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Abstract

Thermoelectric materials are materials which are capable of converting heat di-

rectly into electricity and vice versa. They have long been used in electric power

generation and solid-state cooling. The performance of a thermoelectric device

determined by the dimensionless figure of merit (ZT ) of the material, defined as

ZT = (S2σ/κ)T , where S is the Seebeck coefficient, σ is the electrical conductivity,

κ is the total thermal conductivity, and T is the absolute temperature. The total

thermal conductivity consists of contribution from electrons, electron-hole pairs

and phonons. Since the 1960s, the best thermoelectric material has been Bi2Te3

alloys, with a ZT of 1.0 at room temperature. In recent years, the idea of using

nanotechnology has opened up the possibility of engineering materials at nano-

scale dimensions to achieve higher values of ZT in other words to have more

efficient thermoelectric devices.

This thesis starts with a broad introduction to thermoelectricity including various

thermoelectric effects and their applications. The state-of-the-art thermoelectric

materials and the optimisation methods to enhance the value of ZT have also

been reviewed.

A systematic theoretical modelling of the thermoelectric properties of three di-

mensional bulk semiconductors has been presented in Chapter 2. Electronic prop-

erties (Fermi level, Seebeck coefficient, and electrical resistivity) and thermal con-

ductivity contribution from carriers (donor electrons or acceptor holes) have been

derived by using the nearly-free electron approximation and the Fermi-Dirac

statistics. Other thermal conductivity contributions originated from electron-hole

pairs and phonons have also been described in detail. In Chapter 3, this theoret-

ical study is extended to two dimensional semiconducting quantum well struc-

tures bearing in mind that the Fermi level should change with the temperature as

well as the quantum well width and additional interface scattering mechanisms
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(interface mass-mixing and interface dislocation scatterings) should be included

for the definition of anharmonic scattering rate.

Thermoelectric properties of n-type (Bi2Te3)0.85(Bi2Se3)0.15 single crystals doped

with 0.1 wt.% CuBr and 0.2 wt.% SbI3 and p-type (Bi2Te3)x(Sb2Te3)1−x single crys-

tals doped with 3 wt.% Te (0.18 ≤ x ≤ 0.26) have been explored in Chapter 4 and

5, respectively. It has been found that p-type Bi2Te3 based alloys showed higher

values of ZT due to their larger power factor (S2σ) and smaller thermal conduc-

tivity values. These calculations have concluded that the influence of the compo-

sition range of semiconductor alloys together with its type and amount of dopant

plays an important role in enhancing the ZT . In Chapter 6, a detailed theoreti-

cal investigation and comparision of the thermal conductivities of these single

crystals have been reported including frequency dependence of the phonon ther-

mal conductivity for different temperatures. In Chapter 7, based on temperature

and well width dependent Fermi level, a full theory of thermoelectric properties

has been investigated for n-type 0.1 wt.% CuBr doped Bi2Se3/Bi2Te3/Bi2Se3 and

p-type 3 wt.% Te doped Sb2Te3/Bi2Te3/Sb2Te3 quantum well systems. Different

values of well thicknesses have been considered for both types of quantum well

systems to study the effect of confinement on all thermoelectric transport coeffi-

cients. It has been found that reducing the well thickness has a pronounced effect

on enhancing the ZT . Compared to bulk single crystals studied in Chapter 4 and

5, significantly higher thermoelectric figure of merits have been estimated theo-

retically for both n- and p-type semiconducting quantum well systems. For the

n-type Bi2Se3/Bi2Te3/Bi2Se3 quantum well system with taking 7 nm well width

the maximum value of ZT has been estimated to be 0.97 at 350 K and for the

p-type Sb2Te3/Bi2Te3/Sb2Te3 quantum well with well width 10 nm the highest

value of the ZT has been found to be 1.945 at 440 K.

Chapter 8 briefly recapitulates the results presented in this thesis and outlines

possibilities for future work.
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Chapter 1

Introduction to Thermoelectricity

1.1 A Brief History

One of the most critical current issues of our time is to find alternative energy

sources which are environmentally friendly. Research to discover energy sources

other than fossil fuels has been sparked by different energy conversion technolo-

gies. Thermoelectric energy conversion is one of the types of energy conversion

technology that has received great attention because of their fascinating proper-

ties which can be listed [1]:

• they are extremely reliable and silent in operation since they have no mechan-

ical moving parts and require considerably less maintenance,

• they are simple, compact and safe,

• they are in a very small size and virtually weightless,

• they are capable of operating at elevated temperatures,
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• they are environmentally friendly,

• they are not position-dependent, and

• they are suited for small-scale and remote applications typical of rural power

supply where there is limited or no electricity.

Thermoelectricity was first discovered by the German physicist T. J. Seebeck in

1821 [2]. He found that electromotive force could be generated by heating the

junction between two dissimilar electrical conductors. Thirteen years after See-

beck’s discovery, J. C. Peltier, a French watchmaker, found that the passage of

an electric current through a thermocouple1 produces a small heating or cooling

effect depending on its direction [3]. After a long time, in 1855, W. Thomson

(known as Lord Kelvin) recognised that by applying the theory of thermody-

namics he could establish a relationship between the Seebeck and Peltier effects.

Thomson’s work showed that a thermocouple is a type of heat engine and that it

can be used as a device for generating electricity from heat or, alternatively, as a

heat pump or refrigerator [4].

In 1911, the problem of energy conversion using thermocouples was studied in

detail by E. Altenkirch [5, 6]. He pointed out that the performance of a thermo-

couple could be improved by increasing the magnitude of the differential Seebeck

coefficient and the electrical conductivities and reducing their thermal conductiv-

ities. At that time, unfortunately, there were no thermocouples available in which

the combination of properties was good enough for reasonably efficient energy

conversion.

By introducing the idea of semiconductors as thermoelectric materials, modern

1it is a device consisting of two dissimilar metals and when it is heated, it develops an emf

output.
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research in thermoelectricity first started with Ioffe’s observation. He suggested

that doped semiconductors should be the best thermoelectric materials among

others [7]. After his suggestion, there was a very active research period for ther-

moelectricity from 1957 to 1965 and the best refrigeration materials were found

as Bi2Te3, PbTe, and bismuth antimony alloys. After a while, Si1−xGex alloys were

studied as thermoelectric materials and successfully used to build power sources

for spacecraft and space stations. Despite these encouraging investigations ther-

moelectric materials still have not been in common use which is because they

have not high enough efficiency comparing with mechanical cycle. Therefore,

the goal is to search for novel thermoelectric materials with high thermoelectric

efficiency. In this manner thermoelectric devices can be broadly used in everyday

applications and compete with other energy conversion technologies.

During the past few years, a large number of materials systems have been inves-

tigated for their potential as thermoelectrics and several new ideas have been put

forward to improve the performance of thermoelectric conversion efficiency. The

most exciting and promising suggestion to have a high efficient thermoelectric

device is using nanostructured thermoelectric materials such as quantum wells,

quantum wires or quantum dots [8, 9]. These nanostructured thermoelectric ma-

terials use nanotechnology to modify material properties (both electronic and

thermal) in ways that are not possible in bulk materials.

In this thesis, systematic theoretical works are provided for the thermoelectric

transport properties of bulk and quantum well systems. Significant improve-

ments on thermoelectric efficiencies are presented by doping bulk materials and

using quantum well structures.
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Figure 1.1: Seebeck effect in a closed circuit where A and B are two different

materials and T1 and T2 are the temperatures at the junctions (T1 > T2). When

differential Seebeck coefficient (SAB) is positive, the current (I) flows clockwise

direction through the material A.

1.2 Thermoelectric Phenomena

1.2.1 Seebeck Effect

In 1821, T. J. Seebeck reported the results of experiments in which a compass nee-

dle was detected when it was placed in the vicinity of a closed loop built by two

different metals with a temperature difference between the junctions. This ob-

servation clearly provides evidence that a current flows along the closed circuit

driven by the temperature difference which is called the Seebeck effect and pre-

sented in Fig. 1.1. In this closed circuit charge carriers (electrons or holes) diffuse

from the hot side to the cold side due to a temperature difference. Mobile charge

carriers move to the cold side and leave behind their oppositely charged and

immobile nuclei at the hot side therefore giving rise to a thermoelectric voltage.

Increase in charge carriers on the cold side finally starts to decrease when there

exists an equal amount of charge carriers drifting back to the hot side as a result of

the electric field created by charge separation. At this point, the material reaches
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Figure 1.2: Seebeck effect in an open circuit where voltage (∆V) is obtained be-

tween the two open ends of the circuit.

the steady state. An increase in the thermoelectric voltage can only be achieved

by a rise in the temperature difference which causes a buildup of more charge

carriers on the cold side of a material. The voltage, called the thermoelectric emf

is generated by a temperature difference between two dissimilar materials that

causes a continuous current flowing along the conductors if their junctions are

kept at different temperatures.

In the case of an open circuit situation, as represented in Fig. 1.2, the junctions 1

and 2 are maintained at different temperatures T1 and T2 where T1 > T2, ∆V is

developed between the two ends of the thermocouple and given by [1]

∆V = Va − Vb =

∫ T2

T1

(SA − SB)dT, (1.1)

where SA and SB are the absolute Seebeck coefficients of material A and B, respec-

tively. The absolute Seebeck coefficient S (also called thermopower) measures the

magnitude of an induced thermoelectric voltage in response to a temperature dif-

ference across that material and is conventionally given in units of µV/K.
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1.2.2 Peltier Effect

The Peltier effect was first discovered by Jean Peltier in 1834. This effect is the

conversion of electricity into heat transfer which can be regarded as the reverse

of the Seebeck effect. If an electric current is driven through two dissimilar mate-

rials, heat will be generated at one junction and absorbed at the other junction. If

the reverse situation is considered in Fig. 1.2 with an external emf source applied

across two ends of an open circuit, and a current I flows through the circuit then

heat is absorbed at one junction and liberated at the other junction. Eventually,

one junction cools off while other heats up, depending on the direction of the cur-

rent. The Peltier heat (Q) absorbed by the cold junction per unit time is given by

[1]
dQ

dt
= ΠABI = (ΠA −ΠB)I, (1.2)

where ΠA and ΠB are the Peltier coefficients of material A and B, respectively.

1.2.3 Thomson Effect

The last of the thermoelectric effects, the Thomson effect is expressed as the rate

of heat absorbed or emitted in a current-carrying conductor subjected to a tem-

perature gradient. When a current density J flows through a homogeneous con-

ductor, heat is produced in a unit volume q due to the Thomson effect which is

defined as [1]

q = ρJ2 − µJ
dT

dx
, (1.3)

where ρ is the resistivity of the material, µ is the Thomson coefficient and dT/dx

is the temperature gradient along the conductor. The first term in Eq. (1.3) de-

fines the Joule heat per unit volume which is not reversible and the second term

represents the Thomson heat which changes with the sign of the J .
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1.2.4 The Kelvin Relationships

The three thermoelectric coefficients, the Seebeck coefficient, S, the Peltier coeffi-

cient, Π, and the Thomson coefficient, µ, are related to each other by the applica-

tion of the theory of irreversible thermodynamics [1]:

SAB =
ΠAB

T
, (1.4)

and
dSAB

dT
=
µAB

T
. (1.5)

The validity of these relationships has been shown for many thermoelectric ma-

terials and it is assumed that they are acceptable for all materials used in thermo-

electric applications.

1.3 Thermoelectric Figure of Merit

The concept of thermoelectric figure of merit was first introduced by E. Altenkirch

in the early 1900s [5, 6]. It was found that good thermoelectric materials should

have high electrical conductivity to minimise Joule heating, large Seebeck coeffi-

cients for maximum conversion of heat to electrical power (or electrical power to

cooling performance), and low thermal conductivity to retain heat at the junctions

and maintain a large temperature gradient. These three thermoelectric properties

were later combined mathematically into one formula and written as

Z =
S2σ

κ
, (1.6)

where S is the Seebeck coefficient, σ is the electrical conductivity, and κ is the

total thermal conductivity with the contributions of carriers (electrons or holes)

(κc), electron-hole pairs (bipolar) (κbp) and phonons (κph) and defined as κtotal =
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κc + κbp + κph. Due to Z is in a unit of K−1, one often uses dimensionless figure

of merit given as ZT . The standard measure of a single material’s thermoelectric

performance is determined by the figure of merit (ZT ). The larger the figure of

merit, the better the efficiency of the thermoelectric cooler or power generator.

Therefore, there is significant interest in improving ZT in thermoelectric materi-

als.

1.4 Applications of Thermoelectric Effects

Recent developments in both theoretical and experimental studies on thermoelec-

tric properties of materials provide new opportunities for wide range of applica-

tions. Most of the thermoelectric devices have many thermoelectric couples con-

sisting of n- (electrons as mobile charge carriers) and p- (holes as mobile charge

carriers) type materials which are connected thermally in parallel and electrically

in series. The top electrode, generally known as the thermoelectric bond, con-

nects the n- and p-type thermoelectric materials. When a temperature gradient

is applied on the thermoelectric device, the mobile charge carriers diffuse along

the gradient direction and result in an electric current for the application of ther-

moelectric power generation or vice versa for the application of thermoelectric

refrigeration.

The working principle of a thermoelectric generator is presented in Fig. 1.3.

When a temperature gradient is applied to the device, the charge carriers dif-

fuse from the hot side to the cold side and result in an electric voltage (or current)

in the device. Having many of the p-n junctions in series improves the conversion

efficiency of the thermoelectric device.
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Figure 1.3: Illustration of thermoelectric power generator module.

The efficiency of a thermoelectric power generation η is defined as

η =
energy supplied to the load

heat energy absorbed at hot junction
. (1.7)

By considering that the Seebeck coefficients, electrical and thermal conductivities

of n- and p-type legs are constant and the contact resistances at the hot and cold

junctions are negligible compared to total arm resistance, the efficiency has been

derived to be [10, 11, 12]

η =
I2R

SpnITH + κ(TH − TC)− I2R/2
, (1.8)

where I is the electrical current, Spn = Sp − Sn with Sn and Sp are the Seebeck

coefficients of n- and p-type leg, respectively. In Eq. (1.8), R is the series resis-

tance of n- and p-type legs, κ is the total thermal conductance of n- and p-type
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material in parallel, TH and TC are the temperatures of the hot and cold sides of

the generator.

The thermoelectric figure of merit for a thermocouple is directly related to the

maximum efficiency of thermoelectric power generator ηmax. As shown in Fig.

1.3 the thermocouple is connected to an electrical load of resistance and if it is

chosen to maximise the efficiency η, the maximum efficiency is then given by

[10, 11, 12]

ηmax =
TH − TC
TH

√

1 + ZcT − 1
√

1 + ZcT + TC

TH

, (1.9)

where the average temperature is

T =
TH + TC

2
, (1.10)

and the figure of merit of thermocouple is

Zc =
S2
pn

Rκ
. (1.11)

In practice, the two legs of the thermoelectric junction have similar material con-

stants, in which case the concept of a figure of merit for a material is employed

and written by

Z =
S2σ

κ
, (1.12)

where S2σ is referred to as the electrical power factor.

In Fig. 1.4, the power generating efficiency is represented as a function of the

dimensionless figure of merit of the thermocouple for different TH temperatures

with choosing TC as 300 K. From this calculation it is found that a thermocouple

with having ZT=2.0 would have an efficiency of nearly 13%, 20%, 24%, when the

temperatures are taken as TH=500 K, 700 K, and 900 K, respectively.

The working mechanism of a thermoelectric refrigerator is shown in Fig. 1.5.

When a voltage is applied on the bottom electrode, the free charge carriers move
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Figure 1.4: Generating efficiency as a function of the dimensionless figure of merit

of the thermocouple for different TH and TC =300 K [13].

from the thermoelectric bond to the bottom electrode. As a result, a temperature

gradient which varies according to the magnitude of current applied, is generated

owing to the diffusion of charge carriers that bring heat from one side to the

other. Eventually, the top thermoelectric bond becomes cooler which can be used

in refrigeration mechanism.

The energy efficiency of a thermoelectric refrigerator is quantified by its coeffi-

cient of performance (COP) defined as [10, 11, 12]

COP = φ =
heat absorbed

electrical power input
=
SpnITC − I2R/2− κ∆T

I(Spn∆T + IR)
(1.13)

where R is the electrical resistance of the thermoelements in series and κ is the

thermal conductance of the thermoelements in parallel. Evidently, the coefficient

of performance for a given temperature difference is dependent on the current I .
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Figure 1.5: Illustration of thermoelectric refrigerator.

The maximum coefficient of performance is then given by [10, 11, 12]

φmax =
TC

[√
1 + ZTC − TH

TC

]

(TH − TC)
[√

1 + ZTC + 1
] , (1.14)

where the current for maximum coefficient of performance and the maximum

temperature difference is written as

Imax =
SpnTC
R

, ∆Tmax = (TH − TC)max =
1

2
ZT 2

C. (1.15)

1.5 Good Thermoelectrics

Good thermoelectric materials have a high figure of merit (ZT ) and as follows

from Eq. (1.6) they should have large power factor and low thermal conductivity.

There are limited choices for finding materials in nature that exhibit a high figure
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Figure 1.6: Schematic dependence of Seebeck coefficient, electrical conductivity,

power factor, and thermal conductivity on carrier concentration [12].

of merit (i.e., with ZT > 1) because all the three thermoelectric properties (S, σ,

κ) are inter-related with each other. The difficulties of improving ZT relate to

the following reasons: increasing S for simple materials leads to a simultaneous

decrease in σ, and an increase in σ results in a comparable increase in κc due to

the Wiedemann-Franz law. Figure 1.6 illustrates each of the three thermoelectric

properties (S, σ, κ) as a function of carrier concentration. The horizontal scale is

the carrier concentration which is divided into three regions as insulators, semi-

conductors, and metals, from the left to the right. Insulators have high values
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Table 1.1: Comparison of thermoelectric properties (S, σ, ZT ) of insulators, semi-

conductors, and metals at 300 K.

Property Insulators Semiconductors Metals

S (µV K−1) ∼ 1000 ∼ 200 ∼ 5

σ (Ω −1 cm−1) ∼ 10−12 ∼ 103 ∼ 106

ZT ∼ 1.5×10−14 ∼ 0.6 ∼ 9×10−4

of S and low values of κ but the properties are countered by low values of σ.

Metals have high σ values but also have high κ and S values. The maximum

electrical power factor (S2σ) is gained at a carrier concentration of around 1019

cm−3 which is in the semiconductor materials region. The carrier contribution to

the thermal conductivity (κc) for thermoelectric materials is generally 1/3 of the

total thermal conductivity. Eventually, the best thermoelectric materials which

produce the highest values of ZT are semiconductors. Additionally, in Tab. 1.1,

the comparison of S, σ, and ZT values for insulators, semiconductors, and met-

als is given at 300 K. It is clearly seen that the optimal ZT with a large value of

power factor is located in the semiconductors region. It should be noted that the

discussion presented in this section is made by assuming that the lattice thermal

conductivity is similar for all three types of materials.

1.6 Optimisation of Thermoelectric Figure of Merit

An effective way to maximise the ZT is to manipulate the phonon thermal con-

ductivity which is the only coefficient not determined by the electronic structure.

All other materials parameters (S, σ and κc) are inter-correlated with the elec-



1.6 Optimisation of Thermoelectric Figure of Merit 15

tronic structure of the materials hence, in most cases, can not be optimised inde-

pendently. There are three general strategies to reduce phonon thermal conduc-

tivity that have been successfully used. The first and traditional way is to mod-

ify an already promising compound by introducing point defects via alloying. In

this manner, atomic mass fluctuation throughout the crystal lattice induces strong

phonon scattering and leads to significantly lower thermal conductivity. As a re-

sult of this method, the best room temperature thermoelectric materials are based

on compounds such as Bi2Te3 and Si1−xGex [12, 14].

The second strategy to achieve maximum ZT is using phonon-glass electron-

crystal (PGEC) concept. Here the goal is to be able to achieve a phonon glass

without disrupting the crystallinity of the electron-transport region. By using this

approach significant increases in ZT are reported for several compounds such as

the clathrates which are composed of tetrahedrally coordinated Al, Ga, Si, Ge, or

Sn [12].

A third and highly successful strategy to improve ZT is using nanostructured

thermoelectric materials introduced by Hicks and Dresselhaus [8, 9] in the 1990s.

They showed that by using two-, one- or even zero-dimensional structures one

could obtain significant increases in ZT , far beyond what was believed possible

in bulk materials. In particular, using lower dimensional structures decreases the

phonon thermal conductivity by scattering phonons with the numerous bound-

aries or interfaces throughout the thermoelectric materials and even possibly en-

hances the electronic properties (S and/or σ). This approach led to an increased

study of superlattices (2D structures), nanowires (1D structures), and quantum

dots (0D structures) in the thermoelectric research area. By the same group in

M.I.T, it was also experimentally shown that superlattices can significantly re-

duce the phonon thermal conductivity [15]. Soon after, the extraordinarily large

value of ZT was achieved as 2.4 for p-type Bi2Te3/Sb2Te3 superlattices at room
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temperature [16] and ZT ≃ 3.5 was reported for Bi-doped n-type PbSeTe/PbTe

quantum dot superlattice at 550 K [17].

Figure 1.7: Timeline of ZT for many typical thermoelectric materials [18].

The history of thermoelectric materials characterised by the progress of increas-

ing ZT with applying these three methods is represented in Fig. 1.7. It is seen

that the most effective method for getting higher values of ZT is using low-

dimensional thermoelectric materials.

What is the upper limit for ZT ?

While thermodynamics does not place any upper limit on the ZT , for many years

it was impossible to find ZT values significantly greater than unity. After a while,

it was empirically predicted that by combining the best electronic properties of

any known crystalline material with a phonon conductivity that is characteristic
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of a glass, the upper limit of ZT could be found to be about four [19]. Recently,

however, it has been demonstrated that certain low-dimensional structures can

have values of ZT that notably exceed those found in bulk materials [8, 9]. This

shows that ZT=4 is no longer a theoretical barrier and upgrades our predicted

limit for ZT to, perhaps, 20 [20]. If this value were eventually achieved, thermo-

electric energy converters would have no less than about 50% of the efficiency of

a Carnot cycle and would be comparable with the best known converters based

on the vacuum diode [1, 20].

1.7 State-of-the-art Thermoelectric Materials

1.7.1 Bismuth Telluride and Its Alloys

Bismuth Telluride (Bi2Te3) based materials have been studied as near room tem-

perature thermoelectric materials since 1950s [21]. Bi2Te3 dominates the market of

thermoelectric refrigerator with its alloys with isomorphous compounds, Bi2Se3

and Sb2Te3. Additionally, the potential application in solid state solar thermo-

electric power generator initiates another utilisation for this material.

Bi2Te3 is a typical member of group V chalcogenides and one of the best ther-

moelectric material at room temperature with ZT ≈ 1. It is a narrow-gap semi-

conductor (∼ 160 meV) having rhombohedral crystal structure with a layer struc-

ture shown in Fig. 1.8, along the c axis. The atomic planes follow the sequence

Te1-Bi-Te2-Bi-Te1 which is then repeated. The subscripts 1 and 2 denote differ-

ently bonded tellurium atoms. The Te1-Te1 layers are held together by weak van

der Walls forces. Other remaining atoms (Te1-Bi and Bi-Te2) are linked by strong

ionic-covalent bonds.
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Figure 1.8: (a) Crystal structure of rhombohedral Bi2Te3 with three primitive lat-

tice vectors labelled as t1, t2 and t3. (b) Top view along z direction. (c) Side view

of the quintuple layer [25].

Using Bi2Te3 based bulk materials significant improvements in thermoelectric fig-

ure of merit have been reported [12, 22, 23, 24]. Peak values of ZT are typically in

the range of 0.8 to 1.1 with p-type materials having largerZT values. By adjusting

the carrier concentration of Bi2Te3 based materials it is possible to optimise ZT

and push the peak value at different temperatures which enables the tuning of

the materials for specific applications such as cooling or power generation. Also,

superlattice systems with low dimensionality have been proposed to greatly en-

hance theZT value of Bi2Te3 based materials. The highestZT of about 2.4 at 300 K
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was claimed for the p-type Bi2Te3/Sb2Te3 superlattices by Venkatasubramanian

et al. [16]. It was claimed that this extraordinarily high ZT value dominantly

originates from its exceedingly low lattice thermal conductivity resulting from

the quantum confinement effect.

1.7.2 Silicon, Germanium, and SiGe Alloys

The crystal structures of Si, Ge, and SiGe alloys are cubic diamond and have

been the primary thermoelectric materials in power generation devices operating

in the temperature range of 600 ◦C - 1000 ◦C. These materials have been used in

radio-isotope thermoelectric generators for deep-space missions to convert radio-

isotope heat into electricity. Both Si and Ge have high thermal conductivities,

though they can yield reasonably large values for the power factor since both

elements have high carrier mobilities. Therefore, if their lattice thermal conduc-

tivities can be reduced, their ZT values will rise to a worthwhile value. Since the

1960s, many efforts have been made to improve the ZT of Si, Ge based materials.

Dramatic decrease in the lattice thermal conductivity of Ge can be attained when

it is alloyed with Si. The SiGe alloys can not compete with other thermoelectric

materials at ordinary temperatures but they are very effective at high tempera-

tures. The peak value of the ZT was found to be 1 at 900 ◦C - 950 ◦C for its n-type

alloy and 0.65 for its p-type alloy [26, 27, 28, 29]. The energy gaps for Si and Ge

are 1.15 eV and 0.65 eV, respectively. This suggests that Si rich alloys, when heav-

ily doped, remain effectively free of minority carriers up to high temperatures.

Recently, a peak value of ZT was also achieved as 1.3 at 900 ◦C for n-type SiGe

nanocomposites [30]. Additionally, Bux et al. [31] reported that in nanostruc-

tured bulk Si the grain boundaries with very high density do not strongly affect

electron mobility, but they significantly reduce the lattice thermal conductivity.
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Therefore, the combined transport coefficients produce an increase in the ZT of

nanostructured bulk Si by a factor of nearly 3.5.

1.7.3 Lead Telluride and Related Compounds

In the 1950s, Ioffe et al. [32] realised that semiconductors of high mean atomic

weight were likely to be good thermoelectric materials and studied on lead tel-

luride (PbTe) and isomorphous compounds. PbTe has the cubic rock salt structure

and its band gap is 0.32 eV. It can be doped either n- or p-type with appropriate

dopants (Zn, Cd, In, Bi, Cl for n-type and Na, Au, Ti, O for p-type). The maxi-

mum value of ZT for PbTe was found to be 0.8-1.0 at nearly 650 K [12]. When

PbTe is compared with Bi2Te3, it has a higher melting point temperature at 923

◦C. This means that, although ZT of PbTe is lower than for Bi2Te3, it can be used

up to higher temperatures without chemical stability problems or unwanted con-

tributions from the minority charge carriers. PbTe, then, has been considered

more as a material for thermoelectric generation at mid-range temperature (450

K - 800 K) rather than for refrigeration at room temperature and below. In the

past decade, significant recent works have focused on enhancing the thermoelec-

tric figure of merit of PbTe by nanostructuring method. A very high ZT of about

2.2 was obtained in complex nanostructured PbTe-based alloy Ag1−xPb18SbTe20

at 800 K [34]. Furthermore, by Harman et al. [17] the highest value of ZT was re-

ported for Bi-doped n-type PbSeTe/PbTe quantum dot superlattice as 3.5 at 550

K.
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Figure 1.9: Thermoelectric figure of merit (a) n-type and (b) p-type Bi2Te3, PbTe,

and Si1−xGex systems [33].

Figure 1.9 summarises the temperature dependence of ZT for Bi2Te3, PbTe, and

Si1−xGex materials [33].

1.7.4 Skutterudites

The name of skutterudite was first given to the mineral CoAs3 and extended to

other compounds in the same family, such as CoSb3. The general chemical for-

mula for binary skutterudites can be written as MX3, where atom M can be Co,

Ir, or Rh, and atom X can be P, As, or Sb. The original thermoelectric skutterudite
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CoSb3 has very high power factor but its phonon thermal conductivity is too high

to get larger values of ZT . One successful approach to reduce its lattice thermal

conductivity is void-filling in the structure with many different elements includ-

ing lanthanide, actinide, alkaline-earth, alkali, thallium, and Group IV elements.

Skutterudite antimonides possess the largest voids thus they are of particular in-

terest for thermoelectric applications. Particularly, ZT values of Ce0.9Fe3CoSb12

and La0.9Fe3CoSb12 compositions were observed to be about unity at 700 K and

predicted to be 1.4 at 1000 K [35].

Figure 1.10: Temperature dependence of ZT for different material systems [36].

In Fig. 1.10, temperature variation of ZT is represented for state-of-the-art ther-

moelectric materials. Zinc antimonide (Zn4Sb3) is also presented due to its higher

ZT values in the temperature range 263 K - 765 K which originate from its lower

lattice thermal conductivity via its disordered crystal structure.
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1.8 Scope and Organisation of This Thesis

In this chapter, a broad introduction to thermoelectricity has been presented in-

cluding various thermoelectric effects and their applications. Additionally, the-

state-of-the-art thermoelectric materials have been described in detail.

The thesis is organised as following:

• In Chapter 2, a full theory of thermoelectric properties is developed for 3D

bulk materials.

• Our bulk theory is extented to 2D quantum well structures and presented in

Chapter 3.

• In Chapter 4 and 5, theoretical calculations of thermoelectric properties are

discussed for (Bi2Te3)x (Bi2Se3)1−x and (Bi2Te3)x (Sb2Te3)1−x single crystals. In

Chapter 6, a detailed theoretical investigation and comparision of thermal con-

ductivity is presented for both n- and p-type Bi2Te3 based alloys.

• In Chapter 7, thermoelectric properties of Bi2Se3/Bi2Te3/Bi2Se3 and Sb2Te3/

Bi2Te3/Sb2Te3 quantum well systems are investigated.

• Finally, the summary of the thesis and a plan for future studies are briefly

presented in Chapter 8.
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Chapter 2

Thermoelectric Transport Theory in

3D Bulk Materials

When an electric field, a concentration gradient, or temperature gradient exists

in a semiconductor we observe charge transport (electric current), mass trans-

port (diffusion of carriers), or energy transport (heat conduction). The theory of

transport processes deals with the relation between these currents and the forces

which produce them. The formulations used for the calculation of thermoelectric

transport properties are essentially based on a semiclassical treatment1. Although

there are other approaches describing the semiclassical transport equation, the

Boltzmann equation is always used due to it is being reasonably easy to track.

Additionally, it yields a form of the expressions for the transport parameters that

are intuitive and that can be readily compared with the experimental measure-

1In this treatment one regards electrons and holes as particles with well-defined position and

crystal momenta except for the duration of a collision which is assumed negligible compared to

the time between collisions. Therefore this system is completely analogous to an ideal classical

gas. However, the collision process itself requires quantum mechanics and in this sense the treat-

ment is called semiclassical.
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ments. In this chapter, a detailed derivation of thermoelectric transport properties

(S, σ, and κc) in 3D bulk systems will be presented with using Boltzmann equa-

tion and relaxation time approximation. Moreover, other thermal conductivity

contributions from electron-hole pairs (κbp) and phonons (κph) will be described

in detail including several scattering mechanisms.

2.1 Electronic Transport Properties

2.1.1 Fermi Level

To make a quantitative assessment of the thermoelectric figure of merit (ZT ) for

semiconductor materials the electronic transport properties (S, σ, and κc) are

strongly required the temperature dependent Fermi level. The temperature vari-

ation of the Fermi level (Ef) for n- and p-type bulk semiconductors in the extrinsic

regime is expressed by McKelvey [6] as

for n-type;

Eext
f =

1

2
(Ec + Ed) +

kBT

2
ln
Nd

2Uc
− kBT sinh−1

[
√

Uc

8Nd
exp

(−∆Ei

2kBT

)]

,

for p-type;

Eext
f =

1

2
(Ea + Ev) +

kBT

2
ln

Na

2Uv

− kBT sinh−1
[
√

Uv

8Na

exp
(−∆Ei

2kBT

)]

,

(2.1)

where Ec is the conduction band edge, Ev is the valence band edge, Ed is the

donor energy level and Ea is the acceptor energy level. ∆Ei is determined as

(Ec − Ed) for the donor ionisation and (Ea − Ev) for the acceptor ionisation ener-

gies. Nd and Na are the concentrations of donor impurity and acceptor impurity

atoms, respectively. Parameters Uc and Uv are given as Uc=2((m∗

nkBT )/(2π~
2))3/2
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Figure 2.1: Temperature dependence of Fermi level for (a) n-type and (b) p-type

semiconductor materials. The curves marked “1, 2, and 3” correspond to low,

intermediate and high impurity densities, respectively [6].

and Uv=2((m∗

pkBT )/(2π~
2))3/2 with kB is the Boltzmann constant and ~ is the re-

duced Planck’s constant [6]. The effective masses are represented by m∗

n for the

electron mass and m∗

p for the hole mass. For both types of semiconductors be-

yond a sufficiently high temperature donors at the Ed level (or acceptors at the

Ea) become fully ionized and the materials behave like intrinsic semiconductors.

In this regime the temperature dependences of Ef for both n- and p-type doped

semiconductors is written as [6]

Eint
f =

Ev + Ec

2
+

3

4
kBT ln

(m∗

p

m∗
n

)

. (2.2)

In Fig. 2.1, the temperature dependence of Fermi level is presented for both

n- and p-type semiconductors. For n-type materials, at absolute zero tempera-

ture, Eq. (2.1) gives Ef=1
2
(Ec + Ed), which means that the Fermi level is mid-

way between the donor levels and the conduction band. When the temperature

increases, Ef goes up slightly (remaining nevertheless below Ec) and then goes
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down through the donor levels toward the centre of the gap. For temperatures

such that Ef is several kBT units below the donor energy level Ed at which point

the donors are almost completely ionized and Ef approaches the intrinsic value

Eint
f as given in Eq. (2.2). Similarly for p-type semiconductor materials, at ab-

solute zero temperature the Fermi level lies midway between the acceptor levels

and the valence band. Following Eq. (2.1), as the temperatures increases Ef first

decreases a bit, then rises continuously approaching the Eint
f value given in Eq.

(2.2) when the acceptor levels become fully ionized.

2.1.2 The Boltzmann Equation

In the thermoelectric transport theory, the fundamental issue concerns the distri-

bution function of carriers about how the occupation number of carriers changes

as a result of an electric field, thermal gradient, and the effect of various scattering

mechanisms that the carriers undergo. The distribution function fk(r) of a carrier

is defined as the probability that a band state with energy Ek will be occupied by

this carrier at a carrier temperature T . The equilibrium distribution of carriers is

governed by the Fermi-Dirac distribution function written as [1, 2, 3, 4, 5]

f 0
k =

1

exp [(Ek − ζ∗)/(kBT )] + 1
(2.3)

where ζ∗ is the chemical potential. Equation (2.3) is independent of the spatial

coordinate r because it is assumed that in equilibrium the temperature is the same

everywhere (homogeneity). Away from equilibrium, the distribution may vary

with the r therefore it is assumed that local equilibrium spreads over the region

larger than the atomic dimensions on the time t. Additionally, owing to the wave

vector dependence of E the distribution function depends on k and therefore it is

considered explicitly f(r,k, t). Changes in f(r,k, t) arise from [1, 2, 3, 4, 5]:
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- As a result of diffusion, carriers can move in or out in the region in the vicinity

of point r.

- Carriers are acted upon by driving forces (electric field or thermal gradient).

- Carriers are scattered by lattice vibrations or crystal imperfections therefore they

are deflected into and out of the region near point r. This is called the scattering

effect on the distribution function and the respective partial derivative is named

the collision term.

The Liouville theorem is related with the first two effects on f(r,k, t) concerning

the invariance of the volume occupied in phase space [1, 2, 3, 4, 5]. Therefore, the

number of carriers in the neighborhood of point r at time tmust equal the number

of carriers in r − v(k)dt at time t − dt where v(k) is the carrier velocity. Due to

the applied external electric field (E) carriers accelerate and their momentum is

expressed by (dk/dt) = −qEdt/h (assuming that there is no magnetic field and q

is the carrier charge which equals to −e for electrons and e for holes) [1, 2, 3, 4, 5].

Similar to the Liouville theorem we now consider the same volume invariance

for k-space. The carriers are at point k at time t must be at a location k− qEdt/h.

It is therefore can be written [4]

f(r,k, t) = f
[

r− v(k)dt,k− qE dt
~
, t− dt

]

, (2.4)

in the absence of any kind of collisions. However, collisions cannot be neglected

because they significantly change the population of carriers. In time dt a change

of population due to scattering is expressed by (∂f/∂t)colldt [1, 2, 3, 4, 5]. By

putting it all together, it can be found that [4]

f(r,k, t) = f
[

r− v(k)dt,k− qE dt
~
, t− dt

]

+
(∂f

∂t

)

coll
dt. (2.5)

When Eq. (2.5) is expanded to terms linear in dt, the Boltzmann equation is ex-
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pressed as [1, 2, 3, 4, 5]

∂f

∂t
+ v · ∇rf +

qE
~

· ∇kf =
(∂f

∂t

)

coll
. (2.6)

The terms on the left and right hand side are called the streaming terms and the

collision term, respectively. The collision term contains all the information about

the nature of the scattering processes.

One of the most successful approaches for solving the Boltzmann equation is

based on the relaxation time approximation [1, 2, 3, 4, 5]. In this approach it

is assumed that scattering processes can be described by a relaxation time τ(k)

which specifies how the system returns to equilibrium, i.e., how the distribution

function f(r,k, t) approaches its equilibrium value f 0(k) [1, 2, 3, 4, 5]. Therefore,

the collision term is written as [1, 2, 3, 4, 5]

[∂f

∂t

]

coll
= −f(k)− f 0(k)

τ(k)
= −g(k)

τ(k)
, (2.7)

where g(k) is the deviation of the distribution function f(k) from its equilib-

rium value f 0(k). Further considerable simplification of the transport problem is

achieved by linearized Boltzmann equation which is done simply by replacing

the steady-state carrier distribution in the gradient ∇rf(r,k, t) and ∇kf(r,k, t)

to the equilibrium distribution function as ∇rf
0(r,k) and ∇kf

0(r,k) [4]. We can

now easily express the linearized Boltzmann equation rewriting Eq. (2.6) by eval-

uating these two respective gradients as [4]

(

−∂f
0

∂E

)

v(k)
[E − ζ∗

T
∇rζ

∗ + q
(

E +
1

q
∇rζ

∗

)]

=
(∂f

∂t

)

coll
. (2.8)

A general form of the distribution function describing carrier population per-

turbed by a weak electric field and a small temperature gradient is given the

perturbed distribution function f(r,k, t) and can be found after some algebra as

[4]

f(k) = f 0(k) +
(

−∂f
0

∂E

)

v(k)τ(k)
[

−q
(

E +
1

q
∇rζ

∗

)

+
E − ζ∗

T
(−∇rT )

]

. (2.9)
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2.1.3 Seebeck Coefficient

Themoelectric transport coefficients (S, σ, and κc) of 3D bulk systems are de-

rived when an electric field and a temperature gradient is applied. We have taken

conditions appropriate to an isotropic solid with the diagonal components of all

transport coefficients are equal and the non-diagonal components zero. Addi-

tionally, it is assumed that electrons (or holes) can move almost freely and they

are in a band that is strictly parabolic (nearly free electron/hole model) and all

flows (flow of charge and heat current) are in the x direction. In such 3D bulk

systems, the dispersion relation for a single carrier pocket is assumed to be

E3D(kx, ky, kz) =
~
2kx
2m∗

x

+
~
2ky
2m∗

y

+
~
2kz
2m∗

z

, (2.10)

where the propagation vectors are kx, ky, and kz along the three principal axes

x, y, and z of the crystal. The effective mass tensor is diagonal and consists of

componentsm∗

x, m∗

y, and m∗

z. The density of states for 3D bulk systems, presented

in Fig. 2.2, is written as

g3D(E) =

√
2

~3π2

√
m∗

xm
∗
ym

∗
zE

1/2. (2.11)

By solving the linearized Boltzmann equation the electric current is given by [4],

i = ∓
∫

∞

0

evf(E)g(E)dE, (2.12)

where − sign refers to electrons and + sign to holes, −e is the electronic charge,

v is the velocity of charge carriers in the x direction and f(E) is the Fermi distri-

bution [4, 5, 7]. The rate of flow of heat per unit cross-sectional area is defined as

[4, 5, 7]

w =

∫
∞

0

v(E − Ef)f(E)g(E)dE, (2.13)

where E −Ef represents the total energy transported by a carrier.
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Figure 2.2: Electronic density of states g(E) as a function of carrier energy E for

3D bulk crystal.

The preceding Eqs. (2.12) and (2.13) can be re-written by replacing f with f − f0

(since there is no transport when f = f0) as [4]

i = ∓
∫

∞

0

ev2τg(E)
∂f0
∂E

(∂Ef

∂x
+
E −Ef

T

∂T

∂x

)

dE, (2.14)

and

w = ±Ef

e
i+

∫
∞

0

v2Eg(E)τ
∂f0
∂E

(∂Ef

∂x
+
E −Ef

T

∂T

∂x

)

dE. (2.15)

The condition i = 0 is that for the definition of the Seebeck coefficient and it can

be found that [4]

∫
∞

0

eV 2τg(E)
∂f0
∂E

∂Ef/∂x

∂T/∂x
dE +

∫
∞

0

ev2τg(E)
∂f0
∂E

E −Ef

T

∂T/∂x

∂T/∂x
dE = 0. (2.16)

As discussed in Chapter 1, Seebeck coefficient is defined by [4]

S = −∆V

∆T
=

E
∇T =

1

e

∂Ef/∂x

∂T/∂x
. (2.17)
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Therefore, from Eqs. (2.16) and (2.17) it is found that

S = −1

e

∫
∞

0
v2τg(E)∂f0

∂E
E−Ef

T
dE

∫
∞

0
v2τg(E)∂f0

∂E
dE

, (2.18)

where the assumptions are made as τ = µxm∗

e
with µx is the carrier mobility in

the x direction and v2 = 2E
3m∗

. Eventually, the final expression of the Seebeck

coefficient is then given by [4, 7, 8]

S = ±kB
e

[ Ef

kBT
− 5

3

F3/2

F1/2

]

, (2.19)

where the plus is sign for the p-type semiconductors, the minus sign is for the

n-type semiconductors and Fermi integral Fi is defined as [4, 7, 8]

Fi =

∫
∞

0

xidx

e(x−ζ∗) + 1
. (2.20)

2.1.4 Electrical Conductivity

Similarly, the electrical conductivity of a semiconductor in the extrinsic regime

can be found by setting the temperature gradient equal to zero (∂T/∂x = 0) [4].

The electric field is given by [4]

E = ±1

e

∂Ef

∂x
, (2.21)

so that electrical conductivity can be written as

σ =
i

E = −
∫

∞

0

e2v2τg(E)
∂f0
∂E

dE. (2.22)

By substituding the expressions of v2, τ , and g(E) as written in previous section

it can be found that

σ = −2

3
eµx

1

2π2

( 2

~2

)1/2

(m∗

xm
∗

ym
∗

z)
1/2

∫
∞

0

E3/2∂f0
∂E

dE. (2.23)

By integrating by parts the final form of the electrical conductivity in the extrinsic

regime can be found in terms of the Fermi integral as [4, 7, 8]

σextrinsic =
1

2π2

(2kBT

~2

)3/2

(m∗

xm
∗

ym
∗

z)
1/2F1/2eµx. (2.24)
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In the intrinsic regime, the electrical conductivity of semiconductors is expressed

as [6, 10]

σintrinsic = eNi(µn + µp) = A
′

e−Eg/2kbT , (2.25)

where Ni is the equilibrium carrier density, µn, µp are the electron and hole mo-

bilities, A′ as a parameter that does not strongly depend on temperature, and Eg

is the band gap of a material.

2.2 Thermal Transport Properties

2.2.1 Electronic Thermal Conductivity

Same condition as for the Seebeck coefficient (i = 0) is used to determine the

electronic thermal conductivity which is described as [4]

κc = − w

∂T/∂x
. (2.26)

By substituding the expression of w in the above equation it can be found that

κc =−
∫

∞

0

v2Eg(E)τ
∂f0
∂E

∂Ef/∂x

∂T/∂x
︸ ︷︷ ︸

=eS

dE −
∫

∞

0

v2
E2

T
g(E)τ

∂f0
∂E

dE

+

∫
∞

0

Ef

T
v2Eg(E)τ

∂f0
∂E

dE.

(2.27)

Following the same procedure as for S and σ the final expression of the electronic

thermal conductivity can be written in terms of the Fermi integrals as [4, 7, 8]

κc =
τ~2

6π2

(2kBT

~2

)5/2(m∗

ym
∗

z

m∗
x

)1/2

kB

[7

2
F5/2 −

25F 2
3/2

6F1/2

]

. (2.28)

2.2.2 Bipolar Thermal Conductivity

In the above section, it has been assumed that one type of charge carrier (elec-

trons or holes) is present in the conductor (called an extrinsic semiconductor). If
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an extrinsic semiconductor is taken up to a high enough temperature a certain

number of electron-hole pairs are created by excitation across the forbidden gap.

When there are appreciable numbers of both electrons and holes, but their con-

centrations are unequal, the semiconductor is said to show mixed conduction. If

the impurity level is very low or the semiconductor is taken up to a sufficiently

high temperature that the concentrations of electrons and holes are essentially

equal, then the semiconductor is called to be intrinsic.

When carriers of both signs are present simultaneously, a continuous stream of

charges can flow in the direction of the temperature gradient without a corre-

sponding electric current. This leads to a clear increment to the thermal conduc-

tivity. In this bipolar diffusion process, electron-hole pairs are created at the hot

end of the specimen and absorb energy from the heat sources. They move down

to the cold end of the specimen under the influence of the temperature gradient

and recombine there at the cold end, giving up the ionization energy (equal to

the forbidden energy gap) to the surroundings. Therefore, there is transport of

ionization energy in addition to the normal direct transport of kinetic energy by

carriers.

In small-band gap semiconductors such as Bi2Te3, PbTe, PbSe the bipolar thermal

conductivity becomes the dominant contribution above room temperature. For

a very idealised semiconductor which possesses simple parabolic valence and

conduction bands and in which the charge carriers only undergo acoustic mode

lattice scattering, the bipolar thermal conductivity is expressed by Glassbrenner

and Slack [9] as

κbp =
b

(1 + b)2

[ Eg

kBT
+ 4

]2[kB
e

]2

σintrinsicT, (2.29)

where b is the ratio of electron to hole mobility. With Eqs. (2.25) and (2.29) we can
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simply write the bipolar part of thermal conductivity as

κbp = FbpT
p exp(−Eg/2kBT ), (2.30)

with regarding Fbp and p as adjustable parameters, changing with doping type.

2.2.3 Phonon Thermal Conductivity

In solids atoms are not quite stationary but oscillate around their equilibrium po-

sitions (crystal lattice) as a result of thermal energy. The vibrations of atoms are

not independent of each other and in fact, the motion of one atom anywhere in the

solid affects all other atoms present. The crystal lattice vibration is characterised

by the normal modes or standing waves. The quanta of the crystal vibrational

field are referred to as phonons. In the presence of a temperature gradient, the

thermal energy is considered as propagating through wave packets consisting of

various normal modes, or phonons. The relationship between phonon frequency

ω and wave vector q (q = 2π/λ, where λ is the wavelength) is known as dispersion

relation. Figure 2.3 (a) shows a schematic phonon dispersion curve for one par-

ticular direction of propagation in a crystal with monoatomic lattice (one atom

per unit cell). For a given value of q, there are three independent modes, one

longitudinal and two transverse. When there is more than one atom per unit cell

in the crystal the dispersion curves become more complicated. For instance, in

Fig. 2.3 (b) the phonon dispersion curve is presented for a diatomic lattice (two

atoms per unit cell). The low-frequency acoustic branches correspond to atoms in

a unit cell moving in same phase whereas high-frequency optical branches rep-

resent atoms in unit cell moving in opposite phases. In general, optical phonons

are not effective in transporting heat energy due to their small group velocity

(∂ω/∂q). However, they can affect the heat conduction by interacting with the

acoustic phonons which are the main heat conductors.
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Figure 2.3: Schematic phonon dispersion curves for lattice vibrations where there

is (a) one atom in a unit cell, and (b) two atoms in a unit cell. The lattice parameter

is denoted a.

Phonons in a crystal are in thermal equilibrium with each other. The average

number of phonons in the qth mode in thermal equlibrium at temperature T is

given by Bose-Einstein distribution function as [11]

n̄q =
1

exp (~ωq/kBT )− 1
. (2.31)

From above expression it is clearly seen that at absolute zero temperature there

are no phonons in a crystal. At low temperatures ~ω ≫ kBT , n̄ ⋍ exp (−~ω/kBT )

and there is an exponentially small probability for a phonon to be present. At

high temperatures kBT ≫ ~ω, n̄ ⋍ kBT/~ω and the number of phonons increases

linearly with temperature.



2.2 Thermal Transport Properties 40

2.2.3.1 The Phonon Boltzmann Equation

The fundamental assumption in deriving the phonon Boltzmann equation is that

there exists a distribution function nq,s(r, t) which measures the occupation num-

ber of phonons (q, s) for their different modes s in the neighbourhood of r at

time t. When a temperature gradient ∇T is applied across a dielectric, the rate of

charge of this distribution function is controlled by two mechanisms.

(i) Diffusion: A spatial dependence of temperature (T = T (r)) is involved when

a temperature gradient ∇T is applied. This leads nq,s(r, t) to diffuse (vary from

one point to another) at the rate [11]

∂nqs

∂t

∣
∣
∣
diff

= −cs(q) · ∇T
∂nqs

∂T
, (2.32)

where cs is the velocity of phonons in mode s.

(ii) Scattering: Various scattering processes also contribute to a rate of change
∂nqs

∂t
|diff . In the steady state of heat flow through the solid, the total rate of nqs

must vanish and thus [11]

−cs(q) · ∇T
∂nqs

∂T
+
∂nqs

∂t

∣
∣
∣
scatt

= 0. (2.33)

This is the general form of the Boltzmann equation for phonons. A solution of

this equation is required for a calculation of phonon conductivity. However, this

very complicated integro-differential equation requires a knowledge of the distri-

bution function nq
′
s
′ for all possible states q′

s
′ together with transition rates from

q
′

s
′ to qs, thus, in general cannot be solved. Having said that, a simplification

(linearisation) of this equation is possible. In equilibrium the phonon distribu-

tion does not change with time [11],

∂n̄qs

∂t
= 0. (2.34)

Then nqs in the second term of Eq. (2.33) can be replaced with the linear term

(nqs − n̄qs) in a Taylor expansion of nqs about the equilibrium distribution n̄qs.
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Another assumption which can be made is that in the steady state the deviation

from equilibrium due to the presence of a temperature gradient is small so that

nqs can be replaced with n̄qs in the first term of Eq. (2.33). For conciseness, it has

been derived in detail that [11]

∂nqs

∂t

∣
∣
∣
scatt

= −(nqs − n̄qs)

τqs
, (2.35)

where τqs is the relaxation time for the phonon qs. Therefore, the linearised

phonon Boltzmann equation can be expressed as [11]

−cs(q) · ∇T
∂n̄qs

∂T
=

(nqs − n̄qs)

τqs
. (2.36)

2.2.3.2 Single-Mode Relaxation-Time Theory

(Debye Theory)

When a finite temperature gradient ∇T is established across a solid, in the steady

state the rate of heat energy flow per unit area normal to the gradient is given by

the macroscopic expression [11]

Q̇ = −κph∇T (2.37)

where κph is the lattice thermal conductivity. The heat current Q can be micro-

scopically expressed by adding contributions from phonons in all possible modes

as [11]

Q̇ =
1

N0Ω

∑

qs

~ω(qs)nqscs(q)

=
1

N0Ω

∑

qs

~ω(qs)ψqsn̄qs(n̄qs + 1)cs(q),

(2.38)

where we have considered a crystal with N0 unit cells, each of volume Ω, cs(q) is

the group velocity for phonon qs, and ψqs represents a deviation from the equi-

librium system. The second equality in Eq. (2.38) is written by noting that it is
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the deviation of the phonon distribution from equilibrium (nqs − n̄qs) which con-

tributes to the heat current. From Eqs. (2.37) and (2.38) the following expression

for the lattice thermal conductivity tensor can be obtained as [11]

κph(ij) = −Q̇i · ∇Tj
|∇T |2

= − 1

N0Ω|∇T |2
∑

qs

~ω(qs)ψqsn̄qs(n̄qs + 1)ci(qs) · ∇Tj .
(2.39)

For cubic crystals and an isotopic medium c is parallel to ∇T . Thus the lat-

tice thermal conductivity is a scalar quantity and can be simplified as κph(ij) =

κphδ(ij) and hence the above equation can be written as [11]

κph = − 1

N0Ω|∇T |2
∑

qs

~ω(qs)ψqsn̄qs(n̄qs + 1)cs(q) · ∇T. (2.40)

However, from Eq. (2.36) it can be shown that [11]

ψqs = −cs(q) · ∇Tτqs
~ω(qs)

kBT 2
. (2.41)

Substituting Eq. (2.41) into Eq. (2.40) it can be found that [11]

κph =
1

N0ΩkBT 2

∑

qs

(cs(q) · ∇T )2
|∇T |2 ~

2ω2(qs)n̄qs(n̄qs + 1)τqs

=
~

N0ΩkBT 2

∑

qs

ω2
qscsτqsn̄qs(n̄qs + 1) cos2 θ,

(2.42)

where cos θ = ĉs(q)·∇̂T . In isotropic three dimensional systems< cos2 > θ = 1/3,

hence the lattice thermal conductivity in the single-mode relaxation-time (smrt)

approach becomes [11]

κph(smrt) =
~
2

3N0ΩkBT 2

∑

qs

ω2
qsc

2
s(q)τqsn̄qs(n̄qs + 1). (2.43)

This smrt result for the lattice thermal conductivity is also be referred to as the

Debye result since it is equivalent to the formula derived by Debye κph(smrt) ≡

κph(D) [12].
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Specific heat at constant volume is a fundamental quantity for thermal properties

of solids. The specific heat is defined as [11]

Cv =
(∂E

∂T

)

|N0Ω, (2.44)

where E is the thermal energy of the crystal described as [11]

E =
∑

s

∫

gs(ω)~ωs(q)n̄s(q)dω. (2.45)

with gs(ω) represents the phonon density of states. The specific heat then can be

expressed as [11]

Cv =
~
2

kBT 2

∑

s

∫

gs(ω)ω
2
s(q)

exp (~ω/kBT )

[exp (~ω/kBT )− 1]2
, (2.46)

since

n̄qs(n̄qs + 1) =
exp (~ω/kBT )

[exp (~ω/kBT )− 1]2
. (2.47)

Then Eq. (2.46) can be written as [11]

Cv =
~
2

kBT 2

∑

s

∫

gs(ω)ω
2
s(q)n̄qs(n̄qs + 1)dω. (2.48)

In Debye’s model, it is considered that in practice the crystal volume is very large

and the q values are densely spaced, thus
∑

q can be replaced by an integral as

dq ≡
∫
g(ω)dω. The smrt or Debye result for the lattice thermal conductivity then

can be written as [11]

κph(D) =
~
2

3N0kBT 2

∑

s

c2s

∫ ωD

0

g(ω)ω2(qs)τqsn̄qs(n̄qs + 1)dω, (2.49)

where ωD is an energy cut-off (called the Debye frequency). In the Debye model

only acoustic phonon branches are considered and the phonon density of states

is given by [11]

g(ω) =
N0ω

2π2

∑

s

1

c3s

∫ ωD

0

ωdω. (2.50)

Therefore, by substituting Eq. (2.50) into Eq. (2.49) we can write [11]

κph(D) =
~
2

6π2kBT 2

∑

s

c2s

∫ ωD

0

ω4(qs)

c3s
τqsn̄qs(n̄qs + 1)dω. (2.51)
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Using linear dispersion relations required in the Debye scheme (i.e. ω = csq ⇒

dω = csdq), the above equation can be re-expressed as [11]

κph(D) =
~
2

6π2kBT 2

∑

s

c4s

∫ qD

0

q4Dτqsn̄qs(n̄qs + 1)dq, (2.52)

where qD is the Debye radius. By introducing a reduced wave number x as x =

q/qD, the smrt or Debye result can be expressed finally within the Debye scheme

as [11]

κph(D) =
~
2q5D

6π2kBT 2

∑

s

c4s

∫ 1

0

x4τqsn̄qs(n̄qs + 1)dx. (2.53)

2.2.3.3 Phonon Scattering Rates

Now that we have derived the formula for the lattice thermal conductivity and

the problem is to calculate the relaxation times. The phonon relaxation time τ in

Eq. (2.53) is governed by various scattering mechanisms. Within Matthiessen’s

rule the total phonon scattering rate is obtained as [11]

τ−1 =
∑

i

τ−1
i , (2.54)

where τ−1
i represents contributions from ith scattering mechanism.

Boundary Scattering:

Phonons are scattered by boundaries of a real crystal. The problem of boundary

scattering of phonons was discussed by Casimir [13], Berman et al. [14, 15], Ziman

[1], and Carruthers [16]. The importance for studying boundary scattering mech-

anism emerges from the fact that the strength of most of the phonon scattering

processes is negligible for long wavelength phonons. Therefore, at low enough

temperatures for the phonon mean free path to be as large as crystal dimensions,

boundary scattering has significant effect. Although the scattering perturbation
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Hamiltonian can be used for other different phonon scattering processes, it is not

defined for phonon boundary scattering process. Detailed calculations made by

Casimir [13] show that the phonon boundary scattering is not due to any transi-

tions by phonon boundary scattering hence its transition matrix can be neglected.

In this theory, a long cylindrical rod is considered to be the specimen, the temper-

ature is assumed to be low enough that the only collision made by the phonons

are with the boundary and it is supposed that the collision is completely diffuse.

This means that the incident phonons are absorbed and then re-emitted with the

equilibrium distribution corresponding to the local temperature. Assuming that

a constant fraction of the phonons is speculary reflected, Berman, Simon, and

Ziman have managed to generalise Casimiri’s theory to account for multiple re-

flection and end effect. A simple conclusion from all that is that a constant re-

laxation time (independent of phonon frequency and temperature) for a phonon

with speed cs in the polarisation mode s can be defined as [11]

τ−1
qs (bs) =

cs
L
, (2.55)

where L is the phonon mean free path determined by the crystal size in single

crystals and by average grain size in polycrstalline materials.

Mass Difference Scattering:

In 1941, it was for the first time pointed out that isotopes occuring in a crys-

tal will disturb the periodicity of the lattice and hence cause thermal resisitivity

by Pomeranchuk [17]. Later, in 1955, Klemens [18, 19] studied the scattering of

phonons by mass difference and derived an expression for the relaxation time as

[11]

τ−1
qs (md) =

ΓmdΩ

4πc̄3
ω4(qs), (2.56)

where c̄ is the average phonon speed, ω=cq, and Γmd is the mass-defect parameter.
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For a single-species crystal, the isotopic mass-defect parameter takes the form

[11, 20]

Γisotopes =
∑

i

fi

(∆Mi

M̄

)2

, (2.57)

where fi is the percentage of ith isotope present in the crystal and ∆Mi=Mi − M̄ ,

with M is the average atomic mass.

In a composite material, such as an alloy, phonons also suffer scattering from the

mass difference caused by alloying. In such materials with molecular formula

AxByCz... mass-difference scattering of phonons are calculated with the formula

given in Eq. (2.56) where the mass-defect parameter is given by [20]

Γalloy(AxByCz...) =
x

(x+ y + z + ...)

(MA

M̄

)2

Γ(A)

+
y

(x+ y + z + ...)

(MB

M̄

)2

Γ(B)

+
z

(x+ y + z + ...)

(MC

M̄

)2

Γ(C)

+...,

(2.58)

where

Γ(A) =
∑

i

fi

(∆Mi(A)

M̄A

)2

, (2.59)

and represents the defect parameter for atomic species A, and the average atomic

mass is expressed as M̄ = (xMA + yMB + zMC + ...)/(x+ y + z + ...).

Phonon-Donor Electron (-Acceptor Hole) Scattering:

In doped insulators and semiconductors, phonons relaxation is also subject to

their interaction with donor electrons (or acceptor holes). The expression for

phonon relaxation rate due to such interaction takes different forms depending

on donor (or acceptor) concentration level (above or below 1017cm−3). In this

work, the application of the phonon scattering theory is needed for Bi2Te3 based
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alloys which have impurity levels exceed 1017cm−3 and, thus Ziman’s theory [1]

can be applied which has a simplified form as following expression [21]

τ−1
q (ep, hp) =

Nd,aE
2
Dω

ρc2LkBT

√

πm∗
n,pc

2
L

2kBT
exp

(−m∗

n,pc
2
L

2kBT

)

. (2.60)

where Nd (Na) is the concentration of donor electrons (acceptor holes), ED is the

deformation potential, and cL is the longitudinal acoustic phonon speed.

Anharmonic Scattering:

When a phonon encounters another phonon in a crystal, the two scatter from

each other because of the anharmonic interaction between them. At temperature

above the absolute zero anharmonic lattice forces exist in real crystals. Addi-

tionally, at high enough temperatures, where the atomic displacements are large,

these phonon-phonon interactions become particularly important.

While it is reasonably straightforward to derive relaxation time expressions for

above scattering mechanisms, the same is not true for the anharmonic relaxation

time for two reasons: (i) while other scattering mechanisms are elastic in nature,

anharmonic interactions are inelastic in nature, and (ii) to derive an acceptable

form of the anharmonic interaction Hamiltonian is much more diffucult com-

pared to others. Deriving a workable expression for anharmonic crystal potential

and hence for anharmonic relaxation time is one of the most difficult objectives

in phonon physics.

The theory of lattice thermal conductivity, including the inelastic nature of anhar-

monic phonon interactions, has been developed using relaxation time and varia-

tional approaches at different levels of sophistication. In 1954, Herring [22] was

the among the first to use a relaxation time approach to understand and explore

these interactions in bulk materials. He showed that the relaxation rate of phonon

modes undergoing three phonon processes was directly proportional to the tem-
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perature. However, this approach relies on the condition that the temperature is

higher than the Debye temperature [11] and uses a simplified form for the po-

tential cubic anharmonic term. This relaxation time approach was adopted by

Liebfried and Schlömann [23] who had previously developed an anharmonic po-

tential [24] as part of their specific heat calculations in 1952. This anharmonic

potential was calculated using a Debye-like continuum approach to modelling

the potential. Using their potential, Leibfried et al. [23] were able to calculate

the lifetime of the acoustic phonon modes undergoing three phonon interactions

for bulk semiconductors. This potential was advantageous in that it had only

one adjustable parameter, but was disadvantageous in that it required linear dis-

persion relations. This theory was then applied to several semiconductors and

showed good agreement with experiment [1], though in their results it was a ne-

cessity to vary at least one adjustable parameter with temperature to match high

and low temperature experimental results. Klemens, in 1958, proposed a second

form for the anharmonic potential in bulk [33], which also only applied in the

long wavelength limit to acoustic phonons, by applying symmetry arguments.

The advantage of Klemens potential was that it applied to non-linear dispersion

curves, which is the case in most real systems. The disadvantage of this potential

was that it required one to have knowledge of the average velocity of the phonon

modes (with no clear definition of how to calculate this) and had two scalable pa-

rameters. Also, Klemens’ expression, like Leibfried’s, had an arbitrary coupling

between the interacting phonon modes. However, Klemens and Liebfrieds mod-

els did not agree on the low temperature relaxation rates. Later, in 1966 Klemens

[25, 26] improved and generalised this potential and the resultant expression for

the relaxation rate of phonon modes by including the effects of optical modes,

but still the two theories could not agree. Hamilton and Parrott [27], in 1968,

re-adapted and improved the form of the Leibfried’s potential by expanding the

potential in terms of the isotropic continuum model based upon the relations de-
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rived by Landau and Lifschitz [28]. By applying this approach, they showed that

these scattering processes could explain the thermal conductance of Ge as a func-

tion of temperature using the variational principle. Later, on this basis, Parrott

applied this potential using the knowledge gained from the variational approach

to a relaxation time approach [29, 30].

In 1974, Srivastava [31] presented a detailed description of the relaxation rate

of phonon modes. Previous arbitrary parameters and coupling constants were

replaced with measurable quantities and a clear description of the difference be-

tween Class 1 and Class 2 events was presented. Also, by removing arbitrary

coupling parameters, Srivastava was able to show that at high temperatures,

Umklapp processes would dominate in bulk materials and at low temperatures

Normal processes would dominate. In his approach, he was able to discuss the

exact contributions from different phonon modes, and only applied one semi-

adjustable parameter, the Grüneisen constant, which did not need to change with

temperature. Later, in 1976, Srivastava [32] improved upon the potential which

Parrott had applied [30] by removing the necessity to use linear dispersion rela-

tions and correcting the potential to show a similar form to that of Klemens [33],

but with only one semi-adjustable parameter (the Grüneisen constant) and no ar-

bitrary coupling factor. Later, by applying this relaxation time approach to Ge,

Srivastava [34] showed excellent agreement with experiment and explained the

thermal conductivity in all regimes. This included the high temperature regime

which is dominated completely by three phonon events.

In this thesis, for the anharmonic phonon scattering rate we restrict ourselves to

only three-phonon interaction and follow the Srivastava’s scheme. In his scheme,
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the anharmonic scattering mechanism is expressed as [11]

τ−1
qs (anh) =

~q5Dγ
2

4πρc̄2

∑

s′s′′ε

[
∫

dx
′

x
′2x

′′

+[(1− ε+ ε(Cx+Dx
′

)]
n̄q

′s′ (n̄
′′

+ + 1)

(n̄qs + 1)

+
1

2

∫

dx
′

x
′2x

′′

−
[1− ε+ ε(Cx−Dx

′

)]
n̄q

′s′ n̄
′′

−

n̄qs

]

.

(2.61)

Here γ is the Grüneisen constant, x′

= q
′

/qD, x′′

±
=Cx ± Dx

′ , n̄′′

±
= n̄(x

′′

±
), C =

cs/cs′′ , D = cs′/cs′′ . The processes described by the first and second terms in

Eq. (2.61) may be referred to as Class 1 and Class 2 events, governed by the

momentum and energy conservation conditions:

Class 1 events: q + q
′

= q
′′

+G ; ω + ω
′

= ω
′′

,

Class 2 events: q +G = q
′

+ q
′′

; ω = ω
′

+ ω
′′

.

(2.62)

For each class, an event is called Normal process if it involves wave-vectors of all

participating phonons within the central Brillouin zone. If a reciprocal lattice

vector G is required to meet the momentum conservation condition, the event is

called Umklapp process. These processes are schematically illustrated for a Class 1

event in panels (a) and (b) of Fig. 2.4.

Figure 2.4: Schematic illustration of a Class 1 three-phonon scattering process in

a single crystal solid: (a) an Normal process and (b) an Umklapp process.

In Eq. (2.61), ε = 1 for momentum-conserving Normal processes, and ε=−1 for
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momentum-nonconserving Umklapp processes. The integration limits on the

variables x and x
′ in Eq. (2.61), derived from a detailed consideration of the

energy and momentum conservation requirements, have been given as [11]

Class 1 events:

0 6 x 6 1

N processes: 0,
(1− C)x

(1 +D)
6 x

′

6
(1 + C)x

(1−D)
,
(1− Cx)

D
, 1

U processes: 0,
(2− (1 + C)x)

(1 +D)
6 x

′

6
(1− Cx)

D
, 1

Class 2 events:

N processes: (0 6 x 6 1)

0,
(C − 1)x

(D + 1)
,
(Cx− 1)

D
6 x

′

6
(C + 1)x

(D + 1)
,
(C − 1)x

D − 1
, 1

U processes:
( 2

1 + C
6 x 6 1

)

0,
(2− (1 + C)x)

(1−D)
,
Cx− 1

D
,
(C + 1)x− 2

D + 1
6 x

′

6
(C + 1)x− 2

D − 1
, 1.

In thermoelectric research area, although detailed full-scale expressions for an-

harmonic relaxation rates due to three phonon Normal and Umklapp processes

are available as described above, these have not been widely employed in calcu-

lations of lattice thermal conductivity. Most researchers have ignored the contri-

bution from three phonon Normal (momentum conserving) processes and have

employed grossly oversimplified expressions, containing adjustable parameters,

for Umklapp (momentum nonconserving) scattering rate (e.g., Ref. [35]).
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Chapter 3

Thermoelectric Transport Theory in

2D Quantum Well Materials

As discussed in Chapter 1, the progress since the 1960s in improving thermo-

electric figure of merit (ZT ) had been very slow before the 1990s. The maximum

value ofZT , which was found only for heavily doped semiconductors, had essen-

tially remained around unity and research had been dwindled significantly [1].

In the 1990s, the idea of selectively modifying material properties using lower

dimensional structures was introduced by Hicks and Dresselhaus [2, 3]. They

theoretically showed that by using low-dimensional structures (two-, one-, or

even zero-dimensional systems) one could obtain significant enhancement in ZT

value, far beyond what was believed possible in bulk materials [2, 3].

Hicks and Dresselhaus focused on general theoretical models using the simplest

kind of calculations, such as for a quantum confined low dimensional electron gas

[2]. The results of these simple calculations implied that significant enhancement

in ZT could indeed be attained within the quantum well of a superlattice when

the quantum well was made of a good bulk thermoelectric material, the quan-
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tum well width was sufficiently small, and the optimum carrier concentration

was present. Even greater enhancement in ZT was predicted for a good thermo-

electric material when prepared as a 1D quantum wire [3, 4]. This enhancement

in the ZT for the low-dimensional thermoelectric materials comes from a combi-

nation of two mechanisms:

(i) There is a reduction in lattice thermal conductivity due to the scattering [5, 6],

or to the refraction [7] of phonons at the physical boundaries of the nanoscale

structure.

(ii) There is an increase in power factor (PF=S2σ), or at least the avoidance of a

decrease in PF through size quantization [2, 3] or through energy filtering of the

electrons [8, 9].

Moreover, low dimensionality enables some materials that do not exhibit a high

ZT in three dimensional cases to show high ZT value in lower dimensions [2, 3,

10]. For example, bulk Bi is a semimetal for which the contributions from elec-

trons and holes to the Seebeck coefficient are of opposite sign and almost cancel

each other, so that the net S is very small, although the contributions to S from

electrons and holes are large, individually [11]. Low dimensional systems form

subbands for the direction where quantum confinement occurs, and the result-

ing lowest quantized subband in the conduction band lies above the 3D (bulk)

conduction extremum, and correspondingly the highest quantum subband in the

valence band lies below the 3D valence band extremum [11]. Furthermore, as

the size of the quantum well (2D), quantum wire (1D), or quantum dot (0D) de-

creases, the lowest conduction subband increases in the energy, and the highest

valence subband decreases in the energy [11]. Therefore, the band overlap be-

tween the valence and conduction bands, which is responsible for the semimetal-

lic behaviour of materials such as Bi, will vanish at some critical confinement size
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where the semimetal-semiconductor transition occurs [11]. In the semiconduct-

ing regime, single carrier transport can be achieved, thereby enabling effective

use of these materials for thermoelectric applications [11].

Stimulated by these theoretical predictions, researchers were able to fabricate

nanostructures such as superlattices, nanowires, and quantum dots, forming thin-

film materials for which thermoelectric properties could be measured. Soon there-

after, significantly high ZT values were reported in thin-film superlattices [5],

quantum dot superlattices [12], and Silicon nanowires [13, 14]. All of these mate-

rials exhibited a decrease in lattice thermal conductivity thereby enhanced values

of ZT were gained. Some researchers have also tried to use nanoparticles to in-

crease the Seebeck coefficient by filtering out low energy electrons [15], but a net

increase in ZT from this method has not been confirmed yet.

Following the procedure described in Chapter 2 for 3D bulk materials, a de-

tailed derivation of in-plane thermoelectric transport properties (S, σ, and κc)

of 2D quantum well structures will be presented using the Boltzmann equation

with relaxation time approximation. Furthermore, as seen in all kinds of low-

dimensional systems, quantum well structures provide additional defect-related

phonon scattering mechanisms: interface mass-mixing scattering and interface

dislocation scattering. Therefore, the phonon thermal conductivity (κph) of quan-

tum well systems will be explained in detail by taking into account of these addi-

tional interface scattering mechanisms.
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Theoretical Modelling of 2D Thermoelectric Transport Coefficients

Due to the constraints imposed by carrier confinement in low-dimensional struc-

tures and the need for optimization of the carrier density for achieving a maxi-

mum value of ZT , theoretical modelling has played a significant role in the de-

velopment of the field of low-dimensional thermoelectricity.

In this Chapter, the modelling is made by considering a composite system grown

in z-direction of B/A/B layers of material A (comprised of nA atomic layers

of thickness a each, and total thickness dA) and material B (comprised of nB

atomic layers of thickness b each, and total thickness dB), with A forming a two-

dimensional quantum well. For the theoretical modelling of the system we as-

sume simple parabolic energy bands for electrons (holes) in the conduction (va-

lence) bands. We further assume that electrons and holes occupy only the lowest

j sub-bands in the quantum well. Accordingly, for quantum confinement in z

direction (i.e. normal to the layer planes), the electronic dispersion relation is

considered as [11]

E2D(kx, ky) =
~
2k2x
2m∗

x

+
~
2k2y
2m∗

y

+ Ej , (3.1)

where kx and ky are the propagation vector components along the axes x and

y, the effective mass tensor components of the constant energy surfaces for the

material are denoted as m∗

x, m∗

y, and m∗

z, and Ej is the jth quantum sublevel given

by

Ej =
~
2π2

2m∗
zd

2
A

j. (3.2)

Following the work of Lin-Chung et al. [16], for such a system with current flow

perpendicular to the growth direction (with no loss of generality, we may take it
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along x-axis) the thermoelectric transport coefficients can be written as

S =
dAσASA + dBσBSB

dAσA + dBσB
,

σ =
dAσA + dBσB
dA + dB

,

κc =
dAκA + dBκB
dA + dB

,

(3.3)

where the subscripts A and B label quantities in materials A and B, respectively.

As discussed by Lin-Chung et al. [16], negligible barrier widths (dB ≃ 0) in quan-

tum wells cause a dramatic increase in ZT . Having finite barrier thicknesses, on

the other hand, results in considerably reduced ZT values compared with quan-

tum wells with dB ≃ 0. The reason is that thermal and electrical currents flow

along the wells as well as the barriers, and thermal current through the barriers

generates a kind of parasitic channel resulting in a reduced value of ZT . By fol-

lowing this suggestion, we consider the limiting case of dB ≃ 0 and express the

thermoelectric transport coefficients as

S = SA, σ = σA, κc = κA. (3.4)

3.1 Electronic Transport Properties

3.1.1 Fermi Level

To make a quantitative assessment of ZT for quantum well systems the first es-

sential requirement is to determine the temperature as well as the quantum well

width dependent Fermi level (Ef).

In quantum well structures, the temperature dependence of Ef in the extrinsic

regime can be calculated using the same expression given in Chapter 2 as for

bulk systems [17, 18, 19], except that the confinement term ~
2π2

2m∗

zd
2
A

should be sub-
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stracted. Thus, Ef -T in the extrinsic regime is found as

for n-type :

Eext,n
f =

1

2
(Ec + Ed) +

kBT

2
ln
Nd

2Uc
− kBT sinh−1

[
√

Uc

8Nd
exp

(−∆E
(n)
i

2kBT

)]

− ~
2π2

2m∗
zd

2
A

j,

for p-type :

Eext,p
f =

1

2
(Ea + Ev) +

kBT

2
ln

Na

2Uv

− kBT sinh−1
[
√

Uv

8Na

exp
(−∆E

(p)
i

2kBT

)]

− ~
2π2

2m∗
zd

2
A

j,

(3.5)

where Ec is the conduction band edge, Ev is the valence band edge, Ed is the

donor energy level and Ea is the acceptor energy level [17]. The donor and ac-

ceptor ionisation energies are determined respectively as ∆E
(n)
i = Ec − Ed and

∆E
(p)
i = Ea − Ev [17]. The parameters given as Uc=2((m∗

nkBT )/(2π~
2))3/2 and

Uv=2((m∗

pkBT )/(2π~
2))3/2 where kB is the Boltzmann constant [17]. Nd and Na are

the concentrations of donor impurity and acceptor impurity atoms, respectively

[17]. The effective masses are represented by m∗

n for the electron mass and m∗

p for

the hole mass [17].

In a doped semiconductor, beyond a sufficiently high temperature, donors at the

Ed level (or acceptors at Ea) become fully ionized and the material behaves like

intrinsic semiconductor [17]. In this regime the temperature dependences of Ef

for both n- and p-type doped semiconductor quantum well structures can be ex-

pressed by subtracting the confined energy term to the bulk expression as

Eint
f =

Ev + Ec

2
+

3

4
kBT ln

(m∗

p

m∗
n

)

− ~
2π2

2m∗
zd

2
A

. (3.6)

In this thesis, this presented theory is applied for n-type 0.1 wt.% CuBr doped

Bi2Se3/Bi2Te3/Bi2Se3 and p-type 3 wt.% Te doped Sb2Te3/Bi2Te3/Sb2Te3 quan-

tum well systems and neither of these systems reach the intrinsic regime in the
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temperature range studied here. Therefore, all the following discussions and ex-

pressions giving in this thesis will be based on the use of the extrinsic regime

only.

3.1.2 Seebeck Coefficient

As applied for 3D bulk systems in Chapter 2, thermoelectric transport coefficients

in 2D quantum well structures are derived when an electric field and a tempera-

ture gradient is applied. Conditions have been taken appropriate to an isotropic

solid with the diagonal components all equal and the non-diagonal components

zero and assumed that all flows (flow of charge and heat current) are in the x

direction. To extend the transport theory into two dimensional case the 3D den-

sity of states formula used in Chapter 2 should be replaced by an appropriate

expression given for 2D dimensional systems as [11]

g2D(E) =
1

~2πdA

√
m∗

xm
∗
y. (3.7)

Similar with 3D bulk systems, the electric current and heat flow expressions can

be found by solving the Boltzmann equation as

i = ∓
∫

∞

0

evf(E)g(E)dE,

w =

∫
∞

0

v(E − Ef)f(E)g(E)dE,

(3.8)

where − sign refers to electrons and + sign to holes, −e is the electronic charge, v

is the velocity of charge carriers in the x direction, f(E) is the Fermi distribution

and E − Ef represents the total energy transported by a carrier [20, 21, 22].

Using the same procedure as applied in Chaper 2, within the single-band nearly-

free-electron(hole) consideration in the x − y plane the in-plane electronic trans-

port properties (S, σ, and κc) of a 2D quantum well system can be determined
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in terms of the Fermi level by using Fermi-Dirac statistics. The in-plane Seebeck

coefficient for 2D quantum well systems can be found by solving the linearized

Boltzmann equation taking the condition as i = 0,

S = − 1

eT

[(∫ ∞

0

Ev2τg(E)
∂fo
∂E

dE
/∫

∞

0

v2τg(E)
∂f0
∂E

dE
)

− Ef

]

, (3.9)

where the carrier velocity and mobility for 2D systems are assumed to be v2 =

E/
√
m∗

xm
∗
y and τ = µx

√
m∗

xm
∗
y/e. After some algebra, the final expression for the

(in-plane) Seebeck coefficient of quantum well structures can be found as [2]

S = ±kB
e

[2F1

Fo
− Ef

kBT

]

, (3.10)

where the plus and minus signs are for p- and n-type semiconductor quantum

well systems and the Fermi integral is given as [2]

Fi =

∫
∞

0

xidx

e(x−ζ∗) + 1
. (3.11)

3.1.3 Electrical Conductivity

As reported for 3D bulk systems, the same ∂T
∂x

= 0 condition can be used to find

the in-plane electrical conductivity expression for 2D quantum well structures

together with the carrier velocity and mobility expressions given in previous sec-

tion. Therefore, for 2D quantum well systems the electrical conductivity can be

found as

σ =
i

E = −e2
∫

∞

0

v2τg(E)
∂f0
∂E

dE. (3.12)

After substituding the required v2 and µ expressions, the final electrical conduc-

tivity expression for quantum well systems in the extrinsic regime can be found

in terms of the Fermi integral as [2]

σ = eµx
1

~2πdA

√
m∗

xm
∗
y(kBT )F0. (3.13)
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3.2 Thermal Transport Coefficients

3.2.1 Electronic Thermal Conductivity

Using the same condition as for the Seebeck coefficient (i = 0) the in-plane elec-

tronic thermal conductivity of quantum well structures can be described as

κc = − w

∂T/∂x

= −
∫

∞

0

v2Eg(E)τ
∂f0
∂E

∂Ef/∂x

∂T/∂x
︸ ︷︷ ︸

=eS

dE −
∫

∞

0

v2
E2

T
g(E)τ

∂f0
∂E

dE

+

∫
∞

0

v2E
Ef

T
g(E)τ

∂f0
∂E

dE.

(3.14)

By doing some substitutions, the final expression of electronic thermal conduc-

tivity can be written in terms of the Fermi integral as [2]

κc =
µx

e

1

~2πdA

√
m∗

xm
∗
y(kBT )

2kB

[

3F2 − 4
F 2
1

F0

]

. (3.15)

3.2.2 Bipolar Thermal Conductivity

The electron-hole pair contribution (κbp) to the total thermal conductivity be-

comes a significant thermal conductivity contribution above room temperature

for small band gap semiconductors. As discussed in Chapter 2, this contribution

can be expressed as [18, 19]

κbp = FbpT
p exp(−Eg/2kBT ), (3.16)

with Fbp and p regarded as adjustable parameters. The only difference in the

κbp expression between bulk and quantum well structures originates from the

definition of the band gap Eg due to the confinement effects on electron and hole

energy levels in the latter structure. For a given value of quantum well thickness
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dA, the band gap of the system can be expressed as

Eg(QW) = Ec − Ev +
~
2π2

2d2A

( 1

m∗
z,e

+
1

m∗

z,h

)

, (3.17)

where the effective masses of electrons and holes in the growth direction are m∗

z,e

and m∗

z,h, respectively.

3.2.3 Phonon Thermal Conductivity

As applied for 3D bulk systems in Chapter 2, Debye’s isotropic continuum ap-

proximation is used to determine the lattice thermal conductivity of 2D quantum

well systems within the single-mode relaxation time scheme. Therefore, κph for

quantum wells is expressed with the same expression given as [23]

κph =
~
2q5D

6π2kBT 2

∑

s

c4s

∫ 1

0

dxx4τn̄(n̄+ 1), (3.18)

where qD is the Debye radius, x = q/qD is a reduced wavenumber, s is phonon

polarisation index, n̄ is the Bose-Einstein distribution function, cs is the veloc-

ity of phonons defined for polarisation branch s. The phonon relaxation time in

Eq. (3.18) is contributed by several scattering mechanisms: boundary (bs), car-

riers (carr), mass defects (md), interface mass-mixing (ims), interface dislocation

(ids) and anharmonicity (anh). The total phonon relaxation rate is defined by us-

ing Matthiessen’s rule as τ−1=
∑

i τ
−1
i with τ−1

i representing contribution from ith

scattering mechanism.

In Chapter 2, phonon scattering rates orginated from sample boundaries, carriers

and mass defects (both from isotopes and alloying effect) have already been dis-

cusssed in detail for 3D bulk systems and the same expressions will be used for

2D quantum well structures studied here. Additional to these scattering mecha-

nisms low dimensional solids (quantum wells for this thesis) provide extra defect-

related phonon scattering mechanisms: interface mass-mixing scattering (ims)
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due to diffusion or mixing of atoms across interfaces, and interface dislocation

scattering (ids) which results from dislocations or missing bonds present at in-

terfaces. Finally, anharmonic scattering mechanism for quantum well structures

should be re-expressed by taking into account of the confinement effect.

(i) Mass-mixing Scattering (ims):

Several different considerations have been made to calculate the probability and

amount of mass-interdiffusion between layers. For instance, in the work of Landry

et al. [24], they randomly chose hyperbolic tangent form for the variance of mass-

mixing across the interface. Hepplestone and Srivastava [25, 26] presented an-

other scheme in which the total mass-mixing decreases as the inverse square dis-

tance from an interface. In this thesis, the basic theory adopted by Hepplestone

and Srivastava [25, 26] will be followed, but the probability of layer mixing will

be choosen to decrease exponentially from an interface. Thus, the interface mass-

mixing scattering rate is expressed as

τ−1
qs (ims) =

ΓimsΩ

4πc̄3
ω4(qs), (3.19)

with the mass-mixing parameter for a quantum well system given as

Γims =
2β0

(n+m)

∑

i

exp
(

−
∣
∣
∣
li − l0
d

∣
∣
∣

)(∆Mi

M̄

)2[(

1− e2A
e2B

)2

+
(

1− e2B
e2A

)2]

, (3.20)

where d is the interlayer distance (a in the well and b in the barrier), li is the

layer distance from interface, l0 is the z coordinate of the interface, β0 is the mass-

mixing fraction at distance nd or md from the interface, and eB/eA is the ratio of

the amplitudes of eigenvectors in materials B and A.
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(ii) Interface Dislocation Scattering:

In quantum well structures there may also be broken bonds, especially lines of

broken bonds, close to the interface. Phonon scattering rate by such dislocations

cannot adequately be described by the traditional theory for bulk solids. While

the phonon scattering rate by dislocations in bulk has traditionally been derived

by treating solids as elastic continuum [27], an atomic scale theory is required

when dealing with scattering from interface dislocations. Following the same

procedure as outlined by Hepplestone and Srivastava [25, 26], the phonon relax-

ation rate due to interface dislocation scattering is exppressed as

τ−1
qs (ids) =

ΓidsΩ

8πc̄3
ω4
0, (3.21)

where ω0 can be approximated as the highest zone-centre frequency (ω0 = ωD =

c̄.qD) and the interface dislocation parameter is written as

Γids =
2β

′

0

(n +m)

∑

i

exp
(

−
∣
∣
∣
li − l0
d

∣
∣
∣

)(∆Mi

M̄

)2[

1 +
(e2A
e2B

)2

+ 1 +
(e2B
e2A

)2]

, (3.22)

with β ′

0 being the fraction of broken bonds in the interface region.

The amplitude ratio eB/eA required for both interface mass-mixing and dislo-

cation scattering mechanisms is approximated using the diatomic linear chain

model along the growth direction and expressed as [23]

eB
eA

=

[
1
M0

−∆
(

1
M

)]

cos(lzqz)
{(

1
M0

)2

cos2(lzqz) +
[

∆
(

1
M

)]2

sin2(lzqz)
}1/2

−∆
(

1
M

) , (3.23)

with 1/M0 = 1
2
(1/MA + 1/MB), ∆(1/M) = 1

2
(1/MA − 1/MB) and lz = dA + dB is

the period along the growth direction. The ratio of amplitudes increases in mag-

nitude with increasing wave vector, qz. This leads to the expected result that the

interface will weakly scatter long wavelength modes. When the ratio of ampli-

tudes is very large, then the two layers in each quantum well and barrier unit cell
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act out of phase and hence traveling phonons are scattered more strongly by the

presence of the interfaces.

(iii) Anharmonic Phonon Scattering:

In this thesis, the consideration of the anharmonic phonon scattering mechanism

in quantum well systems is based on Srivastava’s scheme for bulk systems by

restricting ourselves to only three-phonon interaction. This scattering rate is ex-

pressed as [23]

τ−1
qs (anh, bulk) =

~q5Dγ
2

4πρc̄2

∑

s′s′′ε

[
∫

dx
′

x
′2x

′′

+[1− ε+ ε(Cx+Dx
′

)]
n̄q

′
s
′ (n̄

′′

+ + 1)

(n̄qs + 1)

+
1

2

∫

dx
′

x
′2x

′′

−
[1− ε+ ε(Cx−Dx

′

)]
n̄q′s′ n̄

′′

−

n̄qs

]

,

(3.24)

where γ is the Grüneisen constant, x′

= q
′

/qD, x′′

+=Cx ± Dx
′ , n̄′′

±
= n̄(x

′′

±
), C =

cs/cs′′ ,D = cs′/cs′′ . ε = 1 for momentum-conserving Normal processes, and ε=−1

for momentum-nonconserving Umklapp processes. The first and second terms in

equation (3.24) are controlled by class 1 events qs+q
′

s
′ → q

′′

s
′′ and class 2 events

qs → q
′

s
′ + q

′′

s
′′ , respectively. The integration limits on the variables x and x

′ ,

derived from a detailed consideration of the energy and momentum conservation

requirements, have been presented in Ref. [23] elaborately.

Equation (3.24) is only valid for the materials containing only one atom per prim-

itive unit cell, namely for bulk systems. When the number of atoms increases in

a unit cell, Eq. (3.24) should be re-written owing to increased amount of anhar-

monic scattering strength.

In a temperature range where only phonon phonon interactions (via Umklapp

processes) are important the lattice thermal conductivity of a solid in this temper-
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ature regime have been discussed by Slack [28] and Berman [29] and expressed

as

κph = Y
Maθ

3
aΩ

1/3

γ2T
, (3.25)

where Ma is the atomic mass of the atom, θa is a Debye temperature for an acous-

tic phonon branch (θa = ~ωD

kB
) and Y is a constant. This expression is valid for

structures containing only one atom per primitive unit cell. Using a simple count-

ing scheme, Slack [28] extended the model to crystals with n atoms per unit cell

as

κph = Y
M̄aθ

3
aΩ

1/3n1/3

γ2T
. (3.26)

In many circumstances, especially in considering new materials and crystal struc-

tures, the phonon dispersion relations used to calculate θa are not available either

experimentally or theoretically. In these cases, the acoustic mode Debye temper-

ature can be determined from the “traditional” definition of the Debye tempera-

ture θD by using [30]

θa = θDn
−1/3. (3.27)

By increasing the atomic layers (n) for the materials, the size of the unit cell in real

space increases which means that the Brillouin zone boundary moves inward,

thus cutting off phonon frequencies at smaller values as n increases [30, 31]. The

“traditional” Debye temperature θD depends on the atomic mass and the bond

strength but is independent of n. Thus, Eq. (3.26) can be rewritten to display the

explicit n-dependence of the thermal conductivity as [30, 31]

κph = Y
M̄aθ

3
DΩ

1/3

γ2Tn2/3
. (3.28)

On the basis of Eq. (3.28) we may now model the anharmonic phonon scattering

rate for quantum well systems as [30, 31]

τ−1
qs (anh,QW) = τ−1

qs (anh, bulk)(nA + nB)
2/3, (3.29)

including the atomic layers nA and nB of material A and B, respectively.
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Chapter 4

Thermoelectric Properties of n-type

Bi2(Te0.85Se0.15)3 Single Crystals

Doped with CuBr and SbI3

4.1 Introduction

As discussed in Chapter 1, to find the best thermoelectric material, it is required

to investigate it’s thermoelectric efficiency which is assessed in terms of the di-

mensionless figure of merit ZT as

ZT =
σS2

κ
T, (4.1)

where S is the Seebeck coefficient, σ is the electrical conductivity and κ is the

total thermal conductivity which has three contributions: carriers (electrons for

this chapter) (κel), lattice (i.e. from phonons, κph), and bipolar (i.e. from electron-

hole pairs, κbp).

There are limited choices for finding materials in nature that exhibit high figure
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of merit (i.e. with ZT > 1). Previous researches have concluded that doped semi-

conductor alloys with high carrier concentration are among the best bulk thermo-

electrics [1]. Two examples are the Bi2Te3-Bi2Se3 or Si-Ge alloys (two isostructural

semiconductors), which with strong point defect scattering exhibit low phonon

thermal conductivity, and are the best commercially available thermoelectric ma-

terials [1].

In this chapter, thermoelectric properties of n-type 85% Bi2Te3 - 15% Bi2Se3 single

crystal doped with 0.1 wt.% CuBr and 0.2 wt.% SbI3 samples are investigated

theoretically and calculated results are compared with the experimental values

obtained by Hyun et al. [2].

4.2 Theoretical Considerations

In order to make a quantitative assessment ofZT for a given material, and predic-

tion for other materials (such as alloys of two materials with different fractional

contents), it is important to develop accurate theoretical models for the thermo-

electric transport coefficients (S, σ, κel, κbp, and κph). A large number of publica-

tions have been devoted in this respect and particularly three groups [3, 4, 5] have

provided a reasonably complete account of all the transport coefficients governed

by carriers in semiconductors and their alloys. Their works, however, do not ex-

plicitly discuss cases of extrinsically doped and intrinsic (undoped) semiconduc-

tors and do not account for temperature variation of Fermi level. Furthermore, all

previous works have treated phonon transport (lattice thermal conductivity κph)

in an ad hoc manner, using simplified expressions for alloying and anharmonic

phonon interactions, utilising several adjustable parameters. The approaches in

Refs. [3, 4] do not distinguish between phonon scattering due to point (i.e. iso-
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topic) defects and phonon scattering due to alloying effect. The work in Ref.

[3] treats the effect of anharmonic phonon interaction in κph using a combina-

tion of adjustable parameters and an interpolative scheme. Vining [4], on the

other hand, uses the frequency and temperature dependence of the form ω2T 3

for the Umklapp three-phonon scattering rate and expresses the Normal three-

phonon scattering rate as a scaled version of the former. These considerations

are normally valid in a limited low-temperature range and expressions for both

Umklapp and Normal scattering rates must be reformulated for computation of

high-temperature κph. As the role of κph is regarded as much more important

than the role of other transport coefficients in enhancing ZT for low-dimensional

semiconductors [6, 7, 8, 9, 10], it is very important to use a well-founded theory

of κph that includes anharmonic phonon interactions without the need for many

adjustable parameters.

As mentioned in Chapter 2, based on the temperature dependent Fermi level

we develop a theory for the thermoelectric properties of 3D bulk materials. The

expressions of electronic transport coefficients (S, σ, and κel), κbp, and κph is de-

scribed by following the Hicks-Dresselhaus theory [5], Price’s theory [11], and

Srivastava’s detailed theory [12], respectively.

4.2.1 Electronic Properties

4.2.1.1 Fermi Level

The electronic transport coefficients S, σ and κel required for an evaluation of the

thermoelectric figure of meritZT for a semiconductor depend on the temperature

dependence of the Fermi levelEf . In the extrinsic regime, as described in Chapter

2, the temperature variation of the Fermi level for an n-doped semiconductor is
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given by [13]

Eext
f =

1

2
(Ec + Ed) +

kBT

2
ln
Nd

2Uc

− kBT sinh−1
(
√

Uc

8Nd

exp(
−∆Ei

2kBT
)
)

, (4.2)

where Ec is the conduction band edge, Ed is the donor energy level, Nd is the

concentration of donor impurity atoms, ∆Ei = Ec − Ed is the donor ionisation

energy, Uc=2((m∗

nkBT )/(2π~
2))3/2, with m∗

n as the electron mass, kB is the Boltz-

mann constant, and ~ is the reduced Planck’s constant.

Beyond a sufficiently high temperature, donors at the Ed level are completely

ionised and the material becomes an intrinsic semiconductor, and consequently

the temperature variation of the Fermi level is given by [13]

Eint
f =

Ev + Ec

2
+

3

4
kBT ln

(m∗

p

m∗
n

)

, (4.3)

whereEv is the valence band edge andm∗

p is hole effective mass. With conduction

band edge set to zero (Ec=0), Eq. (4.3) can be written in terms of the energy gap

Eg. We have attempted a simple expression [14] of the form Eg(T ) = Eg(0) −

αT , with α considered as an adjustable parameter, to obtain the best fit for the

temperature variation of Ef , S and σ in the intrinsic regime. With this choice, the

Fermi level in the intrinsic regime can be re-expressed as

Eint
f = −1

2
(Eg(0)− αT ) +

3

4
kBT ln

(m∗

p

m∗
n

)

. (4.4)

4.2.1.2 Seebeck Coefficient

As given in Chapter 2, within a single-band nearly-free-electron consideration,

the Seebeck coefficient (S) and the electrical conductivity (σ) can be defined in

terms of Fermi energy by using Fermi-Dirac statistics. Accordingly, Seebeck co-

efficient of n-type materials is written as [14, 15]

S = −kB
e
(δ − ζ∗), (4.5)
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where ζ∗ = Ef/kBT is the reduced chemical potential, and δ is given by [14, 15]

δ =
(r + 5

2
)Fr+ 3

2
(ζ∗)

(r + 3
2
)Fr+ 1

2
(ζ∗)

, (4.6)

by considering that charge carriers (electrons for present work) are scattered in

such a way that their relaxation time (τ ) may be expressed in terms of the energy

(E) with the relation of τ = τ0E
r where τ0 and r are constants. In particular, r is

called the scattering parameter which is taken as 0.1 from the work of Hyun et al.

[2]. The Fermi integral required for the above equation is given as [5]

Fi =

∫
∞

0

xidx

e(x−ζ∗) + 1
. (4.7)

4.2.1.3 Electrical Conductivity

Similarly, within the single-band nearly-free-electron model, the electrical con-

ductivity in the extrinsic regime of a semiconductor can be expressed as [14, 16]

σ = Neµc = n
e2

m∗
c

〈τ〉, (4.8)

where µc is the conductivity mobility, m∗

c is the conductivity effective mass (taken

as m∗

n), 〈τ〉 is an average relaxation time for carriers, and N is the carrier concen-

tration defined as [16, 15],

N =

∫
∞

0

g(E)f0(E)dE =
4√
π

(m∗

DkBT

2π~2

)3/2

F1/2(ζ
∗), (4.9)

with g(E) representing the density of states for nearly free electron gas, f0(E) rep-

resenting the Fermi-Dirac distribution function, and m∗

D as the density of states

effective mass.

In n-type doped single crystals electrons mostly interact with the long wave-

length phonons (which have low energy). The scattering rate for the dominant

scattering involving acoustic phonons can be written as [15, 17]

τ−1
ac (E, T ) =

√
2

π

E2
Dm

∗

D
3/2kBT

~4ρc2L

√
E, (4.10)
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where cL is the velocity of longitudinal phonons, ρ is the mass density, and ED is

the deformation potential. Using this, we express the average relaxation time as

[16],

〈τ〉 =

∫

τ(W )W 3/2 exp(−W )dW
∫

W 3/2 exp(−W )dW
=

4

3

√
π

2

~
4ρc2L

E2
Dm

∗

D
3/2(kBT )3/2

, (4.11)

with W = E/kBT .

Thus, from Eqs. (4.8, 4.9), and (4.11) the electrical conductivity in the extrinsic

regime can be written as

σextrinsic =
4

3π
√
π

e2

m∗
c

~ρc2L
E2

D

F1/2, (4.12)

when only acoustic phonon scattering is considered.

As mentioned in Chapter 2 previously, the electrical conductivity expression in

the intrinsic regime can be expressed as [13, 18],

σintrinsic = A
′

e−Eg/2kBT , (4.13)

where A′ as a parameter that does not strongly depend on temperature.

4.2.2 Thermal Properties

In this chapter, the total thermal conductivity (κ) has three contributions: elec-

tronic (κel), lattice (i.e. from phonons, κph), and bipolar (i.e. from electron-hole

pairs, κbp).
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4.2.2.1 Electronic Thermal Conductivity

The electronic part of the thermal conductivity can be described by the Wiedemann-

Franz law as [14]

κel = σLT =
(kB
e

)2

σTL0, (4.14)

where L is the Lorenz number and L0 can be written in terms of the scattering

parameter (r) and the Fermi integral as [14, 15, 2]

L0 =

(

r + 7
2

)

Fr+ 5
2
(ζ∗)

(

r + 3
2

)

Fr+ 1
2
(ζ∗)

−
[
(

r + 5
2

)

Fr+ 3
2
(ζ∗)

(

r + 3
2

)

Fr+ 1
2
(ζ∗)

]2

. (4.15)

4.2.2.2 Bipolar Thermal Conductivity

In small band gap semiconductors such as Bi2Te3, the bipolar (electron-hole pair)

thermal conductivity (κbp) becomes a dominant contribution above 300 K. As de-

rived in Chapter 2, this contribution can be expressed in terms of the energy band

gap as

κbp = FbpT
p exp(−Eg/2kBT ), (4.16)

regarding Fbp and p as adjustable parameters changing with doping type.

4.2.2.3 Lattice Thermal Conductivity

As described in Chapter 2, within the single-mode relaxation time approxima-

tion, and adopting Debye’s isotropic continuum scheme, the lattice thermal con-

ductivity of 3D bulk materials is expressed as [12]

κph =
~
2q5D

6π2kBT 2

∑

s

c4s

∫ 1

0

dxx4τn̄(n̄+ 1), (4.17)

where qD is the Debye radius, x = q/qD is a reduced wavenumber, s is phonon

polarisation index (i.e. indicates longitudinal and transverse branches), n̄ is the
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Bose-Einstein distribution function, and cs is the velocity of phonons in polarisa-

tion s.

In Eq. (4.17), the phonon relaxation time (τ ) is governed by different scatter-

ing mechanisms and within Matthiessen’s rule the total phonon scattering rate

is obtained as τ−1 =
∑

i τ
−1
i where τ−1

i represents contributions from ith scatter-

ing mechanism. Required phonon scattering rates for this chapter are: boundary

scattering, mass-difference scattering (sourced from both isotopic point defects

and mass difference due to alloying), donor electrons and phonons scattering,

and phonon-phonon scattering. All these scattering mechanisms have been de-

scribed in Chapter 2 and the same expressions given in that chapter will be used

for this present chapter.

4.3 Results of Calculations and Discussion

To investigate the effect of doping and dopant type on thermoelectric figure of

merit, results for Bi2(Te0.85Se0.15)3 single crystal have been compared with 0.1

wt.% CuBr and 0.2 wt.% SbI3 dopants.

Relevant parameters used in this chapter have been compiled in Tab. 4.1. All

integrals were evaluated numerically by employing Simpson’s rule.
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4.3.1 Electronic Properties

Fermi Level:

The theoretical calculation of Fermi level-temperature curves for 0.1 wt.% CuBr

and 0.2 wt.% SbI3 doped Bi2(Te0.85Se0.15)3 single crystals are presented in Fig. 4.1.

For comparison, the Fermi level values extracted by Hyun et al. [2] from their

experimental measurements of the Seebeck coefficient is also shown. Based upon

an analysis of the Seebeck coefficient and electrical resistivity, Hyun et al. find

these two samples to exhibit the extrinsic behaviour for the entire temperature

range studied here. However, using the parameters listed in Tab. 4.1, and as seen

in Fig. 4.1, it is found that the extrinsic regime ceases at around 500 K and 450 K

for the CuBr- and SbI3-doped samples, respectively. The inset in Fig. 4.1 shows

the temperature variation of Ef by considering both samples as extrinsic.

In the extrinsic regime following Eq. (4.2), below 450 K for SbI3 doped sample

and below 500 K for CuBr doped sample, the Fermi level gently increases with

temperature. At a given temperature, the Fermi level is closer to the valence band

edge for CuBr-doped sample than for the SbI3-doped sample. This is because

CuBr is a more efficient dopant and, despite a lower doping level, provides a

higher concentration (Nd) of halogen donor atoms. For both samples, the weak

temperature variation of Ef in the extrinsic regime is due to the opposite signs of

terms 2 and 3 in Eq. (4.2).

In the intrinsic regime, Ef rises faster with temperature. It is found that the pa-

rameter α, determining the temperature variation of the band gap, is the decisive

factor to match theory with experimentally deduced results. The difference in the

extrinsic-intrinsic turn-over temperatures for the two samples is due to the joint

effect of Nd in extrinsic regime and the Eg − T variation in intrinsic regime.
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Figure 4.1: Temperature variation of Fermi level for Bi2(Te0.85Se0.15)3 single crystal

doped with 0.1 wt.% CuBr (dashed curve) and 0.2 wt.% SbI3 (dash-dotted curve).

The symbols represent the results obtained from experimental measurements of

Seebeck coefficient by Hyun et al. [2]. The inset shows the results by treating

the samples as extrinsically doped throughout the entire temperature range. The

bottom of the conduction band is taken as the zero along the energy axis (i.e.

Ec = 0).
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Seebeck Coefficient:

Theoretical results for the Seebeck coefficient, shown in Fig. 4.2, are in reasonably

good agreement with the experimentally measured values in the work of Hyun

et al. [2]. It was expected that the temperature variation of the Seebeck coefficient

of the CuBr and SbI3 doped Bi2(Te0.85Se0.15)3 single crystals to directly reflect the

extrinsic-intrinsic turn-over obtained for the corresponding Ef . This is indeed

what is found, as shown in Fig. 4.2. In the temperature region 100 - 450 K (viz.

the extrinsic regime), the Seebeck coefficient depends on the Fermi level directly

(the second term in Eq. (4.5)) and via the Fermi integrals F1/2 and F3/2 (the first

term in Eq. (4.5)). Throughout this temperature range an asymptotic expansion of

the Fermi integrals can be made [19]. As ζ∗ > 1, using the appropriate asymptotic

expansion it can shown that δ, the first term in Eq. (4.5), also varies linearly with

the Fermi level. Two points can be made from this simple analysis. Firstly, the

temperature variation of S seen in Fig. 4.2, thus, is nearly similar to that of the

Fermi level. Secondly, following the variation of Ef , the difference in S increases

with temperature.

In accordance with the Ef − T , in the intrinsic regime the temperature variation

of the Seebeck coefficient is much sharper for the SbI3 doped sample. While the

values of the S are similar for the two samples up to 450 K, results for the SbI3

doped sample become progressively lower as temperature increases inside the

intrinsic regime. At 600 K, the computed value for the SbI3 doped sample is

12.4% lower than that for the CuBr doped sample.

The inset in Fig. 4.2 shows the S results by treating the samples to exhibit the

extrinsic behaviour throughout the temperature range. While the CuBr-doped

sample may reasonably well be treated as being extrinsic, the SbI3-doped sample

must be treated as intrinsic above 450 K.
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Figure 4.2: Temperature variation of Seebeck coefficient for Bi2(Te0.85Se0.15)3 sin-

gle crystal doped with 0.1 wt.% CuBr (dashed curve) and 0.2 wt.% SbI3 (dash-

dotted curve). The symbols represent the experimental results from Ref. [2]. The

inset shows the results by treating the samples as extrinsically doped throughout

the entire temperature range.
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Electrical Resistivity:

The electrical resistivity results of CuBr and SbI3 doped alloys are shown in Fig.

4.3 with their reported experimental results by Hyun et al. [2].

To calculate the electrical resistivity in the extrinsic regime a number of differ-

ent scattering mechanisms, arising from phonons (acoustic and optical phonon

scatterings) and imperfections (neutral impurities, ionised impurities, and alloy-

ing effects), and carrier-carrier scatterings, need to be considered [15]. For our

samples, the acoustic phonon scattering was found the most dominant scattering

mechanism in the 100 - 600 K temperature range. Although the acoustic phonon

scattering is taken as the main effective mechanism to express the electrical con-

ductivity as in Eq. (4.12), the effect of other scattering mechanisms alters the mag-

nitude as well as temperature dependence. Indeed, as noted before [13], usually

experimental electrical conductivity results are at variance with the prediction of

Eq. (4.12), and it becomes necessary to scale both the magnitude and temperature

dependence of σextrinsic. Therefore the following modified form is used

σ
′

extrinsic = σextrinsicAT
ς , (4.18)

where A and ς are adjustable parameters.

In the temperature region 100 - 450 K (viz. the extrinsic regime), the electrical

conductivity depends on the Fermi level via the Fermi integral F1/2. In this tem-

perature range ζ∗ > 1, and using the appropriate asymptotic expansion [19] it

can be noted that the Fermi integral F1/2 is proportional to ζ∗3/2. Thus, at a given

temperature, the higher Fermi level for the CuBr-doped sample assures that its

resistivity is lower than that of the SbI3-doped sample. In the intrinsic regime,

the higher resistivity of the SbI3-doped sample is achieved by the choice of the

parameters A′ and ς as presented in Tab. 4.1.
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Figure 4.3: Temperature variation of electrical resistivity for Bi2(Te0.85Se0.15)3 sin-

gle crystal doped with 0.1 wt.% CuBr (dashed curve) and 0.2 wt.% SbI3 (dash-

dotted curve). The symbols represent the experimental results from Ref. [2]. The

inset shows the results by treating the samples as extrinsically doped throughout

the entire temperature range.
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In the intrinsic regime, the temperature dependence of the mobility usually can-

cels with the temperature dependence of the equilibrium carrier density. So, with

a suitable choice of A′ the electrical conductivity in the intrinsic regime is defined

as in Eq. (4.13). In order to fully reproduce the experimental results in the intrinsic

regime, we found it useful to add the free carrier-phonon scattering contribution.

At these temperatures such scattering can be treated using metal physics, leading

to ρintrinsic = 1/σintrinsic + BT [20]. The fitted value of the parameter B is listed in

Tab. 4.1.

We also managed to reproduce the results for the CuBr-doped sample beyond 500

K by treating it as extrinsic only and adding a contribution from carrier-optical

phonon scattering. Optical phonons can be expected to be populated at these

high temperatures [15]. Such scattering rate can be expressed as ρ(full−extrinsic) =

1/σ
′

extrinsic + B′
√
T . The parameter B′ is listed in Tab. 4.1. Such an attempt, how-

ever, did not prove successful for the SbI3-doped sample. The attempted results

are shown in the inset of Fig. 4.3.

4.3.2 Thermal Properties

Electronic Thermal Conductivity:

The theoretical calculation of the electronic thermal conductivities of both CuBr

and SbI3 doped samples are shown in Fig. 4.4. In accordance with the Wiedemann-

Franz law, due to its lower resistivity, the CuBr doped sample has bigger κel than

the SbI3 doped sample. The electronic thermal conductivities of both samples

decrease with temperature and the difference between κel results become pro-

gressively smaller as temperature increases. Our theoretical calculations suggest

that the value of κel is (3.0, 2.58) Wm−1K−1 at 100 K and (1.26, 0.98) Wm−1K−1
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Figure 4.4: Theoretical calculation of electronic thermal conductivity as a func-

tion of temperature for Bi2(Te0.85Se0.15)3 single crystal doped with 0.1 wt.% CuBr

(dashed curve) and 0.2 wt.% SbI3 (dash-dotted curve).
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at 600 K for (CuBr, SbI3) doped samples. It is interesting to note that it was not

found any significant difference in the results whether the samples were regarded

as extrinsic only or with the consideration of the extrinsic-intrinsic turn-over.

Bipolar Thermal Conductivity:

The theoretical calculation of bipolar thermal conductivities of both samples are

presented in Fig. 4.5. This contribution is significant only at high temperatures

(typically above 150 K). According to Eq. (4.16) it increases at least linearly with

temperature. For temperature change from 200 K and 600 K the rise in κbp is

1.95 Wm−1K−1 for SbI3 and 1.54 Wm−1K−1 for CuBr doped samples, which we

believe is mainly due to different energy band gap variation with temperature.

Up to 300 K, the bipolar thermal conductivity is insignificant compared to the

electronic thermal conductivity, and κel is lower for SbI3-dopes sample. At 600 K,

on the other hand, κbp is larger than κel, but the sum κbp + κel is nearly the same

for both samples.

Phonon Thermal Conductivity:

The lattice (phonon) plus bipolar thermal conductivity results are shown in Fig.

4.6 and compared with the κtotal − κel values from Hyun et al. [2]. The present

calculations for κph involve the use of a single semi-adjustable parameter defined

as F3ph = (γ
c̄
)2.

For both samples, at low temperatures (below 100 K) boundary and electron-

phonon scatterings are dominant. Mass defect scatterings (with the source of

isotopic and alloy effects) are important both at low and high temperatures.
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Figure 4.5: Theoretical calculation of bipolar thermal conductivity as a function of

temperature for Bi2(Te0.85Se0.15)3 single crystal doped with 0.1 wt.% CuBr (dashed

curve) and 0.2 wt.% SbI3 (dash-dotted curve).
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Figure 4.6: Sum of lattice and bipolar contributions of thermal conductivities for

Bi2(Te0.85Se0.15)3 single crystal doped with 0.1 wt.% CuBr (dashed curve) and 0.2

wt.% SbI3 (dash-dotted curve). The symbols represent the extracted values of

κtotal − κel by Hyun et al. [2].
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Phonon-phonon interactions become particularly important at high temperatures

(above 100 K) for both materials. Although not shown in a separate graph, in the

high temperature regime (i.e. above the Debye temperature of 155 K for bulk

Bi2Te3) the phonon conductivity decreases linearly with temperature.

Frequency Dependence of Phonon Thermal Conductivity:

In Fig. 4.7, the spectral analysis of conductivity in frequency space for the 0.2

wt.% SbI3-doped Bi2(Te0.85Se0.15)3 single crystal is presented at several tempera-

tures. We make a few important observations. At low temperatures, most heat is

conducted by phonons of low frequencies. At high temperatures, phonons over

a very large frequency range provide significant contribution to the conductiv-

ity. For example, at 50 K and 500 K up to 80% contribution comes from phonons

in the frequency range 1.9 THz 6 ω 6 13.6 THz, and 6.4 THz 6 ω 6 17.8 THz,

respectively. The peak of the κ − ω spectrum shifts to the higher values of fre-

quency with increase in temperature. This is consistent with the theoretical result

presented by Garg et al. [21] for the study of the phonon conductivity in a SiGe

alloy. It is also found that while the spectrum peaks at the frequency ωD/3 at 50

K (where ωD is the Debye frequency), it becomes ωD/1.25 at around 600 K. The

shift in the peak of the κ − ω spectrum towards higher frequency with increase

in temperature is consistent with the concept of dominant phonon approxima-

tion, which following the prescription by Ziman [22] can be defined as ~ωdom ≃

1.6kBT .

Recently, Koh and Cahill [23] have studied the frequency dependence of lattice

thermal conductivity of semiconductor alloys by employing the time-domain

thermoreflectance technique over a low frequency range and a reasonably large

temperature range. Such measurements are considered to provide a convenient
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Figure 4.7: Frequency dependence of phonon thermal conductivity for different

temperatures for 0.2 wt.% SbI3 doped Bi2(Te0.85Se0.15)3 single crystal where the

Debye frequency is taken as ωD=18.92 THz.
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method for probing the phonon distribution of materials. Their results clearly

show that κ(λ) increases with decrease in the mean free path λ. Noting the gen-

eral relationship between the phonon mean free path and frequency as λ ∝ ω−n

[22], our results presented in Fig. 4.7, in the frequency range from zero up to

the maximum in the κ(ω) spectrum at any temperature, provide support for the

measurements made by Koh and Cahill.

Total Thermal Conductivity:

As seen in Fig. 4.8, there is an overall good agreement between our results for

the total thermal conductivity and the experimental data presented by Hyun et

al. [2]. As stated earlier, in the high temperature range the phonon conductivity

decreases linearly and the bipolar contribution rises at least linearly with temper-

ature. Thus the sum of the phonon and bipolar thermal conductivity contribu-

tions, κph+ κbp, shows a dip at around 350 K for both samples. The experimental

measurements by Hyun et al. suggest that there is a switch over in the tempera-

ture variation of κph+ κbp for the two alloys at around 450 K: the sum of these two

contributions is lower for the SbI3 doped sample below 450 K and for the CuBr

doped sample above 450 K. This switch-over is successfully reproduced with the

choice of parameters listed in Tab. 4.1.
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Figure 4.8: Temperature dependence of the total thermal conductivity for Bi2

(Te0.85Se0.15)3 single crystal doped with 0.1 wt.% CuBr (dashed curve) and 0.2

wt.% SbI3 (dash-dotted curve). The symbols represent the experimental results

from Ref. [2].
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4.3.3 Figure of Merit

The thermoelectric efficiencies of both 0.1 wt.% CuBr and 0.2 wt.% SbI3 doped

Bi2(Te0.85Se0.15)3 single crystals are reported in Fig. 4.9. There is a reasonably good

level of agreement between our theoretical results, obtained by considering both

extrinsic and intrinsic characteristics of the two samples, and the experimental

measurements by Hyun et al. [2]. Calculations based on only extrinsic considera-

tion produce worse agreement with experimental data at the higher temperature

end, with more disagreement for the SbI3-doped sample. These disagreements

originate from the disagreements noted earlier for the Seebeck coefficient.

In the extrinsic regime the SbI3 doped alloy sample has only a slightly larger ZT

than the CuBr doped sample. This is because both the ratio of the power factor

(S2σ) and the κtotal between the samples are nearly equal to each other. At high

temperatures (in the intrinsic regime) the CuBr doped alloy sample has larger

efficiency due to its higher value of the power factor.

4.3.4 Effect of Alloying on Figure of Merit

As stated earlier, phonon-alloy scattering results in lowering of thermal conduc-

tivity and enhancement in thermoelectric efficiency. To investigate the effect of

alloying on the 0.1 wt.% CuBr doped sample, different amounts of Te/Se con-

tent in the (Bi2Te3)x(Bi2Se3)(1−x) single crystal is used. The parameters to calcu-

late κph + κbp for x = 0.75 and x = 0.90 are taken as Eg(0) =(0.19, 0.15) eV,

qD =(0.715, 0.71) Å−1, lattice constant alat =(4.321, 4.358) Å, ρ =(7.67, 7.7) g/cm3

and Ω=(162.2, 166.3) Å3, respectively. The parameters for x = 0.85 has already

been given in Tab. 4.1. The temperature dependence of κph + κbp for all three

different x values is presented in Fig. 4.10.
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Figure 4.9: Temperature variation of figure of merit for Bi2(Te0.85Se0.15)3 single

crystal doped with 0.1 wt.% CuBr (dashed curve) and 0.2 wt.% SbI3 (dash-dotted

curve). The symbols are experimentally expected values from the work by Hyun

et al. [2]. The inset shows the results by treating the samples as extrinsically

doped throughout the entire temperature range.
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Figure 4.10: Theoretical calculation of sum of lattice and bipolar contributions of

thermal conductivities for (Bi2Te3)x(Bi2Se3)(1−x) alloys with taking the value of x

as 0.75, 0.85, and 0.90, respectively.
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Figure 4.11: Theoretical calculation of the thermoelectric figure of merits for

(Bi2Te3)x(Bi2Se3)(1−x) alloys with taking the value of x as 0.75, 0.85, and 0.90, re-

spectively.

It is clearly seen that by decreasing the x value (i.e. by increasing Se content)

the thermal conductivity becomes lower throughout the entire temperature range

due to the increase in the alloy scattering. We predict that by decreasing the x

value from 0.90 to 0.75 (i.e. increasing the Se concentration from 10% to 25%)

the reduction in κph + κbp would be 40% at 200 K and 44.5% at 600 K. Consistent

with this variation, ZT would be enhanced by 33% and 50% at 200 K and 600 K,

respectively (Fig. 4.11).
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4.3.5 Effect of Full-scale Thermal Conductivity Calculation on

ZT

As discussed earlier in Chapter 1, κph is the most important parameter to obtain

higher values of ZT . Thus, defining and calculating the lattice thermal conduc-

tivity of a material correctly has a crucial importance in discussing thermoelec-

tricity. We elaborate on this point by considering two examples. In the first the

work of Vining [4] is considered, who assumed the anharmonic phonon scatter-

ing as τ−1
anh ∝ Cω2T where C is a constant of temperature. It is noted that this

assumption is only true in the high temperature regime [12]. Vining further con-

sidered a single, polarisation-average phonon branch, expressed τ−1
N /τ−1

U = β,

and treated β as a constant of temperature. To make a comparison between our

theoretical approach and the Vining model [4], we made a calculation for the

temperature dependence of κph + κbp for the Bi2(Te0.85Se0.15)3 single crystal doped

with 0.1 wt.% CuBr. For employing Vining’s approach, we fitted the parameter C

= 3.25×10−7 s/K from our theoretical κph value at 600 K (the highest temperature

in our study). Then with this fixed value of C and β = 2.0, we calculated κph

and added the temperature dependence of bipolar thermal conductivity for the

whole temperature range. As clearly seen in Fig. 4.12, Vining’s approach cannot

explain the experimental results at low temperatures. For example, at 110 K Vin-

ing’s approach gives κph + κbp = 2.1 Wm−1K−1, while the experimental result as

well as our theoretical result are close to 4.3 Wm−1K−1.

From our model we find the following values of (βLA, βTA): (1.8, 0.17) at 100 K and

(1.65, 0.18) at 600 K. Thus while β is rather temperature insensitive for TA modes,

it does increase with decrease with temperature for LA modes. Our estimate of the

temperature-average (over the range considered in our study) value of β is 1.7 for

LA modes, 0.18 for TA modes, and 0.7 for polarisation-averaged modes. We thus
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Figure 4.12: Comparison of κph + κbp calculation between our theoretical model

and Vining’s approach [4] for Bi2(Te0.85Se0.15)3 single crystal doped with 0.1 wt.%

CuBr.
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find that Vining’s choice of β is only reasonable for LA phonons.

As a second example, we consider the work of Hicks and Dresselhaus [5], who

treated κph as a constant (temperature independent). As shown in Fig. 4.13, to

test this approach, we took three different κph values at 115 K, 313 K and 575 K

by substracted the theoretical values of κbp from the experimental measurements

of κtotal - κel reported by Hyun et al. [2]. With any one of these three choices we

are unable to fit the experimentally determined magnitude and temperature de-

pendence of ZT at low temperatures (below 300 K). At high temperatures (above

300 K), due to the dominant behaviour of bipolar contribution of thermal con-

ductivity at this temperature regime, the magnitude of ZT comes closer to our

theoretical model by taking the values of κph at 313 K and 575 K.

From the above two examples, it can be concluded that in order to obtain the

correct magnitude and temperature variation of ZT it is important to include the

correct magnitude and temperature dependence of κph in both low and high tem-

perature regimes. Our model of phonon conductivity is helpful in this respect.

4.4 Summary and Outlook

In this chapter, the thermoelectric properties of the n-type Bi2(Te0.85Se0.15)3 single

crystal, containing 0.1 wt.% CuBr and 0.2 wt.% SbI3 dopants have been studied

by considering all the transport coefficients systematically and fully. The present

theoretical and computational procedure for the evaluation of the lattice thermal

conductivity is much more rigorous than attempted before.

The temperature variation of the Fermi level reveals that the CuBr-doped sample,

with dopant concentration of 1.32×1025 m−3, is extrinsic up to 500 K and becomes
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Figure 4.13: Comparison of ZT calculation between our theoretical model and

Hicks and Dresselhaus’ approach [5] for Bi2(Te0.85Se0.15)3 single crystal doped

with 0.1 wt.% CuBr.
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intrinsic beyond that temperature. The SbI3-doped sample, with a lower dopant

concentration of 8.0 × 1024 m−3, ceases to be extrinsic beyond 450 K. With these

features of the Fermi level, the Seebeck coefficient has almost similar magnitude

for both samples up 450 K, but decreases more sharply for the SbI3-doped sample

beyond that temperature. Both the electrical conductivity and the electronic ther-

mal conductivity of the CuBr-doped sample are found to be higher throughout

the temperature range from 100 K to 600 K. The electron-hole bipolar contribu-

tion to the thermal conductivity is similar for the two samples up to 300 K, beyond

which it is found to be lower for the CuBr-doped sample.

The total thermal conductivity (sum of electronic, bipolar, and lattice contribu-

tions) is higher for the CuBr-doped sample throughout the temperature range of

our investigations. An analysis of the frequency spectrum of the thermal conduc-

tivity suggests that while at low temperatures most heat is conducted by phonons

of low frequencies, at high temperatures phonons over a very large frequency

range provide significant contribution to the conductivity. The peak of the κ(ω)

spectrum shifts to higher frequencies as temperature increases.

The magnitude and temperature variation of the figure-of-merit ZT is similar

for both samples up to 400 K, and decreases faster for the SbI3-doped sample

beyond that temperature. The calculated maximum value of ZT is 0.43 and 0.49

for the SbI3- and CuBr-doped samples, respectively. Our results for each of the

thermoelectric transport coefficients (S, σ, κ) and ZT are in reasonable agreement

with the experimental measurements reported by Hyun et al. [2].

The effect of alloying on thermoelectric efficiency is investigated. It is found that

due to the reduction in phonon thermal conductivity, a reasonable increase in the

Se content in (Bi2Te3)x(Bi2Se3)(1−x) single crystals can increase ZT significantly

both at low and high temperatures.
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Table 4.1: Constants and parameters used in the calculations of thermoelectric

properties of Bi2(Te0.85Se0.15)3 single crystal doped with 0.1 wt.% CuBr and 0.2

wt.%SbI3.

Property/Parameter 85% Bi2Te3 - 15% Bi2Se3 Single Crystal

0.1 wt.% CuBr doped 0.2 wt.% SbI3 doped

Eg(0) (eV) 0.16 0.16

Ed (eV) 0.09 0.09

α (eV/K) 0.000613 0.0007

Nd (m−3) 1.32×1025 8.0×1024

m∗
n/me [2] 0.056 0.056

m∗
p/me [2] 0.065 0.065

ρ (kg/m3) [24] 7.74×103 7.74×103

cL (m/s) [25] 4.76×103 4.76×103

cT (m/s) [25] 2.325×103 2.325×103

alat (Å) [26] 4.346 4.346

ED (eV) 32 32

ς -0.3 -0.5

A 10.87 K0.3 25 K0.5

A
′

(ohm−1m−1) 3.03×108 1.35×108

B (ohm.m.K−1) 1.6×10−8 2.1×10−8

B
′

(ohm.m.K−1/2) 7.0×10−8 1.0×10−9

p 1.0 1.0

Fbp (Watt m−1 K−2) 3.4×10−4 2.4×10−4

qD (Å−1) 0.7113 0.7113

L (mm) 5.0 5.0

Ω (Å3) 164.94 164.94

Γisotopes 0.000112 0.00561

Γalloy 0.00447 0.00447

F3ph (s2/m2) [LT: low temp.,

HT: high temp.]

0.2×10−5 (LT) 0.4×10−5

(HT)

0.2×10−5 (LT) 0.4×10−5

(HT)
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Chapter 5

Thermoelectric Properties of p-type

(Bi2Te3)x(Sb2Te3)1−x Single Crystals

Doped with 3 wt% Te

5.1 Introduction

Among various TE materials, Bi2Te3 based alloys (both n-type and p-type) are

the most widely used materials due to their usefulness in the room temperature

range and capability to enhance their ZT values (ZT > 1) by diverse methods

[1, 2, 3]. There are so many experimental studies on thermoelectric properties of

Bi2Te3 based materials, for instance crystals [4, 5], thin-films [6, 7], and nanowires

[8]. These materials have rhombohedral structure with the space group R3̄m and

for Bi2Te3 five atomic layers stack along the c axis by van der Waals interactions

in the sequence Te1-Bi-Te2-Bi-Te1.

In this chapter, a detailed theoretical investigation of the thermoelectric coeffi-
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cients (Ef , S, σ, κtotal, ZT ) of p-type (Bi2Te3)x(Sb2Te3)1−x single crystals in the

composition range of 0.18 ≤ x ≤ 0.26 is reported and compared with the experi-

mental results obtained by Li et al., whose samples were prepared by the fusion

method together with spark plasma sintering [9]. Moreover, a theoretical discus-

sion is presented to clarify the significant influence of the chemical composition

on ZT .

5.2 Theoretical Considerations

5.2.1 Electronic Transport Coefficients

The electronic transport coefficients of thermoelectric semiconductor materials

(S, σ, and κc) strongly depend on temperature dependent Fermi level. As de-

scribed in Chapter2, the temperature variation of Ef in the extrinsic regime is

expressed as [10]

Eext
f =

1

2
(Ea + Ev) +

kBT

2
ln

Na

2Uv
− kBT sinh−1

(
√

Uv

8Na
exp(

−∆Ei

2kBT
)
)

, (5.1)

for the p-type semiconductors. In Eq. (5.1), Ev is the valence band edge, Ea is the

acceptor energy level, Na is the concentration of acceptor impurity atoms, ∆Ei =

Ea − Ev is the acceptor ionisation energy, and Uv=2((m∗

pkBT )/(2π~
2))3/2 with m∗

p

as the hole effective mass, kB is the Boltzmann constant, and ~ is the reduced

Planck’s constant. As the temperature increases, the Fermi level first decreases

slowly and then increases up until it reaches the value where the acceptor level

becomes fully ionized [10]. Thus, from this point the material behaves like an

intrinsic semiconductor and the temperature dependence of Ef is expressed as

[10]

Eint
f =

Ev + Ec

2
+

3

4
kBT ln

(m∗

p

m∗
n

)

, (5.2)
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where Ec is the conduction band edge and m∗

n is the electron effective mass.

In p-type semiconductors, the Seebeck coefficient S is expressed within a single-

band nearly-free-hole model as [11]

S =
kB
e
(δ − ζ∗), (5.3)

where ζ∗ = Ef/kBT is the reduced chemical potential and as discussed in Chapter

4, the δ function is described as [12, 13]

δ =
(r + 5

2
)Fr+ 3

2
(ζ∗)

(r + 3
2
)Fr+ 1

2
(ζ∗)

, (5.4)

where r is a scattering parameter.

In the extrinsic regime, the electrical conductivity for the p-type semiconductors

is expressed as [14]

σext =
4

3π
√
π

e2

m∗
c

~ρc2L
E2

D

F1/2, (5.5)

with the assumption that the hole-acoustic phonon scattering mechanism is the

most dominant mechanism. In Eq. (5.5), cL is the velocity of longitudinal phonons,

ρ is the mass density, and ED is the deformation potential. By following Wilson’s

expression [15] the electrical conductivity in the intrinsic regime can be given by

σint = A
′

e−Eg/2kBT , (5.6)

where A′ can be taken as a temperature independent parameter .

5.2.2 Thermal Transport Coefficients

The carrier contribution (namely holes in this chapter) to the thermal conductivity

is expressed by following the Wiedemann-Franz law as [13]

κc = σLT =
(kB
e

)2

σTL0, (5.7)
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where L is the Lorenz number and for semiconductors L0 can be described in

terms of the scattering parameter r and the Fermi integral as [12, 13]

L0 =

(

r + 7
2

)

Fr+ 5
2
(ζ∗)

(

r + 3
2

)

Fr+ 1
2
(ζ∗)

−
[
(

r + 5
2

)

Fr+ 3
2
(ζ∗)

(

r + 3
2

)

Fr+ 1
2
(ζ∗)

]2

. (5.8)

The bipolar contribution (electron-hole pairs) to the thermal conductivity (κbp)

becomes significant above room temperature in narrow band-gap semiconduc-

tors [16, 17]and it can be expressed as

κbp = FbpT
p exp(−Eg/2kBT ), (5.9)

with Fbp and p regarded as adjustable parameters depending on doping type [14].

Similar to Chapter 2, the lattice contribution to the thermal conductivity is inves-

tigated by employing Debye’s isotropic continuum model within the single-mode

relaxation time approximation as [18]

κph =
~
2q5D

6π2kBT 2

∑

s

c4s

∫ 1

0

dxx4τn̄(n̄+ 1), (5.10)

where τ is the phonon relaxation time, qD is the Debye radius, x = q/qD is a re-

duced wavenumber, s represents the polarisation branch of phonon (longitudinal

or transverse), n̄ is the Bose-Einstein distribution function, and cs is the velocity

of phonons for polarisation branch s.

The phonon relaxation rate τ−1 in Eq. (5.10) is contributed by several scatter-

ing mechanisms: boundary (bs), mass defects (md), carriers (acceptor holes for

this chapter) (hp) and anharmonic (anh). Required expressions for these scatter-

ing mechanisms have already been given in Chapter 2. As employed for n-type

doped Bi2Te3 based alloys in Chapter 4, the phonon-phonon scattering rate will

be treated by considering F3ph = (γ
c̄
)2 as an adjustable parameter [14, 19].
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5.3 Results and Discussion

To investigate the thermoelectric properties of p-type (Bi2Te3)x(Sb2Te3)1−x single

crystals in the range 0.18 ≤ x ≤ 0.26 all the integrals are numerically evaluated by

using Simpson’s rule. All the related parameters for the theoretical calculations

are given in Tab. 5.1.

5.3.1 Electronic Transport Coefficients

Fermi Level:

The theoretical result for the Fermi level variation with temperature for p-type

(Bi2Te3)x(Sb2Te3)1−x single crystals is presented in Fig. 5.1. All samples exhibit

a change from the extrinsic to the intrinsic behaviour above room temperature.

This behaviour is entirely supported by the experimental Seebeck coefficient mea-

surements reported in Ref. [9]. For all the six compositions, Ef first falls smoothly

in the extrinsic regime and then rises up linearly in the intrinsic regime. In nar-

row band gap semiconductors, band gap variation with temperature plays a ma-

jor role in the intrinsic regime. Thus, by setting the valence band edge as zero

(Ev=0) we can re-express Eint
f in terms of the energy band gap as

Eint
f = Ec −

Eg(T )

2
+

3

4
kBT ln

(m∗

p

m∗
n

)

. (5.11)

To reproduce the experimental results of thermoelectric transport properties (S, σ,

and κc) for our p-type samples, it is found to be useful to define the temperature

dependence of energy band gap as

Eg(T ) =
[

Eg(0)−
αT 2

β + T

]

+
ηT

β + T
, (5.12)

where Eg(0) is the value of Eg at 0 K, α, β and η are treated as adjustable pa-

rameters and given in Tab. 5.1. In Eq. (5.12), the temperature variation of Eg
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Figure 5.1: Temperature dependence of the Fermi level for p-type (Bi2Te3)x

(Sb2Te3)1−x single crystals doped with 3 wt% Te.
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is slightly different from Varshni’s expression [20] with the addition of an extra

term. The small value of Eg(0), given in Tab. 5.1, is obtained by considering that

the band gap of the (Bi2Te3)x(Sb2Te3)1−x alloy shows strong bowing with the in-

direct band gaps of Bi2Te3 and Sb2Te3 taken as 0.13 eV and 0.15 eV, respectively

[21]. Due to the very narrow band gap of our p-type material we consider the

same values of Eg(0) and Ea for all the six samples. To reproduce the experimen-

tal measurements of S and σ successfully we found it necessary to include the

Eg(T ) dependence beyond a critical temperature where the material turns from

extrinsic to intrinsic for all the samples. From our work the critical turn-over

temperatures (Tc) are: 420 K for x=0.18, 0.19, and 0.20; 410 K for x = 0.22; 380

K for x = 0.24; and 360 K for x = 0.26. As clearly seen in Fig. 5.1, Tc shifts to

lower temperatures with increasing the Bi2Te3 content in our p-type alloy. This

is happening mainly because of the reduction in Na (as well as the m∗

p/m
∗

n ra-

tio) while the x value is increasing. As stated in the experimental works already

[9, 4], the electronegativity difference between the Bi and Te atoms is bigger than

that between the Sb and Te atoms. Therefore, increasing the Bi2Te3 content in

(Bi2Te3)x(Sb2Te3)1−x single crystals causes lower antistructure defects and results

in smaller hole concentration.

Seebeck Coefficient:

As expected for p-type semiconductor materials, positive values of the Seebeck

coefficient are calculated theoretically for all the compositions in the range 0.18

≤ x ≤0.26 and demonstrated in Fig. 5.2. The experimental measurements of

S values for all the samples worked by Li et al. [9] are successfully reproduced

throughout the temperature range studied here. The temperature dependence of

the Seebeck coefficient for all the compositions are found to be similar: it first
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Figure 5.2: Temperature variation of the Seebeck coefficient for p-type (Bi2Te3)x

(Sb2Te3)1−x single crystals doped with 3 wt% Te. The symbols represent the ex-

perimental measurements read from Li et al. [9].
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increases linearly and after reaching the extrinsic-intrinsic turn-over it decreases

with temperature. As can be anticipated from the theoretical calculation of Ef ,

while the value of x becomes higher, the peak value of S moves to lower temper-

ature due to the reduction in Na (or the m∗

p/m
∗

n ratio). Moreover, from Eq. (5.3)

it is seen that the Seebeck coefficient (S) directly depends on the Fermi level (Ef )

and the scattering parameter (r). As illustrated in Fig. 5.2, in the extrinsic regime

the magnitude of S becomes larger with increasing the x value. On the other

hand, in the intrinsic regime this is not true for the samples with the composi-

tions x=0.22, 0.24, and 0.26 where the effect of inverse proportionality of r with S

becomes dominant. Eventually the maximum value of S is gained for x=0.26 as

S=236.2 µV/K at 360 K and the minimum value for S is obtained as 175 µV/K at

290 K for x=0.18.

Electrical Resistivity:

The theoretical calculation of the electrical resistivity for various x values is pre-

sented in Fig. 5.3 and the experimental results from [9] are included for com-

parison. In the extrinsic regime we assume theoretically that the most dominant

scattering mechanism is caused by the acoustic phonons. In fact, a number of

other scattering mechanisms also contribute, e.g. due to optical phonons, impu-

rities and carrier-carrier. To cover these additional scattering mechanisms and

to get an accurate explanation of the experimental measurements we scaled the

resistivity found from the conductivity given in Eq. (5.5) as

ρextrinsic = ρextAT
ς , (5.13)

where A and ς are treated as adjustable parameters as in our previous work [14]

and are given in table 5.1.
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Figure 5.3: Temperature variation of the electrical resistivity for p-type (Bi2Te3)x

(Sb2Te3)1−x single crystals doped with 3 wt% Te. The symbols represent the ex-

perimental measurements read from Li et al. [9].
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In the intrinsic regime, in addition to the resistivity given by Eq. (5.6) we found

that it is necessary to add a temperature dependence of free carrier-phonon scat-

tering to get adequate explanation of the experimental results [14, 22]. Thus, the

intrinsic electrical resistivity - T dependence can be written as

ρintrinsic = ρint +BT (5.14)

where B is the temperature independent parameter [14, 22] and given in Tab. 5.1.

Using the final expressions for ρextrinsic and ρintrinsic we successfully explain the

experimental measurements of the electrical resistivities for all the compositions

as shown in Fig. 5.3. Throughout the temperature range studied here, the magni-

tude of the electrical resistivity goes up with increasing the value of x. This results

from the rising m∗

p value in the extrinsic regime and increasing the value of B pa-

rameter in the intrinsic regime. The lowest value of ρ is attained for the x = 0.20

sample for the whole temperature range. It is interesting to note that from the

theoretical calculation of the resistivity we did not find any clean signature of the

extrinsic-intrinsic turn-over point as in the calculation of Ef and S.

Power Factor:

The theoretical calculation of the power factor (PF) - T dependence for all the six

compositions is presented in Fig. 5.4. Based on our accurate theoretical calcula-

tion of S and ρ, we successfully reproduce the experimentally expected values of

PF for all the six samples [9]. Although the sample with x=0.18 has the lowest

value of S among all the compositions, it has the largest value of PF=5.21×10−3

W/(m.K2) near room temperature both theoretically and experimentally. The rea-

son for this is that the power factor is controlled strongly by σ rather than S. It

also should be noted that the largest PF value for an n-type Bi2(Te0.85Se0.15)3 sin-
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Figure 5.4: Temperature dependence of the power factor for p-type (Bi2Te3)x

(Sb2Te3)1−x single crystals doped with 3 wt% Te. The symbols represent the ex-

perimental results read from Li et al. [9].
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gle crystal doped with 0.1 wt.% CuBr was obtained as 3.0×10−3 W/(m.K2)at 550

K [14] which is nearly half of that for the p-type x=0.18 sample studied here.

Furthermore, it is clearly shown in Fig. 5.4 that the extrinsic-intrinsic turn-over

temperatures in PF calculations are the same for all samples as in the Ef and S

calculations.

5.3.2 Thermal Transport Coefficients

Electronic Thermal Conductivity:

By employing the Wiedemann-Franz law as described in the theory section, the

theoretical calculation of the carrier thermal conductivities (arising from holes) of

all the samples are shown in Fig. 5.5 along with the experimental results reported

in Ref. [9]. As explained in Eqs. (5.7) and (5.8), for our p-type doped Bi2Te3 based

materials we use the modified and temperature dependent Lorenz number. The

value of the L for the x=0.20 sample is found to be 2.1×10−8 W Ω K−2, 2.06×10−8

W Ω K−2, and 1.8×10−8 W Ω K−2 at 300 K, 400 K, and 500 K, respectively. This

shows that our modified L decreases with temperature and it is smaller than the

Sommerfeld value 2.44×10−8 W Ω K−2 for metals [23]. The temperature variation

of κc can be easily understood from the theoretical calculation of ρ. Increasing

the Bi2Te3 content in our p-type sample leads to smaller values of κc throughout

the temperature range. As seen in Fig. 5.5 we successfully reproduce the exper-

imental results of κc for all the compositions and find the lowest value of 0.323

WK−1m−1 at 500 K for the composition x=0.26.
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Figure 5.5: Temperature dependence of the electronic thermal conductivity for

p-type (Bi2Te3)x (Sb2Te3)1−x single crystals doped with 3 wt% Te. The symbols

represent the experimental results read from Li et al. [9].
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Sum of Lattice and Bipolar Contributions of Thermal Conductivity:

The theoretical calculation of the (κph + κbp) - T variation is presented in Fig. 5.6

along with the expected experimental values taken from [9]. Using the related pa-

rameters given in Tab. 5.1, the κph calculation is made in terms of a temperature

independent adjustable parameter F3ph= (γ
c̄
)2. From our theoretical calculations,

we note that for all the samples, boundary and hole-phonon scatterings play a

major role at low temperatures (below 100 K) and mass-defect scatterings are im-

portant at both low and high temperatures (below and above 100 K). Besides this

three-phonon interactions become dominant only at high temperatures (above

100 K) for all the six compositions. Additional to these dependences, the bipo-

lar contribution of thermal conductivity (κbp) is computed theoretically with Fbp

and p parameters in the range of 290 K and 500 K. As we pointed out already in

our previous works [14, 19], κbp becomes significant when T > 300 K for narrow

band gap semiconductors. From the parameters Γisotopes and Γalloy given in Tab.

5.1, our theoretical calculations suggest that for all the six samples the mass defect

- phonon scattering caused by the alloying effect is larger than the isotopic mass

defect scattering. Also these Γisotopes and Γalloy parameters become smaller with

increasing the Bi2Te3 content in our p-type materials. Moreover, by using more

Bi2Te3 content, it is seen that the effect of κbp becomes larger. From 290 K to 500

K, κph+κbp exhibits an almost exponential rise for all the samples, suggesting the

electron-hole pair contribution in this temperature range becomes significantly

larger compared with other contributions. As seen from the measurements in

reference [9] samples with x=0.18 and x=0.20 have the lowest values of κph + κbp

among all the samples throughout the temperature range. Our theoretical calcu-

lations also support that with higher values of Γisotopes and Γalloy parameters and

lower Fbp parameter, smaller κph + κbp values are found to be 0.375 W m−1 K−1

for x=0.18 sample and 0.385 W m−1 K−1 for x=0.20 sample at 330 K.



5.3 Results and Discussion 123

Figure 5.6: Temperature dependence of the sum of the lattice and bipolar con-

tributions of thermal conductivity for p-type (Bi2Te3)x(Sb2Te3)1−x single crystals

doped with 3 wt% Te. The symbols represent the experimentally expected results

read from Li et al. [9].
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Total Thermal Conductivity:

The total thermal conductivity is calculated by combining all contribution as

κtotal = κc + κph + κbp and presented in Fig. 5.7 along with the experimental

measurements given by Li et al. [9]. As we expect from our κc and κph+κbp calcu-

lations, the magnitude and temperature dependence of κtotal for all the samples

is analysed accurately.

By having one of the lowest κph+κbp value for the sample with the x=0.20 compo-

sition we achieve the smallest κtotal value of 1.145 WK−1m−1 at 400 K theoretically.

This small κtotal result will have an important effect in achieving the highest value

of ZT for this p-type material. For the comparison of n- and p-type materials, we

note κtotal= 3.15 WK−1m−1 for n-type Bi2(Te0.85Se0.15)3 single crystal doped with

0.1 wt.% CuBr at 380 K which is three times larger than the result for the x=0.20

p-type material studied here. This comparison clearly suggests that using p-type

Bi2Te3 based alloys rather than n-type alloys will produce significantly smaller

values of κtotal.

5.3.3 Thermoelectric Figure of Merit

We theoretically compute the ZT for all compositions in the range of 0.18 ≤ x ≤

0.26 and successfully explain the experimental results shown in Fig. 5.8. For all

samples, the temperature dependence of ZT is similar: in the extrinsic regime

it increases slightly and after the extrinsic-intrinsic turn-over point it decreases

gently. The highest ZT value is experimentally obtained for the 20% Bi2Te3 -

80% Sb2Te3 sample as 1.33 at 398 K. We theoretically find that the x=0.20 sample

has the largest ZT as 1.31 at 390 K which is in very good agreement with the

experimental study [9]. The reason that the x=0.20 sample has the biggest value
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Figure 5.7: Temperature dependence of the total thermal conductivity for p-type

(Bi2Te3)x(Sb2Te3)1−x single crystals doped with 3 wt% Te. The symbols represent

the experimental measurements read from Li et al. [9].
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of ZT among the six compositions is two-fold: it has the lowest total thermal

conductivity and has one of the highest power factor values where the peak value

of ZT occurs. Additionally, as seen in Fig. 5.8, when we use less amount of

Bi2Te3 in our p-type material the effective usage temperature range, with almost

a constant ZT value, becomes broader. For instance, while a constant ZT value

is obtained for the x=0.26 sample in the temperature range of 300 K ≤ T ≤ 380 K,

for the x=0.20 sample it is in temperature range 320 K ≤ T ≤ 440 K.

In Fig. 5.9 we compare both theoretical and experimental values of ZT for the

p-type (Bi2Te3)0.20(Sb2Te3)0.80 single crystal doped with 3 wt% Te studied in the

present work and the n-type Bi2(Te0.85Se0.15)3 single crystal doped with 0.1 wt.%

CuBr reported in our previous study [14]. As clearly seen ZT can be enhanced up

to a factor of 2.6 by choosing the p-type material rather than the n-type material.

This is due to the larger value of PF and smaller value of κtotal for the p-type ma-

terial. We also note that in the range 300 K ≤ T ≤ 500 K the temperature variation

of ZT is different for n- and p-type alloys: while it monotonously increases for

n-type material, after a slight rise it decreases beyond 420 K for p-type material.
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Figure 5.8: Temperature dependence of the thermoelectric figure of merit for p-

type (Bi2Te3)x(Sb2Te3)1−x single crystals doped with 3 wt% Te. The symbols rep-

resent the experimental results read from Li et al. [9].
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Figure 5.9: Temperature dependence of the thermoelectric figure of merit for

p-type (Bi2Te3)0.20(Sb2Te3)0.80 single crystals doped with 3 wt% Te and n-type

Bi2(Te0.85Se0.15)3 single crystal doped with 0.1 wt.% CuBr studied in Ref. [14] .

Stars represent the experimental results for the p-type material [9] and triangles

show the experimental results for the n-type material studied by Hyun et al. [24].
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5.4 Summary

The purpose of this research was to investigate the thermoelectric properties of

p-type (Bi2Te3)x(Sb2Te3)1−x single crystal doped with 3 wt% Te in the composi-

tion range 0.18 ≤ x ≤ 0.26 and to compare the theoretical calculations with the

experimental work studied by Li et al. [9]. We conclude the following:

(1) For all the compositions, the Fermi level (Ef ) first shows an extrinsic semi-

conductor behaviour and after an extrinsic-intrinsic turn-over temperature (Tc) it

behaves like an intrinsic semiconductor. Also, while the value of x increases, Tc

shifts to lower temperatures due to decrement in Na, or equivalently the mp/mn

ratio.

(2) The Seebeck coefficient of all samples reflects the temperature variation of Ef .

Generally, a larger Bi2Te3 content in the p-type material leads to a higher value of

S. The largest value of S is found to be 236.2 µV/K for the x=0.26 sample at 360

K.

(3) The electrical resistivity of none of the samples shows the extrinsic-intrinsic

turn-over points both theoretically and experimentally. The value of ρ increases

while the x values become larger. This is because of bigger m∗

p values in the

extrinsic regime and the larger B parameter in the intrinsic regime.

(4) The smallest amount of Bi2Te3 content (x=0.18 sample) in the p-type alloy pro-

duces the highest power factor (PF) of 5.21×10−3 W/(m.K2) near 290 K theoreti-

cally, which is almost double of that for the n-type Bi2(Te0.85Se0.15)3 single crystal

doped with 0.1 wt.% CuBr studied in our previous work [14].

(5) Higher Bi2Te3 content produces lower values of the hole contribution to ther-

mal conductivity (κc).
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(6) By applying Srivastava’s scheme for phonon conductivity (κph) and Price’s

theory for bipolar contribution (κbp), reasonable agreement is achieved with the

experimental results for all the samples.

(7) The minimum value of κtotal is found to be 1.145 WK−1m−1 for the x=0.20

sample at 400 K, which is nearly three times smaller than that for the n-type of

material reported previously [14].

(8) The experimentally measured ZT - T variation for all the samples [9] has been

successfully reproduced. The maximum value of ZT is computed theoretically

as 1.31 for the x=0.20 sample at 390 K, which is determined by the lowest total

thermal conductivity and one of the highest power factor values among all com-

positions. The ZT of the p-type x=0.20 sample is 2.6 times larger than that for

the n-type sample studied in our previous work [14]. This clearly shows that the

influence of the composition range of semiconductor alloys together with its type

and amount of dopant plays an important role in enhancing the thermoelectric

figure of merit.
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Table 5.1: Constants and parameters used in the calculations of thermoelectric

properties of p-type (Bi2Te3)x (Sb2Te3)1−x single crystals doped with 3 wt% Te.

Property x=0.18 x=0.19 x=0.20 x=0.22 x=0.24 x=0.26

Eg(0) (eV) 0.09 0.09 0.09 0.09 0.09 0.09

Ea (eV) 0.04 0.04 0.04 0.04 0.04 0.04

α (eV/K) 0.0105 0.0105 0.0105 0.0105 0.0105 0.0105

η (eV) 0.32 0.32 0.32 0.32 0.32 0.32

β (K) 14.53 14.53 14.53 14.53 14.53 14.53

Na (m−3) 1.0×1025 8.4×1024 8.1×1024 7.7×1024 4.2×1024 2.55×1024

m∗
p/m∗

e 1.27 1.13 1.09 1.06 1.03 1.01

r 0.4 0.43 0.45 0.55 0.53 0.43

ρ(kg/m3)[25] 6.67×103 6.68×103 6.69×103 6.72×103 6.75×103 6.77×103

c̄ (m/s) [26] 2918.0 2920.3 2922.0 2925.4 2928.8 2932.2

alat (Å) [27] 4.27 4.27 4.28 4.28 4.28 4.28

ED (eV) 32.0 32.0 32.0 32.0 32.0 32.0

ς 1.1 1.1 1.1 1.1 1.1 1.1

A (K−1.1) 0.00063 0.00063 0.00058 0.00068 0.00064 0.0007

A
′

(Ω−1m−1) 3.03×10−9 3.03×10−9 3.03×10−9 3.03×10−9 3.03×10−9 3.03×10−9

B (Ω.m.K−1) 2.8×10−8 3.0×10−8 3.1×10−8 4.0×10−8 4.7×10−8 5.6×10−8

p 1.0 1.0 1.0 1.0 1.0 1.0

Fbp(Wm−1K−2) 13.0×10−4 13.0×10−4 13.0×10−4 21.0×10−4 35.0×10−4 35.0×10−4

qD (Å−1) 0.6 0.601 0.603 0.605 0.608 0.61

L (mm) 5.0 5.0 5.0 5.0 5.0 5.0

Ω (Å3) 160.2 160.3 160.414 160.6 161.0 161.0

Γisotopes 0.028 0.026 0.025 0.0078 0.0054 0.00186

Γalloy 0.053 0.051 0.05 0.016 0.011 0.004

F3ph (s2/m2) 1.06×10−5 1.058×10−5 1.057×10−5 1.055×10−5 1.052×10−5 1.05×10−5
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Figure 5.10: This present work places among the top 25% most downloaded arti-

cles published in the Journal of Applied Physics since January 1, 2013.
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Chapter 6

A Detailed Theoretical Study of the

Thermal Conductivity of Bi2Te3

Based Single Crystals

6.1 Introduction

As discussed in Chapter 1, one of the traditional ways to improve ZT is making

alloys of single crystals. By this method significant reduction can be gained for

the phonon thermal conductivity and larger values of ZT can be attained [1, 2].

Among various thermoelectric materials, Bi2Te3-Sb2Te3 and Bi2Te3-Bi2Se3 alloys

are characterised with reasonably large ZT values near room temperature and

further enhancement can be attempted by using diverse methods [3, 4, 5, 6].

In this Chapter, first of all, a detailed theoretical investigation of the thermal con-

ductivity of Bi2(Te0.85Se0.15)3 single crystals doped with CuBr and SbI3 (with 0.1

and 0.05 wt.% doping levels being different studied in Chapter 4) is reported.
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Secondly, a detailed comparison for the thermal conductivities of n-type 0.1 wt.%

CuBr doped 85% Bi2Te3 - 15% Bi2Se3 and p-type 3 wt% Te doped 20% Bi2Te3 - %80

Sb2Te3 single crystals are provided.

6.2 Theory

The total thermal conductivity in semiconductors is expressed as κtotal = κc+κbp+

κph where the contributions are from carriers (electrons or holes, κc), electron-hole

pairs (bipolar, κbp) and phonons (κph).

Carrier Thermal Conductivity: As given Chapter 4 and 5, the carrier thermal

conductivity is determined by the Wiedemann-Franz law as [1, 2]

κc =
(kB
e

)2

σTL0, (6.1)

where L0 is described in terms of the scattering parameter r as [7]

L0 =

(

r + 7
2

)

Fr+ 5
2
(ζ∗)

(

r + 3
2

)

Fr+ 1
2
(ζ∗)

−
[
(
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2

)

Fr+ 3
2
(ζ∗)

(

r + 3
2

)

Fr+ 1
2
(ζ∗)

]2

. (6.2)

Bipolar Thermal Conductivity: As reported in Chapter 2, bipolar contribution to

the total thermal conductivity can be written as [8, 9, 10, 11]

κbp = FbpT
p exp(−Eg/2kBT ), (6.3)

with Fbp and p regarded as adjustable parameters depending on doping type.
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Phonon Thermal Conductivity: By following the same procedure reported in

Chapter 4 and 5, the phonon thermal conductivity is expressed by applying De-

bye’s isotropic continuum model within the single-mode relaxation time scheme

as [12]

κph =
~
2q5D

6π2kBT 2

∑

s

c4s

∫ 1

0

dxx4τn̄(n̄+ 1), (6.4)

where qD is the Debye radius, ~ is the reduced Planck’s constant, cs is the phonon

speed for polarisation branch s, n̄ is the Bose-Einstein distribution function and

x = q/qD. The phonon relaxation rate τ is contributed from several scattering

mechanisms: boundary (bs), mass-defects (md), donor electrons (ep) or acceptor

holes (hp), and anharmonic (anh). Expressions for τ−1
bs , τ−1

ep , τ−1
hp , and τ−1

md have

already been given in detail in Chapter 2 and the phonon-phonon interaction

(τ−1
3ph) Srivastava’s scheme [12] is employed in terms of the parameter defined as

F3ph = (γ
c̄
)2.

6.3 Results and Discussion

6.3.1 Thermal Conductivities of Bi2(Te0.85 Se0.15)3 Single Crys-

tals Doped with CuBr and SbI3

The thermal conductivity of a doped BiTeSe alloy single crystal can be expressed

as κtotal = κph + κpolar + κbipolar, where contributions are from phonons (lattice),

carriers, and electron-hole pairs, respectively. The effect of including the CuBr

and SbI3 dopants into Bi2(Te0.85Se0.15)3 single crystals studied by Hyun et al. [13]

is to provide donor electrons, making the overall doping of the alloys n-type. For

this situation we can write κtotal = κph+κel+κbipolar. The contribution κel is usually

estimated via the application of the Wiedemann-Franz law. After subtracting this
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contribution, Hyun et al. [13] have presented the temperature variation of κtotal

- κel ≡ κph + κbipolar for samples with different concentrations of CuBr and SbI3

dopants. We have succeeded in analysing the experimental results for κtotal − κel

by using the parameters listed in Tab. 6.1 and the expressions presented in the

theory section above. The calculations for κph include a single semi-adjustable

parameter F3ph which is given in Tab. 6.1 for low (below 300 K) and high (above

300 K) temperatures.

For all samples, boundary and electron-phonon scatterings are important at low

temperatures (below 100 K). Three-phonon interactions become dominant at high

temperatures (above 100 K) and the bipolar contribution becomes significant above

300 K. At any temperature throughout the range shown in Fig. 6.1 (a), for the

CuBr-doped materials κph + κbp decreases with reducing the dopant concentra-

tion. The behaviour is different for the SbI3-doped materials: κph + κbp decreases

(increases) with reducing the dopant concentration below (above) 300 K (shown

in Fig. 6.1 (b)).

The dopant-dependant behaviour of κph + κbp at temperatures below above 300

K can be explained by examining the behaviours of κph and κbp separately. Mass-

defect and electron-phonon scatterings increase, resulting in decrease in κph, with

increase in dopant level. κbp, on the other hand, generally increases with increase

in dopant level. Our calculations suggest that typically above 300 K the bipolar

contribution is dominant, making κtotal−κel rise at least linearly with temperature

(cf. Eq. (6.3)) for all samples. For the CuBr-doped samples, the κ − T curve for

the 0.1 wt.% doping level lies above that for the 0.05 wt.% doping level through-

out the temperature range 100-600 K. In contrast, for the SbI3-doped samples the

results for the 0.05 wt.% and 0.1 wt.% dopings cross each other at T = 200 K:

κ for 0.1 wt.% doping lies above(below) that for 0.05 wt.% below(above) 200 K.

We found it necessary to use a larger value of the parameter Fbp for the smaller
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Figure 6.1: Temperature variation of κtotal - κel for Bi2(Te0.85Se0.15)3 single crystals

doped with (a) CuBr and (b) SbI3 with given doping levels. The symbols repre-

sent the experimental results from Ref. [13].
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concentration of the SbI3 dopant to explain the results above 200 K.

A detailed lattice thermal conductivity investigations are made for 0.1 wt.% CuBr

doped Bi2(Te0.85Se0.15)3 single crystal. As seen in Fig. 6.2, a very high percent-

age (up to 82%) of the conductivity is carried by transverse phonons in the range

of 100-600 K. Figure 6.3 presents frequency-dependant contribution towards the

total phonon conductivity at several temperatures. At 50 K the conductivity-

frequency spectrum peaks at the frequency ωD/3 and has the full width at half

maxium of ωD/2, where ωD is the Debye frequency. The spectrum becomes wider

and shifts to higher frequency with increase in temperature. The shift of the max-

imum value of κph to higher frequencies with increasing temperature can be un-

derstood by employing the concept of dominant phonon approximation, which

suggests ~ωdom ≃ 1.6kBT [14]. Also, noting the general relationship between the

phonon mean free path Λ and frequency as Λ ∝ ω−n, we infer that κ(Λ) increases

with decrease in Λ in the frequency range from zero up to the maximum in κ(ω)

for any temperature. This behaviour has been deduced from the experimental

measurements of the frequency dependence of the conductivity for semiconduc-

tor alloys from Ref. [15].



6.3 Results and Discussion 142

Figure 6.2: Percentage contribution from different polarisations for 0.1 wt.% CuBr

doped Bi2(Te0.85Se0.15)3 single crystal.



6.3 Results and Discussion 143

Figure 6.3: Frequency dependence of phonon thermal conductivity for different

temperatures for 0.1 wt.% CuBr doped Bi2(Te0.85Se0.15)3 single crystal where the

Debye frequency is taken as ωD=18.92 THz.
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6.3.1.1 Summary

In summary, we have made a theoretical investigation of the temperature and fre-

quency dependence of the thermal conductivity of n-type doped Bi2(Te0.85Se0.15)3

single crystals. Experimental measurements by Hyun et al. [13] for the contribu-

tions from phonons and electron-hole pairs, κtotal - κel, for CuBr- and SbI3-doped

samples have been successfully explained by employing a rigorous theory of

phonon conductivity. It is found that, transverse phonons carry much more heat

(of the order of 82% for 0.1 wt.% CuBr doped sample) than longitudinal phonons.

In agreement with recent experimental observations by Koh and Cahill [15], the

conductivity is frequency dependent. The conductivity-frequency spectrum be-

comes wider and shifts towards higher frequency with increase in temperature.



6.3 Results and Discussion 145

Table 6.1: Constants and parameters used in the calculations of the thermal con-

ductivity of Bi2(Te0.85Se0.15)3 single crystal doped with CuBr and SbI3.

Property/Parameter 85% Bi2Te3 - 15% Bi2Se3 Single Crystal

CuBr doped SbI3 doped

Eg(0) (eV) 0.16 0.16

α (eV/K) 0.000613 0.0007

n (m−3) 1.32×1025 8.0×1024

m∗

n/me [16] 0.056 0.056

ρ (kg/m3) [17] 7.74×103 7.74×103

cL (m/s) [18] 4.76×103 4.76×103

cT (m/s) [18] 2.325×103 2.325×103

ED (eV) 32 32

p 1.0 1.0

qD (Å−1) 0.7113 0.7113

L (mm) 5.0 5.0

Ω (Å3) 164.94 164.94

Γisotopes 0.000112 (0.05 wt.%) 0.0112 (0.05 wt.%)

0.00045 (0.1 wt.%) 0.0117 (0.1 wt.%)

Γalloy 0.00447 0.00447

F3ph (s2/m2) LT:0.2×10−5

HT:0.4×10−5

LT:0.2×10−5

HT:0.4×10−5

Fbp (Wm−1K−1) 2.3×10−4 (0.05 wt.%) 3.0×10−4 (0.05 wt.%)

3.4×10−4 (0.1 wt.%) 2.2×10−4 (0.1 wt.%)
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6.3.2 Comparison of the Thermal Conductivities of n- and p-

type Bi2Te3 Based Single Crystals

Thermal conductivity calculations are performed for n-type 0.1 wt.% CuBr doped

85% Bi2Te3 - 15% Bi2Se3 and p-type 3 wt% Te doped 20% Bi2Te3 - %80 Sb2Te3 single

crystals at temperatures from 300 K to 500 K and all the related parameters for the

theoretical computation are compiled in Tab. 6.2.

By applying the Wiedemann-Franz law the carrier thermal conductivities of both

n- and p-type doped Bi2Te3 based alloys are theoretically computed in the tem-

perature range 300 K 6 T 6 500 K and presented in Fig. 6.4 (a). For compari-

sion, experimental results studied by Hyun et al. [13] and Li et al. [19] are also

presented in that figure. For the calculation of κc the required electrical conduc-

tivity results are taken from Chapter 4 and 5. In agreement with the experimental

measurements, our theoretical results clearly show that κc decreases consistently

as the temperature increases for both n- and p-type doped alloys. The signifi-

cantly lower carrier thermal conductivity values for the p-type alloy throughout

the temperature range results directly as a consequence of its electrical resistivity

being two times bigger than the n-type alloy. With the choice of the parameters

presented in Tab. 6.2, we successfully reproduce the experimental measurements

for the two different alloys and find the lowest values of 1.4 W K−1 m−1 and 0.6

W K−1 m−1, at 500 K, for the n- and p-type alloy, respectively.

The theoretically computed temperature dependence of the bipolar thermal con-

ductivity is shown in Fig. 6.4 (b) for both the n- and p-type doped alloys. As

expected from the Eq. (6.3), for both samples κbp goes up exponentially as the

temperature increases and becomes significantly important above room temper-

ature. The smaller value of κbp for the p-type alloy results from its narrower

energy band gap at a given temperature, as discussed in Chapter 5. The rise in
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Figure 6.4: Temperature dependence of (a) the carrier thermal conductivity, (b)

the bipolar thermal conductivity, (c) the phonon thermal conductivity for n-

type 0.1 wt.% CuBr doped (Bi2Te3)0.85(Bi2Se3)0.15 and p-type 3 wt% Te doped

(Bi2Te3)0.20(Sb2Te3)0.80 single crystals. The symbols represent the experimental

results studied by Hyun et al. [13] and Li et al. [19].
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κbp from 300 K to 500 K is faster for the n-type alloy than for the p-type alloy. At

500 K, the maximum value of the κbp reaches to 0.86 W K−1 m−1 for the n-type

alloy and by 0.456 W K−1 m−1 for the p-type alloy.

Figure 6.4 (c) shows the temperature dependence of the phonon thermal conduc-

tivity for n- and p-type alloys. For both type alloys we theoretically found that

boundary and carrier-phonon scatterings are dominant only at low temperatures

(T < 100 K), the phonon-phonon interaction becomes significant only at high

temperatures (T > 100 K) and mass-defect scatterings play an important role

throughout the temperature range. The p-type doped alloy has notably smaller

κph value than the n-type alloy, with the κph(n − type)/κph(p − type) ratio found

to be 5.4 at 300 K and 4.34 at 500 K. From our theoretical calculations we find

that compared to the n-type doped sample the p-type alloy is characterised by

significantly larger mass-defect scatterings determined by Γisotopes and Γalloy pa-

rameters. Differences in these parameters upon alloy formation can easily be

appreciated by noting that whereas Bi has no stable isotopes, Sb, Se and Te have

two, six and eight isotopes, respectively. Also, the n-type alloying results in a

much smaller mass difference (MTe −MSe = 48.6 amu) compared to the p-type

alloying (MBi −MSb = 87.2 amu).

As demonstrated in Fig. 6.5 the calculated total thermal conductivities of n- and

p-type doped alloys successfully explain the experimental results obtained by

Hyun et al. [13] and Li et al. [19]. The lowest value of κtotal is found to be 3.15

W K−1 m−1 at 380 K for and 1.145 W K−1 m−1 at 400 K for the n- and p-type

samples, respectively. From the theoretical calculations, we clearly establish that

the smaller value of κtotal for the p-type alloy throughout the temperature range

results from its phonon conductivity being nearly five times smaller than that for

the n-type alloy. This suggests that using p-type doped Bi2Te3 based alloy rather

than n-type doped alloy is likely to give rise to a higher value of ZT .
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Figure 6.5: Temperature dependence of the total thermal conductivity for n-

type 0.1 wt.% CuBr doped (Bi2Te3)0.85(Bi2Se3)0.15 and p-type 3 wt.% Te doped

(Bi2Te3)0.20(Sb2Te3)0.80 single crystals. The symbols represent the experimental

results studied by Hyun et al. [13] and Li et al. [19].
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Figure 6.6: Frequency dependence of the phonon thermal conductivity for p-

type 3 wt.% Te doped (Bi2Te3)0.20(Sb2Te3)0.80 single crystal at several temperatures

where the Debye frequency is taken as ωD=17.62 THz.

The spectral analysis of the phonon thermal conductivity in the frequency space

is represented in Fig. 6.6 for the p-type doped (Bi2Te3)0.20(Sb2Te3)0.80 single crystal

at several temperatures. Similar to the n-type doped (Bi2Te3)0.85(Bi2Se3)0.15 single

crystal studied in Chapter 4 the spectrum becomes wider and the peak shifts to

higher frequency when the temperature increases. This can be easily explained by

noting that the energy of the dominant phonon is directly proportional to crystal

temperature: ~ωdom ≃ 1.6kBT [14]. Furthermore, it is theoretically found that

the spectrum peaks at the frequency ωD/1.92 (where ωD is the Debye frequency)

and ωD/1.66 at 300 K and 500 K, respectively. Compared to the n-type doped

alloy presented in Chapter 4 the maximum value of κph occurs at a considerably

lower frequency for the p-type doped alloy. This results from the smaller Debye
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frequency of 17.62 THz for the p-type alloy, compared to 18.92 THz for the n-type

alloy sample reported in Chapter 4.

6.3.2.1 Summary

The thermal conductivity contributions arising from carriers, electron-hole pairs,

and phonons are theoretically studied for n-type 0.1 wt.% CuBr doped (Bi2Te3)0.85

(Bi2Se3)0.15 and p-type 3 wt.% Te doped (Bi2Te3)0.2(Sb2Te3)0.8 single crystals and

relevant parameters has been fitted to successfully reproduce the experimental

measurements obtained by Hyun et al. [13] and Li et al. [19] in the temperature

range 300 K 6 T 6 500 K. In this temperature range nearly three times smaller

total thermal conductivity is attained for the p-type doped alloy due to its lower

κc, κbp, and κph results. Comparatively significant reduction in κph for the p-type

sample comes from much stronger isotopic and alloy scattering rates of phonons.

Additionally, the phonon thermal conductivity - frequency spectrum is studied

for the p-type doped sample and found that the spectrum becomes wider and the

peak value shifts to higher frequencies as the temperature increases. Compared

to n-type doped alloy, the highest value of κph takes place at smaller frequency

owing to its lower Debye frequency.
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Table 6.2: Parameters used in the calculations of the thermal conductivity of 0.1

wt.% CuBr doped (Bi2Te3)0.85(Bi2Se3)0.15 and 3 wt.% Te doped (Bi2Te3)0.2(Sb2Te3)0.8

single crystals.

Property/Parameter (Bi2Te3)0.85(Bi2Se3)0.15 (Bi2Te3)0.2(Sb2Te3)0.8

Eg(0) (eV) 0.16 0.09

r 0.1 0.45

Fbp (Wm−1K−1) 3.4×10−4 13.0×10−4

p 1.0 1.0

qD (Å−1) 0.7113 0.603

Ω (Å3) 164.94 160.414

c̄ (m/s) [18] 2611 2922

Γisotopes 0.000112 0.025

Γalloy 0.00447 0.05

ρ (kg/m3) [17] 7.7×103 6.69×103

F3ph (s2/m2) LT:0.2×10−5, HT:0.4×10−5 1.057×10−5
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Chapter 7

Thermoelectric Properties of

Bi2Se3/Bi2Te3/Bi2Se3 and

Sb2Te3/Bi2Te3/Sb2Te3 Quantum Well

Systems

7.1 Introduction

In the early 1990s, Hicks et al. [1, 2] theoretically predicted that ZT could be

greatly enhanced by using low-dimensional nanostructured thermoelectric mate-

rials characterised by quantum confinement of carriers. Their prediction brought

an entirely new perspective to the area of thermoelectric research. In addition to

the consideration made by Hicks et al. [1, 2], it is being realised that by intro-

ducing more boundaries or interfaces in nanocomposite materials phonons can

be more scattered than in bulk form, resulting in dramatic reduction in phonon

thermal conductivity [3, 4]. The advantage of the concept of nanostructuring is
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that ZT can be improved by decreasing phonon conductivity without reducing

the power factor (S2σ) strongly. In fact in some cases increasing power factor is

also possible while there is a reduction in κph. In the work of Hicks et al. [1], Bi2Te3

quantum-well structures are investigated by considering effectively infinite po-

tentials for electron confinement and negligible widths of the barriers for thermal

transport. Consequently, it has been theoretically shown that ZT goes up mono-

tonically by reducing the well widths [1, 2]. Lin-Chung et al. [5], following the

prediction by Hicks et al. [1], made a new attempt by considering non-zero barrier

widths for realistic Bi2Te3/Pb0.75Sn0.25Te superlattice systems. They recovered the

results of Hicks et al. [1] for zero barrier width and found considerably reduced

ZT for finite barrier thicknesses but still higher than the ZT of bulk form. The

reduction in ZT results because thermal and electric currents flow along both the

barriers and the wells in the non-zero barrier widths case. The theoretical works

studied by both Hicks et al. [1] and Lin-Chung et al. [5] assumed that lattice con-

tribution of the thermal conductivity (κph) could be taken to be the bulk value of

Bi2Te3 for well widths greater than phonon mean free path and also presumed to

be both temperature and well width independent.

Experiments performed by Venkatasubramanian et al. [6] also support the nanos-

tructuring approach for finding extraordinarily high ZT value of 1.46 for n-type

Bi2Te3/Bi2Te2.83Se0.17 superlattices and 2.4 for p-type Bi2Te3/Sb2Te3 superlattices

at 300 K. Very recently, Hinsche et al. [7] reported a theoretical work on Bi2Te3 /

Sb2Te3 superlattices of different periods to explain the experimental results ob-

tained by Venkatasubramanian et al. [6]. In their theoretical calculations the

value of κph was taken from previous experimental works for superlattices only at

room temperature and treated again as temperature and well width independent.

However, they did not even discuss different phonon scattering mechanisms and

their importance for low-dimensional systems, and indeed could not obtain the
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expected ZT values reported by Venkatasubramanian et al. [6].

In this chapter, based on temperature and well width dependent Fermi level, a

full theory of thermoelectric properties is investigated for n-type 0.1 wt.% CuBr

doped Bi2Se3/Bi2Te3/Bi2Se3 and p-type 3 wt.% Te doped Sb2Te3 / Bi2Te3 / Sb2Te3

quantum well systems in the temperature region 50 K - 600 K. Different values of

well thicknesses are considered for both types of quantum well systems to study

the effect of confinement on all thermoelectric transport coefficients. The tem-

perature and well width variations of the electronic transport coefficients S, σ,

and κc are calculated by following a slight variation of the theory presented by

Hicks et al. [1] for quantum well structures. The temperature dependence of the

thermal conductivity contributions from electron-hole pairs (κbp) and phonons

(κph) are computed by employing Price’s theory [8] and Srivastava’s scheme [9],

respectively. Phonon scattering rates including various types of scattering mech-

anisms are taken into account rigorously. Finally, all the thermoelectric transport

properties of both n- and p-type quantum well systems are compared with the

corresponding bulk forms as n-type 0.1 wt.% CuBr doped 85% Bi2Te3 - 15% Bi2Se3

and p-type 3 wt% Te doped 20% Bi2Te3 - %80 Sb2Te3 single crystals reported in

Chapter 4 and 5.

Theoretical Modelling of Thermoelectric Properties in Quantum Well Systems

As given in Chapter 3, a composite system grown in z-direction of B/A/B layers

of material A (comprised of nA atomic layers of thickness a each, and total thick-

ness dA) and material B (comprised of nB atomic layers of thickness b each, and

total thickness dB), with A forming a two-dimensional quantum well (2D QW)

is considered for the calculation of thermoelectric properties in low dimensional

systems. A schematic structure of this quantum well system can be seen in Fig.

7.1. Following the work of Lin-Chung et al. [5], for such a system with current
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flow perpendicular to the growth direction (with no loss of generality, we may

take it along x-axis) and having negligible barrier widths (dB ≃ 0), the thermo-

electric transport coefficients can be expressed as [5]

S = SA, σ = σA, κc = κA. (7.1)

For both n- and p-type quantum well structures studied here Bi2Te3 is the well

material (material A) due to its lower band gap.

7.2 Electronic Transport Properties

7.2.1 Fermi Level

As described in Chapter 3, in 2D quantum well structures, the temperature vari-

ation of Ef in extrinsic regime is given as
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where j is the number of sub-band, Ec is the conduction band edge, Ev is the

valence band edge, Ed is the donor energy level and Ea is the acceptor energy

level. The donor and acceptor ionisation energies are determined respectively as

∆E
(n)
i = Ec−Ed and ∆E

(p)
i = Ea−Ev. The parameters given asUc=2((m∗

nkBT )/(2π~
2))3/2

and Uv=2((m∗

pkBT )/(2π~
2))3/2 where kB is the Boltzmann constant [10]. Nd and
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Na are the concentrations of donor impurity and acceptor impurity atoms, respec-

tively. The effective masses are represented by m∗

n for the electron mass and m∗

p

for the hole mass.

In a doped semiconductor, beyond a sufficiently high temperature, donors at the

Ed level (or acceptors atEa) become fully ionized and the material behaves like in-

trinsic semiconductor. In this regime the temperature dependences of Ef for both

n- and p-type doped semiconductor quantum well structures can be expressed

by subtracting the confined energy term to the bulk expression [10]
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. (7.3)

Neither of n-type 0.1 wt.% CuBr doped Bi2Se3/Bi2Te3/Bi2Se3 and p-type 3 wt.%

Te doped Sb2Te3/Bi2Te3/Sb2Te3 quantum well systems studied here reach the

intrinsic regime in the temperature range 50 K ≤ T ≤ 600 K. Therefore, all the fol-

lowing discussions provided here will be based on the use of the extrinsic regime

only.

7.2.2 Seebeck Coefficient

Within the single-band nearly-free-electron(hole) consideration in the x− y plane

we determine the in-plane electronic transport properties (S, σ, and κc) of a 2D

quantum well system in terms of Fermi level and using Fermi-Dirac statistics.

Therefore, the Seebeck coefficient can be written as

S = ±kB
e

[(2 + r)

(1 + r)

F1+r

F0+r
− ζ∗

]

, (7.4)

where the minus sign is for n-type materials, the plus sign is for p-type materials,

ζ∗ = Ef/kBT is the reduced chemical potential, Fi is the Fermi integral and it is

also considered that charge carriers (electrons or holes) are scattered in such way
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that their relaxation time (τ ) may be expressed in terms of the energy (E) with the

relation of τ = τ0E
r where τ0 is a constant and r is called the scattering parameter.

7.2.3 Electrical Conductivity

For our quantum well systems studied here it is considered that carriers (electrons

or holes) are confined to the x− y plane (parallel to the layers) without suffering

scattering at the interface layers. Therefore, the carrier mobility in a direction

parallel to the layers is unchanged and will have the same expression as for bulk

systems. So the electrical conductiviy in a semiconductor quantum well is given

by

σ = Neµc = N
e2

m∗
c

〈τ〉, (7.5)

where µc is the conductivity mobility, m∗

c is the conductivity effective mass, 〈τ〉

is an average relaxation time for carriers and N is the carrier concentration and

defined as [11, 12, 13],

N =

∫
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with g(E) as the density of states for nearly free electron gas for 2D systems and

f0(E) being the Fermi-Dirac distribution function. In our n- and p-type doped

Bi2Te3 based quantum well systems electrons (or holes) mostly scatter with the

long wavelength phonons. The carrier-acoustic phonon scattering rate is given

by [11, 14]
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√
2

π
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3/2kBT

~4ρc2L

√
E, (7.7)

where m∗

D is the density of states effective mass, cL is the velocity of longitudinal

phonons, ρ is the mass density, and ED is the deformation potential. The average
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relaxation time is written as [12],
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with W = E/kBT . Thus, the in-plane electrical conductivity of the quantum well

systems in the extrinsic regime can be expressed as
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7.3 Thermal Transport Properties

The total thermal conductivity (κtotal) is determined by combining three contribu-

tions, arising from carriers (electrons or holes) (κc), electron-hole pairs (bipolar,

or κbp), and lattice (i.e. from phonons, κph).

7.3.1 Carrier Thermal Conductivity

The carrier contribution on the total thermal conductivity (κc) is expressed by the

Wiedemann-Franz law as

κc = σLT =
(kB
e

)2

σTL0, (7.10)

where L is the Lorenz number and including the carrier scattering parameter r

for the quantum well systems, and the L0 parameter can be expressed as
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. (7.11)
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7.3.2 Bipolar Thermal Conductivity

The electron-hole pair contribution (κbp) to the total thermal conductivity can be

expressed as [15, 16]

κbp = FbpT
p exp(−Eg/2kBT ), (7.12)

with Fbp and p regarded as adjustable parameters. The only difference in the

κbp expression between bulk and quantum well structures originates from the

definition of the band gap Eg due to the confinement effects on electron and hole

energy levels in the latter structure given as

Eg(QW) = Ec − Ev +
~
2π2

2d2A

( 1
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z,e

+
1

m∗

z,h

)

, (7.13)

where the effective masses of electrons and holes in the growth direction are m∗

z,e

and m∗

z,h, respectively.

7.3.3 Lattice Thermal Conductivity

For the lattice thermal conductivity of quantum well systems we used the same

treatment as we made for the bulk systems and applied the Debye’s isotropic con-

tinuum approximation within the single-mode relaxation time scheme expressed

as [9]

κph =
~
2q5D

6π2kBT 2

∑

s

c4s

∫ 1

0

dxx4τn̄(n̄+ 1), (7.14)

where qD is the Debye radius, x = q/qD is a reduced wavenumber, s is phonon

polarisation index, n̄ is the Bose-Einstein distribution function, cs is the velocity

of phonons defined for polarisation branch s.

For the quantum well structures, phonon relaxation rate τ−1 is contributed by

several scattering mechanisms: boundary (bs), carriers (carr), mass defects (md),

interface mass-mixing (ims), interface dislocation (ids) and anharmonicity (anh).
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The same expressions given in Chapter 2 will be used for the phonon scattering

rates sourced from sample boundaries, carriers and mass defects. Additional

to these scattering mechanisms, two extra considerations must be made when

making a complete assessment of the phonon relaxation time when dealing with

quantum well structures: interface mass-mixing scattering (ims) resulting from

diffusion or mixing of atoms at the interfaces and interface dislocation scattering

(ids) arising from dislocations or missing bonds present at interfaces.

As described in Chapter 3, we express the interface mass-mixing scattering rate

as

τ−1
qs (ims) =

ΓimsΩ

4πc̄3
ω4(qs), (7.15)

with the mass-mixing parameter for a quantum well system given as
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where Ω is the volume of a unit cell, d is the interlayer distance (a in the well and

b in the barrier), li is the layer distance from interface, l0 is the z coordinate of the

interface, β0 is the mass-mixing fraction at distance nd or md from the interface,

and eB/eA is the ratio of the amplitudes of eigenvectors in materials B and A.

As reported in Chapter 3 in detail, we express the phonon relaxation rate due to

interface dislocation scattering as

τ−1
qs (ids) =

ΓidsΩ

8πc̄3
ω4
0, (7.17)

where ω0 can be approximated as the highest zone-centre frequency (ω0 = ωD =

c̄.qD) and the interface dislocation parameter is written as
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with β ′

0 being the fraction of broken bonds in the interface region.
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The amplitude ratio eB/eA required for both interface mass-mixing and dislo-

cation scattering mechanisms is approximated using the diatomic linear chain

model along the growth direction as

eB
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with 1/M0 = 1
2
(1/MA + 1/MB), ∆(1/M) = 1

2
(1/MA − 1/MB) and lz = dA + dB is

the period along the growth direction.

Finally, our consideration of the anharmonic phonon scattering mechanism in

quantum well systems is based on Srivastava’s scheme for bulk systems, for

which [9]
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where γ is the Grüneisen constant, x′

= q
′

/qD, x′′

+=Cx ± Dx
′ , n̄′′

±
= n̄(x

′′

±
), C =

cs/cs′′ ,D = cs′/cs′′ . ε = 1 for momentum-conserving Normal processes, and ε=−1

for momentum-nonconserving Umklapp processes. The first and second terms

in equation (7.20) are controlled by class 1 events qs + q
′

s
′ → q

′′

s
′′ and class

2 events qs → q
′

s
′ + q

′′

s
′′ , respectively. The integration limits on the variables

x and x
′ , derived from a detailed consideration of the energy and momentum

conservation requirements, have been presented in Ref. [9] elaborately. Equation

(7.20) is valid for the materials containing only one atom per primitive unit cell,

namely for bulk systems. When the number of atoms increases in a unit cell, Eq.

(7.20) should be re-written owing to increased amount of anharmonic scattering

strength. Following the discussions given in Chapter 3 with Refs. [17, 18] we

model the anharmonic phonon scattering rate for QW systems as

τ−1
qs (anh,QW) = τ−1

qs (anh, bulk)(nA + nB)
2/3. (7.21)
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7.4 Results and Discussion

In this present work, the thermoelectric properties of n-type 0.1 wt.% CuBr doped

Bi2Te3/Bi2Se3 and p-type 3 wt.% Te doped Bi2Te3/Sb2Te3 quantum well systems

are theoretically investigated for various quantum well widths (7 nm 6 dA 6 20

nm) in the temperature range 50 K - 600 K. All integrals are evaluated numerically

by applying Simpson’s rule and all other related parameters for the calculations

are listed in Tab. 7.1. For the n-type quantum wells we have estimated the values

of valence and conduction band off-sets are nearly 0.08 eV and 0.09 eV, respec-

tively. Also, for the p-type quantum wells we have estimated that both band

off-sets are nearly equal to 0.01 eV.

7.4.1 Electronic Transport Coefficients

7.4.1.1 Fermi Level

Figure 7.1 represents the Fermi level diagram for both n-type 0.1 wt.% CuBr

doped Bi2Se3/Bi2Te3/Bi2Se3 and p-type 3 wt.% Te doped Sb2Te3/Bi2Te3/Sb2Te3

quantum well systems. Suitable selections for the value of well widths is made

by bearing in mind that while the well width decreases the conduction band of

the well material increases and at some critical value of the well width dA this

conduction band edge exceeds the conduction band level of the barrier material.

We theoretically found that the smallest value of dA should be taken as 7 nm and

10 nm for the n-type and p-type quantum well systems, respectively.

In Fig. 7.2, the temperature variation of the Fermi level is shown for both n- and p-

type doped quantum wells including their theoretical bulk alloy results reported

in our previous works [15, 16]. As can be expected from Eq. (7.2), Ef of quantum



7.4 Results and Discussion 166

Figure 7.1: Fermi diagram of quantum well systems made with (a) n-type

0.1 wt.% CuBr doped Bi2Se3/Bi2Te3/Bi2Se3 and (b) p-type 3 wt.% Te doped

Sb2Te3/Bi2Te3/Sb2Te3. Indirect band gap values for Bi2Te3, Bi2Se3, and Sb2Te3

are read from Refs. [7] and [19]. Samples with the band gaps of EA
g , EB

g , EC
g , ED

g

are calculated for the values of quantum well widths taken as dA=20 nm, 15 nm,

10 nm, and 7 nm, respectively.
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well systems decreases with reducing the quantum well width dA. Moreover, as

we reported previously [15, 16] both n- and p-type doped bulk alloys show ex-

trinsic behaviour at low temperatures and beyond a certain temperature (Tc=500

K for n-type doped, Tc=425 K for p-type doped sample) they start behaving like

an intrinsic material. On the other hand, both the n- and p-type quantum well

structures considered here only show extrinsic behaviour and do not reach the

intrinsic regime throughout the temperature range studied in this work. Also,

for all quantum well systems we studied only a weak temperature variation of Ef

is found, owing to the opposite signs of term 2 and 3 in Eq. (7.2).

7.4.1.2 Seebeck Coefficient

Figure 7.3 represents the temperature dependence of the in-plane Seebeck coef-

ficient for both n- and p-type doped quantum wells. For comparison the bulk

alloy results worked in our earlier studies [15, 16] are also included. As already

discussed in the theory section, negative and positive values of the S are gained

for the n- and p-type quantum well systems, respectively. The scattering parame-

ters of the n- and p-type quantum wells are taken as the same value for their bulk

alloys. For all the quantum well samples the temperature dependence of the S

is found to be similar: following Eq. (7.4) it consistently increases with tempera-

ture throughout the range studied in this work. This is in contrast to their bulk

forms which show a decrement after a certain temperature owing to the onset of

the intrinsic behaviour. As shown in Fig. 7.3, for the whole temperature range

the magnitude of S for p-type quantum well samples is larger than that for the

n-type quantum wells. This suggests that the direct relationship between S and

−ζ∗ given in Eq. (7.4) plays a major role for the S - T variation. For all the systems

we studied |S| goes up continuously with decreasing the quantum well width, in

accordance with Eq. (7.4). This is in an agreement with the work of Lin-Chung et
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Figure 7.2: Temperature dependence of the Fermi level for (a) n-type 0.1 wt.%

CuBr doped Bi2Se3/Bi2Te3/Bi2Se3 quantum well where midway between the va-

lence and conduction band edges is set to zero and (b) p-type 3 wt.% Te doped

Sb2Te3/Bi2Te3/Sb2Te3 quantum well where the valence band edge is set to zero.

The symbols represent the theoretical results read from Refs. [15, 16] for n-type

0.1 wt.% CuBr doped 85% Bi2Te3 - 15% Bi2Se3 and p-type 3 wt% Te doped 20%

Bi2Te3 - %80 Sb2Te3 single crystals.
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al. [5] where they have investigated the thermoelectric properties of Bi2Te3 quan-

tum wells theoretically. Figures 7.3 (a) and (b) also indicate that magnitudes of

S higher than bulk alloys are obtained for the n-type quantum well with dA=7

nm and p-type quantum well having dA=10 nm. These results provide a ten-

tative conclusion that use of narrow well widths would be helpful in achieving

enhancement in the thermoelectric figure of merit over the corresponding bulk

value.

7.4.1.3 Electrical Resistivity

As we did for bulk systems [15, 16], the expression for σ given in Eq. (7.9) is de-

rived by considering that the dominant contribution to the scattering rate comes

from the interaction of carriers with acoustic phonons. However, there are addi-

tional scattering mechanisms arising from optical phonons, impurities and many-

body effects (carrier-carrier). To account for these relatively weak mechanisms,

we scaled the electrical resistivity in the following form:

ρ =
1

σ
A

′

T ς , (7.22)

where A′ and ς are treated as adjustable parameters, with their values given in

Tab. 7.1.

Figure 7.4 presents the in-plane electrical resistivity results in the temperature

range 50 K - 600 K for both n- and p-type quantum well samples, together with

the bulk results studied in our previous works [15, 16] for comparison. The resis-

tivity of all n- and p-type quantum well samples increases with temperature and

shows temperature variation similar to the corresponding bulk alloy. For only

the n-type quantum well with dA=7 nm sample we could obtain lower resistivity

than its bulk alloy at very high temperatures (above 500 K). In contrast, the cal-

culated electrical resistivities are lower than the corresponding bulk result below
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Figure 7.3: Temperature dependence of the Seebeck coefficient for (a) n-type

0.1 wt.% CuBr doped Bi2Se3/Bi2Te3/Bi2Se3 and (b) p-type 3 wt.% Te doped

Sb2Te3/Bi2Te3/Sb2Te3 quantum well systems. The symbols represent the theo-

retical results read from Refs. [15, 16] for n-type 0.1 wt.% CuBr doped 85% Bi2Te3

- 15% Bi2Se3 and p-type 3 wt% Te doped 20% Bi2Te3 - %80 Sb2Te3 single crystals.
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350 K, 550 K, and all temperatures for the p-type quantum well with width 20

nm, 15 nm, and 10 nm, respectively. Moreover, for a given dA the p-type quan-

tum well sample has a larger value of ρ than the n-type quantum well. This can

be explained using the appropriate asymptotic expansion of the Fermi integrals.

It can be shown that so far as η∗ > 1, the electrical conductivity is proportional

to η∗ on account of the Fermi integral F0 in Eq. (7.9). Therefore, at a given tem-

perature higher values of Ef lead to lower values for ρ. Additionally, as expected

from the Eq. (7.9), the electrical resistivity of our quantum wells increases with

increase in the well width dA. This is also claimed by Lin-Chung et al. [5] with

similar magnitudes for ρ.

From the above discussion we may conclude that use of narrow p-type quantum

wells should help enhance ZT over the corresponding bulk value.

7.4.1.4 Power Factor

For both n- and p-type Bi2Te3 based quantum well systems the temperature de-

pendence of the power factor (PF=S2σ) is shown in Fig. 7.5 and compared to the

previously reported bulk values given in Refs. [15, 16]. In agreement with both

the theoretical and experimental work by Dresselhaus et al. [20] for the n-type

PbTe quantum wells, we found that the PF of both type quantum wells studied

here consistently decreases with increase in temperature. Moreover, larger PF

values are obtained for narrow quantum well samples (i.e., n-type with dA=7 nm,

and p-type with dA=10 nm and 15 nm) than their bulk values. The maximum

value of the PF occurs at 50 K for both type quantum wells and is found to be

0.055 W m−1 K−2 for the n-type quantum well with dA= 7 nm and 0.11 W m−1

K−2 for the p-type quantum well with dA=10 nm. This results from the dominant

effect of S for the calculation of power factor and higher S2 values for p-type
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Figure 7.4: Temperature dependence of the electrical resistivity for (a) n-type

0.1 wt.% CuBr doped Bi2Se3/Bi2Te3/Bi2Se3 and (b) p-type 3 wt.% Te doped

Sb2Te3/Bi2Te3/Sb2Te3 quantum well systems. The symbols represent the theo-

retical results read from Refs. [15, 16] for n-type 0.1 wt.% CuBr doped 85% Bi2Te3

- 15% Bi2Se3 and p-type 3 wt% Te doped 20% Bi2Te3 - %80 Sb2Te3 single crystals.
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Figure 7.5: Temperature dependence of the power factor for (a) n-type 0.1

wt.% CuBr doped Bi2Se3/Bi2Te3/Bi2Se3 and (b) p-type 3 wt.% Te doped

Sb2Te3/Bi2Te3/Sb2Te3 quantum well systems. The symbols represent the theo-

retical results read from Refs. [15, 16] for n-type 0.1 wt.% CuBr doped 85% Bi2Te3

- 15% Bi2Se3 and p-type 3 wt% Te doped 20% Bi2Te3 - %80 Sb2Te3 single crystals.
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quantum wells relative to the n-type quantum well samples. Furthermore, PF

droffs off progressively with increase in the quantum well thickness, in agree-

ment with the discussion presented in Ref. [20].

7.4.2 Thermal Transport Coefficients

7.4.2.1 Carrier Thermal Conductivity

The in-plane carrier thermal conductivity for the quantum well systems is deter-

mined by employing the Wiedemann-Franz law with the temperature dependent

Lorenz number taken as

L = L0

(kB
e

)

, (7.23)

where L0 is already given in Eq. (7.11) including the scattering parameter r. Thus,

L depends on the Fermi level via the Fermi integrals. As seen in Fig. 7.6, both n-

and p-type quantum wells have lower values of L compared to their bulk samples

due to the confinement term in Eqs. (7.2) and (7.3). For a similar reason, while

the well thickness decreases L becomes smaller.

The variation of the carrier thermal conductivity with temperature is shown in

Fig. 7.7 for both n- and p-type quantum wells and the theoretical results for their

bulk alloys are also added from Refs. [15, 16]. As in the work done by Lin-

Chung et al. [5], κc for quantum well structures decreases progressively both

with temperature and well width. In Fig. 7.7 (a), it is seen that almost all n-

type quantum wells (except for some parts of the dA=7 nm sample) have lower κc

throughout the temperature range compared to the value for the bulk alloy.

In contrast, as shown in Fig. 7.7 (b), in the temperature range 50 K - 400 K of

the present study, higher values of κc are obtained for all p-type quantum wells
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compared the value for the bulk alloy. The difference is much larger at low end

of the temperature range. Beyond 400 K, the conductivities of p-type quantum

wells approach the bulk value. Our calculation even reveal that for the samples

with dA=15 nm and 20 nm the carrier thermal conductivities become smaller than

bulk values beyond 400 K.

7.4.2.2 Bipolar Thermal Conductivity

The theoretical calculation of the in-plane bipolar thermal conductivities of both

n- and p-type quantum wells are presented in Fig. 7.8 including their bulk al-

loys reported in our previous works [15, 16]. For the theoretical calculation of the

bipolar thermal conductivities of 2D quantum wells both the adjustable param-

eters Fbp and p, and the temperature dependences of the energy band gaps are

taken as the bulk values [15, 16]. For both n- and p-type quantum well materi-

als κbp continuously increases with the quantum well width. This can be easily

understood from Eqs. (7.13) and (7.12). While n-type quantum wells have larger

κbp compared to n-type bulk alloy, the opposite situation is found for the p-type

materials. This is mainly because of the significant difference in the temperature

variation of the energy band gaps and the difference in the Fbp parameter. More-

over, it is clearly seen that κbp for the n-type quantum wells is nearly five times

bigger than the p-type quantum wells. Finally, up to 250 K for both type quan-

tum well systems, the κbp values are insignificant compared to κc results. On the

other hand, at 600 K the κbp results are larger than κc for the n-type quantum well

samples whereas these values become nearly similar for the p-type quantum well

samples.
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Figure 7.6: Temperature dependence of the Lorenz number for (a) n-type 0.1

wt.% CuBr doped Bi2Se3/Bi2Te3/Bi2Se3 and (b) p-type 3 wt.% Te doped Sb2Te3/

Bi2Te3/Sb2Te3 quantum well systems. The symbols represent the theoretical re-

sults read from Refs. [15, 16] for n-type 0.1 wt.% CuBr doped 85% Bi2Te3 - 15%

Bi2Se3 and p-type 3 wt% Te doped 20% Bi2Te3 - %80 Sb2Te3 single crystals.
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Figure 7.7: Temperature dependence of the carrier thermal conductivity for (a) n-

type 0.1 wt.% CuBr doped Bi2Se3/Bi2Te3/Bi2Se3 and (b) p-type 3 wt.% Te doped

Sb2Te3/Bi2Te3/Sb2Te3 quantum well systems. The symbols represent the theoret-

ical results read from Refs. [15, 16] for n-type 0.1 wt.% CuBr doped 85% Bi2Te3 -

15% Bi2Se3 and p-type 3 wt% Te doped 20% Bi2Te3 - %80 Sb2Te3 single crystals.



7.4 Results and Discussion 178

Figure 7.8: Temperature dependence of the bipolar thermal conductivity for (a) n-

type 0.1 wt.% CuBr doped Bi2Se3/Bi2Te3/Bi2Se3 and (b) p-type 3 wt.% Te doped

Sb2Te3/Bi2Te3/Sb2Te3 quantum well systems. The symbols represent the theoret-

ical results read from Refs. [15, 16] for n-type 0.1 wt.% CuBr doped 85% Bi2Te3 -

15% Bi2Se3 and p-type 3 wt% Te doped 20% Bi2Te3 - %80 Sb2Te3 single crystals.
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7.4.2.3 Phonon Thermal Conductivity

As described in the theory section, the temperature variation of the phonon ther-

mal conductivity for the quantum well systems is calculated by including sev-

eral scattering mechanisms rigorously. The phonon-phonon interactions are com-

puted by employing Srivastava’s scheme for bulk systems and incorporating the

well width dependence of κph as described in Refs. [17, 18]. Phonon scatter-

ing due to mass mixing and broken bonds or dislocations at interfaces are taken

into account with a re-expressed version of the works reported in Refs. [21, 22].

Using the parameters listed in Tab. 7.1 the κph - T calculations for the 2D quan-

tum wells are made in terms of a temperature independent adjustable parameter

F3ph =
(

γ
c̄

)2

.

Similar to both n- and p-type doped bulk alloys studied in our previous works

[15, 16], for all the quantum well samples we note that: boundary and carrier-

phonon scattering rates play a major role for the κph - T relationship at low tem-

peratures (below 100 K), mass-defect scattering is important at both low and high

temperatures (below and above 100 K) and three-phonon interactions become

dominant only at high temperatures (above 100 K). Besides these factors, in Fig.

7.9 (a) and (b) the importance of the interface mass-mixing and interface disloca-

tion scattering rates on the κph - T for both n- and p-type quantum wells of well

width 10 nm is shown clearly. For both quantum n- and p-type quantum well

samples the interface dislocation scattering has a very little effect on the κph for

temperatures below 100 K. On the other hand, at high temperatures (above 100

K), the interface mass-mixing scattering has a significant effect on κph for both

types of quantum well systems.

In Fig. 7.10, the temperature dependence of the lattice thermal conductivity is

represented for both n- and p-type quantum well systems and their bulk results
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[15, 16] are also included for comparison. Due to the additional interface scatter-

ing mechanisms and scaled phonon-phonon interactions, all quantum well sam-

ples have smaller κph than their bulk forms. The reduction is about an order of

magnitude for all n- and p-type quantum well samples. This is the most desired

condition to have for an enhanced value of ZT . Moreover, κph decreases with

increasing the quantum well thickness. This suggests that the most dominant

effect on the κph - dA relation is coming from the anharmonic interaction since

τ−1
qs (anh)(QW) rises with dA whereas τ−1

qs (ims) and τ−1
qs (ids) scattering rates drop

off with dA.

7.4.2.4 Total Thermal Conductivity

The total thermal conductivity of quantum well systems, computed by combining

all contributions as κtotal = κc + κbp + κph, is represented in Fig. 7.11.

As seen in panel (a), there is a huge difference in κtotal results between the n-

type quantum wells and the n-type doped bulk alloy. This occurs because of

the significant decrease in κph for quantum well systems. Owing to the effect

of κbp, for the temperatures above 250 K, there is a clear increase in the total

thermal conductivity results for the quantum wells. At around 600 K, the total

conductivity result for the n-types QWs is found to be very close to the bulk

value. The minimum value of κtotal is obtained for the dA=20 nm quantum well

sample at 1.37 W m−1 K−1 at 250 K whereas the minimum bulk value is 3.18 W

m−1 K−1 at 400 K [15, 16].

As seen in panel (b), at lower temperatures (T < 100 K) κtotal of the p-type quan-

tum wells is dramatically larger than the p-type bulk sample. This is due to the

sudden increase in the carrier thermal conductivity in this temperature regime.

At high temperatures (T > 100 K) the total thermal conductivities of the quantum
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Figure 7.9: The effect of the interface mass-mixing and interface dislocation scat-

tering mechanisms on the temperature variation of the phonon thermal conduc-

tivity for (a) n-type 0.1 wt.% CuBr doped Bi2Se3 / Bi2Te3 / Bi2Se3 and (b) p-type

3 wt.% Te doped Sb2Te3/Bi2Te3/Sb2Te3 quantum well systems taking dA=10 nm.
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Figure 7.10: Temperature dependence of the phonon thermal conductivity for

(a) n-type 0.1 wt.% CuBr doped Bi2Se3/Bi2Te3/Bi2Se3 and (b) p-type 3 wt.% Te

doped Sb2Te3/Bi2Te3/Sb2Te3 quantum well systems. The symbols represent the

theoretical results read from Refs. [15, 16] for n-type 0.1 wt.% CuBr doped 85%

Bi2Te3 - 15% Bi2Se3 and p-type 3 wt% Te doped 20% Bi2Te3 - %80 Sb2Te3 single

crystals.



7.4 Results and Discussion 183

wells lessen continuously, resulting from the reduced κph value, and approach the

bulk value of the κtotal. Unlike the n-type quantum wells, there is a very slight in-

crease in κtotal for the p-type quantum wells. This is because the p-type quantum

wells have lower κbp values than the p-type bulk alloy. Furthermore, whereas the

minimum κtotal of the p-type bulk alloy is 1.15 W m−1 K−1 at 420 K [15, 16], it is

0.73 W m−1 K−1 at 460 K for its quantum well with dA=20 nm.

Thus, for both n- and p-type quantum well systems the dA=20 nm samples have

the lowest value of κtotal arising from their smallest value of κph and κc among all

other quantum well samples studied in this work.

7.4.3 Thermoelectric Figure of Merit

The theoretical calculation of the thermoelectric figure of merit (ZT ) for the quan-

tum well systems is performed by using ZT = S2σ/κtotal. The temperature varia-

tion of ZT for both n- and p-type quantum wells is presented in Fig. 7.12, where

the theoretical bulk results reported in our previous works [15, 16] also repro-

duced for comparison.

Panel (a) shows that throughout the temperature range studied in this work sig-

nificantly higher values of the ZT are gained for the n-type quantum wells with

dA=7 nm and dA=10 nm compared to n-type bulk alloy. This is because both these

two samples have larger power factors and lower total thermal conductivities

than the bulk sample. Although the dA=15 nm and 20 nm samples have smaller

κtotal than the dA=7 nm and 10 nm samples, their PF results are lower than the

n-type bulk alloy, disallowing higher values of ZT for these QWs. As shown in

panel (a), the peak values of ZT for the QWs are shifted to lower temperatures

with increasing the well thickness. While the peak value ofZT for the n-type bulk
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Figure 7.11: Temperature dependence of the total thermal conductivity for (a) n-

type 0.1 wt.% CuBr doped Bi2Se3/Bi2Te3/Bi2Se3 and (b) p-type 3 wt.% Te doped

Sb2Te3/Bi2Te3/Sb2Te3 quantum well systems. The symbols represent the theoret-

ical results read from Refs. [15, 16] for n-type 0.1 wt.% CuBr doped 85% Bi2Te3 -

15% Bi2Se3 and p-type 3 wt% Te doped 20% Bi2Te3 - %80 Sb2Te3 single crystals.
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alloy occurs at nearly 500 K, for n-type quantum wells it appears in the tempera-

ture range 275 K - 350 K. This suggests that when n-type quantum wells are used

for the thermoelectric applications, the temperature range where the maximum

thermoelectric efficiency is gained will move to lower temperatures in contrast to

n-type bulk samples. The highest ZT value of 0.97 at 350 K for the n-type QW of

width 7 nm is twice that of the n-type bulk alloy (0.482 at 500 K).

In Fig. 7.12 (b), the results of our theoretical calculation for the ZT - T variation

are presented for the p-type quantum well samples. For all the p-type quan-

tum wells studied in this work we find that ZT values of larger than 1.0 can be

achieved over a large temperature range (typically 250 - 600 K). In particular, we

find that for the well width 10 nm ZT is larger than 1.0 for all the temperatures

studied above 100 K. Compared to the bulk system, for the dA=10 nm quantum

well sample PF is higher in the entire temperature range but κtotal is lower only

at high temperatures (above 425 K). This indicates that the increment in PF has

more dominant effect on the ZT than the decrement in κtotal. For the other two

p-type quantum wells, with dA=15 nm and 20 nm, we also obtain larger ZT val-

ues than the bulk alloy where the temperature is higher than 175 K and 275 K,

respectively. We also note that the peak values of ZT for QW structures occur

at slightly higher temperatures than for the p-type bulk sample. We further note

that ZT peaks at higher temperatures (above 400 K) for p-type QWs than for n-

type QWs (below 350 K). For the p-type quantum well of width dA=10 nm the

maximum value for ZT is obtained as 1.945 at 440 K while it is 1.3 at 420 K for its

bulk alloy.

The present theoretical calculations are in agreement with the experimental work

of Venkatasubramanian et al. [6] who reported an impressive value of the ZT =

2.4 at 300 K for the p-type 10Å/50Å Bi2Te3/Sb2Te3 superlattices and ZT = 1.46

at 300 K for the n-type 10Å/50Å Bi2Te3/Bi2Te2.83Se0.17 superlattice. An analysis
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Figure 7.12: Temperature dependence of the thermoelectric figure of merit for

(a) n-type 0.1 wt.% CuBr doped Bi2Se3/Bi2Te3/Bi2Se3 and (b) p-type 3 wt.% Te

doped Sb2Te3/Bi2Te3/Sb2Te3 quantum well systems. The symbols represent the

theoretical results read from Refs. [15, 16] for n-type 0.1 wt.% CuBr doped 85%

Bi2Te3 - 15% Bi2Se3 and p-type 3 wt% Te doped 20% Bi2Te3 - %80 Sb2Te3 single

crystals.
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of the individual contributing factors suggests that just about twice as high ZT

values for the p-type quantum wells compared to n-type quantum wells arises

mainly from the fact that the thermal conductivity of the former is nearly a third

of that for the latter.

In addition to the ZT - T calculation for both n- and p-type Bi2Te3 based quantum

well systems with a=10 nm we represent the quantum well width dependence

of the thermoelectric figure of merit in Fig. 7.13 for several temperatures. In

accordance with the theoretical works reported by Hicks et al. [1] and Lin-Chung

et al. [5] we found a smooth lowering of ZT with increase in the quantum well

thickness.
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Figure 7.13: Quantum well width dependence of the thermoelectric figure of

merit for (a) n-type 0.1 wt.% CuBr doped Bi2Se3/Bi2Te3/Bi2Se3 and (b) p-type 3

wt.% Te doped Sb2Te3/Bi2Te3/Sb2Te3 quantum well systems at several different

temperatures.
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7.5 Summary of Results

In this paper, we have investigated the thermoelectric properties of the n-type

0.1 wt.% CuBr doped Bi2Se3/Bi2Te3/Bi2Se3 and p-type 3 wt.% Te doped Sb2Te3

/Bi2Te3 /Sb2Te3 quantum well systems by computing both electrical and thermal

transport coefficients systematically. The quantum well widths are taken in the

range 7 nm 6 dA 6 20 nm and the barrier width is set to zero.

We conclude the followings:

(i) Both n- and p-type quantum well samples show only the extrinsic Fermi level

behaviour throughout the temperature range studied in this work.

(ii) It is theoretically shown that for the n-type quantum well of width dA=7 nm

the maximum value of the power factor is an order of magnitude larger than its

bulk value given in Ref. [15]. The highest value of the power factor for the p-type

quantum well sample with dA=10 nm is nearly four times bigger than its bulk

value obtained in Ref. [16].

(iii) The carrier thermal conductivities of both n- and p-type quantum well sys-

tems progressively decrease with temperature as well as the quantum well width.

(iv) The κbp value is generally higher(lower) for the n-type(p-type) quantum wells

compared to the bulk value.

(v) An order of magnitude smaller values of κph are predicted for almost all the

considered quantum well systems compared to their bulk forms.

(vi) The total thermal conductivity κtotal is the lowest for both n- and p-type quan-

tum wells of width dA=20 nm.

(vii) It is found that reducing the well thickness has a pronounced effect on en-
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hancing the thermoelectric figure of merit. For the n-type Bi2Se3/Bi2Te3/Bi2Se3

with 7 nm well width the maximum value of ZT is estimated to be 0.97 at 350 K

and for the p-type Sb2Te3/Bi2Te3/Sb2Te3 with well width 10 nm the highest value

of the ZT is found to be 1.945 at 440 K.
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Table 7.1: Constants and parameters used in the calculations of thermoelectric

properties of n-type 0.1 wt.% CuBr doped Bi2Se3/Bi2Te3/Bi2Se3 and p-type 3

wt.% Te doped Sb2Te3/Bi2Te3/Sb2Te3 quantum well systems.

Property/Parameter Bi2Se3/Bi2Te3/Bi2Se3 QW Sb2Te3/Bi2Te3/Sb2Te3 QW

Eg (eV)

Eg(7 nm)=0.16

Eg(10 nm)=0.147

Eg(15 nm)=0.14

Eg(20 nm)=0.134

Eg(10 nm)=0.147

Eg(15 nm)=0.14

Eg(20 nm)=0.134

∆E
(n,p)
i (eV) 0.07 0.04

m∗

x/me [1] 0.021 0.021

m∗

y/me [1] 0.081 0.081

m∗

z,e/me [1] 0.32 0.32

m∗

z,h/me [23] 0.730 0.730

m∗

n/me 0.082 0.082

m∗

p/me 0.09 0.09

N (m−3) Nd=1.32×1025 Na=8.1×1024

r 0.1 0.45

ρ (kg/m3) 7.74×103 7.74×103

cL (m/s) [24] 4.76×103 4.76×103

cT (m/s) [24] 2.325×103 2.325×103

ED (eV) 32 32

ς 0.3 1.1

A
′

0.092 (K−0.3) 0.00058 (K−1.1)

alat (Å) [25] 4.383 4.383

Ω (Å3) 169.07 169.07

L (mm) 0.5 0.5

qD (Å−1) 0.705 0.705

p 1.0 1.0

Fbp (W m−1 K−2) 3.4×10−4 13×10−4

Γisotopes 0.0011 0.0648

F3ph (s2/m2) 0.45×10−5 0.96×10−5

β0 0.5 0.5

β
′

0 0.0001 0.0001
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Chapter 8

Concluding Remarks

8.1 Summary of the Thesis

In this thesis, a systematic theoretical modelling of the thermoelectric proper-

ties (Fermi level, Seebeck coefficient, electrical conductivity, and thermal conduc-

tivity) of three dimensional bulk and two dimensional quantum well systems

has been presented. Electronic properties (Fermi level, Seebeck coefficient, and

electrical resistivity) and thermal conductivity contribution from carriers (donor

electrons or acceptor holes) have been derived by using the nearly-free electron

approximation and the Fermi-Dirac statistics. Other thermal conductivity contri-

butions originated from electron-hole pairs and phonons have been studied us-

ing revised version of previous works and Debye’s isotropic continuum scheme,

respectively.

Chapter 1 provided a broad range of introduction to thermoelectricity including

various thermoelectric effects and their applications. Moreover, the state-of-the-

art thermoelectric materials and the optimisation methods to enhance the value
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of thermoelectric figure of merit ZT were reviewed.

Detailed descriptions of three- and two-dimensional thermoelectric transport the-

ory for semiconductors were given in Chapter 2 and 3, respectively.

In Chapter 4, the 3D thermoelectric transport theory was performed for n-type

(Bi2Te3)0.85(Bi2Se3)0.15 single crystals doped with CuBr and SbI3. In agreement

with available experimental work, it was theoretically found that the maximum

value of ZT was to be 0.43 (at 400 K) and 0.49 (at 500 K) for the SbI3- and CuBr-

doped samples, respectively. Additionally, it was concluded that due to the re-

duction in phonon thermal conductivity, a reasonable increase in the Se content

in (Bi2Te3)x(Bi2Se3)(1−x) single crystals could increase ZT significantly both at low

and high temperatures.

The p-type (Bi2Te3)x(Sb2Te3)1−x single crystals doped with 3 wt.% Te were stud-

ied in Chapter 5 in the composition range of 0.18 ≤ x ≤ 0.26. In agreement with

the experimental study the maximum value of ZT was computed theoretically

as 1.31 for the x=0.20 sample at 390 K, which was determined by the lowest total

thermal conductivity and one of the highest power factor values among all com-

positions. Furthermore, the largest value of the ZT of p-type x=0.20 sample is

2.6 times larger than that for the n-type sample studied in Chapter 4. This clearly

showed that the influence of the composition range of semiconductor alloys to-

gether with its type and amount of dopant plays an important role in enhancing

the thermoelectric figure of merit.

In Chapter 6, due to its dominant factor for enhancing the value of ZT a de-

tailed thermal conductivity calculations were presented for both n- and p-type

Bi2Te3 based single crystals including frequency dependence of the phonon ther-

mal conductivity for different temperatures.



8.2 Future Work 197

In Chapter 7, 2D thermoelectric transport theory was applied for n-type 0.1 wt.%

CuBr doped Bi2Se3/Bi2Te3/Bi2Se3 and p-type 3 wt.% Te doped Sb2Te3/Bi2Te3/

Sb2Te3 quantum well systems. Different values of well thicknesses were consid-

ered for both types of quantum well systems to study the effect of confinement on

all thermoelectric transport coefficients. It was found that reducing the well thick-

ness has a pronounced effect on enhancing the thermoelectric figure of merit. For

the n-type Bi2Se3/Bi2Te3/Bi2Se3 with 7 nm well width the maximum value of ZT

was estimated to be 0.97 at 350 K and for the p-type Sb2Te3/Bi2Te3/Sb2Te3 with

well width 10 nm the highest value of the ZT was found to be 1.945 at 440 K.

8.2 Future Work

Although no devices based on low dimensional structures have been close to

commercialisation, research on low dimensional thermoelectric materials has been

stimulating to recent developments in thermoelectric research area, and many

research groups worldwide are now studying to bring new ideas to the field

based on nanostructures. As an example of this the in-plane thermoelectric trans-

port properties have been theoretically investigated in this thesis for Bi2Te3 based

quantum well systems and significantly enhanced values ofZT have been gained.

Additional to our presented in-plane theory, the cross-plane thermoelectric trans-

port properties of these quantum well structures can be studied to make our the-

ory more detailed and complete. Some theoretical investigations on this subject

would be very useful for thermoelectric research area.

Theoretical considerations suggest that because of their increased quantum con-

finement effects, 1D quantum wires could have an even larger values of ZT than

2D quantum wells [1, 2]. In 2008, Boukai et al. [3] reported efficient thermo-
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electric performance from the single-component system of silicon nanowires for

cross-sectional areas of 10 nm × 320 nm and 20 nm × 320 nm. By varying the

nanowire size and impurity doping levels, ZT values representing an approxi-

mately 100-fold improvement over bulk Si were achieved over a broad temper-

ature range, including ZT > 1 at 200 K. Similar results have been reported by

Hochbaum et al. [4] in 2008 also. They synthesised electrochemically large-area,

wafer-scale arrays of rough Si nanowires that are 20-300 nm in diameter. These

nanowires have Seebeck coefficient and electrical resistivity values that are the

same as those of doped bulk Si, but those with diameters of about 50 nm ex-

hibit 100-fold reduction in thermal conductivity, yielding ZT = 0.6 at room tem-

perature. For such nanowires, the lattice contribution to thermal conductivity

approaches the limit for amorphous Si, which cannot be explained by current

theories. Bulk Si is a poor thermoelectric material. However, by greatly reducing

thermal conductivity without affecting much the Seebeck coefficient and electri-

cal resistivity, Si nanowire arrays show promise as high-performance, scalable

thermoelectric material. Very recently, Zhang et al. [5] studied on ultrathin Te-

rich (n-type) Bi2Te3 ultrathin nanowires with an average diameter of 8 nm. Their

thermoelectric properties measurements indicated that the thermal conductivity

for this nanowire sample is much lower than that of the bulk materials due to the

enhanced phonon scattering at the nanoscale interfaces, which results in a 13%

enhancement of the ZT value compared to that of the best commercial n-type

Bi2Te2.7Se0.3 bulk crystals [6]. In spite of these promising experimental works on

thermoelectric properties of 1D nanowires, there is not enough complete theoret-

ical works discussed all the transport coefficients in these structures. Therefore,

it is very desirable to present a full account of theoretical study on this subject.

Since the enhancement in ZT is expected to be more pronounced as the dimen-

sionality decreases, one might expect that 0D structures might possess thermo-
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electric properties that are even more promising than those of 2D and 1D systems

owing to the highly singular electronic density of states of quantum dots. Unlike

1D or 2D systems, where at least one of the directions is not quantum confined

and thus able to provide an electrical conduction pathway, 0D structures, such

as quantum dots, are quantum confined in all directions. In order to utilize the

unique properties of quantum dots for transport applications, it is therefore nec-

essary to devise some means of electron conduction pathways between individ-

ual quantum dots. In this respect, some quasi-zero-dimensional systems, such as

segmented nanowires [7], a quantum dot [8] located between two quantum point

contacts, and quantum- dot superlattices [9, 10] have been tried to use for thermo-

electrics. In this respect, Harman et al. [11] have synthesized arrays of quantum

dots each only a few nanometers in diameter. The materials were PbSeTe-based

quantum dot superlattice structures grown by molecular beam epitaxy. The typ-

ical device consists of a substrate-free, bulk-like (typically 0.1 mm in thickness,

10 mm in width, and 5 mm in length) slab of nanostructured PbSeTe/PbTe as

the n-type leg and a metal wire as the p-type leg. Eventually, they estimated

the value of ZT in the range of 1.3 to 1.6 at room temperature with the major

mechanism contributing to the enhancement of ZT is from the reduction of the

lattice thermal conductivity through the strong interface scattering of phonons. A

detail theoretical investigation of the thermoelectric transport properties in such

systems would be very informative to the thermoelectric research area.
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