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ABSTRACT: Proton transport properties of a partially
protonated poly(aspartic acid)/sodium polyaspartate (P-Asp)
were investigated. A remarkable enhancement of proton
conductivity has been achieved in the thin film. Proton
conductivity of 60-nm-thick thin film prepared on MgO(100)
substrate was 3.4 × 10−3 S cm−1 at 298 K. The electrical
conductivity of the oriented thin film was 1 order of magnitude
higher than the bulk specimen, and the activation energies for
the proton conductivity were 0.34 eV for the oriented thin film
and 0.65 eV for the pelletized sample, respectively. This
enhancement of the proton transport is attributable to the
highly oriented structure on MgO(100) substrate. This result
proposes great potential for a new strategy to produce a highly proton-conductive material using the concept of an oriented thin
film structure without strong acid groups.

1. INTRODUCTION

Polymer electrolyte membrane fuel cells (PEFCs) are ideal
power sources having high efficiency and power-to-weight
ratios over other portable power devices. Remarkable progress
is noted in the research and development of PEFCs in recent
decades. Despite the significant numbers of polymer electrolyte
materials that have been developed and studied so far,
commercialization of PEFCs needs a breakthrough in the
development of electrolytes of high proton conductivity,
material stability as well as low cost. In those proton conducting
polymers, a decrease in proton conductivity is a trade-off
between performance and membrane stability. One fundamen-
tal approach to create highly proton-conductive material is
chemical modification. Usually, sulfonic acid groups are used as
a proton conductive group because of their excellent property
to achieve high proton conductivity.1−6 However, the high
acidity of sulfonic groups restricts the polymer backbone to
fluoro or aromatic groups, which requires high production
costs. Therefore, a new strategy for low cost production of
highly proton-conductive materials has been sought for some
time.

In a Nafion membrane, it is well known that protons are
transported through nanochannels made of sulfonic acid
groups, which has been intensively discussed by many
researchers.7−10 The nanochannels are created by phase
separation with the amphiphilic character of Nafion. The
proton transport property of Nafion is excellent when the
PEFC is operated below 80 °C. It is, however, highly imperative
to improve both the proton transport property and the stability
at higher temperatures, which is limited within the concept of
using microphase separation. Our group found that the proton
conductivity of the Nafion thin film (thickness ≈ 400 nm) was
extremely decreased compared to that of the commercial
membrane (thickness ≈ 200 μm).11,12 In the thin film, the thin
film was fabricated on a flat substrate, and the conductivity
measurement has been performed parallel to the film surface.
We have found that the sulfonic acid groups are highly oriented
to form dimer or trimer by hydrogen bonds in between. It is
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suggested that the oriented structure blocks the ion conduction
path parallel to the substrate surface by the isolated sulfonic
acid group phase and the ion conductivity is dramatically
decreased. Our results demonstrated that the molecular
orientation of the sulfonic acid groups may significantly affect
the proton transport property. Therefore, the microphase
separation as well as the proton conductive group orientation
will be the key properties to improve proton conductivity.
Our group has been studying to find a new and different

concept from Nafion and to synthesize proton conductors
using poly(aspartic acid). Poly(aspartic acid) has free carboxylic
acid groups at the side chains, and the protons at these groups
are mobile for proton conduction. It is well acknowledged that
amino acid polymers take several hierarchical structures, such as
α-helix or β-sheets via hydrogen bonding between the amino
acids. We, therefore, speculated that a high proton conduction
path will be achieved when an ordered proton conductive
channel is formed by such hierarchical structures. It is quite
different from the case of Nafion membrane, in which
microphase separation leads to the high proton conductivity.
We have recently reported a significantly high proton
conductivity in the thin films of poly(aspartic acid) fabricated
on fused silica substrates.13 The proton conductivity of the thin
film was one order of magnitude higher than that of the
pelletized specimen. It is suggested that the origin for the
proton conductivity enhancement was due to the structural
effects, as we speculated, such as molecular orientation.
However, further structural analyses are required to confirm
the origin of the conductivity enhancement.
In this study, we investigated the proton transport properties

of a partially protonated poly(aspartic acid)/sodium poly-
aspartate (P-Asp) thin film prepared on MgO(100) substrate
by spin coating and the relationship between the molecular
orientation and proton transport property was investigated
using the amino acid polymer. Infrared spectroscopy, i.e.,
infrared reflection absorption spectroscopy (RAS) and p-
polarized multiple-angle incidence resolution (p-MAIR)
technique,14−17 has been performed using MgO substrate,
which is transparent in the correspondent IR region to
determine the thin film structure and the mechanism of proton
conductivity enhancement discussed in this work. We found a
highly oriented structure of the peptide groups in the thin film
on MgO(100) substrate, induced the enhancement effect to the
proton conduction.

2. EXPERIMENTAL SECTION
P-Asp was synthesized according to Scheme 1.13 D,L-Aspartic acid, o-
phosphoric acid, methanol, sodium hydroxide, and HCl were
purchased from Wako Pure Chemical Industries Ltd. Partially
protonated poly(aspartic acid)/sodium polyaspartate (P-Asp) was
synthesized as follows (Scheme 1). A 1-g portion of D,L-aspartic acid
and a 600-μL portion 85% o-phosphoric acid of were added to a 100-
mL round-bottom flask and mixed for 10 min under Ar atmosphere.

The mixture was heated at 170 °C for 1 h. The product was washed
with methanol and water. The residue was washed with methanol and
dried under reduced pressure. A 0.7-g portion of the dried sample and
a 0.3-g solution of sodium hydroxide with 20 mL of deionized water
were added to a 200-mL beaker with stirring for 20 min. After the
reaction, the solution was adjusted to about pH 6 by the addition of
35% aqueous HCl into the solution. A white precipitate was obtained
by adding 100 mL of methanol. The sample was washed with
methanol and was separated from the supernatant, in which the
centrifuge technique was used in the washing and separation
procedures. The obtained sample was dried under reduced pressure.

The sample was characterized via 1H NMR and FT-IR measure-
ments.13 The average degree of polymerization was ca. 50, which was
determined by comparing the ratio of the peak area derived from the
proton of −CH2 at the amino end groups (δ = 2.95−3.25 ppm) to that
of the intrachain −CH2 and −CH2 at the carboxyl end groups. The
degree of protonation was found to be 6% using the titrimetric
method. The P-Asp thin film was prepared by spin coating using a
spincoater (ACT-200; Active) on a mirror-polished MgO(100)
substrate. MgO(100) substrate was purchased from Neotron Co.,
Ltd. The MgO(100) substrate size was 15 × 15 × 0.5 mm3. Before
spincoating, the substrate was irradiated by UV light for 1 h to clean
the surface. The thickness and surface roughness were determined
using a contact stylus profiler (P-10; KLA-Tencor Corp.). The
thicknesses of the thin films were 20−60 nm. The roughness
measurement secured us its smoothness, which was sufficient for
impedance analysis.

Impedance measurements of the pelletized sample and thin films
were conducted at a relative humidity (RH) of 40−70% using an
Impedance/Gain-Phase analyzer (SI1260; Solartron Analytical) and a
Dielectric Interface system (1296; Solartron Analytical). The RH and
temperature were controlled using a humidity-controlled and temper-
ature-controlled chamber (SH-221; Espec Corp.). For impedance
measurements of the pelletized sample, the sample was processed into
pellets of 2.5 mmϕ under a pressure of about 1 GPa and porous gold
paint (SILBEST No. 8560; Tokuriki Chemical Research) was used for
electrodes. For impedance measurements of the thin films, the
electrode configuration was selected to obtain measurements of the
current flow in the plane parallel to the substrate surface. Typical
complex impedance plots of the P-Asp thin film are shown in Figure
S1 (see the Supporting Information, SI) The thin film size on the
MgO(100) substrate was ca. 5 × 10 mm. The electrode was located at
the edge of the film using Au paste, with a parallel electrode
configuration. The distance between the electrodes is 4.0 mm. The
porous Au electrode is also covered at the side of the film. The
conductivity of the MgO(100) substrate is negligible because its
resistance is much higher than that of the thin film. The isotope effects
were also investigated using humidified gases by H2O and D2O.

For the measurement of the electromotive force (EMF) of an H2/
O2 cell, the sample was processed into pellets of 13 mmϕ. Pt-loaded
carbon paper sheets (Pt: 1 mg cm−2) were used as electrodes. The
pelletized sample was sandwiched between an anode and cathode.
Humidified hydrogen (100 mL/min) and oxygen (100 mL/min) were
fed to the anode and cathode, respectively. The cell temperature and
relative humidity were controlled to be 298 K and 70%, respectively.

Infrared reflection absorption spectroscopy (RAS) was used to
investigate the orientation of amide bonds for P-Asp film on sputtered
Au film on SiO2 substrate. RAS measurement was performed with a

Scheme 1. Synthesis of Partially Protonated Poly(aspartic acid)/Sodium Polyaspartate (P-Asp)
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FT−IR spectrometer equipped with a PR-510i accessory (FT/IR-
4200; JASCO). The polarized incident beam was reflected off the film
surface at an incidence of 70°.
The p-MAIR measurements14−17 were performed on an FT−IR

spectrometer (Nicolet 6700; Thermo Fisher Scientific) equipped with
a mercury−cadmium−telluride (MCT) detector. Mirror-polished
MgO(100) substrate was used for p-MAIR measurements. Single-
beam spectra were collected from 38° to 8° at 6° steps in the range of
the angle of incidence, as shown in Figure S2 of the SI. The aperture
was fully opened (size of 150) and a metal plate with small pores was
placed in the light path of the incident beam to prevent saturation. To
obtain the p-polarized light, a ZnSe polarizer was used. The cleaned
substrate was used as the reference data.
For measurements of the water adsorption isotherm per unit as a

function of the RH for the thin film, the weight was obtained using a
quartz crystal microbalance made by T.A. (the third author). The RH
and temperature were controlled with a humidity-controlled and
temperature-controlled chamber (SH-221; Espec Corp.).

3. RESULTS AND DISCUSSION
The electrical conductivity of the pelletized sample, which
included sodium ions, was 4.3 × 10−4 S cm−1 at 298 K and 70%
RH. It is reported that sodium ions may be coordinated by
water molecules to conduct protons.18,19 In this case, the
negative charge of a silicate layer is compensated by sodium
cations that are octahedrally coordinated by water molecules in
the interlayer space. It is suggested that protons are mobile in
our P-Asp, similar to these reports. However, it is also possible
that sodium cations are mobile. In order to determine whether
the main charge carrier of this specimen is proton, the EMF of
an H2/O2 cell of the pelletized sample was measured. The
obtained EMF of the pelletized sample was ca. 0.9 V.13 Here,
we do not know about the mobility of the sodium ions,
however, the EMF might be much lower if the sodium ions are
also significantly mobile, which indicates that the proton
transport number of P-Asp was high and that the main carrier
was proton. The H/D isotope effects using H2O and D2O as
humidified gases were also investigated to determine the ionic
transport carrier. Figure 1 shows impedance spectra under

humidified conditions by H2O and D2O, respectively. The
atmosphere around the sample was filled with the vapor of H2O
or D2O, where each vapor was generated by bubbling H2O
(D2O) with N2 gas. When the surrounding atmosphere of the
sample was changed from D2O to H2O, the resistance
decreased. Obvious difference in electrical conductivity was
observed. The intersection of the semicircle corresponds to the
resistance in Figure 1. The resistances under H2O and D2O
vapor are 0.9 and 1.4 × 105 Ω, respectively. The resistance ratio

is, therefore, very close to the theoretical value of the isotope
effect (∼1.4 for proton/deuteron). This result supports the
EMF result and confirms that the main carrier is proton.
The proton conductivities of the pelletized and 60-nm thick

film specimens of P-Asp at each relative humidity (RH) are
shown in Figure 2. The proton conductivity of the pelletized

sample and 60-nm thick thin film logarithmically increased with
RH, which is a typical characteristic of proton conductive
polymers. The proton conductivity of the thin film was 3.4 ×
10−3 S cm−1 under the RH of 70% at 298 K, which was 1 order
of magnitude higher than that of the pelletized samples. It is
remarkable that the proton conductivity of this kind of polymer
shows such a high value, in which the protons at the carboxylic
acid groups serve as proton sources.20 It is also notable here
that the conductivity enhancement was similarly observed in
the thin film fabricated on amorphous SiO2 substrate, as we
mentioned in the Introduction.13 As we have speculated, the
enhancement may be attributed to the formation of a proton
conducting path in the thin film. In our former report, we could
not specify the origin of the enhancement. Therefore, we have
performed further structural determination to investigate the
molecular orientation in the thin film on the MgO single
crystal, which is transparent in the IR region.
Infrared absorption spectroscopy is a powerful tool to obtain

information about peptide structure, and polarized IR measure-
ments enable one to analyze the orientation of functional
group. Infrared reflection absorption spectroscopy (RAS), one
of the polarized IR measurements, was used to investigate the
orientation of peptide groups for P-Asp. In the reflection
absorption (RA) spectrum shown in Figure 3(a), IR bands were
observed at 1670, 1620, 1540, 1410, and 3300 cm−1. The RAS
method detects the vibrational modes of which the transition
dipole moment has a vector component perpendicular to the
substrate. Therefore, the strong absorption band at 1670 cm−1

(the Amide I band,21,22 assigned to the CO stretching mode)
in RA spectrum indicates that the transition dipole moment of
the Amide I band directs perpendicular rather than parallel to
the substrate surface.
The peak position of the Amide I band is related to the

peptide main-chain structure.21,22 Judging from the observed
peak position at 1670 cm−1, it is plausible that the P-Asp thin
film exists in neither regular secondary structures such as α-
helix or β-sheet nor an irregular structure, because these
secondary structures show the Amide I bands at the range of

Figure 1. Impedance spectra under humidified conditions by H2O (○)
and D2O (■), respectively. The atmosphere around the sample was
filled with the vapor of H2O or D2O, where each vapor was generated
by bubbling H2O (D2O) with N2 gas.

Figure 2. Relative humidity dependence of the proton conductivities
of the pelletized P-Asp (■) and 60-nm thick film on MgO(100)
substrate (○). The measurement temperature was 298 K. Inset is
electrode configuration for each measurement.
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1640−1660, 1620−1640, and 1640−1660 cm−1, respec-
tively.21,22 P-Asp would exist in other nonperiodic secondary
structures, e.g., the β-turn21 or α-sheet23 structures that give the
IR absorption bands above 1660 cm−1. The RA bands also
appear around 1620 and 1410 cm−1 in the RA spectrum
(Figure 3(a)), and these bands are assignable to the
antisymmetric and symmetric stretch modes, respectively, of
the COO− group of the P-Asp side chain.24 Besides, an
inhomogeneous broadening of the N−H stretching band of the
peptide main chain of P-Asp is seen at 3300 cm−1 due to the
hydrogen bond formation of the N−H groups of the peptide
main chain (Figure 3(b)). The P-Asp main chain probably
forms intramolecular or intermolecular hydrogen bonds in the
thin film.
Infrared p-polarized multiple-angle incidence resolution (p-

MAIR) spectrometry was applied to the P-Asp film in order to
determine the structure.16,17 Infrared p-MAIR spectrometry is
being increasingly regarded as a powerful spectroscopic tool for
revealing molecular orientation in thin films. Details of the
measurement are given in the SI. Figure 4 shows in-plane (IP)
and out-of-plane(OP) components of the p-MAIR spectra of
the oriented P-Asp film sample. The IP and OP spectra are
calculated from the experimental data using p-MAIR
spectrometry analyzer software. The intensity of the 2 × IP
signal is expected to be twice as large as the OP signal in the
case spatial distribution of the transition moment vector of the
vibrational mode is isotropic (see SI). The 2 × IP signal
becomes weaker when the transition moment vector directs the
out-of-plane to the substrate, while the OP signal becomes
weaker when the transition moment vector directs in-plane.
The signal intensity of the Amide I band at 1670 cm−1 is

comparable between the 2 × IP and OP spectra, and this result
indicates that the transition moment vector of the amide I band
at 1670 cm−1 directs perpendicular rather than parallel to the

substrate plane. This suggestion is consistent with the result of
RAS. However, the symmetric and antisymmetric stretching
bands of the COO− group at ca. 1400 and 1600 cm−1 gave the
stronger signal in the 2 × IP spectrum than in the doubled
intensity of the OP spectrum. This result is explained by
considering that the O−C−O plane of the COO− group of the
Asp side chains lies parallel to the substrate plane. This model
permits the in-plane orientation of the transition dipole
moments of both symmetric and antisymmetric stretch motion
of the COO− group. Since the result of RAS (Figure 3(a))
indicates an out-of-plane component of the transition dipole
moment of the vibrations of the COO− group, we expect that
not all of the side chains of P-Asp are completely oriented.
From the two polarized IR spectroscopy, the RAS and p-

MAIR spectrometry, we propose an α-sheet-like model for the
high proton conductivity in the thin film (Figure 5): high
proton migration paths would be realized through α-sheet
layers, which percolate the in-plane formed by the stacked layer
structure in the out-of-plane direction of the substrate. This
model does not necessarily mean that the thin film is composed
exclusively of α-sheet layers. This model explains the peak
position of the amide I band and the directionality of the
peptide. This model for the high proton migration path is
similar to the previous reports that ordered structures can
improve the proton transport property.10,25,26 Tamura and
Kawakami found that the composite bulk membrane containing
uniaxially aligned sulfonated polyimide nanofibers exhibited a
high proton conductivity.26 In this paper, the proposed
structure in Figure 5 has been determined reasonably by the
results of FT−IR measurements. However, it remains a
hypothetical model without any further structural investigation
to conclude the origin of enhanced conductivity. Additional
analytical methods, such as grazing incidence X-ray diffraction
under the humidified condition, are required to confirm the
oriented thin film structure.
Another possible explanation for the proton conductivity

enhancement results from space charge models. Enhancement
phenomena of ionic conductivity in thin films (2D) of variety
of ion conducting materials have been reported since more than
20 years.27−39 For many types of inorganic ionic conductors,
several theoretical models have been discussed, including space
charge models, for understanding the enhancement phenomena
of ionic conductivities.40−43 When the space charge at the
interface is concerned, enhancement of ion conductivity
depends on the thickness. As shown in the Figure 6, no
clear-cut thickness dependence of proton conductivity for P-
Asp thin film for thicknesses of 20−60 nm was observed. This
fact indicates that contribution of the space charge effect on the

Figure 3. Infrared reflection absorption (RA) spectra (a) RA spectrum
of P-Asp film in the wavenumber region of 1800−1300 cm−1. (b) RA
spectrum in the wavenumber region of 3700−2500 cm−1. The vertical
axis was converted by the Kubelka−Munk transformation.

Figure 4. p-MAIR spectra of highly oriented P-Asp thin film. The IP
component has two orthogonal directions of electric field. Therefore,
the IP absorbance was multiplied by a factor of 2.14.
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proton conductivity enhancement may be very small in these
thin films.
Vogt et al. reported that swelling of water was enhanced as

the film became thinner in the cases of some polymers.44 To
determine the quantity of the water adsorption, a water
adsorption isotherm was also measured. Figure 7 shows the
water adsorption isotherm per unit as a function of the RH for
the pelletized P-Asp and its thin film. The quantity of the water
molecules in the thin film was measured using a quartz crystal
microbalance. Their isotherm curves exhibited similar values at
each RH. This fact showed that the amount of adsorbed water
in the thin film and the pelletized sample are comparable with
each other, therefore, the origin of proton conductivity
enhancement was not in the difference of the amount of
water adsorption in this study.
Finally, we show Arrhenius plots of the electrical conductivity

in Figure 8. The activation energy (Ea) and pre-exponential
factor (σ0) were obtained from the equation below.

σ σ= −
⎛
⎝⎜

⎞
⎠⎟T

E
k T

exp0
a

B (1)

where σ is the proton conductivity, σ0 is the pre-exponential
factor, kB is the Boltzmann constant, and T is the temperature.
The activation energies for the proton conductivity were 0.34

eV for the thin film and 0.65 eV for the pelletized sample,
respectively. The activation energy of the thin film was half that
of the pelletized sample. This value was the smallest among the
thin films of P-Asp we have ever synthesized, including those in
our previous reports. The low activation energy demonstrates

Figure 5. Proposed structure of the highly oriented P-Asp thin film. Pink atoms surrounded by yellow represent proton carriers of carboxylic acid
groups. (C gray, N blue, O red, H white).

Figure 6. Thickness dependence of the proton conductivity for the P-
Asp thin film. Relative humidity was 70%.

Figure 7. Water adsorption isotherm per unit as a function of the RH
for the pelletized P-Asp and thin film. The measurement temperature
was 298 K.

Figure 8. Temperature dependence of the proton conductivities of the
pelletized P-Asp and 60-nm thick film on MgO(100) substrate.
Relative humidity was 70%.
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that protons are more easily transported in thin film than in the
pelletized sample. The polymer chain which is oriented in in-
plane direction may have caused the enhancement of in-plane
proton conductivity in the thin film case. This fact is consistent
with our proposed α-sheet-like model that the more favorable
proton conductive channels were created in the thin films. The
conductivities at room temperature are comparable on both
substrates, while activation energy of the thin film on SiO2
substrate is 0.53 eV,13 which is about 0.2 eV higher than the
case of MgO substrate. It is reported that the MgO(100)
surface is more positively charged than the SiO2 surface.

45 This
polar surface of the crystal plane may influence positively for
the highly oriented structure of P-Asp using carboxylate groups
at the side chains. Recently, we have found the substrate
dependence between MgO and sapphire of the proton
transport in the thin film and this was originated from the
oriented structure at the interface.46 These results suggest to us
a possible route to fabricate thin films of different proton
transport properties by substrate selection. However, the pre-
exponential factor (σ0) in the Arrhenius eq 1 for the SiO2
substrate is higher than that for the MgO substrate. It is known
that the σ0 term is related to the concentration of the
conducting species. One possible reason for the different
proton conductivity between the SiO2 and MgO substrates is
derived from the different concentration of the mobile proton
in the thin film. Another possibility is due to the different
structure of the thin films between different substrates.
Considering a significant difference of the activation energy
for the proton conduction between the SiO2 and MgO
substrates, we should carefully conclude the origin for the
difference of the pre-exponential factor. To reveal the origin of
the difference, the solid state NMR measurements will be a
useful tool to reveal the proton mobility.
In order to check the molecular orientation in the pelletized

sample, attenuated total reflection (ATR) measurements were
carried out with an FT−IR spectrometer (Nicolet 6700;
Thermo Fisher Scientific). Figure 9 shows the ATR spectra of

the pelletized sample in each configuration. Inset shows the
configuration between the pelletized sample direction and IR
light direction. These spectra are identical. This result suggests
a random orientation in the pelletized sample. The Amide I
band correspondingly appears at ca. 1650 cm−1 in the ATR
result, consistent with the picture that the peptide main chain
of P-Asp exists in the irregular structure that gives the band at
1640−1660 cm−1.21,22 There is no scaffold for inducing the
oriented structure, which may result in a random orientation of
P-Asp. Such a difference in structure was suggested to be the

origin of the remarkable difference in proton conductivity.
Consideration of these experimental facts will lead to the
conclusion that the proton conductivity enhancement in the
60-nm thick film of P-Asp results from the highly oriented
structure in the thin film.

4. CONCLUSIONS
A remarkable enhancement of proton conductivity in
polypeptide thin films has been achieved, which is attributable
to the highly oriented structure on the MgO(100) substrate.
We found that the P-Asp thin film prepared on MgO(100)
substrate showed one order of magnitude higher proton
conductivity and two times smaller activation energy than that
of their bulk sample. This study has proposed a new route to
produce highly proton-conductive materials using the concept
of an oriented thin film structure without any strong acid
groups and shows great potential for application in the field of
solid state ionics.
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