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Introduction

Recent advances in microscale biochemical engineering have 
led to the automation of microscale bioprocess experimenta-
tion. As a result, a series of microscale experimental methods 
and a range of novel devices for mimicking large-scale unit 
operations have been developed.1 Liquid-handling systems 
have been used to implement high-throughput microscale 
experimentation. A liquid-handling system comprises a robotic 
arm that dispenses a selected quantity of processing material, 
reagent, samples to a designated container, a set of devices that 
perform biochemical experiments (such as mixing, centrifuga-
tion), and a computer with control software that allows the user 
to customize the liquid-handling procedures and transfer vol-
umes. The liquid-handling system is an automated system 
capable of doing most of the microscale experimentation auto-
matically for both upstream bioprocesses such as Escherichia 
coli growth kinetics and recombinant enzyme expression and 
downstream bioprocesses such as precipitation and chroma-
tography with a prepacked micro column attached to pipetting 
tips.1–4 Several examples have been published to indicate that 
high-throughput technology has shortened the bioprocess 
development time.5,6

Currently, the liquid-handling system carries out the experi-
mentation, and then the data are analyzed to understand the 

process. Often, 96 experiments are run in parallel by using a 
96-well plate and the statistical design of experiment (DoE) 
method to screen a wide design space. Experiments use mate-
rial at the microliter volume so it is challenging to achieve the 
precision of operation at the microscale scale compared with 
the lab scale. Extra replicates of the experiments may be 
required to ensure the accuracy of the experiments at the 
microscale. Therefore, many hundreds of experiments are 
designed and executed in parallel on such advanced platforms. 
In this content, experiment design refers to select experimental 
conditions or experimental choice, and an assay refers to an 
analytic procedure for quantitatively measuring the amount of 
a biological entity.
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Abstract
Bioprocess development is very labor intensive, requiring many experiments to characterize each unit operation in the 
process sequence to achieve product safety and process efficiency. Recent advances in microscale biochemical engineering 
have led to automated experimentation. A process design workflow is implemented sequentially in which (1) a liquid-
handling system performs high-throughput wet lab experiments, (2) standalone analysis devices detect the data, and 
(3) specific software is used for data analysis and experiment design given the user’s inputs. We report an intelligent 
automation platform that integrates these three activities to enhance the efficiency of such a workflow. A multiagent 
intelligent architecture has been developed incorporating agent communication to perform the tasks automatically. The 
key contribution of this work is the automation of data analysis and experiment design and also the ability to generate 
scripts to run the experiments automatically, allowing the elimination of human involvement. A first-generation prototype 
has been established and demonstrated through lysozyme precipitation process design. All procedures in the case study 
have been fully automated through an intelligent automation platform. The realization of automated data analysis and 
experiment design, and automated script programming for experimental procedures has the potential to increase lab 
productivity.
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The existing workflow has two major bottlenecks. First, 
the development of high-throughput assays does not match 
the rapid pace of experiment execution. For example, from 
our previous experience in monoclonal antibody (MAb) 
precipitation experiments, it took about 30 min to run  
96 experiments in a microwell plate but required more than 
30 h to detect MAb concentrations and total protein concen-
trations using high-performance liquid chromatography 
(HPLC) for those 96 experiments. A large number of param-
eters for the product and the impurities such as nucleic acid 
concentration and host cell protein concentration need to be 
measured to characterize the complex biological molecules. 
However, most biological assays need sample preparations 
that are time-consuming. Although advanced HPLC sys-
tems of ultra pressure type or low volume type have reduced 
the assay time, the sequential fashion of biological assays 
has led to a mismatch between time of experiment execu-
tion and time of assay in bioprocess studies.

High-throughput assay development is still in its early 
stage, and only a few specific high-throughput assays have 
been reported. The assay of quantitative protein analysis 
can be sped up by using high-throughput methods such as 
ultraviolet-visible (UV) spectrophotometry.7,8 However, 
these methods are largely based on either mathematical or 
statistical models, so data treatment of the large data set 
requires the handling of large amounts of data files manu-
ally, which takes a long time to complete.

The second bottleneck is data analysis and experiment 
design. The liquid handler is capable of carrying out 96 or 
384 experiments in parallel by benefiting from microscale 
experimentation technology. After experimentation and 
assay, data analysis is the key step in bioprocess design. 
There are two types of data analysis tasks:

1.	 To convert raw data from the measurement instru-
ments into biological parameters. For example, the 
assay of quantitative protein analysis using UV 
spectrophotometry needs to translate spectropho-
tometry data into protein concentrations using cali-
bration models.7,8 The software applications in most 
instruments include data analysis modules for data 
treatment. For instance, the algorithm in ChemStation 
(Agilent Technologies, California, USA),  which sup-
ports the Agile HPLC instrument, can intelligently 
recognize the peaks and calculate the areas.

2.	 To understand the process performance based on the 
data and, more important, to design the new experi-
ments for process development. Here we use experi-
ment design to refer to determining the experimental 
conditions, not the experimental procedure. More 
sophisticated data analysis software applications capa-
ble of the design and analysis of experiments such as 
Design-Expert from Stat-Ease Software (Minneapolis, 
MN) are, however, stand-alone software and not 

integrated with automated instrumentations. When the 
data set is large, researchers often take substantial time 
for this data analysis. The new experiment design from 
this data analysis requires the user’s input (e.g., which 
area should be explored, which variables should be 
studied, and what the limits of variables are). Therefore, 
this data analysis step becomes a potential bottleneck 
in bioprocess development.

In a typical precipitation process design, researchers first 
need to identify the feasible design space according to their 
knowledge or previous experimental results. Second, they 
input the information so an optimized experiment design 
can be produced by computer software. Third, they need to 
program a command script to control the automated devices 
performing tasks such as adding buffer, shaking, incuba-
tion, and filtration. After an experiment, the researchers 
have to use software to control assay equipment (e.g., plate 
reader, HPLC) to do the assays. Finally, they transfer the 
raw data into analysis software to carry out data treatment 
and analysis so as to determine the next batch of experi-
ments by various computational methods, if needed, or 
identify the process solutions.

Hence, an automation platform that integrates the manip-
ulation of experiments and assay instrumentation, as well as 
automates the data analysis, experiment design, script pro-
gramming, and raw data treatment, could cut out the time of 
human involvement and enhance the efficiency of the cur-
rent practice. The key function of the automated platform 
should be the capability of making decisions on whether 
further experiments are needed and, if needed, how to gen-
erate the next round of automated experiment designs.

There are many intelligent machine learning methods 
available that learn from data. In contrast to many data min-
ing problems, ours is how to achieve the process design 
solution with a minimum number of experiments. Two 
common sequential experiment design methods are search 
heuristic methods and model-based methods. They fit well 
for our needs where only limited experimental data are 
available for learning. We described these methods briefly 
below.

Search Heuristic Methods. Search Heuristic Methods are 
a direct process optimization. Instead of using a mathemati-
cal model to describe the process, these types of methods 
explore the response surface by using data from previous 
experiments to determine the next best experimental condi-
tions for further study.9–11 This is in contrast to traditional 
statistical experiment design methods that define a large set 
of experiments at the outset to generate the response sur-
face. The search heuristic methods are attractive at the early 
process development stage because only a small number of 
experiments need to be carried out at every step, and usu-
ally the solution can be found after a reasonable number of 
iterations.12,13

 at University College London on August 4, 2014jla.sagepub.comDownloaded from 

http://jla.sagepub.com/


Wu and Zhou	 383

Model-Based Methods. Model-based methods use math-
ematical models to aid the process understanding and pro-
cess design.14 Experiments generate data, which are used to 
estimate the values of the unknown parameters in the pro-
cess model. The model with these estimated parameters is 
then used for simulation and optimization.15 Starting with 
an initial experiment design, the strategy is to sequentially 
revise the parameter estimates according to data generated 
from the previous experiments until the estimates are within 
a specified accuracy.16–18

Although these sequential methods have been estab-
lished, the steps in these methods are reported to be taken 
manually, leading to delay.15,17,18 However, both the above 
methods have the potential to be implemented in an auto-
mated fashion.

A robotic scientist called “Adam” has been developed to 
identify genes encoding orphan enzymes in Saccharomyces 
cerevisiae that has realized the integration of experiment 
execution and data analysis.19 “Adam” uses an intelligent 
system to automatically generate and validate hypotheses in 
a closed-loop learning manner. The prototype starts with a 
functional genomics hypothesis based on a system model 
and a knowledge base. Then a cycle of automated hypothe-
ses generation and experimentation is realized by a combi-
nation of statistical machine-learning methods and an 
integrated robotic system of a liquid handler, an incubator, 
and a filter. The hypotheses-driven closed-loop learning 
framework of “Adam” is very similar to the concept of 
sequential experiment design methods. Furthermore, 
“Adam” combines a robotic system into sequential methods 
to make the system overcome the mismatch of data analysis 
and execution. “Adam” has demonstrated that automation 
of laboratory equipment can revolutionize laboratory prac-
tice and give rise to significantly increased productivity.

The aims of bioprocess development are often defined 
based on product quality and economic requirements so the 
objective functions are quantified, and thus the closed-loop 
integration concept can be realized for bioprocess develop-
ment. To assist achieving rapidly the process design targets, 
we propose an intelligent automation platform to enhance 
the speed of process development. It integrates experimen-
tation, data analysis, and experiment design to perform 
automated closed-loop learning to achieve the design objec-
tives without human intervention and avoid unnecessary 
delay.19 A general framework of the proposed intelligent 
automation platform is shown in Figure 1. It aims to bring 
all the elements that are performed manually into an auto-
mated platform. This includes the physical devices that 
carry out experiment preparation, experiment execution, 
and assays and the five types of software needed in this plat-
form. These are (1) software to drive each device timely; (2) 
software to consolidate the data for each device due to their 
different formats; (3) software of the sequential design 
algorithms that realize the process design objectives and are 

capable of process evaluation, prediction, and optimization; 
(4) a database used for storing the experimental data and 
information on instrument configurations; and (5) software 
to control and manage the above software. The bottleneck 
on high-throughput assays is addressed by others.7,8

Starting with a set of initial experiments from the user or 
database, the automation of the platform of the closed-loop 
learning approach will drive the automation device to per-
form defined initial experiments and drive the analytical 
devices to measure the data after the experiments are com-
pleted. Then the system will pick up the data from the ana-
lytical devices and perform data analysis that turns the raw 
data into measurement results, such as protein concentra-
tions, and carry out process evaluation based on the optimi-
zation objective to achieve the design solution. After 
evaluation of the design solution, the platform will decide 
to stop or continue to design the next round of experiments 
for optimization.

Apart from the experiment execution, there are three 
stages that need human involvement in the current experi-
ment procedure: (1) program the experimental procedure 
and initiate the liquid-handling system, (2) data acquisition 
and treatment from the analysis devices, and (3) the sequen-
tial experiment design. Due to the complexity of the 
dynamic automation platform and the demand of closed-
loop learning capability, a sophisticated architecture is 
required to accommodate the integration of the independent 
components.20 There are two types of architectures: distrib-
uted and nondistributed. Hierarchy architecture is a typical 
example of the nondistributed case. In hierarchy architec-
ture, components are linked in a tree format. Commands, 
tasks, and goals to be achieved flow down the tree from 
superior components to subordinate components, whereas 
results flow up the tree from subordinate to superior compo-
nents. Thus, when adding a new component, the architec-
ture needs to be modified, not only the parts related to the 
new component but also at each level. Therefore, the entire 
system needs to be changed every time when new compo-
nents are introduced. In addition, because the automation 
devices are controlled by different software from different 
manufacturers, it is extremely hard to gain direct control of 

Data &
Knowledge Base

Sequential
Design Method

Execution of
Experiments

AssaysData treatment

Figure 1.  Intelligent automation platform to realize the closed-
loop learning.
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the devices if an Application Programming Interface (API) 
is not provided. It will require an agent to monitor the soft-
ware associated with automation devices and collect data 
when the task is completed. On the other hand, a distributed 
architecture has more flexibility when a new component is 
added. The agent-based architecture has attracted attention 
for its flexibility. Within the agent-based architecture, an 
agent is defined as an autonomous unit capable of executing 
actions to meet specific objectives.21 The agents are able to 
cooperate to accomplish a complex task in a distributed way 
by the capability of interaction and communication. The 
agent-based architecture technique has shown its advan-
tages in several diverse engineering areas, including prob-
lem solving, simulation, and collective robotic control.22 As 
for bioprocess development, an agent-based approach has 
been applied to perform optimization based on models of 
whole-production process simulation.23

Compared with other integration approaches, an agent-
based architecture has a number of advantages satisfying the 
requirements of the intelligent automation platform. The 
modular approach can be adopted for biopharmaceutical pro-
cessing using agent-based techniques because it is easier and 
less costly for system software modification when adding or 
deleting components.23,24 The agent-based architecture can 
divide complex tasks into small and manageable subprob-
lems.20 The agents can collaborate to solve the presented 
problem by communication and interaction with each other, 
allowing the simultaneous facilitation of information 
exchange. Based on these features, the agent-based architec-
ture provides an ideal approach to integrate all the compo-
nents involved in the closed-loop learning. The experiment 
design algorithm, experiment execution, and assay can each 
be regarded as an autonomous agent to perform defined 
tasks. The flexibility of the architecture makes it easy to add 
new algorithms and devices into the platform.

An efficient interaction protocol should be able to sup-
port several activities such as the communication of global 
goals, sharing of knowledge, and avoidance of conflicts.25 
The most widely applied protocols are contract net,26 mar-
ket mechanism,27 and blackboard.28 The first two are 
designed to simulate real market activities on the assump-
tion that a global optimum exists for the equilibrium of  
the market such that the “seller” wants to maximize profit 
while the “buyer” wants to maximize utility. The agents in 
these protocols therefore have similar functionalities such 
as “buy” and “sell.” When each agent is capable of a differ-
ent function, the architecture based on the “blackboard” 
mechanism is attractive. The blackboard is a database that 
all relevant agents can access. These agents perform tasks 
based on the information on the blackboard. The agents 
publish the results on the blackboard continuously until the 
goal has been achieved.

In this article, we present the prototype that brings 
together the currently independent parts: the automated 

experiment design, the experiment execution by a liquid-
handling system, and the assay analysis for protein precipi-
tation studies. In next section, the lysozyme protein 
precipitation studies, the physical setup of the intelligent 
automation platform, and software for each type are 
described. The results on multiagent system software devel-
opment that controls the whole bioprocess development 
activities and a protein precipitation case study are then 
given, followed by a discussion and conclusions.

Materials and Methods

Lysozyme Protein Precipitation Studies

For demonstration purposes, we investigated the solubility 
of lysozyme to identify the optimal ion strength and pH 
conditions in precipitation process design. The goal of the 
experiments was to find an optimal design that maximizes 
the yield of lysozyme and maximizes the ammonium sul-
fate concentration. Here maximizing the salt concentration 
reflects maximizing purity for a crude industrial feed. The 
objective function, J, is shown in equation (1).

J = α(c/c
0
) + β(s/s

0
),

where α and β are weighting factors, c
0
 the initial lysozyme 

concentration, c the final lysozyme concentration in the 
supernatant, s

0
 the maximum ammonium sulfate concentra-

tion, and s the ammonium sulfate concentration used in the 
specific experiment.

For our experiments, the ammonium sulfate, monoso-
dium phosphate, and disodium phosphate were obtained 
from Sigma-Aldrich. (Munich, Germany) The ammonium 
sulfate solution was prepared at a concentration of 4 mol/L. 
The phosphate buffer was chosen to maintain the desired 
pH value. The monosodium phosphate and disodium phos-
phate solutions were prepared at the concentration of 300 
mM and then diluted. The lysozyme was obtained from 
Sigma-Aldrich and prepared at 20 mg/mL. The 96-well 
Multiscreen filter plates were sourced from Millipore 
(Hertfordshire, UK) and the 96-well flat-bottom Costar UV 
Microwell plates from Corning (Leicestershire, UK).

The experiment involved adding 100 µL of lysozyme 
solution and 50 µL of buffer solution (a mixture of monoso-
dium phosphate and disodium phosphate) into the micro-
well. The total volume was 300 µL by adding the 150-µL 
mixture of water and the ammonium sulfate solution.  
Thus, the initial lysozyme concentration in each well was 
6.67 mg/mL. The ammonium sulfate concentration ranged 
from 0 to 2 mol/L. The range of pH was from 6 to 8. The 
interval of ammonium sulfate concentration was 0.1 mol/L, 
and the interval of pH was 0.1.

All the liquid-handling tasks were executed by a TECAN 
Freedom 200 liquid-handling system (TECAN, Männedorf, 

(1)
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Switzerland). Samples were first prepared in a 96 microplate 
by adding different solutions before shaking. After shaking, 
samples were transferred to a 96 microfilter plate for filtration 
with a microplate beneath for filtrate collection. The filtered 
samples were then diluted 10-fold using two wells in the same 
microplate before transferring to a UV-transparent plate for 
measurement. Absorption at 280 nm was measured by a 
TECAN Infinite 200 plate reader to determine the lysozyme 
concentration. The calibration curve shown in Figure 2 con-
firmed that the absorption at 280 nm was good for lysozyme 
measurement. The filtration operation was performed by a 
vacuum separator from the TECAN VacS series.

The simplex search method and the artificial neural net-
work (ANN) model-based method were chosen as the sequen-
tial experiment design methods in this study. The simplex 
algorithm, first proposed in 1965,11 was designed for minimiz-
ing an objective function in a multidimensional space. The 
technique has been applied to solve the bioprocess optimiza-
tion problem12 and is very powerful because only the experi-
mental data are needed to calculate the objective function 
values. ANN is a computer algorithm inspired by how the 
human brain processes information and represents a promising 
modeling technique for data sets having nonlinear relation-
ships. ANN has been used to analyze biopharmaceutical prob-
lems,29 for example, in the solubility of lysozyme.30 In this 
case study, a three-layer back-propagation network was used 
to model the relationship between ammonium sulfate concen-
tration, pH, and lysozyme solubility.

Intelligent Automation Platform for Protein 
Precipitation Experiments

Based on the framework shown in Figure 1, the prototype 
for lysozyme precipitation process development has been 
established and is illustrated in Figure 3. The data and 
knowledge base initially stores the system configuration 
information of the devices (e.g., TECAN configuration). 
The configuration information in the database consists of 
both connection parameters to realize communication 
among devices and the dimension and layout information to 
guide the movement of the robotic arms during the 

Figure 2.  Calibration curve of the absorption at 280 nm and 
lysozyme concentration.

Experiment results
System configuration 
information

Data & knowledge base

Simplex search algorithm
Artificial neural network 
modelling algorithm

Sequential design method Sample preparation in 96 
microplate using Tecan 
Liquid handling system
Incubation and shaking in 
Tecan Infinite 200
Separate the mixture using 
Tecan Vas and microplate 
filter

Execution of experiments

Collect raw data (xml file)
Calculate the objective 
function

Data treatment

Absorption at 280nm 
measured by Tecan Infinite 
200 plate reader

Assay on protein 
concentration

Figure 3.  Prototype of the intelligent automation platform for precipitation experiments.
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execution of the experiments. Any future experiments 
designed later can be translated into executable programs to 
drive the devices. The experimental results are stored in the 
database. The database uses an entity-relationship (ER) 
model in Microsoft Access (Microsoft Corp., Redmond, 
WA).

The experiments carried out included sample prepara-
tion in a 96 micro filter plate using the robotic arm, incuba-
tion and shaking in the plate reader, and liquid and solid 
separation of the samples by a vacuum pump sucking out 
the liquid from the bottom of the micro filter plate (Fig. 4). 
All of these have been carried out by the TECAN liquid-
handling system and driven by designated experimental 
procedure software.

A plate reader measuring protein concentration was 
located next to the TECAN and within the reach of the 
robotic arm. The lysozyme optical density was measured at 
280 nm UV absorption and the data stored in an XML file. 
The assay agent converted the raw data into lysozyme con-
centration based on calibration curves and stored them in 
the database.

The sequential design method uses the experimental data 
to calculate the objective function and decide if it is neces-
sary for another round of experiments; it uses the simplex 
search algorithm or the artificial neural network modeling 
algorithm to design any next round of experiments required. 
The experiment results and the newly designed experimen-
tal conditions are stored in the database for further use.

A multiagent architecture has been developed to control 
all of the software to realize the closed-loop learning. The 
whole software is programmed in C#, and the control of the 
TECAN liquid-handling system and other devices is real-
ized through the API provided by EVOware and i-Control 
from TECAN. The ANN is programmed based on 
NeuronDotNet Library. Sample source code for these is 
provided in the supplementary documentation.

Results

Multiagent Architecture for the Intelligent 
Automated Platform

In our platform, each agent is capable of a different function, 
and thus the architecture has been established based on the 
blackboard mechanism, as shown in Figure 5. Hence, as an 
example, the architecture for the lysozyme precipitation pro-
cess development has been established, as shown in Figure 6.

The coordinate agent retrieves the historical experimen-
tal data from an ER database and writes the new executed 
experimental results into the same database. It also trans-
lates the information in the database into the message for-
mat for the blackboard. The blackboard is the place to 
publish two types of information: configuration data (e.g., 
platform layout, database connection parameters) and 

experimental data. The data of each experiment are pub-
lished in the format similar to that stored in the ER data-
base. The message format in any experiment has a tree 
structure where the parameters are defined. It includes 
experiment number and attributes of experimental settings 
(e.g., parameters and assays) and results. An example of a 
message on the blackboard for a lysozyme precipitation 
experiment is shown in Figure 7. The coordinate agent 
selects all relevant experimental data from both the data-
base and other agents and displays them on the blackboard. 
Other agents can access the blackboard to update specific 
fields (e.g., experimental result) when they are available.

The execution agent controls the robotic arm to add the 
lysozyme solution, phosphate buffer, and ammonium sul-
fate solution into the microwell plate, with the different pH 
values of each experiment achieved by adding calculated 
volumes of monosodium phosphate and disodium phos-
phate solution to the microwell plate. Then the robotic arm 
puts the microwell plate into the incubator, and the execu-
tion agent controls the shaking speed and time. After incu-
bation and shaking, the execution agent controls a vacuum 
pump on the platform to separate the precipitate and liquid. 
Finally, it controls the robotic arm to take the samples of the 
permeate to the plate reader for detection of the lysozyme 
concentrations.

The assay agent controls the plate reader. The coordinate 
agent communicates with the assay agent when the experi-
ments have completed. Then the assay agent initiates the 
plate reader for the detection of protein concentrations. 
Based on the calibration results, the agent reads data from 
the plate reader and calculates the lysozyme concentration 
of each well. Finally, it posts the lysozyme concentrations 
data back to the blackboard.

The experiment design agent comprises two algorithms 
that are a simplex search algorithm and an ANN. Based on 
these algorithms, the agent publishes the newly designed 
experiments on the blackboard for execution.

Starting with three random initial points in the design 
space of pH and ammonium sulfate concentration, the sim-
plex algorithm decides the next needed experimental point 
based on the evaluation of the objective function at the ver-
tices of the simplex. The flowchart in Figure 8A shows 
how the experiment design agent uses the simplex search 
algorithm to design the next round of experiments and the 
data communication. The experiment design agent picks up 
the experimental data from the blackboard and then com-
putes the objective function values at the vertices of the 
simplex. It then selects the next round of experiments by 
reflection, extension, or contraction of the vertex with the 
lowest objective function value relative to the other verti-
ces. Finally, the experiment design agent posts back the 
newly designed experimental conditions unless they corre-
spond to an experiment that has been previously performed. 
The flowchart in Figure 8B illustrates how the experiment 
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design agent carries out the ANN experiment design 
method. The experiment design agent picks up the previous 
experimental results from the blackboard and then uses 
them to train the ANN model. Instead of modeling from a 
data set with a given size, the experiment design agent 
trains and tests the network after every five experiments 
until the desired accuracy is achieved. If the required accu-
racy is not achieved, it generates a new batch of five experi-
ments and posts them back to the blackboard.

Optimization of Precipitation

For our given process, we have obtained the following 
results using our described methods. The TECAN liquid-
handling system and the plate reader were driven by the 
execution agent and assay agent automatically. The com-
munication between the coordinator agent and other agents 
was smooth in facilitating data exchange. Two lysozyme 
precipitation studies were carried out. The experiment 
design agent used the simplex search algorithm in the first 
study and the ANN algorithm in the second study.

Simplex algorithm results.  The initial simplex was selected 
randomly to mimic a novel process design task when no 
prior knowledge was available. The sequential experiment 
design agent then designed 16 new experiments based on 
the simplex algorithm. The optimal point was found after 
16 iterations. The maximum value of the objective function 
was 0.70, where the ammonium sulfate concentration was 
0.8 mol/L and the pH was 7.1. The corresponding lysozyme 
concentration was 6.05 mg/mL. As shown in Figure 9A, 
the objective value jumped from 0.14 to 0.50 after only the 
first set of iterations, which proves that the simplex algo-
rithm is very effective when searching for the extreme point 
in the given space. When the ammonium sulfate concentra-
tion was lower than 0.8 mol/L, the solubility of lysozyme 
stayed almost the same so that the objective function value 
decreased. When the ammonium sulfate concentration was 
higher than 0.8 mol/L, the rapid decrease of the solubility of 
lysozyme made the objective function decrease; also, the 
impact of pH on the solubility was less than that of the 
ammonium sulfate concentration. Figure 9B shows the 
response surface extrapolated from these 18 data points. It 

Figure 4.  Hardware configuration of the intelligent automation platform for precipitation. (1) Disposable tips rack; (2) tube carrier; 
(3) 96-well microplates carrier; (4) vacuum filtration; (5) UV plate reader.
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confirms that the optimum point found reached a relatively 
high objective function value.

ANN results.  The initial five experiments were selected ran-
domly. After four iterations, the model achieved the desired 
accuracy. The response surface of predicted lysozyme concen-
tration in the soluble phase that was achieved is shown in  
Figure 10A. When the ammonium sulfate concentration was 

higher than 0.8 mol/L, the lysozyme concentration decreased 
rapidly, similar to the results from the simplex algorithm. At 
same time, pH had little impact on the solubility of lysozyme. 
According to the model generated by the network, the highest 
objective function value was found at 0.7 mol/L of ammonium 
sulfate concentration and pH of 7.0, as shown in Figure 10B.

The results from two precipitation studies demonstrated 
the capability of experiment design agents. Both of the 
sequential experiment design methods delivered the process 
design solution successfully. At each iteration, the commu-
nication was also very efficient since the time used for com-
munication, data analysis, and experiment design in the 
above studies was less than 1 min, which significantly 
saved the process design time.

Discussion

This case study was chosen to illustrate the functions of an 
intelligent automated platform. Although a lysozyme precipi-
tation experiment is very simple, it has several operations such 

Execution Agent

Experiment Design Agent

Assay Agent

Blackboard

Experiment setting information
Experiments to be executed
Previous experiment results
Device configuration data
…..

Coordinate Agent

Figure 5.  Multiagent architecture for the intelligent automation 
platform.

Add (NH4)2SO4, buffer, water and 
sample solutions at different ion 
strength and pH value

Mix

Incubation & shaking

Vacuum filtration

Dilute the supernatent

Measure 280nm UV absorption Retrieve absorption data

Calculate protein 
concentration Retrieve experiment 

results

Run design algorithm

Retrieve historical data from databaseWrite finished experiment data into databse

Experiment Design Agent

Execution agent

Assay agent

Coordinate agent

blackboard

Figure 6.  Multiagent architecture for the lysozyme precipitation process development.
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as mixing, incubation, and filtration in sample preparation in 
common with most experiments. Also, the measurement of 
lysozyme concentration can be easily realized by a plate reader. 
The objective function in this case study illustrates the typical 
bioprocess design trade-off between yield and purity in a com-
plex multicomponent precipitation process.

The concept of an intelligent automation platform to realize 
the closed-loop learning is general and can be applied to each 
bioprocess design provided microscale experimentation can be 
carried out on a robotic platform (e.g., microscale fermenta-
tion, chromatography, centrifugation). The prototype devel-
oped for precipitation, when applied to other bioprocess 
design, stays the same apart from the experiment details, but 
naturally the experiment details may be different.

While the “Adam” system is a specialized system to gener-
ate research hypothesis automatically, our system is to address 
a much more fully defined bioprocess design problem, as well 
as aim to increase lab automation and reduce the process 
design time by using intelligent communication and intelligent 

experiment design methods. Our system is based on a com-
mercially available liquid handler and other common lab 
instrumentations; hence, our method is more practical and can 
be applied easily in the research and development labs.

Platform Architecture

The level of interactions among the agents in this case study 
was relatively low. However, the required interactions will be 
much higher in the whole bioprocess sequence design when 
more than 10 unit operations are involved and each unit oper-
ation has a high number of design variables. The adopted 
multiagent architecture has the flexibility to allow adding or 
modifying elements in the system (e.g., adding a new data 
analysis instrument or a new experiment design algorithm). 
This allows the further development of agent negotiation in 
resource allocation, activity scheduling, and reaching agree-
ment during process evaluation to accommodate the needs in 
the design of a whole bioprocess sequence. The advantage of 

Figure 7.  An example of messages on the blackboard showing an experiment published by an experiment design agent. The 
experiment’s objective function is 0.4a + 0.6b, where a is the salt concentration and b is the lysozyme concentration. The protein 
involved in the experiment is lysozyme, and its peak appeared at 15 min when using high-performance liquid chromatography to 
measure the concentration. The parameters investigated in the experiment are salt concentration and lysozyme concentration. The 
parameters consist of design space information (maximum and minimum values and interval) and the actual value.
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the multiagent system in the integration solutions is that the 
agents are designed to achieve a common goal, although they 
have a certain level of autonomy. This may require the agents 
to have more intelligence—for example, the experiment exe-
cution agent currently only implements the experiments fol-
lowing predefined procedures, and more intelligence may be 
required to plan multiple procedures dynamically and/or 
enable parallel execution of experiments to shorten the total 
experimentation time.

The measurement of lysozyme concentration can be real-
ized by a plate reader. The assay in this case is simple—only 
the plate reading. We designed the assay agent to be respon-
sible for the sample assay. The assay agent not only carries out 
measurements but also has a capability of designing experi-
ments for calibration (e.g., calibration curve regression for 
280-nm absorbance). In addition, it is responsible for data 
treatment (e.g., translate UV absorbance into protein concen-
tration). When multiple measurements are required in 

(A) 

Experiment Design Agent (Simplex)

Update current 
Simplex

Reflec�on

Expansion

Contrac�on

Has the experiment
been executed?

yes

Retrieve experiment 
results in current 

simplex

Sort & compare

Historical experiment
results

Experiments to be
executed

(B)

Previous experiment results

ANN

Random generate new batch of 
experiment

Required
accuracy achieved?

train

no

Experiment design agent (ANN)
Results of newly

executed experiments

Experiments to be
executed

Figure 8.  (A) The experiment design agent to facilitate the simplex search algorithm. (B) The experiment design agent to facilitate 
the artificial neural network (ANN) algorithm.

Figure 9.  (A) The objective function increases with the number of iterations in the simplex search algorithm. (B) The estimated 
surface of the objective function based on all 18 experimental points.
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bioprocess design, multiple assay agents will be required to 
work in parallel.

The communication between agents can be crucial, espe-
cially when the devices are not in the same location. 
Although devices for assays are available in most laborato-
ries, they may not have been connected to the liquid-han-
dling system where manual material handling is still needed. 
The communication among the agents in these cases may be 
realized through the computer network, although the 
throughput might be limited.

High-Throughput Equipment and Assays

The success of the intelligent platform largely depends on 
the development of high-throughput automation technol-
ogy. Although a large number of devices have been devel-
oped and introduced into bioprocess development, most are 
for the experiment execution. Therefore, the bottleneck of 
the total platform efficiency is the assays, and more novel 
high-throughput assays are desirable to significantly 
improve the efficiency of the platform. Sometimes, 
advanced instruments with sophisticated data analysis soft-
ware are required in research and development activities. 
The ability to automate such sophisticated data analysis will 
enhance the efficiency.

Experiment Design Algorithms

The method of the experiment design depends on the exper-
imental objectives. In some cases, more than one algorithm 
can be combined to achieve better outcomes. For example, 

a simplex search algorithm can be used to narrow down the 
design space before implementing DoE methods to investi-
gate the properties of the response surface. New experiment 
design methods that address process dynamic behaviors are 
important to bioprocess development. It is also desirable for 
the experiment design agent to consider the objectives of 
the experiments and intelligently choose a suitable experi-
ment design method.

The replications in the experiments needed for each pro-
cess design depend on the accuracy of experimentation and 
assay. Error estimation-based statistical analysis may be 
used to aid the experiment design agent to determine the 
replications.

In conclusion, this article presented a method to estab-
lish an intelligent platform that automates every task to 
achieve rapid bioprocess design. The method is general and 
can be applied to each bioprocess design, provided 
microscale experimentation can be carried out on a robotic 
platform. A first-generation prototype of an intelligent auto-
mation platform to perform precipitation experiments auto-
matically has been established. The platform is able to 
combine a liquid-handling robotic, a vacuum pump, a 
shaker, and a plate reader together to perform all procedures 
such as assembly adding, shaking, incubation, and UV absorp-
tion measurement automatically without human interven-
tion. The prototype developed for precipitation is used as a 
vehicle to demonstrate the method. When applied to other 
bioprocess designs, the prototype stays the same while the 
experimental details may be different.

The experiment design agent uses two sequential experi-
ment design algorithms, the simplex algorithm and an ANN, 

Figure 10.  (A) The predicted lysozyme concentration response surface at various ammonium sulfate concentrations and pH values 
by the artificial neural network (ANN) method. (B) The predicted objective function surface from the ANN method.
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demonstrating the automation of data analysis and experi-
ment design in this novel integration approach to plan 
experiments within closed-loop learning. The simplex algo-
rithm shows its power when searching for extreme points in 
a defined space, and the neural network modeling approach 
gives a better understanding of the effect of lysozyme solu-
bility at various ion strength and pH values. Both of these 
methods can be applied to other bioprocess design.

The integration of experimental devices, a database, and 
algorithms for experiment design demonstrates a powerful 
tool for high-throughput process development. The “intel-
ligent” experiment design algorithms keep the number of 
experiments low to reduce the amount of time and materi-
als. The elimination of time delay by automating experi-
mental procedure, data analysis and experiment design can 
reduce time further and make the platform a very effective 
process optimization tool.

The intelligent platform will need to be tested with more 
bioprocess design case studies. The requirements in whole 
bioprocess design will need more agents, and the interac-
tions among these agents need to be much more dynamic to 
work together to achieve global goals in the future.
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