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The method behind the UK Display Energy Certificate (DEC) improves the comparability of benchmarking by

accounting for variations in weather and occupancy. To improve the comparability further, the incorporation of

other features that are intrinsic to buildings (e.g. built form and building services) deserve exploration. This study

investigates the impact of these features and explores ways to improve further comparability in benchmarking the

energy performance of schools. Statistical analyses of approximately 7700 schools were performed, followed by

analyses of causal factors in 465 schools in greater detail using artificial neural networks (ANNs), each designed to

understand and identify the factors that have significant impact on the pattern of energy use of schools. Changes in

the pattern of energy use of schools have occurred over the past four years. This fact highlights issues associated with

static benchmarks. A significant difference in energy performance between primary and secondary schools meant that

it was necessary to re-examine the way non-domestic buildings are classified. Factors were identified as having

significant impact on the pattern of energy use. The characteristics raise new possibilities for developing sector-

specific methods and improving comparability.

Keywords: benchmarks, building stock, CO2 emissions, Display Energy Certificate (DEC), energy performance, energy
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Introduction
Finite resources, energy security and climate change
are some of the most prominent drivers for improving
energy efficiency and reducing anthropogenic carbon
emissions. In response to these critical issues, the UK
government has set a legally binding target to reduce
net CO2 emissions in 2050 by more than 80% from
the 1990 baseline (HM Government, 2008). CO2 emis-
sions from non-domestic buildings account for
approximately 18% of national total emissions. There-
fore, an imperative exists to reduce the emissions from
these buildings, including schools, to achieve the 2050
target (Carbon Trust, 2009).

In the built environment, benchmarking is often used to
evaluate the energy performance of buildings. The tech-
nique not only raises awareness of how much energy is
being used, but the public display of benchmarked

ratings can also provide motivation to improve the effi-
ciency of operation. Benchmarking, therefore, is a
crucial step towards reducing emissions from buildings.

In the UK, implementation of the Display Energy Cer-
tificate (DEC) scheme under the European Energy Per-
formance of Buildings Directive (EPBD) in 2008 has
greatly increased interest in benchmarking the energy
performance of buildings (Chartered Institution of
Building Services Engineers (CIBSE), 2009; Depart-
ment for Communities and Local Government
(DCLG), 2008). The scheme produces ratings of how
well a building is being operated, based on a bench-
marking methodology developed by CIBSE (2009).
Under the scheme, it is currently mandatory for all
public buildings with floor areas greater than
1000 m2 to produce DECs, with the threshold being
reduced to 500 m2 as of January 2013 (CIBSE, 2011).
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A vital element to the success of a benchmarking
system is the level of comparability of an individual
building with the buildings that form the basis of the
benchmarks. It is important that the building and
benchmarks have similar construction, operational
and other characteristics that determine the energy
demand, so that a comparison of the performances
yields an accurate indication of how well the building
is being operated. Under the current DEC scheme,
the level of comparability is determined by a combi-
nation of a classification system and a set of adjustment
procedures. There are 29 activity-based benchmark
categories that broadly group buildings together.
These categories have similar requirements for use,
environment and equipment (Bruhns, Jones, &
Cohen, 2011). The comparability is further improved
via procedures that adjust benchmarks to account for
variations in weather and the occupancy of individual
buildings (CIBSE, 2009). An option to discount ‘separ-
able’ energy uses1 further reduces the difference. Com-
pared with the historical UK benchmarks, this method
which adjusts benchmarks according to the circum-
stances of individual buildings is a significant improve-
ment. Nevertheless, there is a plethora of features
intrinsic to buildings, such as the built form or the effi-
ciency of building services, which contribute towards
energy efficiency. Consideration of these features has
the potential to improve further the benchmarking
comparability (CIBSE, 2012).

Godoy-Shimizu, Armitage, Steemers, & Chenvidyakarn
(2011) showed possibilities for applying various statisti-
cal techniques to characterize the energy use of schools
using DEC data. In the United States, Sharp (1996,
1998) has used multiple linear regression models to
assess the impacts of various building and operational
characteristics on the energy use of offices and schools
as part of a benchmarking process. Levels of energy per-
formance were normalized for the characteristics ident-
ified as strong determinants of energy use, specifically
for offices and schools, considerably improving compar-
ability. Similar methods were used in Hong Kong
(Chung, Hui, & Lam, 2006) and Taiwan (Lee, 2008;
Lee & Lee, 2009) to benchmark energy performances
of supermarkets and government office buildings. A
comparison by Yalcintas & Ozturk (2007) of the accu-
racy of predicting the energy use intensity (EUI) of com-
mercial buildings using, respectively, multiple linear
regression models and artificial neural networks
(ANNs) found that the ANN method made more accu-
rate predictions. ANNs were also found to be suitable
for assessing determinants of energy use in university
buildings (Hawkins, Hong, Raslan, Mumovic, &
Hanna, 2012).

The aim of the current study is to provide a better
understanding of the ways in which the intrinsic fea-
tures of buildings affect energy use. Using schools as
a demonstration case, the work also explores ways to

improve further the comparability of benchmarking
energy performance of non-domestic buildings
beyond current methods.

The paper is structured as follows. Data are presented
on changes in the pattern of energy use in primary and
secondary schools in England, based on information
from DEC records. Statistical analyses of the top-level
energy consumption figures are then carried out to
observe trends of energy use, and to identify factors
that significantly affect the energy use of schools. A
database is developed comprising building character-
istics and patterns of energy consumption in 465
primary and secondary schools. This database is ana-
lysed using ANN to assess the impact of each building
characteristic and to identify the parameters that have
significant effects. Finally, consideration is given to
how these characteristics could be used to improve com-
parability in benchmarking the energy use of schools.

Methods
Data collection and adjustments
TheDECandEduBase databases
In the UK, information on energy consumption and
building characteristics used to produce DECs are
stored in the non-domestic energy performance register
maintained by Landmark.2 In late 2012, a database
containing 120 253 DEC records lodged until June
2012 was acquired by the project team from CIBSE.

The DEC method provides 29 benchmark categories,
within which there are a further 237 building types.
These building types are differentiated through the activi-
ties occurring within the building. DEC records from
primary and secondary schools are found under the
‘Schools and seasonal public buildings’ category, which
contains 26 building-type classifications. For the present
study, DEC records with building types ‘Primary
school’, ‘Secondary school’, ‘State primary school’ and
‘State secondary school’ formed the chosen subsets.

Prior to the analyses, uncertain and erroneous
records were cleaned and filtered from the raw
dataset. The list below sets out the criteria, a refined
version of the criteria used by Bruhns et al. (2011).
These were used to select records which were deemed
valid, as follows:

. the operational rating3 is not 200 or 99994

. the operational rating is greater than 5 and less
than 1000

. the total useful floor area is greater than 50 m2

. the total annual CO2 emissions are less than
100 000 tonne CO2/year
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. the electric area energy use intensity (EUI) is not 0
kWh/m2

. the building is not electrically heated

. the fossil-thermal EUI is not 0 kWh/m2

. the DEC is not based on a ‘composite
methodology’5

Further steps were taken to clean the dataset of dupli-
cate records and ‘pro-rata DECs’,6 the inclusion of
which would adversely affect the results. Lastly, the
latest DEC record from each building was extracted
for the analyses. Once the DEC database was
cleaned, those schools listed as operating extended
hours were discounted from the analyses, so that distri-
butions and trends in energy use are not affected by
these differences in operating characteristics.
However, this exclusion is limited to the cross-
sectional analyses outlined below.

The DEC dataset was supplemented with information
on the number of students in each school, acquired in
January 2013 from the Department for Education’s
EduBase Public portal.7 This contained 39 604
records. These were merged into a subset of schools
each of which has lodged only one DEC in a specific
postcode. Once joined, each combination was manu-
ally inspected to ensure a correct match between the
two datasets. The scope of the study was narrowed
down to schools located in England due to insufficient
information on the number of pupils in Wales.

For the statistical analyses of the school stock, the
fossil-thermal consumption of all schools was adjusted
to account for the variation in heating demand due to
regional and seasonal differences in climate (CIBSE,
2006). Based on the literature and comments from
experts, 80% rather than 55% of the fossil-thermal
energy use was assumed to be used for space heating,
and was adjusted to 2021 heating degree-days (Build-
ing Research Energy Conservation Support Unit
(BRECSU), 1996). Monthly average heating and
cooling degree-days were acquired from the Central
Information Point (CIP).8

As shown in Table 1, the final dataset comprised 7731
schools. These represent approximately 39% and 31%
of the primary and secondary school stock in England,
respectively.

Building characteristics
Information describing the built form of school build-
ings was collected to assess the impact of various geo-
metrical and constructional characteristics on energy
use. A database comprising a subset of DEC data,
numbers of pupils, degree-days and the building

characteristics information was developed for a
causal factor study using ANNs. The information
was collected via a desk-based approach using online
resources including Bing Maps9 and Google Street
View.10

Schools for building characteristic analysis were ran-
domly selected from a list of those primary and second-
ary schools in England that have lodged a DEC to
ensure the availability of actual energy consumption
figures. Criteria were developed to ensure that the
impact of building characteristics was assessed on a
building-by-building basis (not by sites), in line with
DEC methodology. These were:

. the school has a valid DEC

. the school has one main building

. building characteristics are consistent throughout

. the facades of the school can be observed using
Bing Map’s Bird’s Eye View function or Google
Street View

The building characteristics for which data were col-
lected are shown in Table 2.

Once the raw data were collected, a set of variables
(Table 2) that numerically describe the built form
was derived (e.g. height, facade length). For infor-
mation on the heights of buildings, there was an
initial attempt at using geographical information
system (GIS) data from Landmap.11 However, the
approach proved inaccurate, and therefore the next
best dataset available was for the average floor-to-
floor height of schools in England and Wales from

Table 1 Summary of changes in the number of Display Energy
Certi¢cate (DEC) records in the database

Number Data processing
steps

Number of DEC records after
each step

Primary Secondary Total

1 RawDEC data ^ ^ 120 520

2 Cleaned and ¢ltered
records

^ ^ 73160

3 Subset of school
records

30 625 5610 36 235

4 LatestDEC record from
each building

12488 3051 15 539

5 Joined with pupil
information

8625 1519 10144

6 Extended operating
hours removed

6686 1045 7731
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the Non-Domestic Building Stock project (Steadman,
Bruhns, & Rickaby, 2000). The overall height was
derived by multiplying the average number of storeys
by 3.62 m, rather than making assumptions about
the heights of buildings based on visual inspection.

The volume was derived by multiplying the height by
the building footprint area, measured from an online
mapping source Digimap.12

The complete building dataset comprised detailed
information on 502 schools scattered throughout
England. It should be noted that inferences were
made about the nature of some of the characteristics
such as the types of window, based on an evaluation
of the available data on age and appearance.

To prevent extreme values from affecting results
during the training process of the ANN study, input
and output values that were more than 1.5 interquar-
tile ranges away from the upper and lower quartile
figures were removed. The final cleaned dataset com-
prised 465 schools.

Statistical analyses of the school stock
A series of statistical analyses were carried out to assess
the energy performance of the school stock of England
using a further dataset comprising information from the
DEC database and EduBase. The analyses were carried
out using SAS Statistical Analysis Software 9.3.13

Longitudinal analyses
Year-on-year changes in the energy performance of the
school stock in England from 2008 to 2011 were
assessed using the assessment end dates from the
DEC database. These indicate when the energy con-
sumption figures for each school were collected. In
addition, the median of the ratio between the actual
energy consumption and the adjusted benchmarks
was used as an indicator of how the stock performed
in each year in order to ensure that the effects on
energy use of weather and variation in occupancy
hours were excluded from the trends.

Cross-sectional analyses
Trends in the energy consumption of primary and sec-
ondary schools were plotted by means of cumulative
frequency distributions by floor area and number of
pupils. Descriptive statistics were used to assess and
compare trends between the school types. Kolmo-
gorov–Smirnov (K-S) tests were also carried out,
prior to conducting hypothesis tests, in order to
assess the adequacy of the parametric tests. Due to
the skewed distribution, non-parametric Wilcoxon–
Mann–Whitney tests and Kruskal–Wallis tests were
used, rather than Student’s t-tests and analysis of var-
iance (ANOVA), in order to assess the statistical sig-
nificance of the difference in trends of energy use
between primary and secondary schools, as well as
differences between schools with varying heating, ven-
tilation and air-conditioning (HVAC) system types. A
Bonferroni correction was used to reduce the level of

Table 3 Derived variables and their descriptions

Variable Description

Exposure ratio Volume divided by the exposed surface area

Depth ratio Volume divided by the external wall area

Compactness
ratio

Perimeter of the building footprint divided by
the perimeter of a circle with the same
area

Glazing ratio Total glazed wall area of a building divided by
the total £oor area

Table 2 Collected building characteristics

Building
characteristic

Description

Phase of education Primary or secondary school

Construction year Year a school was built

Site exposure Exposed, semi-exposed or sheltered
from the wind

Orientation (degrees) Angle at which the external walls di¡er
from due north

Building perimeter (m) Total and exposed

Building footprint (m2) ^

Number of storeys ^

Height of the building
(m)

^

Building shape Singular, courtyard, crescent, bend or
branch

Facade lengths (m) N,S,E,W

Facade adjacency Obstruction of the sun by neighbouring
objects (e.g. buildings or trees).
Collected for each facade orientation
(N,S,E,W)

Glazed area (%) N,S,E,W

Glazing type Single or double

Roof shape Flat, sloped or inverted

Principal roo¢ng
material

Polymer, ceramic, slate, etc.

Principal external wall
material

Brick, masonry, render, etc.

External shading Yes or no

Presence of an atrium Yes or no

Presence of wind-
catchers

Yes or no
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significance at which results are reported to prevent the
Type 1 error rate from increasing due to multiple Wil-
coxon two-sample tests (Field & Miles, 2010).

Causal factor study
Artificial neural network (ANN)
A non-linear multivariate analysis of the dataset
described above was carried out using an ANN
method to assess the relative importance that these
characteristics have on energy use of schools. The
ANNs were modelled using the Neural Network
Toolbox14 in Matlab R2012a.15

A multilayer perceptron network was used for the study,
comprised of an input layer, a hidden layer and an
output layer. Figure 1 shows the conceptual structure
of this ANN. Each neuron in the input and output
layer took continuous, categorical or binary values, as
listed in Tables 4 and 5. Two ANN models were con-
structed: one with heating energy consumption as an
output and one with electrical energy consumption as
an output. Both ANN models included all the input par-
ameters (Table 4). Each neuron in the input layer rep-
resents a variable in the dataset, and the single neuron
in the output layer represents the unadjusted heating
or electrical energy consumption figure from the DECs.

The layer of hidden neurons was specified to enable the
model to learn non-linear and complex relationships
between the inputs and outputs (Haykin, 1999). A
bias was included to the networks by adding a
neuron to the input and hidden layers that always
has an activation value of 1, in order to improve the
learning capabilities of the ANN (Sarle, 2002). Prior

to the training of the network, all input data were nor-
malized to values between –1 and 1 so that the calcu-
lation process could be generalized. The value of each
continuous input neuron was a floating number
between –1 and 1. Binary input neurons were 1
when activated and –1 when not activated. Categori-
cal input neurons were 1 when activated, 0 when par-
tially activated and –1 when not activated.

Each neuron is connected to every neuron in the adjacent
layer by synaptic weights. These weights take random
values at the beginning of the training process (Beale,
Hagan, & Demuth, 2012). During this process the synap-
tic weights are modified to attain a response from the
network that closely matches the actual outputs after a
number of iterations (Haykin, 1999). A Levenberg–Mar-
quardt back-propagation, a supervised training tech-
nique, was used to train the feed-forward network to
recognize the patterns that exist in the dataset.

A random selection from the cleaned dataset of 465
schools was subdivided into three datasets, where
80% of the records were used for training the
network, 10% for the testing process and the remain-
ing 10% for stopping training to prevent the network
from ‘over-learning’. It was deemed important for the
network not to ‘over-learn’ the training data so that
the trained network could make useful generalizations
when presented with new input data. An indication of
whether the network was ‘over-learning’ was based on
the mean-squared error (MSE) from the network, pro-
cessing the stopping dataset after each iteration with
the training dataset. The network was considered to
have ‘over-learnt’ if the error in the stopping dataset
increased for six consecutive training iterations.

Figure 1 Structure of themultilayer perceptron
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Different network configurations were tested during the
training and validation phases to find the optimum spe-
cification for the given data. The number of neurons in
the hidden layer was altered in exponential steps from
two to 32 and the errors were compared.

Due to the initial synaptic weight values being random,
the results of the same network configuration varied
with each training computation. For this reason each
network configuration was trained 500 times and the
mean generalization errors of the best performing
1% were averaged and compared.

The errors used to assess the performance of the
network were of three types:

Root − mean − squared error RMSE( )

=

�����������������∑n
i Ŷi − Yi

( )2

n

√√√√
same unit as output
( )

(1)

Coefficient of variance of RMSE 1( ) CV−RMSE( )

= RMSE
�Y

%( )

(2)

Mean absolute percentage error MAPE( )

=

∑n
i

Ŷi − Yi

∣∣∣
∣∣∣

Yi

n
%( ) (3)

Table 4 Input parameters

Input parameter Input neuron type Data range/binary activation criteria

Construction year Continuous 1860^2010

Phase of education Binary (^1) Primary, (1) secondary

Number of pupils Continuous 44^2013

Internal environmental conditioning Categorical (^1) Natural ventilation, (0) mixedmode, (1)mechanical ventilation

Site exposure Categorical (^1) Exposed, (0) semi-sheltered, (1) sheltered

Orientation Continuous ^458 to 458

North facade adjacency Binary (^1) Open, (1) obstructed

South facade adjacency Binary (^1) Open, (1) obstructed

East facade adjacency Binary (^1) Open, (1) obstructed

West facade adjacency Binary (^1) Open, (1) obstructed

Floor area Continuous 861^15 396m2

Building depth ratio Continuous 2.50^16.60

Compactness ratio Continuous 1.01^ 4.59

Surface exposure ratio Continuous 1.71^5.67

North glazing ratio Continuous 0.00^0.13

South glazing ratio Continuous 0.00^0.15

East glazing ratio Continuous 0.00^0.11

West glazing ratio Continuous 0.00^0.14

Glazing type Binary (^1) Single, (1) double

Roof shape Binary (^1) Pitched, (1) £at or sloped

Roof glazing Binary (^1) None, (1) glazing

Heating degree-days Continuous 1635.6^2843.3

Cooling degree-days Continuous 73.9^ 425.2

Table 5 Output parameters

Output Output neuron
type

Data range
(kWh/m2)

Fossil fuel (heat) use
(unadjusted)

Continuous 7^272

Electricity use
(unadjusted)

Continuous 7^95
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where Yi and Ŷi are the target and predicted outputs,
respectively, for the training, testing or stopping
configuration I; Ȳ is the mean target output over each
configuration; and n is the total number of configur-
ations in the training, testing or stopping dataset.

Sensitivity analysis
In order to understand the influence that each input
parameter has on the predicted output, a study was
conducted to test the change in output as the inputs
were altered.

The process was as follows:

. Across the 465 input patterns, the mean values of
all continuous inputs and the modal values for all
binary and categorical inputs were set to form a
base-case ANN configuration.

. For one input at a time, the normalized values of
the input were set to their extremes across their
range, –1 then 1, and the two outputs calculated.
All other inputs remained in their base-case con-
dition as each individual input was altered.

. The change in output across the range in each input
was recorded and compared against the base-case
ANN outputs.

This process was carried out on the best-performing
ANN configurations (according to the number of
hidden neurons). The final results were an average of
the results from the best-performing 1% of 500 ANN
simulations.

Results
Statistical analyses
Figures 2 and 3 show year-on-year changes in the
energy use of schools. Medians of the ratios between
the actual energy uses and adjusted benchmarks in
each year were used instead of raw consumption
figures, so that the trends were not affected by vari-
ations in weather and the operating hours of individual
buildings.

As shown in Figure 2, increases are observed in the
electricity consumption of primary and secondary
schools from 2008 to 2011, where the ratios have
changed by approximately 9%. The changes suggest
that schools have continued their uptake of infor-
mation and communication technology (ICT) and elec-
trical equipment, a trend that has continued up to the
present (Global Action Plan, 2006). Moreover, it can
be seen that secondary schools are notably more inten-
sive in electricity use which is likely to be due to the
widespread use of electrical equipment in ICT at sec-
ondary level (Carbon Trust, 2012).

In contrast to the trends in electricity consumption,
heating consumption has decreased over the past four
years. This trend is probably due in part to the
increased internal heat gains from electrical equipment
use that was observed in Figure 2. In addition, contin-
ued increases in the price of fossil fuels in recent years
may have encouraged schools to manage their energy
use better to reduce their fuel bills.

The contrasting changes in the use of electricity and
fossil fuels by schools were also found by Godoy-
Shimizu et al. (2011) in whose work similar trends
were traced back to 1999. This shows how schools

Figure 2 Year-on-year changes in the electricity use of schools
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continue to change in their use of energy and that,
therefore, there is a need to identify the factors
that cause such changes, particularly those affecting
fossil-thermal energy use, to understand the trends
fully.

The performance figures from DECs lodged in 2012
were not presented in Figures 2 and 3, since records
for the complete year were not available. Moreover,
the trends were derived from a sample of all schools
that lodged DECs by the ends of specific years. These
are not necessarily the same schools and therefore do
not provide like-for-like comparisons. A further inves-
tigation into changes in energy performance of the
same schools over some given period would provide
a clearer picture.

Figure 4 shows differences in the trends for electricity
and fossil-thermal energy use in different types of
school. Significant differences in electricity use were
observed (Kruskal–Wallis, p , 0.0001). Primary
schools were less intensive in electricity use than sec-
ondary schools, at 44 and 51 kWh/m2, respectively.
This is probably due to teaching facilities in secondary
schools requiring greater use of electrical equipment,
including ICT, hence higher electricity consumption
(Carbon Trust, 2012; Global Action Plan, 2006). In
contrast to electricity, there was no significant differ-
ence in fossil-thermal energy use between primary
and secondary schools, where median values were
122 and 121 kWh/m2, respectively (Wilcoxon–
Mann–Whitney, p . 0.0167).

Figure 5 shows different levels of energy use per pupil
in different types of school. Primary schools were
found to use significantly less electricity per pupil

than secondary schools, with median values of 270
and 430 kWh per pupil, respectively (Wilcoxon–
Mann–Whitney, p , 0.0001).

A comparison of the trends in fossil-thermal energy use
per pupil shows that the energy used for heating per
pupil is significantly lower in primary schools than sec-
ondary schools, with median values of 744 and 965
kWh per pupil in each case (Wilcoxon–Mann–
Whitney, p , 0.0001). The difference is probably
due to variations in the density of pupils per unit
floor area. Comparison of energy use per floor area
and per pupil shows that approximately 6 m2 are
used per pupil in primary and 8 m2 per pupil in second-
ary schools. This is attributable to the additional teach-
ing facilities such as computer rooms, laboratories and
libraries provided in secondary schools, which in turn
lead to higher heating demand.

Scatter plots of floor areas and numbers of pupils
against the annual electricity and fossil-thermal
energy use show varying levels of correlation.

As seen in Figures 6 and 7, the differences in coefficient
of determination (R2) values indicate that floor areas
account for a much greater proportion of the variation
in annual electricity use than do numbers of pupils,
reconfirming that floor area is a key driver of energy
use in schools (Isaacs, Donn, & Baird, 1990; Isaacs
& Donn, 1996). This suggests that using floor area as
the denominator in the EUI metric, expressed as
kWh/m2, is more appropriate than using the number
of pupils.

Figure 6 also shows the differences in sizes of the types
of school, where the majority of primary schools can be

Figure 3 Year-on-year changes in the fossil-thermal energy use of schools
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found near the lower end of the size spectrum, around
3000 m2, where secondary schools vary across a much
wider spectrum, going up to 15 000 m2 and greater.
This supports the findings of Figure 5

Table 6 shows statistics for electricity and fossil-
thermal energy use of schools by types of ventilation
and heating in schools. The statistics show that electri-
city consumption is notably higher in mechanically
ventilated schools while heating consumption is
lower. This is likely to be due to the increased electrical

load from components of the HVAC system such as
fans and pumps in mechanically ventilated buildings,
which generally use more electricity than their natu-
rally ventilated counterparts (Bordass, Cohen, Stande-
ven, & Leaman, 2001). On the other hand the
differences in the fossil-thermal energy use by schools
are negligible.

Initial hypothesis tests also indicated that there are
significant differences between the school types with
different ventilation strategies in the use of

Figure 5 Cumulative frequency distribution of energy use per pupil by school type

Figure 4 Cumulative frequency distribution of energy use index by school type
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electricity (Kruskal–Wallis, p , 0.0001) but not in the
use of fossil-thermal energy (Kruskal–Wallis, p . 0.05).

Table 7 shows the results from a series of Wilcoxon–
Mann–Whitney tests carried out to identify the
differences.

A significant difference in electricity use of schools with
natural ventilation and mechanical ventilation has
been found (Wilcoxon–Mann–Whitney tests, p ,

0.0001). However, no significant differences were

found between schools with ventilation strategies
involving mechanical systems (Wilcoxon–Mann–
Whitney test, p .0.0125). This suggests that the
subtle differences between the classifications of venti-
lation strategies, illustrated in CIBSE TM46, may not
be related to the differences in energy use (CIBSE,
2008). This raises the possibility of revising the classi-
fication system so that categories with no significant
differences in energy use can be grouped together, par-
ticularly the ‘Mixed-mode with natural ventilation’
and ‘Mixed-mode with mechanical ventilation’ types.

Figure 6 Scatter plot of annual electricity use and £oor area by school type

Figure 7 Scatter plot of annual electricity use and number of pupils by school type
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However, it should be noted that the majority of the
schools in the dataset were naturally ventilated and,
therefore, the samples of schools with air-conditioning
and mechanical ventilation were considerably smaller.
Further studies with a well-distributed sample and a
larger number of schools with air-conditioning and
mechanical ventilation are necessary to test the findings
reported here.

Causal factor study
This section reports results from ANN analyses in
which the impact of various building characteristics
was assessed on energy use in 465 schools.

ANN configurations with two and eight neurons in the
hidden layer were found to produce the smallest gener-
alization errors for fossil-thermal and electricity use,
respectively. Table 8 summarizes the mean errors for
each configuration. Electricity use was predicted with
very similar accuracy to fossil-thermal energy use: the
electricity output was predicted with mean errors of

23.5% (CV-RMSE) and 20.6% (MAPE), and the
heating output was predicted with mean errors of
24.0% (CV-RMSE) and 22.0% (MAPE).

Figures 8 and 9 show the changes in output values
across the range of each input when compared with
the base-case output values. Larger changes in
output indicate greater influence of the input on the
output.

Figure 8 shows the changes in predicted fossil-thermal
energy across each input range. The degree of compact-
ness of a building was found to have the greatest
impact on heating energy use of schools. This shows
that schools with a longer perimeter relative to their
floor area have greater heat loss through external
walls, and therefore use more fossil-thermal energy.
In addition, the year at which the building was built
was found to have a considerable impact on fossil-
thermal energy use. The energy efficiency requirements
of building regulations, which have become gradually
more stringent over recent decades, are likely to have

Table 7 Summary of the results fromWilcoxon^Mann^Whitney tests on electricity use by schools with di¡erent internal environment
types

Internal environment type Phase of education

Primary Secondary

p-value

Heating and natural ventilation versus heating andmechanical ventilation , 0.0001 , 0.0125

Heating andmechanical ventilation versus mixed-mode withmechanical ventilation . 0.0125 . 0.0125

Mixed-mode with natural ventilation versus mixed-mode withmechanical ventilation . 0.0125 . 0.0125

Mixed-mode with mechanical ventilation versus air-conditioning . 0.0125 . 0.0125

Table 6 Distribution of energy use by internal environment

Internal environment Primary Secondary

N Electricity
EUI

Fossil-thermal
EUI

N Electricity
EUI

Fossil-thermal
EUI

Median (kWh/m2) Median (kWh/m2)

Natural ventilation only 4 49 147 . . .

Heating and natural ventilation 6396 43 122 914 51 122

Mixed-mode with natural ventilation 114 48 119 67 53 122

Mixed-mode with mechanical
ventilation

21 50 106 9 66 95

Heating andmechanical ventilation 140 50 118 48 57 112

Air-conditioning 11 47 99 7 49 97

Note: EUI ¼ energy use intensity.
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reduced the demand for heating in buildings which
were erected more recently.

The results also indicate a correlation between the sizes
of schools and heating intensity. This is perhaps due to
larger schools having more spaces for other uses than

teaching such as wide corridors and sports facilities,
requiring less heating, hence the reduced intensity.
Heating degree-days were found to have a noticeable
impact on the use of fossil-thermal energy, because of
the changes in heating demand dependent on the exter-
nal temperature. It should be noted that the cooling

Table 8 Summary of the arti¢cial neural network (ANN)mean errors

Output Root-mean-squared error
(RMSE) (kWh/m2)

Coe⁄cient of variance of
RMSE (CV-RMSE) (%)

Mean absolute percentage
error (MAPE) (%)

Fossil-thermal energy use (heating) 32.0 24.0 22.0

Electricity use 11.6 23.5 20.6

Figure 8 Change in output across input range for fossil-thermal energy use

Figure 9 Change in output across the input range for electricity use
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degree-days had a similar impact on heating intensity.
However, this may be due to a correlation between the
heating and cooling degree-days.

Figure 9 shows the changes in predicted electricity
energy across each input range. Changes in the
number of pupils, hence the occupancy density, was
found to have the most influence on electricity use.
This impact indicates a strong correlation between the
number of pupils and the electrical equipment used in
schools, resulting in greater energy use. The analysis
also found the size of schools (floor area) to be a par-
ameter having considerable impact on energy use. The
larger school buildings are mostly secondary schools
which make greater use of information technology
(IT) and electrical equipment in laboratories. They
therefore have higher electricity consumption. The
phase of education was found to have a significant
impact on electricity use, as already discussed. The pro-
portion of glazing on western facades was also found to
have a strong influence on electrical energy use. This
may be because the low afternoon sun on western orien-
tations causes glare, resulting in the blinds or curtains
being used and the lights being switched on for longer.

Discussion
Changes in the pattern of energy use
An assessment of the changes in pattern of energy use
of schools from DEC records lodged from 2008 until
June 2012 has shown a gradual increase in the intensity
of electricity consumption and a decrease in fossil-
thermal energy use. The contrasting trends observed
over the past decade have indicated that the pattern
of use of energy by schools continues to change in
relation to developments in technology and other
factors. This prompts the need to revise the way bench-
marks are set in the UK. Currently, benchmarks in
CIBSE TM46 are static, in the sense that there is no
schedule for updating the performance figures. They
are therefore not able to keep up with the changes in
the way schools use energy. Such issues were raised
in the revision of the benchmarks by Bruhns et al.
(2011), which found that the benchmarks in several
categories were generally lower for electricity and
higher for fossil-thermal energy compared with the
trends found in DECs. It is therefore important to
explore ways of keeping the benchmarks up to date
so that they accurately reflect how energy is used by
the school stock. However, such an approach should
take into consideration the implications of variable
benchmarks, since those would ‘move the goal posts’,
making it more difficult for building owners or oper-
ators to achieve better grades.

Activity classi¢cation for schools
Analyses of energy use by the UK school stock have
shown that there are significant differences in

electricity use between different school types, where
secondary schools were significantly more intensive
than primary schools. (The difference in fossil-
thermal energy use was insignificant.) An assessment
of the distribution of electricity use by floor area and
the number of pupils suggested that the difference is
probably due to intrinsic differences in occupancy
and in requirements for space and equipment. This
conclusion is supported by the results from the ANN
study that indicate that phase of education, along
with floor area and numbers of pupils, has a stronger
impact on the electrical energy use of schools than
other characteristics. These findings suggest that it
would be desirable to revise the current classification
system, which requires both school types, primary
and secondary, to be compared against a single
benchmark.

Internal environment and the pattern of energy use of
schools
The analyses of the patterns of energy use in schools
with different internal environments have shown that
there is a significantly different pattern of electricity
use between naturally and mechanically ventilated
school buildings. On the other hand, results from the
ANN indicated that the impact of the ventilation strat-
egies was much smaller than that of other building
characteristics. This is likely to be due to the fact that
having a mechanical ventilation system does not
necessarily mean high energy use, and that mechani-
cally ventilated buildings have the potential to
perform as well in energy terms as their naturally ven-
tilated counterparts (Bordass et al., 2001). The results
thus indicate that there is insufficient evidence of
intrinsic differences in demand for energy between
school buildings with varying types of mechanical ser-
vices. This confirms the rationale behind the CIBSE
TM46 methodology, which does not include internal
environment as part of the benchmarking process, in
order to avoid bias in favour of the use of mechanical
systems (Bruhns et al., 2011).

Determinants of energy use and benchmarking
Floor areas were found to account for considerable
variation in energy use of schools, hence confirming
the rationale for using floor area as a standard denomi-
nator of the EUI. The number of pupils was also found
to account for considerable variation in electricity and
fossil-thermal energy use of schools, indicating that
this is an important factor in assessing energy perform-
ance. In addition, the multivariate (ANN) analyses of
building and occupant characteristics found compact-
ness of built form to have the largest influence on
fossil-thermal energy use in schools. The year in
which the building was constructed and the number
of heating degree-days were also found to have rela-
tively high impact on heating energy consumption. In
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addition to the number of pupils, floor area and phase
of education, surface exposure and the proportion of
west facing glazing were found to be the strongest
determinants for electrical energy consumption.

The results indicate possibilities for expanding the list
of parameters by which the benchmarks or actual per-
formances could be normalized. However, the devel-
opment of a method to incorporate the new
parameters will require further analyses. Due to the
nature of numerical adjustments to the benchmarks,
expanding the existing adjustment procedures may
lead to over-manipulation of the benchmarks, so dis-
torting their values. It is therefore necessary not only
to conduct further research to identify ways to utilize
the existing methodology, but also to consider other
methods that allow the normalization of performance
for large numbers of parameters, as in the use of mul-
tiple regression models in the United States (US
Environmental Protection Agency (USEPA), 2011).

Conclusions
This study aimed to improve the comparability of
benchmarking energy performance of English schools
by assessing the impact of intrinsic features of their
buildings such as built form and occupancy. The
energy performance of the school stock was analysed
statistically using a combination of the latest DEC
records, lodged up to June 2012, and EduBase. Multi-
variate analyses of approximately 470 schools were
also carried out using ANNs to assess the impact of
various building characteristics on energy use.

Four-year trends in the energy use of schools, from
2008 to 2011, showed a gradual increase in electricity
consumption and a decrease in heating consumption in
both primary and secondary schools. Secondary
schools were found to be significantly more intensive
in electricity consumption than primary schools. Elec-
tricity consumption of schools with natural ventilation
was found to be significantly different from that it
mechanically ventilated schools. However, results
from ANNs indicated that there are stronger determi-
nants than the ventilation strategy. Statistical and
ANN analyses identified floor area and number of
pupils to be strong determinants of schools’ energy
use. Parameters that describe the built form such as
compactness and exposure ratios were also found to
be prominent determinants of energy use.

The findings from the study indicated possibilities for
improving the comparability of benchmarking energy
performance of schools. The continued changes in
the pattern of energy use of schools over recent years
highlighted a need to explore the implications of
keeping the benchmarks up to date by making an
evaluation based on benchmarks that reflect the most

recent trends in energy use of the stock. The intrinsic
differences in the pattern of energy use between
primary and secondary schools indicated that there is
a need to revise and explore the way buildings are
classified and benchmarked. The varying impact of
various determinants of energy use and identification
of variables with stronger impacts opened possibilities
for improving benchmarking comparability for
schools. In a broader context, the study raises more
general issues about the way that the energy perform-
ance of other non-domestic buildings, not just
schools, are benchmarked.

This was a preliminary study using a combination of
statistical techniques and ANNs to explore the
impact that building characteristics have on the
energy performance of buildings. Although data on
various building characteristics were collected for a
considerable number of schools, the adoption of a
desk-top approach meant that data were not collected
on characteristics that could not be seen from the
exterior, such as boiler efficiencies and installed light-
ing capacity. Further studies are therefore currently
being carried out to collect information on building
services and equipment as well as operational
characteristics.
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Endnotes
1Separable energy uses are end uses that do not usually occur in a
specific activity type (e.g. regional server rooms in offices); there-
fore, a separable is not allowed for by the benchmark.

2Non-domestic Energy Performance Register (see https://www.
ndepcregister.com).

3The operational rating is used in DECs in the UK as a basis for
grading building performance. The rating is derived by dividing
the actual energy consumption by adjusted benchmarks and mul-
tiplying the ratio by 100.

4An operational rating of 200 is a default rating given when there
is insufficient information about energy consumption figures.
Such cases are therefore not suitable for the analyses. The
default rating was later changed to 9999 in 2010.

5A composite methodology is used for benchmarking the
energy performance of buildings which comprise mixtures
of activities that belong to more than one benchmark
category.

6Pro rata DECs relate to sites with multiple buildings where con-
sumption is known only for the entire site, and this is apportioned
between buildings in proportion to floor area.

7For the EduBase Public portal, see: http://www.education.gov.
uk/edubase/home.xhtml/.

8For CIP, see: http://www.landmark.co.uk/solutions/registers/
nondomestic/cip/.

9For Bing Maps, see: http://www.bing.com/maps/?FORM=
Z9LH3/.

10For Google Street View, see: http://maps.google.com/.

11For Landmap, see: http://www.landmap.ac.uk/.

12For Digimap, see: http://digimap.edina.ac.uk/digimap/home/.

13For Statistical Analysis Software (SAS), see: http://www.sas.
com/software/sas9/.

14For the Matlab Neural Network Toolbox, see: http://www.
mathworks.co.uk/products/neural-network/index.html/.

15For MathWorks Matlab, see: http://www.mathworks.co.uk/
products/matlab/.
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