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Spin currents, the flow of angular momentum without the simultaneous transfer of 

electrical charge, play an enabling role in the field of spintronics1-8. Unlike the charge 

current, the spin current is not a conservative quantity within the conduction carrier 

system. This is due to the presence of the spin orbit interaction that couples the spin of 

the carriers to angular momentum in the lattice. This spin-lattice coupling9 acts also as 

the source of damping in magnetic materials, where preccessing magnetic moment 

experiences a torque towards its equilibrium orientation; the excess angular momentum 

in the magnetic subsystem flows into the lattice. In this Letter, we show that this flow 

can be reversed by the three-magnon splitting process and experimentally achieve 

enhancement of spin current emitted by the interacting spin-waves. This mechanism 

triggers angular momentum transfer from the lattice to the magnetic subsystem and 

modifies the spin current emission. The finding illustrates the importance of magnon-

magnon interactions for developing spin-current based electronics.  

By using angular momentum exchanges between conduction electrons and spin waves, the 

long-range transport of spin current has recently been demonstrated in magnetic insulators8, 

finding an important role for these materials within spin-based electronic devices. In order to 

create and detect the spin current, layers of a strongly spin-orbit coupled metal (Pt) were 
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placed on the magnetic insulator (yttrium iron garnet, YIG). Passing a current through the 

metal layer generates a spin current, using the spin-Hall effect (SHE)10,11. The spin current is 

injected into the magnetic dielectric, where it results in an excitation of a propagating spin 

wave. After propagation for a certain distance, the spin angular momentum of the spin wave 

is converted into a voltage in the second metal layer by using the inverse spin-Hall effect 

(ISHE)7. This signal-transmission scheme has advantages over the conceptually simpler 

approach of using spin-polarized electrons in conducting materials, due to the longer 

propagation length of spin waves compared to the spin-diffusion length in metals. While the 

spin diffusion length of conduction carriers in metals is normally several hundreds of 

nanometers12, spin waves in magnetic dielectrics such as YIG can propagate to macroscopic 

distances without significant attenuation owing to very small magnetic damping in this 

material13. The performance of such a signal transmission scheme is mainly limited by the 

conversion efficiency of a spin current into the magnetisation precession and vice versa. 

Since the output voltage in this scheme is directly proportional to the spin current flowing 

across the interface between the magnetic dielectric and the metal film, the way to improve 

the performance of the scheme is to find a mechanism for an efficient enhancement of the 

spin current. Here we demonstrate that such enhancement can be realised by using the three-

magnon splitting process, a magnon-magnon interaction in which the total angular 

momentum of the magnetic subsystem is not conserved. Moreover, we show that this 

mechanism can be switched on and off by modification of the spin-wave spectrum in YIG by 

the applied static magnetic field.  

Figure 1a is a schematic of the studied system which consists of a bi-layer of a magnetic 

insulator YIG and a spin current detector Pt. We first characterise magnetic properties of the 

YIG film by ferromagnetic resonance (FMR) technique.  Figure 1b demonstrates the 



 

 

dependence of microwave absorption on the magnetic field measured for a fixed excitation 

frequency f=5 GHz. The absorption curve is asymmetric and exhibits a maximum at the field 

Hres. This asymmetry is most likely due to the contribution of different standing spin-wave 

modes14. The maximum of the curve corresponds to the fundamental spin-wave mode of the 

finite-size YIG sample being an analogue of the uniform FMR mode in an infinite 

ferromagnetic medium. The connection between resonant field of this mode Hres and the 

frequency f can be approximated with a good accuracy by the Kittel formula15 

0 ( )res resf H H Mγμ= + , where γ=28 GHz/T is the gyromagnetic ratio and μ0M = 0.175 T is 

the saturation magnetisation of YIG (Fig. 1c). The voltage detected across the Pt film also 

shows the resonance-like behaviour with a maximum at Hres. To prove whether the observed 

voltage is actually caused by the ISHE and that it can be used as a measure of the spin current, 

we performed these measurements for three different directions of the static field H0, as 

shown in Fig. 1d.  Considering the most important flow of the longitudinal magnetization (i.e. 

along H0), voltages arising from the ISHE follow the symmetry of conversion from a spin 

current js into electromotive force E as7:  

ISHED= ×sE j σ , (1) 

where DISHE and σ are the conversion efficiency and the unit vector in the direction of the 

spin polarization of js, respectively. As defined in Fig. 1a, the directions of E and js are fixed 

along the y and x direction for our set-up respectively, and the direction of σ, being parallel 

to H0 in the in-plane measurements, can be experimentally controlled. In agreement with Eq. 

(1), we observed the voltage only when H0 was applied along the z-axis with a corresponding 

sign change and no sizable voltage was measured for H0 parallel/antiparallel to the y-axis.  



 

 

We now analyse the frequency dependence of the resonant peak voltage ΔV when applying 

H0 along the z-axis. For each value of the excitation frequency the static magnetic field was 

adjusted to keep the system at resonance, so that the mode excited by microwaves is the 

quasi-uniform FMR mode of the YIG sample. As seen in Fig. 2a, a nearly constant ΔV is 

observed for frequencies larger than 3.2 GHz. Surprisingly, below 3.2 GHz there is an abrupt 

increase in ΔV. To prove whether this increase is associated with increased microwave 

absorption power Pabs, which characterises the angular momentum transferred from the 

microwave field to the magnetic subsystem, we measured the frequency dependence of Pabs 

and show in Fig. 2b. The experimental data indicate that Pabs does not increase but rather 

decreases for f<3.2 GHz which can be explained by the reduction of magnetic susceptibility 

in YIG. Therefore, one can conclude that the observed increase of ΔV (and that of js) is not 

due to the change of the microwave absorption. To take into account the frequency 

dependence of Pabs we introduce a parameter ΔV/Pabs that characterises the conversion 

efficiency of the angular momentum created by the microwave field into the spin current js
14. 

As seen in Fig. 2c, starting from f=3.2 GHz the conversion efficiency continuously increases 

with decreasing frequency. Similar experiments performed keeping the absorbed microwave 

power constant (see the inset of Fig. 2c) also demonstrate a clear enhancement of the ISHE 

voltage at f<3.2 GHz. Since the absorbed power is proportional to the injected angular 

momentum from the microwave, we can confirm that the reduction of Pabs is the origin of the 

decrease in ΔV observed below 3.0 GHz in Fig. 2a. These experimental findings suggest that 

for f<3.2 GHz the magnetic subsystem absorbs the angular momentum from a source 

different from the microwave field. In agreement with this assumption, the linear excitation 

theory describing the interaction of the magnetic subsystem with the microwave field16-18 (see 

the supplementary information for more details) was found to be applicable to the 



 

 

experimental data for f>3.2 GHz only (solid line in Fig. 2c). To characterise the observed 

enhancement at different applied microwave powers P, we analysed the ratio of ΔV measured 

at frequencies above (4GHz) and below (3GHz) the critical frequency 3.2 GHz as a function 

of P (Fig. 2d). The enhancement of ΔV is more efficient at low powers and gradually 

disappears with increasing P. Thus, the increase of ΔV can be attributed to a nonlinear spin-

wave process (see more details in the Supplementary information). 

In order to gain additional information about the magnetic subsystem, we used Brillouin light 

scattering (BLS) spectroscopy19. This technique is sensitive not only to the quasi-uniform  

FMR mode, but also to short-wavelength spin waves, which can be created due to the 

relaxation of magnetisation dynamics. Figure 3 shows the BLS intensity as a function of the 

excitation and detection frequencies. The data were obtained by maintaining the system at 

resonance and the detection frequency corresponds to the frequency of spin waves in the YIG 

layer. At the excitation frequencies above 3.2 GHz, the BLS spectrum shows peaks at the 

FMR frequency which is equal to the excitation frequency (solid line in the figure). At the 

lower excitation frequencies, however, a second group of spin waves appears in the spectrum, 

whose frequency is exactly one half of the excitation frequency (dashed line in the figure). 

These additional spin waves are created due to the three-magnon splitting process13,20,21, 

representing a splitting of the quasi-uniform FMR mode into two short-wavelength spin 

waves of the half frequency as illustrated by the inset of Fig. 3. This process is only allowed 

if there are available spectral states at the frequency of the secondary spin waves. Due to the 

peculiarities of the spin-wave spectrum in ferromagnets13, this condition is only met for 

relatively small static magnetic fields (therefore low excitation frequencies). Calculations 

based on the spin-wave theory in magnetic films22 show that the three-magnon splitting is 



 

 

allowed in YIG for the FMR frequencies below 3.15 GHz, which matches well the 

experimental value of the critical frequency 3.2 GHz. 

These results reveal a clear correlation between the enhancement of the spin current observed 

at low frequencies and the three-magnon splitting process. The three-magnon splitting is well 

known23 and usually considered as a parasitic effect, limiting the performance of 

conventional microwave electronic devices. In addition, in proposed spin-wave electronics24 

employing the inductive technique for detection of magnetisation oscillations, it is difficult to 

detect and use the short-wavelength secondary spin waves. By contrast, in spin current 

devices based on the angular momentum exchange at interfaces, both quasi-uniform FMR 

and short-wavelength spin waves contribute to the signal conversion. To understand the 

effect of the three-magnon splitting on the spin-current let us discuss the flow of angular 

momentum in the studied system illustrated in Fig. 4. It is important to emphasize that due to 

angular momentum conservation, any changes of magnetisation in a ferromagnet result in 

changes of the angular momentum accumulated in the magnetic subsystem. Thus, in order to 

change the magnetisation, one needs to create a corresponding flow of the angular 

momentum into the magnetic subsystem from an external source or from the lattice, as it 

happens by the Einstein-de Haas effect25. In the absence of three-magnon splitting (Fig.4a), 

the source of the angular momentum flow causing the excitation of the magnetisation 

precession is the flow from the microwave field MWT . This precession leads to the reduction 

of the longitudinal magnetisation MΔ  . At equilibrium the flow from the microwave field is 

balanced by the flow of the angular momentum into the lattice LT due to the spin-lattice 

relaxation: MW L=T T . Using the Bloch equation7, MΔ  is expressed as 1LM TΔ = γ T , where 

T1 is the spin-lattice relaxation time. In the presence of the Pt layer, we should take into 

account an additional flow due to the spin current sj across the YIG/Pt interface, which is also 



 

 

proportional to MΔ 
8,16-18, by replacing T1 with an effective time T1

* (T1
*< T1). Thus, the flow 

equilibrium between the microwave field, on one side, and the lattice and Pt layer, on the 

other side, defines the equilibrium value of MΔ   and therefore that of sj , both of which are 

proportional to T1
*. We emphasize that the only source of the angular momentum is the 

microwave field and both sj  and ΔV are defined solely by the absorbed microwave power, 

since absM PΔ ∝ . 

The situation drastically changes when the three-magnon splitting is involved as illustrated in 

Fig. 4b. The quasi-uniform FMR mode excited by the microwave field creates short-

wavelength spin waves due to the three-magnon splitting. Then both the quasi-uniform FMR 

and the spin waves transfer the angular momentum into the lattice and to the Pt layer. At first 

glance, it seems that the total flow equilibrium is not affected since the microwave field 

remains to be the only source of the angular momentum. However, this is only the case if the 

three-magnon splitting would conserve the total angular momentum of the magnetic 

subsystem. Following a simple picture of the three-magnon splitting, where one magnon 

emits two magnons, one can argue that this process increases the total number of magnons.  

In a standard quantisation scheme, one magnon carries the angular momentum of  26 and 

therefore the three-magnon splitting does not conserve the total angular momentum of the 

magnetic subsystem. Accordingly, three-magnon splitting is forbidden, if the magnetic 

system is considered to be isolated, as in the model taking into account only the exchange 

interaction26. This restriction is removed by incorporating the magnetic dipole interaction in 

the model. In fact, the operator of the angular momentum of magnetic subsystem alone does 

not commute with the Hamiltonian describing the magnetic dipole interaction. In contrast, the 

operator of total angular momentum comprising both the magnetic subsystem and the lattice 

does commute with this Hamiltonian27. Since the three-magnon splitting requires the flow of 



 

 

the angular momentum from the lattice, the flow between the lattice and the magnetic 

subsystem becomes bidirectional as shown in Fig. 4b. Therefore in the three-magnon splitting 

regime, the lattice serves as an additional source of angular momentum flow, which results in 

the increase of MΔ  and, consequently, in the enhancement of the spin current across the 

YIG/Pt interface. 

Although the quantum theory of a ferromagnet with both the exchange and the magnetic 

dipole interactions exists since more than seventy years28,29, a rigorous quantum consideration 

of the angular momentum exchange between the magnetic subsystem and the lattice due to 

the dipole interaction is still missing. Therefore, the quantitative description of the spin 

current enhancement due to three-magnon splitting is not possible at the moment. However, 

even a simple classical consideration of the three-magnon splitting (see the supplementary 

information) shows that this process indeed increases MΔ   and, as a consequence, enhances 

the spin current across the YIG/Pt interface. The observed enhancement of the spin-current 

could be also attributed to a higher efficiency to generate spin currents into the normal metal 

by short-wavelength spin waves than that by the homogenous FMR mode. However, our 

experiments on excitation of short-wavelength spin waves directly using nonlinear parametric 

pumping which are in agreement with results of another group30 preclude this possibility. 

We show that the three-magnon splitting in a magnetic insulator, due to angular momentum 

transfer from the lattice, enhance spin-current emission in the YIG/Pt interface. This spin 

current enhancement is controlled by changing the frequency and the external magnetic field. 

These findings shed new light onto the role of nonlinear magnetic dynamics and spin waves 

in spintronics. In particular, the short-wavelength spin waves, usually considered to be 

unimportant in conventional microwave electronics, are shown to have potential for 

spintronic applications.  From a fundamental point of view, our findings clearly demonstrate 



 

 

the importance of the magnetic dipole interaction for the exchange of the angular momentum 

between magnetic and nonmagnetic subsystems, and also the importance of the angular 

momentum conservation law for analysis of magnetic dynamics. 

 

 

 

Methods 

The monocrystalline YIG film with the thickness of 5.1 µm was grown on a gallium 

gadolinium garnet substrate and a 15 nm-thick Pt layer was sputtered on top of the YIG film. 

The lateral dimensions of the sample were 1.5×5 mm. The independently measured Gilbert 

damping constant of the YIG film was 10-4. As shown in Fig. 1a, the sample was attached to 

a standard 0.5-mm-wide 50 Ω microstrip transmission line used for broadband excitation of 

magnetic dynamics in the YIG film. The excited quasi-uniform FMR mode expands over the 

entire YIG film due to the low damping characteristic. The experimental structure was placed 

into a static magnetic field, H0, which can be aligned in the plane or perpendicular to the 

plane of the YIG film. For spin current detection by the ISHE, two electrodes were attached 

to the Pt layer 3.5 mm apart from each other. The electric detection is sensitive to the electric 

field induced in Pt along the y-direction. All the measurements were performed at room 

temperature. 

The magnetisation dynamics in the YIG film was studied by two complementary techniques. 

The quasi-uniform FMR mode was characterised by conventional electronic measurements 

using the network analyser. The information about the microwave power absorbed in the YIG 

film was measured from simultaneous measurements of the power reflected from and 

transmitted through the microstrip transmission line. In addition, we used BLS spectroscopy 



 

 

in the quasi-backward scattering geometry19 to access short-wavelength spin waves created in 

the YIG film as a result of the magnon-magnon relaxation of the directly excited quasi-

uniform FMR mode.  
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Figure captions 

Figure 1: Ferromagnetic resonance and spin current detection in YIG/Pt layered system. 

a, Schematic layout of the experimental set-up. Ferromagnetic resonance in the YIG layer is 

excited using a microwave current flowing in a microstrip transmission line. H0 denotes the 

applied static magnetic field. Electrodes attached to the Pt film are used to detect the voltage 

induced in the film due to the spin current flow; b, Ferromagnetic resonance in YIG at f=5 

GHz detected via microwave absorption for H0||z. Hres defines the resonance field; c, 

Frequency dependence of Hres for H0||z, the dots illustrate experimental data and the solid 

curve is calculated based on the Kittel formula;  d, Field dependence of the induced voltage 

measured at different orientations of H0 as labeled. ΔV indicates the peak value of V at Hres. 

 

Figure 2: The frequency and power dependence of the ISHE voltage and the microwave 

absorption in YIG.  



 

 

a, Frequency dependence of the peak voltage at resonance conditions. Note that an abrupt 

increase of ΔV is observed at f<3.2 GHz where we insert the red dash line. b, Frequency 

dependence of the absorbed microwave power. A strong decrease of Pabs starts at f=3.2 GHz. 

c, Frequency dependence of the ratio ΔV/Pabs which characterises the conversion efficiency of 

the angular momentum absorbed from microwaves into spin current, measured at a constant 

power of microwave excitation.  A strong increase of ΔV/Pabs starts at f=3.2 GHz. The solid 

line is the result of calculations based on the linear excitation theory. The inset shows the 

results of similar measurements performed by keeping the absorbed microwave power (Pabs) 

constant; d, Power dependence of the spin current enhancement, characterised by the ratio of 

the values of ΔV measured 3.0 and 4.0 GHz. Strong power dependence indicates that a 

nonlinear process is behind the enhancement. 

 

Figure 3: Spin waves created by the three-magnon splitting measured using BLS.  

Pseudo-colour two-dimensional plot of the BLS intensity as a function of the excitation and 

detection frequencies (f and fBLS). The intensity is proportional to the squared amplitude of 

the FMR mode or to the spin-wave intensity. For each excitation frequency, the applied 

magnetic field has been adjusted to fulfil the resonance conditions. The solid line indicates 

the condition of fBLS= f, whereas the dash line corresponds to that of fBLS=f/2. Note that spin 

waves with the half frequency appear only for f <3.2 GHz. The inset is the spin-wave 

spectrum in YIG with a schematic of the three-magnon splitting. The upper and lower 

boundaries of the spin-wave manifold correspond to the spin waves propagating 

perpendicular and parallel to the applied field, as labelled. 

 

Figure 4: Schematics of angular momentum flows in the YIG/Pt layered system.  



 

 

In these figures, FMR is used to denote quasi-uniform FMR mode that we excite using the 

microwave. a, In the case without three-magnon splitting. The external microwave field 

excites the quasi-uniform FMR mode by transferring the angular momentum into the 

magnetic subsystem of YIG, MWT . This flow is directed to the lattice due to the spin-lattice 

relaxation in YIG LT , and induces a spin current across the YIG/Pt interface jS. The 

amplitude of the magnetic precession, which is proportional to jS, is determined by the 

equilibrium between the three flows. b, In the case that three-magnon splitting is allowed. 

Due to the three-magnon process the quasi-uniform FMR mode is split into secondary spin 

waves. To support the splitting, an additional reverse flow of angular momentum from the 

lattice to the magnetic subsystem is created, which enhances the spin current across the 

YIG/Pt interface (indicated by red arrows). Under these conditions, sj  is determined by both 

the amplitude of the quasi-uniform FMR mode and that of secondary spin-waves. 
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