and 8.
Figure 7 is a combination of a surface and a con-
tour plot that shows the maximum αmin over all
values of ψ for a constraint pointing in any direction
in R3

+. Figure 8 shows at which angle ψ the max-
imum αmin is achieved. If the constraint direction
is known in terms of angles γc and χc, the largest
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Figure 7: Maximum αmin over all ψ for a constraint in R3
+,

defined by γc and χc.

achieveble αmin can be read from Figure 7. Fig-
ure 8 will give the corresponding angle ψ at which
this αmin is achieved. This can be used as a first
guess for the relative phasing angle ψ in the de-
sign of a relative orbit. In an early design stage it
could also be used to, e.g., place a star sensor on
a satellite as constraints in certain directions are
easier to cope with than constraints in other direc-
tions. The plot shows for example that constraints
in the (X,Y )-plane are generally more difficult to
deal with, while constraints with an elevation χc

between 30◦ and 60◦ guarantee an αmin larger than
60◦.
Figures 7 and 8 were generated in two ways:

1. By determining e⊥ from Eqs. 10-12 and cal-
culating αmin from Eq. 7.

2. By propagating the relative motion and eval-
uating α at every point in the relative motion
orbit to obtain αmin.

Evidently, the second method was far more compu-
tationally demanding (i.e., many hours for a 50x50
grid, vs. seconds for the first method on a 2.9 GHz
processor). The second method served also to vali-
date the expressions presented in Equations 7-12.

3.1. Orbit Design Process

The sequence of activities for designing relative
orbits in the presence of geometric constraints can
be summarized as follows:

1. Identify the geometric constraint(s) and ex-
press the constraints in terms of γc, χc and
β/2.
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Figure 8: Relative phase ψ corresponding to the maximum
αmin in Figure 7.

2. Identify other constraints (e.g., a limited do-
main of ψ that guarantees separated eccen-
tricity and inclination vectors).

3. Identify the domain of aδe and aδi.
4. Formulate the problem (e.g., find the ψ that

maximizes αmin).
5. Solve the problem (i.e., find ψ).
6. Specify eccentricity and inclination vectors

that have relative phasing angle ψ.

The application of this process is demonstrated in
the next subsection.

3.2. Exemplary Case

The following example serves to demonstrate how
the theory developed in this paper can be applied to
design relative orbits in the presence of geometric
constraints. This sample case consist of four collo-
cated satellites in GEO, where one of the satellites
(or each, there is no difference) is equipped with a
nadir-pointing sensor and a north-looking star sen-
sor. In addition, separated eccentricity and inclina-
tion vectors are desired to prevent the radial and
out-of-plane separations to vanish simultaneously.
This last constraint translates into boundaries on
the relative phasing angle ψ. The constraints are
specified in Table 1. Note that the star sensor is not
exactly facing north, as this side is usually equipped
with solar panels that would otherwise obstruct the
field of view.

The reference orbit is a perfect circular geosta-
tionary orbit with zero inclination. Its state vector,

Table 1: Definition of constraints for sample case

Constraint 1: nadir-pointing sensor

γc1 = 0◦, χc1 = 0◦, β1/2 = 9◦

Constraint 2: north-looking star sensor

γc2 = 45◦, χc2 = 75◦, β2/2 = 15◦

Contraint 3: Bounds on ψ for e/i separation

ψ ∈ [0◦, 30◦] ∪ [150◦, 210◦] ∪ [330◦, 360◦]

according to the convention in Equation 1, is:

Eref = (aref, 0, 0, 0, 0, 0)
T
, (15)

where aref = 42, 164 km is the geostatiory orbit ra-
dius. This analysis considers only pure Keplerian
two-body dynamics, thus no specific epoch is as-
sumed. The goal in this example is to define the
relative orbital elements with respect to Eref, using
the parameterization as given by Eq. 2. Relative ec-
centricity and inclination are assumed to be equal,
i.e. δe = δi, for each individual satellite.
Following the structure provided in Section 2, the
relative orbit design problem can be formulated as
follows:

maximize min (αmin1 (ψ) , αmin2 (ψ))

subject to:

ψ ∈ [0◦, 30◦] ∪ [150◦, 210◦] ∪ [330◦, 360◦]
αmin1 > β1/2
αmin2 > β2/2
δe = δi

.

In this problem definition, αmin1 and αmin2 are the
minimum angles as defined by Figure 4 for con-
straint #1 and #2, respectively. This problem can
be solved numerically by defining a grid of possible
values of ψ and evaluating αmin1 and αmin2 at each
point in the grid. However, the problem is further
analysed here in order to obtain additional insight.
The effect of constraint #3 on the achieveable αmin

is investigated. Two contour plots equivalent to
Figures 7 and 8 are generated, but now including
the constraints on ψ. The resulting plots are given
in Figures 9 and 10. The locations of the constraints
are indicated by black dots (note that constraint #1
is shown in the bottom left corner). From Figure 9,
some important observations can be made:
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Figure 9: Maximum αmin for constrained ψ. Black dots are
the example case constraints.

• Both constraints can be dealt with individually
as αmin is larger than 25◦.

• The nadir-pointing constraint (constraint 1)
seems more challenging to satisfy as the mar-
gin for αmin is much smaller in the feasible re-
gion.

If these graphs would already indicate an infeasi-
ble constraint, a relaxation of constraints would be
necessary.

The next step is to find out if both constraints
can be dealt with simultaneously. To that end, a
plot is made that shows how αmin varies if the rel-
ative phase angle is varied between 0 and 2π. The
result is shown by the thick green and blue lines in
Figure 11.

The first observation from this figure is that con-
straint 2 is passively dealt with for any choice of
ψ. The constraint on ψ is shown by the red boxes.
Constraint 1 is indicated by green shaded area. As
per our expectation from Figures 9 and 10, all three
constraints can be dealt with. The acceptable val-
ues for ψ are as follows:

ψ ∈ [10, 30]∪[150, 170]∪[190, 210]∪[270, 290]. (16)

As stated in the introduction, knowledge on the
along-track position is generally poor, which ren-
ders it difficult to accurately control the along-track
position. Expressed in relative orbital elements,
this results in variations in ∆λ. The impact of
these variations has been investigated for this ex-
ample case. The dashed lines in Figure 11 show
how αmin changes if ∆λ is varied between −10−4
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Figure 10: Relative phase ψ corresponding to the maximum
αmin in Figure 9.

Figure 11: Variation of αmin for ψ between 0 and 2π
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Figure 12: Placement of eccentricity and inclination vectors
for sample case 1

and 10−4 rad. Looking at the Nadir pointing sen-
sor, a near horizontal shift is observed. This results
in a smaller set of acceptable angles ψ. Finally,
Figure 11 is used to select the desired ψ from the
set of acceptable values in Eq. 16. In this example,
ψ = 150◦ is taken, since it results in the largest mar-
gin for the star sensor, amongst the (four) points
that maximize the margin for the Nadir pointing
sensor.
The choice of ψ restricts the relative orientation
of eccentricity and inclination vectors. However, it
leaves us completely free to place either inclination
or eccentricity vectors (the other being constrained
to a line by ψ and to an arc through δe = δi, the in-
tersection of which is a point). As an example, two
inclination vector configurations have been speci-
fied in Table 2. The corresponding eccentricity vec-
tors are completely defined through ψ and δe = δi.
The endpoints of these vectors are marked in Fig-
ures 12 and 13.

Table 2: Specification of two configurations of inclination
vectors. All values in ·10−4 rad.

Case 1 Case 2
ix iy ix iy

Sat1 −2.0 −2.0 0 −2.5
Sat2 2.0 −2.0 0 −0.5
Sat3 2.0 2.0 0 1.5
Sat4 −2.0 2.0 0 3.5

The relative orbital elements according to Eq. 2
are now completely specified for all four satellites
(note that ∆E1 = ∆E2 = 0 was implicitly as-
sumed). The resulting relative orbits have been
simulated for both cases. Figures 14 and 15 show
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Figure 13: Placement of eccentricity and inclination vectors
for sample case 2

Figure 14: Relative orbits in the presence of geometric con-
straints for each satellite pair, case 1

the relative orbits of a satellite about another satel-
lite for each pair of satellites. The other satellite is
in the center of the coordinate system, equipped
with both sensors. The fields of view are indicated
by the cones. All satellites can be equipped with
an identical set of sensors without violation of the
constraints.
Figure 16 shows the relative orbits for case 2 in the
Hill frame of the reference (specified by the orbital
elements in Eq. 15). As the size δi is different for
each satellite, the size of the relative orbit is differ-
ent. A similar graph for case 1 would show all four
satellites being in the exact same relative orbit with
respect to the reference orbit.
Figure 17 shows the effect of variations in ∆λ be-
tween −2 · 10−4 and 2 · 10−4 rad, for the relative
motion of sat2 about sat1. The constraints are still
respected, but for the nadir-pointing sensor, this is
close to the allowable tolerance.
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Figure 15: Relative orbits in the presence of geometric con-
straints for each satellite pair, case 2
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Figure 16: Relative orbits about the reference orbit, case 2

Figure 17: Effect of variations in ∆λ on the relative orbit of
sat1 around sat2, case 1

4. Discussion

The theory and results presented in this paper al-
low to support design of relative orbits in the pres-
ence of geometric constraints. However, to arrive
at these results, some simplifying assumptions have
been made, which should be accounted for when
applying the theory.

4.1. Domain of Validity

The analysis in this paper focused on an appli-
cation to collocated satellites in a geostationary or-
bit. The orbits were assumed to be near-circular
and the sensors were assumed to be non-rotating in
the Hill frame (e.g., nadir-pointing). The validity
of the results for eccentric orbits needs to be be fur-
ther analyzed. For rotating sensors, the results can
not be extended, unless the rotation is constrained
to a cone with a fixed orientation in the Hill frame.
The sensors on the different satellites in the cluster
are assumed to be pointing in identical directions.
The developed guidelines can be applied as well to
support a heuristic relative orbit design for clusters
with non-homogeneous sensor directions. However,
the analysis quickly becomes complicated for clus-
ters with a multitude of sensors pointing in arbi-
trary directions.
The paper focused on formations around the same
mean argument of longitude. Thus trailing forma-
tions or pendulum type formations, where such geo-
metric constraints may be trivial, are excluded from
the analysis. For non-zero variations in ∆λ the ge-
ometric relations, derived in Section 2, loose their
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validity. However, for small variations in ∆λ they
are still good approximations.

4.2. Real-World Considerations

The current study assumes perturbation-free dy-
namics, where the satellites are assumed to be per-
fectly controlled on pure Keplerian orbits. In re-
ality, perturbations disturb the ideal relative orbits
and control is required to prevent this. To deal with
most sensor constraints, it will be required to ac-
tively control the relative mean argument of longi-
tude, so that the relative motion orbits remain cen-
tered. This can be a challenge to deal with, as also
orbit determination errors in along-track direction
are typically dominating, and geostationary satel-
lites generally have only weekly maneuvers with
long drift periods. Especially when also maneuver
execution errors and thruster cross couplings are
considered [7], the task of controlling relative mo-
tion in the presence of these new constraints can be
tedious. However, with the availability of onboard
orbit determination capability through, e.g., GPS
receivers and more frequent control action with,
e.g., electric propulsion, these challenges could be
addressed in the near future.

5. Conclusion and Outlook

The paper introduced a method to include
geometric constraints in terms of a sensor’s point-
ing direction and field of view in the design of
relative motion of orbits of collocated satellites.
The underlying geometry has been analysed for
relative orbits in near-circular orbits centered on
the same mean argument of longitude. From this
geometric analysis, key relations were established
between relative orbital elements and the geometric
constraints. These relations can be used in the
design of relative orbits or support the placement
of sensors onboard collocated satellites. To that
end a design process was developed. An example
demonstrated the application of this process to the
design of relative orbits for collocated satellites
in a geostationary orbit, in the presence of nadir-
pointing sensors and north-looking star sensors.

The domain of validity of this research is lim-
ited to ideal conditions such as pure Keplerian
motion and further analysis needs to be done to
extent the results to other orbits, e.g. eccentric
orbits. Furthermore, the impact of orbit deter-
mination and control accuracy in the presence of

perturbing forces will play a crucial role in the
possibility to maintain relative orbits that respect
the geometric constraints. These challenges will be
addressed in future work.
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