
 1 

Influence of hyperoxia on muscle metabolic responses and the 

power-duration relationship during severe-intensity exercise in 

humans: a 
31

P magnetic resonance spectroscopy study  

 

Anni Vanhatalo 
1
, Jonathan Fulford 

2
, Fred J. DiMenna 

1
 and 

Andrew M. Jones 
1
 

 

1
 School of Sport and Health Sciences, and 

2
 Peninsula NIHR Clinical 

Research Facility, St. Luke’s Campus, University of Exeter, Exeter, Devon, 

United Kingdom 

 

Correspondence: 

Andrew M. Jones, Ph.D. 

E-mail: a.m.jones@exeter.ac.uk 

Tel: 01392 262886 

Fax: 01392 264726 

 

Running Head: hyperoxia and the power-duration relationship 

 

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Open Research Exeter

https://core.ac.uk/display/18460326?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:a.m.jones@exeter.ac.uk


 2 

Abstract 

 

Severe-intensity constant-work-rate exercise results in the attainment of O2 max but the 

muscle metabolic milieu at the limit of tolerance (Tlim) remains to be elucidated.  We 

hypothesized that Tlim during severe intensity exercise would be associated with the 

attainment of consistently low values of intramuscular phosphocreatine ([PCr]) and pH, as 

determined using 
31

P-MRS, irrespective of the work rate and the inspired O2 fraction.  We 

also hypothesized that hyperoxia would increase the asymptote of the hyperbolic power-

duration relationship (the critical power, CP) without altering the curvature constant (W′).  

Seven subjects (mean ± SD, age 30 ± 9 years) completed four constant-work-rate, knee-

extension exercise bouts to the limit of tolerance (Tlim, range: 3-10 min) both in normoxia 

(N) and hyperoxia (H; 70% O2) inside the bore of 1.5 T superconducting magnet.  The 

[PCr] (~5-10% of resting baseline) and pH (~6.65) at the limit of tolerance during each of 

the four trials was not significantly different either in normoxia or hyperoxia.  At the same 

fixed work rate, the overall rate at which [PCr] fell with time was attenuated in hyperoxia 

(mean response time, N: 59 ± 20 vs. H: 116 ± 46 s; P<0.05).  The CP was higher (N: 16.1 ± 

2.6 vs. H: 18.0 ± 2.3 W; P<0.05) and the W′ was lower (N: 1.92 ± 0.70 vs. H: 1.48 ± 0.31 

kJ; P<0.05) in hyperoxia compared to normoxia.  These data indicate that Tlim during 

severe intensity exercise is associated with the attainment of consistently low values of 

muscle [PCr] and pH.  The CP and W′ parameters of the power-duration relationship were 

both sensitive to the inspiration of hyperoxic gas. 

 

Key Words:  Critical power, endurance, bioenergetics, exercise tolerance, muscle fatigue, 

NIRS. 
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Introduction 

 

The severe exercise-intensity domain encompasses a finite range of constant work rates 

which result in the attainment of maximal oxygen uptake ( O2 max) with the limit of 

tolerance (Tlim) reached shortly thereafter (Poole et al. 1988; Hill et al. 2002; Wilkerson et 

al. 2004).  Exercise tolerance within the severe domain is predictable according to the 

hyperbolic relationship between power output and time to exhaustion (Monod & Scherrer, 

1965; Poole et al. 1988; Hill et al. 2002).  This relationship has been reported both in 

different animal species (Full, 1986; Lauderdale & Hinchcliff, 1999; Billat et al. 2005) and 

in a number of exercise modalities in humans (Moritani et al. 1981; Le Chevalier et al. 

2000; Smith & Jones, 2001; Hill et al. 2003).  The power-asymptote of the power-duration 

relationship, termed the ‘critical power’ (CP), indicates the lower boundary of the severe 

domain (Poole et al. 1988; Jones et al. 2008) which is closely associated with the so-called 

‘maximal (lactate) steady state’ (Smith & Jones, 2001).  The CP represents a physiological 

threshold above which pulmonary O2, blood acid-base balance, and intramuscular 

metabolite concentrations such as phosphocreatine ([PCr]), inorganic phosphate ([Pi]) and 

[H
+
], cannot be stabilized (Poole et al. 1988; Wilkerson et al. 2004; Jones et al. 2008).  The 

exercise tolerance >CP is defined by the curvature constant of the power-duration 

relationship (W′), which indicates a fixed amount of work that can be performed above the 

CP, irrespective of the rate of its expenditure (Fukuba et al. 2003; Vanhatalo & Jones, 

2009).   

 

It has been proposed that exercise tolerance within the severe intensity domain may be 

linked to the (rate of) decline of some intramuscular ‘fatigue-related’ factor(s), such as pH 

and [PCr], towards some consistently low, limiting value (Poole et al. 1988).  Given the 

close association between the dynamics of pulmonary O2 and intramuscular [PCr] 

(Rossiter et al. 2001, 2002) and the fact that O2 consistently attains its maximum at Tlim in 

the severe domain, it is reasonable to consider that muscle [PCr] should attain a consistent 

‘nadir’ for any work rate within the severe domain.  We have recently demonstrated that 

severe intensity exercise (10% >CP) performed to the limit of tolerance was associated 

with a progressive depletion of intramuscular PCr and continued decrease in pH (Jones et 

al. 2008).  However, the hypothesis that these metabolites reach the same low, limiting 

values at different constant-work-rates within the severe intensity domain remains to be 

tested.   
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The inspiration of a hyperoxic gas enhances peripheral O2 diffusion by increasing the O2 

pressure gradient between the microvasculature and the mitochondria.  Improved exercise 

tolerance in hyperoxia has been reported during both incremental (Hogan et al. 1999) and 

high-intensity constant-work-rate exercise (Linnarsson et al. 1974; Wilkerson et al. 2006).  

Hyperoxia also results in a considerable reduction in the amplitude of the O2 slow 

component (MacDonald et al. 1997; Wilkerson et al. 2006) and the related intramuscular 

[PCr] slow component (Haseler et al. 2004).  Given that the slow component amplitude is 

most pronounced in the lower bound of the severe domain (Poole et al. 1988; Wilkerson et 

al. 2004), it is possible that hyperoxia enhances exercise tolerance by ‘trimming out’ the 

[PCr] and O2 slow components and thus increasing the CP.  In contrast, because the W′ is 

believed to reflect a work capacity which is chiefly derived through substrate-level 

phosphorylation (Moritani et al. 1981; Miura et al. 1999), hyperoxia would not be expected 

to alter the W′.   

 

The purpose of the present investigation was to use 
31

P-magnetic resonance spectroscopy 

(
31

P-MRS) to explore the mechanistic bases of exercise tolerance within the severe domain 

by assessing the kinetics of intramuscular phosphate-linked metabolites and pH during 

severe-intensity exercise bouts performed both in normoxia and in hyperoxia.  We tested 

the hypotheses that 1) the [PCr] and pH would reach the same values at Tlim irrespective of 

the work rate within the severe domain or the inspired O2 fraction; 2) the Tlim at a fixed 

severe-intensity work rate would be extended in hyperoxia compared to normoxia due to a 

reduced rate of change of [PCr] and pH towards their terminal values; and 3) hyperoxia 

would alter the power-duration relationship by increasing the CP but without altering the 

W′.  The CP is believed to be a parameter of oxidative metabolic function whereas the W′ 

is believed to reflect, at least in part, the anaerobic work capacity such that it should be O2 

dependent and therefore insensitive to interventions which alter muscle O2 delivery. 

 

Methods 

 

Subjects 

 

Seven habitually active male volunteers (mean ± standard deviation: age 30 ± 9 years, 

height 1.78 ± 0.04 m, body mass 80.6 ± 9.9 kg) were informed of the benefits and possible 
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risks associated with the study and provided written consent.  The study was approved by 

the local research ethics committee and was conducted in accordance with the Declaration 

of Helsinki.  The subjects were familiarized to the exercise protocol prior to data collection 

and were instructed to avoid strenuous exercise for 24 h prior to testing.  Subjects were also 

advised to arrive at the laboratory adequately hydrated, and having abstained from 

consuming alcohol for 24 h, and food or caffeine for 3 h, before each scheduled test. 

 

Experimental procedures 

 

Preliminary testing was undertaken in order to familiarize subjects with the single-leg knee-

extension exercise using the same ergometer as for the experimental trials.  Each subject 

performed at least one constant-work-rate familiarization trial where volitional exhaustion 

occurred between 2 and 12 min.  All subsequent trials were performed inside a whole-body 

MR scanner.  Subjects completed two sets of four exhaustive trials which were used to 

establish the power-duration relationship in normoxia (whilst breathing ambient air) and in 

hyperoxia (whilst breathing gas containing 70% O2 in balance N2).  The hyperoxic gas was 

supplied to the subject through a low-resistance mouthpiece and tubing assembly from a 

Douglas bag, which was supplied from a gas cylinder fixed outside the scanner room.  

Subjects inhaled the hyperoxic gas for 5 min before the commencement of the experimental 

protocol.  The subjects also wore the mouthpiece and tubing assembly during the normoxic 

trials.  All trials were presented in a blind randomized order, at a similar time of day (± 3 h) 

and were separated by a minimum of 24 h. 

 

The work rates for the trials were selected in order to yield a range of Tlim varying from ~3 

min for the shortest trial to ~10 min for the longest trial (Hill, 1993).  The work rates for 

the trials performed in normoxia and hyperoxia were therefore adjusted test-by-test with the 

aim of acquiring a similar range of Tlim for both conditions.  Accurate quantification of the 

power-duration relationship requires that the predicting exercise bouts are strictly within 

the severe exercise intensity domain (Hill, 1993).  Because we hypothesized that the same 

work rate would be sustainable for longer in hyperoxia, it was necessary to adjust the work 

rates in order that the range of Tlim was similar in both conditions.  However, to allow for 

comparisons to be made in Tlim and muscle metabolic responses between conditions, it was 

ensured that each individual performed one trial at the same absolute work rate in normoxia 

and in hyperoxia.  To this end, a work rate that resulted in a Tlim of 4-5 min in normoxia for 
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a given subject was reproduced in hyperoxia (or vice versa, depending on randomized order 

of trials).  During the trials, subjects received strong verbal encouragement to continue 

exercising for as long as possible.  The Tlim was recorded to the nearest second, defined as 

the time at which the subject failed to keep pace with the set rate of contractions (see 

below).  Subjects were not informed of the work rates or their performance until the entire 

project had been completed.  Individual CP and W′ estimates were derived from the 

prediction trial data by least squares fitting of the following regression models: 

 

1) Non-linear power versus time model: T = W′/(P-CP)    Eq. 1 

2) Linear work versus time model: W = CP·T + W′     Eq. 2 

 

The parameter estimates from Eq. 1 and Eq. 2 were compared to ensure goodness of fit and 

the model with the lowest SEE was chosen for further analysis (Hill & Smith, 1994). 

 

Equipment and MRS measurements 

 

The single-leg knee-extension exercise was performed in the prone position, with the 

subject secured to the ergometer bed with Velcro straps at the thigh, buttocks and lower 

back to minimize extraneous movement during the exercise protocol.  The in-house 

constructed ergometer consisted of a nylon frame secured on top of the bed close to the 

subject’s feet, and a base unit placed at the distal end of the bed.  The subject’s right foot 

was connected to a rope running along the top of the frame to the base unit on which a 

mounted pulley system permitted brass weight plates to be lifted and lowered.  Exercise 

was performed at the rate of 40 contractions per minute, with the subject lifting and 

lowering the weight over a distance of ~0.22 m in accordance with a visual cue projected 

on the scanner room wall.  A shaft encoder (type BDK-06, Baumer Electronics, Swindon, 

UK) was fitted within the pulley system to record the distance traveled by the load, 

alongside a nonmagnetic load cell (type F250, Novatech Measurements, St. Leonards-On-

Sea, UK) to record applied forces, which were then used to calculate the work rate.   

 

The MRS was performed at the Peninsula Magnetic Resonance Research Unit (Exeter, UK) 

using a 1.5 T superconducting MR scanner (Intera, Philips, The Netherlands).  A 6 cm 
31

P 

transmit/receive surface coil was placed within the ergometer bed and the subject was 

positioned such that the coil was centered over the quadriceps muscle of the right leg.  



 7 

Initially, fast field echo images were acquired to determine correct positioning of the 

muscle relative to the coil.  Placement of cod liver oil capsules, which yield high-intensity 

signal points within the image, adjacent to the coil, allowed its orientation relative to the 

muscle volume under examination to be assessed.  A number of preacquisition steps were 

carried out to optimize the signal from the muscle under investigation.  Tuning and 

matching of the coil were performed to maximize energy transfer between the coil and the 

muscle.  An automatic shimming protocol was then undertaken within a volume that 

defined the quadriceps muscle to optimize homogeneity of the local magnetic field, thereby 

leading to maximum signal collection. To ensure that the muscle was consistently at the 

same distance from the coil at the time of data sampling, the subjects was visually cued via 

a display consisting of two vertical bars, one that moved at a constant frequency of 0.67 Hz 

and one that monitored foot movement via a sensor within the ergometer pulley system.  

Following the start of exercise, subjects matched the movements of these two bars.  The 

contraction phase of the knee extensors and the 
31

P-MRS examination of the quadriceps 

were synchronized by a trigger pulse sent from the phosphorous MR amplifier at the time 

of data acquisition to the visual display.   

 

Before and during exercise, data were acquired every 1.5 s with a spectral width of 1,500 

Hz and 1,000 data points.  Phase cycling with four phase cycles was employed, leading to a 

spectrum being acquired every 6 s.  The subsequent spectra were quantified by peak fitting, 

with the assumption of prior knowledge, using the jMRUI (version 2) software package and 

the AMARES fitting algorithm.  Spectra were fitted with the assumption that Pi, PCr, ATP 

and phosphodiester peaks were present.  In all cases, relative amplitudes were corrected for 

partial saturation due to the repetition time relative to T1.  The T1 saturation was corrected 

via a spectrum that was acquired with a long relaxation time prior to the beginning of data 

acquisition. 

 

Intracellular pH was calculated using the chemical shift of the Pi spectra relative to the PCr 

peak (Taylor et al. 1983).  The [PCr] and [Pi] were expressed as percent change relative to 

resting baseline, which was assumed to represent 100%.  Resting and end-exercise values 

of [PCr], [Pi], and pH were calculated over the last 30 s of the rest or exercise period.  ADP 

concentration was calculated as described by Kemp et al. (2001). 
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Near infra-red spectroscopy measurements 

 

The oxygenation status of the m. vastus lateralis of the right leg was monitored using near 

infra-red spectroscopy (NIRS; model NIRO 300,
 
Hamamatsu Photonics KK, Hiugashi-ku, 

Japan).  Optodes (inter-optode spacing of 5 cm) were placed on the belly of the muscle 20 cm 

above the fibular head, and secured in position with adhesive tape and an elasticated wrap to 

minimize any extraneous light which could influence the signal and to ensure that the optodes 

did not move during exercise.  Pen marks were made around the probes to enable 

reproduction
 
of the placement in subsequent tests.  The probe gain was

 
set with the subject at 

rest in the supine position with leg fully extended prior to the exercise bout, and NIRS
 
data 

were collected continuously throughout the bout.
 
 Four different wavelength laser diodes 

provided the light source (776, 826, 845 and 905 nm) and the light returning from the tissue 

was detected by a photomultiplier tube in the spectrometer.  The intensity of incident and 

transmitted light was recorded continuously at 2 Hz and used to estimate concentration 

changes from the resting baseline for oxygenated hemoglobin/myoglobin ([HbO2]), 

deoxygenated hemoglobin/myoglobin ([HHb]), total tissue hemoglobin/myoglobin ([tHb], i.e. 

[HbO2] + [HHb]), and oxygenation index ([HbO2]-[HHb]).  The [HHb] signal derived from 

NIRS measurements reflects the balance between O2 delivery and O2 utilization in the field of 

interrogation and has been used to provide a non-invasive estimate of fractional O2 extraction 

in the microcirculation during exercise (De Blasi et al. 1993; Grassi et al. 2003).  The [HHb] 

signal can be regarded as being essentially blood-volume insensitive during exercise and was 

therefore assumed to provide an estimate of changes in intramuscular oxygenation status and 

fractional O2 extraction in the field of interrogation (De Blasi et al. 1993; Grassi et al. 2003).  
 

 

Modeling Procedures 

 

For analysis of the [PCr] kinetics during exercise at the same fixed work rate, the [PCr] data 

were first expressed as the % change relative to the initial resting baseline which was 

assumed to represent 100%.  The [PCr] responses were then modeled using non-linear 

least-squares regression techniques.  Briefly, an exponential function of the form: 

 

          ∆[PCr](t) = [PCr]0-∆[PCr]ss(1-e
-t/τ

)                                                                 Eq. 2 
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where [PCr]0 is the value of [PCr] at time zero (onset of exercise), ∆[PCr]ss is the projected 

asymptotic value, and τ is the time constant of the response, was fit to the data.  The first fit 

contained only the first 60 s of exercise data but the fitting window was then increased 

iteratively until there was a clear departure of the measured data from the model fit, as 

judged from visual inspection of a plot of the residuals.  In this way, the best-fit exponential 

for the fundamental component of the response was established.  The magnitude of any 

possible [PCr] slow component was then calculated as the difference between the 

asymptotic amplitude of the fundamental [PCr] response at the point of exhaustion as 

indicated by the modeled fit and the mean [PCr] measured over the last 12 s of exercise at 

that work-rate.  In addition, a mono-exponential model (see Eq. 2) was fitted from the onset 

of exercise through the entire data to provide information on the overall response kinetics 

(mean response time, MRT).    

 

The [HHb] response was modeled to provide information on muscle oxygenation during trials 

performed in normoxia and hyperoxia.  The mean ± SD [HHb] was calculated for the 60-

second period immediately prior to exercise onset.  The baseline [HHb] so derived allowed 

for identification of the initiation of the [HHb] response to exercise, which was defined as the 

first datum greater than
 
one standard deviation above the baseline mean.  Only data collected 

from this point forward was included in the exponential model fit.  A nonlinear least-square
 

algorithm was used to fit the data, as described in the following bi-exponential equation:  

 

[HHb](t) = [HHb]baseline + Ap(1-e
-(t-TDp)/τp

) + As(1-e
-(t-TDs)/ τs

)     Eq. 3 

 

where [HHb] (t) represents
 
the absolute [HHb] at

 
a given time t; [HHb]baseline represents the 

mean [HHb]
 
in the baseline period (see above); Ap, TDp, and p represent the amplitude,

 
time 

delay, and time constant, respectively, describing the
 
initial increase in [HHb] above baseline; 

and As, TDs, and s represent the
 
amplitude of, time delay before the onset of, and time 

constant describing the development
 
of, the [HHb] slow component,

 
respectively.  An 

iterative process was used to minimize the
 
sum of the squared errors between the fitted 

function and the
 
observed values.   
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Statistical analyses 

 

End-exercise [PCr], pH, [Pi] and [ADP] were compared for the four bouts of severe-

intensity exercise in normoxia and hyperoxia using two-way repeated measures ANOVAs.  

Paired samples t-tests were used to assess differences between normoxia and hyperoxia in 

Tlim, end-exercise muscle metabolite concentrations and the kinetic features of the [PCr] 

and [HHb] responses at the same fixed work rate.  Differences in the parameters of the 

power-duration relationship between normoxia and hyperoxia were also assessed using 

paired samples t-tests.  The relationship between changes in the CP and W′ was assessed 

using the Pearson product moment correlation coefficient.  Data are presented as mean ± 

SD.  Significance was accepted at P<0.05.   

 

Results 

 

Effects of hyperoxia on muscle oxygenation 

 

The NIRS responses provided evidence that muscle oxygenation was altered by hyperoxia 

(Figure 1).  The [HbO2] was higher in hyperoxia at 120 s of exercise (P<0.05) and the 

oxygenation index was significantly higher in hyperoxia after 60 s, 120 s and at the end of 

exercise (all P<0.05).  Importantly, the parameters derived from modeling the [HHb] 

response were consistent with the interpretation that hyperoxia enhanced muscle O2 supply.  

Hyperoxia resulted in a significant increase in the [HHb] time delay (N: 13 ± 2 vs. H: 17 ± 

3 s; P<0.05) and a significant reduction in the [HHb] amplitude (N: 290 ± 130 vs. H: 201 ± 

108 AU; P<0.01).  The difference in the [HHb] time constant (N: 9 ± 3 vs. H: 13 ± 3 W) 

and the amplitude of the [HHb] slow component (N: 226 ± 73 vs. H: 175 ± 47 AU) did not 

attain statistical significance. 

  

Effects of hyperoxia on muscle metabolic responses to exercise 

 

The end-exercise [PCr], [Pi], [ADP] and pH were not significantly different at the different 

severe-intensity work rates and were not altered by the inspired O2 fraction (Table 1).  The 

end-exercise [PCr] (~5-11% of initial baseline) was not significantly different at different 

work rates either within or between conditions (Table 1).  The [PCr] responses of one 

subject to the bouts of severe-intensity exercise in normoxia are shown in Figure 2.  The 
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end-exercise pH (~6.65), [Pi] (~ 500% above the initial baseline) and [ADP] values were 

also not significantly different at different work rates either within or between conditions 

(Table 1).   

 

At the same fixed work rate (23 ± 3 W), the Tlim was significantly greater in hyperoxia than 

in normoxia (N: 280 ± 50 vs. H: 332 ± 71 s; P<0.05; Table 2), with no differences between 

conditions in the end-exercise [PCr] (N: 10 ± 9 vs. H: 10 ± 9 %; P=0.84; Figure 3A), pH 

(N: 6.74 ± 0.15 vs. H: 6.70 ± 0.21; P=0.53; Figure 3B) or [Pi] (N: 412 ± 131 vs. H: 501 ± 

109 %; P=0.16).  At this fixed work rate, the sparing of [PCr] for the same iso-time along 

with the extended Tlim in hyperoxia resulted in differences in the MRT (N: 59 ± 20 vs. H: 

116 ± 46 s; P<0.01) and T50 (N: 30 ± 11 vs. H: 71 ± 32 s; P<0.05) between the conditions.  

The time constant for the fundamental phase decrement in [PCr] was significantly longer in 

hyperoxia (N: 23 ± 9 vs. H: 37 ± 14 s; P<0.05), but there were no significant differences in 

the amplitudes of the fundamental (N: 64 ± 13 vs. H: 58 ± 17 %) or slow (N: 25 ± 11 vs. H: 

31 ± 15 %) phases of the response.   

 

Effect of hyperoxia on the power-duration relationship 

 

There were no significant differences in the power-duration parameter estimates derived 

from non-linear and linear models (Eq. 1 and 2) in normoxia or in hyperoxia.  However, the 

estimates derived using the non-linear power-time model (Eq. 1) were associated with 

lower standard errors of estimate and were therefore used for further analysis. 

 

The CP was higher in hyperoxia (N: 16.1 ± 2.6 vs. H: 18.0 ± 2.3 W; P<0.05), and the W′ 

was lower in hyperoxia (N: 1.92 ± 0.70 vs. H: 1.48 ± 0.31 kJ; P<0.05).  The individual CP 

and W′ values in normoxia and hyperoxia are shown in Table 3.  The difference in CP 

between normoxia and hyperoxia (ΔCP) was negatively correlated to the difference in W′ 

between normoxia and hyperoxia (ΔW′; r = -0.88, P<0.05).  The alterations in the power-

duration relationship in hyperoxia resulted in enhanced exercise tolerance, but only for 

work rates less than 24.4 ± 3.8 W where the Tlim was greater than 232 ± 125 s.  Figure 4 

illustrates the effect of hyperoxia on the power-duration relationship in a representative 

individual.  
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Discussion 

 

The principal novel finding of this investigation was that [PCr] and pH reached low values 

at Tlim which were not significantly different irrespective of the work rate within the severe 

domain or the inspired O2 fraction.  At a fixed severe-intensity work rate, there was a 

reduced rate of change of [PCr] towards its terminal value in hyperoxia compared to 

normoxia and Tlim was extended.  These data are consistent with our hypotheses and 

indicate that the inability to continue severe intensity exercise might be linked to the 

attainment of critically low values of muscle [PCr] and/or pH (or that these serve as ‘proxy 

variables’ for other changes in the muscle metabolic milieu that presage exercise 

intolerance).  The inspiration of hyperoxic gas resulted in significant changes to the power-

duration relationship: the CP was increased and the W′ was reduced suggesting, in contrast 

to our hypothesis, that both parameters are sensitive to muscle O2 availability. 

 

We utilized NIRS to provide information on changes in muscle oxygenation during 

exercise in normoxia and hyperoxia.  The data indicated that the muscle oxygenation index 

was higher when subjects breathed the hyperoxic inspirate.  Moreover, the muscle [HHb] 

response was blunted in hyperoxia (i.e. the kinetics were slower and the response amplitude 

was reduced).  With the assumption that muscle O2 utilization was similar in hyperoxia 

compared to normoxia (Savasi et al. 2002; Stellingwerff et al. 2005; Wilkerson et al. 2006), 

these data indicate that local muscle O2 delivery was higher in hyperoxia such that muscle 

fractional O2 extraction (as estimated by the NIRS [HHb] signal; Grassi et al. 2003) was 

reduced accordingly. 

 

Fatigue during severe intensity exercise 

 

31
P-MRS provides a means of investigating changes in intramuscular metabolites non-

invasively and with high temporal resolution and can therefore provide insight into the 

metabolic determinants of muscle fatigue (e.g., Hogan et al. 1999; Jones et al. 2007; Jones 

et al. 2008).  We hypothesized that the intramuscular [PCr] and pH would reach the same 

low, possibly limiting, values at Tlim irrespective of the work rate and the fractional 

concentration of O2 in the inspirate during exercise within the severe exercise intensity 

domain.  This hypothesis was confirmed.  While it is not possible to identify the exact 

cellular mechanism(s) responsible for the subjects’ eventual failure to maintain the 
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requisite muscle power output, and it is recognized that muscle fatigue is a multi-faceted 

process (Fitts, 1994; Bangsbo et al. 1996; Westerblad & Allen, 2003; Amann & Calbet, 

2008), the present data indicate that the point at which subjects volitionally terminated 

exercise was associated with the attainment of low values of [PCr] and pH (and high values 

of [Pi]).  This was true for all subjects irrespective of both the work rate within the severe 

domain and the fraction of O2 in the inspirate.  That the fatigue process in this range of 

work rates is associated with changes in [PCr], pH and [Pi] is underscored by the fact that 

the values at exhaustion in either normoxia or hyperoxia were not significantly different 

despite the rate of change in these variables being greater at the higher work rates, and 

attenuated for the same fixed work rate in hyperoxia.   

 

The failure to sustain severe intensity exercise was associated with significant depletion of 

muscle PCr (mean [PCr] at exhaustion of 8 %).  However, although the [PCr] value at Tlim 

was similar within subjects, there was an appreciable range of [PCr] values at Tlim between 

subjects (range: 0 to 26 %).  It is known that the depletion of muscle high-energy 

phosphates during exercise
 
displays regional heterogeneity (Sahlin et al. 1997).  It is 

therefore possible that [PCr] fell to sufficiently low values in at least
 
some of the recruited 

muscle fibers during severe exercise that
 
the required muscle force could not be maintained 

even when the “mean” [PCr] in the region of muscle interrogated was appreciably above 

“zero”.  Severe intensity exercise intolerance might also be attributed
 
to the extent, or the 

rate, of accumulation of metabolites that
 
have been associated with the fatigue process, 

such as Pi and
 
H

+
.  A reduction in muscle pH has been linked to fatigue through H

+
 

competition with Ca
2+

 for binding
 
to troponin, interference with Ca

2+
 release from the 

sarcoplasmic
 
reticulum, and inhibition of phosphofructokinase (Trivedi & Danforth, 1966; 

Fuchs et al. 1970; Fitts, 1994).
  
Recently, the possible role of Pi accumulation (specifically,

 

in its diprotonated form) has received increasing attention
 
(Cooke et al. 1988; Nosek et al. 

1987; Wilson et al. 1988; Westerblad & Allen, 2003).  In the present study, muscle [Pi]
 

increased and pH decreased with time
 
until the termination of exercise and it is possible 

that metabolite
 
accumulation was responsible for, or at least contributed to,

 
exercise 

intolerance.  It should be noted also that the rate of development of peripheral muscle 

fatigue (which is itself influenced by arterial O2 content; Knight et al. 1993; Hogan et al. 

1999; Richardson et al. 1999) might impact on central motor drive and motor unit 

recruitment (i.e., central fatigue; Amann & Calbet, 2008).  
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At the same fixed work rate, the rate of change in [PCr] and pH was blunted in hyperoxia 

(Figure 3), which possibly enabled exercise to be sustained for longer.  Enhanced muscle 

O2 availability (such as would be expected to occur with hyperoxia; Figure 1) would enable 

the same metabolic rate to be achieved with greater redox and phosphorylation potentials 

and
 
a reduced perturbation of muscle adenine nucleotides (Hogan et al. 1992).  A reduced 

rate of decline of muscle [PCr] towards some critically-low value, along with a reduced 

rate of increase of p O2 towards the elevated p O2 max (Poole et al. 1988; Wilkerson et al. 

2004), would be expected to increase the Tlim at a constant severe-intensity work rate 

(Burnley & Jones, 2007), as was indeed observed in the present study.  In addition to direct 

effects of enhanced muscle O2 availability on the phosphorylation potential, a reduced rate 

of glycogenolysis in hyperoxia (Stellingwerff et al. 2006), leading to a better preservation 

of pH homeostasis (Figure 3B), would also require muscle PCr to fall less to provide the 

same ADP stimulus for
 
oxidative phosphorylation (Conley et al. 2001).  Our data are 

consistent with the study of Hogan et al. (1999) in which it was reported that the end-

exercise values of [PCr], [Pi] and pH were not significantly different when incremental 

exercise was performed to volitional exhaustion in hypoxia (10% O2), normoxia, and 

hyperoxia (100% O2), despite the Tlim being shortest in hypoxia and longest in hyperoxia.  

These authors also concluded that exhaustion occurred when a particular intracellular 

environment was achieved and that the extent of the disturbance to homeostasis was a 

function of cellular oxygenation (Hogan et al. 1999).   

 

The blunting of the overall rate at which [PCr] was depleted to its terminal value in 

hyperoxia, along with the greater Tlim, resulted in a significant slowing of the overall [PCr] 

kinetics (assessed using the MRT or T50).  Interestingly, the time constant describing the 

initial fall in [PCr] was also significantly greater in hyperoxia than in normoxia (~37 vs. 23 

s).  This finding differs from that of Haseler et al. (2004) who reported that the [PCr] time 

constant was not different when subjects breathed 100% O2 compared to normoxia during 

knee-extension exercise.  This may be explained by the fact that the intensity of exercise 

was higher in our study (severe) than in theirs (ostensibly heavy); changes in muscle PO2 

evoked by hyperoxia might be expected to impact more on the muscle phosphorylation 

potential at work rates that are closer to maximal (Richardson et al. 1999).  The available 

data indicate that the rate at which muscle O2 (Evans et al. 2001; Savasi et al. 2002; 

Stellingwerff et al. 2005) or pulmonary O2 (MacDonald et al. 1997; Wilkerson et al. 2006) 

increases over the first 1-3 min following the onset of exercise is not altered by hyperoxia.  
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Since muscle [PCr] kinetics is often considered as a proxy for muscle O2 kinetics (Rossiter 

et al. 2002), the slower [PCr] kinetics we observed in hyperoxia in the present study 

suggests that the kinetics of muscle [PCr] and O2 might have been dissociated by the 

intervention.  This is likely a consequence of the direct effects of hyperoxia on the muscle 

phosphorylation potential which enables the same metabolic rate to be sustained with a 

reduced perturbation of muscle adenine nucleotides (Wilson et al. 1977; Hogan et al. 1992).     

 

Influence of hyperoxia on the parameters of the power-duration relationship 

 

In the present study, subjects completed four exercise bouts to the limit of tolerance in the 

severe exercise intensity domain both in normoxia and in hyperoxia, thus enabling us to 

assess the effect of inspired O2 fraction on the asymptote (the CP) and the curvature 

constant (W′) of the power-duration relationship.  Consistent with our hypothesis, the CP 

was significantly increased in the hyperoxic condition.  Surprisingly, only one previous 

study has manipulated the inspired O2 fraction to investigate the dependency of CP on 

muscle O2 availability.  Moritani et al. (1981) reported that the CP was reduced but the W′ 

was unchanged in two subjects when exercise was performed in hypoxia (9% and 12% O2) 

compared to normoxia.  Collectively, those results along with the present findings indicate 

that the CP is sensitive to muscle O2 availability and support the notion that the CP is a 

parameter of oxidative metabolic function. 

 

In contrast to our hypothesis, we also observed a considerable reduction in the W′.  Indeed, 

our data indicate that exercise tolerance might only be enhanced in hyperoxia for exercise 

durations greater than approximately four minutes and might even be slightly impaired for 

shorter durations of exhaustive exercise.  The explanation for this is not immediately 

apparent.  One possibility is that the energy yield from substrate phosphorylation was 

reduced in hyperoxia.  Stellingwerff et al. (2006) have reported that glycogenolysis was 

significantly reduced by hyperoxia during cycle exercise at 70% O2 max.  If the maximal 

glycogenolytic rate is impaired in hyperoxia, this might impair performance during very 

high intensity exercise thereby affecting the shortest duration trials.  Another explanation 

for the possible reduction in exercise tolerance at very high work rates in hyperoxia is that 

contractile function is impaired by increased oxidative stress.  It is known, for example, 

that excessive accumulation of reactive oxygen species (which is likely to be exacerbated 

in hyperoxia) can inhibit muscle force production during fatiguing exercise, possibly 
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through effects of reactive oxygen species and also nitric oxide on muscle redox status 

(Reid & Durham, 2002).   

 

The significant inverse correlation between the changes in CP and W′ induced by 

hyperoxia in the present study (r = -0.88) closely resembles previous data on the effect of 

training on these same parameters (Jenkins & Quigley, 1992; Vanhatalo et al. 2008).  

Jenkins and Quigley (1992) demonstrated a 30% increase in CP in conjunction with a (non-

significant) 26% reduction in W′ following endurance training, and Vanhatalo et al. (2008) 

reported an inverse relationship between ΔCP and ΔW′ (r = -0.75) after interval training.  

Collectively, these results may be explained by the relative changes induced by a given 

intervention on the CP (the lower boundary of the severe domain) and the O2 max (the 

upper boundary of the severe domain).  If the increase in CP is greater than the increase in 

O2 max (i.e., the range of work rates encompassing the severe domain is reduced) the W′ 

must decrease (Burnley & Jones, 2007).  The tendency for W′ to be reduced following 

interventions such as training and hyperoxia which are effective in altering both CP and 

O2 max (Linnarsson et al. 1974; Jenkins & Quigley, 1992; Richardson et al. 1999; Vanhatalo 

et al. 2008), might thus reflect the relative changes in the lower and upper limits of the 

severe domain.  Both interventions might be expected to have a greater effect on ‘sub-

maximal’ indices of aerobic fitness (such as the CP) than on O2 max (Linnarsson et al. 

1974; Jones & Carter, 2004; Wilkerson et al. 2006; Vanhatalo et al. 2008).  These data 

suggest that the W' may not represent a fixed ‘anaerobic’ substrate store (Monod & 

Scherrer, 1965; Miura et al. 1999) but rather a mechanical work capacity which can be 

performed whilst the O2 and [PCr] kinetics project towards their respective maximum and 

nadir values.  

 

In conclusion, this study has shown that the limit of tolerance within the severe exercise 

intensity domain was associated with muscle [PCr] and pH reaching a nadir, and [Pi] 

reaching a peak, the values of which were neither different between work rates nor affected 

by the fraction of O2 in the inspirate.  The rate of change in [PCr] and pH at a fixed severe 

work rate was reduced in hyperoxia compared to normoxia, and these alterations were 

associated with an elevated CP and a reduced W′ in hyperoxia.  These data provide further 

support for the notion that Tlim in the severe-intensity exercise domain is linked, directly or 

indirectly, to the attainment of some critical level of intra-muscular [PCr], [Pi] and/or pH.   
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Figure Legends 

 

Figure 1: Group mean muscle oxygenation measures derived from NIRS at the same fixed 

work rate in normoxia (●) and hyperoxia (○). Panel A: oxygenated Hb/Mb, panel B: total 

Hb/Mb ([HbO2/Mb]+[HHb/Mb]), panel C: deoxygenated Hb/Mb and D: oxygenation index 

([HbO2/Mb]-[HHb/Mb]).   The final data point in each figure indicates the end-exercise 

values (±SD). 

 

Figure 2: Muscle [PCr] responses to severe-intensity constant-work-rate exercise in 

normoxia in a representative subject.  Notice that [PCr] falls more steeply towards its nadir 

at higher work rates but that the [PCr] reaches a similar value at the Tlim. 

 

Figure 3: Group mean (n=7) muscle [PCr] (panel A) and pH (panel B) responses to severe-

intensity exercise at a fixed work rate (23 ± 3 W) in normoxia (●) and hyperoxia (○).  The 

Tlim was significantly greater in hyperoxia (N: 280 ± 50 vs. H: 332 ± 71 s; P<0.05) but the 

end-exercise [PCr] and pH values were not significantly different.  The final data point in 

each figure indicates the end-exercise values (±SD). 

 

Figure 4: The hyperbolic power-duration (panel A; Eq. 1) and the linear work-time (panel 

B; Eq. 2) relationships during severe-intensity knee-extension exercise in normoxia (●) and 

hyperoxia (○) in subject #1.  In panel A the CP is indicated by the power-asymptote and the 

W′ is the curvature constant.  In panel B the CP is the slope and the W′ is the y-intercept of 

the linear regression.  
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Table 1: Mean ± SD end-exercise [PCr], pH, [Pi] and [ADP] during severe-intensity 

exercise in normoxia and hyperoxia 

 Normoxia 
 

 Hyperoxia 

Power 

(W) 
26 ± 3 24 ± 3 22 ± 3 20 ± 3  26 ± 3 24 ± 3 22 ± 3 20 ± 3 

[PCr] 

(%) 
7 ± 8 8 ± 10 11 ± 12 11 ± 10  5 ± 6 6 ± 7 11 ± 7 7 ± 9 

pH 
6.63 ± 

0.16 

6.66 ± 

0.19 

6.65 ± 

0.2 

6.70 ±  

0.14 
 

6.60 ± 

0.13 

6.65 ± 

0.17 

6.73 ± 

0.16 

6.64 ± 

0.13 

[Pi] 

(%) 

512 ±   

70 

478 ± 

141 

431 ± 

120 

476 ±  

111 
 

480 ±    

82 

513 ±   

82 

536 ± 

137 

463 ± 

105 

[ADP] 

(μM) 

509 ± 

398 

440 ± 

230 

323 ± 

327 

307 ±  

318 
 

589 ±  

355 

478 ± 

357 

340 ± 

339 

494 ± 

598 
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 Table 2: Mean ± SD [PCr] kinetics at a fixed severe-intensity work rate (23 ± 3 W) in 

normoxia and hyperoxia 

 

 Normoxia Hyperoxia 

Baseline [PCr] (%) 100 ± 0 100 ± 0 

Fundamental Amplitude (%) 64 ± 13 58 ± 17 

Time constant (s) 23 ± 9 37 ± 14 * 

Amplitude / Time Constant (%/s) 2.8 ± 1.3 1.6 ± 1.0 * 

Slow Phase Amplitude (%) 25 ± 11 31 ± 15 

[PCr] at end-exercise (%) 11 ± 9 10 ± 9 

Mean Response Time (s) 59 ± 20 116 ± 46 * 

 

* = P<0.05.  Time constant refers to the [PCr] kinetics in the fundamental phase of the 

response whereas mean response time refers to the [PCr] kinetics over the entire exercise 

bout. 
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Table 3: The CP and W′ estimates for each individual in normoxia and hyperoxia 
 

 

 Critical Power (W)  W′ (kJ) 

Subject N H Δ (%)  N H Δ (%) 

1 17.4 20.3 16.7  1.84 1.27 -31.0 

2 18.8 18.9 0.5  1.58 1.56 -0.9 

3 17.4 18.8 8.0  2.59 1.91 -26.1 

4 18.7 20 7.0  1.78 1.57 -12.0 

5 13.4 17.9 33.6  3.11 1.79 -42.6 

6 14.9 16.5 10.7  1.45 1.14 -21.3 

7 12.3 13.6 10.6  1.10 1.14 3.4 

Mean 16.1 18.0 * 12.4   1.92 1.48 * -18.7 

SD 2.6 2.3 10.5  0.70 0.31 16.5 

 

* P<0.05.  N = normoxia; H = hyperoxia; Δ is the % difference between conditions.   
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