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Abstract 

In recent years a number of molecular tools have been reported for use in the human 

fungal pathogen Candida albicans, including PCR-mediated approaches for gene 

disruption, conditional expression and epitope tagging.  Traditionally these methods 

have utilised auxotrophic markers, however the availability of auxotrophic markers 

can be limiting and in some instances their use may also impact on the interpretation 

of results.  As a result the use of positive selection markers has now become more 

commonplace.  Here we report the development and validation of a set of cassettes 

for PCR-mediated gene tagging and over-expression studies utilising the 

nourseothricin resistance (CaNAT1) positive selection marker.  In particular we have 

produced cassettes containing yeast enhanced GFP, YFP, CFP, RFP and a 

combined V5-6xHis epitope tag.  The cassettes are engineered for use in PCR-

mediated gene tagging strategies where insertion is targeted to the 3′ end of the 

gene of interest.  In addition, to facilitate protein functional analysis and genetic 

suppression studies through the use of over-expression, we have also constructed a 

promoter replacement cassette containing the ENO1 promoter which is known to be 

expressed at a high level.  These cassettes expand on the range of molecular tools 

available for working with C. albicans and may also be used in other Candida 

species that display sensitivity to nourseothricin. 
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Introduction 

Candida albicans, the most common fungal pathogen of humans, causes a wide 

range of clinical diseases ranging from superficial infections to life-threatening 

systemic disease in the immunocompromised (Calderone, 2002; Odds, 1988; 

Perlroth et al., 2007).  Traditionally the molecular analysis of this important pathogen 

has been hampered by a combination of its obligate diploid nature, lack of 

exploitable sexual cycle, low transformation efficiency and atypical codon usage 

(Berman and Sudbery, 2002; Noble and Johnson, 2007).  However, with the 

development of rapid PCR-mediated strategies for gene targeting (Gerami-Nejad et 

al., 2001; Wilson et al., 1999; Wilson et al., 2000) efficient genetic tools have now 

been developed, including methods for epitope tagging.  Epitope tags are essential 

molecular tools enabling protein detection, localisation and purification, and those 

available in C. albicans to date include the fluorescent protein markers GFP, YFP, 

CFP, RFP, mCherry and Venus (Gerami-Nejad et al., 2001; Gerami-Nejad et al., 

2009, Reijnst et al., 2011), alongside the small epitopes FLAG, Myc, HA, V5, GST 

and poly-His (Gerami-Nejad et al., 2009; Hernday et al., 2010; Lavoie et al., 2008; 

Schaub et al., 2006). 

Genetic manipulation in C. albicans has traditionally used auxotrophic markers.  The 

first to be developed, and the most commonly used, is URA3 (Fonzi and Irwin, 

1993).  However, the expression of URA3 from heterologous loci is now known to 

impact on virulence and virulence-associated attributes, therefore bringing its use 

into question (Bain et al., 2001; Brand et al., 2004; Cheng et al., 2003; Staab and 

Sundstrom, 2003).  Further strains have been developed that allow the use of 

additional auxotrophic markers such as ADE2, LEU2, ARG4 and HIS1 (Fonzi and 

Irwin, 1993; Negredo et al., 1997; Noble and Johnson, 2005; Wilson et al., 1999).  

However, in general, the range of auxotrophic markers available in common 

laboratory strains can still be limiting, and the use of auxotrophic markers also 

precludes the direct analysis of clinical isolates of C. albicans as these strains are 

not auxotrophic.  A potential route around this limitation is the use of positive 

selection markers, and some are now available for use in C. albicans.  The first 

successfully developed positive selection marker provided resistance to 

mycophenolic acid (Wirsching et al., 2000a, Wirsching et al., 2000b, Beckerman et 

al., 2001).  However, the resistance marker is a mutant derivative of the native IMH3 

gene, and consequently its homology to the chromosomal copy of IMH3 negatively 

impacts upon its use in gene targeting approaches.  Nourseothricin has since been 

successfully developed as a positive selection marker, with resistance encoded by 

the heterologous markers CaNAT1 or SAT1 (Reuss et al., 2004; Roemer et al., 

2003; Shen et al., 2005), and more recently a synthetic hygromycin resistance gene 

has also been reported to function in C. albicans (Basso et al., 2010). 

In this work we have developed a set of PCR-mediated gene tagging cassettes for 

C. albicans utilising the nourseothricin resistance marker CaNAT1.  In particular we 

have combined the GFP, YFP, CFP and RFP fluorescent protein tags and a V5-



6xHis epitope tag with the CaNAT1 marker.  In addition we have developed a 

constitutive expression system utilising the promoter of the highly expressed enolase 

gene, ENO1.  This will allow the application of over-expression studies for genetic 

suppression and protein functional analysis.  These cassettes increase the range of 

molecular tools available for working with C. albicans and may potentially be used in 

other Candida species that display sensitively to nourseothricin. 

Materials and Methods 

Strains, media and culture conditions 

All strains constructed and used in the present study are detailed in Table 1.  C. 

albicans strains were grown in either YEPD medium (1% yeast extract, 2% 

mycological peptone, 2% glucose) or SC medium (0.67% yeast nitrogen base, 2% 

glucose, 0.079% complete supplement mixture [Formedium, Hunstanton, UK]) at 

30°C.  Uridine (50 µg/ml) was added to media as required.  To select for 

nourseothricin resistance strains were plated on to Sabouraud dextrose agar (1% 

mycological peptone, 4% glucose, 1.5% Agar) containing 200 µg/ml nourseothricin 

(Werner BioAgents, Jena, Germany).  To induce β-N-acetylhexosaminidase activity 

strains were grown in SC-GlcNAc (0.67% yeast nitrogen base, 0.079% complete 

supplement mixture, 25 mM N-acetylglucosamine). 

Cassette construction 

Fusion PCR (Wach, 1996) was used in the construction of our tagging and over-

expression cassettes that incorporate the nourseothricin resistance marker.  For the 

carboxy terminus fluorescent protein tagging cassettes GFP, YFP, CFP, RFP 

coupled to the CaADH1 terminator were PCR amplified from pGFP-URA3, pYFP-

URA3, pCFP-URA3 and pRFP-URA3 (Gerami-Nejad et al., 2001; Gerami-Nejad et 

al., 2009) respectively with primer pair GFP-F and FP-R-FUS for GFP, YFP and 

CFP, and primer pair RFP-F and FP-R-FUS for RFP (Table 2).  The CaNAT1 

resistance marker, under the control of the Ashbya gossypii TEF1 promoter and 

terminator, was PCR amplified from pJK795 (Shen et al., 2005) using primers NAT1-

F-FUS and NAT1-R.  To allow for fusion PCR the GFP-R-FUS and NAT-F-FUS 

oligonucleotides incorporated complementary sequences at the 5′ end.  For fusion 

PCR to generate the full length cassettes the first round PCR products were purified, 

combined and PCR amplified using primer pairs GFP-F and NAT1-R for the GFP, 

YFP and CFP cassettes, and RFP-F with NAT1-R for the RFP cassette.  All PCR 

reactions for cassette construction were carried out using Extensor High Fidelity 

PCR master mix (Thermo Scientific, Epsom, UK).  The GFP-NAT1 cassette was 

cloned into the TOPO TA vector pCR2.1 (Invitrogen, Paisley, UK) and all other 

cassettes were cloned into StrataClone pSC-A-amp/kan (Agilent Technologies, 

Stockport, UK) to generate pGFP-NAT1, pYFP-NAT1, pCFP-NAT1 and pRFP-NAT1 

(Fig. 1). 



For the over-expression cassette the CaENO1 promoter was amplified from C. 

albicans genomic DNA using the ENO1-F-FUS and ENO1-R primers.  The purified 

PCR product was combined with the CaNAT1 marker (amplified with NAT1-F-FUS 

and NAT1-R as previously) by fusion PCR using primers ENO1-R and NAT1-R.  To 

generate the V5-6xHis-NAT1 cassette the V5-6xHis coding region coupled with the 

ScCYC1 terminator was amplified from pYES2.1 (Invitrogen, Paisley, UK) with 

primer pair YES-V5-F and CYC-T-R-FUS.  The purified product was then fused to 

the CaNAT1 marker by fusion PCR using the YES-V5-F and NAT1-R primers.  The 

NAT1-ENO1p and V5-6xHis-NAT1 cassettes were then cloned into the TOPO TA 

vector pCR2.1 (Invitrogen, Paisley, UK) to generate pNAT1-ENO1p and pV5-NAT1. 

In addition to the V5-6xHis-NAT1 cassette we also developed a V5-6xHis-URA3 

cassette.  Briefly, the V5-6xHis coding region and ScCYC1 terminator was amplified 

from pYES2.1 (Invitrogen, Paisley, UK) with primer pair YES-V5-F and CYC-T-R, 

and the product cloned into pGEM-T Easy (Promega, Southampton, UK).  The insert 

was then released by NotI digestion and subcloned into the NotI site of CIp10 

(Murad et al., 2000) to generate pV5-URA3.  The orientation of the V5-6xHis 

sequence relative to the URA3 marker in CIp10 was confirmed by PCR to allow this 

vector to act as either an integrative vector or as a template for PCR-mediated gene 

tagging strategies. 

Utilisation of cassettes in strain construction 

To utilise the cassettes for PCR-directed gene tagging they were amplified by PCR 

with primers containing the appropriate gene-specific sequences to drive 

homologous recombination (Fig. 1, Tables 2 and 3).  The standard amplification 

protocol used Thermoprime Master Mix (Thermo Scientific, Epsom, UK) and cycling 

conditions of an initial denaturation of 3 min at 94°C, followed by 30 cycles of 94°C 1 

min, 55°C 1min and 72°C 3 min, and a final extension at 72°C for 5 min.  Typically 

50 µl of unpurified PCR product was then used to transform C. albicans using 

standard methodologies (Gietz and Woods, 2002).  Following transformation cells 

were incubated in YEPD at 30°C for 4 h to allow expression of the CaNAT1 marker 

before plating onto selective media.  Correct integration of the cassettes was 

confirmed by colony PCR (Linder et al., 1996) using a primer within the cassette and 

a second targeting the chromosomal integration site outside the region included in 

the original targeting primer. 

To confirm function of the GFP, YFP, CFP and RFP cassettes they were amplified 

with gene-specific sequences to target them to the CaACT1 locus immediately 

downstream of its promoter (primers ACT1-GFP-F and ACT1-FP-R for GFP, YFP 

and CFP; ACT1-RFP-F and ACT1-FP-R for RFP; Tables 2 and 3).  The amplified 

cassettes were transformed into the Ura+  strain NGY152 and correct integration was 

confirmed by colony PCR (primers ACT1-S and GFP-UP for GFP, YFP and CFP; 

ACT1-S and RFP-UP for RFP; Tables 2 and 3).  To tag CDC3 the GFP-NAT1 

cassette was amplified with CDC3-GFP-F and CDC3-FP-R and transformed into the 



clinical isolate SC5314.  Correct integration was confirmed by PCR with primer pair 

GFP-UP and CDC3-S. 

To test the ENO1p over-expression and V5-6xHis cassettes the HEX1 gene 

encoding β-N-acetylhexosaminidase was targeted.  For over-expression the NAT1-

ENO1p cassette was amplified using HEX-ENO-F and HEX-ENO-R primers and 

transformed into strain NGY152, to replace the native promoter of one allele with the 

ENO1 promoter.  Correct integration was confirmed by PCR screening using the 

ENO-SF and HEX-ENO-S primers.  To introduce the C-terminal V5-6xHis epitope 

tag into Hex1p the V5-6xHis-NAT1 and V5-6xHis-URA3 cassettes were amplified 

with Hex-V5-F and either HEX1-V5-NAT1-R or HEX1-V5-URA3-R respectively.  The 

CaNAT1-containing cassette was transformed into NGY152 and the URA3-

containing cassette into the ura- strains CAI-4 or NGY98 (∆pmr1/∆pmr1).  Correct 

genomic integration was determined using primer pair HEX-V5-S and V5-S. 

Protein detection methods 

For microscopy studies strains were grown to logarithmic phase, briefly washed in 

PBS and viewed either live or following a short (10 min) fixation in 70% ethanol.  

Epifluorescence and differential interference microscopy was carried out using a 

motorised inverted IX81 microscope (Olympus, Southend-on-Sea, UK) with 

epifluorescence illumination for GFP (Ex460/40, BS495, Em525/50), YFP (Ex500/24, 

BS520, Em542/27), CFP (Ex436/20, BS455, Em480/40) and RFP (Ex562/40, 

BS593, Em624/40).  Filter sets were from Chroma (Rockinham, USA) or Semrock 

(Rochester, USA), and digital images were captured using a CoolSnap HQ2 camera 

(Roper Scientific, Germany) and processed using Metamorph software (version X; 

Molecular Devices, Wokingham, UK). 

Protein extracts were prepared in 100 mM Tris-HCl pH 7.5, 0.01% SDS, 1 mM 

dithiothreitol, 10% glycerol containing protease inhibitors (Roche Applied Science, 

Burgess Hill, UK) by glass bead disruption in a FastPrep machine (Qbiogene, 

Cambridge, UK). The resulting lysate was clarified by centrifugation at 21500 g for 

10 min.  Prior to western blotting, 50 µg of protein extracts were separated on a 10% 

NuSep Tri-HEPES-SDS gel (Generon, Maidenhead, UK) before blotting on to a 

polyvinylidene difluoride membrane.  The membrane was blocked with 5% bovine 

serum albumin in TBS-T (Tris-buffered saline containing 0.01% Tween 20) for 2 h, 

before probing with the mouse anti-V5 primary antibody (Invitrogen, Paisley, UK) at a 

1:5000 dilution for 1 h.  The membrane was then washed three times in TBS-T prior 

to incubation with the secondary antibody, anti-mouse IgG-horseradish peroxidase 

(Invitrogen, Paisley, UK), at 1:10000 dilution for 1 h.  Following a final four washes in 

TBS-T, proteins were detected using Lumiglo (New England Biolabs, Hitchin, UK) 

according to manufacturer’s instructions. 

For protein purification, using the 6xHis tag, protein extracts were prepared in 50 mM 

Tris-HCl pH 7.5, 300 mM NaCl, 0.1% Tween-20, 1 mM β-mercaptoethanol, 10% 



Glycerol, 10 mM Imidazole by glass bead disruption.  Hex1-V5-6xHis was then batch 

purified from 20 mg of protein extract using Ni-NTA agarose beads as per 

manufacturer’s instructions (QIAGEN, Crawley, UK) with proteins eluted in 50 mM 

Tris-HCl pH 7.5, 300 mM Imidazole. 

Hex1p activity was determined by a modified version of the assay used by Cannon 

et al., (1994).  Briefly, protein extracts were incubated with the substrate pNP-

GlcNAc (1.25 mM; Glycosynth, Warrington, UK) in 0.1 M citrate/KOH buffer pH 4 for 

30 min at 37 °C.  Reactions were stopped by the addition of 1 M Na2CO3 and 

absorbance at 420 nm determined.  Hex1p activity was expressed as nmol p-

nitrophenol released per min per mg protein. 

Results and Discussion 

Construction of PCR tagging cassettes 

To facilitate the analysis of gene function in C. albicans we constructed gene tagging 

and over-expression cassettes incorporating the CaNAT1 positive selection marker 

for nourseothricin resistance (Shen et al., 2005).  These cassettes complement 

those currently available for work in this important pathogen.  To generate carboxy-

terminus fluorescent protein tagging cassettes we combined the previously 

developed GFP, YFP, CFP and RFP variants (Gerami-Nejad et al., 2001; Gerami-

Nejad et al., 2009) with the nourseothricin resistance marker, CaNAT1, by fusion 

PCR (Fig. 1).  In addition we also generated cassettes containing a C-terminal V5-

6xHis epitope tag for use in protein analysis, and a cassette containing the enolase 

promoter (ENO1p) for driving constitutive over-expression of the target gene (Fig. 1).  

Full details of the cassette construction are given in the Materials and Methods.  The 

nourseothricin resistance marker used in this work (Shen et al., 2005) is under the 

control of the heterologous Ashbya gossypii TEF1 promoter and terminator, thereby 

avoiding problems associated with the misdirection of gene targeting when native 

control sequences are used. 

Gene tagging using these cassettes follows standard protocols; cassettes are PCR 

amplified using oligonucleotide primers containing 70 bp of homology to the target 

gene to direct integration (Table 3).  This level of homology produces a reasonable 

proportion of transformants in which integration has occurred at the desired target 

site.  All the gene tagging cassettes use a common reverse primer, and the GFP, 

YFP and CFP cassettes also share a common forward primer.  For selection of 

nourseothricin resistant transformants we found that a minimum of four hours growth 

in non-selective medium was required post transformation to allow expression of the 

CaNAT1 marker, similar to previous reports on the use of the SAT1 marker (Reuss 

et al., 2004).  However, in our hands selection on Sabouraud dextrose medium with 

200 µg/ml nourseothricin proved the most reliable, and required the use of lower 

concentrations of nourseothricin than other media. 

 



Validation of fluorescent protein fusion cassettes 

To confirm the four fluorescent protein tagging cassettes (GFP, YFP, CFP and RFP; 

Fig. 1) were functional we integrated each cassette immediately downstream of the 

start codon of the constitutively expressed ACT1 gene.  Cassettes were amplified 

and transformed into the prototrophic strain NGY152.  Nourseothricin resistant 

colonies appeared 1-2 days post transformation and correct genomic integration at 

the ACT1 locus was confirmed by colony PCR.  Fluorescence microscopy clearly 

demonstrated that all four cassettes were functional, with cells displaying bright 

fluorescence throughout the cytoplasm with some exclusion from the vacuole (Fig. 

2A).  No bleed-through between filter sets was apparent, consistent with the potential 

use of these fluorescent proteins for co-localisation and co-expression studies.   

The CaNAT1 and SAT1 markers have previously been shown to function in clinical 

isolates of C. albicans (Reuss et al., 2004; Shen et al., 2005).  We targeted the GFP-

NAT1 cassette to tag the septin Cdc3 in the SC5314 clinical isolate.  Fluorescence 

imaging of the tagged strain clearly demonstrated the characteristic cell cycle-

dependent localisation of Cdc3 (Gerami-Nejad et al., 2001; Warenda and Konopka, 

2002) to the mother-bud neck (Fig. 2B).  In addition the GFP-NAT1 cassette has also 

been successfully used to visualise spindle pole body proteins that are expressed at 

a low level (Milne, Cheetham, Bates in preparation). 

Validation of epitope tagging and constitutive over expression cassettes 

The epitope tagging cassettes contain both a V5 and C-terminal 6xHis epitope tag, 

combined with either the CaNAT1 nourseothricin resistance marker or the URA3 

auxotrophic marker.  This combination of epitopes only increases protein size by 3.7 

kDa and offers the benefits of efficient detection through the V5 epitope and protein 

purification using the 6xHis epitope.  To test the function of both the V5-6xHis-NAT1 

and V5-6xHis-URA3 cassettes they were targeted to tag HEX1 in the NGY152 and 

CAI-4 strains respectively.  HEX1 encodes β-N-acetylhexosaminidase, a well 

characterised hydrolytic enzyme whose expression is induced in medium containing 

GlcNAc as the sole carbon source (Cannon et al., 1994; Niimi et al., 1997).  Tagged 

strains were grown in inducing and non-inducing conditions, and proteins were 

extracted and analysed by western blotting using an anti-V5 antibody.  As expected, 

only when grown on GlcNAc was Hex1 expressed and it was clearly detectable as 

both an unmodified (67 kDa) and heavily glycosylated form (~125 kDa) in soluble 

protein extracts (Fig. 3A).  We also tested the V5-6xHis-URA3 cassette by tagging 

Hex1 in a Capmr1∆ mutant which is known to demonstrate glycosylation defects 

(Bates et al., 2005).  In this mutant the glycosylated form of the tagged Hex1 protein 

displayed a clear increase in its electrophoretic mobility, a defining characteristic of 

the mutant’s gross defect in glycosylation (Fig. 3B).  In addition to the V5 tag for 

protein detection the cassettes also contain the 6xHis epitope which can be 

employed in protein purification using standard methods.  To confirm this epitope is 



functional we used it to successfully purify Hex1p-V5-6xHis from soluble protein 

extracts (Fig. 3C). 

The HEX1 gene was also targeted to validate the NAT1-ENO1p constitutive over-

expression cassette.  The ENO1 promoter was chosen as it has been shown to be 

expressed at high levels, and it has previously been demonstrated to be suitable for 

gene-overexpression studies (Bates et al., 2007; Staab et al., 2003).  The cassette 

was targeted to replace the native promoter of one copy of the HEX1 gene, and 

expression monitored through determining Hex1 enzyme activity.  The assay results 

confirmed that HEX1 is only expressed in wild type cells in the presence of GlcNAc, 

consistent with previous observations.  Replacing the endogenous HEX1 promoter 

with the NAT1-ENO1 promoter cassette resulted in the clear over-expression of 

Hex1 under both inducing and non-inducing conditions (Fig. 3D).  Therefore the 

NAT1-ENO1p cassette is capable of driving high level gene expression which may 

be useful for both the functional analysis of proteins and in studying genetic 

interactions through epistasis-based approaches. 

Conclusion 

In summary we have developed a set of cassettes for tagging and over-expression 

studies in C. albicans utilising the positive selection marker CaNAT1 for 

nourseothricin resistance.  These cassettes complement and extend the range of 

molecular cell biology tools currently available for use in this important pathogen.  In 

addition these cassettes will be of potential use in other Candida species, or indeed 

in other fungi, that display sensitivity to nourseothricin. 
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Table 1. 

C. albicans strains 

Strain Parent 

Strain 

Genotype Reference 

SC5314 - Clinical isolate (Gillum et al., 1984) 

CAI-4 - ura3∆::imm434/ura3∆::imm434 (Fonzi and Irwin, 1993) 

NGY152 CAI-4 As CAI-4 but RPS1/rps1∆::CIp10 (Brand et al., 2004) 

SBC153 NGY152 As NGY152 but ACT1/ACT1p-GFP-NAT1 This study 

SBC154 NGY152 As NGY152 but ACT1/ACT1p-YFP-NAT1 This study 

SBC155 NGY152 As NGY152 but ACT1/ACT1p-CFP-NAT1 This study 

SBC156 NGY152 As NGY152 but ACT1/ACT1p-RFP-NAT1 This study 

SBC157 SC5314 CDC3/CDC3-GFP-NAT1 This study 

SBC158 NGY152 As NGY152 but HEX1/HEX1-V5-6xHis-NAT1 This study 

SBC152 CAI-4 As CAI-4 but HEX1/HEX1-V5-6xHis-URA3 This study 

NGY98 NGY97 As CAI-4 but pmr1∆::hisG/pmr1∆::hisG (Bates et al., 2005) 

SBC159 NGY98 As NGY98 but HEX1/HEX1-V5-6xHis-URA3 This study 

SBC160 NGY152 As NGY152 but NAT1-ENO1p-HEX1/HEX1 This study 

 



Table 2. 

Oligonucleotides used for cassette and strain construction 

Primer Sequence (5′-3′) a 

NAT1-F-FUS GTCAGCGGCCGCATCCCTGCGATATCAAGCTTGCCTCGTC 

NAT1-R CGTTAGTATCGAATCGACAGC 

GFP-F GGTGGTGGTTCTAAAGGTGAAGAATTATT 

RFP-F GGTGGTGGTGATAACACTGAAGATGTTATT 

FP-R-FUS GCAGGGATGCGGCCGCTGACATATTTCAACGCCTTCCAGC 

ENO1-F-FUS GCAGGGATGCGGCCGCTGACATTTGTATCTTTAGTAGACATG 

ENO1-R TGTTGTAATATTCCTGAATTATC 

YES-V5-F AAGGGCGAGCTTCGAGGTC 

CYC-T-R-FUS GCAGGGATGCGGCCGCTGACTGCAGGGCCGCAGCTTGC 

CYC-T-R TGCAGGGCCGCAGCTTGC 

ACT1p-GFP-F ctggttttctttctttcttagaaacattatctcgatattaatattaaaaaaatataatcattcaaaatgGGTGGTGGTTCT
AAAGGTGAAGAATTATT 

ACT1p-RFP-F ctggttttctttctttcttagaaacattatctcgatattaatattaaaaaaatataatcattcaaaatgGGTGGTGGTGAT
AACACTGAAGATGTTATT 

ACT1p-FP-R gtgtgtattattaatgtgacagtaacatcccaaacgagaaatattatgtcgacaacaaaaaagtttgatcCGTTAGTA
TCGAATCGACAGC 

ACT1p-S caccaagatttattgccaacg 

CDC3-GFP-F acaaaaattattaccacaagacccaccagcacaaccagctccacaaaagagtcgtaaaggatttttacgtGGTGGT
GGTTGTAAAGGTGAAGAATTATT 

CDC3-FP-R tactgacaatttttatacatcacaatatcaaattaaacaaacagattaacaaacaaataaactaaattaagttacataCG
TTAGTATCGAATCGACAGC 

CDC3-S aagagaatgggtattgaacaag 

HEX-ENO-F gcgttttatggtttaccccacaaaggtccgtgttttcaaaaatttctaaaagatagatctattaatgtggctagtCGTTAGT
ATCGAATCGACAGC 

HEX-ENO-R aaccttggcagcgtggacaaccacattgcacaaccaaagaagcaaatgaaagataatcattttatctaacaccatTGT
TGTAATATTCCTGAATTATC 

HEX-ENO-S accaagccatgtaatgctcc 

HEX-V5-F acggggtttctcctttggtgccaaaatactgtttgctcaatccacacgcttgtgatttgtacaaaaatccaccagtttatAAG
GGCGAGCTTCGAGGTC 

HEX-V5-NAT-R acttccgttcccttttgagcacttagatagtgatatcgtatattttcttttccaaaccatctattccagacacagatctCGTTA
GTATCGAATCGACAGC 

HEX-V5-URA-R acttccgttcccttttgagcacttagatagtgatatcgtatattttcttttccaaaccatctattccagacacagatctCTAGTT
CTAGAAGGACCACC 

HEX-V5-S acaaggattccaacggacac 
a
 Sequences to facilitate fusion PCR are underlined.  Gene-specific sequences are lowercase 

 



Table 3. 

Oligonucleotides for cassette utilisation 

Primer Sequence (5’-3’)a 

(G/Y/C)FP-F (gene-specific sequence)-GGT GGT GGT TCT AAA GGT GAA GAA TTA TT 

RFP-F (gene-specific sequence)-GGT GGT GGT GAT AAC ACT GAA GAT GTT ATT 

FP-R (gene-specific sequence)-CGTTAGTATCGAATCGACAGC 

GFP-UP CACCTTCACCGGAGACAG 

RFP-UP ATAATCTGGAATATCAGCTGG 

V5-F (gene-specific sequence)-AAG GGC GAG CTT CGA GGT C 

V5-NAT1-R (gene-specific sequence)-CGTTAGTATCGAATCGACAGC 

V5-URA3-R (gene-specific sequence)- CTAGTTCTAGAAGGACCACC 

V56xHIS-S TGCAGGGCCGCAGCTTGC 

ENO1p-F (gene-specific sequence)- CGTTAGTATCGAATCGACAGC 

ENO1p-R (gene-specific sequence-CAT)- TGTTGTAATATTCCTGAATTATC 

ENO1p-S TTGATAATTCAGGAATATTACAAC 
a
 For C-terminal protein tagging the gene-specific sequence in the forward primer is directly upstream 

of the stop codon; the required reading frame is indicated by spacing in the sequences, with 

sequences in bold encoding a glycine linker.  Underlined nucleotides show the position of the ATG 

start codon for the ENO1 promoter. 

 

 



Figure Legends 

Figure 1.  Diagram of PCR-based tagging and over-expression cassettes.  Black 

boxes, selection marker (CaNAT1 or CaURA3); grey boxes, GFP, YFP, CFP, RFP, 

V5-6xHis or ENO1 promoter (ENO1p) sequences; white boxes, terminator 

sequences (CaADH1t or ScCYC1t).The CaNAT1 marker is under the control of the 

heterologous Ashbya gossypii TEF1 promoter and terminator as originally described 

(Shen et al., 2005).  The GFP-NAT1, V5-6xHis-NAT1 and NAT1-ENO1p cassettes 

were cloned into pCR2.1 (Invitrogen); YFP-NAT1, CFP-NAT1, RFP-NAT1 cassettes 

into pSC-A-amp/kan (Strataclone); and the V5-6xHis-URA3 cassette was cloned into 

CIp10 (Murad et al., 2000).  Oligonucleotide primers used to amplify cassettes are 

described in the Materials and Methods and Tables 2 and 3.   

 

Figure 2.  Validation of fluorescent protein fusion cassettes in C. albicans.  (A) 

Visualisation of fluorescent protein expression in ACT1p-GFP, ACT1p-YFP, ACT1p-

CFP and ACT1p-RFP strains.  Direct interference microscopy (DIC) micrographs are 

to the left of each fluorescence micrograph.  Details of the filters used for the 

detection of each fluorophore are provided in the Materials and Methods.  (B) Cdc3 

tagged with GFP in the SC5314 clinical isolate.  Scale bars are 10 µm throughout. 

 

Figure 3.  Validation of epitope tagging and over-expression cassettes.  (A and B) 

Western blot analysis of Hex1-V5-6xHis expression in soluble protein extracts 

utilising an anti-V5 antibody.  Tagged Hex1 is apparent both in an unmodified form 

(67 kDa as predicted) and in a heavily glycosylated form present as a wide band of 

an approximate average molecular weight of 125 kDa.  (A) Strains were grown in 

non-inducing (glucose, lanes 1 & 3) or inducing (GlcNAc, lanes 2 & 4) conditions.  

Lanes 1 and 2, proteins from SBC152 (Hex1p-V5-6xHis-URA3); Lanes 3 and 4, 

proteins from SBC158 (Hex1p-V5-6xHis-NAT1).  (B) Hex1-V5-6xHis-URA3 tagging 

in CAI-4 (lane 1) and NGY98 (Capmr1∆, lane 2) strain backgrounds.  (C) Hex1p-V5-

6xHis purification using Ni-NTA agarose beads; lane 1 molecular weight marker, 

lane 2 soluble protein extract, lane 3 non bound proteins, lane 4 bead wash, lane 5 

eluted proteins.  (D) Hex1 enzyme activity of NGY152 and SBC160 (ENO1p-HEX1) 

strains grown under inducing (GlcNAc) and non-inducing (glucose) conditions, all 

assays were conducted in triplicate. 



 

 

 

 



 

 

 



 

 


