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Abstract 

Cells sense and generate both internal and external forces. They resist and transmit these 

forces to the cell interior or to other cells. Moreover a variety of cellular responses are 

excited and influenced by transducing mechanical stimulations into chemical signals that 

lead to changes in cellular behaviour. The cytoplasm represents the largest part of the cell 

by volume and hence its rheology sets the maximum rate at which any cellular shape 

change can occur.  

To date, the cytoplasm has generally been modelled as a single-phase viscoelastic 

material; however, recent experimental evidence suggests that its rheology can be 

described more effectively using a poroelastic formulation in which the cytoplasm is 

considered to be a biphasic system constituted of a porous elastic solid meshwork 

(cytoskeleton, organelles, macromolecules) bathing in an interstitial fluid (cytosol). In 

this framework, a single parameter, the poroelastic diffusion constant pD , sets cellular 

rheology scaling as 2~ /pD Ex m  with E  the elastic modulus, x  the hydraulic pore size, 

and m  the cytosolic viscosity. Though this poroelastic view of the cell is a conceptually 

attractive model, direct supporting evidence has been lacking. In this work, such evidence 

is presented and the concept of a poroelastic cell is validated to explain cellular rheology 

at physiologically relevant time-scales. 

In this work, the functional form of stress relaxation in response to rapid application of a 

localised force by atomic force microscopy microindentation is examined in detail and it 

is shown that at short time-scales cellular relaxations are poroelastic. Then, pD  is 

measured in cells by fitting experimental stress relaxation curves to the theoretical model. 



 

 

VI 

 

Next, using indentation tests in conjunction with osmotic perturbations, the validity of the 

predicted scaling of pD  with pore size is qualitatively verified. Using chemical and 

genetic perturbations, it is shown that cytoplasmic rheology depends strongly on the 

integrity of the actin cytoskeleton but not on microtubules or intermediate filaments. 

Finally, comparison of scaling of viscoelastic and poroelastic models suggests that short-

time scale viscoelasticity might be due to water redistribution within the cytoplasm and a 

simple scaling relating cytoplasmic viscosity to cellular microstructure is provided. 
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Chapter 1  

 

Introduction 

 

 

 

Equation Chapter (Next) Section 1 

1.1 A Microscopic view: biological structure of cell  

Living cells, the elementary units of life, all carry out similar basic functions and they 

display a common architecture despite their various shapes, sizes and internal 

complexities (Figure 1-1). In addition to basic functions such as proliferation, protein 

synthesis, molecule transport and energy conversion, cells may also perform more 

specialised roles that pertain to the organs that they are part of. Prokaryotic cells, such as 

bacteria, lack membrane-bounded nuclei while eukaryotic cells contain membrane-

bounded compartments (including nuclei and other organelles) that perform specific 

metabolic activities and energy conversion. Plant and animal cells are eukaryotes and are 

typically larger (~ 5 to 100 µm) and more complex than prokaryotic cells (~ 1 to 10 µm). 

The internal and external environments of the eukaryotic cells are separated by a plasma 

membrane which is a selectively-permeable barrier consisting of a lipid bilayer with 
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embedded proteins. The work described in this thesis is focused on the animal cell whose 

fluid-like plasma membrane cannot alone adopt complex cellular morphologies [1, 2]). 

The material inside the cell membrane, excluding the nucleus, is generally referred to as 

the cytoplasm which consists of a liquid phase, the cytosol (water, salts, small proteins), 

and a solid phase (cytoskeleton, organelles, ribosomes, etc). A general diagram of animal 

cell organisation is given in Figure 1-1B. 

 

 

 

Figure 1-1 Living cells 

(A) Coloured scanning electron micrograph (SEM) of a HeLa cancer cell undergoing cell division. Source: 

http://www.sciencephoto.com/media/137830/enlarge. (B) Schematic showing the generic cytoplasm 

organisation and nucleus of an animal cell. The main cellular structures and organelles are listed in the right 

panel. Source: http://en.wikipedia.org/wiki/File:Biological_cell.svg.   

http://www.sciencephoto.com/media/137830/enlarge
http://en.wikipedia.org/wiki/File:Biological_cell.svg
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The cellular skeleton (cytoskeleton) is a complex network of three major types of 

polymeric fibre of varying size and rigidity extending throughout the cytoplasm. It 

consists of cable-like actin filaments with diameters of ~ 7 nm, rope-like intermediate 

filaments with diameters of ~ 10 nm and pipe-like microtubules with diameters of ~ 20 

nm [1-3] (see Figure 1-2). The cytoskeleton is responsible for maintenance of cell shape, 

cell migration, resistance to externally applied mechanical forces, and cell division. 

Furthermore it controls and facilitates the transport of intracellular particles and 

organization of cell contents.  

Actin filaments are known to be the most important polymer network for the mechanics 

of the cytoskeleton. They are organized in a variety of structures such as networks of 

filaments within the cytoplasm, the cortex under the plasma membrane, the lamellipodia 

at the cell edges, the filopodia and contractile stress fibres. The subunit of an actin 

filament (F-actin) is a globular actin protein (G-actin) which accounts for about 5-10 

percent of the total cellular protein content [4, 5]. A typical actin filament has a 

longitudinal elasticity of ~ 2 GPa and a persistence length of ~ 15 µm which is larger than 

its typical contour length of ~ 2 μm. Actin filaments have a distinct polarity originating 

from the structural asymmetry of G-actin and filaments exhibit a faster polymerisation 

rate at one end (plus barbed-end) compared to the other end (minus pointed-end).  

αβ tubulin heterodimers organize into long hollow cylinders to form microtubules which 

are the second major constituent of the cytoskeleton [4]. Similar to F-actin, microtubules 

are polar filaments because of the structural arrangement of their subunits [2]. 

Microtubules are straight and rigid with turnovers on the order of minutes [6], and they 

play a key role in chromosomal distribution during cell division. They typically radiate 

randomly from the centrosome (which is a microtubule organizing centre (MTOC) near 

the nucleus) towards the periphery of the cell with their (–) ends proximal to the MTOC 

and their (+) ends directed away from the MTOC. The tubular structure of microtubules 

gives rise to a higher bending stiffness than actin filaments despite their similar effective 

longitudinal Young’s moduli [2]. The persistence length of microtubules is ~ 5 mm which 
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is ~ 1000 fold larger than their typical length ~ 5 µm and the typical length of a cell: ~ 

50 µm. Microtubules are known to be the most significant compressive-load bearing 

elements of the cytoskeleton [7]. 

As the most abundant cytoskeletal filaments, intermediate filaments are located both 

inside the cytoplasm and the nucleus and form a large and more diverse family of highly 

a -helical proteins. Unlike actin filaments and microtubules subunit proteins, these a -

helical proteins integrate into more diverse sequences with greatly varying molecular 

weights to form different types of intermediate filaments such as: keratins that are 

abundant in epithelial cells, lamins that are involved in the formation of a structure called 

the lamina which is located underneath nuclear membrane and helps stabilise the nuclear 

envelope, and vimentin filaments that are expressed mainly in mesenchymal cells [3]. 

Intermediate filaments, typically have a diameter of ~ 10 nm which is in between the 

diameter of actin filaments (7 nm) and microtubules (25 nm).They have a persistence 

length of ~ 1 µm that is smaller /comparable to their length giving them more flexibility. 

Intermediate filaments extend out from around the nucleus throughout the cytoplasm and 

it is thought that they are mechanically incorporated with other parts of cytoskeleton 

through specialised crosslinking proteins to reinforce the integrity of the cell [8]. 

Intermediate filaments are more stable than actin filaments and microtubules (for instance 

keratin filaments have a turnover of ~ 30 min [9]) and play a major role in cell-cell 

attachments in epithelial tissue [10].  
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Figure 1-2 The three major types of filaments that constitute the cytoskeleton.  

(A,B,C -I): The electron micrographs and lattice structure of filaments: source:[3] (A,B,C –II): Schematic of 

spatial distribution of cytoskeleton filaments. (A,B,C –III): Distribution of cytoskeletal constituents in live 

HeLa cells. All images are maximum projections of confocal stacks. Green indicates the localisation of the 

GFP-tagged construct. The nucleus is shown in blue in all images. (A-III) F-actin was enriched in cell 

protrusions but was also present in the cell body. (B-III) GFP-α-tubulin was homogenously localised in the 

cell body. A-III & B-III were acquired by L. Valon. (C-III) Intermediate filaments (keratin 18) were 

homogenously distributed in the cell body. Scale bars = 10 μm. 

  



 

 

21 

 

As briefly described in the previous paragraphs, each cytoskeletal filament is constructed 

from specific protein subunits. There exists a continual flux of constituent subunits 

onto/from both ends of filament which results in polymerisation/depolymerisation. In the 

steady state, polymerisation and depolymerisation are balanced and as a result the 

filament maintains a given length, a phenomenon known as treadmilling (see 

Figure 1-3C-III for actin filament). Under normal conditions, the rate of this 

polymerisation/depolymerisation (turnover) is different for each of the three major types 

of cytoskeletal filament. For instance, intermediate filaments have a much slower rate of 

turnover (~ tens of minutes) than actin filaments (~ tens of seconds). Many active features 

in the cell such as force generation are in part due to these energy consuming turnover 

processes. For instance, actin polymerization [11-13] constructs the leading edge of the 

cell, a two dimensional sheet-like structure called the lamellipodium, that drives cell 

protrusion (see Figure 1-1 and Figure 1-3). 

The above three major filament types are the key parts of the cytoskeleton. To build the 

cytoskeletal network architecture and define the mechanics of the cell, these primary 

filaments interact with one another, cross-link and bind with themselves and connect to 

other parts of cytoplasm (plasma/nuclear membrane, organelles, etc) through various 

types of linking proteins and molecular motors. Motor proteins convert the energy 

released by ATP hydrolysis into mechanical work to dynamically interact with the 

cytoskeleton and to facilitate many different cellular functions such as force generation 

and locomotion, cell division and intracellular transport. For instance during cell 

movement, myosin II motor proteins move along cytoskeletal filaments and generate 

contractile forces necessary for contraction of the cell rear (see Figure 1-3D and 

Figure 1-4). Crosslinking proteins organize cytoskeletal filaments into entangled and 

bundled complex scaffolds. Hence, they help determine the network architecture leading 

to different cellular mechanical functions [14]. For example, the crosslinking protein α-

actinin is one of the most abundant acting binding proteins and it crosslinks actin 

filaments into bundles to provide contractility in cytoskeletal assemblies such as stress 
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fibres [15] and the contractile ring [16] (Figure 1-4). Other crosslinkers, such as filamin, 

organise actin filaments into a crosslinked gel-like network (Figure 1-4). 

 

 

 

Figure 1-3 Generation of force in the actin-rich cortex moves a cell.  

(A) Scanning electron microscope image of a fish keratocyte. (B) Phase-contrast image of the keratocyte 

moving downward with a speed of ~ 15 µm.s-1. (C-I) Distribution of cytoskeletal filaments with actin 

fillaments in brown, microtubules in green and intermediate filaments in blue. (C-II) Electron micrograph of 

the F-actin network in the lamellipodium. (C-III) Treadmilling: polymerisation/depolymerisation of actin 

filaments by reversible addition of actin subunits to the free ends of the filament. One end of the filament 

elongates (plus end) while the other end shrinks (minus end). At steady state, addition and loss are balanced. 

(D) Schematic diagram of how cells move forward. Actin polymerisation at the leading edge of the cell 

extends a protrusion in the direction of movement. The leading edge adheres to the substrate in front and 

adhesions at the rear of the cell are detached. The contractile forces generated by the acto-myosin at the cell 

rear push the whole cell body forward. Source:[3].  
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Figure 1-4 Binding proteins induce structural phase transitions to polymerised solution of purified filaments.  

(A) Addition of binding proteins with different properties such as type, organisation and concentration results 

in the formation networks with different microstructural organisations. Adapted from [17]. (B) Effects of 

crosslinkers and myosin II thick filaments on the network topology of actin filaments. (B-I) Entangled 

network of purified actin filaments. (B-II) Addition of α-actinin crosslinker proteins changes the shape and 

architecture of the actin filament network. (C) Addition of myosin II ,motor proteins leads to further 

contraction and rearrangement of the crosslinked F-actin network. Source: [18]. 
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1.2 The role of mechanics in cell function 

Living cells sense their environment and generate internal and external forces [19]. They 

resist and transmit these forces to the cell interior or other cells through chemical and 

physical signals. Complex sensory machineries located on different cellular sites such as 

primary cilia, stretch-gated ion channels and focal adhesions are responsible for sensing 

mechanical stimulations (arising from application of different types of forces such as 

tensional, compressional, pressure and shear forces) generated internally or applied 

externally on different parts of the cell and eventually transducing these cues into 

biochemical signals (see Figure 1-5A) [20, 21]. More fascinatingly, in a closed-loop 

feedback manner these mechanosensed biochemical signals trigger energy-consuming 

chemical processes relying on ATP hydrolysis that cells employ to modify their own 

behaviour and generate forces to respond to and resist the initial mechanical cues.  

Mechanotransductory processes greatly influence and control a variety of cellular 

responses that lead to changes in cellular behaviour and function such as changes in cell 

morphology, lineage and fate [22, 23]. For example, in the musculoskeletal system, actin 

and myosin molecular motors produce active contraction in muscle cells in response to 

external electrical stimuli such as nerve influxes. Inner hair cells transduce the fluid 

oscillation generated in the cochlea by sound waves into electrical signals that are 

transmitted to the brain. Vascular endothelial cells bear hemodynamic forces, such as 

blood flow shear stress and pressure, and convert these applied stresses into intracellular 

signals that influence cellular functions such as proliferation, migration, permeability, and 

gene expression [24]. More interestingly, fluid shear stresses can modulate endothelial 

structure and function (see Figure 1-5B). Indeed endothelial cells, through rearrangement 

of their cytoskeletal structures and active remodelling processes, change their shape and 

align themselves with the direction of the flow to control the magnitude of shear forces 

they are exposed to [24]. One outstanding challenge in cell biology is to understand how 
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mechanical cues can be transduced into biochemical cues and how biochemical changes 

in the cell can give rise to changes in cellular mechanics or the forces applied by cells. 

 

 

 

 

Figure 1-5 Cells sense and respond to application of forces. 

(A-I) Application of different types of forces on cell such as shear forces induced by fluid flow over the cell, 

tensile forces arising from the extracellular matrix (ECM) and internal compressional or tensional forces 

induced and borne by the cellular cytoskeleton. (A-II) Diagram of a mechanosensor at the focal adhesions. At 

the focal adhesion site, the internal cytoskeletal forces are balanced by external forces distributed on the ECM 

(blue). On the external side of the cell membrane, ECM is attached to focal adhesions (multicolored array 

of proteins) through integrins (brown). On the internal side of the cell, membrane actin microfilaments (red) 

are anchored into focal adhesions. (III) The internal and external forces are passed through the 

mechanosensory site where forces can be sensed, controlled and regulated in a closed-loop feedback. Source: 

[20] (B) Endothelial cell morphology transformed by longterm exposure to fluid shear stress. Increasing the 

level of shear stress from 0 to > 1.5 Pa causes alignment of bovine aortic endothelial cells (shown under static 

culture conditions in I) in the direction of fluid flow after 24 hours (shown in II).Source: [25]. 

 

 

Entanglement (physical) and crosslinking (biochemical) of filamentous polymer networks 

inside cells maintain cell shape and govern cellular mechanical properties such as 

elasticity. Molecular motors and crosslinkers contract the cytoskeletal polymer network 
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and induce pre-stresses. Active mechanical forces generated from chemical reactions 

(such as active polymerisation of filaments or molecular motors) enforce morphogenetic 

changes such as cell rounding, cytokinesis, cell spreading, or cell movement. During 

these gross morphogenetic changes the cytoskeleton provides the force for 

morphogenesis but the maximal rate at which shape change can occur is dictated by the 

rate at which the whole cell can be deformed. Hence, the dynamic mechanical properties 

(rheology) of cytoplasm, which are poorly understood and are the main topic of this 

work, play a major role in setting the rate at which any morphogenetic event can occur. 

Furthermore, cells detect, react, and adapt to external mechanical stresses by regulation of 

microscopic processes that changes their mechanics. However, in the absence of an in 

depth understanding of cell rheology, the transduction of external stresses into 

intracellular mechanical changes is poorly understood, making the identification of 

the physical parameters that are detected biochemically largely speculative.  

Although the correlation between the mechanical properties of tissues and diseases 

has been recognized quite widely for a long time, the connection between the mechanics 

of living cells (at single cell level) and disease is poorly understood. Indeed, the cell 

phenotype in health or disease can be affected by the rheology of the cell. One clinical 

example suggests that changes in cell rheology can have consequences for the health of 

patients: some patients with a low neutrophil count exhibit a constitutively active 

mutation in the Wiskott Aldrich syndrome protein (CA-WASp) that results in over-

activation of actin polymerisation through dysregulated activation of the Arp2/3 complex, 

leading to delays in several stages of mitosis [26, 27]. This overabundance of cytoplasmic 

F-actin increases cellular apparent viscosity resulting in delays in all phases of mitosis 

and causing kinetic defects in mitosis (Moulding et al, Blood, 2012). Further to this 

example, there are other reports that identified different mechanical properties for 

cancerous cells compared to those of normal cells [28-31] which illustrate the importance 

of studying cell rheology. The ultimate goal is to combine theoretical, experimental and 
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computational approaches to construct models for a realistic description of the various 

types of cellular mechanical behaviours based on their microscopic cytoskeletal 

arrangement, something necessary to enable a true physical understanding of the stress 

fields present and generated in tissues and developing embryos during physiological 

functions. 

1.3 Experimental techniques for measuring cellular mechanical 

properties 

Depending on the length scale of the cellular structure under investigation and the 

required spatial and temporal resolution, many experimental techniques have been 

utilized to measure the mechanical properties of the different cellular components. In 

general, most methods measure the static/dynamic response of the cellular structure to the 

application of controlled forces or deformations. Other techniques track the motion of 

endogenous or embedded particles of various sizes to study the rheology of the cell. The 

important point is that due to the heterogeneity and complexity of the cell and the 

cytoskeleton, the submicrometre-scale measurement techniques can lead to considerably 

different evaluations of mechanical properties compared to bulk (several micrometre 

scale) measurement techniques. One of the main challenges is to find a universal 

framework under which the measured macroscopic properties can be interpreted to obtain 

realistic information about the dynamics of the microstructure of the cell or vice versa, 

i.e. to estimate the bulk rheological properties from the measured microscopic properties 

[32]. 
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Figure 1-6 Common experimental techniques for measurement of cell rheology.  

 

 

Several experimental methods such as magnetic twisting cytometry [33, 34], magnetic 

tweezers [35], optical tweezers [36], substrate cell stretchers [37, 38], shear flow 

rheometry [39, 40] (see Figure 1-6) and atomic force microscopy (AFM) (see the 

following paragraph and Figure 1-7) have been utilized to perturb small regions of the 

cell or deform an entire cell to investigate cell rheology. An alternative technique is the 

use of passive methods, such as traction force microscopy that involves quantification of 

cellular traction forces using different detection mechanisms such as micropillar arrays 

[41] or substrate-embedded beads [42]. One more recently applied technique is particle-



 

 

29 

 

tracking microrheology that tracks motion of embedded or attached tracer particles 

present within the system to extract cellular mechanical properties [43]. Depending on the 

cell type, the experimental condition and the probing technique diverse ranges of cellular 

rheological properties have been reported and various mechanical models (some of which 

are described in the following sections) were applied to interpret quantitative 

measurements of cell mechanical properties. Further to the need for significant 

improvement in mechanical models, the experimental methods also required to be 

improved to measure local/global mechanical properties of single cells more accurately. 

Some of these important features include: the ability to impose/measure deformations and 

forces on micro and nano scales, perform dynamic experiments, integrate with other 

experimental tools such as confocal microscopy and maintain cell viability for a 

sufficient period of time [4, 44-46].  

1.3.1 Atomic force microscopy 

In my studies, I utilized the Atomic force microscope (AFM), a very high resolution form 

of scanning probe microscope that was invented in 1986 [47] and has emerged rapidly as 

a versatile tool to study biological samples over the past two decades [48]. This allowed 

me to acquire topographic images of cells (Figure 1-7D), probe rigidity [49] and 

characterisation of viscoelastic properties of different cell lines (Moulding et al, Blood, 

2012) and extracellular gel matrices (Calvo et al, Nature Cell Biology, under review). 

Topographic AFM measurements involve a tip connected to a micro-fabricated cantilever 

being scanned over the surface of a sample in a series of horizontal sweeps (see 

Figure 1-7A). A laser beam from a solid state diode is reflected off the back of the 

cantilever and collected by photodiodes. Perturbations in the movement of the tip due to 

surface topography result in changes in bending of the cantilever and consequently of the 

reflection path of the laser beam which is sensed via photodiodes. A piezo-electric 

ceramic in a feedback loop is used to move the cantilever up and down to maintain a 

constant bending of the cantilever. In contact mode, the tip is touching the surface while 
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sweeping across it. As the deflection of the cantilever is kept constant, the surface 

topography is reconstructed in 3D from the piezo movement and the planar trajectory of 

the cantilever (see Figure 1-7A). The cantilever vertical and lateral deflections provide 

information about the sample height changes and can map the surface distribution of 

different chemical functionalities [50].  

In addition to high resolution imaging of biological structures, AFM has been used 

extensively to assess the mechanical properties of biological materials such as elasticity 

and viscoelasticity [51-54]. As will be explained later in Chapter 3.7, AFM indentation 

was employed in this thesis to characterise the rheological properties of cytoplasm. 

Furthermore AFM can be integrated with other techniques such as defocusing microscopy 

to investigate stress propagation inside cells and this idea will be described in the last 

chapter. 
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Figure 1-7 Atomic force microscopy imaging of the cell surface.  

(A) Schematic diagram of an AFM cantilever tip scanning a surface. Vertical cantilever motion is controlled 

by a piezoelectric ceramic through a feedback loop. Bending of the cantilever alters the laser beam reflection 

path which is sensed by photodiodes. (B-I,II) SEM images of AFM cantilevers with pyramidal (I) and glued 

spherical (I) tips. In (II) a glass microbead was glued onto the cantilever. (C) Phase contrast image of an AFM 

cantilever probing HeLa cells cultured on a glass coverslip. (D-I) Contact mode image of HeLa cells shown 

in (C), imaged in cell culture medium with a pyramid tipped cantilever. (D-II) Three dimensional 

reconstruction of cell topography. Scale bars = 10 µm. 
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1.4 Cell mechanics and rheology 

1.4.1 The origin of cellular mechanical and rheological properties 

As a first step to studying cellular mechanical and rheological properties, the cell can be 

simply considered as a conventional engineering material [55]. Simple conventional 

materials exhibit very simple frequency-dependent responses: for normal solids the shear 

modulus is independent of frequency and for liquids it is simply proportional to 

frequency. However, materials (including cells) with more complex hierarchical 

structures and a high degree of heterogeneity can exhibit a variety of complex responses 

depending on strength, frequency and spatial application of deformations and forces. 

Being such a complex material, the cell displays viscoelasticity, i.e. it behaves like an 

elastic solid over short time scales with a finite shear modulus whereas it acts as a viscous 

liquid at long time scales [56, 57]. In intermediate regimes, both the storage and shear 

moduli govern the mechanical response of the cell. At different hierarchical levels, 

individual microstructural elements of the cytoskeleton are perturbed by application of 

force and deformed at microscopic scales to accommodate macroscopic deformations. 

Furthermore, processes such as continuous turnover of cytoskeletal fibres, 

association/dissociation of crosslinkers and activity of molecular motors mean that the 

cell is an active biological material [56] that exhibits astonishing rheological behaviours 

by coupling active and passive biochemical and mechanical processes. Indeed, time-

dependent measurements of cellular properties reveal a spectrum of relaxation times 

which are strongly influenced by the size, stability, geometry, and flexibility of cross-

linkers, active motions, and changes in filament structure due to turnover [45].  

1.4.2 Cell as a continuum media 

Experiments on cells have shown that the cytoskeleton is the main determinant of cellular 

mechanical properties. Hence, much effort has concentrated on describing cytoskeletal 

rheology. As will be described in the following, wide ranges of top-down and bottom-up 
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theoretical models have been proposed to describe the rheology of the cytoskeleton and 

the cellular environment. A robust model is one that can incorporate the minimum 

necessary information about internal structure, spatial granularity, heterogeneity and the 

active features unique to cells to predict long-wavelength and long-timescale 

redistribution of stress [46, 56]. However the search for such a comprehensive model is 

still ongoing. Indeed, even a description of the cell as a multi-layered composite (such as 

an elastic membrane tightly bound to the subcortical actin gel, a more granular gel-like 

inner layer, a more fluid layer in the cell interior and a stiff nucleus) without 

incorporating the internal complexity of each layer and active processes still remains a 

very complex system to investigate. Indeed, experimentally measured rheological 

properties are highly dependent on the size of the probe as well as its connectivity and 

interaction with the cellular structures [58]. For example, during microindentation 

experiments with a micron-sized bead, the induced deformations on the cell are 

significantly larger than the mesh size of the cytoskeletal network such that continuum 

viscoelastic models can be safely used without concern for the heterogeneous distribution 

of filamentous proteins in the cytoskeleton. Therefore, operating at sufficiently large 

length scales, cells can be considered as continuum media in which the contribution of the 

microarchitecture can be coarse-grained through constitutive laws. Despite the limited 

ability of continuum models to explain complex cytoskeletal structures, to date they are 

still the most efficient means of describing experimental observations on the micrometre 

scale and to model stress/strain transmission through the cell. These models are 

particularly useful when associated with coarse-grained relations giving scaling between 

continuum level rheology and cellular microstructure. Considering the cell as a single 

phase material, several types of viscoelastic models have been employed to predict the 

biomechanical behaviour of cells [44]. On the other hand, multiphasic models such as 

biphasic poroelasticity have been applied to investigate the effects of the different 

constitutive phases on cell rheology [4, 59].  
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Figure 1-8 Universal phenomenological behaviours of the cell and models of cell rheology. 

(A) The frequency response of cells measured with several measurement techniques. Two master curves were 

obtained after rescaling the results from different rheological measurements. Adapted from: [58]. (B) 

Spontaneous retraction of a single actin stress fibre upon severing with a laser nanoscissor shows existence of 

prestress in the cytosketal bundles. Scale bar = 2 µm.Source:[60]. (C) Anomalous diffusion and response of 

the cell to stretch. Spontaneous movements of beads attached firmly to the cell (C-I, II) show 

intermittent dynamics. Adapted from [61]. (C-III) The mean square displacement (MSD) of a bead anchored 

to the cytoskeleton exhibits anomalous diffusion dynamics (subdiffusive at short time intervals 

and superdiffusive at longer time intervals). Red curve indicates the MSD of the bead for a non-stretched cell 

and other curves show the MSD of the bead in response to a global stretch measured at different waiting 

times ( wt ) after stretch cessation. Scale bars = 10 µm.Source: [62]. 

 

1.4.3 Universality in cell mechanics  

Cell mechanical studies over the years have revealed a rich phenomenological landscape 

of rheological behaviours that are dependent upon probe geometry, loading protocol and 

loading frequency [58, 63, 64]. More recent mechanical measurements on eukaryotic 

cells agree on the presence of four universal cellular phenomenological behaviours [65]: 

1) Cell rheology is scale free: plots of the frequency response of many cell types on log-

log scale display the same shape and follow a weak power law spanning several decades 
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of frequency [58]. 2) Cells are prestressed: mechanical stresses generated continuously by 

the internal activity of actomyosin or applied externally on the cell are 

counterbalanced by the tensional/compressional state of the cytoskeleton [66]. 3) The 

fluctuation dissipation theorem (FDT) breaks down and diffusion is anomalous [61]: The 

spontaneous motion of endogenous particles or embedded/attached beads present within 

the system does not follow the Stokes-Einstein relationship (see section 1.4.4.2 for 

explanation of this relationship). 4) Stiffness and dissipation are altered by stretch: 

Application of stretch significantly perturbs the rheological properties of the cell and 

depending on the experimental condition the cell can exhibit different behaviours such as 

stress stiffening, fluidisation and rejuvenation [62]. See Figure 1-8 for brief illustration of 

these universal behaviours.  

 

 

 

Figure 1-9 Schematic representation of four different models of cell rheology. 

(A) Examples of linear viscoelastic models. (B) Tensegrity [66] (C) Soft glassy rheology [67]. (D) Network 

of semiflexible filaments models (with or without effects of crosslinkers and molecular motors). 
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Several top-down (linear viscoelasticity, tensegrity, soft glassy rheology) and bottom-

up (networks of semiflexible polymers) theoretical models (see Figure 1-9) have been 

successfully applied to explain the observed phenomenological universal behaviours [64]. 

However there is still no unifying theory to explain the physical mechanisms that govern 

these observed universal cellular behaviours. As will be described briefly in the following 

sections, linear viscoelasticity, immobilized colloids/ soft glasses and the network of 

semiflexible polymers are the most widely used models that have been proposed to study 

cell mechanics. 

1.4.4 Top-down approaches to studying cell rheology 

1.4.4.1 Linear viscoelastic models 

Elastic and viscoelastic constitutive laws have been applied to study the response of the 

whole cell to external forces and to investigate the stress and strain distribution inside the 

cytoplasm. Whereas the static mechanical properties of cells (elasticity) have been 

studied in depth, the time-dependent mechanical properties of cells have received 

significantly less attention. The majority of the work to date utilises an empirical 

viscoelastic description of cells that assumes the cytoplasm is a single phase homogenous 

material [32, 53, 68, 69]. The fundamental properties of simple elastic and viscoelastic 

materials are explained briefly in Chapter 2. The most commonly used viscoelastic 

models consider the whole cell or part of it as a homogeneous continuum, where the 

smallest length scale is significantly larger than the dimensions of the microstructural 

constituents. Examples of such models are cortical shell-liquid core, elastic/viscoelastic 

solid, and power-law models [44, 64]. The cortical shell-liquid core and 

elastic/viscoelastic solid models can generate good fits to experimental data by 

introducing a finite number of elastic and viscous elements (springs and 

dashpots) coupled in series or parallel leading to exponential decay functions with a finite 

number of relaxation times [44]. One example of such a model used to fit stress 
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relaxation is illustrated in Chapter 2.2.2. In contrast to spring-dashpot models, power law 

models do not have any characteristic relaxation time and cannot be easily described 

using mechanical analogs. Power law structural damping models have been applied more 

widely in recent microrheological experiments that measure the viscoelastic response of 

the cells over a broader range of frequencies and times. Despite their widespread use, the 

major limitation of these models is that they are not mechanistic, fail to relate the 

measured rheological properties to structural or biological parameters within the cell, and 

thus cannot predict changes in rheology due to microstructural changes.  

1.4.4.2 Cell as a soft glassy material: macromolecular crowding and anomalous 

diffusion  

A large body of more recent research has found that some of the cellular rheological 

behaviours are empirically similar to the rheology of soft materials such as foams, 

emulsions, pastes, and slurries. Following some experimental observations, it was 

proposed that cells could be considered as soft glassy materials [67]. Indeed, measuring 

the fluctuations of particles within the cytoplasm revealed that in many cases they exhibit 

a larger random amplitude of fluctuations than expected and a greater degree of 

directionality than could be developed solely from thermal fluctuations [70]. In a normal 

diffusion process (Brownian motion), the mean squared displacement (MSD) of a particle 

with size a  evolves linearly in time t , 2 6 Tr D t , where TD  is the particle 

translational diffusion coefficient ( TD  can be calculated using the Stokes-Einstein 

relationship /6T BD k T apm  where m  is the viscosity of the medium). However, a 

semi-empirical equation 2 ~r ta  can be used to describe particle fluctuations when it 

exhibits non-Brownian behaviour as is frequently observed in cellular environments [71, 

72]. This deviation from the Stokes-Einstein relationship has been attributed to reaction 

forces from active cytosketal processes [73] and crowding of a large number of 

macromolecules inside the cytoplasm such as mobile intracellular globular proteins and 
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other fixed obstacles like cytoskeletal filaments and organelles [74, 75] that reduce the 

available solvent volume and provide barriers to particle Brownian motion [76-78].  

Based on these observations, it was proposed that the high concentration of different 

proteins in the cytoplasm can lead to liquid crystal and colloidal behaviours that can be 

interpreted in terms of the ‘‘soft glassy rheology’’(SGR) model [67]. Crowded colloidal 

suspensions or soft glasses exhibit a weak power-law rheology corresponding to a 

continuous spectrum of relaxation times. Similar to this, the dynamic modulus of cells 

scales with frequency as a weak power law valid over a wide spectrum of time [33, 79]. 

This semi-empirical SGR behaviour is in contrast to the rheology of semiflexible network 

of filaments that generally predict a frequency independent dynamic modulus at low 

frequencies [58].  

As a conceptual model, SGR explains how macroscopic rheological responses are linked 

to localized structural rearrangements originating from structural disorder and 

metastability. Briefly, the SGR system consists of particles that are trapped in energy 

landscapes arising from their interactions with surrounding neighbours if there exists 

sufficient crowding. In such a system, thermal energy is not sufficient to drive structural 

rearrangement and as a consequence out of equilibrium trapping occurs. With time 

remodelling/rearrangement (micro-reconfiguration) happens when particles escape the 

energy barriers of their neighbours and jump from one metastable state to another 

reaching a more stable state with relaxation rates slower than any exponential process 

[61]. In such a system, injecting agitational energy sourced from non-thermal origins 

(such as mechanical shear or ATP-dependent conformational changes of proteins [62]) 

liberates particles from the energy cages in which they are trapped and facilitates 

structural rearrangements causing the material to flow. 
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1.4.5 A bottom up approach: The cell as a dynamic network of polymers 

At very short time scales (high frequencies), the cellular viscoelastic dynamic modulus 

scales with frequency with a universal exponent of 0.75 [80]. This behaviour is analogous 

to the observed rheology of semiflexible polymer networks [81-84]. This analogy as well 

as the physical picture of the cell constituted of cytosketal filaments (Figure 1-10A) 

suggest that the viscoelastic cellular properties originate mainly from the entropic and 

enthalpic interactions between cytoskeletal structures which largely depend on the 

architecture and mechanical properties of the constituent cytoskeletal filaments [85].  

The flexibility of polymers can be characterised by two length scales, the persistence 

length pl  and the contour length L  [86]. The persistence length or the length of thermal 

flexibility pl  is the length scale over which thermal bending fluctuations become 

appreciable and can change the direction of the filament, /p f f Bl E I k T  where 

f fE Ik  is the bending modulus of a single filament (or flexural rigidity defined by 

single filament elastic modulus fE  and its cross-sectional second moment of inertia fI ) 

and Bk T  the thermal energy. A filament is called rigid when pL l  and flexible when 

pL l  (Figure 1-10B). However, most cytoskeletal gels are networks of semiflexible 

biopolymer chains with the persistence length of individual chains comparable to their 

contour length ~ pL l . In such networks, the elastic and dissipative properties originate 

from entropic (where energy is stored entropically due to the reduction of the number of 

accessible chain spatial configurations in the network [87]) and enthalpic (where energy 

is stored in extensional and bending modes of filaments) processes that involve filaments 

and also the interaction of filaments with the viscous fluid that they are bathed in [86, 88-

90]. Furthermore, crosslinking of these semiflexible filaments by specialised (rigid or 

flexible) proteins at very short distances cl  along the length of each individual filament 

significantly perturbs the network rheology. Indeed, depending on the properties of 
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crosslinkers such as length, flexibility and concentration different nonlinear elastic effects 

can be observed [64]. 

For purified gels of cytoskeletal filaments such as actin gels, based on a microscopic 

picture of a network of entangled and crosslinked semiflexible filaments, various 

mechanical models have introduced different scaling relationships relating viscoelastic 

properties to microstructural parameters. The persistence length pl , geometric mesh size 

l  and a characteristic length chL  have been shown to determine the viscoelasticity of 

these purified gels. For an actin gel with an actin concentration Ac  and a monomeric actin 

size a , the geometrical mesh size (a measure of the nearest distance between two 

neighbouring monomers forming part of different filaments) is given by ~1/ Aacl  

[91]. In dense network regimes ( pa ll ) the elastic modulus scales as 

2 2 3~ B p eE k T l ll  where el  is the entanglement length (the confining length scale that 

restrict topological motion of neighbouring filaments). In this entangled network the 

characteristic length ch eL l  is the entanglement length el  and the physical effect of 

crosslinking from entanglements is to constrain the motion of filaments to a tube-like 

region, with a diameter 3/2 1/2~e e pd l l , surrounded by other filaments (Figure 1-10C-I). 

On the other hand for a densely crosslinked gel, the mesh size ( scales the same as the 

entanglement length) is the characteristic length of the network ~ch eL l l  

(Figure 1-10C-II) and the elastic modulus scales as 5 2~ B pE k T ll . 
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Figure 1-10 Dynamic network of filaments determine the cell rheology. 

(A) Image of actin filaments stained with Alexa Fluor 647 phalloidin in a COS-7 cell taken by dual stochastic 

optical reconstruction microscopy (STORM). The z-position from the substrate is colour coded with respect 

to the scaling shown in the colour scale bar. Scale bars = 2 μm. Source: [92]. (B) The contour length L  of a 

polymer compared to its persistence length pl  changes the dynamics of polymer networks from flexible to 

semiflexible and rigid regimes (from left to right respectively). (C) Schematic representation of minimal 

models for the dynamics of networks of polymers. Semiflexible polymer chains such as actin filaments 

exhibit complex dynamics under steric entanglements or crosslinks. (C-I) Tube picture of polymer dynamics. 

Two length scales, l  the mesh size and el  the entanglement length (or ed  the tube diameter), set the network 

dynamics. (C-II) For densely crosslinked polymers the mesh size l  or entanglement length ~el l  sets the 

dynamics of network. Source: [32]. 
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The experimentally determined elastic moduli of cells were found to be several orders of 

magnitude larger than those measured in in vitro studies of stress-free F-actin gels and 

this suggested that the main elastic properties of cells could not result solely from 

semiflexible networks in a stress free state, such as networks of filamentous actin [93]. 

This was explained by the fact that unlike most conventional materials, the viscoelastic 

response of semiflexible networks of biopolymers is highly nonlinear (tension or 

deformation-dependent) and thus the prestressed state of filaments in the cytoskeleton 

could result in the high measured elasticities for cells [94]. In addition to the external 

application of tensional forces, active intracellular processes such as contraction mediated 

by myosin motor proteins could also generate this prestress. The prestress is transmitted 

through the cytoplasm by the actin cytoskeleton and balanced by adjacent cells and the 

extracellular matrix. Furthermore as suggested in the tensegrity model [66, 95], the 

prestress distribution inside the cytoplasm might be partly balanced by compression of 

other cytoskeletal filaments such as microtubules. 

Considering the cytoskeletal network as a physical gel of purified cytoskeletal filaments 

is a first step for studying mechanical properties of the cell but yet too simplistic. 

Indeed cytoskeletal filaments and proteins continuously consume energy released from 

ATP hydrolysis that turns the system into a non-equilibrium state. This ATP energy is 

involved in filament polymerisation/depolymerisation, active association/dissociation of 

crosslinkers and the activity of molecular motors. New theoretical models have been 

recently proposed to study such non-equilibrium systems [57, 96]. One category of 

models considers the detailed dynamics of filaments and their interactions with molecular 

motors and builds up mechanical properties of the filamentous system using microscopic 

equations and numerical simulations [97]. Alternatively hydrodynamic models describe 

the behaviour of the mixture by establishing phenomenological relations between a few 

coarse-grained variables [96, 98].   

 



 

 

43 

 

1.4.6 Biphasic models of cells: a coarse-grained bottom up approach 

Considering a cell to be a single phase material is counterintuitive given that more than 

60 percent of the cellular content is water. In mammalian cells, most studies view water 

solely as a solvent and an adaptive component of the cell that engages in a wide range of 

biomolecular interactions [99]. However less attention has been given to the significance 

of water in the dynamics of the cytoskeleton, its role in cellular morphology, and motility. 

Recent experimental work showed the presence of transient pressure gradients inside cells 

and suggested that these could be explained by the biphasic nature of cytoplasm [100-

103]. As a consequence, a biphasic description of cells was proposed based on 

poroelasticity (or biphasic theory), in which the cytoplasm is biphasic consisting of a 

porous elastic solid meshwork (cytoskeleton, organelles, macromolecules) bathed in an 

interstitial fluid (cytosol) [100, 101, 103-105]. In this framework, the viscoelastic 

properties of the cell are a manifestation of the time-scale needed for redistribution of 

intracellular fluids in response to applied mechanical stresses and the response of the cell 

to force application depends on a single experimental parameter: the poroelastic diffusion 

constant pD  [106], with larger poroelastic diffusion constants corresponding to more 

rapid stress relaxations. A minimal scaling law 2~ /pD Ex m  relates the diffusion 

constant to the drained elastic modulus of the solid matrix E , the pore size of the solid 

matrix x , and the viscosity of the cytosol m  [100]. Therefore, contrary to viscoelastic 

models, the dynamics of cellular deformation in response to stress derived from 

poroelasticity can be described using measurable cellular parameters, allowing 

changes of rheology with E , x , and m  to be predicted which makes this framework 

particularly appealing conceptually. 
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1.5 Aims and motivation  

One of the most striking features of eukaryotic cells is their capacity to change shape in 

response to environmental or intrinsic cues driven in large part by their actomyosin 

cytoskeleton. In studies of cellular morphogenesis, the cytoplasm is generally viewed as 

an innocuous backdrop enabling diffusion of signalling proteins. This view fails to 

account for the fact that the time-dependent mechanical properties (or rheology) of the 

cell are determined by the cytoplasm because it forms the largest part of the cell by 

volume. During gross morphogenetic changes such as cell rounding, cytokinesis, cell 

spreading, or cell movement, the cytoskeleton provides the force for morphogenesis but 

the maximal rate at which shape change can occur is dictated by the rate at which the 

cytoplasm can be deformed. Using a combination of techniques from molecular cell 

biology and nanotechnology, my aim is to investigate the biphasic nature of animal cells 

and its implications for cell rheology. I examine the contribution of intracellular water 

redistribution to cellular rheology at time-scales relevant to cell physiology (0.5-10s) and 

investigate how the cytoskeleton and macromolecular crowding interact to set cellular 

rheology. 

Experimental measurements of cellular viscosity are generally interpreted with models 

that either consider the cell as a single phase homogenous material or describe cell 

rheology with a continuous spectrum of relaxation times. These models lack predictive 

power because rheological parameters cannot be related to cellular structural and 

constitutive parameters. Recent studies [100-102, 107] suggest that water plays an 

important role in cellular mechanical properties. Based on the physical nature of 

cytoplasm, it was suggested that cells are like fluid-filled sponges. One very interesting 

implication of the fluid-sponge model is that cellular rheology depends on only one 

parameter, the poroelastic diffusion constant, that scales with three structural and 

constitutive parameters: the sponge elasticity, the sponge pore size, and the viscosity of 
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the interstitial fluid. Though this is a conceptually attractive model, direct experimental 

evidence to validate this model has been lacking. 

In this thesis, such evidence is presented and I seek to study cell rheology within the 

framework of poroelasticity. I ask whether cell rheology exhibits a poroelastic behaviour 

similar to well characterised poroelastic materials such as hydrogels and then I investigate 

the validity of a poroelastic scaling law by perturbing cellular parameters that are 

important in setting poroelastic properties. To study cell rheology two experimental 

approaches were optimised: AFM micro-indentation stress-relaxation tests and whole cell 

swelling/shrinking experiments. Cellular stress relaxations were measured by rapidly 

applying a localized force onto cells via an AFM cantilever and monitoring the ensuing 

stress relaxation over time (Figure 3-2). As an alternative approach, the ability of the 

poroelastic theory to predict the swelling/shrinking kinetics of the cells was investigated 

by applying sudden osmotic perturbations and monitoring associated dynamics by 

defocusing microscopy (Figure 4-7). 

1.6 Outline of the following chapters 

In Chapter 2, the basic principles of elastic, viscoelastic and poroelastic continuum 

mechanical theories are introduced. In particular in relation to indentation experiments, 

Hertzian contact mechanics is briefly overviewed. The theory of linear isotropic 

poroelasticity is explained more comprehensively followed by the solutions of some 

fundamental problems useful in interpreting the presented experimental measurements. 

In Chapter 3, the techniques and methodologies employed to determine the poroelastic 

properties of cells are presented. These include cell preparation, chemical and genetic 

treatments, AFM indentation experiments, particle tracking as well as fluorescent and 

brightfield microscopy. 
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In Chapter 4, the ability of the poroelastic theory to describe cellular stress relaxation in 

response to rapid application of a localised force by AFM are investigated. The cellular 

force-relaxation curves are compared with stress relaxation curves acquired on well 

characterised poroelastic hydrogels and the functional form of these curves is discussed in 

detail. Also in this chapter, the kinetics of cell swelling/shrinking is studied by employing 

poroelasticity to describe the dynamics of cell volume changes induced via sudden 

osmotic perturbations and monitored by defocusing microscopy.  

In Chapter 5, using indentation tests in conjunction with osmotic perturbations, the 

validity of the predicted scaling of pD  with pore size is verified qualitatively. Also using 

chemical and genetic perturbations, the dependence of cytoplasmic rheology on the 

cytoskeleton is explored. In this chapter, the significance and the implications of the 

experimental results for understanding the biological determinants of cellular rheology 

are discussed.  

In Chapter 6, the conclusions from this work are summarised and the implications of 

poroelasticity for cell mechanics are discussed further. Also, prospective work and further 

experiments that can be performed in the future are presented, including other 

experimental techniques to investigate time-dependent mechanical properties of cells.  
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Chapter 2  

 

Theoretical overview of continuum 

mechanical theories for living cells 

 

 

 

Equation Chapter (Next) Section 1 

2.1 Theory of linear isotropic elasticity 

The elastic framework is the simplest continuum formulation that provides the 

relationship between deformations/strains and forces/stresses. Linear elasticity is the very 

simplified version of finite strain theory in which the material strains ( ε  strain tensor) are 

considered to be infinitesimal (small deformations) and have a linear relationship with 

imposed stresses (σ  stress tensor). From Newton’s second law, the equation of motion for 

such material transforms into  

 σdiv r rB u  (2.1) 

where r  is the density of material, B  body force per unit mass, u  is the vector of solid 

displacement for small deformations: 
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 ε .0.5 Tu u  (2.2) 

The div  and  designate the divergence and gradient operators, respectively. For an 

isotropic and homogeneous material, the stress-strain relationship is expressed through 

the constitutive equations: 

 σ ε ε  2 tr( )m l I  (2.3) 

where m  and l  are Lamé’s constants, I  the identity tensor and tr  the trace operator. The 

first Lame constant m  is equivalent to the shear modulus G . The following equations 

define the relationships between Lame’s constants , the elastic Young’s modulus E  and 

the Poisson ratio n  [108] 

 

,
2(1 )
2

.
1 2

E
m

n
mn

l
n

 (2.4) 

Using equations (2.1), (2.2), and (2.3), the stress field can be computed from a prescribed 

displacement field and boundary conditions. On the other hand, compatibility conditions 

[108] are required to derive a unique displacement field knowing the components of the 

stress tensor. Typically in most materials, including cells, the body forces and inertial 

terms can be neglected and thus the equation (2.1) transforms into equilibrium equation, 

σdiv 0.   

2.1.1 Hertzian contact mechanics: Indentation of elastic material  

Here the Landau and Lifshitz [109] approach is presented for studying the contact 

problem for spherical linear isotropic elastic bodies which is known as Hertz’s contact 

problem. It can be shown that when two smooth surfaces contact each other without 

deformation (Figure 2-1A) their separation in the z  direction h  can be expressed in terms 

of their principal relative radii of curvature. For the contact of two spheres with radii of 

1R  and 2R , the separation takes the form:  

 
2 2

2 2
*

1 2

( )1 1 1
( ) ,

2 2
x y

h x y
R R R

 (2.5) 
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where x  and y  are coordinates lying on the tangent plane of the contact with the contact 

point as the origin and 1 2 1 2* /R RR R R  the relative radius of curvature. Now let 

us apply a total compressive load of F  to the touching spheres such that the centres of 

the two spheres approach one another by an amount 1 2d d d . The separation distance 

between two bodies at a given height z , can be calculated from geometrical 

considerations shown in Figure 2-1B: 

 '
1 2( )h h w wd  (2.6) 

where 1( , )w x y  and 2( , )w x y  are the elastic deformations for surface points on each body 

respectively. It is trivial that within the contact area ' 0h  and outside the contact area 

' 0h  so that the surfaces do not overlap. 

 

Figure 2-1 The geometry of contact of non-conforming bodies.  

(A) Unloaded case where the curved objects are just touching. (B) Loaded case where the curved objects are 

pressed into each other. Source: [110]. 

 

 

 

Considering the Hertzian conditions (i.e. continuous, non-conforming and frictionless 

surfaces, small elastic strains where the radius of contact circle a  is much smaller than 

the relative radius of curvature *a R  and that each sphere can be considered as an 
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elastic half-space), the normal displacement of each surface 1( , )w x y  or 2( , )w x y , can be 

written in terms of the normal component of pressure p  on the surface: 

 
' '

' '
' 2 ' 2

( , )1
( , ) .

2 ( ) ( )

p x y
w x y dx dy

x x y y

n
pm

 (2.7) 

Within the contact area, ' 0h , substituting the above equation into the geometrical 

relationship (2.6) yields: 

 

' '
1 2 ' '

' 2 ' 2
1 2

2 2

1 2

( , )1 1 1
2 ( ) ( )

1 1 1
( ).

2

p x y
dx dy

x x y y

x y
R R

n n
p m m

d
 (2.8) 

Solving (2.8) by applying potential theory [109], results in the following relationships for 

the pressure field distribution and the contact radius 

 
23

( ) 1 ,
2 m

r
p r p

a
 (2.9) 

 

 1 2 1 2

1 2 1 2

3 1 1
8 m

RR
a p

R R
p n n

m m
 (2.10) 

where 2 2r x y  and mp  is the average pressure over the contact area 

 2

0
( )2 .

a

mF p r rdr p ap p  (2.11) 

Substituting the pressure field ( )p r  into equation (2.7), we find the normal displacement: 

 2 2
*

1 3
( ) 2 ,

4
mpw r a r
a

n p
m

 (2.12) 

with the equivalent shear modulus *m  defined as: 

 
1 2

*
1 2

1 1 1
.

n n
m m m

 (2.13) 

Using above the equation and substituting equations (2.5) and (2.12) into equation (2.6) 

one can obtain the following relationship within the contact area: 
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2

2 2
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3
2

16 2
mp r
a r

a R
p

d
m

 (2.14) 

from which the mutual approach of the distant points in the two solids can be derived: 

 
*

3
.

8
mp ap

d
m

 (2.15) 

All parameters can be expressed in terms of total load F  as in practice this parameter is 

specified: 

 
*

3 * * 3/2
*

8 8
,

3 3
F a R

R
m

m d  (2.16) 

where *a R d . One special case of the Hertz contact problem which is of interest to 

us is where one sphere is rigid ( 1m ) and of finite radius 1R  and the other sphere is 

elastic 2m  but 2R . This is the case of indentation of a semi-infinite domain and for 

this case the force-indentation relationship is  

 2 3/2
1

2

8
.

3(1 )
F R

m
d

n
 (2.17) 

2.2 Linear viscoelasticity  

A viscoelastic material undergoing deformation simultaneously stores and dissipates 

mechanical energy. Viscoelasticity is the phenomenological theory which describes the 

time-dependent response of such material. In this framework regardless of the 

microstructure of the material, the relaxation processes are represented by exponential or 

power law functions of time. In models based on exponential relaxation processes, stress 

or strain functions can be represented by combining spring and dashpot elements. In such 

models, the resultant exponential functions can have a single relaxation time if there is 

only one dashpot element or a distribution of relaxation times if there are several. On the 

other hand, another type of relaxation model that cannot be represented by simple 

mechanical analogues but is encountered experimentally widely in the dynamics of 

complex materials is power law relaxation. 
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2.2.1 Storage and loss moduli 

The stress-strain relationship for a linear viscoelastic isotropic material can be expressed 

in the time domain as: 

 
ε ε ε

σ
d d d

2 ( ) d ( ){tr } d ( ) d ,
d d d

t t t

t t G tam t t l t t t t
t t t

I  (2.18) 

where εd /dt  is the shear rate and ( )G ta t  is the relaxation modulus designating the 

deviatoric and the dilational part of the stress-strain relationship by 1a  and 2a  

respectively [111]. This equation implies that small changes in strain can be integrated 

over time to yield the total stress.  

The response of a material under oscillatory excitations is a typical way of measuring 

shear viscoelastic properties. Let us assume that the material is subjected to an oscillatory 

strain with amplitude ε0  and frequency w . Substituting a strain of the form 

ε ε0( ) sint tw  (with the corresponding strain rate of ε ε0d /dt= cos tw w ) into equation 

(2.18) and performing some algebra gives the stress-strain relationship: 

 

σ ε ε

ε
ε ε ε

0 0

0 0

0 0

( ) ( )sin d sin ( )cos d cos

d
sin cos ,

dt

t G t G t

G
G t G t G

w t wt t w w t wt t w

w w
w

 (2.19) 

where 
0

( )sin dG Gw t wt t  is the shear storage modulus and 

0
( )cos dG Gw t wt t  the shear loss modulus. The physical meaning of the storage 

and loss moduli can be explained as follows: if the material response is purely elastic then 

the storage modulus G  is the non-vanishing term in equation (2.19). In this case G  

appears as the frequency-dependent shear modulus similar to a simple elastic material 

where the stress is in phase with the strain: σ ε~ m . On the other hand, for a purely 

viscous material 0G  and the loss modulus G  is the only non-vanishing term. This 

results in a stress-response that has a phase lag of /2p  with strain and /G w  acts as the 
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frequency-dependent dynamic viscosity (similar to Newtonian fluid behavior 

σ ε~ d /dth , where h  is the viscosity). Unlike purely elastic or purely viscous materials, 

viscoelastic materials exhibit a mixed behaviour with a phase lag of j  (0 /2j p ) 

between the applied strain and the resultant stress.  

From an experimental point of view, one way to determine the viscoelastic properties of a 

material is to measure the stress response of the material in response to an applied 

oscillatory strain of the form 0( ) sint te e w . Let us consider the measured stress-

response to have the form 0( ) sint ts s w j  where 0s  is the amplitude of stress 

oscillations. Using equation (2.19), the following relationships can be used to calculate 

the frequency-dependent storage and loss moduli of the material: 

 

0

0
0

0

cos ,

sin .

G

G

s
j

e
s

j
e

 (2.20) 

2.2.2 Standard linear solid model 

In this section the standard linear solid model (also known as the Zener model) which has 

been widely used to describe the time-dependent behaviours of biomaterials such as 

living cells [51, 53, 54] (see Figure 2-2A) is presented. The differential equation 

describing this model is: 

 1 1 2 1 2

d d
.

dt dt
K K K K K

s e
h s h e  (2.21) 

Applying a sudden constant strain 0 ( )H te e  (where ( )H t  is the Heaviside step 

function) or a sudden constant stress 0 ( )H ts s  on a Zener viscoelastic material results 

in a stress-relaxation or creep response :  

 
1

0 2 1 ,
K
t

K K e hs e  Figure  2-2B, (2.22) 
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e

K K K
h

s
e  Figure  2-2C. (2.23) 

Performing some mathematical substitutions, equation (2.21) can be solved to obtain the 

dynamic response of a Zener material to an oscillatory load with G  and G  taking the 

form (as plotted in Figure 2-2D): 

 

2 2 2
1 2 2 1

2 2 2
1

2
1

2 2 2
1

( )
,

K K K K
G

K
K

G
K

h w
h w

hw
h w

 (2.24) 

2.2.3 Power law models 

One of the most surprising features of a wide range of soft materials is that they display a 

power law behaviour in which their relaxation spectrum  lacks any characteristic time 

scale. It is surprising because materials (including living cells) with very different 

microstructural organization exhibit the same empirical behaviour. The creep and stress 

relaxation responses of such power-law material can be written in the form: 

 
0 0

0

0 0 '
0

( ) /

( )

t
t K

t
t

t K
t

b

b

e s

s e
 (2.25) 

where 0K  is the parameter characterizes the softness or compliance of the material and 0t  

and '
0t  are the normalization timescales that can be chosen arbitrary [64]. In other words, 

0K  is the ratio of stress to unit strain measured at an arbitrary chosen time 0t  [112]. The 

timescale invariant behavior of power law functions comes from the fact that changing 0t  

or '
0t  does not affect the value of b . This equation can describe linear elastic and 

Newtonian viscous behavior for b  = 0 and b  = 1 respectively. Using this equation, non-

exponential relaxation processes can be described in a very economical way with a small 

number of parameters. Considering equations (2.19) and (2.25), the response of the 
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material to dynamic loading also follow a power law with the same exponent b , 

'', ~G G bw  [113, 114]. 

 

 

 

Figure 2-2 The standard linear solid viscoelastic model. 

(A) The standard linear solid model consists of a spring 2K  in parallel with a spring 1K  in series with a 

dashpot h . (B) Stress-relaxation: the stress relaxes exponentially over time in response to application of a 

sudden constant strain. (C) Creep: in response to application of a sudden constant stress, the strain increases 

instantaneously until it reaches its final value. (D) Dynamic response of Zener model (with 1 1K  pa, 

2 0.1K  pa and 1h  pa.s): plot of the storage and loss moduli as a function of applied frequency. 
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2.3 Poroelasticity 

The theory of poroelasticity studies the behaviour of a porous medium consisting of an 

elastic solid matrix infiltrated by an interconnected network of fluid saturated pores.  

2.3.1 Theory of linear isotropic poroelasticity 

In this section the governing equations for a linear isotropic poroelastic material are 

presented [115]. The constitutive equations are an extension of linear elasticity to 

poroelastic materials first introduced by Biot [116]. Alternatively one can use the biphasic 

model [117] that has been extensively applied in modelling the mechanics of articular 

cartilage and other soft hydrated tissues. Biot’s formulation can be simplified when 

poroelastic parameters assume their limiting values. Under the “incompressible 

constituents” condition, the material exhibits its strongest poroelastic effect and the Biot 

poroelastic theory can be mathematically transformed to the biphasic model.  

Constitutive law Let us consider the quasistatic deformation of an isotropic fully 

saturated poroelastic medium with a constant porosity. The constitutive equation relates 

the total stress tensor σ  to the infinitesimal strain tensor ε  of the solid phase and the pore 

fluid pressure p : 

 σ ε ε  -
2

2 tr( ) ,
(1 2 )

s s

s
s

G
G p

n

n
I I  (2.26) 

where sG  and sn  are the shear modulus and the Poisson ratio of the drained network 

respectively, and εtr ( )q  the variation in fluid content. This equation is similar to the 

constitutive governing equation for conventional single phase linear elastic materials. 

However the time dependent properties are incorporated through the pressure term that 

acts as an additional external force on the solid phase.  

Equilibrium equation In the absence of body forces and neglecting the inertial terms, 

the local stress balance results in the equilibrium equation 
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 σdiv 0.  (2.27) 

 

Darcy transport law Darcy’s law considers fluid transport through the non-

deformable porous medium  

 K pq  (2.28) 

where q  is the filtration velocity and K  the hydraulic permeability.  

Continuity equation Neglecting any source density, the mass conservation of a fluid 

yields: 

 div .
t
q

q  (2.29) 

2.3.2 Diffusion equation 

Combining the continuity equation and Darcy’s law results in 

 2 .K p
t

q
 (2.30) 

Applying the equilibrium condition to the constitutive law, one can obtain the Navier 

equations 

 2 div 0,
(1 2 )

s
s

s

G
G p

n
uu +  (2.31) 

where u  is the vector of solid displacement for small deformations 

ε 0.5 Tu u , and 2  designates the Laplacian operator. 

The diffusion equation for εtr ( )q  is obtained by combining equations (2.30) and 

(2.31)  

 2
PDt

q
q  (2.32) 

where pD  is the poroelastic diffusion coefficient: 



 

 

58 

 

 
2 (1 )
(1 2 )
s s

p
s

G
D K

n
n

 (2.33) 

Equation (2.32) is the fundamental equation in the theory of consolidation which deals 

with the time dependent settlement of porous materials. Derivation of the diffusion 

equation implies that under the assumptions made in this section, there are three 

independent sets of parameters ( sG , sn  and K ) that characterize the mechanical 

properties of a poroelastic medium. 

2.3.3 Scaling law between poroelastic properties and microstructural parameters 

One important consequence of considering a poroelastic cytoplasm is that the measured 

macroscopic mechanical properties of the cell can be related to some coarse-grained 

cellular microstructural parameters and the hydraulic pore size x  of the cytoplasm can be 

determined as a first step to understanding the microstructure of the cell. Considering a 

simple Poiseuille flow inside a tube of radius r , the relationship between the flow rate Q  

and the pressure gradient p  is given by  

  

 
4

,
8
r

Q p
p

m
 (2.34) 

where m  is the viscosity of the fluid. For a porous body that contains n  straight tubes per 

unit area with porosity 2n rj p the filtration velocity is  

 
4 2

.
8 8
n r r

q nQ p p
p j
m m

 (2.35) 

Taking into account irregularities, interconnectivities and tortuosities of the pores in a real 

porous matrix the above relationship reads: 

 
2

,
4
r

q p
j
mk

 (2.36) 

where k  is the Kozney constant [118]. Considering equation (2.36) and a simple analogy 

between the described Poiseuille flow and the flow through the porous matrix with an 
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average pore size x  (Darcy’s law) leads to the following relationship for the hydraulic 

permeability K  

 
2

,
4

K
j x
k m

 (2.37) 

Substituting this equivalent expression for the hydraulic permeability into equation (2.33) 

results in: 

 
2(1 )
.

(1 )(1 2 ) 4
s s

p
s s

E
D

n j x
n n k m

 (2.38) 

As a first approximation all of the parameters inside the parenthesis are assumed to be a 

constant a  and the functional dependence of all parameters with respect to the porosity 

of the structure j  is neglected. Therefore a fundamental scaling law for poroelastic 

cytoplasm takes the form: 

 
2

~ ,p

E
D

x
m

 (2.39) 

where m  is interpreted as the interstitial fluid viscosity, and 2 1s sE G n  the average 

elasticity of the constituent solid network.  

2.3.4 Poroelastic swelling/shrinking of gels under osmotic stress 

The fundamental poroelastic equations for swelling/shrinking of gels under osmotic 

perturbation are very similar to the ones presented in section 2.3.1 with a redefinition of 

some parameters such as pore pressure and fluid flux [119]. Let us consider the initial 

state of the gel to be homogeneous and free from mechanical load with 0C  the initial 

concentration of solvent inside the gel and 0m  the initial chemical potential of the gel. 

Equation (2.29) rewritten in terms of the concentration of the solvent in the gel is: 

 div .
C
t

q  (2.40) 

Darcy’s law defines the migration of the solvent in the gel, thus equation (2.28) 

transforms to  
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2

,
K

mq  (2.41) 

where  is the volume per solvent molecule and m  the time-dependent chemical 

potential of the solvent. Incompressibility of the network and the solvent imply that the 

change in volume of the gel is only due to migration of solvent molecules into or out of 

the network which changes the volume of solvent inside the gel: 

 ε 0tr( ) ( ).C C  (2.42) 

At thermodynamic equilibrium, the work done on each element of the gel equals the 

change in free energy Wd  written as σ ε 0tr( ) ( )W Cd d m m d. , where W  is the 

Helmholtz free energy per unit volume of the gel. In this relationship σ ε( . )tr d  is the 

mechanical work due to stress and 0( ) Cm m d  is the work done by the chemical 

potential. Using equation (2.42) one can write the change in free energy in terms of only 

the strain tensor σ ε ε0tr( ) ( )tr /Wd d m m.  which yields: 

 
ε

σ
ε

0( ) ( )
.

W m m
I  (2.43) 

The free energy can be written as a function of the strain tensor in the linear case of an 

isotropic gel: 

 ε ε2 2[tr( ) ( ) ].
(1 2 )

s

s
s

W G tr
n

n
 (2.44) 

Combining equations (2.43) and (2.44) results in equation (2.26) replacing pore pressure 

by the term 0( )/m m : 

 σ ε ε  - 0
2

2 tr .
(1 2 )

s s

s
s

G
G

n m m
n

I I  (2.45) 

Navier and diffusion equations similar to the Biot poroelasticity equations can then be 

derived using the above equations: 

 2
1

div 0,
(1 2 )

s
s

s

G
G m

n
uu +  (2.46) 



 

 

61 

 

 2 .P

C
D C

t
 (2.47) 

These equations can be used to define the dynamics of gel swelling/shrinkage in response 

to a change in extracellular osmolarity. Experiments in Chapter 4.2 examines this 

situation in conjunction with the measurement of surface displacements of the gel by 

defocusing microscopy to determine PD . 

2.4 Basic 1D solutions for fundamental poroelasticity problems 

2.4.1 Uniaxial strain (confined compression) 

Let us consider the situation where all the components of the strain tensor except 

/xx xu xe  are zero so that the poroelastic material is only allowed to deform in one 

direction. In this case the non-zero components of the stress tensor reduce to 
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 (2.48) 

Substituting xu  as the only component of the displacement field into the Navier equation 

(2.31), reads  

 
2

2

2 (1 )
0

(1 2 )
s s x

s

G u p
x x

n
n

 (2.49) 

Combining equations (2.30) and (2.48) and using the fact that xxe q , the diffusion 

equation for the pore pressure is obtained: 

 
2

2
xx

p

p p
D

t x t
s

 (2.50) 

Contrary to equation (2.32), equation (2.50) is an inhomogeneous diffusion equation that 

can be solved by specifying a stress condition. In the following the one dimensional time-
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dependent settlement of a poroelastic material subjected to certain types of boundary 

conditions is studied. 

2.4.2 One dimensional consolidation 

Finite domain creep problem Consider a porous plunger that compresses a poroelastic 

material confined in a cylinder of height L  as shown in Figure 2-3. At 0t  a certain 

constant load 0(0, ) ( )xx t H ts s  is applied on the solid matrix and held constant. Under 

this condition the pressure diffusion equation (2.50) transforms into a homogeneous 

diffusion equation 

 
2

2
.p

p p
D

t x
 (2.51) 

 

 

 

Figure 2-3 Compression of a porous solid with an interstitial fluid by a porous plunger.  

The fluid diffuses out through the meshwork and exits through the plunger (red arrows) applying the external 

load. 
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Assuming an ideal permeable plunger and zero flux at the bottom of the cylinder yields 

0p  at 0x  and / 0p x  at x L  respectively. Considering the above 

boundary and initial conditions one can solve equation (2.51) analytically: 

 2 2
0

1,3,..

4
( , ) sin exp

2n

n x
p x t n

m L
p

s p t
p

 (2.52) 

where 2/4pD t Lt  is a dimensionless time. The solid phase displacement field is 

calculated employing  equation (2.49) and the following boundary conditions 0xu  at 

x L : 

 2 2
0 2 2

1,3,..

(1 2 ) 8
( , ) cos 1 exp

2 (1 ) 2
s

x
s s n

L n x
u x t n

G n L
n p

s p t
n p

 (2.53) 

 

Semi-infinite domain  creep problem  Now I consider the case where the poroelastic 

material inside the cylinder is infinitely extended in the x  direction. In this case, all the 

boundary and initial conditions are the same as for the finite domain problem except that 

0xu  when x  which implies that the dissipations arising from solid fluid 

interactions vanishes to zero at infinity, / 0p x . The solutions for the pore pressure 

and displacement field for a creep problem of a semi-infinite poroelastic domain can be 

written as 

 0( , ) erf
2 p

x
p x t

D t
s  (2.54) 

 

 

2

4
0

(1 2 )
( , ) 2 erfc .

2 (1 ) 2
p

x
s D t

x
s s p

Dt x
u x t e x

G D t
n

s
n p

 (2.55) 

 

Figure 2-4 illustrates the normalized pore pressure and displacement field as a function of 

depth at different times for 1pD . At 0x  The settlement on the surface is  

 0

(1 2 )
(0, ) 2 .
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 (2.56) 
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The solutions for application of a sudden loading of the top surface by a fluid with 

pressure 0p  can be derived similarly assuming the following boundary conditions 

0(0, ) ( )p t p H t  and (0, ) 0xx ts . The displacement solutions are exactly similar to 

equations (2.53) and (2.55) replacing 0s  with 0p . However the pore pressure solutions 

take the form 

 2 2
0

1,3,..

4
( , ) 1 sin exp ,

2n

n x
p x t p n

m L
p

p t
p

 (2.57) 

 0( , )
2 p

x
p x t p erfc

D t
 (2.58) 

for finite and infinite domains respectively.  

 

 

Figure 2-4 Creep response of a poroelastic half-space. 

Pore pressure (left) and displacement (right) solutions for the semi-infinite domain creep problem. The curves 

are plotted as a function of depth at different times for 1pD . 

 

 

 

In our experimental setup, cells have a finite thickness, therefore it is important to 

investigate the time/length scales at which the semi-infinite solutions are applicable to 

finite domain problems. Considering equation (2.58), at distance x L , it takes a time t  

larger than 20.13 / pL D  for the pore pressure to reach 5% of its maximum value at the 

loaded boundary. Thus at times less than 20.13 / pL D  the pore pressure perturbation at 

the boundary 0x  weakly influences the pore pressure at x L . In other words, at 

distances beyond 3 pD t  the pore pressure is less than 5% of its maximum at the 
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boundary. In conclusion, at short times, perturbations applied to the surface boundary are 

confined to small regions near the boundary and thus the solution for the confined 

problem can be estimated from semi-infinite solutions. 

 

Figure 2-5 Creep response of a finite domain. 

Top: Settlement response of the surface following a sudden application of aves  = 250 Pa for a poroelastic 

material with sE  = 1 kPa, sn  = 0 and pD  = 40 µm2s-1. The dashed line is the semi-infinite response and the 

lines are the solutions of equation (2.53) for poroelastic materials of thicknesses ranging from h  = 2 to 8 µm. 

Bottom: The displacement error considering the semi-infinite solution as the exact solution for the finite 

thickness domain. 

 

 

 

Furthermore, in relation to real AFM indentation experiments, to investigate the time 

scales at which the half-space approximation can be employed, representative values of 

the physical parameters derived from experimental data were used to compare the surface 
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displacements ( 0x ) in equations (2.53) and (2.56) for finite and semi-infinite 

domains. As will be described later in Chapter 4, application of F  ~ 6 nN via a spherical 

tip with radius R  = 7.5 µm results in indentation depths of 0d  ~ 1 µm which leads to an 

average stress of /ave F Rs p d  ~ 250 Pa. Figure 2-5 shows the displacement as a 

function of time considering thicknesses H  = 2 - 8 µm for a poroelastic material. It can 

be observed from this figure that for very small thicknesses (H  < 3 µm) the semi-infinite 

solution is applicable only at very short times ( t  < 100 ms). For thicknesses of H  ~ 5 

µm (as shall be seen later this is approximately the height of the cells studied in this 

thesis) the semi-infinite approximation is valid for the first ~ 300 ms of the process. The 

half-space solution is a very good approximation for longer times ( t  ~ 1 s) if the 

thickness is H  > 8 µm. 

Semi-infinite domain  stress relaxation Let us consider again the semi-infinite 

problem but with sudden application of displacement (0, ) ( )u t UH t  instead of load on 

the top surface of a poroelastic material. This is the case of stress relaxation where the 

pressure is suddenly increased due to fast compression of the top layer followed by 

relaxation over time. Considering the far field conditions / 0u p x  at x , 

the strain diffusion equation (2.32) transforms into a displacement diffusion equation  
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The displacement field satisfying the boundary conditions can be found as 
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The corresponding pressure field becomes 
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In Figure 2-6 the normalized pore pressure and the displacement field are plotted as a 

function of depth at different times for 1pD .  

 

 

Figure 2-6 Stress relaxation response of a poroelastic half-space. 

Pore pressure (left) and displacement (right) solutions from the semi-infinite domain stress relaxation 

problem. The curves are plotted as a function of depth at different times for 1pD . 

 

 

2.5 Indentation of a poroelastic material  

Conventional engineering methods such as compression, tensile and shear tests have 

limitations for the characterisation of very soft materials due to difficulties in 

manipulating soft and very small samples. Furthermore these methods do not have the 

necessary accuracy and sensitivity to study the time-dependent dynamics of very soft 

materials with short time scale responses. One of the best methods for characterisation of 

very soft materials, especially cells, is an indentation test and as explained later in chapter 

3, I conducted AFM dynamic micro-indentation experiments to study cell rheology in the 

framework of poroelasticity. For indentation of a purely elastic material, there presently 

exist several closed-form formulations such as Hertz’s equation (2.17) for obtaining 

cellular elastic properties such as the shear modulus. Some closed-form expressions have 

also been proposed for characterisation of time-dependent viscoelastic materials such as 

indentation of a Zener viscoelastic material as presented in Chapter 3.7.3 . However due 

to the higher complexity of the poroelastic equations, geometry and boundary conditions, 
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there exists no simple closed-form analytical solution that can be used to fit experimental 

data. Therefore in this work an empirical expression derived from finite element (FE) 

simulations [120] was employed to fit experimental poroelastic relaxation responses in 

AFM indentation tests. 

 

 

 

 

Figure 2-7 Spherical indentation and force relaxation a poroelastic material of finite thickness.  

The indentor is pressed into the material until it reaches a target indentation depth of d . The force required to 

induce such an indentation depth is iF  applied with a short rise-time of rt . The applied force iF  relaxes to 

fF  with the poroelastic characteristic time of t . (B) Compression of the solid matrix of a poroelastic 

material with a short rise time rt t , pressurise the interstitial fluid. This pressurisation induces fluid 

permeation expanding in a semi-spherical shape. The fluid migration can be affected by the substrate and for 

h a  the shape of expansion changes from a semi-spheroid to a 2D tube. (C) Experimental force-

relaxation data (grey dots) fitted with empirical solutions for force-relaxation of poroelastic materials 

assuming the cell has a finite height (black) or that the cell can be approximated as a semi-infinite half-plane 

(blue). Both empirical solutions fitted the experimental data well ( 2r  > 0.95).    
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2.5.1 Indentation of a thin layer of poroelastic material 

Very recently, detailed finite-element simulations of spherical indentation of thin layers 

of poroelastic material (Figure 2-7) have been reported [121]. Recalling the Hertz 

equation (2.17) for indentation of a semi-infinite elastic material, the reactive force on the 

indentor can be expressed in terms of shear modulus G , Poisson ratio n  and indentation 

depth d : 1/2 3/2(8/3) /(1 ).HertzF GR d n  For indentation of a poroelastic material of 

finite thickness, the stress field is influenced by the substrate and thus the above equation 

can be corrected for the effects of the substrate: 

 1/2 3/2
8

/ ,
3 1 p

G
F R f R hd d

n
 (2.62) 

where pf  is solved numerically and takes the following empirical form [121]: 

 

2
0.46 0.82 / 2.36 /
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R h R h
f R h

R h

d d
d

d
 (2.63) 

For infinitely fast indentations ( rt t ) the fluid does not have enough time to 

permeate through deformed regions and the poroelastic material behaves as an 

incompressible elastic material (undrained condition) with the force response of 

1/2 3/2
16

/ .
3i pF GR f R hd d  At long time scales, when the interstitial fluid has fully 

redistributed (fully drained condition), the force imposed by the indenter is balanced by 

the stress in the elastic porous matrix only. Under this condition, the force applied for the 

prescribed indentation is 1/2 3/2
8

/
3 1f p

s

G
F R f R hd d

n
. Thus, the Poisson ratio of 

the solid matrix sn  determines the ratio of forces at short and long timescales 

/ 2 1i f sF F n . In intermediate regimes, the fluid permeates through pores and 

force-relaxation can be approximated in terms of stretched exponential functions:  
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where 
2

pD t

a
t  is the poroelastic characteristic time required for force to relax from iF  

to fF , and a  and b  are functions estimated empirically from the simulations that 

depend on the contact radius a Rd  and the height h  of the layer: 

 

2 3

4

2 3

4 5

1.15 0.44( / ) 0.89( / ) 0.42( / )

0.06( / )

0.56 0.25( / ) 0.28( / ) 0.31( / )

0.1( / ) 0.01( / ) .

R h R h R h

R h

R h R h R h

R h R h

a d d d

d

b d d d

d d

 (2.65) 

In my experiments, a typical height of h  ~ 4.5 µm (at indention point) was measured for 

HeLa cells and a  and b  were estimated from the above equations. Fitting experimental 

force curves with the proposed stretched exponential function indicated that for h  > 4.5 

µm and d  < 1.4 µm, approximating the cell to an infinite half-plane resulted in a less than 

25% overestimation of the poroelastic diffusion constant pD  (Figure 2-7C).  
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Chapter 3  

 

Materials and Methods 

 

 

 

Equation Chapter (Next) Section 1 

3.1 Cell culture, generation of cell lines, transduction, and molecular 

biology 

In my experiments, I used three cell lines: cervical cancer HeLa cells, Madin-Darby 

Canine Kidney epithelial (MDCK) and HT1080 fibrosarcoma cells. HeLa cells, HT1080 

and MDCK cells were cultured at 37°C in an atmosphere of 5% CO2 in air in DMEM 

(Gibco Life Technologies, Paisley, UK) supplemented with 10% FCS (Gibco Life 

Technologies) and 1% PS. Cells were plated onto 50 mm glass bottomed Petri dishes 

(Fluorodish, World Precision Instruments, Milton Keynes, UK). For MDCK cells, they 

were cultured until forming a confluent monolayer. Prior to the experiment, the medium 

was replaced with Leibovitz L-15 without phenol red (Gibco Life Technologies) 

supplemented with 10% FCS.  

To enable imaging of the cell membrane, we created a stable cell lines expressing the PH 

domain of Phospholipase Cδ tagged with GFP (PHPLCδ-GFP), a phosphatidyl-inositol-
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4,5-bisphophate binding protein that localises to the cell membrane. Briefly, PH-PLCδ-

GFP (a kind gift from Dr Tamas Balla, NIH) was excised from EGFP-N1 (Takara-

Clontech Europe, St Germain en Laye, France), inserted into the retroviral vector 

pLNCX2 (Takara-Clontech), and transfected into 293-GPG cells for packaging (a kind 

gift from Prof Daniel Ory, Washington University [122]). Retroviral supernatants were 

then used to infect wild type HeLa cells, cells were selected in the presence of 1 mg.ml
-1

 

G418 (Merck Biosciences UK, Nottingham, UK) for 2 weeks, and subcloned to obtain a 

monoclonal cell line. Using similar methods, we created cell lines stably expressing 

cytoplasmic GFP for cell volume estimation, GFP-actin or Life-act Ruby ([123]; a kind 

gift of Dr Roland Wedlich-Soldner, MPI-Martinsried, Germany) for examination of the 

F-actin cytoskeleton, GFP-tubulin for examination of the microtubule cytoskeleton, and 

GFP-Keratin 18 (a kind gift of Dr Rudolf Leube, University of Aachen, Germany) for 

visualisation of the intermediate filament network. HT1080 cells expressing mCherry-

LifeAct and MDCK cells expressing PHPLCδ-GFP were generated using similar 

methods. The EGFP-10x plasmid was described in [124] and obtained through Euroscarf 

(Frankfurt, Germany). Cells were transfected with cDNA using lipofectamine 2000 

according to the manufacturer’s instructions the night before experimentation
*
. 

3.2 Fluorescence and confocal imaging 

In some experiments, we acquired fluorescence images of the cells being examined by 

AFM using an IX-71 microscope interfaced to the AFM head equipped with an EMCCD 

camera (Orca-ER, Hamamatsu, Germany) and piloted using µManager (Micromanager, 

Palo-Alto, CA). Fluorophores were excited with epifluorescence and the appropriate filter 

sets and images were acquired with a 40x dry objective (NA = 0.7). For staining of the 

nucleus, cells were incubated with Hoechst 34332 (1 µg/ml for 5 min, Merck-

Biosciences). 

                                                      
*The cell lines described in this paragraph were generated with kind help from  Dr. Charras.  
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In some cases, an AFM interfaced with a confocal laser scanning microscope (FV1000, 

Olympus) was utilized to image the cellular indentation in the zx-plane. Images were 

acquired with a 100x oil immersion objective lens (NA = 1.4, Olympus). Latex beads 

attached to AFM cantilevers were imaged by exciting with a 647 nm laser and collecting 

light at 680 nm. GFP tagged proteins were excited with a 488 nm laser and light was 

collected at 525 nm. zx-confocal images passing through the centre of the bead were 

acquired with 0.2 µm steps in z to give a side view of the cell before and after indentation 

(Figure 3-2D). 

3.3 Cell volume measurements 

To measure changes in HeLa cell volume in response to osmotic shock, confocal stacks 

of cells expressing cytoplasmic GFP were acquired at 2 min intervals using a spinning 

disk confocal microscope (Yokogawa CSU-22, Yokogawa, Japan) with 100x oil 

immersion objective lens (NA = 1.4, Olympus) and a piezo-electric z-drive (NanoscanZ, 

Prior, Scientific, Rockland, MA). Stacks consisted of 40 images separated by 0.2 µm and 

were acquired every 2 min for a total of 30 mins. Exposure time and laser intensity were 

set to minimize photobleaching. A custom written code in Matlab (Mathworks Inc, 

Cambridge, UK) was used to process the z-stacks and measure the cell volume at each 

time step. Briefly, the background noise of stack images was removed, images were 

smoothed, and binarised using Matlab Image Processing Toolbox functions. Following 

binarisation, series of erosion and dilatation operations were performed to create a 

contiguous cell volume image devoid of isolated pixels (Figure 3-1A, B). The sum of 

nonzero pixels in each stack was multiplied by the volume of a voxel to give a measure of 

cell volume at each time step. All experiments followed the same protocol: five stacks 

were captured prior to change in osmolarity and then cell volume was followed for a 

further 25 minutes (see Figure 5-2A). 
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Figure 3-1 Cell volume measurement. 

(A, B) The volume of HeLa cells was measured by acquiring fast xyz-t confocal stacks. (A) Image of HeLa 

cytoplasmic GFP cell showing the bottom of the cell before (I) and after (II) application of hyperosmotic 

shock induced by PEG-400. The decrease in cell volume increases the concentration of GFP molecules 

resulting in an increase in fluorescence intensity. (B) Reconstruction of cell profile from confocal z-stacks 

before I and after II application of PEG-400. (C-I) xy image of MDCK monolayer expressing PH-PLCδ. (C-

II) zx section of MDCK cells expressing a membrane marker (PH-PLCδ, green) and stained for nucleic acids 

with Hoechst 34332 (blue). Nuclei localised to the basal side of cells far from the apex. (C-III) zx profile of 

MDCK cells before (green) and after (red) application of 500 mM sucrose. Cell height decreased significantly 

in response to increase in medium osmolarity. Scale bars = 10µm. 

 

 

 

The volume of PH-PLCδ MDCK cells in response to osmotic perturbations was estimated 

by measuring the heights of cell from confocal z-slice images after and before application 

osmotic shocks (Figure 3-1C). During the osmotic perturbations, I verified that the xy 

projected area of the cells and the xy positions of cell-cell junctions were not perturbed 

significantly and therefore measuring the change in cell height was a good approximation 

for estimating changes in cell volume. 

Changes in extracellular osmolarity were effected by adding a small volume of 

concentrated sucrose, 400-Dalton polyethylene glycol (PEG-400, Sigma-Aldrich, [125]), 
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or water to the imaging medium. When increasing osmolarity by addition of osmolyte, 

MDCK cells were treated with EIPA (50 µM, Sigma-Aldrich), an inhibitor of regulatory 

volume increases [126]. When decreasing the osmolarity by addition of water, the cells 

were simultaneously treated with the inhibitors of regulatory volume decreases, NPPB 

(200 μM; Tocris, Bristol, UK) and DCPIB (50 µM, Tocris), to achieve a sustained 

volume increase [126]. Cells were incubated with these inhibitors for 30 minutes prior to 

the addition of osmolytes (PEG-400, sucrose or water). 

3.4 Disrupting the cytoskeleton 

3.4.1 Pharmacological treatments 

Cells were incubated in culture medium with the relevant concentration of drug for 30 

min prior to measurement. The medium was then replaced with L-15 with 10% FCS plus 

the same drug concentration such that the inhibitor was present at all times during 

measurements. Cells were treated with latrunculin B (to depolymerise F-actin, Merck-

Biosciences), nocodazole (to depolymerise microtubules, Merck-Biosciences), and 

paclitaxel (to stabilize microtubules, Merck-Biosciences), and blebbistatin (to inhibit 

myosin II ATPase, Merck-Biosciences).  

3.4.2 Genetic treatments 

To examine the effect of uncontrolled polymerization of cytoplasmic F-actin, Dr. 

Moulding transduced HeLa cells stably expressing Life-act ruby with lentivirus encoding 

WASp I294T as described in [26]. Lentiviral vectors expressing enhanced GFP fused to 

human WASp with the I294T mutation were prepared in the pHR’SIN-cPPT-CE and 

pHR’SIN-cPPT-SE lentiviral backbones as described previously [26, 127]. Lentivirus 

was added to cells at multiplicity of infection of 10 to achieve approximately 90% 

transduction.  
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To examine the perturbations to cytoskeletal proteins, Dr. Charras generated the plasmids 

described below, and I purified the cDNA and transfected the cells. To examine the effect 

of uncontrolled polymerisation of tubulin, I transfected HeLa cells with a plasmid 

encoding γ-tubulin-mCherry, a microtubule nucleator [128, 129]. To disrupt the keratin 

network of HeLa cells, keratin 14 R125C-YFP (a kind gift from Prof Thomas Magin, 

University of Leipzig) was overexpressed, a construct that acts as a dominant mutant and 

results in aggregation of endogenous keratins [130]. To disrupt F-actin crosslinking by 

endogenous α-actinin, cells were transfected with a deletion mutant of α-actinin lacking 

an actin-binding domain (ΔABD-α-actinin, a kind gift of Dr Murata-Hori, Temasek Life 

Sciences laboratory, Singapore). Cells were transfected with cDNA using lipofectamine 

2000 the night before experimentation. 

3.5 Visualising cytoplasmic F-actin 

To visualise cytoplasmic F-actin density, cells were fixed for 15 minutes with 4% PFA at 

room temperature, permeabilised with 0.1% Triton-X on ice for 5 min, and passivated by 

incubation with phosphate buffered saline (PBS) and 10 mg/ml bovine serum albumin 

(BSA) for 10 min. They were then stained with Rhodamine-Phalloidin (Invitrogen) for 30 

min at room temperature, washed several times with PBS-BSA, and mounted for 

microscopy examination on a confocal microscope. 
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Figure 3-2 AFM experimental setup.  

(A) Schematic diagram of the experiment. (A-I) The AFM cantilever is lowered towards the cell surface with 

a high approach velocity approachV  ~ 30 µm.s-1. (A-II) Upon contacting the cell surface, the cantilever bends 

and the bead starts indenting the cytoplasm. Once the target force MF  is reached, the movement of the 

piezoelectric ceramic is stopped at MZ . The bending of the cantilever reaches its maximum. This rapid force 

application causes a sudden increase in the local stress and pressure. (A-III) and (A-IV) Over time the cytosol 

in the indented area redistributes inside the cell and the pore pressure dissipates. Strain resulting from the 

local application of force propagates through the elastic meshwork and at equilibrium; the applied force is 

entirely balanced by cellular elasticity. Indentation (I-II) allows the estimation of elastic properties and 

relaxation (III-IV) allows for estimation of the time-dependent mechanical properties. In all panels, the red 

line shows the light path of the laser reflected on the cantilever, red arrows show the change in direction of 

the laser beam, black arrows show the direction of bending of the cantilever, and the small dots represent the 

propagation of strain within the cell. (B) Temporal evolution of the cantilever position and force applied 

during the experiment. Before the cantilever contacts the cell, no force is applied (I). After contact, force 

increases until the target force (II). Finally, force relaxes (III) until equilibrium (IV). (C) Schematic drawing 

showing the zone of indentation. A bead of radius R  is pressed into the cell surface creating a depression of 

radius a  and depth ad . The compression of the cell surface by the bead induces a pressure increase that 

squeezes a volume 2~ ad  of fluid out of the indentation region (arrows). (D) Z-x confocal image of a HeLa 

cell expressing PH-PLCδ1-GFP (a membrane marker) corresponding to phases (I) and (IV) of the experiment 

described in A. The fluorescent bead attached to the cantilever is shown in blue and the cell membrane is 

shown in green. Scale bar = 10 μm.  
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3.6 Atomic force microscopy indentation experiments 

Force-distance and force-relaxation measurements were acquired with a JPK 

Nanowizard-I (JPK instruments, Berlin, Germany) interfaced to an inverted optical 

fluorescence microscope (IX-81 or IX-71, Olympus). For most experiments, AFM 

cantilevers (MLCT, Bruker, Karlsruhe, Germany) were modified by gluing beads to the 

cantilever underside with UV curing glue (UV curing, Loctite, UK). Cantilever spring 

constants were determined prior to gluing the beads using the thermal noise method 

implemented in the AFM software (JPK SPM, JPK instruments). Prior to any cellular 

indentation tests, the sensitivity of the cantilever was set by measuring the slope of force-

distance curves acquired on glass regions of the petri dish. For measurements on cells, I 

used cantilevers with nominal spring constants of 0.01 N.m
-1

 and fluorescent latex beads 

with radii of 7.5 μm (ex645/em680, Invitrogen). For measurements on hydrogels, I used 

cantilevers with nominal spring constants of 0.6 N.m
-1

 and glass beads with radii of 25 

μm (Sigma).  

During AFM experiments, the bead on the cantilever was aligned over regions near the 

cell nucleus and measurements were acquired in several locations in the cytoplasm 

avoiding the nucleus (except when doing spatial mapping, see section 3.7.5). To 

maximize the amplitude of stress relaxation, the cantilever tip was brought into contact 

with the cells using a fast approach speed ( approachV  > 10 µm.s
-1

) until reaching a target 

force MF  (Figure 3-2A-I, A-II, B). With these settings, force was applied onto the cells in 

less than 35 ms on average, which is fast compared to the expected poroelastic relaxation 

time (~0.1-10 s, see Chapter 4 section 1.1). Hence, in the analysis of stress relaxation I 

assumed that force application was quasi-instantaneous. Upon reaching the target force 

MF  the piezoelectric ceramic length was kept constant at MZ  and the force-relaxation 

curves were acquired at constant MZ  (Figure 3-2A-III, A-IV). After 10 s, the AFM tip 

was retracted with the same speed as the approach.  
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During force-relaxation measurements, the z-closed loop feedback implemented on the 

JPK Nanowizard was used to maintain a constant z-piezo height. When acquiring force-

relaxation curves with high approach velocities ( approachV  > 10 µm.s
-1

), the first 5 ms of 

force-relaxation were not considered in the data analysis due to the presence of small 

oscillations in z-piezoelectric ceramic height immediately after contact due to the PI 

feedback loop implemented in the JPK software. When acquiring force-relaxations curves 

for averaging over multiple cells, I used approach velocities approachV  ~ 10 µm.s
-1

 that did 

not give rise to oscillations in length of the z-piezoelectric ceramic. 

3.6.1 Measuring indentation depth and cellular elastic modulus 

The approach phase of the AFM force-distance curves (Figure 3-3) was analysed to 

extract the bulk elastic modulus E , which is linearly related to the shear modulus G  

through the Poisson ratio via equation (2.4); 2 (1 )E G n . During indentation (after 

contact) the force the cantilever is related to the cell stiffness and the deflection of the 

cantilever d  by 

 0( ),c cF k d k d d  (3.1) 

where ck  is the cantilever’s spring constant, d  is the deflection of cantilever (correlated 

to changes in reflection of AFM laser beam which is detected by photo-detector), and 0d  

is the deflection offset at the point of contact where the force is zero.  

The indentation depth d  is calculated by subtracting the cantilever deflection d  from 

the piezo translation z  

 
0 0

0 0 0

( ) ( )
( ) ( ) ,

z d z z d d
z d z d w w

d
 (3.2) 

where 0z  is the translation of the piezo at the contact point, ( )w z d  and 

0 0 0w z d  are the transformed variables. E  was then estimated by fitting the force-

indentation data with a Hertzian contact model between a sphere and an infinite half 
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space (equation (2.17)). In this framework, the relationship between the applied force F  

and the indentation depth d  is: 

 1/2 3/2
2

4
.

3 1
E

F R d
n

 (3.3) 

with n  the Poisson ratio, and R  the radius of the spherical indenter.  The above Hertz 

model of indentation can be used to compute the elastic modulus of a linear elastic 

material of infinite thickness (see Chapter 2.1.1). To limit the effects of finite cell 

thickness, in my analysis I only considered the force-indentation/relaxation curves in 

which the indentation depths were less than 25% of the cell height. This ensures errors of 

less than 20% in the estimation of the elastic modulus (see equation 2.63) in my 

experiments. To use the Hertz model in this work I assumed the cell to be a isotropic, 

homogeneous and linear elastic materials and the contact surfaces were assumed to be 

frictionless and non-adhesive [131]. Although these assumptions are not fully accurate for 

indentation of adherent cells, the Hertz model is still widely used for characterisation of 

cells and soft materials providing fairly accurate measurements of elastic modulus [132].  

 

Figure 3-3 AFM force-distance curve.  

The approach phase of AFM force-distance curve (Figure 3-2A-I and II). The force distance AFM data 

(dotted points) is fitted with two linear (blue line) and nonlinear (red line) curves for the noncontact and 

contact portions of the curve respectively. The contact point is estimated by choosing the point that minimises 

the total mean square error of the fitted curves.  
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Together with equations (3.1) and (3.2), contact mechanics models (like equation (3.3)) 

can be fit to AFM indentation data. However the main challenge in analysing AFM force-

distance curves is to design an automated routine to find the correct contact point which 

enables us to compute the indentation depth. The contact point between the cell and the 

AFM tip was estimated using the method described in [133] implemented in our 

laboratory, see Figure 3-3. In brief, as a first step the force distance-curve is transformed 

into a d -w  curve introducing the variable ( )w z d . Then our custom written Matlab 

code marches along all points of the d -w  curve, and assumes each point is the potential 

contact point. Considering ( 0
iw , 0

id ) as the contact point, at each iteration i  the initial 

portion of the curve (assumed to be the noncontact region) was fitted with a line while the 

latter portion (assumed to be the portion of the curve in contact) was fitted with a power 

function as in equation (3.3): 

 3/2
0 0( ) ( ) ,i i id d b w w  (3.4) 

where ib  is the sole fitting parameter. The total mean square error (MSE) from both fits 

was calculated and the contact point ( 0
nw , 0

nd ) was chosen as the point where the total 

MSE reaches its minimum value at i n  with 1/2 24 / 3(1 )n
cb ER kn  (see 

Figure 3-3 ). 

Comparing the long time-scale and short time-scale limits allows for estimation of the 

Poisson ratio of the solid matrix; (0)/ ( ) 2(1 )sF F n . However for cellular 

indentations the force relaxation curves do not reach a relaxation plateau for estimation of 

( )F  and thus for estimation of the elastic modulus, I assumed a Poisson ratio of sn  

=0.3. 

3.6.2 Measurement of the poroelastic diffusion coefficient  

A brief description of the governing equations of linear isotropic poroelasticity and the 

relationship between the poroelastic diffusion constant pD , the shear modulus G , and 
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hydraulic permeability K  are given in Chapter 2 section 3. To experimentally measure 

the cellular poroelastic properties, I monitored stress-relaxation following rapid local 

application of force by AFM microindentation (Figure 3-3, Figure 3-4 and Figure 5-1A). I 

analysed my experiments as force-relaxation in response to a step displacement of the cell 

surface. No closed form analytical solution for indentation of a poroelastic infinite half 

space by a spherical indentor exists. However, an approximate solution obtained by FE 

simulations gives [120]: 

 0.908 1.679
( )

0.491e 0.509e ,f

i f

F t F

F F
t t  (3.5) 

where /( )pD t Rt d  is the characteristic poroelastic time required for force to relax 

from iF  to fF . Cells have a limited thickness h  and therefore the infinite half-plane 

approximation is only valid at time-scales shorter than the time needed for fluid diffusion 

through the cell thickness: 2~ /hp pt h D . As we shall see in the next chapters, in 

experiments on HeLa cells, I measured h  ~ 5 µm and pD  ~ 40 µm
2
.s

-1
 setting a time-

scale hpt  ~ 0.6 s. I confirmed numerically that for times shorter than ~ 0.5 s, 

approximating the cell to a half-plane gave errors (calculated by comparing the half space 

approximation and the finite thickness solution) of less than 20% (Figure 2-5 and 

Figure 2-7C). For short time-scales, both terms in equation (3.5) are comparable and 

hence as a first approximation, the relaxation scales as ~e t . Equation (3.5) was utilized 

to fit our experimental relaxation data, with pD  as single fitting parameter and I fitted 

only the first 0.5 s of relaxation curves to consider only the maximal amplitude of 

poroelastic relaxation and minimise errors arising from finite cell thickness. 

3.6.3 Determining the apparent cellular viscoelasticity 

To determine the single phase viscoelastic parameters, I modelled cells using a standard 

linear model consisting of a spring-damper (stiffness 1k  and apparent viscosity h ) in 

parallel with another spring (stiffness 2k ), as described in [53] (see Figure 2-2). In this 
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model, the applied force decays exponentially when the material is subjected to a step 

displacement at t = 0: 

 
1( )
.

k t
f

i f

F t F
e

F F
h  (3.6) 

The spring constant 1k  scales with the elastic modulus 1 ~k E  (estimated from approach 

phase of indentation tests) and therefore the experimental force relaxation curves were 

fitted using equation (3.6), with h  as the sole fitting parameter. 

3.6.4 Measuring cell height 

To measure cell height at each contact point, I collected a force-distance curve on the 

glass substrate next to the cell being examined. The 0z  calculated from the force-distance 

curve on the glass was used as a height reference. As shown in Figure 3-4, at each 

indentation point, the cell height was estimated by subtracting the 0z  of the cell from the 

reference 0z .  

 

 

 

Figure 3-4 Calculating the height of cell at contact point.  

A force-distance curve acquired on the glass substrate next to the cell examined was used as the reference to 

estimate the height of the cell at the contact point 
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3.6.5 Spatial probing of cells 

To investigate spatial variations in the cellular poroelastic properties, I acquired 

measurements at several locations on the cell surface along the long axis of the cell with a 

target force of MF  = 4 nN. To locate indentation points in optical images of the cell, a 

fluorescence image of the bead resting on the glass surface close to the cell was acquired, 

and the centre of the bead was used as a reference point. This reference point was used to 

estimate the height of the cell for each measurement, as well as the position of indentation 

on the cell surface, the xy-coordinates of each stress relaxation measurement being 

known from the AFM software. The position of the measurement point relative to the 

nucleus was estimated by acquiring a fluorescence image of the nucleus and calculating 

the centre of mass of the nucleus (see Figure 3-5). This also enabled us to know whether 

the measurement point was above the nucleus or not.   
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Figure 3-5 Spatial AFM measurement 

(I) Representative phase contrast image of a HeLa cell and the location of AFM measurements on its surface. 

The position of the height reference, where the AFM tip contacts the glass surface was also chosen as the xy 

reference (fluorescence image of the bead, IV). The location of the nucleus was determined using Hoechst 

34332 staining and the centroid of the nucleus (red dot in I) was used as a reference for displaying the 

measured properties. To determine the exact pathline of the bead and to calculate the distance of each point 

from the centre of nucleus, images of the cell (II), the cell nucleus (III), and the bead (IV) were overlaid (I). 

Scale bars = 10 μm. 

 

 

 

3.7 Microinjection and imaging of quantum dots  

PEG-passivated quantum dots (qdots 705, Invitrogen) were diluted in injection buffer (50 

mM potassium glutamate, 0.5 mM MgCl2, pH 7.0) to achieve a final concentration of 0.2 

μM and microinjected into HeLa cells as described in [134]. Quantum dots were imaged 

on a spinning disk confocal microscope by exciting at 488 nm and collecting emission 

above 680 nm. To qualitatively visualize the extent of quantum dot movement, time 

series were projected onto one plane using ImageJ.  
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3.8 Rescaling of force relaxation curves 

Plotting the obtained experimental relaxation curves in different scale coordinates and/or 

normalising them in different ways can provide useful insights into the functional nature 

of these curves. For instance it is difficult to differentiate between exponential relaxation 

curves and weak power law curves unless the curves are plotted in log-log coordinates. 

Furthermore, to differentiate between poroelastic and viscoelastic responses during 

indentation tests several methods for normalisation of relaxation curves have been 

proposed [120, 135-137]. One successfully applied method is based on the collapse of 

normalised force relaxation curves acquired with different indentation depths onto a 

single master curve [137]. Prompted by this, I have proposed the following more general 

force normalisation method:  

 
( ) ( *)

,
( 0) ( *)
F t F t t
F t F t t

 (3.7) 

where *t  can be any arbitrary time. Let us consider that the force relaxation is decaying 

function of the form 1 2( ) ( , , ,..., )nF t F t t t t  that is a function of a number of (finite or 

infinite) characteristic relaxation times it . For force relaxation curves acquired with 

different indentation depths, if the characteristic relaxation times (or in general the decay 

function F ) do not have any form of functional dependency on indentation depth (as 

during linear viscoelastic or power law responses), force normalisation using equation 

(3.7) results in the collapse of all the relaxation curves onto a single curve. In contrast, the 

characteristic relaxation time in poroelastic materials depends on the indentation depth 

and force-normalisations alone will not result in collapse of curves onto a single master 

curve. 

Considering the spherical indentation of a purely poroelastic material, the force relaxation 

can be written in the form ( ) [ (0) ( )] ( / ) ( )pF t F F P D t R Fd  where P  is the 

poroelastic response function (decaying in an exponential manner from 1 at 0t  to 0 at 

t ) and (0)F  and ( )F  are the forces at very short (t = 0+) and very long (t = ∞)
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timescales, respectively. For any given indentation depth d , using the normalisation in 

equation (3.7) results in: 

 
( / ) ( * / )( ) ( *)

( 0) ( *) 1 ( * / )
p p

p

P D t R P D t RF t F t t
F t F t t P D t R

d d
d

 (3.8) 

To obtain collapse of force relaxation curves onto a single master curve for any *t  using 

the above equation time must be rescaled with indentation depth. First, *t  must be 

selected so that it is proportional to the indentation depth d  specific to each curve: 

*t ad  where a  (with unit of s. μm
-1

) is an arbitrary number fixed for all curves. Then 

rescaling of time with respect to indentation depth ( /t d ), leads to collapse of all 

experimental curves onto one master curve. 

Note that, if the chosen *t  is such that * / pt R Dt d , then the force relaxation 

curve reaches a plateau: ( ) ( )F t F  and ( * / ) 0pP D t Rd  and equation (3.7) 

becomes: 

 
( ) ( *)

( / ),
( 0) ( *) p

F t F t t
P D t R

F t F t t
d  (3.9) 

and therefore rescaling of time with respect to indentation depth ( /t d ), is sufficient to 

obtain collapse of all relaxation curves as in [137]. 

3.9 Polyacrylamide hydrogels 

For comparison with cells, I acquired force-relaxation measurements on polyacrylamide 

(PAAm) hydrogels, which are well-characterised poroelastic materials. For the 

measurements, we made gels of 15% acrylamide-bis-acrylamide crosslinked with 

TEMED and ammonium persulfate following the manufacturer’s instructions (Bio-Rad, 

UK). 
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3.10 Particle tracking using defocused images of fluorescent beads  

Optical images of fluorescent beads acquired by wide-field microscopy can exhibit 

different shapes depending on the distance between the bead and the plane of focus. The 

in-focus image of a bead is a spot with a certain diameter, while when the plane of focus 

is away from the bead centre by a distance of a few micrometres, sets of concentric rings 

are visualised (see Figure 3-6A). The z-distance of the particle from the imaging plane is 

precisely correlated to the radius of the outer ring. As a very simple 3D particle tracking 

technique, calculating the centre and radius of the outer ring over several frames over 

time can provide a very precise means for tracking the coordinates of a bead: ( , , , )x y z t  

[138]. This technique is presented in Chapter 4.2 and was employed to study the 

swelling/shrinking kinetics of cell (Figure 4-7). 

3.10.1 Experimental protocol and calibration setup  

Yellow-Green carboxylate-modified fluorescent microspheres 0.5 µm in diameter 

(FluoSpheres, Molecular Probes, Invitrogen) were coated with collagen-I following the 

protocol suggested by the manufacturer. To attach beads to the cell membrane prior to 

experiments, Life-act ruby HeLa cells were incubated for ~ 30 min with a dilute solution 

(100x dilution) containing fluorescent collagen coated beads.  

A Piezo-electric z-stage (NanoscanZ, Prior, Scientific, Rockland, MA) was used to 

calibrate defocused images and to estimate the height of the cell at the location of the 

attached beads (Figure 3-6). The z-stage was fixed on top of the optical fluorescence 

microscope stage (IX-71, Olympus) and was piloted using µManager (Micromanager, 

Palo-Alto, CA) to step up/down while taking epifluorescence images. To find the 

relationship between the z-positions of a bead and the radius of the outer rings formed in 

the defocused images, fluorescence z-stack images of the bead with a step size of 100 nm 

were acquired. To measure the poroelastic diffusion constant using equation (4.6), the 

height of the bead also needed to be determined. For this, the z-position of the bead with 



 

 

89 

 

respect to the bottom of the cell was estimated by acquiring fluorescence z-stack images 

of Lifeact-Ruby HeLa cells with step size of 200 nm over large distances (~ 10 μm, 

starting from a few micrometres above the cell and ending a few micrometres below the 

cell-glass interface). The height of the cell was measured as the distance between the 

plane that shows an in-focus image of the stress fibres at the bottom of the cell and the 

plane focused on the bead (Figure 3-6D).  

 

 

Figure 3-6 High resolution defocusing microscopy of fluorescent bead.  

(A) Images of a 500 nm fluorescent bead attached to the cell membrane taken at different distances from bead 

centre appears as concentric rings. The radius of the outermost ring in the image can be related to the distance 

between the bead centre and the plane of imaging. (B) The averaged radial intensity curves calculated when 

the imaging plane is moved in 100 nm increments away from the bead focal plane. The radius of outer rings 

can be estimated using these curves. Inset is the normalised averaged radial intensity curves. To determine the 

radius of outer rings, the peak of each curve can be fitted with a Gaussian function. (C) The radial position of 

the outer ring is linearly related to the distance between the imaging plane and the bead focal plane. Using 

this concept the z-position of a particle can be tracked with very high accuracy (~ 10 nm). (D) The height of a 

bead attached to the cell is estimated by focusing on the bottom of the dish in (I) where stress fibres are in 

focus, and on the bead attached to the cell membrane in (II). 
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3.10.2 Radial projection  

The 2D defocused images of a bead are circularly symmetric so a 1D radius function was 

used to detect the radius of the outer ring in each defocused image. Since there were 

several beads attached to the cell membrane, the rough central position of the bead of 

interest was selected visually and then the precise coordinates of the centroid of the 

chosen bead ( , )c cx y  were estimated by fitting a 2-D Gaussian function to the image. An 

arbitrary annulus interval  was set to generate a radial distance vector 

, 0...ir i i N . By knowing the precise centre of the image, the distance of each 

pixel in the image from the centroid was estimated. According to the radial distance of 

each pixel d , there are total of iP  pixels lying between radii 1ir  and 1ir . For each pixel 

within the annulus between radii 1ir  and 1ir  the averaged radial intensity vector ( )R ir  

(see Figure 3-6B) was calculated by splitting the intensity of each pixel I  in this annulus 

linearly according to its radial position d :  
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To find an estimate with sub-pixel resolution for the radial position of the outer rings, two 

approaches were implemented. In the first approach the radius of the outer ring was 

calculated by finding the position of the outer peak in the averaged radial intensity curve 

(using an inbuilt Matlab function) and fitting a rotationally symmetric Gaussian function 

to the intensity curve neighbouring this point. In the second approach the averaged radial 

intensity curve was normalised to its maximum intensity as shown in the inset of 

Figure 3-6B and the intersection of the curve with the line y = 0.05 provided an estimate 

for the radial position of the ring where the intensity of the outer ring diminishes to zero. 
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3.11 FRAP experiments 

I performed the fluorescence recovery after photobleaching (FRAP) experiments 

described in the following with kind help from Marco Fritzsche. FRAP experiments were 

performed using a 100x oil immersion objective lens (NA = 1.4, Olympus) on a scanning 

laser confocal microscope (Olympus Fluoview FV1000; Olympus). Fluorophores 

including GFP-tagged proteins and CMFDA (a small cytoplasmic fluorescent probe, 5-

chloromethylfluorescein diacetate, Celltracker Green, Invitrogen) were excited at a 

wavelength of 488 nm. For experiments with CMFDA, cells were incubated with 2 µM 

CMFDA for 45 min before replacing the medium with imaging medium. For experiments 

with cytoplasmic GFP or EGFP-10x, cells were transfected with the plasmid of interest 

the day before experimentation. To obtain a strong fluorescence signal and minimize 

photobleaching, a circular region of interest (ROI, 1.4 µm in diameter) in the middle of 

the cytoplasm was imaged, setting the laser power to 5% and 1% of the maximum output 

(488nm wave length, nominal output of 20mW) for GFP and CMFDA, respectively. Each 

FRAP experiment started with five image scans to normalise intensity, followed by a 1s 

bleach pulse produced by scanning the 488nm laser beam line by line (at 100% power for 

GFP and 25% power for CMFDA) over a circular bleach region of nominal radius nr  = 

0.5 μm centred in the middle of the imaging ROI. To sample the recovery sufficiently 

fast, an imaging ROI of radius of 0.7 μm was chosen allowing acquisition of fluorescence 

recovery with a frame rate of 50 ms per frame. 
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Figure 3-7 Estimation of the effective bleach radius in HeLa cells FRAP experiments. 

(I) Confocal image of cells loaded with the cytoplasmic indicator CMFDA (green). Nuclei (blue) were 

stained with Hoechst 34332. Scale bar = 10 µm. (II-III-IV) Time series of a photobleaching experiment in the 

cytoplasm of the cells shown in (I, indicated by the white circle). The white circle in images (II-IV) denotes 

the nominal photobleaching zone. In all three images, scale bars = 1 µm. (II) shows the last frame prior to 

photobleaching. (III) shows the first frame after photobleaching. The bleached region is clearly apparent and 

larger than the nominal photobleaching zone. (IV) After a long time interval, fluorescence intensity re-

homogenises due to diffusion. (V) Fluorescence intensity immediately after photobleaching in the cytoplasm 

centred on the photobleaching zone in frame (III). Fluorescence was normalised to the intensity far away 

from the photobleaching zone.  
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3.11.1 Effective bleach radius  

Most experiments were carried out on cytoplasmic fluorophores. Because of their rapid 

diffusion within the cytoplasm during the bleaching process, the effective radius over 

which photobleaching takes place ( er ) is larger than the nominal radius ( nr ). In my 

experiments to measure the translational diffusion coefficient TD  precisely, I needed to 

first determine er . To experimentally estimate the effective radius er , I performed a 

separate series of FRAP experiments on cells loaded with CMFDA in hyperosmotic 

conditions. An imaging area larger than the effective photobleaching radius (4 µm in 

diameter) was empirically chosen and photobleaching recovery in this area was imaged 

with a frame rate of 0.2 s/frame. Next, using a custom written Matlab program, I 

calculated the radial projection profile of the fluorescence intensity in the imaging region 

for the first postbleach image ( , 1)I r t  and then fitted the experimental intensity profile 

with the bleach equation for a Gaussian laser beam to determine er  (Figure 3-7): 

 
2

2
( ) exp exp 2 ,

e

r
I r K

r
 (3.11) 

where r  is the radial distance from the center of bleach spot and K  is the bleaching 

constant related to the intensity of the bleaching laser and the properties of the 

fluorophore. 

3.11.2 FRAP analysis 

FRAP recovery curves ( )I t  were obtained by normalising the mean fluorescence intensity 

within the nominal bleach area for each frame to the average fluorescence intensity of the 

first prebleach image. The translational diffusion coefficient TD  was estimated using the 

model for a uniform-disk laser profile and ideal bleach [139, 140] following the methods 

described in [141]: 
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where ( ) ( )/ ( )nI t I t I  is the normalized fluorescence intensity in the bleached spot 

as a function of time t , er  is the effective bleach radius, 0I  and 1I  are modified Bessel 

functions. In the experimentally acquired FRAP curves, the first post-bleach value 

( 1 )nI t s  was larger than zero (Figure 5-4 and Figure 5-5B, C), something that could be 

due to rapid fluorophore diffusion during the bleach process or incomplete weak 

bleaching [141]. In cells exposed to hyperosmotic conditions, the intensity of the first 

post-bleach time point was over 30% lower than in isoosmotic conditions, suggesting that 

the non-zero value of this first time point was due to rapid diffusive recovery. Based on 

this observation, we assigned a timing of 0t 0.1 s to the first post bleach time point 

when fitting fluorescence recovery curves. The validity of the fitting was verified by 

comparing the translational diffusion constant of GFP and CMFDA estimated with our 

technique to previously published values. 

3.11.3 Estimation of cortical F-actin turnover half-time 

 

To assess the turnover rate of the F-actin cytoskeleton, HeLa cells stably expressing 

actin-GFP were blocked in prometaphase by overnight treatment with 100 nM 

nocodazole. Under these conditions, cells form a well-defined actin cortex. To estimate F-

actin turnover, photobleaching was performed on the F-actin cortex and recovery was 

imaged at a frame rate of 0.9s/frame (Figure 5-4B).  

3.12 Data processing, curve fitting and statistical analysis 

Indentation and stress relaxation curves collected by AFM were analysed using custom 

written code in Matlab (Mathworks Inc, Cambridge, UK). Data points where the 

indentation depth d  was larger than 25% of cell height were excluded. Goodness of fit 

was evaluated by calculating 2r  values and for analyses only fits with 2r  > 0.85 were 

considered (representing more than 90% of the collected data). The calculated value for 
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each group of variables is presented in terms of mean and standard deviation (Mean±SD). 

To test pairwise differences of population experiments, the student’s t-test was performed 

between individual treatments. Values of p  < 0.01 compared to control were considered 

significant and are indicated by asterisks in the graphs. 
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Chapter 4  

 

The cytoplasm of living cells 

behaves as a poroelastic material 

 

 

 

Equation Chapter (Next) Section 1 

The cytoplasm of living cells is constituted of a porous elastic solid meshwork 

(cytoskeleton, organelles, macromolecules, etc) bathing in an interstitial fluid (cytosol) 

(see Figure 1-1 and Figure 1-10A). Based on this description, it is not very surprising that 

the cytoplasm has many hydrogel-like characteristics. Hydrogels, an aggregate of cross-

linked polymer network and water molecules, are ubiquitous in nature and especially in 

biological tissues. One of the main characteristics of hydrogels is that their mechanical 

response is manifested through concurrent interaction of the solid network and the fluid 

phase. In such fluid-filled sponges, the rate of relaxation is limited by the rate at which 

interstitial fluid can redistribute within the solid network. As briefly described in Chapter 

2.3, the Biot theory of poroelasticity has been applied to study the rheology of fluid-

infiltrated porous elastic solids. In this chapter, two different experimental approaches are 

utilized to examine the poroelastic behaviours of cytoplasm and compare it to hydrogels. 
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First, by employing AFM micro indentation tests acquired on cells and hydrogels, the 

functional form of force-relaxation curves at different timescales was examined. Then the 

idea of poroelastic cytoplasm is validated by comparing the force relaxation curves 

acquired on cells with those acquired on hydrogels as these are well-characterized 

poroelastic materials. Second, to further test the poroelastic behaviour of cytoplasm, the 

rheology of cells in response to different types of osmotic perturbation were studied and 

the swelling/shrinking kinetics of cytoplasm were investigated in the framework of 

poroelasticity. 

4.1 laitanadfaateahfenfnennatedenadfafh feftIneadninatednI  

4.1.1 Establishing the experimental conditions to probe poroelasticity 

First, I established the experimental conditions under which water redistribution within 

the cytoplasm (or hydrogel) might contribute to force-relaxation. In our experiments 

(Figure 3-2), following rapid indentation with an AFM cantilever (3.5-6nN applied during 

a rise time rt  ~ 35ms resulting in typical cellular indentation of d  ~ 1µm), force 

decreased by ~ 35% whereas indentation depth only increased by less than ~ 5%, 

therefore our experiments measure force-relaxation under approximately constant applied 

strain (Figure 4-1A). Relaxation in poroelastic materials is due to water movement out of 

the porous matrix in the compressed region (Figure 2-7B, Figure 3-2C). The time-scale 

for water movement is 2~ /p pt L D  (L  is the length-scale associated with 

indentation[120]: ~L Rd  with R  the radius of the indenter) and therefore poroelastic 

relaxation contributes significantly if the rate of force application is faster than the rate of 

water efflux: r pt t . Previous experiments estimated pD  ~ 1-100 µm
2
.s

-1
 in cells [100, 

101] yielding a characteristic poroelastic time of pt  ~ 0.1-10 s, far longer than rt . Hence, 

if intracellular water redistribution is important for cell rheology, force-relaxation curves 

should display characteristic poroelastic signatures for times up to pt  ~ 0.1-10 s.  
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Figure 4-1 Stress relaxation of HeLa cells in response to AFM microindentation  

(A) Temporal evolution of the indentation depth (black) and the measured force (grey) in response to AFM 

microindentation normalized to their values when the target force is reached. Inset: approach phase from 

which the elasticity is calculated (grey curve). The total approach time lasts less than 50 ms. (B) cell height 

distribution at the indentation point. (C) Indentation depth distribution. In B and C, N  indicates the total 

number of measurements and n  indicates the number of cells. 

 

 

 

For hydrogels similar to the ones that were used in our experiments, poroelastic diffusion 

constants of pD  ~ 100 µm
2
.s

-1
 have been reported [137]. Considering this estimate, 

applying indention depths of d  ~ 2 µm with the same size indentors as for cells (radius of 

7.5 µm) would give characteristic poroelastic times pt  < 0.1 s, too fast to accurately 

observe poroelastic effects, given a rise times of rt  ~ 0.1 s. Therefore to be able to 

reliably observe poroelastic effects, I used a larger indentor ( radius of  R  = 25 µm). 

Using this larger indentor with  d  ~ 2 µm gave an expected characteristic poroelastic time 

of pt  > 0.5 s much larger than the experimental rise time rt . 
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4.1.2 Poroelasticity is the dominant mechanism of force-relaxation in hydrogels  

To test our rescaling strategies on hydrogels, force-indentation and force relaxation 

curves were acquired on hydrogels by setting target forces of 40, 80 and 140 nN as shown 

in Figure 4-2. For each set of target forces, 20 replicate measurements were performed on 

a 100 μm × 100 μm area of the gel and the relaxation curves were averaged for each time 

point. Analysis of force indentation curves for each set of target forces respectively yields 

indentation depths of 1.99±0.02 μm, 2.77±0.03 μm and 3.86±0.06 μm and not 

significantly different elastic moduli of 1.8±0.05 kPa, 1.9±0.06 kPa and 2±0.1 kPa. 

Figure 4-2B shows the plot of force relaxation curves in log-log coordinates which 

displays two clear plateaus at very short and at very long time scales for each set of 

curves. The long timescale plateau indicates that the force relaxation in the gel has a clear 

characteristic relaxation time. Furthermore these curves show that force relaxation in 

these hydrogels does not exhibit a power law behaviour. 

One hallmark of poroelastic materials is that their characteristic relaxation time 

~ /p pt R Dd  is dependent on the indentation depth d . In contrast, power law relaxations 

of the form 0 0( ) ~ ( / )F t F t t b  and exponential relaxations of the form 

0( ) ~ exp( / )F t F t t  have parameters b  and t  that are independent of length scale. 

For ideal stress-relaxations of any power-law or linear viscoelastic material, 

normalisation of force between any two arbitrarily chosen times 1t  and 2t  

1 2 1[ ( ) ( )]/[ ( ) ( )]F t F t F t F t  should lead to collapse of all experimental relaxation 

curves onto one master curve. However, for poroelastic materials, force normalisation 

alone is not sufficient to collapse curves onto a single master curve and time must also be 

renormalised with respect to the indentation depth to achieve collapse of curves.  
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Figure 4-2 Force-relaxation curves acquired with different indentation depths on hydrogel. 

(A) Force-relaxation curves acquired on a hydrogel for three different indentation depths ( 1d , 2d  and 3d ). Each 

data point is the average of 20 measurements acquired at different positions on the hydrogel surface. (B) log-

log plot of the curves shown in (A). Curves show characteristic plateaus at short and long time-scales. In all 

graphs, solid lines and grey shadings represent the mean and standard deviations at each data point, 

respectively. 

 

 

 

To distinguish between poroelastic and viscoelastic force-relaxations, I undertook a 

rescaling analysis as explained in Chapter 3.8. First the force was normalised according to 

equation (3.7) up to the time when each curve reaches its final plateau ( *t t ). As 

shown in Figure 4-3A, normalisation of force alone did not result in the collapse of 

curves onto a single master curve. If the gel were a linear viscoelastic material, 

normalisation of force in this way should result in collapse of all curves onto a single 

curve irrespective of indentation depth. However, if in addition to force, time is also 

normalised by indentation depth, all experimental curves collapse onto a single curve, 

indicating that poroelasticity is the dominant mechanism of force relaxation in hydrogels 

(Figure 4-3B).  
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Figure 4-3 Normalisation of force-relaxation curves acquired on hydrogel. 

(A) Normalisation of force-relaxation curves (Figure 4-2) using equation (3.7) plotted as a function of time. 

For force renormalisation, a separate time *t  was chosen for each curve such that *t t , with t  the time 

at which each curve reaches its plateau: 1 *t  = 7.5 s, 2 *t  = 10 s and 3 *t  = 12.5 s. (B) Normalised force-

relaxation curves from A plotted as a function of time divided by indentation depth d  ( /t d ). Time rescaling 

was performed for each force relaxation curve separately using their respective indentation depth. Following 

force renormalisation and time-rescaling, all force-relaxation curves collapsed onto one single curve. (C) 

Normalisation of force-relaxation curves shown in Figure 4-2 using equation (3.7) plotted as a function 

of time. For force renormalisation, a separate time *t  dependent on indentation depth was chosen for each 

curve with *t ad . Choosing a  = 1.25 s.µm-1 gave times 1 *t  = 2.5 s, 2 *t  = 3.5 s and 3 *t  = 4.9 s. (D) 

Normalised force-relaxation curves from C plotted as a function of time divided by indentation depth d  (

/t d ). Time rescaling was performed for each force-relaxation curve separately using their respective 

indentation depth. Following force renormalisation and time-rescaling, all force-relaxation curves collapsed 

onto one single curve. In all graphs, solid lines and grey shadings represent the mean and standard deviations 

at each data point, respectively. 
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As explained earlier in Chapter 3.8, collapse of curves can also be obtained following 

normalisation of time for times shorter than t . For times *t t to obtain collapse of 

force relaxation of poroelastic material onto a master curve, *t  must be selected 

proportional to the indentation depth d  specific to each curve: *t ad  where a  (with 

unit of s.μm
-1

) is an arbitrary number fixed for all curves (Figure 4-3C). With this choice 

of *t  a similar collapse of curves was observed using force and time normalisation 

(Figure 4-3D), confirming the dominance of poroelasticity in the force relaxation of gels 

in these experiments. Fitting the relaxation curves with equation (3.5) gave a poroelastic 

diffusion constant of 33±4 μm.s
-1

 for the hydrogel comparable to the previously reported 

values [137]. 

4.1.3 Cellular force-relaxation at short timescales is poroelastic 

Population averaged force-relaxation curves showed similar trends for both HeLa and 

MDCK cells with a rapid decay in the first 0.5 s followed by slower decay afterwards 

(Figure 4-4A). When plotted in log-log scale in Figure 4-4B, we see that force-relaxation 

clearly displayed two separate regimes: a plateau lasting ~ 0.1-0.2 s followed by a 

transition to a linear regime. This indicated that at short time-scales cellular force-

relaxation did not follow a simple power law. Comparison with force-relaxation curves 

acquired on physical hydrogels, which display a plateau at short time-scales followed by 

a transition to a second plateau at longer time-scales (Figure 4-2A, B), suggests that the 

initial plateau observed in cellular force-relaxation may correspond to poroelastic 

behaviour. Indeed poroelastic models fitted the force-relaxation data well for short times 

(< 0.5 s); whereas power law models were applicable for times longer than ~ 0.1-0.2 s 

(Figure 4-4B).  



 

 

103 

 

 

Figure 4-4 Force-relaxation curves acquired with different indentation depths on cells. 

(A) Population averaged force-relaxation curves for HeLa cells (green) and MDCK cells (blue) for target 

indentation depths of 1.45 μm for HeLa cells and 1.75 μm for MDCK cells. Curves are averages of n  = 5 

HeLa cells and n  = 20 MDCK cells. The grey shaded area around the average relaxation curves represents 

the standard deviation of the data. (B) Population averaged force-relaxation curves for HeLa cells (green) and 

MDCK cells (blue) from D-I plotted in a log-log scale. For both cell types, experimental force-relaxation was 

fitted with poroelastic (black solid line) and power law relaxations (grey solid line). 

 

 

 

To gain further insight into the nature of cellular force-relaxation at short time-scales, I 

acquired experimental relaxation curves following indentations with increasing depths. 

For analysis of these experiments, I selected cells with identical elasticities such that 

application of a chosen target force resulted in identical indentation depths and I averaged 

their relaxation curves. This filtering procedure ensured that the cellular relaxation curves 

were comparable in all aspects (Figure 4-5A and Figure 4-6A) and allowed us to assess 

whether or not cellular relaxation was dependent upon indentation depth. As shown 

earlier for hydrogels, the most important property of these gels as a poroelastic material is 

that their characteristic relaxation time depends on indentation depth. Indeed, the length 

scale dependency of relaxation in poroelastic materials is in contrast to power law and 

linear viscoelastic exponential relaxation behaviours.   
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Figure 4-5 Normalisation of force-relaxation curves acquired on MDCK cells. 

(A) Force-relaxation curves acquired on MDCK cells for three different indentation depths ( 1d , 2d  and 3d ). 

Each relaxation curve is the average of 20 force-relaxation curves acquired on cells with matching elasticities 

of E  = 0.4±0.1 kPa. Elasticity matching ensured that identical forces were applied onto each cell to obtain a 

given indentation depth. (B) Normalisation of force-relaxation curves shown in A using equation (3.7) 

choosing *t  = 3.6 s for all curves. Relaxation curves were significantly different from one another for times 

shorter than ~ 0.5 s but appeared to collapse at times longer than ~ 1.2 s. (C) Normalisation of force-

relaxation curves shown in A using equation (3.7) plotted as a function of time. For force renormalisation, a 

separate time *t  dependent on indentation depth was chosen for each curve with *t ad . Choosing a  = 

0.16 s.µm-1 gave times 1 *t  ~ 105 ms, 2 *t  ~ 170 ms and 3 *t  ~ 285 ms. (D) Normalised force-relaxation 

curves from C plotted as a function of time divided by indentation depth d  ( /t d ). Time rescaling was 

performed for each force relaxation curve separately using their respective indentation depth d . Following 

force renormalisation and time-rescaling, all three force-relaxation curves collapsed onto one single curve. In 

all graphs, solid lines and grey shadings represent the mean and standard deviations at each data point, 

respectively. 
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Figure 4-6 Normalisation of force-relaxation curves acquired on HeLa cells. 

(A) Force-relaxation curves acquired on HeLa cells for two different indentation depths ( 1d  and 2d ). Each 

relaxation curve is the average of 5 force-relaxation curves acquired on cells with matching elasticities of E  

= 0.66±0.1 kPa and heights of h  = 5.5±0.3 μm. This ensured that identical forces were applied onto each cell 

to obtain a given indentation depth. Matching of cell heights was necessary to minimise substrate effects due 

to the smaller thickness of HeLa cells compared to MDCK cells. (B) Normalisation of force-relaxation curves 

shown in A using equation (3.7) choosing *t  = 1 s for all curves. Relaxation curves were significantly 

different from one another for times shorter than ~ 0.5 s but appeared to collapse at times longer than ~ 0.6 s. 

(C) Normalisation of force-relaxation curves shown in A using equation (3.7) plotted as a function of 

time. For force renormalisation, a separate time *t  dependent on indentation depth was chosen for each 

curve with *t ad . Choosing a  = 0.19 s.µm-1 gave times 1 *t  ~ 170 ms and 2 *t  ~ 275 ms. (D) 

Normalised force-relaxation curves from C plotted as a function of time divided by indentation depth d  (

/t d ). Time rescaling was performed for each force relaxation curve separately using their respective 

indentation depth. Following force renormalisation and time-rescaling, both force-relaxation curves collapsed 

onto one single curve. In all graphs, solid lines and grey shadings represent the mean and standard deviations 

at each data point, respectively.  
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After force normalisation, experimental force-relaxation curves acquired on cells for 

different indentation depths collapsed for times longer than ~ 1 s, but were significantly 

different from one another for shorter times (Figure 4-5B for MDCK cells and 

Figure 4-6B for HeLa cells), suggesting that, at short times, relaxation is length-scale 

dependent consistent with a poroelastic behaviour.  

For cells, experimental force-relaxation curves do not reach a plateau because relaxation 

follows a power law at long time-scales (Figure 4-4B). Hence, to determine if relaxation 

displayed a poroelastic behaviour at short time-scales, I followed the force normalisation 

and time rescaling steps described in Chapter 3.8 for cases where *t t . These 

procedures resulted in all cellular force-relaxation curves collapsing onto a single master 

curve (Figure 4-5D for MDCK cells and Figure 4-6D for HeLa cells). This behaviour was 

apparent in poroelastic hydrogels for both long and short time-scales (Figure 4-3B, D) 

and in cells for times shorter than ~ 0.5 s (Figure 4-5D and Figure 4-6D). Taken together, 

these data suggested that at short time-scales cellular relaxation is indentation depth 

dependent and therefore that cells behaved as poroelastic materials. 

4.2 Kinetics of whole cell swelling/shrinking 

Using fluorescent particles attached to the cell membrane (see Figure 4-7A) and particle 

tracking techniques, my aim here was to monitor the response of cells to osmotic 

perturbations to investigate the swelling/shrinking kinetics of the cytoplasm. In particular 

off-plane defocused images of fluorescent particles (depicted in Figure 3-6A, C) enabled 

us to measure time-dependent cellular deformations in the z-direction very precisely. 

HeLa cells with fluorescent beads bound to their membrane were suddenly exposed to a 

change of osmolarity induced by addition of a small volume of water/sucrose (achieving 

final concentrations of 50% water and 400 mM sucrose). A sudden change in osmolarity 

induces osmotic pressure gradients that drive water in or out of the cell resulting in it 

swelling or shrinking. After application of hypo/hyperosmotic shock, changes in the cell 
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height were measured over time by monitoring changes in the radius of the outer ring 

(formed by the out of focus image of the fluorescent bead attached to the cell surface, 

Figure 3-6A, B, C) to determine changes in z position of the bead.  

 

 

 

Figure 4-7 Experimental setup to investigate the poroelastic behaviour of cells during swelling/shrinkage.  

(A-I) Schematic of fluorescent microbeads attached to the cell membrane. (A-II) By changing the osmolarity 

of the extracellular medium we can induce osmotic pressure gradients across the cell membrane that drive 

water in or out of the cell resulting in swelling or shrinkage (Here a decrease in cell volume due to 

hyperosmotic shock is depicted). Keeping the focal plane fixed, changes in the vertical position of each bead 

due to swelling/shrinkage of the cell can be determined from the outer ring radius of the defocused image 

using the calibration curve, Figure 3-6C. (B) Changes in height of beads over time after application of hypo-

osmotic/hyperosmotic shock at time 0t . Fitting the displacement curve to the analytical solutions for 

poroelastic hydrogels allows the poroelastic properties of the cell to be estimated. 

 

 

 

First, I asked whether the cell behaves as a poroelastic gel by fitting the experimental 

displacement curves to the analytical solutions for swelling kinetics of poroelastic gels. 

Then the poroelastic diffusion coefficient pD  was computed and compared with the 

values obtained from AFM indentation experiments in Chapter 5. As proposed in Chapter 

6, this method could be employed to dissect the contribution of different cellular layers to 

cell rheology and to determine the spatial distribution of pD . 
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4.2.1 Swelling/shrinkage of a constrained poroelastic material 

Consider a thin layer of poroelastic material (a gel) attached on one side to a fixed 

substrate and immersed in a solvent for sufficiently long to reach an equilibrium 

homogeneous state with 0C  and 0m  the initial concentration and chemical potential of 

the solvent respectively. When the gel is suddenly exposed to a solvent with different 

chemical potential m , the chemical potential gradient 0m m  drives the solvent to flow 

into/out of the gel. The displacement and chemical potential fields can be considered one 

dimensional in z  if the lateral dimensions xL  and yL  of the gel are much larger than its 

thickness H  ( ,x yL L H ). Indeed, in this case, there is a negligible amount of flow 

from the edges and the solvent flows mostly through top surface of the gel. The gel is 

constrained in xy  so 0xx yye e  and the problem is similar to uniaxial strain 

consolidation as described in Chapter 2 (2-4-2). For cells, constraint in xy  is achieved 

through focal contacts and integrin transmembrane proteins. The gel can freely swell and 

shrink from the top surface ( 0zzs ) and thus the equations (2.48) and (2.50) can be 

written in terms of chemical potential: 
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Considering the top surface as the reference point, the spatial and temporal evolution of 

chemical potential can be derived using appropriate boundary and initial conditions. The 

equilibrium chemical potential before application of osmotic shock yields the initial 

condition 0( , 0)zm m . A step change in chemical potential on the top surface which 

remains constant over time (0, )tm m  and the no flow condition at the bottom of the 



 

 

109 

 

gel | 0z Hz
m

 yield the boundary conditions. Therefore the solution of the diffusion 

equation (4.2) is very similar to equation (2.52): 
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where 2/4pD t Ht  is the dimensionless time. One can also obtain the solution for 

infinite thickness (also applicable for early times after shock) as: 
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After a long enough time 2 /t H D , the solvent inside the gel has reached a new 

equilibrium m m  and the gel has shrunken/swollen from its initial height H , by h  to 

its final height. Considering the total final strain at very long times =zz

h
H

e  and 

employing equation (4.1)-a, the final change in thickness of the gel is: 
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The change of thickness at top surface ( )h t  is derived by integrating equation (4.1) and 

using equations (4.3) and (4.5): 
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Using equation (4.4)the change in the thickness of the gel is written as: 
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Figure 4-8 Kinetics of cell swelling/shrinking in HeLa cells 

(A, B) Swelling/shrinking kinetics of HeLa cells in response to hyperosmotic (A) and hypoosmotic (B) 

shocks. Dynamics of cellular swelling/shrinking is precisely probed by tracking the height ( )h t  of fluorescent 

beads attached on the cell membrane at different heights H . The curves show the change cell height 

normalised to the final change in thickness ( )/h t h . The inset shows the absolute change of height ( )h t . (C) 

Swelling/shrinking curves were fitted to the poroelastic model using equation (4.6) derived for poroelastic 

swelling of constrained gels. Fits to the equation (4.7) describes the early stage behaviour of cellular 

swelling/shrinking.  
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4.2.2 Poroelasticity can explain the kinetics of cellular swelling/shrinking 

During the experiments, HeLa cells were exposed to hyper/hypoosmotic medium at t =0 

and the vertical displacement of the attached beads was measured as a function of time to 

obtain swelling/shrinking curves (Figure 4-8A, B insets). These curves were then 

normalized with respect to the final change in the height h  (Figure 4-8A,B). The 

( )/h t h  curves were fitted with the analytical solution derived for a poroelastic 

cytoplasm in equation (4.6) (Figure 4-8C). This solution fitted the experimental curves 

well and fitting gave the poroelastic diffusion constants of pD  =0.3±0.2 μm
2
.s

-1
 (n  = 16) 

and pD  =0.6±0.3μm
2
.s

-1
 (n = 10)for swelling and shrinking respectively. Furthermore, 

considering the early stage behaviour, the first 10 s of curves were fitted with analytical 

solution in equation (4.7) and diffusion coefficients of pD  = 0.4±0.2 μm
2
.s

-1
 and pD = 

0.7±0.3 μm
2
.s

-1
 were obtained for swelling and shrinking respectively (Figure 4-8C). The 

values obtained from fits with the short timescale solution were in good agreement with 

those obtained fitting with the full analytical solution. 

4.3 Discussion and conclusions 

To validate the experimental strategy and analytical methods, first the force-relaxation 

behaviour of hydrogels, which are well-characterised poroelastic materials, was 

examined. Intrinsic viscoelasticity and poroelasticity concurrently contribute to the time 

dependent deformation of gels. The intrinsic viscoelasticity is associated with 

conformational changes in the solid meshwork, while poroelasticity is related to the 

redistribution of fluid. During indentation tests on gels (similar to the hydrogel that is 

used in my experiments) the viscoelastic relaxation time results from the occurrence of 

multiple microscopic processes such as slippage and reptation of polymer chains [87]. 

This relaxation time is determined by the ratio of the shear viscosity h  and the shear 

modulus G : 
~ /v Gt h

 [87], and is indentation depth independent as both h  and G  are 
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independent of contact size. In contrast, the poroelastic relaxation time 
~ /p pR Dt d

 is 

related to the time scale of fluid redistribution/migration within/out of the deformed 

region and this depends on the contact radius and indentation depth. For hydrogels, plots 

of force-relaxation curves in log-log coordinates suggest the involvement of a limited 

number of relaxation processes consistent with poroelastic behaviour. More importantly, 

for experiments performed with different indentation depths, appropriate normalisation of 

experimental force-relaxation curves resulted in the collapse of all curves onto a single 

master curve. This provides strong evidence for the dominance of poroelasticity in 

relaxation of hydrogels in agreement with [121, 137, 142]. It may thus be concluded that 

poroelasticity is the dominant mechanism of relaxation in our indentation experiments 

on hydrogels.   

A detailed examination of the functional form of  cellular force-relaxation curves at 

different time  scales was undertaken and these curves were compared to force-relaxation 

curves  acquired on hydrogels. Force-relaxation induced by fast localised indentation 

by  AFM contained two regimes: at  short  time-scales, the time-scale of  force- relaxation 

was indentation depth dependent, a hallmark of  poroelastic materials; while at 

longer  timescales relaxation exhibited a power  law  behaviour. This confirms that living 

cells are much more complex active materials than simple hydrogels. Indeed, 

at physiological time-scales (0.1-10s), in addition to conformational changes in polymeric 

network of cytoskeleton and rearrangements in the solid phase (macromolecules) other 

factors such as turnover of cytoskeletal fibres, activity of myosin molecular motors and 

network rearrangements due to association and dissociation of crosslinkers, also influence 

the relaxation significantly.  

Cell mechanical studies over the years have revealed a rich phenomenological landscape 

of rheological behaviours that are dependent upon probe geometry, loading protocol and 

loading frequency [56, 58, 63-65], though the biological origin of many of these regimes 
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remains to be fully explored. It is widely recognized that over wide ranges of frequency, 

the rheology of living cells exhibits a weak power law behaviour in which the viscoelastic 

response does not exhibit any characteristic timescale (see Chapter 2.2.3). The structural 

damping model, which has previously been applied to characterise a variety of biological 

materials [143], was recently implemented to describe the observed power law behaviour 

in cells [33]. In the power law structural damping model, the storage and loss moduli are 

both weak power law functions of frequency: ' '', ~G G bw , 0 1b , and are related 

through a structural damping coefficient '' '/ tan( /2)damp G Gh bp . As a result, in 

this model, dissipation is linked to an elastic stress rather than an independent viscous 

stress. A Newtonian viscous term m  was added to the loss modulus of the model to 

capture the observed dynamics at short timescales [112]. In magnetic twisting cytometry, 

the addition of such a linear term could be to take into account the effects of drag forces 

generated from viscous interaction between the probe and the surrounding fluid. 

However, the calculated values for this viscous term ( 1m  pa.s, [33, 79, 144]) are much 

larger than the viscosity of surrounding fluid (~ 0.001 pa.s). Therefore, the physical 

origins of this additional viscous parameter are still not clear and are therefore debatable.  

The shape of my force-relaxation curves at short timescales was not consistent with a 

power law behaviour (similar to experiments reported by others [53, 145-149]) and it is 

surprising that the initial non-power law regime observed in my experiments should not 

have been described before. I envisage two major reasons for this. First, most recent 

experiments aim to describe the shear rheology of cells over many decades of frequency 

and therefore apply oscillatory deformations to the cell, using shear rheology methods 

rather than focusing on volumetric changes (dilatational rheology) as done here. Indeed, 

measurements of shear rheology are of little or no consequence in understanding cell 

rheology for which volumetric deformations are critical (e.g. cell migration [150] and the 

formation of quasi-spherical protrusions known as blebs [107]). My experiments were 

designed to apply large volumetric deformations via micro-indentation tests such that 
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they inherently capture the dilatational rheology of the cell. Indeed, my experiments are 

placed in a regime where intracellular water flows should play an important role: rapid 

application of a large volumetric deformation and observation of force relaxation over 

short and intermediate time-scales using microindentation. Second, in experiments 

reported by other groups, such as force-relaxation experiments similar to the ones 

presented here [52, 53, 145, 151] and also using other very different experimental setups 

[146, 147, 149], a rapid initial force relaxation was observed but its origin was not 

examined. In these experiments, either the short timescale behaviours were neglected, 

only the asymptotic part of relaxation was fitted, or functions such as double exponentials 

with both fast and slow relaxation times or stretched exponential functions were used to 

fit the experimental data.  

To observe water flows in response to applied deformations, one needs to deform the cell 

with a large probe over a short rise time rt . Indeed, the time scale of application of 

deformation rt  must be shorter than the time it takes for water to drain out of the 

deformed volume 2 2 2~ / ~ /( )p pt L D L Em x  (L  is the probe length-scale and in the case 

of indentation: ~L Rd  with R  the radius of the indenter and d  indentation depth). In 

the context of oscillatory sinusoidal loading, shorter rise time deformations are achieved 

by increasing the frequency of excitation. However, if the loading frequency is too high, 

water does not have time to drain out of the deformed volume before the next cycle of 

deformation is applied. In this regime, water will not move relative to the mesh and 

therefore inertial and structural viscous effects from the mesh are sufficient to describe 

the system [81, 152]. Previous work has shown that for frequencies 2 2/( )pf E Lx m  

such coupling occurs [81]. Hence, to observe poroelastic effects in oscillatory 

experiments, it is required to deform the material at frequencies larger than 1/ pt  to 

satisfy the short rise time condition to induce fluid flow but smaller than pf  so that fluid 

and mesh are not coupled. As both conditions have identical scaling, it is expected that 

they only be satisfied in a narrow window around pf  ~ 5 Hz for my experimental 
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conditions. Most oscillatory loading experiments sample rheology in 2 points per decade 

and hence would likely not detect this window. Hence, to observe poroelastic effects, we 

need to apply deformations with rise times shorter than pt  and repeated at frequencies 

lower than pf .  

It should be emphasised that this type of loading regime is very physiologically relevant. 

Indeed, cells in tissues of the cardiovascular or respiratory systems are exposed to large 

strain deformations (tens of %) applied at high strain rates (> 20%.s
-1

) but with low repeat 

frequencies (< 4 Hz) (e.g. 10% strain applied at ~ 50%.s
-1

 repeated at up to 4 Hz for 

arterial walls [153], 70% strain applied at up to 900%.s
-1

 repeated at up to 4 Hz in the 

myocardial wall [154], and 20% strain applied at > 20%.s
-1

 repeated at ~ 1 Hz for lung 

alveola [155]). As the changes in cell shape that occur in physiological tissue deformation 

are similar in magnitude or larger than those induced in our experiments and are repeated 

with low frequency, I expect intracellular water redistribution to play an important role in 

the relaxation of cells within these tissues 

When force-relaxation curves acquired for different indentation depths on cells were 

renormalized for force and rescaled with a time-scale dependent on indentation depth, all 

experimental curves collapsed onto a single master curve for short time-scales, 

confirming that the initial dynamics of cellular relaxation is dominated by poroelastic 

effects and intracellular water flow (Figure 4-5 and Figure 4-6), but for larger timescales 

the relaxation curves exhibit a weak power law behaviour. Together these data suggest 

that in my experiments the power-law dynamics and poroelasticity coexist. For timescales 

shorter than ~ 0.5 s, intracellular water redistribution contributed strongly to force-

relaxation, consistent with the ~ 0.1 s time-scale measured for intracellular water flows in 

the cytoplasm of HeLa cells [156]. At long timescales when fluid is fully redistributed, 

fluid related poroelastic dissipations became negligible and structural damping effects 

(manifested in the form of a weak power law) come into play as the main source of 

dissipation. 
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Volume exclusion effects are the primary source of swelling/shrinking behaviour in 

artificial and biological gels as well as living cells. The dynamics of swelling and 

shrinking mainly depends on the rate at which water can be transported into and out of 

the gel. However, poroelasticity can also significantly affect the swelling/shrinking 

kinetics: for an elastic porous medium, the deformation of the porous matrix induced by 

osmotic shock significantly limits the rate of swelling/shrinkage. Indeed a very stiff 

sponge cannot swell/shrink even if water can diffuse into/out of it infinitely fast. Here the 

hypothesis that the swelling/shrinking behaviour of cytoplasm is similar to that of 

hydrogels was tested by examining its volume response to osmotic perturbations. It is 

shown that that the swelling/shrinking kinetics of cytoplasm can be well described via 

a simple 1-D poroelastic model and analytical solutions fitted the experimental data well. 

The estimated values of the diffusion coefficient were within the previously reported 

range of 0.1 to 10 μm.s
-1 [100-102] but around one order of magnitude smaller than those 

obtained from indentation experiments (as presented in next chapter). There are several 

possible sources of this discrepancy as shall be explained in the following paragraph. 

A one dimensional model for swelling/shrinking of a constrained gel was used to 

determine the cellular poroelastic diffusion coefficient from fits of experimental curves. 

This one dimensional formulation was a good approximation for my analysis because the 

lateral movements of the membrane-attached beads were much smaller than their vertical 

displacement (less than ~ 0.5 μm in xy  versus greater than ~ 2 μm in z ). However this 

model is only valid if the osmotic perturbations are applied in a step manner (infinitely 

fast). In our experiments, it takes a certain amount of time for the added osmolyte to mix 

with the bath solution and for osmolyte to equilibrate. This non instantaneous change in 

osmolarity could be one reason for underestimation of diffusion coefficient using 

proposed the poroelastic model. Comparing shrinking and swelling experiments, faster 

poroelastic diffusion constants were obtained in shrinking experiments, which might be 

due to irreversible dynamics of the membrane water channels (aquaporins) or different 
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responses of the solid phase and cytoskeleton to tensional versus compressional forces 

created during hyperosmotic shrinkage and hypoosmotic swelling, respectively.  

The structural heterogeneity and complex nature of the cell may be the key reason that 

different experimental setups report different values for cellular mechanical and 

rheological properties. AFM probes only small regions of cytoplasm whereas all of the 

structures inside the whole cell are perturbed during a swelling/shrinking experiment. 

Indeed several cellular layers, such as the cell membrane, the cell cortex, the nucleus, and 

the granular filamentous interior, each with different permeabilities and elasticities, 

contribute to setting the poroelastic behaviour of the cell in swelling/shrinking. During 

indentation experiments, small regions of cytoplasm underneath the indentor are 

compressed and water movement is directed towards the cell interior (see Figure 4-9). For 

these indentation experiments, the cell membrane most likely does not play a significant 

role in setting the rate of water permeation and the membrane can be assumed to be fully 

permeable. In contrast, during swelling/shrinkage of the whole cell, water infiltration 

through cytoplasm and all parts of the cell (including the nucleus) sets the dynamics of 

swelling/shrinking. Specifically the rate of swelling/shrinking can be limited significantly 

by the rate at which water can pass through thin layers of cytoplasm such as the cell 

cortex and the plasma membrane.  
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Figure 4-9 Schematic representation of intracellular water movements in different experimental setups. 

During osmotic shocks the water permeates through whole cytoplasm and all parts of the cell whereas for 

AFM indentation tests water movements is restricted to small regions of cytoplasm underneath the indentor. 

The arrows show possible directions of water movement.  

 

 

 

The plasma membrane has long been thought of as the main regulator for volumetric 

responses of cells to osmotic perturbations. However, it has been recently shown that in 

the absence of a cell membrane the cytoplasm of mammalian cells has intrinsic 

osmosensitivity [157]. Simple diffusion through the lipid bilayer and water selective 

facilitated diffusion through the water channels (aquaporins) are the main pathways for 

water permeation during osmotic perturbations [156, 158]. Coherent anti-Stokes Raman 

scattering (CARS) microscopy allows observation of intracellular hydrodynamics by 

monitoring H2O/D2O exchange in living cells [159]. Using CARS, recent experimental 

measurements found that for Hela S3 cells it takes less than ~ 100 ms for water to fully 

permeate across the plasma membrane and fully exchange, much shorter than our 

measured relaxation times (>> 1 s) for the volumetric response of HeLa cells to osmotic 

perturbations. Therefore, in addition to diffusional effects, mechanical factors also play 

an important role in setting the relaxation time. Furthermore, considering a cell height of 

~ 4 μm and a poroelastic diffusion coefficient ~ 40 μm
2
.s

-1
 yields the ratio of /pD h ~ 10 

μm.s
-1

 which is of the magnitude as the measured membrane diffusional permeability ~ 

10-40 μm.s
-1

 [156, 159] suggesting that the solid phase of cytoplasm has a similar 
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contribution in limiting the rate of water permeation to the membrane. I conclude that the 

simple concept of a water-filled container surrounded by membrane, cannot fully explain 

the volumetric response of cell to osmotic perturbations and that the solid phase of 

cytoplasm contributes significantly in this response. I suggest that poroelastic model for 

the cytoplasm is a more physical concept that inherently considers the gel-like nature of 

cytoplasm and can help explain the dynamics of volume changes. However, further 

experiments suggested in Chapter 6 are required to precisely dissect the role of the 

membrane and different parts of the solid phase in determining the cell’s response to 

osmotic shocks. 
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Chapter 5  

 

Poroelastic properties of 

cytoplasm: Osmotic perturbations 

and the role of cytoskeleton  

 

 

 

Equation Chapter (Next) Section 1 

It has been shown in the previous chapter that the framework of poroelasticity is well 

suited to understanding the time-dependent mechanical properties of cells. In this 

framework, the cytoplasm comprises two phases: a porous solid phase (cytoskeleton, 

organelles, macromolecules) and a fluid phase (cytosol). The conceptual advantage of 

such a description is that cellular rheology can be related to measurable cellular 

parameters (elastic modulus E , hydraulic pore size x , and cytosolic viscosity m ) using a 

simple scaling law 2~ /pD Ex m  and therefore changes in rheology resulting from 

changes in cellular organisation can be qualitatively predicted. In this chapter, AFM 

indentation tests were utilized to measure cellular stress-relaxation in response to rapid 
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local force application in conjunction with chemical, genetic, and osmotic treatments to 

modulate two of the parameters that scaling law predicts should influence cellular time-

dependent mechanical properties: pore size x  and the elasticity E .  

5.1 Determination of cellular elastic, viscoelastic and poroelastic 

parameters from AFM measurements 

To provide baseline behaviour for perturbation experiments, I measured the elastic, 

viscoelastic and poroelastic properties of MDCK, HeLa, and HT1080 cells by fitting 

force-indentation (Figure 3-3) and force-relaxation (Figure 5-1) curves with Hertzian and 

viscoelastic or poroelastic models, respectively. Measurement of average cell thickness 

suggested that for time-scales shorter than 0.5 s, cells could be considered semi-infinite 

and forces relaxed according to an exponential relationship with 2( ) exp( / )pF t D t L  

(see Chapter 2.4, 5, Figure 2-5 and Figure 2-7C). In our experimental conditions (3.5-6 

nN force resulting in indentation depths less than 25% of cell height, Figure 4-1B, C), 

force-relaxation with an average amplitude of 40% was observed with 80% of total 

relaxation occurring in ~ 0.5 s (Figure 4-4 and Figure 5-1A).  

Analysis of the indentation curves yielded an elastic modulus of E  = 0.9±0.4 kPa for 

HeLa cells (N  = 189 curves on n  = 25 cells), E  = 0.4±0.2 kPa for HT1080 cells (N  = 

161 curves on n =27 cells), and E  = 0.4±0.1 kPa for MDCK cells (n  = 20 cells). 

Poroelastic models fitted experimental force-relaxation curves well (on average 2r  = 

0.95, black line, Figure 5-1A) and yielded a poroelastic diffusion constant of pD  = 41±11 

µm
2
.s

-1
 for HeLa cells, pD  = 40±10 µm

2
.s

-1 
for HT1080 cells, and pD  = 61±10 µm

2
.s

-1 
for 

MDCK cells.  
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Figure 5-1 Fitting force-relaxation curves. 

(A) The first 0.5 s of force-relaxation curves were fitted with the poroelastic model (black line) and the 

standard linear viscoelastic model (grey line). Poroelastic models fitted the data better than the single phase 

viscoelastic model especially at short times. Inset: the percentage error of each fit defined as |         | 

    . (B) Ratio of root mean square error (RMSE) of the viscoelastic fit to the RMSE of poroelastic fit. 

 

 

Assuming that the cytoplasm behaves as a standard linear viscoelastic material and to 

measure the apparent viscosity of the cytoplasm, I fitted force-relaxation curves with 

equation (3.6) ( 1( ) ~ exp( / )F t k t h ). Using the approach phase of AFM indentation 

curves, I measured cellular elasticity and assumed 1 ~k E . Therefore the relaxations 

predicted by a viscoelastic formulation depend on only one free parameter: the apparent 

viscosity h . Since the force-relaxation curves are indentation depth dependent, to 

calculate the apparent viscosity I considered only the curves with indentation depths of 

±10% of the mean values obtained from distribution of indentation depths (Figure 4-1B). 

Viscoelastic formulations were found to replicate experimental force-relaxation curves 

well (on average 2r  = 0.92), but the early phase of force-relaxation was fit somewhat less 

accurately by viscoelastic models (gray line, Figure 5-1A) compared to poroelastic fits 

(black line, Figure 5-1A). Indeed, viscoelastic models gave rise to somewhat larger errors 
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than poroelastic models (Figure 5-1B). An average apparent viscosity of h  = 166±81 Pa.s 

was measured for HeLa cells, h = 77±37 Pa.s for HT1080 cells and h  = 50±15 Pa.s for 

MDCK cells. 

5.2 Poroelasticity can predict changes in stress relaxation in 

response to volume changes 

Having established that poroelastic models provide good fits for stress relaxation in cells, 

I examined the ability of our simple scaling law to qualitatively predict changes in pD   

resulting from changes in pore size due to cell volume change. Indeed, cell volume 

changes should not affect cytoskeletal organisation or integrity but should alter 

cytoplasmic pore size. In our experiments, we exposed Hela and MDCK cells to media of 

different osmolarities: hyperosmotic media to decrease cell volume and hypoosmotic 

media to increase cell volume. 

First, I measured cell volume change in response to changes in osmolarity for up to 30 

min to ascertain that volume changes persisted long enough for experimental 

measurements to be carried out with AFM (Figure 5-2A). Indeed, cell volume stayed 

constant over this time frame. I verified that photobleaching due to the acquisition of 

confocal stacks over an extended period of time did not artefactually affect our 

measurement of cell volume (control, n  = 6 cells, Figure 5-2A). Cells regulate their 

volume tightly to be able to tolerate extracellular environments of different osmolarities. 

When osmolarity is perturbed, flow of water across cell membrane causes cell swelling or 

shrinkage. However, the cell can restore its original volume by activation of channels or 

transporters (typically K+, Cl and organic osmolytes) to lose or gain sufficient amount of 

osmolytes to return to its preferred volume. To ensure a stable volume increase under 

hypoosmotic conditions over the timescale necessary for AFM experiments (~ 30 min), 

cells were treated simultaneously with regulatory volume decrease (RVD) inhibitors 
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[160]. Also, MDCK cells were treated with regulatory volume increase (RVI) 

inhibitors to ensure a stable decrease in cell volume after shrinkage. Under these 

conditions, a stable increase of 22±2% in cell volume was measured after hypoosmotic 

treatment (n  = 3 cells, Figure 5-2A). Conversely, upon addition of 240 mM sucrose, cell 

volume decreased by 21±6% (n  = 10 cells, Figure 5-2A) and upon addition of PEG-400 

(30% volumetric concentration), cell volume decreased drastically to 46±3% of the 

original volume (N  = 6 cells, Figure 5-2A)
†
.  

Next, using AFM indentations I investigated whether changes in cell volume resulted in 

changes in the poroelastic diffusion constant. Increases in cell volume resulted in a 

significant increase (55%) in poroelastic diffusion constant pD  and in a significant 

decrease (-20%) in cellular elasticity E  (N  = 92 measurements on n  = 33 cells, p  < 

0.01 when compared to control for both E  and pD , Figure 5-2B). In contrast, cells 

exposed to PEG-400 exhibited a two-fold lower diffusion constant ( p  < 0.01 when 

compared to controls) than control cells and a 50% larger elasticity ( p  < 0.01, N  = 176 

measurements on n  = 17 cells) (Figure 5-2B). Addition of sucrose with low 

concentrations (<<250 mM) resulted in no significant changes in elasticity or diffusion 

constant ( p  = 0.53 for E  and p  = 0.89 for pD ).  

As will be examined in detail in next section, there are spatial inhomogeneities in shape 

architecture and mechanical properties of HeLa cells spread on glass substrates. To 

increase the accuracy of the measurements and decrease the uncertainties arising from 

spatial inhomogeneities, similar experiments were performed on MDCK cells with 8 data 

points corresponding to sampling different medium osmolarities (Figure 5-2C). 

Qualitatively, both cell types had the same behaviour, confirming the generality of our 

results (Figure 5-2C, D). 

                                                      
†
 I would like to acknowledge the preliminary data from report of L. Valon. 
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Figure 5-2 Poroelastic and elastic properties change in response to changes in cell volume.  

In all graphs, error bars indicate the standard deviation and, in graphs B and C, asterisks indicate significant 

changes compared to control ( p  < 0.01). N  indicates the total number of measurements and n  indicates the 

number of cells. In hypoosmotic shock experiments, cells were incubated with NPPB and DCPIB (N+D on 

the graph), inhibitors of RVD. In hyperosmotic shock experiments, MDCK cells were incubated with 

RVI  inhibitors (EIPA).  (A) Cell volume change over time in response to changes in extracellular osmolarity. 

The volume was normalized to the initial cell volume at t  = 0 s. The arrow indicates the time of addition of 

osmolytes. (B) Effect of osmotic treatments on the elasticity E  (squares) and poroelastic diffusion constant 

pD  (circles) in HeLa cells. (C) Effect of osmotic treatments on the elasticity E  (squares) and poroelastic 

diffusion constant pD  (circles) in MDCK cells. (D) pD  and E  plotted as a function of the normalised 

volumetric pore size 1/3
0~ ( / )V Vy  in log-log plots for MDCK cells (black squares and circles) and HeLa 

cells (grey squares and circles). Straight lines were fitted to the experimental data points weighted by the 

number of measurements to reveal the scaling of pD  and E  with changes in volumetric pore size (grey 

lines for HeLa cells, 1.6~E y  and 2.9~pD y  and black lines for MDCK cells, 5.9~E y  and 1.9~pD y ).  
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Consistent with results reported by others [125], our experiments revealed that cells 

relaxed less rapidly and became stiffer with decreasing fluid fraction. Increases in cell 

volume resulted in a significant increase in poroelastic diffusion constant pD  and a 

significant decrease in cellular elasticity E  (Figure 5-2B, C). In contrast, a decrease in 

cell volume decreased the diffusion constant and increased elasticity (Figure 5-2B, C). 

Because the exact relationship between hydraulic pore size x  and cell volume is 

unknown,  pD  and E  were plotted as a function of the change in the volumetric pore size 

1/3
0~ ( / )V Vy . As shown in the log-log plot in Figure 5-2D, for both MDCK and HeLa 

cells, pD  scaled with y  and the cellular elasticity E  scaled inversely with y . In 

summary, an increase in cell volume increased the poroelastic diffusion constant and 

decrease in cell volume decreased pD  qualitatively consistent with our simple scaling 

law.  

To exclude any possible indirect effect of volume change due to changes in cytoskeletal 

organisation, I verified that cytoskeletal structure was not perturbed by changes in cell 

volume (Figure 5-3 for actin).  
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Figure 5-3 Effects of hypoosmotic or hyperosmotic shock on HeLa cells F-actin structural organization. 

The F-actin cytoskeleton does not reorganise in response to hypoosmotic treatment (A) or hyperosmotic 

treatment (B). All images are maximum projections of a confocal image stack of cells expressing Life-act 

ruby (red). Nuclei were stained with Hoechst 34332 (blue). In A and B, image (I) shows the cell before 

addition of osmolyte and image (II) after addition. Scale bar = 10 µm. No dramatic changes in structure of 

actin filaments could be observed after hypoosmotic (A) or hyperosmotic (B) shock. 

 

 

 

5.3 Changes in cell volume result in changes in cytoplasmic pore 

size.  

Having shown that changes in cell volume result in changes in the poroelastic diffusion 

constant without affecting cytoskeletal structure, I tried to directly detect if the volume 

perturbations resulted in changes of pore size. As shall be described in the following, 

experiments examining the mobility of microinjected quantum dots (qdots) and 

photobleaching experiments were performed to show that osmotic perturbations and the 

concomitant volume changes directly affect the cytoplasmic pore size. Furthermore, as 

poroelasticity is related to fluid redistribution phenomena, I verified the existence of a 
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fluid phase in cells under extreme shrinkage conditions by photobleaching of small 

cytoplasmic fluorescein analogs. 

5.3.1 Hyperosmotic shock halts movement of quantum dots inside cytoplasm  

PEG-passivated qdots (nanoparticles made of a semiconductor material with unique 

optical and electrical properties, ~ 14 nm hydrodynamic radius with the PEG-passivation 

layer [161]) were microinjected into cells and their mobility was examined before and 

after application of hyperosmotic shock. Under isoosmotic condition, qdots rapidly 

diffused throughout the cell; however, upon addition of PEG-400, they became immobile 

(supplementary video 1, Figure 5-5A-I, n  = 7 cells examined). Hence, cytoplasmic pore 

size decreased in response to cell volume decrease trapping qdots in the cytoplasmic solid 

fraction and immobilising them (Figure 5-5A-II). This suggested that the isoosmotic pore 

radius x  was larger than 14 nm, consistent with our estimates from poroelasticity (see 

section 5.5).  
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Figure 5-4 Fluorescence recovery after photobleaching in HeLa cells.  

(A) Fluorescence recovery after photobleaching of monomeric free diffusing GFP in isosmotic conditions. 

Solid lines indicate fluorescence recovery after photobleaching and are the average of  N = 18 measurements 

on n = 7 cells. The experimental recovery was fitted with the theoretical model described in Chapter 3.11 

(grey line). (B) Fluorescence recovery after photobleaching of GFP-actin in the cortex of HeLa cells blocked 

in prometaphase. Solid lines indicate fluorescence recovery after photobleaching and are the average of N = 

10 measurements on n = 4 cells. A half time recovery of 1/2, F actint = 11.2±3 s was obtained.In (A) and (B), 

dashed lines indicate loss of fluorescence due to imaging in a region outside of the zone of FRAP, error bars 

indicate the standard deviation for each time point, and the greyed area indicates the duration of 

photobleaching.  

 

 

 

5.3.2 Translational diffusion of fluorescent probes affected by osmotic 

perturbations 

5.3.2.1 Effective bleach radius in FRAP experiments. 

 To derive quantitative measurements of the translational diffusion constants of molecules 

within the cytoplasm using the methods described in [141], I experimentally determined 

the effective bleach radius in the first post-bleach image for a nominal bleaching zone of 

diameter 0.5 µm  (Figure 3-7III). Averaging over all diameters passing through the centre 



 

 

130 

 

of the nominal bleach regions yielded an experimental curve that could be fit with 

equation (3.11) to find er  = 1.5±0.2 µm (S5A-V, N  = 6 measurements on n  = 6 cells).  

5.3.2.2 Measurement of translational diffusion constants in cells. 

To validate my estimations of the translational diffusion constant TD  using the analytical 

procedures described in Chapter 3.11, I first measured TD  for GFP molecules and small 

fluorescein analogs (CMFDA, hydrodynamic radius hR  ~ 0.9 nm [162]) freely diffusing 

in the cytoplasm. For cytoplasmic GFP molecules, I found ,T GFPD  ~ 25 µm
2
.s

-1
 

(Figure 5-4A, N  = 18 measurements on n  = 7 cells), consistent with values reported by 

others [141]. I also estimated a translational diffusion constant ,T CMFDAD  ~ 38 µm
2
.s

-1
 for 

CMFDA (N  = 19 measurements on n  = 7 cells) which is in a good agreement with 

published values in cells (Figure 5-5B, TD  = 24-40 µm
2
.s

-1
, [162]). Indeed, effects of 

molecular crowding and hindered diffusion inside the cell slow the diffusion of GFP and 

CMFDA by more than ~3 fold compared to diffusion of these analogs in aqueous 

solutions ( , ,T GFP aqueousD  ~ 90 µm
2
.s

-1
 and , ,T CMFDA aqueousD  ~ 240 µm

2
.s

-1
 [162, 163]). It 

should be noted that with CMFDA loss of fluorescence due to imaging is very high (also 

reported by others, Figure 5-5B). Therefore, only data points up to a total fluorescence 

loss of 15% due to imaging were utilised to estimate the translational diffusion of 

fluorophores in cells in normal isotonic condition.  

5.3.2.3 Osmotic perturbations change the cytoplasmic pore size 

In isoosmotic conditions, CMFDA recovered rapidly after photobleaching (black line, 

Figure 5-5B, Table 5-1) whereas recovery slowed three fold in the presence of PEG-400 

consistent with [164] (grey line, Figure 5-5B and Table 5-1). Recovery after 

photobleaching of CMFDA under strong hyperosmotic conditions confirmed the presence 

of a fluid-phase indicating that under severe hyperosmotic conditions cells still retained a 

significant fluid fraction. To estimate the reduction in translational diffusion of CMFDA 
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in cells under hyperosmotic conditions, I normalised the data following the procedures 

described in [165] and this gave an estimated value of , ,T CMFDA HyperD  ~ 14 µm
2
.s

-1
 (N  = 

20 measurements on n  = 5 cells). The measured decrease in translational diffusion 

suggested a reduction in the cytoplasmic pore size with dehydration. Indeed, translational 

diffusion is related to the solid fraction f  via the empirical relation / ~ exp( )T TD D f  

with TD  the translational diffusion constant of the molecule in a dilute isotropic 

solution [166]. Assuming that the fluid is contained in N  pores of equal radius x , the 

solid fraction is 3~ /( )s sV V Nf x  with sV  the volume of the solid fraction, a constant. 

/T TD D  is therefore a monotonic increasing function of x . Therefore the decrease in 

TD  measured in response to hyperosmotic shock suggests a decrease in x . To examine 

the effect of volume increase on pore size, I examined the fluorescence recovery after 

photobleaching of a cytoplasmic GFP decamer (EGFP-10x, hR  ~ 7.5 nm). Increases in 

cell volume resulted in a significant ~ 2-fold increase in TD  ( p  < 0.01, Figure 5-5C, 

Table 5-1), suggesting that pore size did increase. Together, our experiments show that 

changes in cell volume modulate cytoplasmic pore size x  consistent with estimates from 

AFM measurements (Figure 5-11). 

 

Table 5-1 Effects of osmotic perturbations on translational diffusion coefficients. 

Translation diffusional coefficients TD  are reported with unit of (µm2.s-1). 

 

GFP 

Control 

N = 18, n = 7 

CMFDA 

Control 

N = 19, n = 7 

CMFDA 

PEG-400 

N = 20, n = 5 

EGFP10x 

Control 

N = 17, n = 6 

EGFP10x 

Water+N+D 

N = 23, n = 7 

24.9±7 38.3±8 13.7±4 8.6±2 15.5±5 
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Figure 5-5 Changes in cell volume change cytoplasmic pore size.  

(A) Movement of PEG-passivated quantum dots microinjected into HeLa cells in isoosmotic conditions (I) 

and in hyperosmotic conditions (II). Both images are a projection of 120 frames totalling 18 s (Supplementary 

movie). In isoosmotic conditions, quantum dots moved freely and the time-projection appeared blurry (I); 

whereas in hyperosmotic conditions, quantum dots were immobile and the time-projected image allowed 

individual quantum dots to be identified (II). Images A-I and II are single confocal sections. In (B) and (C), 

dashed lines indicate loss of fluorescence due to imaging in a region outside of the zone where fluorescence 

recovery after photobleaching (FRAP) was measured, solid lines indicate fluorescence recovery after 

photobleaching and are the average of N  measurements and error bars indicate the standard deviation for 

each time point. The greyed area indicates the duration of photobleaching. (B) FRAP of CMFDA (a 

fluorescein analog) in isoosmotic (black, N  = 19 measurements on n  = 7 cells) and hyperosmotic 

conditions (grey, N  = 20 measurements on n  = 5 cells). In both conditions, fluorescence recovered after 

photobleaching but the rate of recovery was decreased significantly in hyperosmotic conditions. (C) FRAP of 

EGFP-10x (a GFP decamer) in isoosmotic (black, N  = 17 measurements on n  = 6 cells) and hypoosmotic 

conditions (grey, N  = 23 measurements on n  = 7 cells). The rate of recovery was increased significantly in 

hypoosmotic conditions. 
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5.4 Estimation of the hydraulic pore size from experimental 

measurements of Dp.  

To estimate HeLa cells hydraulic pore size, equation (2.38), 2 /p sD Ea x m , can be 

used. As a first approximation, I considered sn  ~ 0.3 and a fluid fraction of j  ~ 0.75 for 

cells in isotonic conditions which yields a Kozney constant of k  ~ 4 assuming the lower 

bound for a random distribution of particulate spheres [167]. These values yield an 

estimate of ~ 0.05 for a  in isotonic conditions. Multiple experimental reports have 

shown that for small molecules the viscosity m  (~ 0.001 Pa.s) of the fluid-phase of 

cytoplasm (cytosol) is 2-3 fold higher in cells than in aqueous media [71, 168]. Using 

2 /p sD Ea x m , together with our experimental measurements of pD  ~ 40 µm
2
.s

-1
 and 

sE  ~ 1 kPa in HeLa cells yields a hydraulic pore size x  of ~ 15 nm, comparable to the 

value estimated in section 5.3. 

5.5 Spatial variations in poroelastic properties 

Maps of cellular elasticity measured by AFM show that E  is strongly dependent upon 

location within the cell with actin-rich organelles (lamellipodium, actin stress fibres) 

appearing significantly stiffer than other parts of the cell [169]. Hence, I asked if 

something similar could be observed for poroelastic properties by measuring the cellular 

poroelastic properties at different locations along the cell long axis (Figure 3-5). I 

performed N  = 386 total measurements on n  = 30 cells and displayed the measurements 

averaged over 2 µm bins as a function of distance to the centroid of the nucleus. Cell 

height decreased significantly with increasing distance from the nucleus (Figure 5-6A) 

and this measurement enabled us to exclude low areas of the cell that are prone to 

measurement artefacts due to the limited thickness. The poroelastic diffusion constant pD  

decreased slightly, but not significantly, away from the nucleus going from 40 µm
2
.s

-1
 to 
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~ 30 µm
2
.s

-1
 ( p  > 0.02, Figure 5-6C). In contrast, elasticity increased significantly away 

from the nucleus increasing from ~ 500 Pa to ~ 1200 Pa in lower areas (Figure 5-6B). 

Finally, the lumped pore size estimated from the ratio 1/2
/pD Em  also decreased 

significantly away from the nucleus (Figure 5-6D).  

 

 

 

Figure 5-6 Spatial distribution of cellular rheological properties. 

(A-D) Scatter plots of the average cell height h , elasticity E , poroelastic diffusion constant pD , and 

lumped pore size 
1/2

/pD Em  as a function of distance to the centre of nucleus. Each scatter graph is 

generated by averaging values of each variable over 2 μm wide bins. Filled black circles indicate locations 

above the nucleus, white unfilled circles in the cytoplasm, and grey filled circles boundary areas. The lines 

indicate the weighted least-square fit of the scattered data. Unfilled circles with a cross superimposed indicate 

measurements significantly different ( p  < 0.01) from those obtained above the nucleus. 
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5.6 Poroelastic properties are influenced by cytoskeletal integrity 

It has been shown previously that cellular poroelastic properties are affected by the cell 

cycle state of the cell [101]. Specifically, in mitotic cells blocked in metaphase ( F-actin 

and vimentin intermediate filaments concentrate at the cell periphery, microtubules 

reorganize to form the mitotic spindle and cytokeratin filaments disassemble) a ~ two fold 

larger poroelastic diffusion constant was measured compared to interphase cells [101]. It 

has been hypothesized that this may be due to the dramatic reorganization of the 

cytoskeleton concomitant with metaphase [101]. Cytoskeletal organisation strongly 

influences cellular elasticity E  [169-171], and is also likely to affect the cytoplasmic 

pore size x  (Figure 5-7A-C). As both factors (elasticity and pore size) play antagonistic 

roles in setting pD , in the following I examined the effect of disruption of the 

cytoskeleton on the cellular poroelastic properties using chemical and genetic treatments. 

5.6.1 Chemical treatments 

Treatment of cells with 750 nM latrunculin, a drug that depolymerises the actin 

cytoskeleton, resulted in a significant decrease in the cellular elastic modulus 

(Figure 5-9A, consistent with [169]), a ~ two-fold increase in the poroelastic diffusion 

coefficient (Figure 5-9B), and a significant increase in the lumped pore size 

(Figure 5-11C). Depolymerisation of microtubules by treatment with 5 µM nocodazole 

had no significant effect (Figure 5-9 and Figure 5-11C). Stabilisation of microtubules 

with 350 nM taxol resulted in a small (-16%) but significant decrease in elasticity but did 

not alter pD  (Figure 5-9 and Figure 5-11C). Perturbation of contractility with the myosin 

II ATPase inhibitor blebbistatin (100 μM) lead to a 50% increase in pD , a 70% decrease 

in E , and a significant increase in lumped pore size (Figure 5-9 and Figure 5-11C)
‡
. 

                                                      
‡
 I would like to acknowledge the preliminary data from report of L. Valon.  
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Figure 5-7 Cellular distribution of cytoskeletal fibres.  

Scale bars = 10 µm. Nuclei are shown in blue and GFP-tagged cytoskeletal fibres are shown in green. (A) 

Maximum projection of a cell expressing tubulin-GFP. GFP-α-tubulin was homogenously localised 

throughout the cell body. (B) Maximum projection of cells expressing Life-act-GFP, an F-actin reporter 

construct. F-actin was enriched in cell protrusions but was also present in the cell body. (C) Maximum 

projection of cells expressing keratin18-GFP. Intermediate filaments (keratin 18) were homogenously 

distributed throughout the cell body. (D) Overexpression of the dominant mutant Keratin 14 R125C resulted 

in aggregation of the cellular keratin network. (A&B were acquired by L. Valon).  

 

 

5.6.2 Genetic modification 

In light of the dramatic effect of F-actin depolymerisation on pD  and x , we attempted to 

decrease the pore size by expressing a constitutively active mutant of WASp (WASp 

I294T, CA-WASp) that results in excessive polymerization of F-actin in the cytoplasm 

through ectopic activation of the arp2/3 complex, an F-actin nucleator (Figure 5-8, [26]). 

Increased cytoplasmic F-actin due to CA-WASp resulted in a significant decrease in the 
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poroelastic diffusion coefficient (-43%, p < 0.01, Figure 5-9B), a significant increase in 

cellular elasticity (+33%, p  < 0.01, Figure 5-9A), and a significant decrease in the 

lumped pore size (-38%, p  < 0.01, Figure 5-11C). Similar results were also obtained for 

HT1080 cells (-49% for pD , +68% for E  and -38% for lumped pore size, p  < 0.01). 

 

 

 

 

Figure 5-8 Ectopic polymerization of F-actin due to CA-WASp.  

HeLa cells were transduced with a lentivirus encoding GFP-CA-WASp (in green) and stained for F-actin with 

Rhodamine-Phalloidin (in red). Cells expressing high levels of CA-WASp (green, I) had more cytoplasmic F-

actin (red, II, green arrow) than cells expressing no CA-WASp (II, white arrow). (III) zx profile of the cells 

shown in (I) and (II) taken along the dashed line. Cells expressing CA-WASp displayed more intense 

cytoplasmic F-actin staining (green arrow) than control cells (white arrow). Cortical actin fluorescence levels 

appeared unchanged. Nuclei are shown in blue. Images I and II are single confocal sections acquired with 

kind helps from Dr. Moulding. Scale bars = 10 µm.  
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Figure 5-9 Effect of drug treatments and genetic perturbations on poroelastic properties.  

Effect of F-actin depolymerisation (Latrunculin treatment), F-actin overpolymerisation (overexpression of 

CA-WASp), myosin inhibition (blebbistatin treatment), microtubule stabilisation (Taxol treatment), 

microtubule over-polymerisation (overexpression of γ-tubulin), microtubule depolymerisation (nocodazole 

treatment), intermediate filaments aggregation (expression of Keratin 14 R125C) and crosslinking 

perturbation (overexpression of ΔABD-α-actinin) on the cellular elasticity E  in (A) and poroelastic 

diffusion constant pD  in (B). Asterisks indicate significant changes ( p  < 0.01). N is the total number of 

measurements and n the number of cells examined.  
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Then, we attempted to change cell rheology without affecting intracellular F-actin 

concentration by perturbing crosslinking or contractility. To perturb crosslinking, we 

overexpressed a deletion mutant of α-actinin (ΔABD-α-actinin) that lacks an actin-

binding domain but can still dimerize with endogenous protein [172], reasoning that this 

should either increase the F-actin gel entanglement length l  or reduce the average 

diameter of F-actin bundles b  (the inverse scenario is depicted in Figure 5-12B). 

Overexpression of ΔABD-α-actinin led to a significant decrease in E  but no change in 

pD  or lumped pore size (Figure 5-9 and Figure 5-11C). To determine if ectopic 

polymerisation of microtubules had similar effects to CA-WASp, we overexpressed γ-

tubulin, a microtubule nucleator [173], but found that this had no effect on cellular 

elasticity, poroelastic diffusion constant, or lumped pore size (Figure 5-9 and 

Figure 5-11C). Finally, expression of a dominant keratin mutant (Keratin 14 R125C, 

[130]) that causes aggregation of the cellular keratin intermediate filament network had 

no effect on E , pD , or lumped pore size (Figure 5-9 and Figure 5-11C). 

5.6.2.1 Clinical relevance: Mechanical disruption of mitosis in cells with 

dysregulated F-actin production:  

Dynamic events during cell division, such as the poleward movement of chromosomes or 

the closure of the cleavage furrow, are mechanical processes that are intrinsically 

linked to the physical properties of the cell. It is well established that actin is the main 

cytoskeletal determinant of cellular rheology (as in this thesis under framework of 

poroelasticity), and provides the physical support to maintain cell shape and drive shape 

change [169-171]. In some patients, malfunctioning of the WASp protein can lead to 

severe immunodeficiency, known as x-linked neutropenia. CA-WASp (a constitutive 

WASp activation) causes increased F-actin production through dysregulated activation of 

the Arp2/3 complex throughout the cytoplasm, which results in loss of proliferation, high 

levels of apoptosis, cell division defects and chromosomal instability [26, 27]. In a very 

recent study, we investigated the role of WASp in cell division and asked if an increased 
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abundance of F-actin in CA-WASp could cause these defects (Moulding et al, Blood, 

2012). We showed that excessive cytoplasmic F-actin increases the elasticity and 

apparent viscosity of the cytoplasm and mechanically impedes chromosome separation 

and furrow closure during mitosis. Inhibition of the Arp2/3 complex reduced the change 

in viscosity, restored the velocity of chromosome movement and reversed the XLN 

phenotype. Taken together, these results show that non-specific alterations to cellular 

rheology can lead to disease by perturbing critical functions such as mitosis. 

 

 

 

 

Figure 5-10 Cell rheology and disease. 

AFM measurements on HT1080 cells revealed a ~ two-fold increase in both cellular elasticity and apparent 

cellular viscosity due to CA-WASp expression. Inhibition of the Arp2/3 complex using different 

concentration of the CK666 drug reduced the amount of cytoplasmic F-actin in CA-WASp cells, leading to 

partial recovery of the cell rheological properties and reducing cell division defects (Moulding et al, Blood, 

2012) 
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5.7 Discussion and conclusions 

I have shown that water redistribution plays a significant role in cellular responses to 

mechanical stresses and that the effect of osmotic and cytoskeletal perturbations on 

cellular rheology can be understood in the framework of poroelasticity through a simple 

scaling law 2~ /pD Ex m . I tested the dependence of pD  on the hydraulic pore size x  by 

modulating cell volume and showed that pD  scaled proportionally to volume change, 

consistent with a poroelastic scaling law. Changes in cell volume did not affect 

cytoskeletal organisation but did modulate pore size. Experiments monitoring the 

mobility of microinjected quantum dots suggested that x  was ~ 14 nm consistent with 

estimates based on measured values for pD  and E . I also confirmed that cellular 

elasticity scaled inversely with volume change as shown experimentally [125, 174] and 

theoretically [84] for F-actin gels and cells. However, the exact relationship between the 

poroelastic diffusion constant pD  and the hydraulic pore size x  could not be tested 

experimentally because the relationship between volumetric change and change in x  is 

unknown due to the complex nature of the solid phase of the cytoplasm (composed of the 

cytoskeletal gel, organelles, and macromolecules, Figure 5-12A, [175]). Taken together, 

the results show that, for time-scales up to ~ 0.5 s, the dynamics of cellular force-

relaxation is consistent with a poroelastic behaviour for cells and that changes in cellular 

volume resulted in changes in pD  due to changes in x .  

 

Although the cytoskeleton plays a fundamental role in modulating cellular elasticity and 

rheology, our studies (it should be note that the indentation method that is used here only 

probes local rheological properties of the cell) show that microtubules and keratin 

intermediate filaments do not play a significant role in setting cellular rheological 

properties (Figure 5-9 and Figure 5-11C). In contrast, both the poroelastic diffusion 

constant and elasticity strongly depended on actomyosin (Figure 5-9). The experiments 
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qualitatively illustrate the relative importance of x  and E  in determining pD . 

Depolymerising the F-actin cytoskeleton decreased E  and increased pore size resulting 

in an overall increase in pD . Conversely, when actin was ectopically polymerised in the 

cytoplasm by arp2/3 activation by CA-WASp (Figure 5-8), E  increased and the pore size 

decreased resulting in a decrease in pD . For both perturbations, changes in pore size x  

dominated over changes in cellular elasticity in setting pD . For dense crosslinked F-actin 

gels, theoretical relationships between the entanglement length l  and the elasticity E  

suggest that 2 5~ /( )BE k Tk l  with k  the bending rigidity of the average F-actin bundle 

of diameter b , Bk  the Boltzmann constant, and T  the temperature [84] (Figure 5-12A). 

If the hydraulic pore size x  and the cytoskeletal entanglement length l  were identical, 

pD  would scale as 2 3~ /( )p BD k Tk m l  implying that changes in elastic modulus would 

dominate over changes in pore size, in direct contradiction with our results. Hence, x  and 

l  are different and x  may be influenced both by the cytoskeleton and macromolecular 

crowding [175] (Figure 5-12A).  

To decouple changes in elasticity from gross changes in intracellular F-actin 

concentration, we decreased E  by reducing F-actin crosslinking through overexpression 

of a mutant α-actinin [172] that can either increase the entanglement length l  or decrease 

the bending rigidity k  of F-actin bundles by diminishing their average diameter b  

(Figure 5-12). Overexpression of mutant α-actinin led to a decrease in E  but no 

detectable change in pD  or x  confirming that pore size dominates over elasticity in 

determining cell rheology. Finally, myosin inhibition led to an increase in pD , a decrease 

in E , and an increase in x , indicating that myosin contractility participates in setting 

rheology through application of pre-stress to the cellular F-actin mesh [176], something 

that results directly or indirectly in a reduction in pore size (Figure 5-12B, [176, 177]). 

Taken together, these results show that F-actin plays a fundamental role in modulating 

cellular rheology but further work will be necessary to understand the relationship 
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between hydraulic pore size x , cytoskeletal entanglement length l , crosslinking, and 

contractility in living cells. 

 

 

 

Figure 5-11 Effect of volume changes, chemical and genetic treatments on the lumped pore size. 

Effect of volume changes, on lumped pore size of HeLa cells in (A) and MDCK cells in (B). (C) Effect of 

drug treatments and genetic perturbations on the lumped pore size of Hela cells. The lumped pore size was 

estimated from the ratio 1/2( / )pD Em . Asterisks indicate significant changes ( p  < 0.01). N is the total number 

of measurements and n the number of cells examined. 
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Recent experiments using magnetic bead twisting rheometry have demonstrated the 

existence of at least two regimes in the rheology of living cells [80, 178] and in vitro 

cytoskeletal networks of actomyosin [176]. At high frequencies (5 Hz - 10 kHz), the 

cellular dynamic modulus increased with frequency; whereas at lower frequencies (0.1-

5Hz) it appeared to be frequency independent. At high frequencies (~ 1 kHz ), fast 

thermal fluctuations give rise to bending of cytoskeletal filaments and determine the 

cellular mechanical properties [80]. However, at longer time-scales (0.2 s to hundreds of 

s) cytoskeletal turnover or water movement may influence cell rheology. Measurements 

of cell rheology obtained using different techniques over time-scales of 1-100 s reveal the 

existence of different regimes: one with a short time-scale (~ 1 s) and the other with a 

long time-scale (~ 10 s) [51, 52, 68]. Over the time-scales of the experiments described in 

this thesis (~ 5 s), other factors such as turnover of cytoskeletal fibres and cytoskeletal 

network rearrangements due to crosslinker exchange or myosin contractility might also in 

principle influence cell rheology. In the cells studied here, F-actin, the main cytoskeletal 

determinant of cellular rheology (Figure 5-9 and [62, 179]), turned over with a half-time 

of ~ 11 s (Figure 5-4B), crosslinkers turned over in ~ 20 s [180], and myosin inhibition 

led to faster force-relaxation. Hence, active biological remodelling cannot account for the 

dissipative effects observed in our force-relaxation experiments. Taken together, the time-

scale of force-relaxation, the functional form of force-relaxation, and the qualitative 

agreement between the theoretical scaling of pD  with experimental changes to E  and x  

support our hypothesis that water redistribution is the principal source of dissipation at 

short time-scales contributing ~ 50% of total relaxation in ~ 0.2 s in our experiments. 
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In both viscoelastic and poroelastic models, force decays exponentially with time during 

stress-relaxation (see equations (3.5) and (3.6)). Hence, equating the exponents and 

recalling 1 ~k E , I obtain the following relationship for a length-scale dependent 

effective cellular viscosity h :  

 
2

~
L

h m
x

 (5.1) 

with L  the characteristic length-scale and m  the viscosity of cytosol. The dependence of 

η on the ratio of a mesoscopic length-scale to a microscopic length-scale in the system 

may explain the large spread in reported measurements of cytoplasmic viscosities [58, 68] 

(ranging from ~ 0.1 to 500 pa.s using different rheological measurements such as 

magnetic twisting cytometry [33] and AFM indentation [51, 54] experiments).  

Within the poroelastic regime, further intuition for the complexity and variety of length 

scales involved in setting cellular rheology (Figure 5-12A) can be gained by recognising 

that the effective viscosity m  experienced by a particle diffusing in the cytosol will 

depend on its size (Figure 5-5, [70, 72]). Within the cellular fluid fraction, there exists a 

wide distribution of particle sizes with a lower limit on the radius set by the radius of 

water molecules. Whereas measuring the poroelastic diffusion constant pD  remains 

challenging, the diffusivity mD  of any given particle can be measured accurately in cells 

with experimental techniques such as the presented FRAP technique. For a molecule of 

radius a , the Stokes-Einstein relationship gives /(6 )m BD k T apm  or 

( ) /(6 )B ma k T D am p . Any interaction between the molecule and its environment (e.g. 

reaction with other molecules, crowding and hydrodynamic interactions [181], size-

exclusion [70]) will result in a deviation of the experimentally determined mD  from this 

relationship. Using the relationship for elasticity of gels 2 5~ /( )BE k Tk l  and recalling 

that the bending rigidity of filaments scales as 4~ polymerE bk  (with b  the average 
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diameter of a filament –or bundle of filaments-, and polymerE  the elasticity of the 

polymeric material [182]), yields the relationship 

 
22 8

2 5
~

( )
polymer

p m
B

aE b
D D

k T

x
l

 (5.2) 

in which four different length-scales contribute to setting cellular rheology. We see that 

the average filament bundle diameter b , the size of the largest particles in the cytosol a  

(and indeed the particle size distribution in the cytosol), the entanglement length l , and 

the hydraulic pore size b  conspire to determine the geometric, transport, and rheological 

complexity of the cell (Figure 5-12A). Since all these parameters can be dynamically 

controlled by the cell, it is perhaps not surprising that a rich range of rheologies has been 

experimentally observed in cells [32, 33, 56, 58, 63-65, 68, 79, 80].  



 

 

147 

 

 

 

Figure 5-12 Schematic representation of the cytoplasm and effects of different cellular perturbations. 

(A) The cytoskeleton and macromolecular crowding participate in setting the hydraulic pore size through 

which water can diffuse. The length-scales involved in setting cellular rheology are the average filament 

diameter b , the size a  of particles in the cytosol, the hydraulic pore size x , and the entanglement length l  

of the cytoskeleton. (B) Effects of different perturbations on cell rheology. (I, III) Reduction in cell volume 

(I) or increase in F-actin concentration (III) causes a decrease in cytoskeletal mesh size l  and an increase in 

crowding which combined lead to a decrease in hydraulic pore size x . (II, IV) Increase in activity of myosin 

motors or crosslinkers lead to either contraction of F-actin network (decrease in mesh size) or increase in 

bending rigidity of actin cytoskeleton, which combined results in an increase in the elasticity E  of the 

network and a decrease in the hydraulic pore size x .    
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Chapter 6  

 

General discussion and future 

work  

 

6.1 Further discussion 

6.1.1 Cell rheology and its complexity  

Living cells are complex materials displaying a high degree of structural hierarchy and 

heterogeneity coupled with active biochemical processes that constantly remodel their 

internal structure. Therefore, perhaps unsurprisingly, they display an astonishing variety 

of rheological behaviours depending on amplitude, frequency and spatial location of 

loading. Over the years, a rich phenomenology of rheological behaviours has been 

uncovered in cells such as scale-free power law rheology, strain stiffening, anomalous 

diffusion, and rejuvenation (see Chapter 1.4.3 and [56, 58, 63-65]).  

Several theoretical models have been proposed to explain the observed behaviours but 

finding a unifying theory has been difficult because different microrheological 
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measurement techniques excite different modes of relaxation [58]. These rheological 

models range from those that treat the cytoplasm as a single phase material whose 

rheology is described using networks of spring and dashpots [68, 79], to the sophisticated 

soft glassy rheology (SGR) models that describe cells as being akin to soft glassy 

materials close to a glass transition [33, 80]; in either case, the  underlying geometrical 

and biophysical phenomena remain poorly defined [58, 63, 64]. Furthermore, none of the 

models proposed, account for dilatational changes in the multiphase material that is the 

cytoplasm; these volumetric deformations are ubiquitous in the context of phenomena 

such as blebbing, cell oscillations or cell movement [100, 150], and in gels of purified 

cytoskeletal proteins [32] whose macroscopic rheological properties depend on the gel 

structural parameters and its interaction with an interstitial fluid [81, 84, 176]. Any 

unified theoretical framework that aims to capture the rheological behaviours of cells and 

links these behaviours to cellular structural and biological parameters must account for 

both the shear and dilatational effects seen in cell mechanics as well as account for the 

role of crowding and active processes in cells. 

6.1.2 Why poroelasticity?  

The flow of water plays a critical part in such processes. Recent experiments suggest that 

pressure equilibrates slowly within cells (~10s) [100, 101, 103] giving rise to intracellular 

flows of cytosol [150, 183] that cells may exploit to create lamellipodial protrusions [150] 

or blebs [100, 102] for locomotion [184]. Furthermore, the resistance to water flow 

through the soft porous structure serves to slow motion in a simple and ubiquitous way 

that does not depend on the details of structural viscous dissipation in the cytoplasmic 

network. Based on these observations, a coarse-grained biphasic description of the 

cytoplasm as a porous elastic solid meshwork bathed in an interstitial fluid (e.g. 

poroelasticity [116] or the two-fluid model [185]) has been proposed as a minimal 

framework for capturing the essence of cytoplasmic rheology [59, 100, 101]. In the 

framework of poroelasticity, coarse graining of the physical parameters dictating cellular 
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rheology accounts for the effects of the interstitial fluid and related volume changes, 

macromolecular crowding and a cytoskeletal network [100, 101, 105], consistent with the 

rheological properties of the cell on the time-scales needed for redistribution of 

intracellular fluids in response to localised deformation. The response of cells to 

deformation then depends only on the poroelastic diffusion constant pD , with larger 

values corresponding to more rapid stress relaxations. This single parameter scales as 

2~ /pD Ex m , allowing changes in cellular rheology to be predicted in response to 

changes in E , x , and m . 

The principal shortcoming of most models of cell rheology is that they do not relate the 

measured rheological properties to structural or biological parameters within the cell 

meaning that they lack predictive power. As a coarse-grained bottom-up approach, 

one advantage of using poroelasticity over other phenomenological models is that it 

allows cellular rheology to be related to observable physical and biological parameters, 

making it mechanistic and thus giving it predictive power  (see Figure 6-1).  In this work, I 

sought to understand cell rheology at physiologically relevant time-scales and to attempt 

to understand the cellular biological and physical variables that affect it. By nature, 

cellular rheology is bound to be extremely complex but my goal was to capture 

its essence with as few physical parameters as possible. The poroelastic model of the 

cytoplasm presented here is a first step in this direction. It takes as inputs 

measurable geometric and physical parameters and leads to falsifiable predictions (see 

Figure 6-1). This represents a conceptual advance and a step towards describing the 

experimental observations with the fewest physiologically and biologically relevant 

parameters possible.   

  



 

 

151 

 

 

Figure 6-1 Microstructural parameters and mesoscopic length scale set the poroelastic time scale. 

Different timescales associated with different rheological models are involved in setting cell rheology. The 

time-dependent mechanics of cells arise from the combination of several distinct rheological behaviours. 

These rheological behaviours give rise to different dynamics that coexist but each dominates over a range of 

timescales. At very short time scales, the behaviour of network of semiflexible filaments (entropic and 

enthalpic fluctuations) sets the  rheology of the cytoplasm [80]. At long timescales, the cytoplasm exhibits 

inelastic structural rearrangements and behaves as a soft glassy material [80]. At very long timescales the cell 

can no longer be considered as a passive material and active processes such as molecular motor activities and 

cytoskeletal filament turnover come into play. Depending on the length scale and time scale, cytosolic flows 

and intracellular fluid redistribution (poroelastic effects) can affect the rheological behaviour of the cell. The 

mesoscopic length scale of the system L  , the elastic modulus of cell E , the hydraulic pore size of the 

cytoplasm x , and the cytosolic viscosity m  set the characteristic  poroelastic timescale pt  ( ~ 0.2pt  s in my 

AFM indentation experiments). 

 

 

 

Time dependent mechanics of cells is the manifestation of several cell rheological 

behaviours and these rheological behaviours give rise to different dynamics that could 

coexist but each dominates on different timescales. In particular, poroelastic cellular 

behaviours, in which dissipations are due to water redistribution, are both timescale and 

lengthscale dependent allowing us to tune the experimental setup in such a way that we 

observe weak or strong poroelastic effects accordingly. The idea of designing this study 

was to consider a minimal poroelastic model under optimised experimental conditions, 

and determine whether this minimal model was sufficient to grasp the essence of cellular 

rheology and predict changes in rheology in response to perturbations. Extra complexity 

could be added to the model to take into account more complex properties of the 

cytoskeleton and cytoplasm or network tension: we could consider a solid phase with 
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intrinsic viscoelasticity and/or granularity instead of a simple linear elastic meshwork. 

However, this would come at the expense of introducing more parameters and extra 

uncertainty as one would have to make many more assumptions about cell mechanics and 

the end result would not necessarily draw a clearer description of cell rheology and its 

origins. In particular, because the exact relationship between fluid fraction, volumetric 

pore size  , hydraulic  pore size  , and cytoskeletal entanglement length   is still 

unknown for living cells, rather than making complex hypotheses about the poroelastic 

scaling law, the trends of my experimental results were validated. 

Future studies should concentrate on implementing more realistic cytoskeletal and 

cytoplasmic properties. However addition of extra complexity should be coupled with 

experimental determination/validation of all newly introduced variables and this might 

require much more sophisticated experiments.  

6.1.3 Direct physiological relevance  

To gain an understanding of how widespread poroelastic effects are in the rheology of 

isolated cells and cells within tissues, we can compute the poroelastic Péclet number 

eP ( )/ pVL D , with V  a characteristic velocity (due to active movement, external 

loading, etc). For eP  large compared to 1, poroelastic effects dominate the viscoelastic 

response of the cytoplasm to shape change due to externally applied loading or intrinsic 

cellular forces. In isolated cells, poroelastic effects have been implicated in the formation 

of protrusions such as lamellipodia or blebs [100]. For these, the rate of protrusion growth 

can be chosen as a characteristic velocity. In rapidly moving cells, forward-directed 

intracellular water flows [150, 183] resulting from pressure gradients due to myosin 

contraction of the cell rear have been proposed to participate in lamellipodial protrusion 

[150, 186]. Assuming a representative lamellipodium length of L ~10 µm and protrusion 

velocities of V  ~ 0.3 µm.s
-1

, poroelastic effects will play an important role if pD  
≤ 3 

µm
2
.s

-1
, lower than measured in the cytoplasm but consistent with the far higher F-actin 
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density observed in electron micrographs of the lamellipodium [184]. Furthermore, cells 

can also migrate using blebbing motility [107] where large quasi-spherical blebs (L

~10µm) arise at the cell front with protrusion rates of V  ~ 1 µm.s
-1

 giving an estimate of 

pD  
~ 10 µm

2
.s

-1
 (comparable to the values reported in previous Chapter ) to obtain eP

 
≥ 

1. 

During normal physiological function, cells within tissues of the respiratory and 

cardiovascular systems are subjected to strains e  > 20% applied at strain rates te  
> 20%. 

s
-1

. As a first approximation, we assume that these cells, with a representative length cellL , 

undergo a length change cell~L Le  applied with a characteristic velocity cell~ tV Le . For 

cells within the lung alveola [155], cellL  
~ 30 µm, e  ~ 20%, te  

~ 20%. s
-1

 and assuming 

pD  
~ 10 µm

2
.s

-1 
(based on our measurements), we find eP

 
~ 3. Hence, these simple 

estimates of eP  suggest that water redistribution participates in setting the rheology of 

cells within tissues under normal physiological conditions.  

6.2 Future work 

6.2.1 Stress and pressure wave propagation in cells 

It is well established that cells can sense mechanical forces, react to them, and adapt to 

them [58]. However, how these forces are sensed and in particular what physical variable 

is detected by cells remains unclear. A better understanding of cell rheology will allow us 

to predict the intracellular stress distribution induced by extracellular application of force.  
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Figure 6-2 Stress and pressure wave propagation in cells 

Application of step force/pressure via AFM cantilever (A) or through micropipette (B). Upon application of 

force/pressure the stress and pressure propagate intracellularly. (C-I) The displacement of each fluorescent 

bead in the z direction is monitored as a function of time and the bead distance from the force/pressure 

application point is measured. The bead displacement relaxation time increases with distance from the source. 

(C-II) Expected curve for the relaxation time as a function of distance. This curve can provide information 

about how fast stress/pressure propagates through the cytoplasm. Comparing these experimental data with 

viscoelastic and poroelastic models will provide information about the physical nature of force transmission 

inside the cytoplasm. 

 

 

 

In the future, matching the temporal evolution of this intracellular stress distribution with 

biological readouts (such as the intracellular calcium concentration or the turnover rates 

of cytoskeletal proteins) should allow us to better understand what physical variable cells 

sense and how it is sensed at the molecular level prior to conversion into a biochemical 

signal. In particular, recent experiments suggest that poroelastic effects lead to slow stress 

propagation within living cells [103]. In an attempt to understand how stresses propagate 

inside the cytoplasm, future work will try to apply localized force or pressure onto the 

cell via an AFM cantilever or through a micropipette (see Figure 6-2A, B). The particle 
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tracking technique as described in Chapter 3.10 will be used to monitor motion of 

attached beads at different distances from the point of exerted force/pressure. Studying 

the relaxation curves as a function of distance (see Figure 6-2C) will provide information 

about how fast stress/pressure propagates through the cytoplasm. Comparing these 

experimental data with viscoelastic and poroelastic models will provide useful 

information about which physical mechanism are effectively involved in force 

transmission inside the cytoplasm. 

6.2.2 Cells as multi-layered poroelastic materials  

From a hydrodynamic perspective, the cell can be viewed as a multilayer composite 

composed of plasma membrane attached to the subcortical actin gel surrounding 

a molecularly crowded environment saturated with cytosol. One future challenge will be 

to dissect the contribution of each layer of the cell to cell rheology. In Chapter 5, AFM 

indentation tests identified the actin cytoskeleton as the main component of the cytoplasm 

that affected the poroelastic rheology of the cell. It would be interesting to investigate the 

contribution of the different layers of the cell to the swelling/shrinking experiments 

presented in Chapter 4.2. In particular, my preliminary experimental results (not 

presented here) suggested that the plasma membrane can play a significant role in setting 

the dynamics of cell swelling/shrinking.  

I propose to use defocusing microscopy to study the kinetics of cell swelling/shrinking 

under different types of perturbations to investigate the multi-layered poroelastic nature 

of the cell and to see if the contribution of each layer in cell rheology can be dissected. 

First, to examine the role of membrane permeability, cells can be treated with small 

concentration of mild detergents or pore forming proteins such as Digitonin or 

Amphotericin B to make small holes in the membrane. It should be noted that after 

membrane permeabilisation the cell will start swelling. As examined in Chapter 5, 

swelling can affect the poroelastic properties (specifically pore size) significantly and 

therefore to counterbalance the effects of cell swelling upon membrane permeabilisation, 
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a small concentration of osmolyte such as sucrose must be added to retain the isoosmotic 

cell volume. I would expect the poroelastic diffusion coefficient to increase when the 

membrane is permeabilised but the extent to which it increases will tell us about the 

importance of membrane. Next, the effects of macromolecular crowding can be envisaged 

by using higher concentrations of detergents to create holes large enough for 

macromolecules to escape (up to micrometres in size). It should be noted that creation of 

large holes in membrane might result in clearance of some of the basic components of the 

cytoskeleton (such as actin monomers) that will affect the structure of filaments and 

consequently the the cellular poroelastic properties.  

Second, I will investigate the contribution of the actin cytosleketon to swelling/shrinking 

dynamics by using drugs such as latrunculin B to depolymerise the actin filaments or 

performing genetic treatments (as explained in Chapter 3.2) to induce excessive 

polymerization of F-actin in the cytoplasm. Treatment of cells with drugs such as 

latrunculin B will affect the structure of the whole actin cytoskeleton including the 

organization of cortical actin. Therefore, to study the role of cell cortex in setting cell 

rheology and poroelastic properties separately and in particular to solely perturb structure 

and organization of the cortical actin, it would be very interesting to conduct more 

targeted perturbations such as shRNA gene depletion to knock down the protein Diaph1 

(a protein shown by other members of the laboratory to be responsible for polymerisation 

of actin filaments in the cortex) or using the drug CK666 to inhibit the Arp2/3 complex 

that alsoregulates the structure of the actin network. 
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6.3 Conclusions  

The main conclusions arising from this work may be summarised as follows: 

- The time-dependent mechanics of living cells exhibit poroelastic behaviours similar 

to poroelastic physical gels.  

- The dynamics of cell swelling and shrinking can be well described under the 

framework of poroelasticity. 

- Poroelasticity predicts changes in rheology due to cell volume changes and 

cytoskeletal disruption. 

- F-actin and molecular crowding are the main cytoskeletal contributors of poroelastic 

cellular rheology and together they set the rheological properties of the cell. 

- In my experiments, the observed short timescale (0.1-1 s) cellular viscosity is due to 

water redistribution in the cell. 
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