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Abstract—The use of foot-mounted inertial measurement units
(IMUs) has shown promising results in providing accurate human
odometry as a component of accurate indoor pedestrian naviga-
tion. The specifications of these sensors, such as the sampling
frequency have to meet requirements related to human motion.

We investigate the lowest usable sampling frequency: To do so,
we evaluate the frequency distribution of different human motion
like crawling, jumping or walking in different scenarios such as
escalators, lifts, on carpet or grass, and with different footwear.
These measurements indicate that certain movement patterns,
as for instance going downstairs, upstairs, running or jumping
contain more high frequency components. When using only a
low sampling rate this high frequency information is lost. Hence,
it is important to identify the lowest usable sampling frequency
and sample with it if possible. We have made a set of walks to
illustrate the resulting odometries at different frequencies, after
applying an Unscented Kalman Filter (UKF) using Zero Velocity
Updates.

The odometry error is highly dependent on the drift of the
individual accelerometers and gyroscopes. In order to obtain
better odometry it is necessary to perform a detailed analysis
of the sensor noise processes. We resorted to computing the
Allan variance for three different IMU chipsets of various quality
specification. From this we have derived a bias model for the UKF
and evaluated the benefit of applying this model to a set of real
data from walk.

I. INTRODUCTION

Positioning applications are being more important in recent

years not only for security applications, but also for mass

market to localization applications in shopping malls or in

an airports, for example.

Most outdoors positioning applications are based on Global

Navigation Satellite Systems (GNSSs), such as the american

Global Positioning System (GPS) or in future the european

Galileo. However, due to the lack of visible satellites, the

availability of GNSS is degraded in certain scenarios such

as urban canyons or indoors. The use of inertial measurement

units (IMUs) is a promising solution to address this problem

because they are able to provide human odometries [1].

Importantly, they are not infrastructure dependent.

However, micro electromechanical systems (MEMS) based

IMUs have to face problems such as drifting sensors. Many

authors [2], [3], [4], [5] used the rest phase of the foot to

limit the growth of errors. Foxlin [3] was the first to use an

extended Kalman filter (EKF) to estimate and substract the

errors with the zero velocity updates (ZUPT) during the rest

phase. There are more suitable solutions like the assumption

of a fixed orientation when the sensor is in a rest phase. This

is a zero angular rate update (ZARU) [2]. Recently introduced

was the magnetic angular rate update (MARU) [6] that uses the

changes in the magnetic field during the rest phase to detect

the turn rates of the sensor. Additional sources of information,

such as GPS pseudoranges [7], long-term evolution (LTE)

signals [8] or barometers can be used in a sensor fusion

approach [9] to aid the output of the IMU.

Nevertheless, improvements of the underlying odometry

processing is still an active area of research. In the first part

of this paper we study the sampling frequency that the sensor

has to support to adequately capture human motion. We study

different kind of surfaces such as floor tile, pavement, carpet

and grass with different kind of footwear like flat shoes, sports

shoes and heels. Figure 1 shows two examples of the footwear

used in a set of experiments. We study as well different types

of movements such as walking, running, jumping, going up-

and downstairs and crawling to determine the lowest usable

sampling frequency. We have done a set of walks in order to

evaluate the performance at different sampling frequencies.

(a) Sports shoes (b) High heels

Fig. 1. Two examples of the footwear that have been used for the sets of
experiments.

In the second part of this paper we derive an error model

for estimating the bias of accelerometers and gyroscopes in

order to obtain more accurate positioning results. We present

the model parameters for different IMU chipsets in different

tables. A set of walks were analyzed for testing the perfor-

mance of the mentioned error models in the special context of

foot-mounted inertial navigation. We offer as well a detailed

analysis of different sensor types such as low-cost, medium

range and high-end IMUs. This study is made using the Allan

variance.
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Fig. 2. Acceleration signal of a human step for the z-axis recorded with a
foot-mounted IMU at 1000 Hz and at 100 Hz. We can observe parts of the
signal at 1000 Hz that we lose by sampling at 100 Hz.

II. ANALYSIS OF HUMAN MOTION SAMPLING

Traditionally inertial sensors have been used for navigation

in ships and airplanes, however with the development of the

MEMS it is possible nowadays to achieve inertial pedestrian

navigation.

The parameterisation of the IMU is application dependent.

As a result, no universal parameters can be given. However,

some groups of parameters can still be identified. In [10]

a classification and study of the parameters is offered. The

parameters can be divided into internal parameters and external

parameters. The internal parameters can be also divided into

filter parameters and hardware parameters. The parameters of

the hardware set-up are only the sensor placement/mounting

and the sampling frequency.

In this work we have done a study of the hardware set-

up parameter sampling frequency given the sensor placement

foot.

In Figure 2 the raw acceleration signal of a human step is

shown. In red we can see the acceleration sampled at 1000 Hz

and the blue curve represents the same data set decimated to

100 Hz. We can clearly observe the low frequency part of the

human step which is present in both curves. However, there

are fast variations in the acceleration that we can only see at

a higher sampling rate. The high accelerations produced when

the foot hists the floor, that we can see around t = 63 s, are

pronounced only at 1000 Hz. At a lower data rate we may lose

these components and the impact of losing this information is

so far unknown.

A. Experimental Setup

In order to find out the lowest usable sampling frequency we

have to take into account that a positioning system with foot-

mounted IMUs could be used in a wide range of applications,

from firemen or rescue teams to geriatrics or kindergartens.

For the mass market we study staircases, ramps, elevators,

escalators and moving walkway systems. For firemen we are

interested in motion such as running or crawling or if we

use the walking system for hospitals and geriatrics the use of

zimmer frames and canes are of interest, for example.

We have performed two different experiments. For the first

one we want to determine the influence of the footwear and

the kind of floor. 8 different volunteers helped us, 2 children,

3 women and 3 men of different ages: 6, 3, 85, 51, 24, 28, 54

and 82 respectively. One of the women has hip prosthesis. We

asked the volunteers to do a flat walk with different footwear

such as flat shoes, sports shoes and heels, and different floor

types as well, like floor tile, pavement, carpet and grass. The

men and the children did not wear heels.

In the second set of experiments a 27 year old woman

made a set of walks carrying out different motion such as

walking, running, jumping, crawling and using escalators,

elevators and moving walkways systems. With the idea of

using different elevators, escalators and staircases we have

done our experiments at three different locations: in our office

building, in a shopping mall in Munich and at the Barajas

airport in Madrid.

B. Methodology

We have sampled all walks for both set of experiments

at 1000 Hz using the NavChip IMU of InterSense. We

examine the frequenciy distribution of the raw acceleration

and gyroscope signals obtained from every walk. Particularly,

we compute the one-sided power spectral density (PSD). This

contains the total power of the signal in the frequency interval

from 0 Hz to half of the Nyquist rate, in our case from 0

Hz to 500 Hz. The PSD estimate is computed usually with a

periodogram. The Welch method is an improved version of the

periodogram based on averaged periodograms of overlapped

windowed signal sections. We have used a Hamming window

of 64 samples and a overlap factor of 50%.

In Figure 3 is shown the Welch PSD estimate of the

acceleration data for all 3 axis. This is a short flat walk with

a duration of about 30 seconds made by a 51 year old woman

using sports shoes and walking on pavement.

The integral of the PSD over a given frequency band com-

putes the average power in the signal over that frequency band.

We have integrated the curves in Figure 3 cumulatively over

the whole frequency band. Figure 4 shows the complementary

cumulative distribution function (CCDF). To visualize better

the significant part of the curves, we have decided to show

only from 0 Hz to 300 Hz because in this particular case, we

have not obtained relevant power from 300 Hz to 500 Hz.

We will assume a threshold of 95% of the total power in the

CCDFs of accelerometers and gyroscopes of every walk. The

corresponding sampling frequency, according to the Nyquist

sampling theorem, is twice the mentioned bandwidth.

C. Experimental Results

We have analyzed in frequency domain all walks for both

sets of experiments and we have discovered that the limiting

signals in terms of bandwidth are those from the accelerom-

eters. This is mostly due to the high frequencies generated

when the foot hits the floor. For the gyroscopes the bandwidth
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Fig. 3. Welch power spectral density estimates of accelerations X, Y and Z
for a 30 seconds walk sampled at 1000 Hz.
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Fig. 4. Complementary cumulative distribution functions of accelerations X,
Y and Z for a 30 seconds walk sampled at 1000 Hz.

needed is not greater than 50 Hz, therefore the sampling

frequency would be 100 Hz.

Table I shows the required sampling frequency, in Hertz,

based on the criterion explained in the previous subsection.

This has been made for different kind of footwear such as

flat shoes, sports shoes and heels and for different floor types

like floor tile, pavement, carpet and grass. The results of all

volunteers were averaged for computing the final sampling

frequency.

Floor tile Pavement Carpet Grass

Flat shoes 200 200 200 200

Sports shoes 200 200 200 200

Heels 300 300 250 250

TABLE I
LOWEST USABLE SAMPLING FREQUENCY IN HERTZ FOR FLAT SHOES,

SPORTS SHOES AND HEELS USED IN DIFFERENT FLOOR TYPES LIKE FLOOR

TILE, PAVEMENT, CARPET AND GRASS.

The volunteers for this set of experiments were chosen to

be representative. The 85 year old woman with hip prosthesis

did some walks using a cane. The resulting needed bandwidth

does not change as a result of introducing a hip prosthesis or

a cane.
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Fig. 5. Complementary cumulative distribution functions of acceleration Y
for different walks sampled at 1000 Hz. In red we can see the curve of a
woman wearing the high heels of Figure 1 (b) and in blue is represented
the same walk wearing the sports shoes of Figure 1 (a). The green curve
represents a walk using only the staircases going up and down.

We found out that the bandwidth needed for the children is

slightly smaller and for men slightly greater than the average

under the same conditions for all volunteers, that means using

the same type of footwear and walking on the same type of

floor. However, the required bandwidth is more dependent on

the walking mode of the subject than on the gender.

We show the required sampling frequency, in Hertz, based

on the criterion explained in the previous subsection, for the

different forms of motion that have been studied. All of them

have been done by the same volunteer using flat shoes. The

result is the average of the same kind of walk in different

scenarios.

Escalator Ramp Elevator Walkway

Walking 300 250 – 200

Standing 100 100 100 100

TABLE II
LOWEST USABLE SAMPLING FREQUENCY IN HERTZ FOR MECHANICAL

TRANSPORTATION SYSTEMS.

Walking Running Stairs Jumping Crawling

200 300 300 350 250

TABLE III
LOWEST USABLE SAMPLING FREQUENCY IN HERTZ FOR DIFFERENT

FORMS OF MOTION.

The values of TablesI, II and III were rounded to the next

multiple of 50 Hz.

D. Discussion

We conclude from this study with respect to the sampling

frequency that it can be considered the same for all ages and

gender, however it depends a lot on the way the subject is

walking.



Fig. 6. Spectrogram of the raw z-axis acceleration of an elevator dataset.
Since the IMU is on the foot, we can sense the motor vibration marked with
a red oval.

The footwear has a big influence: by using heels there are

higher frequency components produced when the shoe hits

the floor (see Figure 5). In contrast, there are no remarkable

differences by changing the floor type. It is clear that the softer

the floor surface is, the smoother the step will be, however,

it does not make difference with respect to the sampling

frequency.

With respect to the different motions, we realized that when

running, crawling, jumping or using staircases the sampling

frequency should be higher than when walking. The variance

for running, jumping and crawling is bigger because it is

highly dependent of the way the user does these activities.

It should be noticed by looking at Table II that while stand-

ing or using the elevator a high sampling rate is not needed.

However, we discovered that the elevator motor vibration can

be measured by the sensors. It is not strictly necessary to

include these vibrations in the sampling frequency, but in

a general case it is likely that we need this information in

order to know, for example, that we entered one of these

mechanical systems and we are actually moving, not standing.

We propose to modify the sampling frequency to include the

motor vibration. The fundamental frequency varies with every

motor. We can see an example of engine vibrations in Figure 6

where the spectrogram of the acceleration in the z-axis is

shown for an elevator going down two floors. The frequency

of this elevator’s motor is approximately 150 Hz, therefore,

we would need to sample at 300 Hz.

We noticed that the bandwidth needed for going upstairs is

slightly smaller than for going downstairs. This is valid for

escalators and for staircases as well.

III. BIAS ERROR ANALYSIS

Since the position estimate is highly dependent of the drift

of gyroscopes and accelerometers, we construct a model of

these errors. For deriving the error models we decided to use

the Allan variance.

From Section II we have concluded that the sampling

frequency should lie between 200 Hz and 300 Hz. Therefore,

we have derived models at 200 Hz for three different IMU

types: low-cost, medium range and high-end graded.

A. Allan Variance

The Allan variance (also Allan deviation) is a well known

method to analyze the random noise processes of inertial

sensors [11]. In a nutshell, the Allan variance analysis shows

noise deviation over different length in time of averaged data

in a double logarithmic chart. At first, a sequence of data, e.g.

of several hours or days, is recorded in a static environment,

in terms of signal and temperature, in order to observe the

long- and the short-term noise processes. This data is divided

into several subsequences of the same length and the average is

computed for each subsequence. Afterwards the Allan variance

is calculated from all averaged values of the subsequences

which have the same length. For detailed formulas, see [11].

The subsequence size varies from one sample to about 10%

(or less) of the total sequence length, in order to get some

statistical significance. The subsequences are directly related

to the time by the sampling rate.

The Allan deviation plot is used to determine quantization

noise, random walk (white noise), bias instability, rate/velocity

random walk and rate ramp [11]. These different parameters

can be observed in different regions of averaged time periods.

For low-cost MEMS sensors, random walk and bias instability

are most relevant. If the sample rate is high enough, a quan-

tization noise can be observed for low-average time periods.

The Allan deviation plot shows a decreasing trend on the

left side of the plot (Figure 7), between 0.01 seconds (one

sample if the sampling rate is 100 Hz) and about 10 seconds.

In this region, the Gaussian white noise is dominant. The Allan

variance of random white noise is reduced by averaging over

ever-enlarged sequences. In the center of the plot, the Allan

deviation shows a change in the trend. This region is the part

where the drift, i.e. the slow changing bias becomes dominant.

The bias stability (BS) is located at the minimum (Figure

7). The right side of the plot shows the very slow processes,

such as rate or velocity random walk which need a very long

sequence of data in order to get repeatable results.

It should be noted that especially MEMS sensors show

noise variation at different temperatures. A changing environ-

ment temperature, which happens often over several minutes

or hours, might result in an increasing slope of the Allan

deviation on the right part of the plot (larger times). So

it is important to maintain a static temperature during data

recording for the Allan deviation plot.

B. Sensor Error Model

The IMU measurements can be represented as

xk = xkreal
+ ek. (1)

being xkreal
the true value and ek the measurement error.

The error of the measurement can be decomposed in two

errors



ek = bk
︸︷︷︸

bias

+ vk
︸︷︷︸

sensor noise

. (2)

where bk is the bias error due to the drifting sensors and vk
is the sensor noise that can be considered as gaussian white

noise.

To determine the bias error we choose an auto-regressive

model (AR) of order one, as it is a suitable model for a random

walk process [12]. The AR1 model is defined as follows:

bk = c · bk−1 + nk. (3)

In [13], a Gauss-Markov model was chosen for IMU bias

error model. The Gauss-Markov model defines the constant c

by the exponent e−
1

τ , where τ is the correlation coefficient.

The variance of the noise nk is defined as

σ2

nk
= σ2

bias ·
(

1− e−
2

τ

)

, (4)

where σbias is the noise of the bias, [14].

We will use the Allan variance for extracting these three

parameters, namely sensor noise variance σ2

vk
, bias noise

variance σ2

bias
and the correlation coefficient τ .

C. Identification of Error Parameters

The sensor error parameters σvk
, σbias and τ can be

identified from the Allan deviation plot [15].

1) Sensor Noise σvk
: The value of the white noise of the

sensor can be directly identified in the Allan deviation plot

(Figures 8, 9 and 10) by intersecting the curves at 1 second.

2) Correlation Coefficient τ : The correlation coefficient τ

is identified over the BS (see Figure 7). We have to identify

the point where the Allan deviation curve becomes flat. Then,

τ is the number of samples where the BS occurs. This is the

point in time from the Allan deviation plot times the sample

rate:

τ = tBS · fs. (5)

3) Bias Noise σbias: The bias noise is calculated by the

formula

σbias =
BS√
τ
. (6)

As an example we show in Figure 7 an idealized Allan

deviation plot for an accelerometer in red and in blue the Allan

deviation plot computed for a simulation of the sensor error

model using the derived parameters from the idealized plot.

The simulation is achieved by Equations (2) and (3), using a

defined value for τ and drawing samples of two independent

normal distributions with the variances σ2

vk
, and σ2

bias
. We

have generated the model for every sensor in order to check

the parameters matching.
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Fig. 7. Example of Allan deviation plot for a real data (red curve) and the
modeled data (blue curve). We generate a model for every Allan deviation
plot using their derived parameters in order to check the matching between
both curves.
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Fig. 8. Allan deviation of all signals from accelerometers and gyroscopes
for the InterSense sensor NavChip sampled at 200Hz over 10 hours.

D. MEMS IMU Allan Deviation Study

Figure 8 shows an Allan deviation plot of the NavChip

sensor [16] at 200 Hz over 10 hours. Figure 9 shows the same

plot for the Xsens sensor MTx [17] at 200 Hz over 12 hours

and Figure 10 shows the Allan deviation for the Shimmer

sensor [18] at 200 Hz over 3 hours.

Tables IV,V and VI show the identification results of the

data of Figures 9, 8 and 10 respectively.
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Fig. 9. Allan deviation of all signals from accelerometers and gyroscopes
for the XSens sensor MTx sampled at 200Hz over 12 hours.
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Fig. 10. Allan deviation of all signals from accelerometers and gyroscopes
for the Shimmer sensor sampled at 200 Hz over 3 hours.

Sensor noise Corr. coeff. Bias noise

σvk
τ σbias

[m/s2/
√

Hz ,
◦

/s/
√

Hz] [m/s2,
◦

/s]

Accx 7.4 · 10
−4 2000 1.3 · 10

−5

Accy 6.4 · 10
−4 2000 9.7 · 10

−6

Accz 5.0 · 10
−4 2000 7.3 · 10

−6

Gyr
x

3.3 · 10
−3 1000 8.5 · 10

−5

Gyr
y

3.7 · 10
−3 1000 6.4 · 10

−5

Gyr
z

4.2 · 10
−3 10000 3.4 · 10

−5

TABLE IV
MODEL PARAMETERS FOR THE INTERSENSE IMU NAVCHIP AT 200 HZ.

Sensor noise Corr. coeff. Bias noise

σvk
τ σbias

[m/s2/
√

Hz ,
◦

/s/
√

Hz] [m/s2,
◦

/s]

Accx 8.9 · 10
−4 2600 7.9 · 10

−6

Accy 8.4 · 10
−4 2600 8.1 · 10

−6

Accz 8.4 · 10
−4 11000 2.5 · 10

−6

Gyr
x

2.6 · 10
−2 42000 1.8 · 10

−5

Gyr
y

2.5 · 10
−2 56000 1.6 · 10

−5

Gyr
z

2.9 · 10
−2 144000 8.4 · 10

−6

TABLE V
MODEL PARAMETERS FOR THE XSENS IMU MTX AT 200 HZ.

Sensor noise Corr. coeff. Bias noise

σvk
τ σbias

[m/s2/
√

Hz ,
◦

/s/
√

Hz] [m/s2,
◦

/s]

Accx 6.0 · 10
−3 14600 8.7 · 10

−6

Accy 5.9 · 10
−3 36000 5.3 · 10

−6

Accz 6.5 · 10
−3 9400 1.4 · 10

−5

Gyr
x

1.9 · 10
−2 4200 1.0 · 10

−4

Gyr
y

1.7 · 10
−2 800 5.3 · 10

−4

Gyr
z

1.9 · 10
−2 2800 2.2 · 10

−4

TABLE VI
MODEL PARAMETERS FOR THE SHIMMER IMU AT 200 HZ.

IV. INERTIAL NAVIGATION FOR INDOOR POSITIONING

In this work we apply inertial navigation in indoor environ-

ments using sequential Bayesian positioning estimators [4]. In

particular we have implemented an unscented Kalman filter

(UKF) with an integrated strapdown algorithm for computing

the final position, like in [6].

The UKF has 15 states: 3 Euler angles, 3-axis velocity, 3-

axis position and biases for gyroscopes and accelerometers.

The UKF measures the evolution of the states and the influence

of the measurements. We can differentiate two steps in the

filter: the unscented transformation (UT) that estimates the

propagation of the states through sigma points, and the update

that corrects the states with the information of the measure-

ments. More details about the UKF can be found in [6].



During the UT step the states are propagated using the

information of the strapdown algorithm [1]. This algorithm

takes directly the raw signals provided by the 3 orthogonal

accelerometers and gyroscopes. The integration of the turn

rate signal gives the orientation of the IMU and the final

position estimation is computed through the double integration

of the given acceleration information. During the update step

the measurements correct the states estimations. In our case

we use only the ZUPT pseudo-measurements.

In the following section we will evaluate the odometry. To

illustrate the benefit of the developed bias model, we will

process the same dataset using the model and without using

it. We will keep the already described 15 states UKF for both

cases.

A. Without the Bias Model

In all cases, before starting the walk, we keep standing a

couple of seconds at the initial position without moving. This

is necessary for calibrating the initial alignment of the IMU

once it is attached to the foot. Under the assumption that the

user is not moving, all the fluctuations the IMU senses are due

to the biases.

When we do not use the model, we compute the initial

biases of accelerometers and gyroscopes in the alignment stage

and we keep this value for the whole walk. We use 0 for the

noise of the bias in the covariance matrix Q (see [6] for UKF

details).

B. With the Bias Model

In the case we use the bias model, we use as initial value

of the bias the one computed in the alignment stage, the same

procedure as when we do not use the model.

We predict with Equation (3) by using the resulting value of

Equation (4) for the noise of the bias in the covariance matrix

Q (see [6] for UKF details).

V. EVALUATION OF THE ODOMETRY

We have done a set of realistic walks at the Barajas airport

in Madrid including elevators, escalators and moving walkway

systems. We did as well such walks in our office building using

staircases.

We want to compare the performance of different sampling

frequencies and evaluate the developed bias model. Therefore,

we have chosen a walk done in our office building. We have

superposed the floor plan to the 2D odometry generated by

our UKF explained in Section IV.

In Figure 11 we can see the walk’s trajectory: We started

at the third room in the bottom left corner of the floor plan in

the second floor, we turned left and walked until the end of

the corridor. There we turned around and we crossed to the

other side of the building. Then we went to the staircases and

went two floors upstairs. The green line represents the walk

on the fourth floor, where we went through the kitchen until

the opposite staircases. We went two floors downstairs until

the second floor again. Finally we turn right until the end of

the corridor and finished in the same room as we started.

Fig. 11. Trajectory of the walk made by the user. The orange line represents
the walk in the second floor and the green line represents the walk in the
fourth floor. The starting and the ending point are situated at the third room
in the bottom left corner.

A. Evaluation of the Bias Model

We have done the same walk described in Figure 11 at 200

Hz sampling frequency. First we have used the InterSense IMU

Navchip and we have analyzed the obtained dataset without

and with the bias model as we have described in Subsections

IV-A and IV-B. Figure 12 shows the odometry with the floor

plan of our office building superposed and Figure 13 shows

the z-component.

Fig. 12. Odometry for the NavChip IMU for the trajectory described in
Figure 11 sampled at 200 Hz. The blue curve represents the output of the
data computed without using the biases model and the red line represents the
output of the data computed using the model.
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Fig. 13. Z-component trajectory for the NavChip IMU for the walk described
in Figure 11 sampled at 200 Hz. The blue curve represents the output of the
data computed without using the biases model and the red line represents the
output of the data computed using the model.

We have also done the walk described in Figure 11 with the

Xsens MTx IMU at 200 Hz sampling frequency. Figure 14



Fig. 14. Odometry for the MTx IMU sampled at 200 Hz for the trajectory
described in Figure 11. The blue curve represents the output of the data
computed without using the biases model and the red line represents the
output of the data computed using the model.In this plot the blue and red
curves are completely superposed at the beginning of the walk.
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Fig. 15. Z-component trajectory for the MTx IMU for the walk described
in Figure 11 sampled at 200 Hz. The blue curve represents the output of the
data computed without using the biases model and the red line represents the
output of the data computed using the model.

shows the odometry with the floor plan superposed and

Figure 15 shows the z-component.

In general for both IMUs we can observe a better behaviour

when we compute the generated dataset using the bias model

(curves represented in red). For the odometry the curves

representing the dataset computed with the model are slightly

better. The extra difficulty of this walk is the 2 floors up- and

downstairs. Keeping the correct heading after the staircases

than before is one of the advantages of the model. For the z-

component the corrections made by the bias model are easier

to recognize. With the NavChip sensor we got more than 2

meters less drift after a walk longer than 3 minutes using

staircases. For the MTx we got a 3 meters drift correction.

B. Evaluation of the lowest usable sampling frequency

In this case we have kept the bias model on. To illustrate

the effect of using a sampling frequency lower than the lowest

usable sampling frequency, we have done the same walk

described in Figure 11. We have sampled at 100 Hz and then

at 200 Hz.

First we show the results obtained with the NavChip IMU.

In Figure 16 the odometry is shown with a superposed floor

plan of our office building. Figure 17 shows the z-component.

We plot the curve representing the dataset sampled at 100 Hz

with a blue line and the dataset sampled at 200 Hz with a red

Fig. 16. Odometry for the NavChip IMU for the trajectory described in
Figure 11. The blue curve represents the output of the data computed using
the biases model sampled at 100 Hz and the red line represents the output of
the data computed using the model sampled at 200 Hz.
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Fig. 17. Z-component trajectory for the NavChip IMU for the walk described
in Figure 11. The blue curve represents the output of the data computed using
the biases model sampled at 100 Hz and the red line represents the output of
the data computed using the model sampled at 200 Hz.

curve.

We have applied the same procedure with the MTx IMU. In

Figure 18 is represented the odometry with a superposed floor

plan and Figure 19 shows the z-component. For both cases

we have computed the datasets at 100 Hz and 200 Hz using

the bias model and we have represented the results at 200 Hz

with the red curves.

For the NavChip the odometry results are slightly better at

200 Hz. We can better evaluate these results focusing on the

heading. The critical situations are the ones after the 360◦

curves and after the staircases. However, in this case the

performance at both sampling frequencies is similar. The really

clear result is shown for the z-component (Figure 17). Only

Fig. 18. Odometry for the MTx IMU for the trajectory described in Figure 11.
The blue curve represents the output of the data computed using the biases
model sampled at 100 Hz and the red line represents the output of the data
computed using the model sampled at 200 Hz.
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Fig. 19. Z-component trajectory for the MTx IMU for the walk described in
Figure 11. The blue curve represents the output of the data computed using
the biases model sampled at 100 Hz and the red line represents the output of
the data computed using the model sampled at 200 Hz.

by sampling at 200 Hz we got 2 meters less drift after a walk

longer than 3 minutes.

For the MTx the results are more clear in the odometry.

As we can see in Figure 18, the blue curve which represents

the dataset recorded at 100 Hz has considerably more drift

when walking in a straight line for long distances. This drift

is constant and we can see a more corrected drift in the red

curve. In Figure 19 we got a 1 meter constant less drift only

by sampling at 200 Hz, however it seems like this advantage

is lost within the last 30 seconds of the walk.

The results obtained in this work about the required sam-

pling frequency for a foot-mounted IMU are promising. For

the rest of the walks we have done, the general behaviour of

the shown plots is repeated.

It is still under investigation the behaviour of the drift for the

z-component. For most of the cases we have obtained always

a negative drift and only few walks have resulted in a positive

drift. It is still being investigated how the drift changes when

going up- and downstairs.

VI. CONCLUSIONS

The objective of this work is to increase the accuracy of

the position estimate for foot-mounted IMUs. Therefore, we

have decided first to investigate on the lowest usable sampling

frequency and second to derive an error model for the biases

of accelerometers and gyroscopes for compensating their drift.

For the first part we have studied different motions, kind

of floors and footwear. We have found that the lowest usable

sampling frequency lies between 200 Hz and 300 Hz. We have

made a set of walks for proving the importance of sampling

at the correct rate and the results show a more reduced error

only by sampling at 200 Hz instead of 100 Hz.

For the compensation of the sensors drift we have derived an

error model for the biases of accelerometers and gyroscopes.

We have made use of the Allan deviation plots for identifying

the model parameters. We have made a set of walks in order

to illustrate the performance of the odometry with and without

using the model. With the biases model we have reduced

considerably the positioning error.
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