

TanDEM-X Acquisition Planning and DEM Performance in the Third Year of Operation

D. Schulze, M. Bachmann, B. Bräutigam, D. Borla-Tridon, M. Zink, G. Krieger and TanDEM-X Team

TanDEM-X Global DEM Acquisition Plan

1st Global Coverage

- Small baseline (~200 m)
- Height of Ambiguity ~ 50 m

3rd Year Acquisitions

- Antarctica
- Difficult terrain to account for shadow & layover
 => Different viewing geometry
- Deserts

2nd Global Coverage

- Increased baseline (~300 m)
- Height of Ambiguity ~ 35 m

Combination:

- Dual Baseline Phase Unwrapping
- Improved relative height accuracy

Requirement for Relative Vertical Accuracy

- < 2 m for flat terrain
- < 4 m for mountainous terrain

Formation Flying Configuration

Relative Height Error

Quicklook Mosaic: Coherence

Map resolution: 500m x 500m

Deutsches Zentrum für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft

Quicklook Mosaic: Relative Height Error from Coherence

Height error estimated from f(coherence, HoA, # Looks)

Map resolution: 500m x 500m

Deutsches Zentrum für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft

Global Relative Height Error on Quicklook Mosaic Basis

Coverage	p-to-p 90% RHE < 2 m (slope < 20%)	p-to-p 90% RHE < 4 m (slope > 20%)
1 st Global DEM	66.40%	79.40%
2 nd Global DEM*	75.42%	84.91%
Combination of 1 st and 2 nd Global DEM*	90.30%	95.64%

More than 300,000 bistatic scenes analyzed (until mid July)

3rd & 4th Coverage for Difficult Terrain necessary

für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft

* For second coverage more easier / good quality regions have been processed so far

Evaluation of first DEM Tiles (1° x 1°)

Height Error Statistics

		Steep (>20% slope)		Flat (<20% slope)		void		water		total
		pixels	%	pixels	%	pixels	%	pixels	%	pixels
	N44E010	34633176	42,75	43931092	54,22	420240	0,52	2033494	2,51	81018001
	N44E011	21395660	26,41	58661668	72,41	0	0,00	960675	1,19	81018001

Results Height Error PDF

	% below	
	4m	2m
N44E010	98,98	94,40
N44E011	99,59	98,71

Deutsches Zentrum für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft

Radargrammetry to Resolve Phase Ambiguity Band

für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft

- becoming globally independent of SRTM DEM as reference
- especially important in regions > 60 deg latitude where no SRTM is available

Absolute Height Error of Scene-Based RawDEMs

Antarctica Acquisitions

- ➤ Acquisition in local winter to avoid melted ice → improve quality
- Orbital inclination
 →Left-Looking acquisitions required
- ➤ Left-Looking acquisitions
 → lower energy provision by solar panels

Antarctica Acquisitions

Right-Looking

Left-Looking

Antarctica Acquisitions – flat incidence angles

Very flat incidence angles required for center Antarctica (61°)
 → Thorough performance analysis performed
 Updated SAR instrument configuration for lower PRFs performed

3350 Hz

2000 Hz

Crossing Orbits over Andes

Crossing Orbits over Andes

2 overlapping acquisitions available: ASCENDING + DESCENDING

Crossing Orbits over Andes

2 overlapping acquisitions available: ASCENDING + DESCENDING

Olmedo

San Joaquín

Reduction of shadow & layover after the combination of ASC/DESC orbit acquisitions

Ayora
Cayambe
Cayambe
Monjas Alto
Isacata

© 2013 Google Image Landsat Image © 2013 DigitalGlobe

Sarayo

0°02'08.43" N 78°00'38,73" W elev 4669 m

Eye alt 36.77 km 🔘

Formation Change for 3rd & 4th Coverage

Useful cross-track baselines on northern (southern) hemispere in ascending (descending) orbit Useful cross-track baselines on northern (southern) hemispere in descending (ascending) orbit

Identification of Difficult Terrain Areas via Slope Map

Re-Acquisition of Deserts

- → Smaller incidence angles: 15° 28° (nominal 28° 48°)
- → Rocky deserts present difficult topography
 - \rightarrow acquisition with different viewing geometry as for mountainous regions

Coverage of 3rd & 4th Acquisition

- Shadow and Layover
- Desert

Deutsches Zentrum für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft

Conclusion

- → DEM performance statistics
 - \neg Global relative height error: < 2 m for > 90% of all scenes
 - First DEM tile analysis (1°x1°): Relative height error fulfills requirement for > 90% of all pixels
- \neg Status of acquisition plan in the 3rd year
 - → Antarctica: Leftlooking & flat incidence angles
 - Difficult terrain: Shadow/Layover reduced by ascending + descending acquisitions
 - \neg Deserts: Better performance with steeper incidence angles
- → TanDEM-X System is very flexible and performs remarkably well

