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Melting curve of face-centered-cubic nickel from first-principles calculations
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The melting curve of Ni up to 100 GPa has been calculated using first-principles methods based on density
functional theory (DFT). We used two complementary approaches: (i) coexistence simulations with a reference
system and then free-energy corrections between DFT and the reference system, and (ii) direct DFT coexistence
using simulation cells including 1000 atoms. The calculated zero pressure melting temperature is slightly
underestimated at 1637 ± 10 K (experimental value is 1728 K), and at high pressure is significantly higher than
recent measurements in diamond-anvil cell experiments [Phys. Rev. B 87, 054108 (2013)]. The zero pressure
DFT melting slope is calculated to be 30 ± 2 K, in good agreement with the experimental value of 28 K.
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I. INTRODUCTION

The melting curves of transition metals have recently
attracted significant interest, particularly because of long-
standing controversies mainly due to the different predictions
of high-pressure melting temperatures between diamond-anvil
cell (DAC) experiments (e.g., Refs. 1 and 2) and shock-wave
(SW) experiments (e.g., Refs. 3–6). Although the range of
pressure explored by the two techniques is quite different,
and the DAC data need to be extrapolated before they can be
directly compared to SW data at the same pressure, it is clear
that large differences appear in the predicted high-pressure
melting temperatures of several transition metals, particularly
molybdenum2,4,7 and tantalum.2,6 Recent DAC work, in which
different diagnostics used to identify the melting transition are
proposed, seems to reconcile some of these differences, at least
for tantalum8 and iron.9,10

On the theoretical side a large number of attempts at
calculating the melting curves of several transition metals
have been proposed, although most of these studies were
based on empirical interatomic potentials (e.g., Refs. 11–15).
Different calculations for the same material can also show
significant discrepancies, which are due to the different
quality of the respective interatomic potentials. On the other
hand, calculations based on first-principles approaches, mainly
within density functional theory (DFT), have been shown to
be very accurate at predicting the correct pressure behavior
of the melting temperature of several materials, including the
transition metals tantalum16 and iron.17,18

Here we report on the DFT calculation of the melting
curve of nickel from 0 to 100 GPa. Our results are higher
than recent DAC measurements,19 and lower than previously
reported calculations based on empirical potentials,13,15 and in
agreement with that computed by Koči et al.,20 who also used
an approach based on empirical potentials.

The paper is organized as follows. Section II contains the
techniques used in the calculations. Results and discussion are
presented in Sec. III. Conclusions and final remarks follow in
Sec. IV.

II. METHODS

The calculations are based on DFT in the finite-temperature
formulation due to Mermin,21 with the exchange-correlation

potential known as PBE (Perdew, Burke, and Ernzerhof),22

as implemented in the VASP code.23 We used the projector-
augmented-wave (PAW) formalism24,25 and for the majority
of the calculations a nickel PAW potential with an [Ar]
core (10 electrons in valence) and an outmost cutoff radius
of 1.21 Å. Single-particle wave functions were expanded
in plane-waves (PWs), with exact details of the PW cutoff
reported below. With this potential the lattice parameter
of the face-centred-cubic crystal of Ni at zero temperature
(and no zero-point motion) is calculated to be 3.52 Å,
the bulk modulus is 194 GPa, and the magnetic moment
is 0.62μB/atom. To compare with the experimental values
at T = 296 K we have calculated the free energy of the
crystal in the quasiharmonic approximation, using the small
displacement method as implemented in the PHON code.26 We
used a 4 × 4 × 4 supercell (64 atoms) and a displacement
of 0.04 Å. We performed spin-polarized calculations using a
3 × 3 × 3 grid of k points to sample the Brillouin zone, and
free energies were obtained by integrating phonon frequencies
over a 8 × 8 × 8 grid of q points (in fact, even a 4 × 4 × 4
grid of q points would give free energies converged to
better than 0.02 meV/atom at 300 K). At T = 296 K the
lattice parameter, bulk modulus, and magnetic moments are
calculated to be 3.539 Å, 182 GPa, and 0.62μB/atom, being
slightly larger, lower, and in good agreement with the the
experimental values of 3.52 Å, 186 GPa, and 0.62μB/atom,
respectively. The slight overestimation of the lattice parameter
is typical of DFT-PBE, and also agrees with previously
reported results.27 The volumetric thermal expansion is cal-
culated to be 38 × 10−6 K−1, in good agreement with the
experimental value of 39 × 10−6 K−1. Phonon dispersions
at zero pressure are compared with experiments in Fig. 1,
where we show calculations both at the classical equilibrium
lattice parameter at zero temperature, which is the same as the
experimental lattice parameter (3.52 Å), and at the calculated
lattice parameter at T = 296 K (3.539 Å). The agreement with
the experiments is better at the experimental lattice parameter.
Phonons dispersions of Ni have previously been computed by
Dal Corso,27 who obtained similar results.

The main strategy used here to calculate the melting curve
follows the method developed in Ref. 29. The idea is to use a
reference potential to compute the melting curve first, and then
correct it by calculating free-energy differences between the
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FIG. 1. Phonon dispersions of Ni. Solid lines: present calculations
at the DFT-PBE equilibrium volume at T = 296 K (a0 = 3.539 Å);
dashed lines: present calculations at the DFT-PBE classical equilib-
rium volume at T = 0 K (a0 = 3.52 Å); diamonds with error bars:
experimental data from Ref. 28.

ab initio and the reference potentials. We outline the strategy
in the following.

The thermodynamic condition that determines the melting
point Tm at pressure p is given by Gls(p,Tm) = Gl(p,Tm) −
Gs(p,Tm), where Gl(p,Tm) and Gs(p,Tm) are the Gibbs free
energies of the system in the liquid and the solid state at p and
Tm. In the vicinity of Tm the temperature dependencies of Gl

and Gs are linear, with the slopes given by the entropies Sl

and Ss . It is straightforward to see that, as the potential-energy
function is changed from that of the reference to that of the ab
initio potential, a small relative shift of the free energy of the
liquid with respect to the free energy of the solid, �Gls(Tm),
where � indicates a difference between ab initio and reference
systems, causes a shift in the melting point given by

�Tm = �Gls(Tm)

Sls
, (1)

where Sls = Sl − Ss is the entropy change on melting of the
reference system. This relation is exact if the Gibbs free
energies are exactly linear, and it is only an approximation
otherwise, in which case higher-order corrections can also be
calculated (see Ref. 29). This argument provides a possible
route to the calculation of the ab initio melting curve: (i) we
construct a reference system in a way that its free energy is
as close as possible to the free energy of the DFT system;
(ii) we compute the melting temperature of the reference
system using standard methods (see below); (iii) we compute
the difference between the DFT and the reference system
melting temperature using the linear relation outlined above.

The Gibbs free energy difference between the DFT and
the reference system can be calculated using thermodynamic
integration.30 If this difference is small, it can be calculated
as29

�G = 〈�U 〉ref − 1

2kBT
〈δ�U 2〉ref + · · · , (2)

where kB is the Boltzmann constant, �U = U − Uref is the
difference between the DFT and the reference potential-energy

functions U and Uref , respectively, δ�U = �U − 〈�U 〉ref ,
and 〈·〉ref represents the average evaluated in the reference
isothermal-isobaric ensemble. A similar relation holds for
the Helmholtz free-energy difference �F , which is obtained
by replacing the isothermal-isobaric with the isothermal-
isochoric ensemble. The relation between �G and �F is
readily shown to be29

�G = �F − 1

2

V

KT

�p2, (3)

where V is the volume, KT the isothermal bulk modulus, and
�p the pressure difference between the two systems at volume
V and temperature T . Equations (1)–(3), suggest a strategy
to construct the reference potential. We look for a reference
system for which δ�U are as small as possible, so we can
use Eq. (2) to compute �G. Since we prefer to work with
an isothermal-isochoric ensemble, we also require �p to be
small, so we can compute �G from �F using Eq. (3). Finally,
a crucial point in the scheme, we want to use the linear relation
in Eq. (1) to compute the shift of melting temperature between
the ab initio and the reference systems. We therefore require
that the relative shift of free energies between liquid and solid,
�ls , are as small as possible.

We chose as reference potential an embedded atom model
(EAM)31 with the form proposed by Sutton and Chen.32 For
this model the total energy of the system is written as

Etot = 1

2

∑
i,j �=i

ε

(
a

rij

)n

− εC
∑

i

[ ∑
j �=i

(
a

rij

)m
]1/2

, (4)

where ε,a,C,n,m are fitting parameters, and rij is the distance
between two atoms at positions ri and rj . Since the potential
has infinite range a cutoff in real space needs to be applied,
which we chose to be 6 Å. The potential was then cut and
shifted, in order to eliminate discontinuities in the energy at
the cutoff distance. The remaining discontinuities in the forces
are sufficiently small that they do not present any problems in
the molecular dynamics simulations.

III. RESULTS AND DISCUSSION

To determine the parameters of the potential we initially
performed two long DFT simulations, one for the solid and
one for the liquid, at a pressure close to 30 GPa. From
these simulations we extracted 100 statistically independent
configurations. We used these configurations, together with
the DFT energies and pressures, to fit the parameters of the
EAM by minimizing both δ�U 2 and �p2. The parameters
that we obtained were ε = 3.1774 × 10−2 eV, a = 3.1323 Å,
C = 33.5741,n = 8.975,m = 3.631, and we denote as EAM1
the embedded atom model with these parameters. Note that the
value of n is very close to 9, the value originally chosen by
Sutton and Chen.32 This parameter determines the shape of the
repulsive part of the potential, which is mainly responsible for
the fluctuations in the total energy as the atoms move around
sampling the phase space.

To compute the melting curve of EAM1 we used the
coexistence method. The simulations were performed with
cells containing 8000 atoms (10 × 10 × 20), and the constant
stress algorithm (NpH) described by Hernández.33 We found
that the simulation cell retains its zero-temperature rectangular
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FIG. 2. (Color online) Melting curve of Ni. Black squares:
melting curve of EAM1; green squares: melting curve of EAM2;
solid red and open purple circles: DFT-PBE melting curve obtained
by correcting the melting curves of EAM1 and EAM2, respectively;
dotted lines: EAM melting curve of Ref. 13; blu dashed line: melting
curve of Ref. 20; violet dashed line: melting curve of Ref. 15; black
filled diamonds: DAC experimental values of Ref. 19; open squares
(at 79 and 100 GPa): SW based experimental values of Ref. 35.

shape almost exactly, with only �2% strain in the direction
perpendicular to the solid-liquid interface. Simulations were
carried out using a time step of 3 fs for a total length of
300 ps. The error on the melting temperature was calculated
by standard reblocking procedure34 and was found to be less
than 5 K. We tested size effects by performing simulations on
both 1000 and 27 000 atoms, which showed results essentially
identical to those obtained with the 8000-atom simulation
cells. We also performed simulations at constant volume

(NVE), both with the 1000-atom and the 8000-atom simulation
cells, and found that the resulting melting temperature was
indistinguishable from that calculated by using the NpH
ensemble. The NVE simulations were performed both with
and without allowing for the �2% strain in the direction
perpendicular to the solid-liquid interface, and the effect of the
strain was undetectable within error bars of 5 K. The melting
curve of EAM1 is shown in Fig. 2 and reported in Table I.

To compute the DFT-PBE melting curve we applied
Eqs. (1)–(3) as described above. We applied the corrections
at several values of pressure. This was done by generating
long MD simulations with EAM1 at the chosen pressure,
both for solid and liquid, extract from the simulations a
large number (typically > 60) of statistically independent
configurations, and compute DFT energies and pressures on
these configurations. The simulations have been performed on
256-atom cells, and the DFT calculations used 2 × 2 × 2 grids
of k points, which guarantee convergence of the electronic free
energy to less than 0.05 meV/atom, i.e., leaving a completely
negligible error (less than 1 K on the melting temperature).
The plane-wave cutoff was 337 eV, which underestimates the
pressure by �0.4 GPa. All calculated pressures have been
corrected for this small error. Finally, to test the quality of the
PAW potential at high pressure we repeated the calculations at
p = 60 GPa using a PAW potential which also includes the
3p6 electrons in valence. This potential has a core radius
of 1.058 Å, and we used a plane-wave cutoff of 460 eV.
At p = 60 GPa we found �Gls = 0.015 ± 0.002 eV, to be
compared to �Gls = 0.017 ± 0.002 eV obtained with the
small valence PAW, which gives almost exactly the same
correction to the melting temperature of EAM1.

At zero pressure and low temperature nickel has a
magnetic moment of �0.62μB , which is preserved to at least
200 GPa.36 Above the Curie temperature (628 K at zero
pressure) the moments are disordered. Since the melting

TABLE I. The various components of the free-energy differences between DFT-PBE and EAM1 (see text), the EAM1 melting temperatures,
and the DFT-PBE melting temperatures. Units are GPa for pressure and bulk modulus, K for temperature, meV for energy, kB for entropy, and
Å3/atom for volume.

p 0 8.2 18.2 28.2 40 60 80 100
T EAM1

m 1497 1832 2186 2503 2850 3380 3875 4341
〈�Uls〉EAM1 15.3 (0.3) 8.6 (0.4) 3.2 (0.7) −1.5 (0.5) −6.8 (0.8) −14.5 (0.7) −20.7 (0.8) −29.8 (1.0)
− 1

2kBT

〈
δ�U 2

s

〉
EAM1

−2.4 (0.5) −2.5 (0.4) −1.1 (0.4) −2.3 (0.4) −2.0 (0.5) −4.6 (0.7) −5.8 (1.0) −7.8 (1.4)

− 1
2kBT

〈
δ�U 2

l

〉
EAM1

−3.1 (0.6) −5.2 (1.3) −4.1 (1.8) −4.6 (1.2) −6.5 (1.5) −7.9 (1.3) −12.5 (2.3) −15.4 (2.5)

Ks
T 86.8 129.3 181.0 241.6 291.6 401.4 540.3 543.6

Kl
T 98.4 145.2 198.4 246.0 327.5 404.5 479.2 561.5

�ps 1.5 0.3 0.6 1.5 2.3 2.8 3.0 2.7
�pl 2.8 1.9 1.1 0.6 0.1 0.0 0.6 1.7

− 1
2

Vs

Ks
T
�p2

s −1.0 0.0 0.0 −0.3 −0.6 −0.6 −0.5 −0.4

− 1
2

Vl

Kl
T

�p2
l −3.1 −1.0 −0.2 0.0 0.0 0.0 0.0 −0.1

Sls
EAM1 1.04 1.01 0.98 0.96 0.94 0.91 0.9 0.89

V s
EAM1 11.87 11.32 10.82 10.42 10.05 9.55 9.21 8.86

V ls
EAM1 0.636 0.537 0.452 0.404 0.364 0.318 0.295 0.279

�Gls 12.5 (0.9) 4.9 (1.4) 0.0 (2.0) −3.5 (1.4) −10.7 (1.8) −17.2 (1.6) −27.4 (2.6) −37.1 (3.0)
δTm 140 (10) 56 (16) 0 (24) −42 (16) −132 (22) −220 (20) −353 (34) −484 (40)
Tm 1637 (10) 1888 (16) 2186 (24) 2461 (16) 2718 (22) 3160 (20) 3522 (34) 3857 (40)
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temperature is well above the Curie temperature, it is likely
that the magnetic moments will be completely disordered
in both solid and liquid, and therefore the contribution of
magnetic entropy to the free-energy difference between the
two phases should cancel out. Moreover, within the DFT
formalism the moments are actually quenched by the disorder,
and since our intention is to provide the DFT melting curve of
Ni, all the melting calculations have been performed without
including spin polarization.

In Table I we report the free-energy difference between the
DFT system and EAM1 at several pressures for both solid
and liquid, separated in the various contributions outlined in
Eqs. (1)–(3). The correction is positive at low pressures and
negative at high pressures, so that the DFT melting slope is
lower than that of EAM1. The DFT melting curve is displayed
in Fig. 2, where we also plot the recent DAC experimental val-
ues of Errandonea et al.,19 the SW based experimental values
due to Urlin,35 and the results of previous theoretical calcula-
tions by Luo et al.,13 Koči et al.,20 and by Weingarten et al.15

To cross-check the accuracy of Eq. (1) and its range
of applicability we fitted a second EAM potential in the
high-pressure region. The parameters of this second potential
were ε = 3.221 × 10−2 eV, a = 3.1773 Å, C = 33.0538,n =
8.571,m = 3.161, and we denote as EAM2 the potential with
these parameters. The melting curve of EAM2, together with
the DFT corrected melting curve, are also displayed in Fig. 2
and reported in Table II. As expected, the DFT correction is
smaller in the high-pressure region, however, the DFT melting
curve agrees closely with the DFT melting curve obtained by
correcting the melting curve of EAM1. This provides a robust
validation of Eq. (1). The melting slope of EAM2 is also larger
than the DFT one. This behavior is similar to that observed
for a similar EAM fitted to reproduce the properties of iron,
which also resulted in a steeper melting slope12 compared
to the DFT one.17 In Fig. 2 we also show the melting curve
reported by Luo et al.13 and by Weingarten et al.15 both based

TABLE II. Same as Table I but with EAM2 in place of EAM1
(see text).

p 80 100
T EAM2

m 3646 4049
〈�Uls〉EAM2 −3.7 (0.8) −9.5 (0.6)
− 1

2kBT

〈
δ�U 2

s

〉
EAM2

−2.5 (0.6) −4.6 (0.8)

− 1
2kBT

〈
δ�U 2

l

〉
EAM2

−8.2 (1.5) −8.0 (1.3)

Ks
T 475.9 565.8

Kl
T 430.8 577.9

�ps 0.7 1.5
�pl −1.4 −1.8

− 1
2

Vs

Ks
T
�p2

s 0.0 −0.1

− 1
2

Vl

Kl
T

�p2
l −0.1 −0.2

Sls
EAM2 0.89 0.89

V s
EAM2 9.21 8.87

V ls
EAM2 0.279 0.259

�Gls −9.5 (1.8) −13.0 (1.6)
δTm −124 (24) −169 (21)
Tm 3522 (24) 3880 (21)

on empirical potentials. Their melting curves are higher than
our DFT melting curve, and higher than the melting curves of
both EAM1 and EAM2. On the other hand, the melting curve
reported by Koči et al.20 is quite in good agreement with our
ab initio calculations.

As a final cross-check to the validity of the calculations,
we performed three coexistence simulations directly with DFT
using a 1000-atom cell. The initial configuration was extracted
from a snapshot of an ab initio coexistence simulation of
aluminium,37 with the volume appropriately rescaled so that
the pressure was �8 GPa. The simulations were performed
in the NVE ensemble, using a time step of 3 fs, and the
initial value of the internal energy E was set by drawing
the initial velocities of the atoms from Maxwell-Boltzmann
distributions corresponding to initial temperatures of 1700,
2000, and 2300 K. The simulations initiated with the lowest
and the highest temperatures froze and melted, respectively,
after �10 ps, but the third simulation maintained coexistence
for the whole length of over 30 ps. The average temperature
and pressure from this latter simulation are p = 8.5 ± 0.1 GPa
and T = 1896 ± 10 K, which are in excellent agreement
with the results obtained by correcting the EAM melting
temperature.

Our DFT-PBE calculated melting temperature of Ni is
slightly underestimated by ∼90 K, and the melting slope
dTm/dp = 30 ± 2 K/GPa is in good agreement with the
recent DAC experimental value of 28 K/GPa.19 The small
underestimate of the zero-pressure melting temperature can
be understood in terms of the pressure underestimate of DFT-
PBE: at the experimental equilibrium volume the DFT-PBE
pressure is underestimated by ∼3 GPa, which combined with
a melting slope of 30 K/GPa would shift the zero-pressure
DFT-PBE melting temperature upwards by 90 K, bringing it
in perfect agreement with the experimental value.

As pressure increases the calculated melting slope drops
less quickly than the DAC experimental one19 and, as a result,
at high pressure the DFT-PBE melting curve is significantly
higher, though very close to old experimental values based on
SW.35

IV. SUMMARY

In this work we have performed DFT-PBE calculations to
compute the melting curve of fcc Ni from 0 to 100 GPa follow-
ing the approach developed in Ref. 29. We find a zero-pressure
melting temperature of 1637 ± 10 K, which is underestimated
by about ∼90 K. We argued that this small underestimate can
be understood in terms of the underestimate of the DFT-PBE
pressure at the experimental equilibrium volume. When we
correct for this small error the melting temperature comes in
perfect agreement with the experimental value. The calculated
phonon dispersions also agree well with the experimental ones
at the experimental equilibrium volume. At high pressure our
calculated melting curve deviates from the recent experimental
one based on DAC measurements,19 though it appears to agree
well with old experiments based on SW.35
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