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A Modally Adaptive Control for Multi-Contact Cyclic Motion s
in Compliantly Actuated Robotic Systems

Dominic Lakatos, Martin Gorner, Florian Petit, Alexandgietrich, and Alin Albu-Schéer

Abstract— Compliant actuators in robotic systems improve switches the equilibrium position of the spring in a seldcte
robustness against rigid impacts and increase the perform@e joint. Thereby, energy gets injected into the system and
and dficiency of periodic motions such as hitting, jumping ‘sgcillations are excited. Since the controller requiresceit

and running. However, in the case of rigid impacts, as they t K led it f bustl d i
can occur during hitting or running, the system behavior is N0 SyStem knowiedge, It periorms very robustly and 1S

changed compared to free motions which turns the control Predestined for systems with model uncertainties, incigdi
into a challenging task. We introduce a controller that excies robot-environment contacts.
periodic motions along the direction of an intrinsic mecharcal The goal of this work is to extend the ideas initiated in [4]

oscillation mode. The controller requires no model knowlede . - -
and adapts to a modal excitationqby means of measuren(%ent for systems and tasks including robot-environment costact

of the states. We experimentally show that the controller is With a focus on legged robotic systems. Our conclusions
able to stabilize a hitting motion on the variable stifness for legged systems go along withfidirent experimentally
robot DLR Hand Arm System. Further, we demonstrate by  supported hypotheses of biologists [5] and related work
5'%”""‘“0” It.hatﬂthe atpprto"z‘ich ap;plleTshfor Ieg?eﬂ rgbonct SYeMS  on compliant quadrupeds [6]. Full and Koditschek [5] hy-
;véprocgcrﬂpdli?fgrgn? (r:n%?:lees gfo Il’lr';OStliOI’l gugr? lgojuempfrﬁ ?‘ngpg?’r]]g pothesize that fast locomotion is dominated by 'ghe.malnly
and running, and thereby, it is able to handle the repeated feedforward controlled mechanical system and its interac-
occurrence of robot-ground contacts. tion with the environment. Following their arguments, the
high-dimensional, nonlinear system dynamics anchored in a
complex animal collapse to simple template dynamics like
Intrinsic elasticities in biological and robotic multi-89  the spring loaded inverted pendulum (SLIP). This requires
systems enable the execution of highly dynamic and compleat coupled, nonlinear, neural and mechanical oscibiator
motions, such as hitting and throwing, or walking and runsynchronize in phase and excite coordinated periodic mo-
ning. The compliant actuator behavior improves the mechgons. These hypotheses are further supported by the work
nism robustness during rigid contacts with the environmenyf Ijspeert [7] and Buchliet al. [6]. In [7] multiple neural
and increases performance and enerfjiciency. However, oscillators are coupled to a compliant segmented mechan-
the generation offéective and #icient motions is not trivial. ics model of a salamander. By proper parametrization, the
In this work we aim at robustly controlling periodic motionsmodel shows coordinated traveling and standing waves along
for robotic systems with variable fitiess actuation (VSA) the body that result in swimming and walking motions,
[1], [2], [3]. The idea is to exploit the natural dynamics ofrespectively. The work in [6] shows that adaptive frequency
these robotic systems and to control them such that theycillators are able to find, to adapt to and to enforce
are able to robustly handle contacts, in a similar way agtrinsic, mechanical modes of locomotion of a quadruped
their biological archetype. However, due to environmentalith rigidly actuated hip and passively compliant knee fgin
contacts and the variable fStiess mechanism, the open-loop  The main contribution of this paper is the extension of
system dynamics are strongly nonlinear. Therefore, th&bagpe single-input single-output controller presented ih tf#
assumption is that the considered systems intrinsically fejhe muylti-input multi-output case. This is achieved by an
ture internal nonlinear oscillation modes, which corré&po 4qaptive part which converges to a coordinate transformati
to motion patterns mentioned above. The goal of this paper 3 the dominant oscillation mode of the plant. The coordinat
to find an appropriate control strategy, which firstly idéesi  yansformation is then used to modally distribute the eperg
and secondly excites one of these oscillation modes Suﬁﬁ})ut over the joints and thereby increases theativeness

that the repeated occurrence of contacts can even be use{qne |imit cycle excitation. The modally adaptive control
preload the springs. strategy is validated for robotic systems in the presence of

In our previous work [4] we analyzed the oscillatoryoniacts, In an initial experimental test with a multi-join
behavior of VSA robotic arms. We showed that the existenc@sa yopotic arm, we demonstrate that the controller is able
of quasi-independent oscillation modes strongly depengs stapilize a cyclic hammering motion. Then, we apply the
on the availability of sfficient damping in parallel to the c,niro] approach to the simulation of a legged system with
springs, which ensures the decay of oscillations excited Ebmpliant actuation in the joints and show that jumping and

the other modes. From observations of humans Contm”"}%nning motions can be excited easily. In contrast to [6] or
a compliantly actuated system by fofgsual feedback, rgj 19], which address rigid actuators or full rigid body

we derived a simple bang-bang controller, which is ablg,siions, respectively, we aim at exciting the mechanical
to excite and sustain periodic motions for such Sys‘tenmtrinsic oscillation modes. Hereby, a mainffdience is
[4]. The controller is triggered by a generalized force anghai we consider systems with compliant actuators for all

The authors are with the Institute of Robotics and MechatsrGerman joints. We proposg (bUIldlng up on [4]) a completely ne.W
Aerospace Center (DLR), D-82234 Obeifpémhofen, Germany. Contact: ap_proach of adaptive feedback controlled modal excitation

dominic.lakatos@dlr.de It is a fundamentally dferent concept from the basically
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open loop intrinsic pattern generators, even in their eersi B. Modeling VSA robotic systems

with adaptive oscillation frequency [6], trying to mimiceth yjriaple stifness actuated robots can be represented by
fast adaptive nature of biological motion generation. ThEuIer—Lagrange equations [11], satisfying
introduced method féers the capability to distribute the '

energy input over the joints and to achieve the directed d (0L(x,X)\ dL(X, %) )
excitation of a specific oscillation mode, using an adaptive a\Tax )T T ax  Feen™ d(x, %) . 7
feedback control, which approaches an excitation in the ) ) ) )

intrinsic frequency of the system and task. Thereby, thwhere the Lagrangiari(x,X) = T(x,X) — U(x) is the
adaptive part accounts for the distribution of the exaati difference of the kinetic energi(x, x) and potential energy
amplitudes (similar to the eigenvectors in linear osdiat U(X)- The potential energy(x) = Ug(x) +Uy(x) is the sum
theory) such that they fit to and properly excite an intrinsi@f @ gravity and elastic potential, respectively. The posit
oscillation mode of the system. statesx = (9',q")T € R™" can be divided into motor

The paper is structured as follows: In Sectigh 1l weP0sitionsé € R™ and link positionsq € R". The vector
introduce the control approach. Then, we experimentall§f generalized forcesgen = (u", 7¢,)  is composed of the
demonstrate that the controller can handle contacts for @ntrolu € R™ and the external torques, € R". Only the
hitting motion (SectioTll). In Sectiofi IV we perform a motor statesq',60 )T are directly actuated via the control
simulation study with a legged system. A brief conclusion ighput u. Moreover, d(x,x) € R™" represents a damping
given in Sectioi V. force, wherex™ d(x, X) > 0 holds.

This model represents a large class of compliantly actuated
Il. CONTROLLER DESIGN robots and highlights the generality of the control apphoac
_ o ) ) proposed in the remainder of the paper.

First, we revisit the bang-bang control introduced in [4]. |n the following experimental and simulative evaluation,
Then, we propose an extension to multi-joint robots, usinge consider serial elastic actuation. Thereby, the elastic
an a_ldapnve law, Whlch converges to the .coo_rdmate traﬂqu:ﬁotentiaIUl,, = U,(x,6,) depends on parametefig € R™ to
mation corresponding to a dominant oscillation mode of thggjust the sfiness characteristics. In this work we deal with
plant. constant sffness preset (although nonlinear), #g.= 0.

A. Bang-bang control for a single compliantly actuated joinC. Adapting the modal coordinate transformation

Consider the model of a single compliantly actuated joint Our goal is to control periodic motions in the link position
coordinatesq € R" using the bang-bang contrdl](6) as

Ig+dq=r, (1) presented above for the single joint case. Since the cdentrol
7 _ accounts only for scalar quantities, we seek a transfoomati

bo+1 =1, (2) A .
such that the motiomg(t) can be represented by a single

whereq, 8 € R are link and motor coordinates, respectivelycoordinate, for instanceu(t). The basic idea is sketched in

Tm is the control input, and Fig.[ and will be explained in a context offﬂa'_re_ntial ge-
ometry as follows. Consider the time series of joint posiio
T=y(0-0q) (3) q(t) representing the motion of the multi-joint robot, where

g € Q c R" are coordinates of a manifol@. Assume that
is the joint torque. The motor inertiaacts over a nonlinear we can represent the trajectogit) on a lower dimensional
spring ¥(6 — @) on the link inertial. Additionally, viscous manifold Y, with coordinatesy € Y c RP<". (In particular,
dampingdq acts on the link. Considering the contrgh =  for the bang-bang control it is required that= 1.) Assume
—kpb — ket + kpfly (Wherekp and kp are positive controller further that the mapping
gains), the singular perturbation assumption [10]:

. : y=F(a.W) (8)
e(bH T kDg) =6a—0, ) can be parameterized by constant weightand the inverse
with € = 1/kp ande — 0, reduces[{1)H3) to mapping
.. . =G ’W 9
1g+dg+w(q-06) =0, (5) q=G(y, W) (9)

h is th i exists. Then, similar to what was done in [12], we can define
whered is the new control input. an error function

Our goal to excite and stabilize periodic motions in the link
coordinateq can be achieved by the discontinuous control S = |lq(t) - (G o F) (q(t), W)||2 . (10)

law . .
For a perfect reconstruction mapping, the sum of error

0(q,0.) = { sign(r(g,6.)) 6 if [7(q,6-) > e ©6) functions evaluated at each point of the trajectqft) must
P 0 otherwise be identically zero. In general, this leads to a nonlinedi-op
R mization problem, where the matrix of weighté represents

wheree; > 0 is a thresholdj a constant switching amplitude the optimal solution.
and 6_ the state of¢ before the switching. It is worth  To clarify the meaning of the reduction mappirig (8), let
mentioning that, if the joint torque- or equivalently the us review the linear, second order system
deflection ¢ — g) can be measured, the controllgt (6) will .
not require any model knowledge. Mg+ Kg=0, (11)



Fig. 1. The idea of the modal transformation Fig. 2. Local approximation of the modal transformation

where M, K € R™" are constant, symmetric, and positivediscrete time instanck. Consider further the error function
definite matrices. With eigenvectovg € R" of the matrifd 2

A = KY2MK™Y2 (where W, are normalized such that g1 . (15)
W W; = &i; anddjj is the Kronecker delta), the motion of 4

the system[(dl1) can be expressed as

a(K) — ) wiw oK)

which represents the squared distance between the gfiout
and the auto associative mappingy| q(k@ at time instance

A0 = Waya(B) + Way2(0) + ... + WD) (12) k. Then, the gradient descent rule
wherey;(t) = & sin(wit — ¢;) are time modulations of the . . dS(q(k), wi(k — 1))
eigenmodes corresponding to motions alang Hereby, & Wi(K) = Wi(k—1) -y 6W: , (16)
are amplitudesw; eigenfrequencies and; phase angles. i
From [12) it can be seen that wherey > 0 determines the convergence rate and
9S(q(k), wi(k—1)) _
q= Z WiYi (13) aw =-¥i(K) (a(k) - yi(kwi(k - 1)),  (17)
|

minimizes the error functio_(15) recursively and provides
wherew; € R" are parameters of the mappindgs](13) ané new guessv” € R" at each time instanck. (Note that
g e R" andy; € R represent the instantaneous values of thg(k) = wi(k — 1)" q(k)). Since the algorithm{16)[{17) does
trajectoryq(t) andy;(t), respectively. Due to orthogonality of not ensure orthogonality of the weighis, We incorporate
wi, the modal reduction mapping has the form the Gram-Schmidt orthogonalization (see, e.g. [14, chap.
0.6]) as implicit constraints:

T
Yi =W d. (14) - . »
o Wi (k) = W (k) = > wi(k = 1)TR(K)w; (k- 1),
Remark 1:Equation[(IB) is the representation of the linear N
differential equation[{11) as a superposition of independent
modal oscillations. If only one mode is excited, the motion wi(K) = (V_Vi(k)TV_Vi(k))il/ZV_Vi(k).
can be exactly represented by only a single coordipateR N
andS in (Id) becomes zero. Thereby, the step fronw;"to w; € R" performs the or-

Remark 2:In the general case of nonlinear mappingshogonalization an(_:i the latter step normalimssuch that
@) respectively [[9), dierential geometry provides clearW Wj = dij. Assuming thaty < 1 and neglecting terms of
rules how to transform contravariant vectors (velocitas) orderO(y?), we obtain the learning rule
covariant vectors (forces) between the manifol@sand (A s _ , ,

Y [13]. For instance, velocity vectors transform with the Wil) = wilk = 1)+ vk [a(k) - yilkpwa(k - 1)
Jacobian, i.eq = (0G(y)/dy)y and force co-vectors with
the transposed Jacobian, i®, = (9G(y)/dy) 7q. In the —ZZyj(k)wj(k—l) ’ (18)
case of linear, orthogonal transformatiofs] (13) respelstiv It

(I4), the transformation matrix is equal to the Jacobiag, e.proposed by [15].

dG(y)/dy = W. MoreoverW* = W'. Itis worth mentioning = Remark 3:The p dominant eigenvectorsv;;..., W, of
that in this paper we will always apply the clear rules othe data covariance mafiixC = E(QQ'), where Q =
differential geometry also to the nonlinear case. [a(2), a(---), g(k)] € R™, represent asymptotically stable

With the above considerations in mind, let us now derivéixed-points of the dference equationd (118). The proof
an adaptive law for the linear system{11), which convergagerefore is given in [16], [17].
to the parameters; of the mappings[{13)[(14) under the Remark 4:For the linear systeni (11), the eigenvectors
assumption of unknowK and M. Assume therefore that we W, ..., W, of the data covariance matri€ are related to
measure a new value of the actual joint positigk) at each the oscillation modes, i.ay; are eigenvectors of the matrix

A which are represented in the particular motion. In the

1The matrix A := K™Y2MK™/2 results from the transformation = o ) ) -
K-12z i.e. 7+ Az = 0, where A is still symmetric and positive definite. ~ 2The auto associative mappingiw] q(k) is the composition of the
The eigenvectors oA are related to the generalized eigenvector&ot  reduction mappind(34) and the inverse mapp[ng (13).
[14, chap. 4.5]. 3The operatorE(-) denotes the expectation value of the argument.



nonlinear spring

presence of damping, the eigenvectors of the ma@ix
approximate the eigenvectors of the resonant modes. These
properties are proven, respectively discussed in [18].

As can be seen i {7), the link side dynamics of a multi-
joint robotic system are nonlinear. Therefore, the notion
of eigenmodes as in the case of linear systems might be
replaced by so-called nonlinear normal modes [19]. For the
present approach, we assume that the dominant mode is
synchronous in amplitudes (i.e. the oscillations of thatmi
are in phase) such that the motion along this mode can be
represented by a single curvy-linear coordinate. Theegfor
when the algorithm described Hy {18) convergeisiently
fast, the weight vectow;(k) approximates the instantaneous
linearization of the nonlinear normal mode. This is sketche
in Fig. [2. Finally, it is worth mentioning that the order
of the weight vectorswi(k) depend on the motiom(k),
WhICh is the Only mformatlon source” of the adaptation Fig. 3. Hitting experiment with the DLR Hand Arm System. THetpn
algorithm The first weight vectow; corresponds to the most the upper right corner depicts the characteristic of sgringthe joints for
dominant principal component of the trajectagk), i.e. to the adjustment used in the experiments.
the eigenvalue of the matri€ with the largest magnitude.

50

0.2

torque (Nm)

deflection (rad)

D. Bang-bang control in a modal direction € 0.06} T
Let us now assume that we want to excite periodic motions§g 8'8‘21: motor des
around the centdy € R™. Consider therefore the PD control ‘§ 0
. 2 -0.02f
u=-Kpf-Kp(0-6y), (19) X _004
where Kp, Kp € R™™ are symmetric and positive definite € 0.06}
controller gain matrices, angh € R™ is a new control input, ¢ 8-8‘2"
i.e. the desired motor position, for the systéin (7). Themgus 3~
w; € R™, provided by the adaptation algorithin {18), we can 8 _g g2l
compute the bang-bang control in the direction of the first > —0.04
mOde: E 0.06}
Noy(ry = | SNz it Ind > e, 20) § oool
e 0 otherwise Z o _@UQUQUQUQUQUQUQUQ
. 2 -0.02f
rerein B I T I
. 0U,(6, q) _ U, (0, ) eR 21) ‘ “time (sec) . .
cTHL ol 6 |og

Fig. 4. Results of the hitting experiment. The plots depi& tnotion of

is the generalized force acting in the direction of the firsihe end-&ector and the time evolution of the desired motor positians i
: ~ terms of end-fector positions. Both representations refer to the coatdin

mode, e, € Rso the cor_respondmg threshold aﬂg_e R the system fixed to the ground, displayed in Hig. 3.

modal switching amplitude. Finally, the control inp@ in

(I9) has the form:

0a =060+ A0. (22) the controller parameters, PD controller gais and Kp,
Thereby, we interpredd,(r,) € R as a tangent vector of the thresholde;,, and switching amplitudé;, such that the end-
modal manifold such that it transforms with the Jacohian effector gets in contact with the environment. To initially
of the inverse reduction mapping{13), i& = wyAb,(r,).  start the oscillations, the endFector is manually deflected

Remark 5:As discussed in Sectiof TGy converges and released. Figurig 3 shows the test setup including the

to a local approximation of the nonlinear mode. Thereforgobotic arm in the initial configuration. Additionally, adéo
the control [IB) and[{19)=(22) slightly excites the otherghowing the experiment, is attached.
"undesired” modes. To ensure that oscillations excitethér t  In Fig.[4, it can be seen that after the initial disturbance
other modes decay, the system requires a small amounttb& motion in thex- andy-directions approaches the periodic

damping in parallel to the springs [4]. steady state within one oscillation cycle. Thereby, in yhe
direction, the amplitude of the positive deflection is large
Il EXPERIMENTS than the amplitude of the negative deflection. Additionally

In this section we experimentally validate the ability ofthe trajectory of the negative deflection is sharper than
the control to stabilize limit cycles, even when contactthwi in the positive direction. This is due to the enflieetor
the environment occur. Therefore, we apply the conifrdl (18)itting the environment. Moreover, Figl 5 depicts the phase
and [I9)4(2P) to the first four joints of the DLR Handplot of the corresponding endfector motion in the steady
Arm System [3] and choose the initial configurati@p, state. Therein, it can be seen that even in the presence of
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Fig. 6. Technical sketch of the planar system with two ledse indices
f andr denote the front and rear leg, respectively.
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velocity (n's) Herein, Fr, is the stiction forceyr is the tangential com-
Fig. 5. Phase plot of the endfector motion corresponding to FIg. 4. Only po_nent of the abS.OIUte VelOCIty of th.e c_:onS|deer bOdy_flxed
the steady state part of the trajectory is depicted. Theipossignal is low- ~ POINt, andu > 0 is the Coulomb friction cdécient. The

pass filtered with a cutfbfrequency of 50 Hz. The velocity is estimated by stiction force is approximated by
numerical dfferentiation of the filtered position signal.
Fr,=—krApr —drvr, (25)

o _ N where Apr = pr - pr, is the diference of the actual and
periodically occurring contacts, the controller stal@za initial tangent position componenk; is a large stiness

cyclic motion within a small error band. codficient, anddy is a viscous damping factor. Finally, we
From the experiment with the robotic arm we concludeonsider the contact dynamics [ (7) as

that the control approach might be applicable for systems N

with compliantly actuated legs. Hereby, hopping, jumping, < (Ap(Q) T Fr,

walking and running constitute periodic motions of oseilla Text = Teont. = (6—q) [ Fn,

tory systems that are dominated by contact sequences. The

question of how to apply the control to such a type ofvhereNcon. denotes the number of body-fixed contact points

systems, will be tackled next. and p(qg) is the absolute position of theth body-fixed

contact point.

: (26)

i=1

IV. SIMULATIONS

In the following, we validate the approach with multi-B. A planar system with two legs
legged, compliantly actuated robotic systems in simutatio  The system consists of a trunk and two double pendulum-
The biological counterparts of these systems are able to péike legs. As schematically sketched in FIg. 6, the trunk
form periodic tasks, such as jumping, hopping, walking an¢main body) has two translational and one rotational degree
running. Thereby, the challenge is to handle multiple catsta of freedom. Thereby, the generalized coordinages R®
and under-actuation. However, the control law described iepresent the pose of the trunk. The upper legs are hinged
Sectior[]) requires only the states of the actuated joints. Nio the trunk and the lower legs are hinged to the upper legs.
knowledge of the rigid body model, of the degree of underthereby, gy: = (Or,.0r,» df,.5,)" represents the configu-
actuation, or of the contact state are needed. Therefage, thation of the rear and front legs, respectively. The distanc
controller is applicable to excite periodic motions fork®is between the suspension points of the legs is denlptadd
where the degree of under-actuation changes (zero, one,tee link length of the upper and lower legis where j =
two legs are in contact) and possibly occurring sequences Qfr,, f;, f,, corresponds to the indices of the joint positions
contact states are not known in advance. Goint (S€€, Fig[B). The mass distributions of the trunk and
A. Contact modeling links are modeled as point massasrespectivelym;, where

Wi id . lasti . in the directi the positions of the point masses w.r.t. to the body-fixed
€ consider visco-elastic point contacts In the AIreCliof, mec, andc, respectivelyc; are introduced as parameters.

normal to the ground and viscous Coulomb friction tangéntiay ~qnact point (cf. SectioR-IVA) is attached to each lower

to the ground. The normal force is emulated by leg. The hip and knee joints are equipped with serial elastic

{ —min(kyApn + dyAvy, 0)  if Apy <O actuators. To analyze the influence of a nonlinear spring
0

Fn = otherwise characteristic, we consider the elastic potential

(23)

where Apy and Avy are the normal components of the _ S S A S NP
relative distance, respectively relative velocity, inviee¢n Uy (Ghoint- 0) = Z 2"1»1 (qJ 91) + 4k2»1 (ql 91) (27)

the foot (penetrating ground) and the initial contact point
with respect to the contact surface. To approximate a rigidith ki ; > 0 andk; > 0. Notice thatk,; = O corresponds
contactky is a large cofficient which determines the contactto a linear andk,; > 0 to a cubic deflection-force relation.
stifness anddy is a viscous damping factor. The tangentAdditionally, weak joint damping of the form
force is emulated by the viscous Coulomb friction model -

Djoint _Djoint 0 0

—Djoint Djoint % } qj'oim 5 (28)

Fr ={ —sign@r)lufFnl - if [Frgl > JuFnl (24) Dx = ; o .

Frg otherwise



) ) - ) sinusoidal excitation modal bang-bang control
where Djoint € R*4 is diagonal and positive, acts in parallel 1 1

to the springs (cf.[{7) in Sectionlll). Finally, we consider

o
o)

the states of the actuated joints as measurable and computg 0-8 =

the control inputu € R* in (@) using [I8) and[A9)ER2) = g

described in Sectiofi{ll). 206 2 06
[0} [}

C. Comparison of a sinusoidal excitation and the modal 80'4 30.4

bang-bang control for a jumping motion

Initially, we consider a jumping motion for the system 0.2 0.2
described above and compare a sinusoidal excitaton andthe 4 =2 0 2 4 -4 -2 0 2 4
modal bang-bang control. The system parameters and theé 1 velocity (n's) 21 velocity (ms)
initial configuration are given in Tab[¢ I. First, we test atsi = =
soidal excitation as desired motor positi@j(t) = Gjin:(to) + 205 S 0-5\/\/WWWWWWW\WW
asin(grt), with amplitudesa™= (0.2,-0.4,-0.2,0.4)". Sec-  § 8
ond, we compare it to the modal bang-bang control, with 0 5 10 0 5 10
controller settings,, = 4, 6; = ||&| and initial conditions for time (sec) time (sec)

the adaptive pamt;(to) = &/1/al|. For both cases (feedforward _ o o
and feedback control) the simulation starts with an initiaf9: 7. ~Comparison of a feedforward sinusoidal excitatiod &he modal
- " ang-bang control for a hopping motion.

trunk heighta, (to) = 0.9 m and zero velocities.

As can be seen from Fiff] 7 (and the video attachment),
we obtain a jumping motion for both types of excitations.
For the sinusoidal excitation, the trajectory of the veitic the trunk performs a pitch oscillation, while moving foraar
trunk position does not converge to a periodic motion durinfrom right to left. After the initial transient, the trajext of
the considered simulation time. Using the modal bang-barjgint positions form closed orbits in the phase space within
control, the trajectory converges to a limit cycle within aan error band (see, Fig.]10). Moreover, the contact foraes ar
small error band. It should be mentioned that in the casgepicted in Fig[_Ill. It can be seen that a flight phase appears
of the sinusoidal excitation, the frequency has been choseeriodically. This phase is longer than the phase when one
arbitrarily. Therefore, the frequency does not match ther both feet are in contact with the ground.
intrinsic frequency of the jumping task. In further simidais Due to a slight change of the mechanical parameters, mass
(not described here) it turned out that manually tuning thdistribution and spring characteristic, the intrinsic teys
frequency and phase of the sinusoidal excitation imprdves tproperties change and evolve from jumping towards a for-
matching of the frequency to the task. In contrast the modalard hopping mode. Thereby, each dominant mode can be
bang-bang control adapts itself to the intrinsic frequeoty excited by the modal bang-bang control.
the systentask.

TABLE |

PARAMETERS OF THE JUMPING SYSTEM

indexi || trunkt | rearry | rearrp | front fy | front f;

m (kQ) 2.0 0.1 0.1 0.1 0.1

Ti (m) 0.9 0.25 0.2 0.25 0.2

¢ (m) 0,0 0.125 0.1 0.125 0.1 Fig. 8. Image sequence of the forward hopping motion. Theugcshows
kii (Nm/rad) 70 70 70 70 approximately two motion cycles. Thereby, the motion egslfrom right
Kz (Nmyrad) 0 0 0 0 to left. For reason of clarity, each image is horizontalljfted by a constant
di (Nmgrad) 1 1 1 1 offset.
G (to) (deg) 120 70 60 70

=]

D. From jumping to forward hopping by changing the mass & 2 gg &c;m)
distribution and the sfiness characteristics E  (rad)

In order to excite a forward hopping mode, we slightly §
change the parameters considered for the jumping systemr S 0
For a first test, we keep the parameters and the initial 5
configuration given in Tablg I and shift only the point mass = ~1; 5 7 p P 10 12
of the trunk such that; = -0.2m. This already leads time (sec)

to a forward hopping motion, which decays as the energy

input due to the bang-bang control is smaller than theig. 9. Time evolution of the trunk pose for the forward hagpimotion.

dissipated energy. To increase the energy input due to tfhle coordinatesy, and g, represent the horizontal respectively vertical

bang-bang control, we change the spring characteristic gyosition andgs, the orientation of the trunk.

thatk, j = 10k, ;. Notice that introducing a progressive spring

characteristic increases the input energy for the unmadifie ) ) ) ) )

switching amplituded,. E. A configuration predestined to excite a running mode
The resulting forward hopping motion is visualized in Due to the configuration dependent inertia matrix, the

Fig.[d (and the video attachment). As can be seen in[Fig. Bitial configuration might influence which oscillation med



Fig. 12.  Image sequence of the running motion in a "crab” cumétion. The picture shows approximately two motion cycl€hereby, the motion
evolves from right to left. For reason of clarity, each imagéorizontally shifted by a constantfeet.
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Fig. 13. Time evolution of the trunk pose for the running raotiThe coordinates;, andq, represent the horizontal respectively vertical positiod a
Ot; the orientation of the trunk.
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§ of
2 Fig. 11.  Contact forces acting in the steady-state phas@eofdrward
S 0.1} hopping motion. The componenfs, andF;, correspond to the horizontally
= respectively vertically acting forces of the rear foot (&fig. [d). The
= componentsFy, and Fy, correspond analogously to the front foot. Due
-0.2r to under-sampling féects, the signal is not periodical.
-0.3F
-0.4f motion depicted in Fig[_13, the controlled system is able
to robustly handle this disturbance and converges back to

—0.530 2'0 .o '0 '0 '20 '30 the initial running motion. Furthermore, the correspoigdin
- - ‘1.oim velocit (radsl) contact forces are depicted in FIg.]14. It can be seen that
J y long flying phases alternate with short contact phases.
Fig. 10. Phase plot of joint motion in the steady-state plofisee forward

hopping motion. TABLE Il
PARAMETERS OF THE RUNNING SYSTEM

index i || trunkt | rearry | rearrp | front fy | front f,
becomes dominant. In the following, we change the initial m (KQ) 2.0 0.1 0.1 0.1 0.1
configuration such that the controlled system tends to con- g((m)) L O O T 2 21
verge to a running mode. The system from Secfion JV-C & (Nwrady || 70 84 70 84
and[IV-D corresponds to an idealized "quadrupedal animal” '321(&’\[‘]1“;:235 2 2 2 fl>
configuration, while the system considered in this section i) [@€9) 30 50 150 50

represents rather a "crab” configuration. Therefore, we con

sider the parameters and the initial configuration given in

Table[l. The bang-bang threshold is adjusted;te- 2 such

that the controller switches due to gravity. Moreover, th& Comments on the contact forces

switching amplituded, = 0.8 and the initial condition of the  As can be seen in Fif. 111 ahd 14, the peaks of the contact

adaptive partvy(to) = (1,0,0,0). In initial tests, it turned forces occurring during the forward jumping respectively

out that the adaptive part always converges to the samesvaluanning motion are rather high with respect to the total

W1. Therefore, in further simulations, we sef(tp) = W;. mass of the system. The high peak forces result due to a
The resulting running motion is visualized in Fig.]12combined &ect: the switching in the bang-bang control (cf.

(and the attached video). To test the robustness agains{Za)-[22) in Sectiofi]l) and the relatively high damping in

disturbance, we introduce an obstacle in form of a pedestdle joints (compared to the inertia andstess). From these

with a ramp at one side. As can be seen from the trunibservations, one can deduce that the joints of the robotic



z 1% Fx | F1y Fax Fay frequency. Furthermore, it is shown that by changing the

8 0 | L ' mechanical parameters of the system/anthe equilibrium

2 _1000! ( ’ [/ ' ( ’ configuration of the legs, the system evolves from a jumping

&) . . . . .

3 to a forward hopping and to a running mode. This indicates

S -2000t that the controller excites intrinsic mechanical modeshef t
32 33 3 Y 36 37 28 ﬁy?jtem an((jj ta_sk. Th%relfore, ]Ehe ap%ro%ctlwl is a useful tool to

fime (sec) ind some design guidelines for such challenging systems.
Fig. 14. Contact forces acting during the running motione Tbmponents ACKNOWLEDGMENT
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