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Simultaneous photocatalytic reduction of water to H2 and CO2 to CO was observed over

Cu2O photocatalyst under both full arc and visible light irradiation (>420 nm). It was found

that the photocatalytic reduction preference shifts from H2 (water splitting) to CO (CO2

reduction) by controlling the exposed facets of Cu2O. More interestingly, the low index

facets of Cu2O exhibit higher activity for CO2 photoreduction than high index facets, which

is different from the widely-reported in which the facets with high Miller indices would

show higher photoactivity. Improved CO conversion yield could be further achieved by

coupling the Cu2O with RuOx to form a heterojunction which slows down fast charge

recombination and relatively stabilises the Cu2O photocatalyst. The RuOx amount was also

optimised to maximise the junction’s photoactivity.

Copyright ª 2013, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights

reserved.
1. Introduction It is acknowledged that Cu2O has photo-stability issue that
Our world is facing complex and intertwined issues on

pollution and energy. Rapid economic growth promotes

insatiable demand for energy, causing spikes in energy prices

coupled with depleting natural resources. At the same time,

consumption of energy, fossil fuels in particular, contributes

significantly to the increase of greenhouse gases such as CO2.

Many strategies were proposed, but a viable solution requires

the utilisation of a renewable energy source and low (initial

and running) costs. Photochemical reduction of CO2 to fuels or

value-added chemicals using inorganic semiconductor is an

attractive solution for both rising demand for clean energy

and the need for greenhouse gas reduction.

Cu2O is a cheap, relatively abundant and intrinsically p-

type semiconductor with a low bandgap of about 2e2.2 eV

[12,13]. In theory, the narrow bandgap and appropriate

positioning of the conduction and valence bands make Cu2O

an ideal photocatalyst for water splitting and CO2 reduction.
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remains a challenge [11,16]. Several correlation studies be-

tween photocatalytic reduction activity (of water to H2) on

various Cu2O exposed facets have been reported previously

[22,23], indicating that unconventional Cu2O shapes con-

sisting mostly of high-index facets display significantly

higher activities than conventional ones (cubes, etc.) with

mainly low-index facets. We very recently found that Cu2O

is an appropriate candidate photocatalyst for CO2 photore-

duction driven by visible light [4]. It is very interesting to

observe the influence of Cu2O facets on CO2 photoreduction

and the correlation between different Cu2O shapes and

product selectivity between water and CO2 photoreduction.

In this paper, the morphology/exposed Cu2O facets were

tuned and the photocatalytic reactions were investigated in

an aqueous suspensions system. Tuneable product

selectivity was observed and discussed. Finally, hetero-

junction of RuOx/Cu2O was optimised to improve Cu2O

photoactivity.
ublications, LLC. Published by Elsevier Ltd. All rights reserved.
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2. Experimental

Two types of Cu2O powders used in this study, cuboid and

octahedral-shaped, were prepared using solvothermal

method. Typical synthesis of cuboid-shaped Cu2O involves

the dissolution of Cu(NO3)2$2.5H2O in a PTFE lined hydro-

thermal reactors containing ethanol-water mixture (64:36

volume ratio), and formic acid (1.3 M). Octahedral-shaped

Cu2O was synthesised by adding 0.65 M of NH4OH. Deep red/

purple precipitates obtained after 2 h reaction at 145 �C were

washed repeatedly (5e6 times) with copious amount of water

(50 ml) and dried in an convection oven (70 �C) overnight.

Different Cu2O-RuOx junctions were prepared by impregna-

tion method using appropriate RuCl3$xH2O concentration in

water followed by heat treatment then washed for a final time

and let to dry at 70 �C before finally heated at 200 �C for 3 h.

Powder XRD was performed using Panalytical X’Pert pow-

der diffraction system fitted with X’cellerator scanning linear

detector in 0.0167� steps, at 10 s acquisition time per step. The

incident X-ray is nickel filtered Cu radiation (CuKa1:

1.540596 �A, CuKa2: 1.544493 �A, CuKa1/CuKa2 ratio ca. 65/35).

Particle morphology was observed using JEOL-7400 high res-

olution field emission electron microscope operated at 3 kV

accelerating voltage and 10 mA current 0� stage tilt on gold

coated powders. TEM measurements were conducted using

JEOL-2000-EX-MKII transmission electron microscope

(200 kV). Ten points adsorption-desorption tests on the pow-

der samples were performed on Micromeritics� TriStar 3000

with N2 carrier gas to get an estimate of their surface area

using BET calculation method.

CO2 reduction reaction was carried out in photocatalyst

suspension system using septa-sealed glass chambers fit with

flat borosilicate top window (>90% transmittance for

l � 350 nm). Prior to measurements, Cu2O powders and glass

chamber were treated at 200 �C for 3 h in a convection oven

and under 300 W Xe lamp light source for ca. 1 h to remove

traces of organic contaminants. A typical photocatalytic
Fig. 1 e Representative XRD data of (a) octahedral-Cu2O and (b)

standard Cu2O reference.
experiment is conducted using 0.5 g of photocatalyst in 3ml of

CO2 saturated deionised H2O (Elga Centra). Excess (0.7 M) so-

dium sulphite was added in each run as hole scavenger while

deionised H2O was being purged with CO2, to achieve close to

neutral condition (pH z 7.6) before introducing the Cu2O

photocatalyst. 150 W Xe lamp (Newport) was used as a light

source. Various long pass filters (Comar Instruments) were

applied to evaluate the visible light activity. The reaction

products were monitored by periodical sampling of the gas

phase from the glass chambers using a gas tight syringe to a

gas chromatograph (Varian GC-450) fit with thermal conduc-

tivity detector (TCD) connected to molecular sieve column to

detect H2, CO2, O2 and N2 and flame ionization detector (FID)

connected to CP-SIL 5CB (Varian) capillary column to detect

hydrocarbons. Argon was used as the GC carrier gas. A

methaniser was installed to enable the FID to detect CO and

CO2 with 1000� higher sensitivity.
3. Results and discussions

Representative XRD data of both Cu2O powders morphologies

are shown in Fig. 1. While all peaks can be matched with the

standard Cu2O reference [7], octahedral-Cu2O (Fig. 1a) dis-

played much sharper and more intense peaks compared to

the cuboid-Cu2O (Fig. 1b), suggesting much larger crystallite

size. It was also noticed that the intensity ratio between the

(111) and (002) reflexions for octahedral-Cu2O was much

higher at 3.3 vs. 2.9 for cuboid-Cu2O. This indicates a pro-

nounced {111} preferred orientation on octahedral-Cu2O

which are not seen on cuboid-Cu2O.

Fig. 2 shows the different morphologies of as-grown Cu2O.

In line with the findings from XRD, it was observed that the

octahedral-Cu2O particles were larger than the cuboid-Cu2O

(Fig. 2a), in excess of 10 mm (Fig. 2c). Each octahedral displays

eight uniform faces, which can be assigned to the Cu2O {111}

plane according to the preferred orientation found in the XRD
cuboid-Cu2O aggregates. All peaks can be matched with
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Fig. 2 e Different morphologies of as-grown Cu2O particles or particle aggregates: (a) FESEM and (b) TEM micrographs of

cuboid-Cu2O aggregate, showing exposed {100} facets with irregular edges and corners. (c) Octahedral-shaped Cu2O particles

with exposed {111} on its eight octahedral faces. (d) FESEM and (e) TEMmicrographs of RuOx/Cu2O heterojunction (f) Electron

diffraction data of cuboid-Cu2O TEM micrograph shown in b.
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Fig. 3 e UVeVis spectra of Cu2O with various

morphologies.
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data. Cuboid-Cu2O on the other hand, tends to form spherical

aggregates of approx. 2 mmdiameters (Fig. 2a). The BET surface

area of the samples was measured, it is ca. 0.12 m2 g�1 for

octahedral Cu2O and 0.55 m2 g�1 for cuboid-Cu2O.

It was also observed using TEM that the individual cuboid-

shaped Cu2O particles were defined as 50e100 nm particles

with round edges and corners (Fig. 2b). Electron diffraction

data (Fig. 2e) suggested that the six exposed faces of cuboid-

Cu2O could be assigned to the Cu2O {002} plane, judged by the

unusually bright {002} diffraction spot and much weaker {111}

diffraction at the same time.

UVeVis absorption spectra of both Cu2O morphologies are

shown in Fig. 3. While both Cu2O morphology show similar

band edge around 660 nm, although the cuboid-Cu2O spectra

were slightly blue-shifted, probably because of its smaller

crystallite size. The estimated bandgaps of cuboid and octa-

hedral-Cu2O are approx. 1.87 and 1.83 eV respectively.

Despite having over four times lower surface area, octa-

hedral-Cu2O ({111} terminated) produces much more H2 with
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trace amounts of CO (Fig. 4a and b), indicating the surface are

is not the dominating factor in the studies. Cuboid-Cu2O ag-

gregates ({100} terminated) on the other hand display a pecu-

liar preference towards CO2 reduction to CO in expense of

reduced H2 production. As the same photocatalytic reaction

conditions were applied on both Cu2O shapes, the photore-

duction selectivity shift from H2 to CO can only be attributed

to the exposed Cu2O facets taking into account the similar

UVeVis absorption of the two samples.

It has been shown previously that catalytic activity can be

altered with varying catalyst shape and sizes [9]. The key

argument is that the different catalyst shapes dictate the

fraction of atom located on the edges, corners, or high-index

facets [22]. These locations possess much greater density of

unsaturated (slightly under-coordinated) steps, and imper-

fections like ledges, kinks compared to low indexed planes,

which can serve as active sites for breaking chemical bonds

[10,17,19]. In some other oxides like ZnO, higher catalytic ac-

tivity could also rise from the different polarity of the exposed

facets [20,21].

Reports on the use of Cu2O for photocatalytic water split-

ting have always been based on tetrapod-shaped Cu2O, which

consists of mainly {111} exposed facets [5,6]. From the

different photoreduction products observed in this study, it is
Fig. 4 e Averaged photocatalytic activity of various Cu2O

particles or aggregates (a) CO yield, (b) H2 yield under full

arc of 150 W Xe lamp. Test conditions: 0.5 g photocatalyst,

3 ml of CO2 saturated deionised H2O, 0.7 M Na2SO3

scavenger.
proposed the Cu2O {111} facets, seen on the octahedral-Cu2O

may be the dominant surface for proton reduction. The Cu2O

{100} facets and the irregular edges observed in cuboid-Cu2O

aggregates on the other hand is likely dominant for CO2

photoreduction sites. In other words, the low index facets

exhibit higher activity for CO2 photoreduction than high index

facets, which is different from the common rules mentioned

in the introduction. The possible reason for this might be due

to the adsorption of CO2 on different facets of Cu2O. More

detailed studies are underway.

It was also noticed that the gas evolution rate profile of H2

and CO were different. H2 evolution rates for both Cu2O

morphologies are more or less linear with time (Fig. 4b), while

the CO evolution rate, especially in the spherical-shaped

Cu2O, decreases after the first hour (Fig. 4a). It is possible

that this is caused by differing stability of Cu2O {111} and {100}

facets in presence of aqueous sulphate as reported previously

[15]. Indeed the cuboid-Cu2O was more severely degraded

after photocatalytic reactions than octahedral shaped parti-

cles (see Supporting Information Figs. S1 and S2), implying

that the {111} facets seen on octahedral-shaped Cu2O are

much more stable and indeed responsible for proton reduc-

tion reactions.

Rapid charge recombination is the key issue in photo-

catalytic reactions over many photocatalysts [18]. It has pre-

liminarily been observed that a solid-state heterojunction

based on CuO2 can efficiently separates holes from electrons,

observed by time resolved spectroscopy [4]. Similar phenom-

enon was also observed on cobalt phosphate coated Fe2O3

photoelectrodes [1]. RuOx is a conductive metal oxide with

large work function [2,3], which has been proven effective as

oxidation catalyst for many substances including water

[8,14,24]. Different loading amounts of RuOx were therefore

investigated in detail herein on cuboid-shaped Cu2O aggre-

gates to find out the optimum RuOx loading. The amounts of

CO evolved for the first 30 min were plot in Fig. 5a. It is

apparent that the photoreduction activity of the RuOx/cuboid-

Cu2O ({100} dominated) junction generally increases with

increasing RuOx amount up to 0.25%, due to the enhanced in-

situ charge separation effect. However as shown in the SEM

micrograph of 0.25 wt% RuOx/CuO2 sample (Fig. 2d), the CuO2

surface is nearly fully covered by RuOx, above the amount the

light screening effect by the RuOx particulates becomes

dominant. The photoactivity decreases after this point on-

wards until 1.5 wt% of the RuOx loading. Furthermore, the

stability of the cuboid-Cu2O ({100} dominated) is relatively

enhanced by the surface coating of RuOx layer (see Supporting

Information Figs. S1 and S3). It is also noted that the increase

of CO production occurs at the expense of H2, the H2 produc-

tion rate decreases from ca. 50 ppm g�1 h�1 for bare cuboid

Cu2O to around 12 ppm g�1 h�1 for 0.25% RuOx loaded cuboid

Cu2O. This is likely because the low availability of suitable H2

evolution sites on the cuboid Cu2O surface is further blocked

by the RuOx loading.

Cu2O is a narrow bandgap semiconductor. Its photo-

activity was also investigated under visible light. The activ-

ities of bare and 0.25 wt% RuOx/cuboid-Cu2Owere observed by

filtering wavelengths below 420 nm using a long pass filter

(Fig. 5b). The results clearly show that both bare Cu2O and

RuOx/Cu2O junction exhibit visible driven activity for CO2

http://dx.doi.org/10.1016/j.ijhydene.2013.03.128
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Fig. 5 e (a) The first 30 min of CO yield of cuboid-Cu2O

aggregates with different amount of RuOx co-catalyst

loading, (b) Activity of cuboid Cu2O and the heterojunction

under visible light (l ‡ 420 nm). Test conditions: 0.5 g

photocatalyst, 3 ml of CO2 saturated deionised H2O, 0.7 M

Na2SO3 scavenger.
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photoreduction, however the RuOx/Cu2O is much more active

than bare Cu2O and able to sustain the CO evolution rate

better after the first hour.
4. Conclusions

In summary, we highlighted that the photocatalytic reaction

selectivity shifted in favour of CO2 reduction by tuning the

shape and exposed sites of Cu2O photocatalyst. Furthermore,

different from the many reports in which the facets with high

Miller indices show higher photoactivity, e.g. for water split-

ting, low index facets of Cu2O is beneficial for CO2 photore-

duction. It was also found that bulk Cu2O instability is a

serious issue for photocatalytic CO2 reduction than H2 evolu-

tion, because the {111} exposed facet that prefers H2 evolution

reaction were found to be much more stable than the {100} in

aqueous solution containing sulphates. As expected RuOx

loading improves the CO evolution yield under both full arc

and visible light irradiation, and the optimum loading for the

cuboid-Cu2O aggregates were found at 0.25 wt%, above which

the light blocking effect from RuOx dominates and reduce the

overall photocatalytic activity.
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Appendix A. Supplementary data

Supporting information: FESEM micrograph of (S1) cuboid-

Cu2O, (S2) Octahedral-Cu2O and (S3) heterojunction after

3 h reaction can be found online at http://dx.doi.org/10.1016/j.

ijhydene.2013.03.128.
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