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Abstract

I have divided this dissertation into three chapters: introduction to organic solar cells, thermo-

chemical lithography of a conjugated polymer, and triplet emittersin organic solar cells (OSCs).

The first chapter introduces OSCs giving the background necessary to understand the problem

of simultaneous optimisation of exciton dissociation and charge transport.

The second chapter deals with scanning thermo-chemical lithography (SThL) of PPV on
indium-tin oxide (ITO) by means of athermal AFM, i.e. an AFM that has a hot probe scanning
across the surface, to ultimately pattern the active layer of an OSC. | investigate the influence of
the thermal conductivity of the substrate on the lithography by combining finite eement
simulations of the heat transfer and experimental results. The mode explains the rather
substrate-independent feature size observed during experiments and it is found that for the
highest resolution features, there exists a small gap of unconverted polymer near the substrate,
which iswhy SThL is possible on high thermal conductivity substrates such as gold.

In the third chapter | report experimental findings regarding the inclusion of triplet emittersin
organic photovoltaic cells. Theidea is to increase the exciton diffusion length (L) of the primary
photoexcitations by converting them into triplet excitons, which are known to have longer
lifetimes and hence offer the potential of increased exciton diffusion lengths. Several host
systems were chosen, among them P3HT:PCgBM, MDMO-PPV:PCsBM and PBTTT:bis-
PCe:BM. As phosphorescent molecules | used Cu-complexes and different Ir-complexes.
Results on MDMO-PPV:PCs;BM blends and bilayer devices showed a promising increase in
the short-circuit current density (Jsc) partly supported by an increase in the incident photon to
current efficiency peak in the polymer absorption wavelength range. The overall achievability
of the idea is critically discussed and a 1D random walk model used to estimate possible

improvements of Jsc upon increasesin L.
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spheres (20-30 nm in diameter) which can be seen for a 1:1 ratio are surrounding the larger
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1.1 Why Solar Energy

Harnessing solar energy is unquestionably a very attractive idea. Not only will it provide energy
for the next five to six billion years, thus considered “renewabl€e’, but it is also a clean way of
producing energy. Considering not just the detrimental effects of carbon dioxide and other
greenhouse gases on the environment — which has eventually become a widely accepted fact —
but also the political and economic dependencies that are connected with fossil fuels such as oil
and gas, cheap, renewable and “independent” energy sources are in greater demand than ever
before.

Another attractive aspect of solar energy is that it can produce energy on al different scales,
from the humble calculator through off-grid stations in remote areas to big power plants.
Furthermore, lots of energy can be generated by simply using space which is already in use:

roofs.

Up until now, | mainly talked about eectricity generation on a larger scale. In this field,
inorganic solar cells dominate by far at the moment. An overview about the different types of
solar cells (SCs) will be given in the next section. Here | would like to point out that organic
solar cells (OSCs) — the broader topic of this thesis — have the potential to be used in a number
of niche markets. Due to their potential lightweight, flexibility, transparency and of course, low

cost per watt, they might be used in the future in the following applications:

= Building-integrated photovoltaics: Solar modules as energy source and design elements
at the sametime

= Emergency blankets or briefcases with solar modules which can be used for notebooks,
mobile phones, radios, eectronic paper and more

= Electric cars

= SCsintegrated in clothes (jackets etc., especially for military) and bags
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1.2 Three Generations of Solar Cells

Although the photovoltaic effect was already observed in 1839 by the French physicist A. E.
Becquerd, it was not until 1883 when the first SC made out of sdenium was built. 1t took many
years for someone (Albert Einstein, 1905) to understand the physics behind this phenomenon
and even longer for this idea of light consisting of photons to be accepted in the scientific
community. However, the power conversion efficiency of the seenium cell was still quite low,
i.e. below 1%.

An accidental discovery at the Bell Laboratories in 1953 revolutionized SC technology after
observing that doped silicon is much more efficient than seenium. This was indeed the birth of
the first generation of SCs: thick, mono-crystalline, single junction photovoltaic cells made out
of silicon. This type of céllsis still dominating the market today reaching cell efficiencies up to
24% in production (achieved by SunPower Corp. in 2012") and coming close to their theoretical
maximum of 31%7 or 33.7% (the Shockley-Queisser limit®). The most prominent disadvantage
of this type of cellsis the high material costs of the mono-crystalline silicon rods. As a result of
the high ratio of material costs to module costs of around 50% and because mass-production of
monacrystalline silicon has already happened and is hence not expected to lead to further cost

reductions, it will be difficult to reduce the costs of this type of SCs further in the future.

The second generation, addressing the high production costs, contains inorganic thin-film SCs
such as cadmium teluride (CdTe), copper indium galium selenide (CIGS) as well as
amorphous, multi- and micro-crystalline silicon cdls. Some companies, e.g. First Solar who
produce CdTe cdls viarall-to-roll techniques, claim to be able to produce power already below
grid parity in California, at around 0.75%/W.* Their CdTe cells (modules) have an efficiency of
about 17% (14%).*

The third generation basically includes the types of SCs that are less developed. Among them
are dye-sensitized and polymer SCs, but also tandem and concentrator cells. This thesis deals
with polymer SCs which on the one hand have a smaller efficiency (ca. 6% for solution
processed cells in the lab in 2007)° and 9% at the beginning of 2012° compared to other cels
(24% for the first generation®, 17% for CdTe cells and 11% for dye-sensitized cells’) but on the
other hand offer a huge potential as low-cost alternatives, because mass production techniques
such as screen-printing, ink-jet printing and even roll-to-roll printing are applicable. There is
another company, Heliatek, which is worth mentioning here, which combines material
evaporation with roll-to-roll fabrication and achieved almost 11% efficiency with their organic
tandem cells in 2012.°
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However, another hurdle that needs to be taken in order to industrially apply these cells is their
lifetime. The lifetime of polymer SCsis generally reduced upon exposure to oxygen, water and
UV-light. Although glass is a formidable sealing material blocking well al of the above
mentioned sources of degradation, it cannot always be used due to product requirements

(lightweight or flexibility may be required depending on the application).

1.3 Solar Cell Market

As mentioned above the industry is dominated by monocrystalline Si-cells. Especially in Europe
the industry has grown strongly in the past years. One reason for the strong growth were
governmental incentives, so called feed-in-tariffs (FiTs) which helped the consumer to
recuperate some of the investment costs for installed photovoltaic capacity when energy is fed
back into the grid. However, incentives are, depending on the country, being more or less
slowly reduced and photovoltaics has to become truly cost-competitive. The EPIA,® the
European Photovoltaic Industry Association, defines competitiveness for photovoltaics as
"'dynamic grid parity' - the moment at which, in a particular market segment in a specific
country, the present value of the long-term net earnings (considering revenues, savings, cost and
deprecation) of the electricity supply from a PV installation is equal to the long-term cost of
receiving traditionally produced and supplied power over the grid." Within Europe, this
dynamic grid parity is expected for parts of Italy in 2013 and for parts of Germany in 2012. This
and the following information in this section 1.3 are taken from the "EPIA's global market

outlook for photovoltaics 2016".°
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Figure 1-1. Evolution of global cumulative installed photovoltaic capacity between 2000 and
2011 in MW. ROW: Rest of the World, MEA: Middle East and Africa, APAC: Asia Pacific.
Figure reprinted with permission from a report by the EPIA.®
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As we can see from Figure 1-1, most of the currently installed global capacity is located in

Europe, and within Europe, Germany and Italy are leading the front. The next few years are

difficult to estimate due to changing governmental financial support schemes. In Figure 1-2 two

scenarios

are shown, a moderate and an (optimistic) policy driven one, visualising the global

yearly new installations.
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Figure 1-2. Global annual market scenarios of new installations (in MW) until 2016. Two

scenarios

are presented: the moderate and policy driven scenario. Figure reprinted with

permission from a report by the EPIA.°
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Figure 1-3. European PV cumulative capacity segmentation until 2011 (in %). Figure reprinted
with permission from a report by the EPIA.°
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Figure 1-3 shows the market segmentation of the PV industry. It divides the applications into
ground mounted solar panels, commercial and industrial rooftop applications and residential
installations. We can see that within Europe, commercial rooftop applications are dominating. It
is predicted that this trend towards commercial rooftop applications will continue in the next

years.

1.4 Organic Materials in Consumer Products

Asfar as| am aware, at thetime | am writing this thesis (year 2012), conjugated polymers have
not penetrated the market. OLEDs are already in wide use, especially smartphone displays (e.g.
by Samsung and Sony) and even larger monitors, but they contain conjugated small molecules,
not conjugated polymers. Organic transistors have also not yet penetrated the market. Sony
demonstrated a flexible OLED display built on organic thin-film transistor (TFT) technology in
2007 and a flexible e-reader driven by organic TFTsin 2011, but no product came to market
yet.

At this point | would like to note that eectronic paper (e-paper, dectronic ink) as used in e
readers or pricing labels in retail shops do not contain OLEDSs. The circuitry may be driven by
organic TFTs as mentioned above but the e-reader itself is not emitting light, only reflecting it

in a certain way, which is why it has such a low power consumption.

In the area of polymer photovoltaics, Konarka Technologies was one of the leading companies
and produced polymer SCs from 2008. However, they had to file for bankruptcy protection in
2012.
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1.5 Physics of Organic Semiconductors

A materia is organic when its core consists mainly of hydrocarbons, but what makes a material
a semiconductor? The main difference between conductors, semiconductors and insulators lies
in the density of states around the Fermi energy (Er). Conductors have got free states around E¢
so that electrons can gain energy by an applied electrical field. Semiconductors and insulators
on the other hand do not have free states around Er and an dectrical field can typically not
transfer eectrons from the valence band (VB) to the conduction band (CB). The band gap
energy (Eg), i.e. the difference between the lowest CB energy and the highest VB energy,
distinguishes semiconductors (< 3 €V) from insulators (> 3 V). Note that the value of 3 eV is
rather arbitrary as the transition from semiconducting to insulating is smooth and the literature
does not give one precise value. For a vanishing band gap the material becomes metallic. Inthe
following | will introduce the physics of organic semiconductors (with occasional comparisons

to inorganic semiconductors) and the working principle of organic solar cells.

More background on the photophysics of organic semiconductors is given in section 3.2 on page
81 where issues related to singlet and triplet states, such as the exchange energy, transition
rules, and the heavy-atom effect, are discussed.

1.5.1 Introduction to Organic Semiconductors
1.5.1.1 m-Conjugated System

There are two major classes of organic semiconductors: low molecular weight materials and

polymers. Both have in common a so called conjugated n-electron system.

"A conjugated system is a molecular entity whose structure may be represented as a system of
alternating single and multiple bonds. In such a system, conjugation is the interaction (overlap)
of one p(m)-orbital with another across an intervening c-bond." Many orbitals can overlap in
this manner resulting in one large delocalised m-orbital. This behaviour can be easily explained
by the valence bond theory, according to which three of the four valence eectrons of a
backbone carbon atom are hybridised, giving rise to three sp® orbitals. These three sp? orbitals
form o-bonds with two other carbon atoms and one hydrogen atom. The remaining valence
electron in the p,-orbital is not bound to another atom and hence free to facilitating electron
cloud overlap to adjacent carbon atoms by forming the essential t-bond (see Figure 1-4a). This

is visualised in Figure 1-4c for benzene.

' The Nobel Prize has been awarded to Alan Heeger, Alan MacDiarmid and Hideki Shirakawa ‘for their
discovery and development of conductive polymers' in 2000.
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The conjugated system can be mainly consisting of double bonds as in polyacetylenes, or
mainly of aromatic cycles as in polyfluorenes, or a mixture as in poly phenylene vinylene
(chemical structures see Figure 1-5).

Nowadays, conductivities of conjugated polymers are considered "high"**'* from about
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Figure 1-4. (a) Backbone of polyacetylene with p,-orbitals at each carbon atom. (b) p,-orbitals
can overlap or repulse each other, resulting in bonding m or anti-bonding m*-orbitals. (c)

Visualisation of how near p,-orbitals overlap to create a large delocalised m-orbital.™ Figure

reprinted with permission according to the Creative Commons Attribution-Share Alike 3.0
Unported license. (Note that according to the molecular orbital theory, more than one bonding ©
-orbital is generated. The rings in (c) is an approximation of the result of the overlap of three
bonding n-orbitals).

1.5.1.2 HOMO and LUMO Energy Levels

In organic materials, one rardy deals with bands (a more detailed discussion about why
conjugated polymers do not resemble inorganic semiconductors can be found in the literature®)
and the roles of the VB and CB energies are adopted by the highest occupied molecular orbital
(HOMO) and the lowest unoccupied molecular orbital (LUMO) energy levels. The energy
necessary for a m — 7 -transition, i.e. the energy gap between the bonding m-orbital (acting as the
HOMO) and the anti-bonding = -orbital (acting as the LUMO) (Figure 1-4b) is typically in the
range of 1.5eV (eg. for polyacetylene) to 3 €V, leading to absorption and emission in the
visiblerange.

This energy gap, whose size is one reason why these materials are regarded as
“semiconductors’, is among others dependent on the degree of conjugation. More precisaly, a
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larger conjugation length leads to a smaller energy gap (as it can be imagined by thinking of a
particle in an infinitely high, one-dimensional box, whose energy levels are known to be
proportional to 1/L2, where L is the length of the box). This also shows that any kind of defect
reducing the conjugation will lead to a blue shift. Possible defects are twisting of the backbone,
cis-linkages and chemical defects such photo-oxidation of a backbone carbon atom. We see
furthermore that the energy gap can be controlled in a certain degree by controlling the
molecular weight of the polymer, i.e the number of repeating units forming the molecule.

(— band gap engineering).
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Figure 1-5. Chemical structures of various conjugated polymers. a) Polyacetylene was the first
polymer to show a reasonably high conductivity. b) Polyfluorenes have a conjugated system
that consists of an aromatic cycle. ¢) Poly(phenylene vinylene) (PPV), the first polymer used in
OLEDs. d) Poly(3-hexylthiophene), thefirst polymer to give SCs with efficiencies > 3%.

1.5.1.3 Difference Between Molecular Crystals and Amorphous Solids

In the last part of this brief introduction to organic semiconductors | would like to point out
main differences between the energy levels of isolated organic molecules, molecular crystals
and amorphous solids: Single molecules (excluding long polymers) have discrete energy levels
similar to single atoms. If one now introduces a lattice of molecules of the same type, the energy
levels need to split up and a band structure arises. In comparison to inorganic semiconductors,
however, the bands are quite narrow (less than some KT at room temperature). In disordered
organic solids and polymers, the molecular environment will differ considerable leading to a

Gaussian density of states'’ and to slightly varying band gaps. Generally one can say that by
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increasing the disorder, charge transfer relies more and more on hopping as opposed to band
transport. Conjugated polymers usually fall into the category of disordered molecules. Although
they might exhibit very strong delocalisation within the molecule, intermolecular charge

transport mostly relies very much on hopping.

1.5.2 Introduction to Excitons in Organic Semiconductors

1.5.2.1 Excitons in Inorganic Semiconductors

If a photon of energy h v > Eg is absorbed by an eectron from the VB, this eectron will be
excited to the CB, leaving behind a positive charge, the hole, in the VB. The eectron and the
hole now form, at least for a short moment, an exciton, i.e. a bound eectron-hole pair. The
binding energy of these excitons (‘ Mott-Wannier-excitons’) is smaller than 100 meV and their
Coulomb radius, i.e. the average distance between electron and hole, is bigger than the lattice
constants. Therefore, these excitons not only have a large diffusion length, but can also be

separated rather easily simply by thermal activation at room temperature.

1.5.2.2 Excitons in Organic Semiconductors

Optical excitations in conjugated polymers can be described reatively successfully by excitons.
Upon photoabsorption, a geminate eectron-hole pair is generated. In contrast to inorganic
semiconductors, the average relative permittivity in organic materials is smaller (e.g. 11.68 for
Si, 2.25 for polyethylene) so that the excitons (‘Frenkel excitons') are relatively strongly
coulombically bound with a binding energy of 0.5 to 1 V™. Dissociating these strongly bound
excitons is, next to charge collection, the most important critical tasks in organic photovoltaic

cédls.

The average distance an exciton can move before recombining (radiatively or non-radiatively),
i.e. the exciton diffusion length, is typically of the order of 10 nm in conjugated polymers,*®*°
although higher diffusion lengths up to 70 nm have been measured as well.®? It is mainly

determined by the Forster radius Re, which will be explained further in the section 1.5.3.1 on
page 36.

The differences between singlet and triplet excitons will be discussed later in chapter 3 on

page 81.
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1.5.3 Excitation Energy Transfer in Organic Semiconductors

There are three types of energy transfer that are of importance when dealing with excitons.
These are trivial energy transfer, FOrster Resonance Energy Transfer and Dexter Energy
transfer. Trivial transfer is the recombination of the exciton on the donor (D) under emission of
a photon and reabsorption of that photon by an acceptor (A). The trivial transfer has a
principally infinite range and depends obviously on the overlap of the emission spectrum of D
and absorption spectrum of A. This process of reabsorption will not be discussed further. In the

following, | will discuss the other types of energy transfer in more detail.

To clarify the notion, 1 would like to mention that precisely speaking, both, charge and
excitation energy transfer actually involve energy transfer. However, the term (excitation)

energy transfer is used when charge transfer is excluded.

The different excitation energy transfer mechanisms may be divided into several categories:

heterotransfer/homotransfer and radiative/non-radiative transfer.

= A heterotransfer is a process by which an excited donor molecule D transfers energy to
an acceptor molecule A corresponding to
D*+ A — D+ A*

Therefore this process describes exciton transfer between molecules of different
materials.

= Accordingly, a homotransfer describes the (repeated) transfer to molecules of the same

kind (D = A) and hence also describes energy migration within one material.

= A radiative transfer involves a photon as the energy transporting entity, so the process
could be written as:
D* —» D + hv “followed by” A+ hv — A*,

where h v is the energy of a photon. This type of energy transfer is also called trivial
energy transfer.

= A non-radiative transfer does not involve a photon and could beillustrated as:

D* — D “and simultaneously” A — A*.

The processes falling into this category are the Forster Resonance Energy Transfer
(FRET) and the Dexter transfer.
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1.5.3.1 Féorster Transfer

Forster Resonance Energy Transfer (FRET) or short Forster transfer is the main type of
(intermolecular) energy transfer in conjugated polymers. FRET mainly describes singlet-singlet
energy transfer (see transition rules in section 3.2.3 on page 82). It is often approximated as a
dipole-dipole interaction between two point dipoles, athough this approximation is rarely
appropriate considering typical radii of Frenkel excitons of some nanometres (hence

approaching the D-A distance).

Thetransfer rate relies among others on the overlap between the emission spectrum of the donor
and the absorption spectrum of the acceptor. Assuming D and A are point dipoles, the FRET
rate (ke) can be calculated™ as follows:

0 Rp °
kg = K (—) , Eq. 1-1
r
where
9000 Qoln(10)x?]
g = 02 4 Eq. 1'2
128m“n*Ny
and

= [ o@ea@rtar Eq. 1.3

kol is the decay rate of the excited state in the absence of FRET, Rristhe Forster radius, r is the
distance between D and A, Qo is the fluorescence quantum yield of D in the absence of A, k? is
the kappa square factor which takes into account the relative orientation between the two
transition dipoles, n is the refractive index of the medium surrounding D and A, N, is the
Avogadro number, J is the spectral overlap integral between the normalised emission spectrum
of the donor (fp(4)) and the extinction coefficient of the acceptor (ea(4)).

Simply by looking at Eq. 1-1 on its own, it is clear that R is the distance between donor D and
acceptor A at which the FRET is as efficient as all the other (radiative and non-radiative) decay
channels combined, i.e. at which ke = kp°. Already at a distance of 2 Rr, however, is the FRET
rate reduced to (1/2)° = 1.6% of kp".

R: isthe average distance an exciton can move, so it gives an estimate of the maximum distance
between molecules which till allows exciton migration. (Of course, as one is talking about
probabilities, there is no maximum distance in a narrow sense.) Since FRET is the more
probable (longer-range compared to Dexter transfer) singlet-singlet transfer route, R: turns out

to be a key parameter for OSCs, as it determines the maximum allowed distance between a
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photogenerated exciton and a type Il heterojunction that till allows splitting the exciton with a
considerable probability.

1.5.3.2 Dexter Transfer

The Dexter transfer can be thought of as an dectron exchange via tunnelling, i.e. two molecules
exchange an excited electron with an electron of lower energy, most probably in the ground
state. Asthistype of excitation energy transfer requires electron cloud overlap, it is only a short
range interaction with an exponentially decreasing rate as a function of the donor-acceptor
distance.

The Dexter energy transfer describes the triplet-triplet energy transfer but is also a possible
mechanism for singlet-singlet energy transfer (see section 3.2.3 on page 82 regarding the
explanation of the transition rules). For the latter process, however, FRET usually dominates
due to its longer-ranged nature (efficient up to several nm D-A separations). The transfer rate of
the Dexter transfer also rdies on the overlap between the donor emission and acceptor
absorption spectrum and can be calculated as follows™:

-2

ky= KJeL Eq. 14
where K is rdated to the specific orbital interactions, J is a spectral overlap integral normalised
for the extinction coefficient of the acceptor and L is the Van der Waals radius. As already
pointed out, FRET dominatesin typical conjugated polymers.

Dexter transfer can also be thought of as a simultaneous transport of an eectron and a hole with
a rate constant equal to a to the product of electron and hole transfer rate as calculated via
Marcus theory.”*** In Marcus theory the rate constant is due to an ionic term that recognizes the
free energy for formation of a transition state and an eectronic term proportional to the
probability for charge transfer at the transition state.® The eectron or hole transfer rate (K) is
given by

413
h2 kT

Eq. 1-5

(AG + 2)?
2 _\ae T A
|Mpal exp[ kT |

where 1 isthereorganisation energy, T isthe temperature, ks is the Boltzmann constant and Mpa
is the transfer integral. Therefore, for small changesin G, i.e. AG = 0, Marcus transfer via an
activated complex behaves similar to an Arrhenius barrier of /4. As the difference in triplet

energies of donor and acceptor increases (and assuming Gp > Gy, i.e AG < 0), the transfer rate
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increases as well until resonance is reached (—AG = 7). For large differences, however, the

transfer rate decreases, leading to the "Marcus inverted region". %

1.5.3.3 Heterojunctions

A heterojunction is an interface between molecules (or atoms) of different types. As illustrated

in Figure 1-6, different types of heterojunctions lead to different processes, i.e. either charge or

energy transfer.
D A D A D A
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Figure 1-6. Energy diagrams of the three different types of heterojunction between a donor
molecule D and an acceptor molecule A. The type Il (staggered) heterojunction facilitates
charge separation, i.e. the desired process in OSCs. Note that in a type Il heterojunction the
HOMO and LUMO energy levels would change once materials get in contact. More precisely,
considering the isolated energy levels, eectrons from just below the HOMO level of the donor
could transfer to the LUMO of the acceptor and hencefill it.

In atype | heterojunction, the energy gap of the one material, now referred to as the (electron-)
acceptor A, is located completely within the energy gap of the other material, the (electron-)
donor D. If one now imagines an exciton on D, one clearly understands that the electron from
the LUMO as well as the hole from the HOMO may transfer to A, as this is energetically
favourable; hence this kind of interface results in energy transfer. (Whether or not this transfer
happens at once or one after another is not of importance at this point. The result is that energy
istransferred from D to A).

In atype Il heterojunction on the other hand, where the LUMO and the HOMO of the acceptor
are deeper (i.e greater eectron affinity and greater ionisation potential), only the electron is
likely to be transferred from D to A; hence this type of interface is likely to result in charge
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transfer. The same would hold for atype Il heterojunction (also called broken heterojunction),
but this type of interface usually does not occur when dealing with organic semiconductors. The
type Il heterojunction is the desired heterojunction for OSCs where the exciton needs to be
separated into different charges.

1.5.4 Charge Transport in Organic Semiconductors

In ordered inorganic semiconductors atoms are covalently bonded and the delocalisation of
orbitals is so large that band transport describes charge transport very well. In organic materials,
molecules are only weakly bonded by the Van-der-Waals forces, they are often rather
disordered (especially long range order) and delocalisation is usually small. Depending on the
degree of order, charge carrier transport in organic semiconductors can fall between two
extremes: band transport and hopping. In the following | will describe the mobility (i) in each

case. The current density (J) is related to the mobility via

J=qnukF, Eg. 1-6

where q is the dectronic charge, n is the charge carrier density and F the applied electric field.

1.5.4.1 Band Transport

Band transport is typically observed in ordered, highly purified molecular crystals, fabricated
for example by chemical vapour deposition, at not too high temperatures. Because the
delocalisation is still relatively weak compared to inorganic semiconductors, the bandwidth is
small (typically a few KT at room temperature only), leading to mobilities of 1 to 10 cn?/Vs at
room temperature.?® The mobility (1) dependence on temperature (T) in ideal band transport can

be approximated by
u~T™T" Eq. 1-7

where n = 1...3, depending on the dimensionality of the system. (However, in the presence of
traps, significant deviations from this law are observed). Increasing T leads to stronger electron-
phonon coupling, hence to increased effective masses and reduced band widths, therefore to a
reduced L.
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1.5.4.2 Hopping Transport

Hopping on the other hand is the dominant charge transport process in disordered materials.
Although polymers can aggregate and show somewhat increased crystallinity, in most cases,
they fall into this category.

Hopping transfer is usually described by Marcus theory whose el ectron transfer rate was already
shown in the section 1.5.3.2 about Dexter transfer according to Eq. 1-5. Note that the hopping
rate is hence proportional to a tunnelling term, |Mpa|?, which takes into account the wave
function overlap, and an activated hopping term, exp[(AG + 1)?/(4AkgT)], which is equivalent
to an Arrhenius barrier E, of the height (AG + 1)?/(44). Furthermore a Poole-Frenkel-like
electric-field dependence was found, which means that the hopping rate (and hence p) is
dependent on the electric field in the following form:

Es++/q3 F/(rreoe)> Eq 1.8

U < exp (— kT

where €,¢ is the dielectric permittivity. Note that although the Poole-Frenkel mechanism,?’
which treats the effect of F on carriers trapped in Coulomb potential wells in isotropic solids,
may not be the 'true’ reason for the observed field dependence, Eqg. 1-8 is in good agreement
with many observations. (Other models such as the charge-dipole®® modd, the Guassian

disorder model® or the correlated disorder model*® also result in such a field dependence).

I would like to emphasize that only a very brief overview has been given here and that charge
transport modelling in organic semiconductors remains a topic of active research. There is no
model available that can describe most organic materials due to a variety of effects such as
mobile defect states, unintentional doping, disorder, morphological effects, etc.. Note that
electron transport in conjugated polymers is usually substantially weaker than hole transport,
probably due to electron traps existing in most materials. A recent study® even shows that the
same e ectron trap distribution and density is present in most materials.

1.5.5 Langevin Recombination

Langevin recombination is the main type of non-geminate bimolecular charge recombination
occurring in organic materials. Non-geminate (as opposed to geminate) means that it is not
dealing with the charges that make up the exciton (i.e. dectron-hole pair that may recombine
geminately before it is split) but with charges that interact after they were successfully

separated. Langevin recombination is derived under the assumption that the limiting process is
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that charges come close enough to each other and not the interaction itself. The processis hence

dependent on the charge carrier densities and mobilities only.
The Langevin recombination rate (R) can be derived by:*

R=ynp—n;py), Eq. 1-9

where n and p are the eectron and hole densities, n; and p; are the intrinsic eectron and hole

densities (often assumed to be zero) and y is the Langevin recombination constant:

¥ = Huetup), Eq. 1-10
where pe and i, are the electron and hole mobilities.

It is noted that the formula above is the simplest form of the Langevin recombination and that
adjustments may have to be made to explain experimental results, such as reduced Langevin

recombination® or two-dimensional Langevin recombination.*

Non-geminate bimolecular charge recombination is of tremendous importance in solar cells,
influencing the fill factor (FF) as well as the open-circuit voltage (Voc) to alarge degree. As a
general rule, the lower the non-geminate charge recombination, the higher the charge

concentration that can be maintained and hence® the higher is Voc.

1.5.6 Mode of Operation of Polymer Solar Cells

The processes involved in power generation in polymer photovoltaic devices can be divided into

five steps. These are:

(1) Incoupling of a photon

(2) Absorption of this photon and formation of an exciton

(3) Diffusion of this exciton

(4) Dissociation of this exciton into separated charges

(5) Transport and collection of these charges at the el ectrodes

Polymer photovoltaic devices are typically made out of a sandwich structure, whereas the active
layer, i.e. the layer where beneficial photon absorption takes place, is often a blend out of one
hole-conducting and one e ectron-conducting material. Further layers, such as exciton blocking

layers at the el ectrodes, may also be included, but will not be taken into account here.

A simplified band diagram of a single layer solar cdl is shown in Figure 1-7.
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Figure 1-7. lllustration of the mode of operation of a single-layer SC with connected el ectrodes.
The difference in work functions (®; and ®,) of the electrodes (the built-in voltage V) cause
an electrical field. Assuming there are no free charge carriers within the polymer, the potential
isalinear function of the position, i.e. linear band bending results. After absorption of a photon
of energy /v, an exciton is generated which is split into electron and hole. It is assumed here
that no type Il heterojunction is needed to split the exciton.

1.5.6.1 Incoupling of a Photon

Light usually comes in through a transparent, conductive oxide such as indium tin oxide (ITO).
The higher the refractive index of this material, the higher is the reflection loss at the air-glass
interface. Special anti reflection layers (e.g. downward pointing pyramids® or one-dimensional
gratings®) can improve the eficiency by reducing the reflectance or by increasing the optical
path and hence the chance of photon absorption.

1.5.6.2 Photon Absorption and Exciton Formation

The aim is to absorb as many photons as possible within the active layer of the SC. The overall
light absorption depends on the absorption spectrum (coefficient), thickness and the local
electrical field ([EP) in the active layer. The latter depends not only on the active layer itself,
but, due to the micro cavity effect, on the transmission, refractive index and thickness of each
layer. Also, other optical features such as a patterned electrode or nanoparticles within a layer
(which may change the refractive index or lead to plasmon-enhanced absorption) can changethe
local electrical field.
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The absorption spectra of the polymer should as a first approximation match fairly well the solar
spectrum to absorb the maximum amount of light. This is achieved by using a small band gap
material. On the other hand, a small band gap will limit the open circuit voltage (Voc), so that
the HOMO-LUMO gap should ideally be around 1.4 €V. The ideal band gap is discussed in
more detail in the section 3.8.3 on page 191. Initially, most polymers lacked absorption in the
important red part of the spectrum, so huge efforts have been undertaken to reduce their band
gap.® However, reducing the band gap too much to perfectly match the solar spectrum is not
beneficial because a lowering of the band gap also results in a lowering of the open-circuit
voltage (Voc) which is connected to the difference of the LUMO levels of the (electron-)
acceptor and the HOMO level of the donor.

The value of 0.2 eV is not very precise and depends on the materials and morphology. A

visualisation of the dependence of Voc on the energy levelsis shown in Figure 3-2 on page 88.

1.5.6.3 Exciton Diffusion

After the exciton has been generated through photoabsorption, it will move through the
material, driven by an electrical field due to a difference in work function or due to a chemical
potential gradient near heterojunctions. The corresponding transport processes (Forster and

Dexter transfer) have already been described in the section about excitation energy transfer.

The exciton (or polaron pair (see page 87)) will move until it is either trapped, dissociated,
decayed radiatively (luminescence) or decayed non-radiatively (vibronic or thermal decay). As
already mentioned, the exciton diffusion length of conjugated polymersis typically 10 nm.*

1.5.6.4 Exciton Dissociation

The dissociation of an exciton, i.e. the splitting of the exciton into a free electron and hole, is the
only desirable route for photovoltaic applications. Although it can happen at materia
inhomogeneities or at electrode-polymer interfaces, exciton dissociation is particularly efficient

at type Il heterojunctions® as described earlier.



1 Introduction 44

1.5.6.5 Charge Transport and Collection at the Electrodes

Upon exciton dissociation, the charges need to find their ways to their respective eectrodes.

Especially for blends as active layers, the existence of continuous percolation paths is critical.

Even if a charge carrier is close to the respective electrode, it is not certain that it will be ableto

reach the metal. "The probability associated with all the barrier penetration mechanisms

involved at the interfaces towards the metallic surfaces is a function of geometry, topology, and

interface formation.

n39

1.5.6.6 Loss Mechanisms

There are loss mechanisms at every step described above.

1

Photon absorption is imperfect due to the nature of the limited absorption in the active
layer and due to incoupling losses (light transmission and reflection).
Exciton recombination:
= Excitons may decay to the ground state at any stage of their lifetime.
= Charge-exciton reactions can deactivate the exciton.
= Depending on the solar cell, inter-system crossing to a triplet exciton may also
present a loss mechanism.
Charge recombination or trapping:
= Electron and hole may mutually recombine with each other just after exciton
dissociation ("geminate charge recombination”). Note that in typical polymer-
fullerene SCs charge transfer at the type Il heterojunction is orders of
magnitude faster than exciton decay or charge recombination®® so that
geminate charge recombination does not pose a problem in such systems. On
the other hand, efficiencies of most polymer-polymer solar cells are indeed
reduced by inefficient exciton dissociation.
= Electron and hole may recombine at a later stage with other free charge carriers
("non-geminate charge recombination). This bimolecular recombination is
usually assumed to be of Langevin-type and increases with maobilities and
charge carrier densities.
= They may also become trapped and act as charge or exciton recombination

centres.

4. Charge collection (extraction) at the electrode.
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It is noted that eectrons or holes may not always perfectly recombine with their
respective eectrode so that the low surface recombination rate may create a space
charge. The space-charge creates an S-shaped JV curve decreasing the solar cell

performance.“**
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2.1 Motivation

If we were able to pattern the active layer of OSCs with high resolution and high throughput, we
would have a route to reduce the duration of morphology optimizations by a very large degree
and improve the SC efficiencies. The reasoning is the following: The high binding energy of the
photogenerated Frenkel-excitons requires the use of two materials within the active layer to
generate a type Il heterojunction where excitons, i.e. bound electron-hole pairs, can be
efficiently split into free charge carriers. The problem now is that the exciton diffusion length is
of the order of 10 nm for typical conjugated polymers such as PPV,* so that the maximum
distance from any point in the active layer to an interface should not exceed this quantity to
assure efficient exciton dissociation. In order to solve that problem it is common to use the bulk-
heterojunction architecture where both materials are simply mixed to create an interdigitated
network where the domain size is not much larger than the exciton’ diffusion length. This
approach, however, is detrimental to charge transport due to island formation and a high degree
of non-geminate charge recombination. If an exciton is split at an interface with an island, one
of the two carriers will be trapped, never able to reach an eectrode to generate current. Instead,
the trapped charge on an island may recombine geminately, i.e. with itsinitial counter charge, or
non-geminately, i.e. with another free charge carrier, reducing the efficiency of the SC.
Patterning the active layer in a controlled manner as in Figure 2-1 would significantly improve
the charge transport while maintaining the good exciton dissociation ability of the common

bulk-heterojunction architecture.

/%

Figure 2-1. Ideal structure of a patterned device with a large heterojunction interface. D is the
exciton diffusion length of the light absorbing polymer. A typical active layer thickness is ~ 100
nm.
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In my experiments | used SThL to convert the poly(p-phenylene vinylene) (PPV) precursor
poly(p-xylene tetrahydrothiophenium chloride) (PXT, see Figure 2-4c). PPV is a prototypical
conjugated polymer as it is one of the first that has been successfully applied to create organic

LEDs®* transistors,®*® and photovoltaic cells.*"*

By choosing a m-conjugated polymer
instead of an arbitrary polymer | can show more directly and more convincingly how SThL may

be used in the future to produce high efficiency OSCs.

The work described in this thesis is different from the work presented in my M Sc thesis. During
the MSc project | conducted SThL experiments on ITO whereas within the PhD project |
investigated the influence of the thermal conductivity of the underlying substrate via finite
element modelling, which was used to simulate the temperature distribution during SThL. Finite
element modelling is a numerical method to solve partial differential equations if analytical
techniques do not work because either the differential equations themselves or the geometry is
too complicated. As the simulations are a means to understand experimental observations, the
experimental methods and results will be presented in the next section. Experiments on gold

were carried out by other members of the group during the PhD project.
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2.2 Background

In this section | will give an overview over various nanolithography techniques including
scanning thermo-chemical lithography (SThL) and | will describe how an atomic force
microscope (AFM) as wdl as a theemal AFM works. For a better understanding of the
motivation above refer to the section 3.2 on page 81 where a general introduction to -

conjugated polymers and OSCs is presented.

2.2.1 Scanning Thermo-chemical Lithography and other Nanolithography
Techniques

Lithography (from the Greek words lithos = 'stone€ and graphein = ‘writ€) is a term originally
describing a certain printing process, invented around 1800. During lithography, an image is
drawn onto a lithography stone with a hydrophobic substance. By covering the surface with a
water and ink solution, the ink will stick to the hydrophobic substance (the so called positive
image) and the water will be covering the rest, i.e. the negative image. The lithographic stone
can then be pressed onto paper.

Nanolithography on the other hand is a much more general term, describing all methods by
which structures in the nanometre regime, i.e. < 100 nm, can be fabricated. Nanolithography is
of immense importance in today’s science and industry. Although it has its most prominent
application in nanoelectronics for the fabrication of integrated circuits, there are other areas
including the development of nanosensors and other nanoel ectromechanical systems (NEMS).
The list of nanopatterning techniques is large, including near-field scanning and far-field

031 thermal,* thermo-

photolithography; focussed ion beam and electron beam lithography;
mechanical®®> and scanning thermo-chemical lithography (SThL); dip-pen lithography;
nanoimprinting, hot-embossing and injection moulding lithography, etc. Some of them | will

introduce in the following.

2.2.1.1 Other Nanolithography Techniques

Far-field photolithography™ is the process enabling the mass fabrication of nm-sized transistors
in any processor and is hence the most commonly used type of nanolithography in our time.
During far-field photolithography, light is travelling through a photomask (also called optical
mask or shadow mask) that contains the required geometric pattern. The light is then absorbed
by a photoresist which covers the substrate underneath. Depending on the type of photoresist
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(positive or negative), the exposed or unexposed areas will be rinsed away in the next step,
revealing the surface underneath. At this point one has the choice to either remove substrate
material in the now uncovered areas via an etching process or to locally deposit material onto
the uncovered surface. Note that in order to create whole integrated circuits, the
photolithographic process has to be repeated many times with different photomasks. The
advantage of this technique is the high throughput of the optical (parallel) process. The
equipment required to produce modern integrated circuits, however, is extremely expensive
(hundreds of millions to hillions of dollars). As the waveength of the light used to expose the
photoresist determines the maximum possible resolution (— Abbé diffraction limit), the
wavelength in far-field photolithography is becoming ever shorter. Currently deep-UV light is
used, but extreme UV or X-ray lithography are candidates for next-generation lithography.

Scanning near-field optical lithography™>® (SNOL) is, as the name suggests, a serial technique
and hence has a low throughput. SNOL uses an optical fibre with a sharp (~50 nm wide)
opening at the end. The so called evanescent wave exiting the fibre interacts with the surface
and is not limited to the Abbe diffraction limit (as the wave is not actually diffracted) and
resolutions better than the used wavelength can be achieved. SNOL was also used to convert a

conjugated polymer creating nanosized structures™ similar to the work described here.

Electron beam lithography and focussed ion beam lithography®>* make use of a focussed
particle beam that scans across the target surface and locally removes material. As scanning
techniques they are naturally slow but obtainable resolutions are extremely good, down to
~5 nm. The optical mask used in far-field photolithography for example is typically made by
electron beam lithography.

Nanoimprinting,® hot-embossing™ and injection moulding lithography all rely on mechanical
deformation of afilm. They are similar to far-field lithography in a sense that these are parallée
and hence high throughput techniques. Very good resolutions down to 10 nm have been

achieved suggesting a large potential for arange of applications.

2.2.1.2 Scanning Thermo-chemical Lithography

59,62-66
L,>

Scanning thermo-chemical lithography, STh iS a versatile nanopatterning technique
where a hot probe is scanned across a surface to induce a local chemical reaction in a thin film

to generate the desired pattern.

SThL is an interesting technique as it does not suffer from the resolution limitations imposed by

the Abbe diffraction limit in conventional far-field photolithography, or from the irradiation
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damage caused by e-beam lithography.®”®® Upscaling the throughput by using an array of hot
probes has also been shown,® demonstrating that SThL can be used to produce nanoscale
prototypes more cheaply and conveniently than other techniques. As an ultimate aim one can
think of using SThL to pattern the active layer of SCs.

SThL is a very versatile but rather rarely applied technique. In 2004, thermo-chemical
patterning of a photoresist was reported to achieve resolutions in the range of 450-1800 nm.* In
2007, another SThL technique based on the conversion of a copolymer from hydrophilic to
hydrophobic was shown to result in sub-15 nm resolutions.** SThL has also been used to reduce
graphene oxide,® to create three-dimensional structures within a thin layer of photoresist,®® and

to convert a sacrificial precursor polymer to create structures with sub-30 nm resolutions.®

2.2.2 Atomic Force Microscope (AFM)

The atomic force microscope (AFM) was developed by Gerd Binnig, Calvin Quate und
Christoph Gerber ® as a successor of the scanning tunnelling microscope (STM). It rlies on a
sharp tip being scanned across a surface with very small contact forces. Figure 2-2 shows the
working principle of an AFM. The fine tip is connected to a so called cantilever, a small
conducting beam than can vibrate and reflect the light coming from the laser. The reflected light
is collected by a photodiode which can monitor the position of the laser spot and hence
indirectly measure how much the cantilever is bent. The signal can then be used by a feedback
system to alter the height of the cantilever. The cantilever is typically moved by piezoelectric

crystals to control the vertical and horizontal position very accurately (sub A resolution).
The two most common modes of operations of an AFM are the contact and tapping mode.
Contact mode

In contact mode the tip is constantly in soft contact with the surface. This is achieved by
adjusting the height of the tip via the feedback loop so that the cantilever is always bent by the

same amount.

Tapping mode

In tapping mode, the cantilever vibrates at one of its resonance frequencies (typically above 100
kHz). The tip will touch/"tap" the surface once every period and the amplitude of the vibration
will be used as the feedback parameter.
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Feedback
system

Figure 2-2. Schematic of an atomic force microscope (AFM). The bending of the cantilever is
measured by a laser which is being reflected by the cantilever and detected by the photodiode. A
feedback system can then adjust the z-coordinate of the cantilever while the probe is scanned
across the sample.

2.2.3 Thermal AFM

Theterm "thermal AFM" will be used in the following to describe the instrument used to pattern
the polymer surface. The difference between a thermal AFM and an ordinary AFM s that itstip

is aresistive probe with a temperature dependent resistivity.

Such a resistive probe can be applied in two different ways. ™ It can either be used passively
by providing a temperature dependant resistivity which can be used to obtain a temperature map
of the surface, or, asin my experiments, it can be actively heated by applying a voltage acrossiit.
The power necessary to achieve a certain temperature (corresponding to a certain electrical

resistance of the probe) can be measured to create thermal conductivity maps of the surface.

A thermal AFM is typically used for micro-thermal analysis.”®™ During micro-thermal analysis,
the probe temperature is ramped up and the response (expansion, shrinking) of the
substrate/material underneath measured to obtain information about the thermal properties of

the material, such asthe glass transition temperature.

2.2.3.1 Calibration of the Probe

The temperature of the probe can be calibrated by assuming a linear relationship between the
resistance of the probe and its temperature. The necessary reference points can be obtained by
recording power—resistance (‘local differential thermal analysis') and height—resistance (‘local
thermo-mechanical analysis') curves while heating different polymers. Each such curve allows

for the determination of two data points:
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The room temperature can be clearly related to the point, at which the power starts to increase.
The melting temperature T,, or glass transition temperature T¢" on the other hand can be
determined from the height-temperature curve: While the temperature increases, the polymer
(and substrate underneath) will expand increasing the deflection and hence, the z-feedback
being active, the height of the tip. At the transition temperature, however, this effect will be
overcompensated by the probe being pushed into the now softening polymer by the force
applied to the cantilever, which is determined by the set point of the AFM. Depending on
parameters such as the thickness and viscosity of the film, as well as the thermal properties of
the underlying substrate, the drop in the slope of the height-resistance curve will be more or less
dramatic. The transition temperature is often taken as the temperature at which the slope of the

probe height as a function of temperature changes suddenly.”
Thereference polymersin my experiments are

= poly(caprolactone) (PCL) with T,, = 60 °C,
= polyethylene (PE) with T\, = 120 °C and
= poly(ethyleneterephthalate) (PET) with Tg = 262 °C

After measuring each polymer at least three times with a heating rate of 10 °C/s, a linear
regression between the probe resistance and the temperature was carried out (see Figure 2-3).
Note that although rather large deviations of 30-50 °C between glass transition temperatures
measured by local thermo-mechanical analysis and differential scanning calorimetry (DSC)
have been reported”, my calibrations resulted in straight lines between resistance and

temperature indicating successful calibrations.

" There is a difference between T, and Tg of a polymer: T,, is characteristic for the crystalline part of the
polymer and is associated with the first order phase transition which involves the latent heat. Tg on the
other hand is the second order phase transition, which is connected to the amorphous part of the polymer.
Tg issmaller than Ty, Inthe following | will refer to the term “transition temperature” if 1 do not want to
specify the type of transition.



2 Scanning Thermo-Chemical Lithography of a Conjugated Polymer 54

Resistance (Q)

2.5-....|....|....|...,lj...l....'
0 50 100 150 200 250 300

Temperature (°C)

Figure 2-3. Calibration curve after using two reference polymers with transition temperatures at
120 °C (PE) and 262 °C (PET). Image taken from Tolk."™
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2.3 Experiment
231 Therma AFM

The thermal AFM used for my experiments consisted of an AFM (Explorer, Veeco Instruments
— Santa Barbara, CA) on which a so-called Wollaston wire probe™™ (Bruker) was mounted.
This resistive probe consists of a 75 pum diameter silver wire which is etched and bent in the
middleto exposea~ 5 pm diameter platinum-rhodium (9:1) core (see Figure 2-4a). The thermal
AFM allowed temperatures up to 650 °C (a temperature so high that it is commonly used to

"clean" the probe, as maost organic materials will disintegrate at such high temperatures).

To avoid confusion | will refer to the term “thermal AFM” whenever | am referring to this
instrument and “AFM” when | am referring to the Veeco Dimension 3100 that was used to
image the final structures. All AFM images presented in this report are tapping mode images
whereas the amplitude of the cantilever vibration is used as the feedback variable.

a \ b C
(a) laser beam (b) Q’r:be / ) PXT ()
T > I - S+
~ ™ PXT
iror / B fused n
mirror SI"T'(C;/" elimination-
Pt/Rh wire gold
C »
substrate ’ reaction
z
glass- \
g substrate n
, Z PPV

Figure 2-4. (a) Setup of the experiment. The hot Wollaston wire probe is scanning across a
sample whose cross-section can be seen in (b). The points A, B and C mark the location of the
interfaces along the z-axis (i.e. at r=0). (¢) Chemical structures of PXT and PPV. Image
reprinted with permission from Tolk et al.,”” Copyright (2012) American Institute of Physics.

232 Method

The main type of substrates used in my experiments are indium-tin oxide (ITO) covered glass
substrates. Experiments on fused silica already exist® and have only been repeated briefly to
assure reproducibility. Finally, the first experiments on gold were carried out by Dr Oliver
Fenwick and Sadi Ahmad" to explore a much larger range of substrate thermal conductivities.

The thermal conductivity, k, of ITO ranges from 3.1 W m*K™ for very thin films™ to bulk

" both members of the CMMP group at UCL, Department of Physics & Astronomy
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conductivities” of 14 W m'K™, which is significantly higher than that of fused silica®
(k=1.4W m*K™). Thethermal conductivity of gold® is317 W m™ K™,

The substrates are cleaned in an ultrasonic bath in acetone and isopropanol for 10 minutes each,
followed by an oxygen plasma treatment to reduce the surface roughness and improve the
adherence of PXT molecules to the partially oxidized I TO surface.

After cleaning the substrate, the PXT solution (0.25wt% in water, Sigma Aldrich) is spin-
coated onto the samples in air resulting in film thicknesses of ~ 20 nm on spectrosil and

~ 35nmon ITO as determined via a Dektak profilometer.

The lithography was done by scanning the hot probe in contact mode across the surface. The
contact force has been chosen to be as low as possible to avoid sinking of the probe into the
precursor layer but to also ensure reliable contact. A set point of about 3nA was used,
translating into a contact force of 2.3 pN. (This value was determined by Dr Oliver Fenwick by
approaching a hard surface without being in feedback to calculate the change of the photodiode
signal as the function of deflection and by using the known value of the spring constant of the

cantilever.)

During the lithography | kept the scan angle and all feedback parameters constant. The feedback
parameters are the set point (photodiode voltage which is proportional to how much the
cantilever is bent) and the P, | and D gain of the PID (proportional-integral-derivative)
controller. These 'gains' determine how the height of the tip is adjusted with respect to the error-
signal, which is the difference between the measured photodiode voltage and the desired
photodiode set point. The scan angle needs to be constant because the probe tip is not isotropic.
Within one plane, the radiusis 2.5 um, i.e. the actual radius of the platinum-rhodium core wire,
and within the other plane, the radius of curvature is determined by how much the wire is
actually bent around to form the tip, which is larger than 2.5 um. The correct scan angle has

been used which assures that the 2.5 um curvature radius is responsible for the feature sizes.

After patterning, the samples are rinsed in methanol to remove any unconverted precursor on
the substrate and then baked in a vacuum oven at about 200 °C and < 10° mbar for at least 2

hours to assure complete conversion into PPV
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2.3.3 Experimental Results and Discussion

Most of the experimental results on ITO are aready described in my MSc thesis. | will,
however, show the most important images and briefly discuss them before adding the finite

element modelling.

Figure 2-5 shows AFM images of PPV structures written at 350 °C and 10 pmv/s. The images
are taken after the last step, i.e. the post-baking step, and show that straight and reproducible
lines can be manufactured.
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Figure 2-5. The upper images (a) and (b) show micrographs of lines written at 350 °C and
10 pm/s. The line profile across the white line in (b) is illustrated in (c). The initial precursor
film was ~ 35 nm thick. Experiment done during the author’'s MSc project. Figure reprinted
with permission from Tolk et al.,” Copyright (2012) American Institute of Physics.

Figure 2-6a displays lines profiles taken at constant temperature but different writing speeds. It
clearly demonstrates that lower writing speeds lead to taller and wider structures as one would
expect from the increase in exposure time of the precursor film to the hot tip. Also important to
note is the transition from a single line profile at high writing speeds to a double peaked shape
in the regime of lower writing speeds where the viscous flow cannot be neglected. The sudden
change of the line profile when decreasing the writing speeds from 10 to 5 pm/s must result
from the probe suddenly sinking considerably into the precursor film. Penetration of the probe
into the layer can generally result from two processes. First, the viscoelastic behaviour of
polymers enabling viscous flow and second, it is known that the precursor will shrink during the
elimination reaction™. To which degree the precursor shrinks is not clear, especially considering
the potentially different behaviour of shrinking purdly due to baking in a vacuum oven, for

example, and shrinking under mechanical pressure of a hot tip asin our case.
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Figure 2-6. Line profiles of structures written at (a) a fixed temperature of 350 °C with a range
of scan speeds from 5 to 80 pm/s and (b) a fixed writing speed of 10 pn/s for temperatures of
350, 380 and 400 °C. Experiment done during the author’s MSc project.”* Note that all curves
are stacked for clarity.

Figure 2-6b shows line profiles at a fixed writing speed but varying temperature. The lateral
centre of each structure is at the same height within the range of temperatures while the height
of the peak decreases with increasing temperature. This behaviour is not what is expected
simply by assuming a higher conversion ratio and more pronounced viscous flow with higher
temperature. The shape is particularly interesting at 400 °C where the typical double peaked
shape becomes one wide plateau. | propose two effects which could lead to that behaviour: first,
at such a high temperature heat conduction within the film might become considerable, so that
surface elements are “pre-hardened” by the incoming probe before actually coming into contact
with it, therefore reducing penetration when the probe actually touches the element. (The
elasticity modulus of PXT is only 2.1 GPa compared to up to 70 GPafor highly order PPV films
prepared by the zone reaction method.®®) This, however, does not explain why the volume of
converted material seems to be larger at lower T. Hence | suggest that at 400 °C, enhanced
shrinking under pressure of the probe may play a significant role in forming the wide and flat
structures. (The local thermal analysis (LTA) performed on PXT® showed that the probe sinks

into the precursor layer at about 415 °C, which is close to 400 °C.)
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| have also tried to optimize the features regarding line density and resolution. Figure 2-7a
shows structures that were written at 400 °C and the maximum writing speed that is supported
by the thermal AFM of 150 pnvs. At these high speeds especially, the trace and retrace of the
probe does not always overlap resulting in these two separated lines with a peak-to-peak gap of
320 nm. Figure 2-7b shows lines with a very high resolution of up to 36 nm (FWHM). We can
see that the anchoring of the polymer to the substrate is rather weak resulting in these awry
features; instead of straight lines one observes crooked or zigzagged lines. However, we have a
first indication that the influence of the thermal conductivity of the underlying substrate on the
highest resolution seems negligible as a similar resolution of 37 nm was previously achieved on
fused silica on a slightly thicker (40 nm instead of 35 nm) precursor film.®

At last | would like to mention that experiments on gold covered silicon oxide substrates (see
Figure 2-8) were also carried out. They were done by Sadi Ahmad and Dr Oliver Fenwick.
Again, resolutions comparable to those on fused silica and ITO have been achieved. Note that
the polymer film thickness on gold was only 20 nm, in contrast to 35 nm on ITO and 40 nm on
fused silica, making a direct comparison with ITO and fused silica more difficult. (As the film
thickness is reduced, heat from the probe can more easily reach the polymer/interlayer interface
and the highest achievable resolution is expected to improve due to the lower necessary tip
temperature). Nevertheless, it is actually surprising to see the lithography working on gold as
one may expect that most of the heat near the polymer/gold interface is conducted away due to
the high thermal conductivity of gold and that, therefore, the converted material does not stick
to the interlayer and will be washed away in the following rinsing step. The finite element

simulations will give further insight into this issue.
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Figure 2-7. (a) Patterning at 400 °C and 150 pum/s and line profile along the white line. (Inset)
The line profile is the result of the probe scanning twice across the surface (trace and retrace),
leading to a line spacing of 320 nm. (b) Patterning at 380 °C and 20 pm/s resulting in a high
resolution of 36 nm, however at the expense of the quality of the lines which are then no longer
straight or well-connected. Experiment done during the author’s M Sc project.”

(o) Gradient image

Figure 2-8. AFM images of PPV lines written across a silicon oxide (SiO,) — gold interface. (a)
The upper right area of the image shows the SIO, surface whereas the bottom |eft area shows
the ~ 200 nm thick evaporated gold layer. The lines were written at 400 °C at 20 pnvs across
the interface and are only hardly visible in the image due to the small height of the features
(~ 15 nm) compared to the interface step. (b) Gradient image of (a) for better visualization of
thelines. Theinterruption of the line is an artefact that results from the large radius of curvature
along the patterning direction, causing thetip to touch the step before the patterned line reaches
it. Figure taken from the supplementary information from Tolk et al..”’
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2.4 Finite Element Modelling

In the previous section we saw that similar resolution could be achieved virtually independent
of whether the interlayer was fused silica or ITO. Even using gold we were able to obtain PPV
structures sticking to the interlayer. This may be counterintuitive considering the very high
thermal conductivity of gold which is expected to result in low temperatures and hence no
conversion to PPV near itsinterface. To understand this apparent independence of the resolution
of SThL | use finite dement modelling with COMSOL Multiphysics. In the following | will
explain the fundamentals of the finite element method (FEM) and then describe the equations

used in this particular application.

2.4.1 Theoretical Background

2.4.1.1 Finite Element Modelling

The finite element method (FEM) is used to find numerical solutions in a system of (linear or
non-linear) partial differential equations (PDEs). This method is usually used whenever a
system of PDES or a geometry is too complex, in that analytical solutions either cannot be found

or it is not feasible to attempt any analytical solving.

During the FEM, continuous domains are divided into subdomains, called elements, creating a
so-called mesh. Because the size of the e ements can be varied, the FEM is also used whenever
the required precision of the solution depends on the specific domain, or when the solution is
not smooth. Therefore, eement sizes are reduced and hence precision increased in the areas of
interest, and mesh-size increased in other regions. In my case for example | am interested in the
solution near the probe-precursor contact area and do not require many data points in the bulk of
the substrate, where the temperature is expected to be rather constant. This leads to a
considerable reduction in computation time. A section of the mesh used in my simulations is
shown in Figure 2-9, where one can see large differences in mesh-sizes between the different

domains.
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Figure 2-9. Mesh mode view (Comsol Multiphysics) of the geometry used for the simulations.
The top part shows the probe touching the polymer layer, whose domains are very small to
achieve accurate results in this region. The layer underneath shows the substrate interlayer. The
influence of the thermal conductivity of this layer is the focus of the work in section 2. The
glass subgtrate underneath the interlayer is not shown.

2.4.1.2 Means of Heat Transport

Heat can be transported via three mechanisms: conduction, convection and thermal radiation.

Heat conduction or heat diffusion is a mechanism by which hest is transferred within one body
or between bodies in physical contact with each other. Neighbouring atoms, molecules or
electrons are exchanging energy. The basic macroscopic equation governing heat conduction is

the heat equation, which will be described in detail in the next section.

During convection, hest is transferred from one body to the next due to the flow of the "hot"
material itsdf, i.e. dueto mass transport. The transport medium, i.e. thefluid, may be aliquid or

agas. Heat transfer via convection will not be considered in our case,

Thermal radiation transfers heat via the emission and re-absorption of photons. The
microscopic cause for thermal radiation is the movement of acceerated charges within atoms.
The spectrum of thermal radiation for a black body in thermal equilibrium is simply a function

of its temperature and is described by Planck's Law:
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2?1 2hc* 1
— o " B = Eq. 2-1
ekBT -1 elkBT -1

B, (T) =

B is the spectral radiance, h is Planck’s constant, v is the frequency of a photon, 1 is the

wavelength of a photon, kg is the Boltzmann constant and T is the temperature.

Heat transfer via radiation was found to be negligible during the simulations.

2.4.1.3 Heat Equation

The heat equation governs the heat transfer and temperature evolution in almost any
macroscopic material (excluding only quantum gases and other ‘exotic’ media). | used it to
simulate the temporal and spatial evolution of the temperature within the polymer and the
substrate. The heat equation is the following parabolic partial differential equation:

aT
pc o +V(=kVT) =Qg, Eq. 2-2

where p is the mass density, c is the specific heat capacity, T is the temperature, t is thetime, ¥

is the Nabla operator, k is the thermal conductivity and Qs is the heat source or heat production

(inW/m?). In thermal equilibrium(‘;—: = 0), the heat egquation becomes

V(—k VT) = Q. Eq. 2-3

| note that this equation is mathematical identical to the Poisson equation in e ectrodynamics,
only that the electrical potential is replaced by the temperature and the charge density by the
heat production. In case of an isotropic medium (where k is a scalar quantity) and without a heat
source, Eq. 2-3 becomes

V2T =0, Eq. 2-4

where VZ is the Laplace operator (usually denoted as A, but not used here to avoid confusion
with the Delta symbol A used later). The equation is thus also called Laplace equation. Solutions
to the Laplace equation are not trivial in more than one dimension. Solutions to the Laplace
equation are called Harmonic functions. They have been thoroughly investigated by
mathematicians and will not be discussed herein detail.
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2.4.1.4 Thermal Contact Resistance

The thermal contact resistance Rcr (in K/W) is a measure of how easily heat can be transferred
between two bodies in contact. It is defined as the ratio between the temperature drop (A7) at
thejoint and the heat flow (AQ/At in W) across the contact interface (of area A):
_ _ATjoint
Rer = —35—- Eq. 2-5
‘At
If we remove the words "at the joint" and "across the contact interface" in the above definition

and consider a body of width Ax, we obtain the definition for a thermal resistance R in general:

R = —AT  Ax
- AQ T kKA Eqg. 2-6
At

In terms of the thermal conductance coefficient (h.), Rcr can be written as

1
h A

RCR = Eq 2'7

In many applications (such as the cooling of a processor in a PC to name just one) the thermal
contact resistance between two (solid) bodies is of tremendous importance. No hard surfaces are
perfectly smooth, instead they are rough or deformed. As a result, perfect contact between two
solid surfaces is impossible. Small air gaps are present which reduce the effective contact area
and lead to an additional thermal resistance as the thermal conductivity of air is usually much
lower than that of the contacting bodies. If we compare Eq. 2-6 and Eqg. 2-7 we see that (as
intuitively expected) Rcr increases when the "effective thermal conductivity” (ki) of the air-gap
decreases or the "effective thickness" (Ax = At4,) increases.

Derivation of the formula defining the thermal contact resistance:

According to Fourier's law of heat conduction,

G =—kVT, Eq. 2-8

the heat flow density (¢ in W/m?, i.e. the heat flow per area and time) between two bodies is
proportional to the temperature gradient and the proportionality factor is k, the thermal
conductivity. (The heat equation given in Eq. 2-3 is actually derived from Fourier's law and the

law of energy conservation). In one dimension, Eq. 2-8 becomes
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=—k — Eq. 2-9
qx dx ) q
which may berewritten in the integral form:
AQ AT
—=—-kA— Eq. 2-10
At Ax’ d

where AQ/At isthe energy flow per time (in W) and A is the projected area in x-direction. Under

the condition of energy conservation one can find for amultilayer structure that

ﬂ —AAT
At Akxil + Ak? +Akx3 T Akxn Eq. 2-11
or in terms of thermal resistances R, :
AQ —AT —AT £q 212

A R R +R ++R,’

If we start from Eq. 2-11 and imagine a three-layer structure composed of two bodies in contact
and a thermally resistive layer in their middle (see Figure 2-10), we can replace the term Axz/k;
by the thermal contact resistivity (1/hc) and obtain

AQ —AAT
At bx; | 1 Axge Eq. 2-13
T, T T

Eq. 2-13 can be used to measure Rcr via heat flux meters.

» X

Figure 2-10. Visualisation of the thermal contact resistance between two bodies which leads to
a "sudden" drop in temperature at the contact interface. The slopes in the graph for body A and
B depend on their thermal conductivities k. The higher k, the smaller the slope.
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2.4.1.5 Arrhenius Equation

The Arrhenius equation is an empirical formula to calculate the reaction rate constant (k) of a

thermally driven chemical reaction as

Eq
k= Ae RT, Eq. 2-14
where A is the pre-exponential factor, E, is the activation energy and R is the molar gas
constant.

For a reaction from molecule A to molecule B (A—B), let Na(t) be the number of molecules A
as a function of time. Starting with a simple rate equation and reaction rate constant k (Eq.
2-14):

AN (t
C;‘t( ) g Na(D), Eq. 2-15

and using the boundary conditions Na(0) = No, Na(e0) = 0 and Ng(0) = 0, one finds that the
conversion ratio (a), i.e. the ratio between the number of converted molecules (Ng) to initialy

unconverted molecules (No), is asfollows:

Ng(t
o= exp(—k t) Eq. 2-16
Ny
—Ea
a=1—exp(—A eRT t). Eqg. 2-17

The Arrhenius equation (Eq. 2-17) is also known to describe the conversion from PXT to PPV®
and the values for the activation energy (E,) and the pre-exponential factor (A) can be taken
from the literature® (128 kJ/mol and 1019/min, respectively). Figure 2-11 shows the Arrhenius
equation for PXT to get an impression about the timescales involved. At ~130 °C oneneeds 1 s
to convert the polymer while at 350 °C, 10° s is enough to completely convert the polymer.
Considering for example a relatively high writing speed of 100 pm/s and a contact length of
only 10 nm, one obtains an exposure time for polymers at the top surface of 10 s, which is two
orders of magnitude longer than what would be needed to convert the polymer to nearly 100%.
This shows us that we will have in all cases a complete conversion at the top of the film where
the hot probe touches the polymer. However, this information is not enough because if only the
top layer was converted, the film could still be washed away in the rinsing step. Therefore one
needs to investigate the temperature distribution within the film.
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Figure 2-11. Conversion ratio (o) of PXT as a function of temperature and exposure time.
Figure taken from the supplementary information from Tolk et al..”

2.4.1.6 Geometry and Material Properties in the Model
2.4.1.6.1 Geometry

In thefollowing | assumed the effective radius of curvature to be 2.5 um, i.e. the nominal radius
of the Wollaston wire, a tip penetration of 3 nm (leading to a contact width of 245 nm) and a
temperature of 350 °C. The penetration depth of 3 nm has been chosen following measurements
on the tip penetration of a hot probe on PXT before rinsing.* Regarding the substrate, |
followed the geometry of the ITO substrates, i.e. | assumed a 1.5 mm thick quartz substrate with
a 150 nm layer of ITO and a 35 nm PXT layer on top (see Figure 2-4b). To compare with the
other substrates (fused silica and gold) | ssimply exchanged the ITO layer with the respective
other material. This 150 nm thick layer of fused silica, ITO or gold will be termed "interlayer"
in the following.

2.4.1.6.2 Material Properties

Within the model | used the following physical parameters:

= forfusedsilicaand glass: k=1.4W m'K™, p =2203kg/m® c=703Jkg K™
= forITO:k=87Wm'K™, p =7100kg/m’, c =380 Jkg K™,
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= forgold: k=317W m'K™, p =19300 kg/m®, ¢ =129 Jkg' K™

= Because the values for PXT are not well known, as a an approximation we took the
values of the well characterized polymer poly(methyl methacrylate) (PMMA) that is
often used in ebeam lithography:**" k=0.19Wm'K™, p =1190kg/m’,
c=1420Jkg*K™. Note that the value of k for the polymer is likely to be
overestimated. A justification for the value is given in section 2.4.3.1 on page 70.

2.4.2 Results

Figure 2-12a shows the temperature development at point B, i.e at the polymer-interlayer
interface. We see that depending on the underlying interlayer, the steady state temperature at
point B is different, varying from about 142 °C for fused silica to 57 °C for ITO down to
basically room temperature (23 K) in case of gold. The trend is easily explained by the fact that
a substrate with higher heat conduction will more quickly transport energy away from point B.
Considering again the exposure time of > 10™ s derived above, we see that we can in very good
approximation assume that the polymer is in thermal equilibrium during the exposure time.
From here on, only steady state distributions are considered.

Figure 2-12b shows the cross section of T along the z-axis. The curve starts at point A at the
probe-polymer interface with Ty, (350 °C). Up to point B, i.e. within the polymer, the
temperature gradient is in good approximation constant and strongly dependent on k. The reason
for the constant temperature gradient is that the heat transport is rather one-dimensional in that
region, because the probe-polymer contact width is about 245 nm, whereas the polymer layer is
only 35 nm thick. The heat equation (Eq. 2-4) then becomes &°T/6Z = 0 and hence describes a
constant temperature gradient. Figure 2-12c illustrates the conversion ratio along the z-axis that
follows from the temperature distribution in Figure 2-12b. We see that a drops from 95 % to
5 % within a layer of 4z ~5 nm independent of k. To quantify the location of the conversion
boundary | arbitrarily define the conversion boundary as the surface where a = 50 %. (As the
conversion boundary is so sharp, the precise value is not crucial). The vertical distance (d,)
between B and the conversion boundary is 2.7, 11.0 and 13.2 nm for fused silica, ITO and gold,
respectively, in the case of the 350 °C hot tip assumed here. In Figure 2-12d, d, is plotted as a
function of T, ranging from 200 to 450 °C. If we assume that d, is the parameter that indicates
whether or not a structure will stick to the surface, we can determine the substrate dependent
minimum tip temperature (Ty,™") from Figure 2-12d. (The red vertical line marks d, = 11.7 nm,

avaluethat will be explained later).
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Figure 2-12. Finite dement modelling. (a) Simulated time development of T at r =0 at the
polymer-substrate interface (point B). (b) Simulated temperature distribution along the z-axis at
steady state. The curve starts at z= 0 (point A) with T, = 350 °C. Up to z= 35 nm (point B),
i.e. within the polymer, the temperature gradient is in good approximation constant. (C)
Conversion ratio (o) of the polymer along the z-axis from A to B. (d) Vertical distance (d,) of
the conversion boundary from the substrate for different Ty,. The red line marks an estimate of
the largest possible d, (d,"™) which still ensure that the structure will not be washed away
during the rinsing step. (e) Plot of a aong the air-polymer interface. (f) Plot of
d. = FWHM - 21, for different Ty, The red circles indicate the expected smallest d, which
follow from d, = d,"* = 11.7 nm for the different substrates. (g) Surface plots of T and « in both
spatial dimensions in case of an ITO substrate and a 350 °C hot tip. Image reprinted with
permission from Tolk et al.,” Copyright (2012) American Institute of Physics.
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In Figure 2-12e | plotted the conversion ratio along the air-polymer interface. The conversion
ratio (o) drops from 95 % to 5% within a layer of 4 ~10 nm (for gold) to 16 nm (for fused
silica). | define d; as the FWHM of the volume inside the conversion boundary subtracted by
21, dr will serve as an indicator for the expected minimum feature size as the probe contact
width becomes zero. It is plotted as a function of T, in Figure 2-12f. Thered circles indicate d
at the minimum tip temperature (Ty,™") which we obtained above from d, = 11.7 nm. Figure
2-12g illustrates the temperature and conversion ratio in both spatial dimensions to get a better

impression of the shape of the converted volume.

2.4.3 Discussion

From the temporal evolution in Figure 2-12a we learned about the ps-timescale of the heat
transfer which allowed the assumption that the polymer is in thermal equilibrium during the
whole exposure time. This not only greatly reduces the computation time but we also learn that
the specific heat capacity (c) and mass density (p) of the substrate, which are present only in the
time dependent (but not time independent) heat equation, should not influence the process
unless they are so high that the thermal equilibrium is only reached after a time comparable to
the exposure time. Therefore it is sensible to concentrate solely on the thermal conductivity k of
the materials. The fact that B is approximatdy at room temperature in the case of gold means
that a further increase in k will not change the curve significantly anymore. Hence gold can be

considered as alimit case representing k-values from ~ Kygig to .

2.4.3.1 Adhesion to the Substrate

In Figure 2-12¢ we could see that the vertical distance (d,) between the interface (point B) and
the conversion boundary is 2.7, 11.0 and 13.2 nm for fused silica, ITO and gold, respectively.
Considering that we have achieved successful lithography for ITO and gold, we can deduce that
d, can be considerably >0 without the converted polymer being rinsed away during
development. (The author is aware of the fact that a higher thermal conductivity of the polymer
itsdf increases the heat flow and would lead to a smaller d,. However, conjugated polymers are
known for their low thermal conductivities and the chosen value of 0.19W m™* K™ for the
precursor is slightly larger than reported values for undoped and unstretched conjugated
polymers such as polyanaling,® polythiophenes®™ and other PPV derivatives.?” In order for the
conversion boundary to touch the ITO-substrate, the thermal conductivity of the polymer would

have to be increased by a factor of ~5.) This is in contrast to experiments done on the PPV
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precursor by scanning near-field optical lithography (SNOL), where a good agreement was

found when one assumes that the UV-dose at point B determines the resolution.>

| investigated the existence of a d, > O further to find the maximum d, which ensures that the
structure sticks to the surface (d,"®). To this end, | plotted d, as a function of Tip In Figure
2-12d. If we consider the smallest necessary tip temperature (Ty,™") of 250 °C on fused silica
for awriting speed of 20 unvs and a similar film thickness,® we obtain d,"* = 11.7 nm (red line
in Figure 2-12d). The intersection of this line with the ITO curve gives Tﬁpmi” =335 °C, which is
in fairly good agreement with the experimental observation that 300 °C was a too low
temperature for writing speeds as low as 10 unvs and that we could find very faint structures
written at 350 °C at up to 80 pmvs. Assuming the same parameters, the model predicts that
Tap™" ~ 393 °C for gold.

2.4.3.1.1 Effect of Film Thickness on Feature Adhesion

The effect of film thickness on feature adhesion has not been the focus of this work. General
trends, however, are that a higher film thickness than used here requires a larger Ty to obtain
the necessary d,"™. This will in turn increase the lateral heat spread and therefore increase the
minimum feature size. For too large film thicknesses, this can cause problems due to the
degradation of the used precursor at too high Typ. Reducing the film thickness will result in a
smaller necessary Ty as the polymer is the most thermally resistive material compared to the
interlayer or the substrate. This leads to less heat spread and hence to a better final resolution.
For the studies here | deliberately chose a larger film thickness of 35 nm because although film
thicknesses < 10 nm would be ideal to reach highest resolutions, they become very limited in

their applications.

2.4.3.1.2 Factors Facilitating Feature Adhesion

We have seen above that combining simulations and experiments, we obtained a
d,"™™ =11.7nm. Therefore we have to consider factors facilitating feature adhesion. Such
factors are a) the interlayer surface roughness, b) entanglement between polymer chains in the
converted and unconverted region and ¢) el ectrostatic interaction of the precursor polymers with

the ITO interlayer.

a) A surface roughness in the range of a few nm can aready give a sizable contribution to the

reduction of the “effective d," because non-conformal coverage of the rough surface (so as
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to form a flat top surface, as it is commonly observed) would result in a spatially non-
uniform film thickness, with local minima a few nm smaller than the thickness assumed in
the model. Furthermore, it is conceivable that the precursor polymer chains would more
easily get entangled and adsorbed due to the nanocavities offered by the rough surface.

b) Another effect that the model is not taking into account is the entanglement of the polymer
chains between the converted and unconverted regions. While it might be argued that this
should be of the order of the polymer gyration radius (3-4 nm for some soluble PPVs, which
should provide a reasonable model for PXT),* one cannot rule out a value a few
nanometres larger than that (up to an extreme value of =10 nm for a fully elongated
strand).®? This higher value could be the result of the shrinking of the precursor polymer
during conversion® (due to the eimination of the tetrahydrothiophenium group). This
volume reduction may lead to significant straightening and uncoiling near the converted
regions and hence may affect the true value of d,.

c) Additionally 1 note that a monolayer of PXT can be éectrostatically bound to the ITO
surface which has been treated by an oxygen plasma. The oxygen plasma leads to the
formation of a dipole layer on ITO via the oxidation of surface Sn'Y—OH to surface Sn'V—
0O.%% PXT acts as a polyelectrolyte in water where the chains are positively charged and
compensated by CI” counterions, and the positively charged chains can adhere to Sn'V—O
surface groups.

As a final point | note that conversion of PXT to PPV releases HCI,® which has been
proposed to etch metallic or ITO substrates with formation of the related salts. Diffusion of
HCl downwards may enable HCI to reach the interlayer. These salts may locally increase

surface roughness or introduce polar interactions that would aid adhesion of the features.

None of these effects question the finite value of d,, but instead confirm that the predicted d, > 0
actually captures an important aspect of the physics of this process, and ultimately also explain
why we can anchor nanopatterns on gold despite its very low surface temperature (Tg ~ room
temperature). With this in mind we can look at the implications that the scenario of adhesion in

thed, > O regime has for the ultimate performance of SThL on a range of substrates.

2.4.3.2 Minimum Feature Size

In Figure 2-12e we see that the lateral distance from r, to the conversion boundary is 10.4, 12.8
and 18.9 nm for gold, ITO and fused silica, respectively. Hence a higher k actually leads to a
smaller conversion radius at the polymer-interlayer interface under the condition that Tip
remains constant. d, was defined as FWHM — 2 ry and may be thought of as an approximation of

the FWHM as the contact width (2 ro) goes to zero. d. will serve as the indicator for the
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expected minimum feature size (f), which could be estimated by f = d; + w,, where w, is the
"true" contact width.

The question now remains if the need for a higher Ty, a a higher k will overcompensate the
improvement of the resolution that we would expect if we kept Ty, constant. To examine this
further | plotted d; as a function of Ty, in Figure 2-12f. The red circles indicate the smallest
necessary tip temperatures Ty,"" (which we obtained from d,"* =117 nm) with the
corresponding substrate dependent d™". We would therefore predict that the resolution will
deteriorate slightly upon changing to a higher thermal conductivity substrate. Quantitatively, f is
expected to increase with respect to fused silica by 10.3 and 12.6 nm for ITO and gold,
respectively, in case of a 35 nm precursor layer. Experimentally we found an optimum FWHM
of 37 nm on a 40 nm thick precursor film on fused silica and 36 nm on a 35 nm thick precursor
film on ITO. The deterioration of the resolution is therefore less than predicted by the model,

even considering the 5 nm thicker film on fused silica.

In Figure 2-12g | illustrate the distribution of T and o in both spatial dimensions in the case of
an ITO covered glass substrate. T decays linearly in the z and exponentialy in r-direction
resulting in o dropping from 95 % to 5 % within a layer of 4z ~5 nm or 4r ~ 10 to 16 nm along
the axes. This is a sharp change of a compared for example to SNOL.>"*" Figure 2-12g also
shows another aspect that was neglected up until now, which is that the overall shape of the
converted volume calculated by the modelling differs from the observed line shapes in the sense
that the calculated shape is wider near the surface and narrower near the film, whereas
experimentally we see the opposite. This apparent collapse of the converted polymer is an effect
which was also observed and modelled for SNOL.*

At this point | note that the thermal conductivity of athin film is usually smaller than that of the
same material in the bulk. For 200 nm gold films, k may be reduced by a factor of about 0.5
compared to the bulk value,® which, according to this model, results in changes of d, of less

than 0.1 nm and changes in d, of no more than 0.2 nm for Ty, between 250 and 450°C.

It is clear that the model cannot be expected to quantitatively reproduce the full spectrum of
experimental results. There are too many effects that have not been considered, most

importantly

a) thewriting speed dependent penetration depth and hence contact width that is caused by
the viscoelasticity of the polymer, and
b) the observed difference between pre-rinse indentation width and post-rinse feature

size®
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c) It is also not clear how the shrinking of the polymer during conversion (due to the
elimination of the thiophene group as described earlier) influences the structure during

the writing process.

Note that the effect of postbaking on the other hand has been investigated for PPV structures™®
and it was shown® that whereas the height of the features written by SThL shrinks by about
30%, the width (FWHM) is almost unchanged.

2.4.3.3 Influence of Thermal Contact Resistance

| further investigated the influence of a thermal contact resistance at the various interfaces
(substratef/interlayer, polymer/interlayer and probe/polymer) to test the robustness of the results.
To that end, | changed the boundary condition at the interfaces from ‘continuity’ to 'thin
thermally resistive layer' with the thermal conductivity of air (ky;) and thickness t,,. By doing
that, a finite Rer effectively originates from an infinitely thin layer leading to asharp drop in T
at the interface. The advantage of this technique is not only its simplicity, it also preserves the

original meanings of d, and d; as the geometry does not change.

ks iS Set to the function given by the Comsol material library: ks, = (-2.2758-10° + (T/K) -
1.1548-10" + (T/K)? - (-7.90253)-10°® + (T/K)3 - 4.11703-10" + (T/K)* - (-7.4386)-10™)
W mtK™,

In Figure 2-13, | plotted d, and d, as a function of t,, for Ty, = 350 °C. We find that an imperfect
contact between the interlayer and the underlying glass substrate (see Figure 2-13a) has no
influence as long as the effective air-gap is thinner than ~20 nm. Note that fused silica
substrates do not feature a substrate/interlayer interface as the material is the same for substrate
and interlayer. Nevertheless, for the sake of completion the additional Reg was modelled also in

this case.

A thin air-layer between polymer and interlayer (see Figure 2-13b) has a similar influence on d,
as a thin air-layer between glass and interlayer, but its influence on d; is larger. Note, however,
that one expects the effective air-gap to be small for al interlayers because first, surface
roughnesses are in the nm range and second, the precursor polymer (PXT) solution is a liquid

during its deposition (via spin-coating) and is hence expected to effectively fill any gaps.
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Figure 2-13. Diagrams showing the influence of the addition of an air-layer between (a) the
glass/interlayer interface, (b) the polymer/interlayer interface, and (c) the tip/polymer interface
for a tip temperature (Typ) of 350 °C. Values of d, (black, filled symbols) and values of d; (red,
open symbols) are given as a function of the thickness of the thin thermally resistive air-layer
(tar). Figure taken from the supplementary information from Tolk et al..”’

The strongest influence was found to be caused by an imperfect contact between the tip of the
probe and the polymer (see Figure 2-13c). However, the influence is still relatively small. For
an air-gap of for example 10 nm, an already overestimated value due to the good contact
between tip and polymer achieved by the AFM feedback mechanism, d, only changes up to 1
nm and d, changes up to 3 nm. At t4, larger than ~ 300 nm (an obviously unrealistically large
value), the probe cannot convert material inside the polymer film anymore so that d, approaches
32 nm, i.e. the polymer film thickness (35 nm) subtracted by the probe penetration depth (3 nm
at r = 0). At this point, d. approaches an interlayer-independent value of -39 nm.
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2.4.3.4 Influence of Contact Width

Another uncertainty in the model is the assumed contact width between the tip of the probe and

the polymer (2 rg). The uncertainty stems from the several effects, such as

o thewriting-speed dependent penetration depth and hence contact width,
e theobserved reduction in feature size upon development,® and

e lateral shrinking during the post-baking step.®

Most of the modelling is done with a penetration depth of 3 nm and hence a contact width of
245 nm, which seems an overestimation of 2 ry for the smallest, observed features.

The effect of reducing the contact width (2 rg) on d, and d; is shown in Figure 2-14a for a
350 °C hot probe. Upon reducing 2 ro, the temperature at any point will be reduced at thermal
equilibrium because thereis less heat-flow available. This then of course leads to an increase of
d, and areduction of d.. We also seethat at very small contact widths (smaller than the polymer
film thickness, here 35 nm), lateral heat diffusion starts to dominate and d, becomes almost

independent of the type of interlayer.

(a) (b)
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Figure 2-14. (a) d, and d;, as a function of the probe-polymer contact width for a constant tip-
temperature (Typ) of 350 °C. (b) d, and d; as a function of Ty, for different contact widths (30,
60, 120 and 245 nm) in case of indium-tin oxide (ITO) as the interlayer. Figure taken from the
supplementary information from Tolk et al..”

The effect of the tip temperature (T,) on d, and d; for different contact widths in case of ITO as
the interlayer is shown in Figure 2-14b. We see again that d, grows for smaller contact widths,
further supporting the notion that one would expect a region of unconverted polymer near the

interlayer.
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2.5 Summary and Outlook

In summary, | have shown that SThL of a PPV precursor is possible on a range of substrates
covering thermal conductivities from that of fused silica (k=1.4W m*K™) to that of gold
(k=317 W m*K™). | conducted experiments on ITO which is the most common transparent
electrode used today in organic devices such as organic LEDs, transistors and solar cells. The
shapes of structures written on ITO were qualitatively similar with the exception observable at
high temperatures (> 400 °C) where new effects lead to very wide and flat structures. I achieved
a maximum resolution (FWHM) of 36 nm on a ~35 nm thick precursor film on ITO which is
amost identical to the published resolution of 37 nm on a 40 nm precursor film on fused
silica® First experiments on gold have shown similar resolutions showing that the highest
resolutions seem to be rather independent of the thermal conductivity of the underlying
substrate.

Finite element simulations indicate that the converted volume can be several nm away from the
substrate without the features losing the ability to stick to the substrate during development.
This allowed gap of unconverted polymer is the reason why SThL can also work on very high
thermal conductivity substrates such as gold. | have given several effects that may lead to such a
d, > O: interlayer surface roughness, polymer chain entanglement and el ectrostatic interaction of

the ITO with theinterlayer, especially ITO.

The model further predicts that the lateral resolution is expected to deteriorate only dlightly
upon increasing k due to the rising substrate dependent minimum probe temperature. The
difference of the FWHM between fused silica and gold is predicted to be only 12 nm (for the
standard geometry).

The combined experimental and modelling work shows that SThL is a versatile technique that
can achieve nanoscale resolutions on a wide range of substrates to be used in a range of

e*>* and general photoresist patterning.* One should not forget

applications such as data-storag
that the requirements for the polymer to be converted may not be as high, because there are
various thermally activated cross-linkers (with reasonably low conversion temperatures) that
can be added to the functional polymer; the crosslinking material could then be patterned and,
similar to my approach, result in local insolubility. In order to achieve very high resolutions, a
high stiffness (large elasticity modulus) is desired to avoid sinking of the probe into the polymer

layer.

On another note, the fact that a considerably higher temperature was necessary on ITO
compared to fused silica points away from the hypothesis that a catalyst may be formed at the

precursor-substrate interface promoting the conversion of the PPV precursor.*
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Going back to the idea of using SThL to produce high efficiency solar cells, we are indeed very
close to the optimal feature size of about 20 nm (2x the exciton diffusion length for typical
conjugated polymers). One should not forget that for my experiment rather huge Wollaston wire
probes were used with a radius of curvature of 2.5 pym. State-of-the-art resistive probes made
out of Si have a radius of curvature of ~5nm (e.g. probes from Anasys Instruments — CA,
USA), i.e. three orders of magnitude smaller. The application of such fine probes is likely to
result in much smaller structures with higher line densities without the occurrence of re-
flattening aready partially converted structures. It would also result in lesser requirements
regarding the stiffness of the polymer as probe penetration would be less detrimental to the final
resolution. In the future one could also try to cool the substrate to avoid overall conversion of
the polymer layer, an effect that becomes non-negligible at very high line densities. Of course a
single probe would never be used to actually pattern the active layer of a solar cell due to the
very low throughput. However, we will see how fast technology advances and if or when we
may see arrays of a million AFM tips; arrays of 32x32 = 1024 AFM tips have already been
produced in 2002.%
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3.1 Motivation

In organic light emitting diodes (OLEDSs), the idea of using phosphorescent emitters is rather
evident: Because general spin statistics states that only 25% of the generated excitons are
singlets® and 75% are triplets, and because triplet excitons do not decay radiatively in a
fluorescent host due to the forbidden intersystem crossing (1SC), the inclusion of a material that
allows light emission from a triplet state is a means to improve the external quantum efficiency
potentially by a factor of 4.

In organic photovoltaic cells on the other hand, the idea of using triplet emitters is not much
explored despite two advantages of generating predominantly triplet excitons instead of singlet
excitons: Thefirst advantage is that triplet excitons have been frequently reported to have larger
diffusion lengths than singlet exciton®”® due to their longer lifetime. The second advantage is
that direct back-electron transfer (i.e. geminate recombination) on a fluorescent host from the
triplet charge-transfer (CT) state to the (singlet) ground state is spin-forbidden.

In the following | will present some more background regarding triplet excitons, inter-system
crossing and other phenomena so that the two advantages mentioned above can be better
understood. | will then show possible methods to achieve a higher ratio of triplet excitons in the
active layer of SCsin section 3.2.9.3 on page 91.
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3.2 Theoretical Background

In this section | will complement the background given in section 1.5 on page 31 by giving
further information on singlet and triplet excitons and related phenomena such as the
importance of spin-orbit coupling for intersystem-crossing and the heavy-atom effect. | will also
deduce the transition rules for energy transfer from Fermi's Golden rule and | will mention a
few trends of important properties in conjugated polymers such as the magnitude of the
exchange energy or the relation between the charge-transfer energy and the effective band gap
and the open-circuit voltage. After the basics are understood | will explain the advantages and
disadvantages of triplet excitons in OSCs and | will explain two approaches attempted in this

work to increase the ratio of triplet excitons.

3.2.1 Singlet and Triplet Excitons

A singlet state is a state with a spin-multiplicity (2S+ 1) of 1 and atriplet state is a state with a
spin-multiplicity of 3. Here Sisthetotal spin-quantum number of the state. The electron and the
hole of an exciton can be thought of having a spin s= %. Therefore, by applying general
guantum mechanical angular momentum algebra, the overall spin S of an exciton can either be
S=0(*-%) or S=1 (*2+%), giving riseto asinglet (2S+1=1) or triplet (2S+ 1 = 3) state,
respectively.

The ground state (&) is always a singlet state with paired electron spins because Pauli's
Exclusion Principle forbids two electrons with the same spin to occupy the same (lowest
energy) orbital. For higher lying states (S, and T,, with n > 1), both singlet and triplet states are
possible. Triplet states are always slightly stronger bound than singlet states with the energy
difference being the quantum mechanical exchange energy (see page 86). What is important to
know at this point is that optical transitions from any excited triplet state to the singlet ground
state (or vice versa) are ‘forbidden’ without any spin-orbit coupling (see page 87). Forbidden
means that in the dipole approximation the matrix element for this transition is zero, i.e. the
transition is impossible. Due to the forbidden transition, triplet excitons have a longer lifetime

than singlet excitons, which can lead to greater diffusion lengths.

3.2.2 Triplet-Triplet Annihilation

Excited states can interact with each other. Singlet states may for example interact with each

other to create a higher lying singlet state, they may interact with charges leading to charge
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separation, a singlet state may split into two triplet states if the triplet level is low enough
(singlet fission) etc.. Also triplet states may interact with each other. One important mechanism
that plays a huge role in phosphorescent OLEDSs is triplet-triplet annihilation (TTA). It is also
proposed as a way of improving SCs by harvesting lower energy photons. As the term suggests,
two triplet excitons annihilate each other during TTA. TTA could be treated as a special case of
Dexter energy transfer, during which both donor (D) and acceptor (A) are in an excited state

before the energy transfer:

» D +A S ID A

3.2.3 Transition Rules

In the following | will deduce the transition rules governing Férster and Dexter transfer. The
transition rules are deduced from Fermi's Golden Rule, which calculates the transition rates k;_¢

fromaninitial state |i) to a continuum of final state |f) as

21
kie = 7|(f|H'|i)|2 Pt Eq. 3-1

where H' is the perturbing Hamiltonian and ps is the density of final states. In our case, H'
includes the electrostatic interaction of all electrons and nuclei.

Due the Pauli principle for electrons, the overall wave functions ¥ must aways be
antisymmetric due to dectron exchange and hence satisfy ¥(1,2) = —y(2,1), where'1' and '2'
indicate electron 1 and electron 2. If we now rewrite the initial and final states (y; and yy) as
proper antisymmetric wave functions using the donor and acceptor wave functions (yp p~ and

Ya a+), wefind that

B = elH ) Eq. 3-2
= i 1 2) — 2 D]|H' i 1 2) — 2 1 Eqg. 3-3
= | 5o (D 2) = Yo e DI H'| 5 o (DYa(2) = ¥ @a(D] il
= B¢ — P , where Eq. 3-4

pe = [ [vorWa@ 1 90w Diryar,
Eq. 3-5

is the Coulomb integral and
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pe = [ [ v 0a@ B 9o @ Dinsdr,
Eq. 3-6

is the exchange integral.

The integration in the last two equations happens over al coordinates (z), i.e. over the spatial
coordinates (r = {x, Yy, z}) and the spin ().

Theintegral
= fcindicates the probability for Forster transfer and
= feindicates the probability for Dexter transfer.

The wave functions ¥ above contain not only the spatial parts ¢(x, y, z) but also the spin wave

functions o(w). We may therefore split 1 (i) for eectroni into

lp(l) = ¢(xi' yi'Zi) U(wi) . Eq 3-7

Note that the spin of an eectron (or hole) i is either

»  up:o(w;) = a(w;), or

= down: o(w;) = B(w;)

and that the spin functions are orthogonal :
| atwoatde, = [ pop@ide =1 Eq 38

| aop@d, = [ podetwdo; =0 Eq 39

Note that we can use here the spin of the single dectrons (+ ¥z as opposed the overall spin on
donor/acceptor, which is either O (singlet) or 1 (triplet)) as we are only concerned with the
"active" orbitals.

We may now rewrite the Coulomb and exchange integrals:
b = [ [ 9o 9a@ B o ua @drydr,
= [ [ o0 0s@ H po0px @ariar, »

Eq. 3-10
‘ f o1 (@1)0p (1) doy f oA (@) (@03)dwy
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b = | [ o U@ 1 o @ Dty

= [ [ 0w ' oD a@anar, »
Eq. 3-11
[ on@non @ndar [ ap(@)ont@)dw,

We are now ready to find the transition rules by considering the orthogonality of the spin
functions.

3.2.3.1 Transition Rules for Férster Transfer

Forster transfer may happen if the Coulomb integral (8.) does not vanish. If we look at the
second term in B¢ in Eq. 3-10, we see that it must be ensured that [ op+(w;)op(w,)dw, #
0 and [ oa(w,)o-(w,)dw, # 0 . According to Eq. 3-8 and Eqg. 3-9 we find the following

rule

During Forster transfer, both, the donor and the acceptor, must each conserve their spin.

As aresult the following transitions are allowed:

a D+A->D+A
Thisisthe singlet-singlet transition.

b) (‘D" +3°A —'D+°%A"
Note that this singlet to triplet transition requires A to be in a triplet state before the
energy transfer takes place. In almost all cases the (ground state), however, A will bein

asinglet state (seetransition (e)) and hencethis is arather theoretical transition.

Thefollowing transitions are forbidden:

o D+ A-D+A
This triplet to singlet transition is forbidden according to the transition rule for FRET
stated above. However, this transition may still be observed because °D" has a long
lifetime and although the FRET rate is very low, it may still be larger than the
relaxation rate from °D" — 'D. This process may actually be very efficient if the donor
is phosphorescent.*

d D' +'A->"D+°A
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e D +'A->D+A
Thisisthetriplet to triplet transition.

3.2.3.2 Transition Rules for Dexter Transfer

Dexter transfer may happen if the exchange integral (Sg) does not vanish. If we look at the
second term in fg in Eq. 3-11, we see that it must be ensured that [ op-(w;)oa(w1)dw, #
0 and [ op(w;)oa(w,)dw, # 0. Applying again the spin orthogonalities, we find that the spin
of the ground state of the acceptor before transfer and the donor after transfer must be the same
and the spin of the excited state of donor before transfer and acceptor after transfer must be the
same. As a consequence, the overall spin of the donor-acceptor pair must be conserved. We may
hence imagine the Dexter transfer as an eectron exchange process between the ground states

and the excited states, during which

the spin of the exchanged e ectrons must be conserved.

In order to find the alowed transitions, one needs to picture the spins of the participating
electronsin the HOMO and LUMO orbitals of donor and acceptor (see for example Figure 3-1).

Thefollowing transitions are allowed:

f) °D" +'A— 'D+3A’ (sameas (e)
Thetriplet to triplet transition can only be provided by Dexter transfer.
A A

A ‘s [ s

! [ Z [ v [
A p A

*

Figure 3-1. Visualisation of spins for thetransition D" + 'A — 'D + 3A°

g9 D +'A—'D+'A" (sameas(a))
Although this singlet to singlet transition is allowed, Forster transfer usually dominates

this transition due to its longer-ranged nature.
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3.2.3.3 Wigner's Spin Conservation Rule

Wigner's spin conservation rule'®

states that the overall spin of a system must be conserved. It
covers any energy transfer process (Forster and Dexter transfer). Note that Wigner's spin
conservation rule is fulfilled with the transition rules obtained above, and is specified by
additional restrictions for Forster transfer (conservation of the donor spin and acceptor spin) and

Dexter transfer (conservation of the spin of the exchanged electrons).

3.2.4 Exchange Energy

As mentioned above, the exchange energy is the difference between singlet and triplet excitons.
It fundamentally stems from quantum mechanics, or more precisely the Pauli principle, where it
is shown that for indistinguishable particles, the overall wave function must be either symmetric
(bosons) or anti-symmetric (fermions, eg. eectrons) upon the exchange of those particles,
leading to a new term in the expectation value of the energy. A requirement for exchange

energy istherefore an orbital overlap of the participating particles.

The singlet-triplet energy splitting on the same mol ecul e can be considerable with values around
101
)

0.7 eV (for polymers™) whereas charge transfer states, where electron and hole are located on

different molecules, usually do not.

3.2.5 Charge Transfer State

A charge-transfer (CT) complex is an association of two or more molecules (typically a donor
and an acceptor molecule), or of different parts of one very large molecule, in which a fraction
of electronic charge is transferred between the molecular entities. The resulting eectrostatic

attraction provides a stabilizing force for the molecular complex.

Within the field of polymer SCs, the charge transfer state (CT tate) is of great importance. The
CT dtateis the state that is occupied after an exciton reaches the type |1 heterojunction, leading
to an interfacial charge pair residing at the polymer/fullerene interface, and before the CT-state
dissociates to obtain two separate (free) charges.'®” CT states are basically non-radiative
exciplexes, i.e. excited states where the electrons and holes are located on different molecules,
but with a high probability to lead to charge separation. The energy of the CT stateis lower than
the energy gap on either material but higher than the energy of the system with completely
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separated (free) charges. Note that despite the energy of the charge-separated state being lower,
thereis an activation barrier that must be crossed first due to the Coulomb attraction.

The precise process of how the Coulomb attraction in a CT state is overcome to create long-
range charge separation is currently under discussion. One theory is that charge separation
happens efficiently if the electronically excited CT state forms largely delocalised band states
which can overlap with the HOMO/LUMO orbitals of the donor/acceptor.'®

The CT state gives the maximum possible open circuit voltage (e Voc < Ecr). Typical values for
the difference between the CT state and the energy-gap and for the difference between e Vo
and Ecr in conjugated polymers are given in section 3.2.8.

3.2.6 Polarons and Polaron Pairs

A polaron is a charged quasiparticle that is accompanied by a polarisation field that disturbs the
surrounding molecules in a way that lowers its energy. In the context of organic
semiconductors, this means that polarons are charges that occupy energy levels within the band
gap, i.e dther dightly below the lowest unoccupied molecular orbital (LUMO) or dlightly
above the highest unoccupied molecular orbital (HOMO).

Both, excitons and polaron-pairs are in a way coulombically bound e ectron-hole pairs, but the

binding energy in polaron-pairsis lower and they are more spatially separated.

3.2.7 Spin-orbit Coupling, Intersystem Crossing and the External Heavy-Atom
Effect

Spin-orbit coupling is the quantum mechanically explained phenomenon where electron spin
interacts with angular momentum. A basic rule is that the higher the spin-orbit coupling, the
higher the probability of intersystem crossing (1SC), i.e. the chance of a triplet state converting
into a singlet state (or vice versa). To achieve efficient ISC, it is not only good to have many
unpaired eectrons as in paramagnetic materials, but the geometry plays a huge role. Certain
symmetries can completely negate any spin-orbit coupling, which is why ISC is often enhanced
at defect sites where the symmetry of the crystal lattice is broken.

Heavy metal atoms usually show high spin-orbit coupling (— heavy atom effect) which is why
complexes with Pd (atomic number Z = 46), Ir (Z=77) and Pt (Z = 78) are so successfully used

in triplet emitting materials. However, also lighter atoms such as S (Z = 16), which is part of
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the thiophene group, show considerable coupling constants and hence allow ISC to occur to

some degree.

An open theoretical question is the range of the external (or 'remote’) heavy-atom effect. The
phenomenon of the "collisional perturbation of spin-orbit coupling and the mechanism of
fluorescence quenching” was described by Kasha in 1952."* There he assumed that the degree
of 1SC from the singlet to the triplet state of the perturbed molecule depends on the degree of
penetration of the m-electron into the electric field of the nucleus of the perturbing atom and the
strength of the electric field. The former requires orbital overlap and the latter is increased by a

high atomic number.

However, "a more complex indirect interaction is required to describe the RHAE (remote heavy
atom effect)-enhanced intersystem crossing rate. It is unambiguously established that the
covalent through-bond framework alone fails to describe the trends in the RHAE effect either at
the rate constant level [...] or at the matrix element level [...] Hence, this indirect coupling must

involve dominant noncovalent contributions as well."'%

S105— 107

It was later shown in a number of paper that the heavy-atom effect seems to be efficient

over alonger distance, for example when the chromophore and the heavy atom are separated by

two C-C o-bonds'® or even by three amino acid residues."”

Mathematical descriptions can be
found in the literature.’®*®® The main finding from these descriptions is that the efficiency of

the heavy-atom effect also depends on a resonance-energy term.

3.2.8 Trends of Energy Levels and other Properties in Conjugated Polymers

There are a few interesting trends connected with the energy levels of the singlet and triplet
states that have been reported in the literature. First of all, spin-orbit coupling is considered
weak in general for conjugated polymers, especially when one is taking into account the high

non-radiative decay rate of the triplet state."°

This is why phosphorescence in conjugated
polymers is usually very hard to detect and cooling is necessary to reduce the non-radiative

decay rate.

It was also found that the energy gap law could be applied to the T;-S; transition in conjugated
polymers, which means that the lower the energy difference between T, and S, the higher the

non-radiative decay rate of this transition.™

The exchange energy itsdlf was studied in more detail and it was found that for a number of

different conjugated polymers, the exchange energy was rather constant around 0.7 eV.'% It is
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widely accepted that the lower the energy difference between a singlet and its closest triplet
state, the higher the ISC rate.™™*

Studies™ on a large number of polymers have shown some important trends regarding the

chargetransfer state energy Ecr (see Figure 3-2):

o  Ecr—|Eiomo(D) — ELumo(A)| = 0.3 eV. Ecr isthe energy of the charge-transfer state.

e Ecr—eVoc=05¢eV.

e The CT date needs to be at least 0.1 eV below the S; state in order to achieve photo-
induced electron transfer (PET).

o If theT, stateis morethan 0.1 eV below the CT state, the triplet state will be occupied
heavily in favour of the CT state.

-AGigr < 0.1 eV prevents CRT
-AGs1 > 0.1 eV enables PET

Energy [eV]

|EHOMO(D)_ELUMO(A)|

_______________ —

oc

Figure 3-2. Relation of the energy of the CT state with respect to the donor band gap Eg, € Vc,
and |Exomo(D) - ELumo(A)|. Eg is the donor band gap |Exomo(D) - ELumo(D)], CT means charge
transfer and CRT means charge recombination to the triplet. Further explanations arein the text.
I mage reprinted with permission from Veldman et al., ™ Copyright (2009) WILEY-VCH Verlag
GmbH & Co. KGaA, Weinheim.

3.2.9 Generating Triplet Exciton in Polymer Solar Cells - Advantages,
Disadvantages and Methods

3.2.9.1 Advantages of Converting Singlet to Triplet Excitons

In the motivation section of this chapter | talked about the advantages of generating triplet
excitons, which exhibit the potentially longer diffusion lengths and the reduced geminate

recombination. Now that the background has been given, | will eaborate on them:
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Triplet excitons have been reported to have larger diffusion lengths than singlet excitons.®”*®

Thisis because in a fluorescent host with little intersystem crossing, any generated triplet has a
strongly forbidden radiative decay, which leads to a strong increase of the lifetime (z) compared
to singlet excitons (up to ms™ for triplets compared to ns for singlets). Even considering that
the Dexter transfer, which governs the triplet-triplet energy transfer, is not as efficient as the
Forster transfer, which dominates the singlet-singlet energy transfer, triplets often have larger
exciton diffusion lengths (um ranges for triplet excitons conjugated polymer have been
reported®™*® compared to ~ 10 nm commonly found for singlet excitons). The connection
between lifetime and diffusion length (L) is given by the diffusivity (D):

L=vVDr. Eq. 3-12

D is determined by the efficiency of the energy transfer mechanism and by the degree of
conjugation (if the exciton is delocalised over a larger area of the molecule, naturally the
effective diffusion length is increased). As the effective conjugation length is the same for
singlet and triplet excitons, the differencein D for singlets and triplets will be determined by the
difference between the efficiency of the Forster- and Dexter transfer.

Assuming we created more triplets and they had a larger diffusion length, we could create SCs
with larger domains than typical for bulk-heterojunction SCs and hence improve the charge
transport while maintaining the good exciton dissociation ability of morphologies with smaller
domains. As a limiting case, even highly efficient bilayer cells can be envisaged if the average

exciton diffusion length approaches typical film thicknesses (~ 100 nm).

The second advantage of triplet excitons is illustrated in Figure 1 of Guo et al.."* We imagine
that the spin-orbit coupling is generally low within our material but that we managed to generate
atriplet exciton. After the triplet exciton (°D”) reaches the interface, it transfers an dectron to
the acceptor leading to a charge transfer (CT) state (3[D**, A~*]). Now the CT state can either
dissociate into free separated charges (which is the desired process), or undergo intersystem
crossing (ISC) into a singlet excited state, from where it could recombine or generate free
charges. The main difference compared to singlet excitons is that direct back electron transfer,
i.e. geminate recombination, of the triplet CT state is spin-forbidden.™ This is an important
aspect as it has been shown that at least for polymer/polymer SCs, geminate recombination is a
key loss mechanism.™***® |n polymer-fullerene SCs geminate recombination occurs as well, but

119-121

it is less clear if geminate recombination or bimolecular recombination™*** dominates.
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3.2.9.2 Disadvantages of Converting Singlet to Triplet Excitons

In the following | will discuss the potential disadvantages of increasing the ratio of triplet
excitons.

First, due to the energy difference between singlet and triplet excitons (the exchange energy),
more energy of theinitially absorbed photon islost. If thetriplet level on the donor is still above
(higher in energy) the CT level, no problem arises, but if the triplet level is below the CT leve,
the CT state will not be sufficiently occupied and hence charge separation will not occur and the
power conversion efficiency of the SC will deteriorate. (Note that the CT state should be
virtually identical for singlet and triplet CT states for the same donor-acceptor system due to the
low exchange energy of CT dates). This loss in photon energy due to singlet-to-triplet
conversion is mainly a problem if one aims for “ultimate’ performances as the ultimate SC will
have a CT state just (~ 0.1 eV) below the singlet level on the donor to use the maximum of the
photon’s energy but while assuring quick transfer of the singlet exciton to the CT state. In such
a configuration, an ISC to the triplet state will result in the triplet level being beow the CT
level.

Furthermore, it is not clear whether the exciton diffusion length of triplet excitons is indeed
much larger than for singlet excitons. The problem is that despite the undoubtedly longer life
time of triplets, the diffusivity is sometimes so much reduced that the diffusion length is not

improved.”

Another aspect to keep in mind is that, assuming one does have increased spin-orbit coupling
and hence increased 1SC (S, — Ty) in the host, this would not only increase the number of
triplet excitons, but it would also increase the ISC rate from the triplet state (T,) to the ground
state (S), i.e it would reduce the triplet exciton's lifetime and diffusion length. However, to
which degree this would happen is not clear as rates vary over many orders of magnitudes
depending on which transition one is looking at. As an example, highly efficient triplet emitters
such as Ir(ppy)s have an ISC rate’® from S; — T; below (100 fs)™, yet the radiative transitions
from the triplet to the singlet ground states are in the pis range, and hence still three orders of

magnitude larger than on purely fluorescent materials.

3.2.9.3 Methods of Converting Singlet to Triplet Excitons

In order to convert singlet to triplet excitons in the SC's active layer, two methods can be

envisaged.
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1. Oneidea is to convert the singlets from the host via transferring them to the guest, where
they are converted into triplet excitons due to the strong intersystem-crossing (ISC) rate,
with subsequent back-triplet-exciton-transfer to the host."*®**" This approach puts strong
constraints on the energy levels of the material (see Figure 3-3a). One effect that helps to
achieve such an energy level configuration is that phosphorescent guests with high spin-
orbit coupling usually have rather small exchange energies (E(Sy) - E(T1)). Note that the
first step may happen either via Forster transfer or via charge transfer of electron and hole
from the host to the guest.

2. The other approach relies on the magnetic moment of the phosphorescent guest molecule to
induce sufficient spin-orbit coupling in the host polymer so that the ISC rate is increased
directly on the host without the need of exciton transfer between host and guest (see Figure
3-3b). (This approach is similar to adding directly heavy metal atoms to the donor polymer
or to the blend. The problem, however, is that these atoms often aggregate together). As
mentioned earlier, the range of the external heavy-atom effect is not completely clear.

128,129

However, thereare claims that this approach can work in OSCs.

Both approaches have been used in this work.

(@) (b)
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! L ISC
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Host Guest Host

Figure 3-3. Possible strategies to increase the number of triplet excitons. (a) Exciton energy
diagram illustrating the intersystem crossing (ISC) on the guest. (b) Direct 1SC on the host,
induced by the guest.
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3.3 Characterisation Techniques

Aside from measurements of the absorption by an absorption spectrometer, the thickness via a
profilometer and the photoluminescence (PL) via a time correlated single photon counter
(TSCPC), the most important SC specific measurement techniques are determining the 1V curve
and the incident photon to current efficiency (IPCE) spectrum. Other important methods are
those that observe the morphology of the active layer. Although not the focus of this study, the
morphology of the active layer greatly alters the performance of a SC, especially in a bulk
heterojunction architecture: the phase separation, domain sizes and crystallization influence
exciton dissociation and charge transport. Techniques that are able to help in uncovering the
morphology are, among others, atomic force microscopy (AFM), transmission electron
microscopy (TEM), confocal microscopy, micro-Raman spectroscopy, as well as scattering
techniques such as X-ray diffraction. To determine the mobility, | fabricated field-effect
transistors (FETS) of blends of the materials.

3.3.1 ]V Characteristics

ThelV curve (or JV curve, wherel isthe current, Jis the current density and V is the voltage)
of a SC is measured under certain standard conditions. These are a photon flux of 1000 W/m?, a
temperature of 25°C and an AML5 illumination. The air-mass coefficient (AM) of 1.5
corresponds to a solar zenith angle of 48.2 ° which has been chosen to represent roughly the
yearly average at mid-latitudes. The measurements were done in rough vacuum (10 mbar)
under a class AAA solar simulator from Oriel which uses a Xenon lamp and a special filter to

generate the necessary spectrum.

The most important parameter which can be determined by obtaining the IV curve is the energy

(or power) conversion efficiency #:

_ Pout U V)max _ FFIsc Voc

= = = Eq. 3-13
Plight  Piignt Plight q

Pout @nd Piigne @re the maximum output power and the incoming light power, Isc is the short-
circuit current, Voc is the open-circuit voltage and FF is the fill factor. The meanings of sz, Voc
and (I V)ma are shown in Figure 3-4. The FF, as it can be deduced from above, can be expressed
as

V)i

FF = Eq. 3-14

ISC VOC
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and can be interpreted as a measure of how rectangular the characteristic is in the 2™ quadrant.
Within the framework of the equivalent circuit for a SC (see Figure 3-5), the FF is strongly
influenced by the parasitic series and shunt resistance (Rs and Rsy). The series resistance
(ideally zero) is mainly increased by contact resistances and low mobilities within the solar cell.
A shunt resistance (idedlly infinite) is decreased due to conduction through filaments or defect
states. Note that processes such as an dectric field dependent exciton dissociation or charge
carrier recombination will also look like the introduction of a parasitic resistance. The formula

for the JV characteristics according to the equivalent SC circuit is

JRs =V

RSH

J=JL—Joexp [% -] Rs)] + ) Eq. 3-15

where J, is the current generated by the SC, Jo is the dark saturation current, n is the diode
ideality factor, k is the Boltzmann constant and T is the temperature. From the formula above

we can understand the influence of a series and shunt resistance on the JV characteristics:

e Increasing Rs will at first reduce the slope at high voltages (near Voc). Increasing Rs by
large amounts will also reduce Jsc.
o Decreasing Rsy by small amounts will at first increase the slope near V = 0. Decreasing

it further will also reduce Voc. Dragtically reducing Rsy will even reduce Jsc.

From a molecular point of view, the FF is influenced by how easily a charge can be extracted
from the active layer. This again is influenced by many factors such as the morphology,** the

130,131

interface between the electrodes and the active layer, the mobility and the non-geminate

recombination of the free charge carriers.™®

The origin of Voc is not completely clear. In single layer devices, Voc can be estimated by the
difference of the electrode work function according to the metal-insulator-metal (MIM)
model.”® In bilayer heterojunctions, this is still true although a build-up of charge at the
heterojunction has to be taken into account as wel.** In bulk-heterojunction devices on the
other hand, Voc depend strongly on the energy levels of the participating materials if the
contacts are ohmic. An upper limit for Voc is the difference between the LUMO energy of the
electron acceptor and the HOMO energy of the electron donor. For non-ohmic contacts, the

work-function difference is a good indicator again for Voc.™
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Figure 3-4. Typical 1V curve of a photovoltaic cell. The adopted convention is to show the
important part in the 2" quadrant. The grey rectangle shows the product of | and V at the
maximum power point. The more the rectangle fills the area above the curve in the 2™ quadrant,
the higher is the FF. Also shown are the short-circuit current (Jsc), i.e. the current at zero
voltage, and the open-circuit voltage (Voc), i.e. the voltage at zero current.
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Figure 3-5. Equivalent circuit of a SC including the series resistance (Rs) and shunt resistance
(Rsh)-

3.3.2 [IPCE Spectrum

The IPCE spectrum stands for the

incident photon to current efficiency spectrum, sometimes also referred to as

incident photon conversion efficiency spectrum, or

incident photon to current conversion efficiency spectrum, or

EQE (external quantum efficiency) spectrum.

The IPCE gives the number of charges that run through the external circuit as a function of
wavelength.

Ncharge _ 1240 ISC

IPCE = = ,
Nphoton (/1/nm) Pin

Eq. 3-16
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where |sc is the short-circuit current, 2 is the wavelength and P, is the power of the incoming
(monochromatic) photons. Note that an IPCE of 100 % means that every photon generates both,
an electron and a hole, within the active layer and that both charge carriers reach their respective
electrodes.

The IPCE spectra in this work were measured at room temperature in rough vacuum using a

home-built apparatus containing a Xenon lamp and a monochromator from Bentham.

3.3.3 Mobility

The mobility (1) of a material is a measure of how easily charges are transported in a material.
The drift velocity (vy) is related to the mobility and the applied electrical field (E): vq= 1 E. The
mobilities are different for dectron and holes in a semiconductor and are (at least in the area of
inorganic semiconductors) often connected to the effective mass of the charge carrier which is
again influenced by the band diagram (E(k), where k is the wave-vector). The mobility is not to
be confused with the conductivity, which is a quantity that is also influenced by the number of

charges taking part in the conduction.

The mobilities were determined by fabricating field-effect transistors (FETS), whaose structures
are shown in Figure 3-6. The FETs have a bottom contact architecture where gold is evaporated
onto a SI/SIOx wafer to define drain and source. The first step is to spin-coat
hexamethyldisilazane, HDMS, onto the substrate (mainly to improve the adhesion of the active
layer). The active layer is then spin-coated on top and contacted with a probe station in a glove
box. The mobility was extracted by applying a drain voltage that drives the transistor in
saturation regime (for a range of gate voltages) and taking the trans-characteristics, i.e. the
drain-source current (Ips) as a function of the gate voltage (Vss). The slope of the square root of

Ips is then proportional to the square root of the mobility:

w
Ips = T C (Vs — Vo)?, Eqg. 3-17

where W is the width of the channel, L its length, C the capacitance per area and V, the zero-
voltage which can also be calculated by fitting a linear function to the square root of Ips. and

measuring its intercept with Ips = 0.
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Gate (n++ Si)

Figure 3-6. Structure of field-effect transistors (FETS) used to determine charge carrier
mobilities. The substrates are bought from the Faunhofer Institut Photonische Mikrosysteme,
Dresden, Germany. It is a bottom gate structure, where the 675 + 40 um thick gate consists of
heavily doped Si and the gate dielectric is the 230 = 10 nm SiO layer on top. Source and drain
contacts consist of a 30 nm gold layer with a 10 nm high work function adhesion layer (ITO).
There are 16 transistors on one substrate. They all have the same width of 10 mm but have
variable lengths of 2.5, 5, 10 and 20 um (4 transistors each). The active layer in my experiments
was a blend consisting of a P3HT, PCsBM and the triplet emitter E. Contact with the source
and drain electrodes is facilitated simply via pushing with a wire through the active layer onto
the electrodes.

3.3.4 Modelling and Interpretation of Current-Voltage Characteristics

In the context of organic electronics, models for

e ohmic current,
e space-charge-limited current (SCLC) and
e SCLC with an exponential trap distribution

are often applied.****%®

Ohmic current can be described by
|4
]=qnua, Eqg. 3-18
where g is the e ectronic charge, V is the applied voltage, d the thickness of the active layer and

p the mobility. Ohmic current is often observed at low bias voltages, where injection is
inefficient and the number of charges inside the device lead to a negligible space charge.
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3.3.4.1 Space-Charge-Limited Current Model

The SCLC model assumes that carriers are injected ohmically (i.e. without an injection barrier)
and that the bottleneck of charge transport is the build-up of a space charge inside the device. In
the absence of traps, this |eads to the well-known Mott-Gurney law™*:

9 %
J=gquee o, Eq. 3-19

where gg &, is the dielectric permittivity.

3.3.4.2 Space-Charge-Limited Current Model Including Traps

If we assume an exponential distribution of traps which decreases with distance from the
HOMO, such as

H Enomo — E
H(E) = E—t exp (%) , Eq. 3-20
t t

where H(E) is the density of traps at energy E, H; is the total trap density (obtained by
integrating H(E) over E) and E; is the characteristic energy of the trap distribution, the resulting
current turns out to be a high power function of the voltage. More precisely, assuming the
overall trap density is much larger than the number of free carriers, that carrier diffusion is
negligible and that all the HOMO states are located at Eomo, the model predicts for one carrier

dominated transport:***4

Vm+1

J=K —— Eqg. 3-21

d2m+1

E
wherem = =t and
kT

K=q!

2m + 1)™m+! m
(@m+ 1) (EO Er m) , Eq. 3-22

-m N
U Ngomo (m+1)2m+1 Ht

where Nyomo is the HOMO effective density of states and H; is the total trap density. The trap

degeneracy is assumed to be 1.
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According to the SCLC model, one would actually expect

e ohmic behaviour in the low current bias regime (where the field generated by the few
injected carriersis negligible compared to the applied el ectrical field),

e trap-limited SCLC for higher applied bias and

e trap-free SCLC current for high bias voltages where all traps are filled and the number

of free charge carriersis considerably larger than the number of traps.

3.3.4.3 Device Simulation - Influence of Doping, Mobility and Traps and the JV Curves

The above presented space-charge-limited current gives a good idea of the general shape of
current-voltage (JV) characteristics taken in the dark. However, also when confronted with JV
curves obtained under illumination, one may want to distinguish effects such as doping,

mobility and traps, or at least predict the qualitative influence of each of them.

Dueto the lack of knowledge of the precise morphology, and the difficulty in applying it even if
known, macroscopic device simulations are typically done to investigate the influences of these

macroscopic device parameters.

3.3.4.3.1 Influence of Doping on Solar Cell Performance

Schafferhans et al.*** for example investigated the influence of hole doping and charge carrier
mobility on the SC performance. They used a macroscopic model that reies on the Poisson
equation, the continuity and drift-diffusion equation in one dimension, and a Langevin-type
bimolecular non-geminate recombination. The charge generation by light was assumed to create
free polarons (assuming 100% exciton dissociation into free charges) and the electron and hole

mobility was set to equal values and independent of the electrical field.

They found (see Figure 3-7a and b) that a stronger doping would mainly lead to a decreasing
Jsc, because the increased number of free charge carriers would lead to a less strong internal
electrical field and hence increase the transit time which leads to an increasing recombination.
Due to the increased recombination, the fill-factor is also expected to drop, but to a lesser degree
than Jsc. Voc on the other hand is predicted to be virtually constant upon doping.
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Figure 3-7. Simulated JV-curves for different levels of (a) hole doping and (c) mobility. (b) and
(d) show the corresponding normalised values of the power conversion efficiency (PCE), FF,
Voc and Jsc. Figure reprinted with permission from Schafferhans et al.,** Copyright (2010)
Elsevier.

3.3.4.3.2 Influence of Mobility

The influence of mobility on device performance (see Figure 3-7c and d) has also been in
investigated by Mandoc et a.** and Deibel et al.,"** where a macroscopic device mode similar
to that of Schafferhans et a. was used. (Deibel et al. further considered a field dependent
polaron pair dissociation and a reduced Langevin recombination rate).

A high mobility is expected to lead to a high polaron pair dissociation (typically not a bottle-
neck for polymer-fullerene SCs, but for polymer-polymer SCs) and a high charge extraction and
hence to a high Jsc. On the other hand, the very efficient charge extraction at high mobilities
leads to low charge carrier concentrations and hence to a small Voc. As a result of the
counteracting effects of charge extraction and charge (polaron) recombination, the FF as a
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function of mobility was shown'* to have a maximum at about 10°-10* m? V' s* (see Figure
3-9).
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Figure 3-8. Simulated influence of the electron mobility on Voc, FF and Jsc for two sets of
injection barriers (solid red and black dashed lines). Image reprinted with permission from
Deibel et al.,** Copyright (2008) WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

3.3.4.3.3 Influence of Traps

Traps will have a strong influence on non-geminate charge recombination. Whereas without
traps, only free charges recombine, in the presence of traps one also has to consider the
recombination between a trapped charge (that is being released in the process) and a free charge
or between two trapped charges. Note that trap states may also just be 'intrinsic' states
originating from the tail of the HOMO or LUMO density of states (see eg. Figure 5a in
Blakesley et al..**). Because of the latter, the effect of the addition of traps is somewhat similar
to the increase of energetic disorder (see Figure 4b of Blakesley e a..'™). Increasing the
number of traps or the energetic disorder will** reduce Js, FF and Voc.'* Especially for
energetic disorder, there seems to be a threshold above which Jsc and FF are decreasing very
strongly. Note that Voc is rather unaffected even by large values of ¢ which is the parameter
describing the spread of the Gaussian distribution of the density of states.
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3.3.5 Time-Correlated-Single-Photon-Counting

A Time-Correlated-Single-Photon-Counter (TCSPC) can be used to measure the PL spectrum

and the lifetime of any emitting species.

Within a TCSPC, the luminescent sample is excited by a pulsed laser. The laser pulses and any
photons emitted by the sample can be measured by a very sensitive photon-detector as a
function of time. The details of how the pulses and the start of the measurement are

synchronised are not relevant to the discussion below.

By measuring the temporal evolution of the number of emitted photons one can get information
about the emitting species, for example how many different species are involved in the PL, and
what are their individual lifetimes. The lifetimes then indicates whether one is likely to deal

with e.g. singlet excitons, singlet exciplexes or triplet excitons, etc..

3.3.5.1 Signal in Case of One Species

Let us assume a species (an excited state) A is emitting light according to

dN(t)

=N(t) -k Eq. 3-23
— == N©k, q

where Kk is the overall decay rate and N(t) the number of molecules in the excited state A. We
further assume here that the sampleis excited at exactly t = 0. This assumption is reasonable for
lifetimes much larger than the width (full width at half maximum) of the instrument response
function, which is the temporal signal measured when only the laser light is detected and hence
depends on the laser pulse width and the detector. For a very quickly decaying signal, however,
the measured signal has to be deconvolved with the instrument response function. Note that the
number of collected photons (n(t)) is proportional to the number of excited molecules (N(t)), i.e.
n(t) = ¢; N(t), where the proportionality constant c; is determined by a number of factors such as
the radiative decay rate of the species A, the geometry of the setup, the quantum efficiency of
the photon-detector used in the TCSPC, or the occurrence of reabsorption of the emitted photon.

The overall decay rate k includes the radiative (K*) and any non-radiative (k™) decay

mechanisms:

k= krad 4 Z kM. Eq. 3-24
i

Solving Eqg. 3-23 yields a mono-exponential decay signal:
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t
N({t)=Ny-e ™ +b or N(t) =Ny-e7, Eq. 3-25

where Ny is the number of excited molecules immediately after excitation (i.e. at t = 0), z isthe
lifetime (r = 1/k) and b is a constant resulting from the background noise. We will assume b =0

in the following.

If we take the natural logarithm of N(t) we obtain

In(N(®)) = In(N,) —% t. Eq. 3-26

We hence see that in the simplest case of a single emitting species following Eqg. 3-23, ln(N(t))

follows alinear function whose slope (m) is a measure of the decay rate (m= - k =-1/7).

3.3.5.2 Signal in Case of Multiple Emitting Species

Let us now assume that a number of species (Ns) are emitting light in the wavelength range
wherethe signal (N(t)) is collected. Eq. 3-23 then becomes

dN(t) Ns
= N; ) k;, Eq. 3-27
dt j

wherek; is the overall decay rate of the speciesj and Nj(t) the number of molecules in the

excited state j. Solving Eqg. 3-27 we now obtain a multi-exponential decay signal:

Ng
N(t) = 2 N? - exp(—k; - t), Eq. 3-28
]

or, after taking the natural logarithm:

In(N(®)) =1In <2NS N? - exp (—k; - t)) . Eq. 3-29
]

The above equations (Eq. 3-28 or Eq. 3-29) can be used to fit the decay curves to obtain the
missing parameters N° and k;. Note, however, that fitting such curves is a challenge asiit is often
not clear from the curves how many different species are contributing to the signal. Thisis why

it is usually advised to keep the number of species Ns during the fitting as small as possible.

For a general introduction to lifetime measurements and a discussion of various decay models
refer to the literature.™
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3.3.6 Photoluminescence Quantum Efficiency Measurements

The photoluminescence quantum efficiency (PLQE) is the ratio between the number of emitted
photons (Ngy,) to absorbed photons (Naps)-

Em

PLQE = Eqg. 3-30

)
NAbs

The PLQE is not only important for LEDs, where it gives the highest possible internal quantum
efficiency, but also for SCs. In a polymer SC, the dissociation of excitons into free charge
carriers at a type Il heterojunction is one of many loss mechanisms, and a high PLQE would
indicate that this process is inefficient. A high PLQE for a BHJ SC therefore indicates that
either the domains of the absorbing material are too big for excitons to diffuse to the

heterojunction, or that exciton splitting at the interfaceis not efficient.

In the following | will describe how the PLQE of solid films can be measured. The technique
used for this work is described by de Mello et a..* It rdies on taking the following
luminescence signals of all light (laser and PL) exiting the integrating sphere (see Figure 3-9):

e measurement without sample in the dark, i.e. without laser, to correct all measurements
for background noise

o measurement of the signal with laser, without sample (“NO”-signal)

o measurement of the signal with laser and with sample, whereas the laser does not hit the
sample surface directly (* OFF’-signal)

o measurement of the signal with laser and with sample, whereas the laser beam hits the

sample surface directly (“*ON”-signal)

CCD Spectrometer : CCD Sprctrometer CCD Spectrometer

Fibre Optic

Baflle

laser beam

Experiment {a) Experiment (b) - Experiment (c)

Figure 3-9. Illlustration of the measurements necessary to determine the PLQE of solid films.
(a) Taking the spectrum without sample. (b) Taking the spectrum with the sample inside the
sphere, without illuminating the sample directly. (c) Taking the spectrum with the laser light
hitting the sample directly. Image reprinted with permission from de Mdllo et al.,** Copyright
(1997) WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
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In the following we will use P for the PL signal and L for the laser signal. A is the fraction of
laser light (directly hitting the sample) absorbed by the sample and r is the fraction of reflected
laser light (by the sphere) that is absorbed by the sample. We obtain the following equations for
the case that the laser light does not hit the sample directly:

Lopr = Lo - (1 —1),
Popr = PLQE - Lyo * 1,

Eq. 3-31

and the following equations in the case where the laser light does hit the sample directly:

Lon =Lno (1 —=71)-(1—A) = Logr - (1 = A),

Eq. 3-32
PON = PLQELNOA+(1—A)POFF
Rewriting the last equation results in the final expression:
p (1— AP Pon — ll:ﬂPOFF
PLQE = —2 oFF — O Eq. 3-33
Lyo-A L - (1 _ ﬂ)
NO LOFF
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3.4 P3HT:PCs1BM blendswith Cu-complexes
3.4.1 Materials

The host blend is a P3HT:PCgBM blend, which is possibly the most investigated material
system so far in the area of polymer-fullerene SCs. The high efficiency of the P3HT:PC¢BM
bulk heterojunction system is assigned to several properties, such as the ultrafast exciton

splitting in about 100 fs,* the high mobility of P3HT'* and a favourable morphol ogy. ™

As triplet emitters | used Cu-complexes (see Figure 3-10) which were synthesized by Claudia
Bizarri from the University in Minster, Germany. The advantage of using Cu instead of other
heavir metal atoms is that Cu is cheaper due to its higher abundance, and it is more
environmentally friendly. What makes Cu potentially a non-optimal choice for triplet emitting
materials is the relatively low atomic number of 29 and an average mass of 63.5u. This is
because generally, the heavier the atom the higher the improvement of the ISC rate. Another
very positive aspect of these compounds is that they are readily soluble in organic solvents such
as chlorobenzene, which is often a problem with phosphorescent emitters, such as fac-Trig2-
phenylpyridinato-C,,N]iridium(l11) (Ir(ppy)s). The electronic configuration of Cu in its
oxidative state +1 is d'°s'. The filled d-orbital leads to a symmetrical charge distribution and a
tetrahedral configuration. In the excited state, the metal centre is formally oxidized from +1 to
+2, which leads to a flattening of the tetrahedron.™"*>?

There were several Cu-complexes available (see Table 3-1) and | decided to use those that are
not charged (and compensated by a counter ion) to avoid any unnecessary complications such as
ion-movement and additional charge/exciton and charge/polaron-pair reactions with the
counter-ions. The molecules “D” and “E”, which were mainly used for this study, are shown in
Figure 3-10. The energy levels are shown in Figure 3-11. One of the ligands, big2-
(diphenylphasphino)phenyl]ether (DPEPhos), occurs in all the molecules, whereas the other
ligand differs. An interesting feature of these compounds is that the DPEPhos ligand is known
to prevent exciplex formation between a tetrahedral complex and solvent molecules.
Nevertheless, the PL efficiency in solution is still lower than in film due to solvent-induced
exciplex quenching.®®>** Due to the small differences in the molecular structures and their
energy levels, it is not obvious which would be the best material as the guest. The potential
mechanism to increase the number of triplet excitons relies on the second approach, i.e

increasing the ISC rate directly on the host due to the proximity of the guest molecules.
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Figure 3-11. HOMO and LUMO levels of the materials. The HOMO and LUMO levels of the
triplet materials were determined by cyclic voltammetry (see Table 3-1). The LUMO level was
not available for the triplet emitter “C”. The values for PCs,BM are taken from Chu et al.™ and
the values for P3HT are averaged from various references, 291°01%7
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Table 3-1. Photophysical properties of the available Cu-complexes, measured by Claudia
Bizzarri from the University of Minster, Germany. J.n is the waveength where the
photoluminescence has a maximum. @ is the photoluminescence quantum efficiency and z is the
lifetime of the state measured at the respective Jem.

Solution® Thin film
Jen HOMO LUMO Aern
Compound (nm) (V) (V) (7 () b)) .
-5.16 B 5 " -
C 527 (5 520 ”
b 0/.0
-5.132 0.45% 490 4%
D 549 (_5 3)UPS '235 (dmf) -
' 463 ¢ 20
5.7 s
55 59%° )
0 0,
E 563 511 228 O04%% e (8:2%)
(dmf) 508¢ 335040 2iiHS
' (93.8%)

¥photophysics measured in dry and freshly distilled DCM; quantum yield measured in specified
different solvents; electrochemistry in dry DMF. HOMO-LUMO values are calculated from
potential values; UPS values are specified

°neat film;

°5% in PMMA;

910% in PMMA,;

3.4.2 Triplet states on P3HT

The host material in my study was chosen to be poly(3-hexylthiophene), P3HT, which for many
years has been the high efficiency benchmark new SCs were tested against. Together with
phenyl-Cg;-butyric acid methyl ester, PCs,BM, it has been reported to show efficiencies of over
6 %,™® although it is generally accepted within the community that 3.5 % is a more routinely
achievable value.™

We first need to study in some detail with what kind of photo-excited states we are dealing with
in a P3HT:PCsBM blend. As the absorption is mainly achieved by P3HT due to the better
overlap with the solar spectrum, we are mainly interested in excitons formed on P3HT.
Although the situation is often simplified by assuming that singlet excitons are generated and
travelling along the conjugated polymer domains, the situation can be more complicated. There
is for example the possibility of intersystem crossing (1SC) to triplet excitons or the generation

of polaron pairs and more or less localized polarons.

Starting with oligothiophenes, it was reported that they primarily form triplet excitons after
photo-excitation.'®® These triplet excitons are considered to result from 1SC from the photo-
excited singlet state due to the non-negligible spin-orbit coupling constant of sulphur'® of 184

cm™. The behaviour of P3HT in solution was measured, findi ng a fluorescent lifetime of 500 ps,
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an |SC rate constant of kjsc = (1.2 ns)'l, an intrinsic lifetime of the singlet excitons of 2 nsand a
non-radiative decay rate™ of k., =(1.5ns)". P3HT films of different regioregularities have
been investigated.'®**® In regiorandom P3HT it was found that intrachain excitons are the
primary photoexcitations in the ps-time domain. Thereis considerable ISC leading to long-lived
triplet excitons. A small fraction of the singlet excitons also separated into polaron pairs and
later into isolated, long-lived intrachain polarons. The situation for regioregular P3HT is
different. The primary photoexcitations are singlet excitons delocalised among neighbouring
lamellae layers leading to a larger interchain component which also reduces phosphorescence.
Thesinglet excitons have a much lower I1SC rate than in the regiorandom case so that long-lived
triplet excitons are not observed. The singlet excitons instead rather dissociate into polaron pairs
which later separate into isolated polarons which are delocalized as well among adjacent
lamellae layers and have small relaxation energies. The differences of properties between

P3HTs of different regioregularities are shown in Table 3-2.

Table 3-2. Summary of comparison between regiorandom and regioregular P3HT . *%+1%
regiorandom P3HT regioregular P3HT
prlm.ary. intrachain excitons delocalised excitons
photoexcitations
Inter-system considerable ISC much lower 1SC
crossing (1SC)
existence of long- yes o

lived triplet excitons

singlet excitons — polaron pairs

final excitations — isolated, long-lived intrachain
polarons

singlet excitons — polaron pairs
— isolated, delocalised polarons

Therefore one may expect both delocalized polarons within the lamellae structure and the other
excited species such as intrachain polarons and triplets in the amorphous part. The distinctive
behaviour in a blend of regioregular P3HT and PCgBM was recently investigated by Grancini
et a..'™ In the amorphous P3HT phase, the singlet excitons do not dissociate and do not
generate charges, whereas in the crystallized P3HT phase, a CT state was observed and the
decay fitted with a biexponential decay with 7, =8 ps and 7, > 500 ps. The border region
between the P3HT crystal phase and the PC¢BM crystal phase showed an even longer-lived CT
state which showed a decay with 7; = 12 ps and 7, > 1 ns. (The generation of this CT state is
very efficient as the dissociation of the photo-excited states near the interface has been shown to
occur with nearly 100 % efficiency. Hwang et al.*® for example have reported a very fast
(< 120 fs) charge separation to the initial CT state which is followed by a transfer of the mobile
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polarons to the bicontinuous polymer/ PCs;BM network.) The relative longevity of this CT state

is areason for the undesirable geminate recombination.

Hence we see that if the P3HT is actually sufficiently crystallized within the domain, triplet
excitons should not form and it may be useful to increase the ratio of triplets excitons to
improve not only the exciton diffusion length but also to lower the geminate recombination as

explained in section 3.2.9.1 on page 89.

The polaron lifetime was measured within in a P3HT:PCsBM bulk heterojunction to be
300-400 ns by Li et al.*® Another technique called impedance spectroscopy gave charge carrier
lifetimes within the ms domain.*®

3.4.3 Device Fabrication

In this section | will describe in detail the fabrication process for the photovoltaic cells. The

various layers are shown in Figure 3-12.

Before depositing the first layer onto the indium-tin oxide (ITO) covered glass substrates
(purchased from UQG Ltd., Cambridge, UK), they were cleaned with acetone and isopropanol
in an ultrasonic batch for 10 min each. Then the substrates were treated by an oxygen plasma to
improve its properties, in particular to improve its work function and to create a surface charge
that benefits the deposition of the next layer, poly(3,4-ethylenedioxythiophene):
poly(styrenesulfonate) (PEDOT:PSS, high conductivity version purchased from Sigma Aldrich
as a 1.3wt% dispersion in water). The time between oxygen plasma and spin coating of
PEDOT:PSS was less than 3 min."” The 80 + 15 nm thick PEDOT:PSS layer was baked at
140 °C for 10 min inside a nitrogen filled glove box to remove any remaining water. The
components for the active layer (P3HT and PC¢;BM, both purchased from Sigma Aldrich) were
separately dissolved in chlorobenzene at a concentration of 2 wt% (except of the triplet emitter
which was further diluted to improve the accuracy of the guest content) before mixing them.
The thickness of the active layer was about 135+ 15 nm. The different heat treatments are
discussed later. The >150 nm thick aluminium layer was deposited by a thermal evaporator

under a pressure below 6-10° mbar.
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Al

PEDOT:PSS
ITO

glass

Figure 3-12. Sandwich structure of photovoltaic devices. The anode is indium-tin oxide (ITO),
which is a transparent conductive oxide. The following PEDOT:PSS (Poly(3,4-
ethylenedioxythiophene): poly(styrenesulfonate)) layer serves as a hole extraction layer. The
active layer consists of a P3HT:PCgBM :guest blend. Aluminium was used as the cathode.

3.4.4 Addition of the Phosphorescent Guests

3.4.4.1 Performance of Triplet Emitter E

| started my experiments with the triplet emitter E using a recipe which works well for standard
P3HT:PCsBM SCs. This recipe includes using chlorobenzene as a solvent and using a post-
evaporation baking of 140 °C for 10 min. To get a feeling for reasonable guest concentrations, |
started with varying the guest content from 0 to 25 wt% (with respect to the mass of P3HT+
PCesBM).

The result was that the performance of the SCs dropped considerably, with all devices above
1wt% guest concentration not working at all, more precisely showing short circuit
characteristics. | further found that short-circuits occurred mainly for the baked devices with
more than 1 wt% guest concentration.

The JV-curves of devices with thetriplet emitter E for guest concentrations up to 1 % are shown
in Figure 3-13 and the respective short-circuit current densities (Jsc), open-circuit voltages
(Moc), fill-factors (FF) and energy conversion efficiencies ( or power conversion efficiency,
PCE) are shown in Figure 3-14. Devices marked as baked were annealed after evaporation at
140 °C for 10 min and cooled down slowly (leaving them on unheated parts of the hot plate as
opposed to putting them onto a metal block for rapid cooling. Slower cooling (as opposed to fast
cooling) may improve the crystallization and improve the phase separation.
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Figure 3-13. JV-curves for devices with the compound E. In the first 2 Figures (a) and (b) one
can see JV curves for both, dark and illuminated devices, for devices only containing the pure
P3HT:PCs:BM blend as the active layer (a) as well as active layers with 1% guest
concentration (b). Figure (c) and (d) show the JV curves for the different guest concentrations
used for the unbaked (c) and baked (d) devices. More explanations in the text.

The undoped devices worked roughly as expected. With Jsc = 4.2 mA/cm?, Voc =0.66 V and
FF =37 %, | obtained an efficiency of # = 1.0 % for the unbaked devices. Baking improved
considerably Jsc (7.4 mA/cn?) and FF (54 %), resulting in # = 2.5 %. | would like to mention
here that the performance of unbaked devices of pure P3HT:PC¢BM blends varies considerably
from batch to batch. A possible reason is that small differences in the temperature of the glove
box and the solution, the solvent atmosphere and the spin coating change considerably the
morphology of the unannealed devices. After baking, however, the different batches “ converge’
in their performance towards the same point, demonstrating the importance of the annealing

process as a means to control the morphology and to reduce batch to batch variability.

Upon increasing the triplet content, basically all parameters decrease in a monaotonic fashion.
We aso see that the JV curves gain an s-shape. In the literature, such a shape was attributed to

various effects: surface dipoles,'® a reduced surface recombination rate,® charge traps'®** and

170

imbalanced mobilities.”™ The incident photon to current efficiency (IPCE) is shown in Figure



3 Triplet Emittersin Organic Solar Cdlls 113

3-15. Upon baking, a more pronounced shoulder is observable at ~ 610 nm (consistent with

improved crystallization), but no clear trend can be seen in connection with the triplet content.
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Figure 3-14. SC parameters with the triplet emitter E. Both, unbaked (black) and baked devices
(red) are shown.
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Figure 3-15. IPCE spectra of unbaked and baked devices of batch 4 with the triplet emitter E,
stacked for clarity. The only significant difference between the unbaked and baked devices
(besides the maximum of each curve) is the shoulder at about 610 nm which only appears for
the baked devices. No clear trend is apparent with rising the guest ratio.
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An interesting aspect of these devices is that despite a Jsc of near zero at high guest
concentrations, the short-circuited devices showed considerable photoconductivity, i.e. the
current increases considerably at voltages > 0 for illuminated devices compared to devices in

the dark. | will come back to this point later.

3.4.4.2 Performance of Triplet Emitter D

Due to the low performance of the triplet emitter E, other Cu-complexes were tried. Whereas
triplet emitter C showed disappointing results as well (see Appendix on page 202), compound D
(chemical structures were shown in Figure 3-10d) was found to affect the performance much
less than triplet emitter E and C. The JV curves of first devices are shown in Figure 3-16. |
found that increasing the stirring time from about 1 hour for the separated solutions and > 30
min for the mixed solution to overnight stirring and > 4 h, respectively, improved the device
characteristics in a sense that the degradation upon inserting the guest was reduced. This can be
seen by comparing the bottom diagrams of Figure 3-16 and Figure 3-17. The JV-curves in the
latter are only marginally influenced by the guest. The SC parameters for devices with short and

long stirring are compared in Figure 3-18.

For the less stirred and baked devices, one can see a maximum of the efficiency at a guest
concentration of 0.2 wt%. This, however, results mainly from the unexpectedly low FF of the
pure P3HT:PCgBM blend of only 40 %. The graphs also show that the unbaked devices (black
curves) were generally more “immunée’ against triplet doping for both batches. Another
noteworthy feature is the high Voc for the less stirred, unbaked devices (~ 0.65 V) compared to
the long stirred, unbaked devices (~ 0.50 V). Upon baking, however, Voc tends to converge to
the same value (~ 0.59 V). This is a phenomenon mentioned earlier. The author believes that
little changes in the temperature of the glove box and the solution or when the solution has last
been heated considerably influences the morphology of the active layer. Heating the film will
then lead to arather similar morphology fairly independent of theinitial morphology.

The IPCE spectra are not shown because similar to compound E, no clear trend can be seen,

except decreasing values with decreasing Jsc.
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Figure 3-18. Comparison of SC parameters between long (solid lines) and short stirred (dashed
lines) devices with triplet emitter D. Unbaked (black lines) and baked devices (red lines) are
shown.

3.4.4.3 Triplet emitter D with Different Morphology

It is well documented that the annealed P3HT:PCsBM layer as fabricated above ("standard"
procedure resulting in high eficiency devices) has a highly optimized morphology™® with
relatively small domains to achieve efficient exciton dissociation and charge separation. Under
the hypothesis that more triplets with large diffusion lengths are formed upon inserting the
triplet emitter, slightly larger domain sizes should not negatively affect the performance, or said
in a different way, if the domain sizes are larger than they are for the singlet-optimized
morphology, the pure blend should suffer a higher loss in performance than the blend with the

triplet emitter.

To achieve a morphology with larger domains, | annealed the blend before evaporation instead
of afterwards and | increased the annealing temperature by 10 °C to 150 °C. The reasons for the
change in morphology isthat first of al, a higher temperature will lead to a higher diffusion rate
of the blend components and hence to more phase separation, and second, in case of the post-

evaporation baking, the cathode constricts the movement of the active layer components. On a
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larger scale, pre-baking at 140 and 150 °C lead to large PCs,BM clusters that are about 400 nm
high and have a diameter of 7-9 um (see Figure 3-19). The identification of the large clusters as
PC¢BM domains has been done by other groups.***? In Figure 3-20 the surface morphology
of the differently treated active layers are shown, where it was zoomed-in into the non-elevated
areas, i.e. those that do not consist purdy of PCs;BM. (Note that it is not easily possible to lift-
off the evaporated cathode so that the morphology after post-baking is not well known, but
expected to show less phase separation). For the pure P3HT:PCBM blend, the typical domain
size (given here in full width of half maximum (FWHM)) increased from about 50 to 60 nm
upon changing the annealing temperature. Interestingly, the inclusion of 1% of the triplet
emitter led to areduction of the domain size by about 20 nm in both cases. The domain sizes of
the at 140 °C annealed devices with 0 % triplet emitter (~ 50 nm) is hence very similar to the
domain sizes (~ 40 nm) of the at 150 °C annealed devices with 1 % triplet emitter (Figure 23a
and d). Considering the same domain sizes and the much worse performance of the latter
devices, which will be shown below, a pure morphological effect of the triplet emitter on the
device performance can be ruled out.

600 nm

0 nm

Figure 3-19. AFM images of a P3HT:PCs;BM blend, baked before evaporation at 150 °C for
10 min. The elevated structures (PCg;BM clusters) are ~ 400 nm high and have a diameter of 7-
9 um. On the same scale the morphology of a device baked before evaporation at 140 °C looks
very similar (not shown).
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Figure 3-20. AFM images of active layers spin-coated onto spectrosil substrates. The
description of the active layer can be seen at the top of each image. The surface roughnesses are
1.62 nm, 1.56 nm, 1.66 nm and 1.68 nm going from (@) to (d). The typical domain diameters
(FWHM) are ~ 50 nm, ~ 30 nm, ~ 60 nm and ~ 40 nm.

The JV curves and corresponding parameters are illustrated in Figure 3-21 and Figure 3-22. To
ease the comparison, the parameters of the pre-evaporation baked devices have been included in
Figure 3-22. The first observation is that the pre-evaporation baked pure P3HT:PCs,BM blend
performed worse than the post-evaporation baked one. The strong decrease in energy
conversion efficiency stems mainly from the loss of Voc, which dropped from 0.59 V t0 0.36 V.
The lower performance is expected due to the large um-sized PCBM clusters and generally
larger domain sizes. Another very interesting aspect is that Vo is virtually independent of the
guest content, whereas Jsc is reduced considerably upon increasing the guest content. Note that
the stable V¢ is a feature that was only observed for triplet emitter D.
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Figure 3-21. JV curves of devices with compound D, which were annealed before evaporation
at 150 °C for 10 min.
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3.4.5 Causes of the Performance Drop

At this point | would like to summarize some important information gathered so far.

a)

From the AFM images we have seen that the inclusion of the triplet emitter leads to smaller
domains. This is already a potential reason for a decrease in the performance, because
smaller domains generally worsen the charge extraction due to smaller crystallized domains
reducing the mobility and due to the larger likelihood of islands which will trap charges by
themsel ves and increase the rate of non-geminate recombination. This would directly lead to
a smaller Isc and FF which has been observed in aimost all devices. However, | have also
shown that the changing domain size alone cannot account for the strong reduction in
performance. Note that smaller domains often improve Jsc due to more efficient exciton

harvesting/dissociation.

b) Another observation was that extensive stirring improves the stability of the devices which

contain the triplet emitter. Assuming longer stirring helps separate the molecules and avoids
aggregation, this means that larger aggregates of the triplet emitter are worse for the device
performance than smaller, better distributed ones. The reason for that is not understood, as,
assuming the guest is a trap for example, more isolated, less aggregated guest molecules
should influence the device much more than few large aggregates. A hypothesis is that the
aggregation of the guest leads to different energy levels which may improve the hole
transfer/trapping rate to the guest molecule, or that aggregates can become so large that a
continuous (conductive) pathway on the guest from electrode to el ectrode exists.

The observed s-shape observed in the JV curves of solar cdls that contain the triplet emitter
E may be caused by several effects (reduced surface recombination, reduced charge carrier
mobility, addition of traps for one type of charge carriers, or the creation of a dipole at one

of theinterfaces).

| have also mentioned the considerable photoconductivity observed for the seemingly short-
circuited devices at relatively high concentrations of the compound E. The reasons for such
a diminished performance while exhibiting photoconductivity means that either excitons on
P3HT are already trapped before reaching an interface with PCs,BM (and then liberated by
the incoming photons), or, more likely, a part of the photogenerated charges is trapped on
the guest molecules (and then liberated by the incoming photons).
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Looking at the energy diagrams with the results measured by Charlotte Fléchon (see Figure
3-23), it is indeed possible that the guest molecules act as hole traps, for both, holes coming
from P3HT and PC&:BM."
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Figure 3-23. HOMO/LUMO energy levels with values for P3HT and PCsBM measured by
Charlotte Fléchon. The surprising result is the much lower lying HOMO level of P3HT
compared to literature values (see Figure 3-11) which enables hole transfer from P3HT to the
guest.

Therefore | did mobility measurements (as described in the characterization techniques section)
by fabricating FETs. The active layer in the transistors were P3HT:PCBM blends with the
triplet emitter E. Mobilities were extracted from the transfer characteristics in the saturation
regime and the result can be seen in Figure 3-24. Some data points, such as those for the hole
mobility of the baked devices, are missing due to devices not showing the necessary output
characteristics (see appendix on page 203) to extract the mobility, i.e. when the other type of
charge carrier is completely dominating. The data show two important features. First of all, the
electron mobility is fairly independent of the guest concentration and close to the reported value
of 2:10° cm?V st in a P3HT:PCs,BM blend.’® The other is that at least for the unbaked
devices, the hole mobility decreases by two orders of magnitude upon inserting 1% of the guest.
Note that an increased number of traps will increase the number of scattering centres and hence
reduce the mobility (— Matthiessen's rule). The measured mobilities are hence an indication

that the guest molecules may act as hole traps and the decreasing performance is due to the large

V| would like to mention at this point that some literature values for the energy levels of P3HT differ
considerably from our measured values. According to Peet, J. et al., Applied Physics Letters 93, 163306
(2008) for example, the LUMO and HOMO values are 3.1 and 4.9 eV, respectively. These energy levels
would not have led to hole trapping from the P3HT to the guest.
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number of hole traps and the decreasing hole mobility. Note that the guest may also simply
disturb the P3HT lattice and therefore reduce the hole mobility. However, the shift of the
threshold voltage in the transfer characteristic at negative gate voltages also (see appendix page

203) also points towards an increase of hole traps for increasing guest content.
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Figure 3-24. Electron (solid lines) and hole mobilities (dashed line) for FETs made with
compound E in the active layer. The mobilities were measured at room temperature in a
nitrogen atmosphere. If values are not shown, this is due to output-characteristics not showing
the necessary behaviour to extract the mobility from the respective transfer-characteristic.

Another noteworthy observation is the increased electron mobility upon baking. This could have
two reasons. First, baking leads to larger phase separation and to larger crystallized PCgBM
domains, and second, PCyzBM may diffuse preferentially towards the channe and may
therefore lead to a higher PCgBM concentration in the channdl. As PC¢BM is a much better
electron conductor than P3HT, this would improve the electron mobility in the FET.

3.4.6 Calculation of the Trap Density

Figure 3-25 shows the dark JV-curve of a SC device without the inclusion of triplet emitters, i.e.
with the pure P3HT:PC¢BM blend as the active layer. The curve shows an ohmic behaviour
from 0-0.2 V (red dashed line) and changes into a power law function at ~ 0.3 V in agreement
with Eq. 3-17. The exponent (c) in the fitted power law (J= Jo+ b-V°) is 5.1. We could use this
information to determine the characteristic energy E; of the trap distribution if we assume that
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such an exponential trap distribution is indeed present and that only one type of charge carrier

dominates the current.
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Figure 3-25. Dark JV-curve of a pure P3HT:PC¢BM SC. Different fits have been applied. One
can see the linear (ohmic) regime at lower voltages (fitted with dashed red line) and the trap
filling regime at higher voltages (fitted with dashed green line).

The question remains as to whether the latter condition isindeed fulfilled, i.e. if only one charge
carrier dominates the current. From the FET mobility measurements of the pure P3HT:PCsBM
blend we saw that at least for the baked transistors, the electron mobility of PCg,BM was higher
than the hole mobility of P3HT. However, such a result has to be treated with caution. Not only
is it well known that in most organic semiconductors the hole mobility is much larger than the
electron mobility,® but it has been frequently reported that the mobility cannot simply be
assumed to be independent of the type of device due to several reasons: (a) The eectrical field
in LEDs or SCsis much larger than in transistors, (b) the polymer and fullerene domains may
be concentrated in different regions depending on the device, (c) The direction of the charge
transport is different in FETs and SCs and (d) some studies on bilayer P3HT/ PC¢BM SCs
suggest that the electron mobility of PCe;BM is the efficiency limiting factor'™ and that the
most important effect of baking is to increase the electron mobility in PCgzBM due to the
formation of larger crystallised aggregates. This indicates that eectron transport is rather the

bottle neck in the blend instead of hole transport. In fact, during my experiments | observed a
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strong dependence of the dark current on the inclusion of the triplet emitter, which, together
with the assumption that the holes are trapped on the guest, is consistent with the notion that
electrons are not dominating the dark current in the applied voltage regime as it may be deduced
from the FET mobility measurements. (However, it may also be possible that electrons are the
dominating type of charge carriers, but that hole trapping leads to a strong reduction in
conductivity due to electron-trap interactions). Note that the injection barriers according to
Figure 3-23 do not give a clear indication regarding which carrier can be expected to dominate
the device at low voltages. For the sake of calculating the number of traps, we assume for now
that the majority of the trap-influenced SCL C results indeed from hole conduction in P3HT.

The traps in a P3HT:PCsBM blend have been investigated by Schafferhans et al.'* during
degradation experiments. In Figure 3-26 the trap distribution as measured from thermally
stimulated current (TSC) measurements is illustrated, showing two trap distributions, T1 and
T2, in P3HT and a third one, T3, in the blend. Shallow traps, i.e. those that can be easily
activated, act as dopants. T3 has atoo high activation energy and will not dope the system while
T1 and T2 can both dope the system with holes. Another example of trap concentration
measurements in P3HT:PCBM blends is shown in Figure 3-27.
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Figure 3-26. Trap density in P3HT and P3HT:PCsBM blends as obtained by TSC (thermally
stimulated current) measurements. P3HT shows two trap distributions, T1 and T2, which both
contribute to the blend. A third trap distribution, T3, is seen in the blend. Image reprinted with
permission from Schafferhans et al.,*** Copyright (2010) Elsevier.
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Figure 3-27. Trap density in P3HT:PCgBM blends for devices grown with different growth
rates determined by C(V) and C(f) measurements according to Nalwa et al.,'™ Copyright (2011)
American Ingtitute of Physics. The higher the growth the more traps are present. Note that the
traps are deeper than in Figure 3-26.

Going back to using the exponent of the fit (c) of 5.1 (for the pure P3HT:PCsBM blend) to
determine the characteristic energy of the trap distribution (E;), we obtain m=4.1, hence
E;=4.1KkT =0.10 eV at room temperature. This results in an exponential distribution of trap
states that decays to 1/e of itsinitial value (at the HOMO) after moving 0.10 €V inside the band
gap. In Figure 3-28 | used the exponent and prefactor of the dark currents of the prebaked
devices with compound D to calculate the total trap density (H;) for the actual guest
concentrations used. The inset shows the trap density as a function of (E - Eomo) for a guest
concentration of 0%, i.e. the pure P3HT:PC¢BM blend. For the calculation | assumed the
following values: & = 2, Nuomo = 1:10®° m™® (typical values'* are between 10* and 10%° m’),
d =150 nm, T = 293 K and a mobility interpolated from Figure 3-24. The calculated H; for the
pure blend (2-10%* m™®) is double the published value of pure P3HT™ (1-10% m®). As expected,

my calculations show a linear increase of H; upon adding more guest molecules.

Looking at the absolute value of guest molecules in the device (of the order of 1 wt%), one
would expect an even stronger (negative) influence of the guest on the current. It is possible,
however, that due to aggregation of the guest molecules, the effective number of trapsis much

lower than the number of guest molecules.
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Figure 3-28. Calculated total guest concentration H; as a function of the guest concentration
actually used for the devices. Devices were prebaked and the guest is compound D. The inset
shows the energetic distribution calculated from the fitted curve for a guest concentration of
0 wt%.

3.4.7 Further Considerations
3.4.7.1 Possibility of Doping

The influence of doping on the solar cdl performance was described in section 3.3.4.3.1 on
page 99. It isin good agreement with the pre-baked devices with compound D (see Figure 3-21
on page 119), where Voc was unaffected while the FF decreased to some degree and Jsc
dropped heavily upon adding the guest.

However, | would like to stress again that it is not obvious how the triplet emitter can act as a
dopant. Defect states can serve as dopants, but only if they provide eectrons near beow the
host's LUMO or holes near above the host’'s HOMO, i.e. the defect states must provide charge
carriers which can be promoted easily to the host via little excitation energy (or energetic
disorder as in the case of disordered organic materials). If we look at the energy levels, we see
that the HOMO of the triplet emitter is more than 1 eV away from the HOMO of the P3HT and
even further away from the HOMO and LUMO of PCgBM, which means that no doping is
expected unless defect states with different energy levels are generated which can easily donate
holes or electrons.
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The effect of doping was mentioned nevertheless, because it is not just in agreement with the
pre-baked devices with compound D, but it could also give an explanation for another
observation: The so far unexplained short-circuit characteristics at high (=5 %) guest
concentrations of the triplet emitter E may be explained by extremely high doping creating a
degenerate semiconductor with near metallic behaviour. Interestingly, Arkhipov et al.'™®
suggested that while low doping can reduce the mobility, high doping can increase the mobility
because the density of ionized dopants will create a smoother potential landscape for the charge

carriers.

3.4.7.2 Mobility and Traps

In section 3.3.4.3.2 on page 100 the influence of mobility on the SC parameters was shown. The
performance parameters in the above experiments indeed behaved in accordance with a reduced
mobility, with exception of Voc, which never increased upon adding the guest. It ether
remained rather constant, such as for triplet emitter D with pre-baking, or, as in all other
experiments, it decreased. This hence indicates that another effect is contributing to the

reduction of Voc.

Traps may explain this "non-increasing” Voc. As it was shown in section 3.3.4.3.3 on page 101,
an increased number of traps will reduce all parameters, i.e. Jsc, FF and also Voc. To which
degree mobility and traps contribute to the change of the parameters is not clear. However,

together they arein qualitative agreement with the observed changes of the SC parameters.

3.4.7.3 S-shaped JV-curves

In a number of devices, such as the devices with compound E and the long stirred, unbaked
devices with compound D, S-shaped JV-characteristics could be observed. Wagenpfahl et al.®
showed that S-shaped JV-curves can be caused by defect states at the electrodes leading to a
build of a space-charge if the majority surface recombination rate is reduced. This may suggest
that it is possible that the triplet emitter accumulates preferentially at the electrode and the
storage of trapped holes may lead to the space-charge. However, according to the simulations,
the occurrence of the S-shape should be accompanied by a decrease in Vo, which was not
observed for the unbaked devices with materials D, but was observed with the compound E.
Another question is why the S-shape could not be observed after baking the long stirred devices

with compound D, because if the triplet emitter preferentially accumulates near an eectrode,
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baking would probably rather help diffusing to the desired location and is hence expected to
increase the effect.

3.4.8 Energy Level Configurations that Avoid Charge Trapping

I would like to go back once more to the problem of charge trapping. According to the
HOMO/LUMO values which are available from the literature, for example 4.9 eV'” for the
HOMO of P3HT, the HOMO of the triplet emitters (~ 5.1-5.2 eV) would have actually been
lower than the HOMO of P3HT, hence | did not expect hole trapping from P3HT when | started
the experiments. According to later measurements done by Charlotte Fléchon', whose results
were used in Figure 3-11, charge trapping towards P3HT would have been expected. However,
charge trapping seems to be a more fundamental problem of the approach tried in this work, i.e.
the inclusion of athird compound in a donor-acceptor blend such as P3HT:PCgBM. The reason
for this will be discussed in the following. To go through the various possible processes, | will
be discussing first what one would expect without exciton transfer (i.e. considering only the
HOMO and LUMO levels), then what could happen if such transfer is allowed. Unless
mentioned otherwise, | will consider that excitons are generated on both, donor and acceptor

(but not on the guest), but that free charges/polarons are not generated on the pure donor or

acceptor, respectively.

3.4.8.1 First Case, Assuming No Exciton Transfer to the Guest

| haveillustrated all possible relative HOMO and LUMO configurations in Figure 3-29. We see
that configurations (c), (d), (g), (h) and (j) will always lead to charge trapping on the guest for
charges coming from either the donor or the acceptor and are therefore undesirable in all

circumstances.

If we ignore the possibility of exciton transfer to the guest and only consider the HOMO and
LUMO levels, there will always be charge trapping on the guest of at least one type of carrier
unless its LUMO is higher than the LUMOs of both host materials and its HOMO is lower than
the HOMOs of both host materials (see Figure 3-29a). This means that the band-gap of the
triplet emitter must be at least |LUMO(donor) - HOM O(acceptor)| to avoid any charges getting
transferred to the guest. Obtaining such energy levels for the guest is difficult when the acceptor
hasaHOMO aslow as that of the popular acceptor material PC;BM (6.3 €V).

Y PhD student in the CMMP group at the Department of Physics & Astronomy, UCL, from 2009.
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The requirement can be relaxed to some extend within a double-layer architecture where donor
and acceptor are separated. By including the guest only into the donor for example, one does not
need to care anymore about the HOMO level of the acceptor (if one accepts slight problems at
the donor/acceptor interface where charge trapping could still occur). As a result, the
configuration ‘b’ shown in Figure 3-29 is acceptable in a double-layer device. All the other
thinkable situations ‘c’ — ‘j’ shown in Figure 3-29 could always lead to at least one type of
charge carrier being transferred from the donor or acceptor to the guest and are therefore not
ideal.

Under the assumption that excitons are only split at the donor/acceptor interface, (so that in the
first step, holes will always be on the donor and e ectrons on the acceptor,) there are a few more
arrangements than just ‘a’ that would not lead to charge trapping. These are the configurations
‘b, ‘e and‘f’.

3.4.8.2 Second Case, Considering Exciton Transfer to the Guest

If (singlet) exciton transfer from the host materials to the guest is considered as well and
assumed to be more efficient than exciton dissociation at a type Il heterojunction, most
arrangements could in the first step lead to energy transfer from the host to the guest, subject to
the singlet level of the host lying higher than on the guest. | would like to mention at this point
that relaxation energies for excitons (difference between HOMO-LUMO gap and exciton
energy) may differ considerably between excitons on different materials. Therefore one cannot

simply deduce from the band-gap where the singlet level lies.
Oncethe exciton is on the guest, it is either

= trapped on the guest (until it recombines), or

= transferred further to the third material if it isin proximity and the exciton levelsfit, or

= converted into a triplet state, from where it may go back to the host if the host’s triplet
energy islower (asin Figure 34k), or

= exciton dissociation at a typell heterojunction occurs. This will then lead to charge
trapping unless the third component is also in proximity to rescue the trapped charge,
either with an exciton level lower than the occupied CT state or with a matching
HOMO/ LUMO level.

This means that if energy transfer occurs from the host to the guest, we must either achieve the
approach in Figure 34k or the guest must be located at the interface to the other host component.
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In order for singlet exciton transfer to occur from the host to the guest, the absorption spectrum
of the guest needs to overlap with the emission spectrum of the host (this is true for all types of
exciton energy transfer). Assuming a rather material-independent energy difference between
band gap (correlated with absorption) and singlet exciton (correlated with emission), in order to
achieve energy transfer to the guest, the guest should have a smaller band gap than the host
components, which is in contrast to the ideal situations (regarding charge trapping) ‘a or ‘b’
(‘b only ideal if a bilayer is considered with guests only in the donor).

Therefore, if we do not usearrangement ‘a or ‘b’, werely either on

= avoiding energy transfer from the host to the guest, also no exciplex (CT date)
formation; or

» anefficient S; (host) — S (guest) — Ty (guest) — T (host) conversion process; or

= a morphology where the guest is only situated at the interface between donor and
acceptor, allowing arrangements ‘a’, ‘b’, ‘€ and ‘f’. (This would mean that we do not
efficiently increase the diffusion lengths of excitons rendering the inclusion of the guest
rather usdess).

Despite the demand of perfectly fitting energy levels and the need for very efficient energy
transfer (S; (host) — S; (guest) — T1 (guest) — T, (host)), the approach of Figure 3-29k was
claimed to be achieved®® by using arrangement ‘e, where the HOMO and LUMO level of the
guest are in between the respective levels of the donor (MDMO-PPV, poly[2-methoxy-5-(3',7’ -
dimethyloctyloxy) -1,4-phenylene vinyleng]) and acceptor (PCsBM). There is also another
publication'”” where arrangement ‘€ was used. The guest was a small molecule for near-
infrared absorption and the donor a P3HT:PC7BM blend. The improvement of efficiency in this
case was not attributed to triplet harvesting, but to the improved absorption spectrum better
matching the solar spectrum. No decrease of performance was observed up to 10 wt% of the
guest (independent of whether the devices have been baked or not). The fact that the absorption
of light through the small band gap molecule generated additional IPCE means that this guest
must have been mainly situated at the donor/acceptor interface and rarely within a pure donor or
acceptor domain (even before baking), an interesting point that has not been mentioned by the
authors.
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3.4.8.3 Conclusion on Possible Energy Level Configurations

In conclusion, | have shown that, unless aiming for the approach in Figure 3-29k, the
arrangement ‘@’ isideal, because it avoids charge trapping as well as exciplex formation in any
case. Unfortunately, ‘@ israther hard to realise if the host has a material with a high LUMO or
low HOMO (such as PCBM). If one is dealing with a double-layer and only injects the guest

into the donor for example, the requirements are lowered to further allow ‘b’.

As discussed above, the guest may not even mix with the host and only occur at domain
interfaces, so that ‘b’, ‘e and ‘f’ are also feasible However, if there is no intermixing of the
guest with the host, the phosphorescent complex can obviously not create many triplets on the
host, so the original idea of the inclusion of atriplet emitter to generate more triplet excitons to

improve the exciton diffusion length will not work in those cases.

The configurations ‘b’, ‘€ and ‘f’ are possible if energy transfer and CT state formation
between host and guest can be avoided (not including the approach in Figure 3-29k, which
relies on energy transfer to the guest) and if no excitons are split within donor or acceptor
domains alone. However, | have discussed in section 3.4.2 that in the case of P3HT,
exciton/polaron dissociation may already occur within the polymer. Such behaviour would

result in a stronger constraint on the LUMO level, forbidding the configurations ‘€ and ‘f’.

To summarize once more, apart from when following the approach in Figure 3-29k, we see that
the possible energy level configurations of the blend components depend on whether or not
energy transfer to the guest, exciton splitting at the host/guest interface, and exciton dissociation
within the donor or acceptor domains can be successfully avoided. If the answer is no to only

one of these points, performance losses can be expected for all configurations but ‘a’.

3.4.9 Conclusion

| have added phosphorescent guests (a Cu-complex) to blends of PSHT and PC¢BM to try to
improve the ratio of triplet over singlet excitons via the second approach, i.e. via increasing the
ISC directly on the P3HT due to the proximity of the guest molecule. Upon increasing the guest
concentration, basically all SC parameters were decreasing. The positive effect of long
(overnight) stirring has been established. Upon investigating the mobilities by fabricating FETS,
I came to the hypothesis that the guest molecules act as hole traps. After measurements of the
energy levels of our materials via cyclic voltammetry we found that the HOMO leve of the
guest was indeed higher than the HOMO level of P3HT, which means that hole trapping is a
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likely explanation for the deteriorating device performances. More precise estimations of the

number of traps as afunction of the guest content have been presented.

The strong negative influence of the guest on charge transport overshadowed any potential

increaseintriplet content. In the following, different material systems have been used.
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Figure 3-29. (a)i) lllustration of all possible relative positions of HOMO and LUMO levels of
donor (D), acceptor (A) and guest. Configurations (c), (d), (g), (h) and (j) will aways lead to
charge trapping on the donor and are therefore undesirable in all circumstances. More
explanation in the text. (k) Desired arrangement of singlet and triplet energy levels to convert
singlets on the donor (or acceptor) via intersystem crossing on the guest.
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3.5 MDMO-PPV:PCs1BM blends with Ir-complex

In the following | investigate the influence of adding the phosphorescent guest bis(2-(9,9-
dibutylfluorenyl)-1-isoquinoline(acetylacetonate)) (ADSO77RE) into a polymer-fullerene SC
consisting of poly[2-methoxy-5-(3',7 -dimethyloctyloxy) -1,4-phenylene vinylene] (MDMO-
PPV) and phenyl-C61-butyric acid methyl ester (PCsBM) on the SC performance.

This material system has been carefully chosen in order to provide the right energy level
configuration for the first approach (see section 3.2.9.3 on page 91), which relies on Forster
transfer from the host to the guest, followed by 1SC on the guest and back energy (Dexter)
transfer from the guest to the host. Note also that the donor polymer is rather amorphous in
pristine form, so that the addition of guest molecules should influence charge transport less
strong than in a crystalline donor material that is disturbed by the guest.

3.5.1 Materials

The donor polymer is MDMO-PPV (purchased from Sigma-Aldrich), the acceptor fullerene
derivate is PCsBM (purchased from Sigma-Aldrich) and the phosphorescent emitter is the Ir-
complex ADSO77RE (purchased from ADS). The chemical structures of these materials are
shown in Figure 3-30.
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Figur e 3-30. Chemical structures of MDMO-PPV, PC¢BM and the Ir-complex ADSO77RE.
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3.5.1.1 HOMO-LUMO Energy Levels

The HOMO and LUMO energy levels of our materials and of P3HT are shown in Figure 3-31.
For MDMO-PPV, two values are given for both, the HOMO and the LUMO levd; the dashed
lines correspond to literature values'*™ and the solid lines to measurements by our group".
According to the classification scheme on page 132, we are dealing here with configuration 'c'
or '€, depending on which HOM O measurements to use. If the literature value for the HOMO of
MDMO-PPV (5.3 eV) is to be trusted, we are dealing with configuration '€, which is acceptable
if most of the excitons are generated in the donor polymer or when oneis using a bilayer where
the guest is only mixed with the donor. If the measurement by our group (5.65eV) is to be
trusted, then we have configuration 'c’, presenting the problem of hole trapping for holes not
only originating from PCg,BM, but also from MDMO-PPV.

28 -31eV

3.39 eV
3.65¢evV 3.79 eV

MDMO-
PPV Ir-compound
e 5.36 eV
573 eV 3-5.65¢eV

6.32 &V

Figure 3-31. HOMO and LUMO levels of the used materials according to measurements by
Charlotte Fléchon. The dashed lines for MDMO-PPV correspond to values taken from the
literature.™®*'"® The exact MDMO-PPV HOMO level distribution may be crucial to determine if
charge trapping can be expected from MDMO-PPV to the Ir-complex.

3.5.1.2 Singlet and Triplet Levels

To achieve Forster or Dexter transfer one relies on a spectral overlap between absorption and
emission of the respective (fluorescence/phosphorescence, host/guest) spectra. The overlap
between the host emission spectrum and the guest absorption spectrum, as well as the estimated
singlet and triplet levels are shown in Figure 3-32. The green area indicates the wavelength
region in which the polymer emission and guest absorption spectrum overlap. The overlap is

essentially between the singlet emission of the donor and the lowest-lying singlet metal-to-

" measurements performed by Charlotte Fléchon in the UCL Department of Chemistry in the group of
Darren J. Caruana
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ligand charge-transfer (MLCT) state of the guest (see Figure 3-33). Note that depending on the
precise HOMO values, it may also be possible that electron and hole are transferred onto the
guest, effectively resulting in the desired energy transfer.
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Figure 3-32. (a) Absorption and emission spectra of the donor polymer and the Ir-complex in
solid state. The green area indicates in which wavelength range a significant Forster transfer
from the host to the guest is possible. (b) Exciton energies of the participating materials. The
host is MDMO-PPV and the guest is the Iridium compound ADSO77RE. The singlet energy
levels of the guest are taken from fittings of Gaussians to the absorption spectrum®”® (see Figure
3-33). The triplet level of the guest corresponds to the photoluminescence peak wavelength
(675 nm).

The singlet level of MDMO-PPV (2.1 eV) as well asthetriplet level of the Ir-complex (1.8 eV)
are obtained by using the wavelength of maximum emission of the corresponding compound
(580 nm and 675 nm, respectively). Thetriplet level of MDMO-PPV'® (1.6 eV) and the singlet
levels of the Ir-complex'” (see Figure 3-33) are taken from the literature. Note that the triplet
level for MDMO-PPV may be overestimated as, according to an assumed exchange energy of
0.7 eV or according to Offermans et al.,'® the triplet level may lie around 1.4 or 1.3€V. In
any case, it is lower than the triplet level on the guest, hence allowing Dexter energy transfer.
The triplet level of PC&BM is around 1.5 eV and triplet transfer to PCe;BM may hence be
possible depending on the precise energy levels. If the triplet level on PCgBM is lower than the
CT level, exciton dissociation at the donor/acceptor interface may be hindered (similar to a too
low triplet level on the donor polymer), as the CT level may not be significantly populated in
such a scenario. The author is not aware of publications concerning exciton dissociation at a

type Il heterojunctions from thetriplet state on PCg,BM.
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Figure 3-33. Absorption and Emission of the Ir-complex showing the contributions of the
ligand centred L, state, three singlet metal-ligand charge-transfer (MLCT) states and a triplet
MLCT state. The emission on the right is phosphorescent. Image reprinted with permission
from Hedley et al.,'” Copyright (2010) American Chemical Society.

3.5.1.3 Charge Transfer State Energy

To make sure that triplet excitons can still be split at the D/A interface, the CT state needsto lie
below the T, level of the donor (1.6 €V). According to section 3.2.8 or Figure 3-2 on page 89,
the energy of the CT-state (Ecr) can be estimated by either considering Voc or |Eqomo(D) —
ELUMO(A)I-

o Accordingto Ecr =eVoc + 0.5V oneobtains Ect =0.8eV + 0.5eV =1.3eV.
e According to Ecr = |Eqomo(D) — ELumo(A)| + 0.3 €V one obtains
0 Ecr=53ev -37¢eV +03eV=19¢V if the literature values for MDMO-
PPV and PCsBM are used, or
0 Ecr=565ev — 379 eV + 0.3 eV =216¢V if the measurements by our
group” for MDMO-PPV and PC¢,BM are used.

The above calculations give considerably different estimates of the CT-state energy. Calculating
Ecrvia Vo results in a desirable situation where the CT state (1.3 eV) is expected to lie below
1.6 eV. Calculating Ecr via the effective band-gap on the other hand results in a situation where
Ecr (1.9- 2.2 V) is expected to be larger than 1.6 eV, hence resulting in a configuration where
charge separation via the CT state may not be efficient.

¥ by Charlotte Fléchon
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3.5.2 Device Fabrication

Blends and bilayer SCs were fabricated with materials presented in this section. Bilayer devices
offer the advantage of a better controlled morphology and, most importantly for the work here, a
possibly fullerene free layer of donor polymer. In order to create bilayers, several approaches
were attempted, among them the use of a bad solvent, evaporation of an eectron conducting
layer on top of the donor layer, and the application of a crosslinker. The first two approaches are
shown in the appendix in section 4.1 on page 198. The use of the crosslinker was successful and

will be described in the following.

3.5.2.1 Crosslinker FPA

This approach to achieve bilayers relies on crosslinking the first layer (donor) so that it becomes
insoluble in the solvent used for the second layer (acceptor). The crosslinker used is
bis(fluorinated phenyl azide) (FPA, synthesised by the group of Peter Ho, Singapore, chemical
structure shown in Figure 3-34a).”® The proposed working principle for the crosslinker is
shown in Figure 3-34b. The crosslinker generates a singlet nitrene upon photoabsorption, which
is so reactive that it can be inserted into alkyl chains for example. FPA has been shown to
crosslink various different conjugated molecules whilst not reacting with the polymer and
absorbing at a very low wavelength of ~ 250 nm, a spectral region where many polymers are
transparent. Also, FPA shows little exciton and carrier trapping in many polymer matrices,'®*
FPA was found to have no influence on the PLQE of MDMO-PPV films.

The fabrication procedure for bilayers was as follows: The crosslinker solution (in toluene) was
added to the polymer (MDMO-PPV) solution (in chlorobenzene) and the first layer was spin
coated as normal. Then the substrate was baked at 75 °C for 20 min to distribute the crosslinker
within the blend. The layer was then irradiated with UV light (250 nm UV LED, UVTOP®
from Sensor Electronic Technology) at a distance of 10 cm for 10 min. (Two samples were
irradiated simultaneously). Afterwards, the layer was spin rinsed two times with chlorobenzene

at 5000 rpm to remove any non-crosslinked polymer.
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Figure 3-34. (a) Chemical structure of the crosslinker molecule FPA. (b) Crosslinking
mechanism of FPA. Photoabsorption leads to the production of very reactive singlet nitrene,
which may react with an alkyl chain.(Figure courtesy of Prof. Peter Ho, Singapore).

The film retention for crosslinked materials generally depends on the crosslinker concentration
and the molecular weight of the material to be crosslinked. The molecular weight of MDMO-
PPV israther low (23 k) so that arather high concentration of the crosslinker FPA must be used.
As the absorbance (A) is proportional to the thickness (t) of the material the light has to travel
through and the absorption coefficient (), i.e. 4 = o ¢, thefilm retention ratio (ter/thefore) Can be
determined as the ratio of the absorbance after and before spin rinsing in a good solvent (see
Table 3-3).

One can see from Table 3-3 that 10 wt% is a good crosslinker concentration if one intends to
crosslink most (~90%) of the material. Interestingly, even without UV-exposure, ~84% of the
material is retained on the substrate for a 10 wt% crosslinker concentration. A possible
explanation for that observation may be that the heating step prior to the UV-exposure already
crosslinks the material.
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Table 3-3. Film retention determination via absorption peak measurements. The crosdslinker
concentration, the MDMO-PPV film thickness and the guest concentration have been varied.
Also, the film retention without the UV exposure step has been measured.

Crosslinker Sp(ljn-spsscl Guest uv Retention
. onor . :
concentration layer concentration exposure? ratio

73.4%

0, 0,
1 wt% 1800 rpm 0.0 wt% yes 65.1%
79.1%

0 0,

3 wt% 1800 rpm 0.0 wt% yes 77 1%
10 wt% 4000 rpm 0.0 wt% no 86.3%
10 wt% 4000 rpm 0.5wt% yes 92.0%
10 wt% 4000 rpm 2.5 wt% no 82.8%

3.5.2.2 Final Device Fabrication Procedure

In the following, devices have been fabricated as follows:

The indium-tin oxide (ITO) substrates (purchased from UQG Ltd., Cambridge, UK) were
ultrasonicated in acetone and isopropanol for 10 min each before exposing them to an oxygen
plasma. A 62 =5 nm layer of high-conductivity PEDOT:PSS (purchased from Sigma-Aldrich)
was spin-coated under air onto the devices. After annealing the PEDOT:PSS for 10 min at
140 °C the active layers were spin-coated under nitrogen atmosphere, achieving a 74 = 9 nm
thick layer as measured via a Dektak profilometer. MDMO-PPV:PCg,BM blends were prepared

in toluene.

For bilayer devices, the MDMO-PPV and PC¢BM (both purchased from Sigma Aldrich) were
dissolved in chlorobenzene. MDMO-PPV was mixed with 10 wt% of FPA. After spin coating
the MDMO-PPV:FPA blend, the substrate is annealed at 75 °C for 20 min and exposed to UV-
light (250nm LED). Before PCsBM is deposited, the layer is spin-rinsed twice with
chlorobenzene at 5000 rpm to remove any residual non-crosslinked polymer. For the bilayer
devices which include the triplet emitter, the MDMO-PPV layer was 56 + 10 nm and the
PCe:BM layer ~ 32 nm thick, as measured via a Dektak profilometer.

The cathode consists of a > 150 nm thick Aluminium layer evaporated at pressures below

10° mbar.
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3.5.3 Thickness Optimisation For Bilayer Devices

3.5.3.1 Dark ]V Characteristics

Before using the phosphorescent emitter the behaviour of the pure bilayer needs to be examined
and the optimum thicknesses of the respective layers found. It is often useful to investigate the
JV curves of devices not only under illumination, but also in darkness, because removing the
light means blocking out effects of exciton diffusion and dissociation and one can solely focus

on charge transport including charge injection/extraction.

Figure 3-35 shows the JV curves of dark bilayer devices with different MDMO-PPV
thicknesses (spin-speeds indicated by the colour) and different PCsBM thicknesses (spin-
speeds indicated by the line style). From the dark JV-curves it is clear that upon reducing the
film thickness of the MDMO-PPV layer, the slope of the curve at higher voltages is strongly
increased. This slope gives an indication of the series resistance Rs (if one thinks of the SC asa
diode with a shunt and series resistance as explained in section 3.3.1 on page 93). Changing the
PCe:BM spin-speed on the other hand does not result in a clear trend. We therefore find that for
thicknesses of the donor layer > 56 nm (corresponding to the spin-speed of 4000 rpm), the
MDMO-PPV layer presents the bottle-neck with regards to charge transport in these devices.

We hence find that the optimum spin-speed for MDMO-PPV seems to be 4000 rpm from a

charge transport point of view.
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Figure 3-35. (a) Dark JV curve of bilayer devices with different thicknesses of MDMO-PPV
and PCgsBM. (b) Zoom-in into the low bias regime. The thickness of the donor layer is
illustrated by the colour (black, red, green) of the curves whereas the thickness of the acceptor
layer isillustrated by the line style (solid, dashed, dotted).
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3.5.3.2 Illuminated JV Characteristics

The JV curves of bilayer devices under illumination and the respective performance parameters
areillustrated in Figure 3-36 and Figure 3-37.

We see that Jsc (black squares in Figure 3-37) is improved for higher spin-speeds, which means
that the reduction of light absorption at higher speeds, which by itself would result in a lower
Jsc, is overcompensated by the improvement in charge transport for thinner donor layers. The
hole mobility on MDMO-PPV is hence the bottleneck in these devices.

However, not only does Jsc increase, but also does Voc and to a very small extend the FF upon
increasing the spin-speed. More precisely, we see that Voc is purely a function of the polymer
thickness and independent of the acceptor thickness.

Similarly to the increase in Jsc, the FF can “normally” be expected to increase upon reducing
Rs. However, theincrease in FF was small, from 25% for a spin-speed of 800 rpm up to 28% for
a spin-speed of 4000 rpm. Note that all curves show a very linear behaviour between V = 0 and
V = Voc, which mathematically leads to a FF of 25%. The linear behaviour suggests that there
may be a problem of charge injection, but knowing that a BHJ architecture with the same

materials works very well, this cause seems unlikely.

If we look at the influence of varying the PCs;BM spin-speed, we only find an influence on Jsc.
We see that within devices with the same MDMO-PPV film thicknesses, increasing the spin-
speed from 1800 to 4000 rpm significantly reduces Jsc. (Changing the spin speed for PCs,BM
from 800 to 1800 rpm does not show a large effect). The reason for that cannot be explained
under the assumption of a perfect bilayer, because reducing the thickness of PCg,BM should not
reduce exciton dissociation or negatively influence electron transport. Looking at AFM images
of bilayer devices (see Figure 3-41), we see an imperfect coverage of the donor layer with
PCsBM. Therefore, increasing the spin-speed from 1800 to 4000 rpm possibly led to a larger
surface of the donor layer that was not covered by PCgBM, hence reducing Jsc.

As a result of the thickness optimisation, we find an optimum donor layer of ~56 nm and an
optimum PCq;BM layer of ~32 nm. Note that increasing the exciton diffusion length in a bilayer
(i.e. the further aim of this work) should alter the optimum donor thickness towards larger
values. However, the problem with hole transport arising for larger MDMO-PPV thicknesses
would compensate any improvement in exciton dissociation rates. Considering exciton diffusion
lengths in MDMO-PPV of about 6 + 1 nm,**? the optimum MDMO-PPV film thickness should
be even smaller than 56 nm. Therefore, an increase in the exciton diffusion length should

improve Jsc even for the rather thin donor layer of 56 nm thickness.
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Figure 3-36. JV-curves of illuminated bilayer cels with different thicknesses of MDMO-PPV
and PCgBM. The thickness of the polymer layer is illustrated by the colour of the curves
whereas the thickness of the acceptor layer isillustrated by the line style (solid, dashed, dotted).
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Figure 3-37. Performance parameters for MDMO-PPV/ PCsBM bilayer cells without the Ir-
compound as a function of spin-speeds of the layers. 7 is the power conversion efficiency.

Note that there is a way of determining the exciton diffusion length by preparing bilayers of the

donor polymer and a quenching layer (PCs;BM). This method rdies on varying the thickness of

the donor layer to maximise Jsc. The thickness at maximum Jsc can then be related to the

exciton diffusion length (in first approximation, this thickness equals the exciton diffusion
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length). However, the problems with hole transport at larger donor film thickness does not allow
us to perform this investigation. Also, this method relies heavily on obtaining perfectly
separated donor and acceptor layers with a sharp interface (— problem of PCeBM diffusion

and intercalation) and a well controlled film thickness (— spin coating of films below ~30 nm is
rather unrdiable).

3.5.4 Addition of the Phosphorescent Guest

3.5.4.1 Results for Blend Devices

As the idea of this work is to increase the exciton diffusion length in the donor polymer, when
fabricating blend devices, one should aim for a morphology where the materials are not
completely intercalated and/or making larger domains than ideal for the reference cell (without
a phosphorescent guest). Knowing that an additional baking step typically changes the degree of
phase separation, | measured the SC performance of reference blend devices with different

annealing temperatures.

From Figure 3-38a one can see a maximum of the photovoltaic efficiency at 70 °C, where all
parameters but Jsc were maximized. Jsc was maximized at 80 °C. The SC performance has then
been measured as a function of guest content for the optimum annealing temperature of 70 °C
(Figure 3-38b) and at 90 °C (Figure 3-38c), i.e. at an annealing temperature that is expected to

lead to less intercalation and larger domains.

We seerthat at 70 °C there is a negligible (3%) increase in Jsc, but a significant increase in Voc
(11%) and FF (16%) upon adding 1 wt% of the guest. Increasing the guest content to 3 wt%
increases FF further but reverts Voc back to the reference cell value. At 90 °C on the other hand,
we observe an increase in all three parameters upon adding 1% of the triplet emitter. Increasing
the number of guest molecules further is detrimental for the performance. The improvement of
the overall energy conversion efficiency (») at 1 wt% guest content for the devices pre-annealed
at 90 °C (70 °C) amounts to 59%, (31), of which about 11% (3%) is coming from Jsc, 9%
(11%) from Voc, and 26% (16%) from FF. Absolute values of the solar cdll parameters are
givenin Table 3-4.



3 Triplet Emittersin Organic Solar Cells

144

(b)

90 °C.

(@

2'5 LI T T T T T _- 08 JSC
20 — 0.7 _._Voc
doe & FF
&E\ 15 | Jos = 1
O 4 [
< H04 W&
E 1or Josz =
3 1 o
> o5t 102 5°
4 0.1
0.0 | NI (TN TN T T N TR ST | ] 0.0
20 40 60 80 100 120 140
Temperature (°C)
1.8 I J T T I I I I I I 1.8
| . o 1
= 16 70°C 90°C 116
™ | @ Voc
L 14 AFF 114
) N
> g2 ¥ ; : 112
Q I
2 10 —11.0
2 i
© 08l 408
© L
E 06} H06
o L
E 04t 404
| | | | I T PR TR |
0 2 3 0 1 2 3 4 5
Giiact rnntant (wit%/.)\
I T I T I T I T I T I T L} ! II. 5
A 2 10 4 I /]
| dark (90°C) /] - 14
C R7 - N ] B 1
- F ./'//’ = 1 g 1 — - 3
E o3 P - i
i Jo1E N 12
e B 41
C. - 0.01 ! L .
- B vl L aaanl3 / Ve o _ 0
0.01 0.1 1 [o I 1
Voltage (V) . R 4 -1
a 1 B 172
1 I 1 | 1 1 1 1 1 | 1 _3
-02 00 02 04 06 08 1.0 -02 00 02 04 06 08 10

Voltage (V)

Figure 3-38. (a8) MDMO-PPV:PCsBM blend devices annealed at different temperatures. (a)
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Table 3-4. Absolute values of Jsc, Voc, FF and  for devices prebaked at 70 °C and 90 °C.

oment ke Ve P
(Wt%) (mA/cm?) (V) (%)
70 °C prebaked

0 2.26 0.56 0.30 0.39
1 2.32 0.62 0.35 0.51
3 2.31 0.57 0.37 0.50

90 °C prebaked
0 1.86 0.58 0.30 0.32
1 2.07 0.63 0.37 0.51
2 2.06 0.54 0.33 0.38
5 1.35 0.37 0.27 0.14

AFM images of blends of MDMO-PPV with PCsBM (1:4 weight ratio) in toluene are shown in
Figure 3-39, where one can see a morphology dominated by PC¢BM clusters. These PCg,BM
clusters also appear without annealing the blend to 90 °C. The clusters have a diameter of
approx. 200-400 nm. More precisely, | find an increase of the mean diameter (of ‘equivalent
discs) of the PCs;BM grains of about 23% upon annealing the blend at 90 °C (from 226 nm to
278 nm) and a smaller additional increase of 15% after adding 5 wt% of the Ir-compound to the
blend.

Blends of the same material in chlorobenzene resulted in smaller clusters with diameters of
approx. 120-200 nm (results not shown). The blend is known to show mixing on a smaller scale
in chlorobenzene as compared to toluene. As more phase separation is desired to test the
influence of the triplet emitter on the exciton diffusion length, toluene was the chosen solvent
for the blends.
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Figure 3-39. Tapping mode AFM images of blends spin coated from toluene. (a) unannealed
blend without the triplet emitter, (b) annealed blend without the triplet emitter and (c) annealed
blend with 5wt% of the triplet emitter. All blends where prepared on spectrosil without any
oxygen plasma or depaosition of PEDOT:PSS. Vertical scale bars indicate 4 pum.
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3.5.4.2 Results for Bilayer Devices

| then fabricated bilayer devices with the same materials and measured the performance as a
function of guest content. As mentioned already, bilayers offer the advantage of a better
controlled morphology where domains of phases of the pure donor polymer are more likely to

exist.

Figure 3-40a shows JV-curves in the dark, presenting a slightly reduced current at higher
voltages upon adding the Ir-compound. In Figure 3-40b | then show average JV-curves for
illuminated devices as a function of guest concentration. The corresponding performance
parameters are illustrated in Figure 3-40c, where we can see that Jsc is the only parameter that
increases upon adding the guest. The incident photon to current efficiency (IPCE) spectra (see
Figure 3-40d) show more clearly where theincrease in current originates. Interestingly we see a
reduction in the part of the current that is generated due to light absorption by PCsBM (peak at
around 350 nm), but a clear increase in the current generated due to absorption by the donor

polymer (which has its absorption maximum at 490 nm).

| also investigated the bilayer morphology via AFM. No difference can be seen in the AFM
images between bilayers where the donor film contains the Ir-compound (not shown) and those
which do not (Figure 3-41a). The AFM image reveals an interesting looking surface with petal-
like features. It is the impression/interpretation of the author, that what one sees there is a
discontinuous PCgBM layer. The centre between different adjacent petals is aggregated
PCsBM and the petals itself is “missing PCs;BM”. The step between a petal and the outer
environment is approx. 30 nm high, which is in good agreement with the PC¢BM film
thickness (32 nm as measured with a Dektak profilometer). Also interesting is the small
PCe:BM cluster in the middle of each petal.
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Figure 3-40. Bilayer devices. (a) JV curves of devices in the dark. (b) JV curves of illuminated
devices. (c) Summary of performance parameters. (d) |PCE spectra demonstrating an increasein

signal originating from donor absorption.

Upon baking at 140 °C one can see (Figure 3-41b and c) that the former rather smooth and

continuous PCgBM layer is now aggregated into small clusters with diameters of around

400 nm. Interestingly this is similar to the domain sizes of PC;BM clusters in blends made out

of toluene. | hence suggest that intercalated domains are formed upon annealing. As we try to

avoid intercalation, bilayer devices were not annealed at any point.
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Figure 3-41. AFM images of bilayers without triplet emitter showing "petal”-like structures. (a)
before annealing, (b) after annealing at 140 °C for 10 min. (c) amplified image of (b). One can
see how the previously smooth surface shows considerable clustering upon baking. Bilayers
were deposited on spectrosil substrates. Individual layers were spin coated from solutions in CB
(with small amounts of toluene in the donor solution due to the addition of the crosslinker
solution).

3.5.5 Transient Absorption

In order to gain further insight into processes such as Forster and Dexter transfer and the
occurrence of triplet excitons in the donor polymer upon addition of the guest, transient
absorption (TA) measurements were carried out by Giulia Grancini at the Milano Istituto
Italiano di Tecnologia in the Center for Nanoscience and Technology, Milano, Italy, in the
group of Annamaria Petrozza, who also helped interpreting the results. They also provided the
figures which | adapted to a small degree. The measurements give further insight into processes
such as Forster and Dexter transfer and the occurrence of triplet excitons in the donor polymer
upon addition of the guest.



3 Triplet Emittersin Organic Solar Cells 149

3.5.5.1 Experimental Setup
3.5.5.1.1 Nanosecond Transient Absorption (TA) Measurements

Nanosecond transient absorption (TA) measurements were carried out with a LP920 laser flash
spectrometer (Edinburgh Instruments). It is based on a standard “ pump-probe” set-up where the
sampleis excited by a ns laser pulse (pump) and the time evolution of the differential absorption
changes induced by the pump is monitored by a second weak probe generated by a CW light
source. The pump pulses are provided by a nanosecond tuneable OPOL ett-35511 laser. The
probe light is provided by a pulsed Xenon arc lamp. The sample was kept at a 45° angle to the
excitation beam. The beams are focused on the sample ensuring the spatial overlap. The
transmitted probe signal is spectrally filtered by a monochromator and detected. Two different
detection systems are used: a cooled ICCD camera which enables the detection of the entire
spectral range from 350 nm to 850 nm at once and a set of photomultipliers (with both VIS and
near-IR detection window from 400 nm to 2000 nm) enabling us to collect the single-
wavelength kinetic with higher sensitivity. The signal is finally recorded by a TDS 3032C
digital signal analyzer. From the transmission change upon photo-excitation, the variation in the

absorption is thus derived as a function of pump-probe delay T and wavelength A as:

I
A0.D.(t,A) = log (%) Eq. 3-34
rans )

where Iy IS the intensity of the transmitted probe signal with excitation off and Iy is the
transmitted intensity after laser excitation. Alternatively, the normalised differential

transmission is shown:

AT Totmp — Toimp
T (D) = T. Eqg. 3-35
pump

The system has sensitivity of 5x10 and a time resolution of 7 ns for the VIS photomultiplier,
and around 70 nsfor the IR detector.

3.5.5.1.2 Femtosecond Transient Absorption (TA) Measurements

Femtosecond TA measurements were taken by a setup driven by a 1 KHz repetition rate pulse at
A =780 nm with 150 fs pulse width, coming from a regeneratively amplified mode locked
Ti:sapphire laser (Clark-MXR Model CPA-1). A fraction of this beam is used as the excitation
pulse at 390 nm wavelength due to second harmonic generation in a non linear crystal. Another
small fraction of the laser light is focused into a 2 mm thick sapphire plate to generate a stable

single-filament white-light supercontinuum, which serves as a probe pulse, spanning in
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wavelength from 400 to 1000 nm. The pump and probe beams are spatially and temporally
overlapped on the sample, controlling the time delay by a motorised slit. The minimum
detectable signal is AT/T~10". The system has a ~ 150 fs temporal resolution. The pump beam
energy density used in the experiment is kept deliberately low (10-50 nJ, 300 um beam size).
All the measurements were taken with the samples in a vacuum chamber to prevent any

influence from oxygen or sample degradation.

3.5.5.2 Nanosecond TA measurements
3.5.5.2.1 MDMO-PPV and MDMO-PPV + Ir-complex

First the excitation was tuned to 500 nm, i.e. the absorption peak of MDMO-PPV. Figure 3-42
shows the comparison of the transient absorption (TA) spectra integrated in the first 100 ns
using the ICCD detection. The pure MDMO-PPV shows a broad photo bleaching (PB) feature
(negative AO. D.) in fair accordance with its absorption spectrum. We see two peaks, at around
500 nm and at the shorter wavelength side. At the red side of the spectrum (see also Figure
3-43a), a dlightly positive signal appears due to the tail of the Triplet T, — T, absorption band
of the MDMO-PPV peaking around 900 nm.**
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Figure 3-42. Comparison of the TA spectra in the visible region for pure MDMO-PPV (grey)
and for the MDMO-PPV + Ir-complex (black) integrated in the first 100 ns temporal window.
Figure courtesy of Giulia Grancini, Center for Nano Science and Technology@PoliMi, Istituto
Italiano di Tecnologia.

The TA spectrum of the MDMO-PPV with the Ir-complex shows again the PB and the photo-
induced absorption (PA) due to triplet absorption and a new positive band peaking at 400 nm
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appears. This band can be assigned to polaron photo-induced absorption (hole in the MDMO-
PPV), asit is also observed when the MDMO-PPV is blended with PCgBM. This demonstrates
that an eectron transfer occurs between the MDMO-PPV and the Ir-complex, as suggested by
the dashed energy level schemein Figure 3-31 on page 134.
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Figure 3-43. TA spectrain the near IR region for (a) the pure MDMO-PPV sample and (b) for
MDMO-PPV + 2.5% Ir-complex. Every scan is integrated over 100 ns. Note that the instrument
sensitivity is around 2x10*, so the data in the red edge are within the noise.
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Figure 3-44. (a) Dynamics at 400 nm probe wavelength of the MDMO-PPV + Ir-complex. (b)
TA dynamic for the MDMO-PPV + 2.5% Ir-complex at a 920 nm probe wavelength upon
500 nm excitation in the first 10 ps time window. Figures courtesy of Giulia Grancini, Center
for Nano Science and Technology@PoaliMi, Istituto Italiano di Tecnologia.

On the other hand one should notice that the TA spectra of the MDMO-PPV + 2.5% Ir-complex
till shows the PA band around 900 nm. However, it exhibits a different decay, with a very
long-living component, as also demonstrated by the dynamics in Figure 3-44b.

Upon exciting at 500 nm one mainly pumps the MDMO-PPV, however, also the Ir-complex is
excited. Two possible routes may be opened. When the MDMO-PPV s excited, a fast charge-
transfer channel is opened at the interface with the Ir-complex, as the PA band due to holes in
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the MDMO-PPV reveals. This suggests that an interfacial CT state (or possibly polaron pair) is
formed and is a preferential channel upon S; excitation. However, the CT hasalifetime of afew
microseconds, whereas the triplet band has a much longer one, indicating that another state may
feed the triplet of the MDMO-PPV. At 500 nm the Ir-complex is also excited. Upon fast ISC a
triplet-triplet Dexter transfer can occur in the longer timescale from the Ir-complex to the
MDMO-PPV, thus explaining the longer triplet lifetime. Note that the triplet lifetime in the Ir-
complex alone still needs to be measured to better confirm this, and that according to a rough
caculation (Ecr ~ [Enomo™™ - ELumo™®| = 5.3eV - 3.39eV = 1.91 eV, and polymer triplet
level at E(T,) ~ 1.6 eV), theinterfacial CT state between the MDMO-PPV and Ir-complex is at
a higher energy than the polymer T, state, thus the CT state can also recombine into the T, state.
Note that the lower lying T, state is also in agreement with the observation that within the
polymer:guest blend, the time decay of charges is faster (3.7 us) than that of the T, state on the
polymer (7 ps).

3.5.5.2.2 Addition of PC¢1BM to the Blends

The spectrum of the blend in the range between 350 and 800 nm (Figure 3-45a) shows the PB of
the MDMO-PPV and the positive band at 400 nm due to PA of charges in the MDMO-PPV
upon dectron transfer at the interface with the fullerene. No feature of PA of charges are present
in the 700 nm region (as observed with ultrafast TA), maybe due to a very small signal. No PA
feature in the 920 nm region is observed, indicating that the triplet pathway is quenched by the
opening of a charge transfer path at the interface with the PC;,BM (as also reported in the
literature™?). In particular we observe in Figure 3-45b a broad negative feature peaking at
1000 nm that has been previously assigned™® to a radiative charge transfer recombination at the

polymer:fullereneinterface.

Indeed, it has been suggested™ that the triplet of the polymer lies above the CT state formed at
the MDMO-PPV:PCs:BM interface, thus it can recombine to the emissive CT state. Note that
with thefs TA one can see that the band at around 800 to 900 nm is quenched in the first 400 ps.
If assigned to T;— T, PA, aready existing in the ps time regime, it is possibly feeding the

emissive CT dtate (see later discussion).

When the Ir-complex is added to the blend in the spectral range between 350 and 800 nm
(Figure 3-45c¢), asimilar scenario is detected. The PB and the PA band due to charges at shorter
wavelength side is again observed. In this case, however, a very small triplet population might

be present upon excitation of the Ir-complex and triplet-triplet energy transfer.
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After 100 nsinthe NIR region (900 to 1200 nm, see Figure 3-45d) the spectrum is similar to the
one of the MDMO-PPV:PC¢BM, one can still observe the stimulated emission (SE) from the
interfacial CT state as the main pathway of recombination. However, a closer look at the
dynamics at 910 nm (in Figure 3-46) shows that there is afast initial positive signal that can be
assigned to the T, — Ty, PA of the MDMO-PPV that is then quenched by the formation of the
emissive band of the interfacial CT state that is very long lived (still there at 100 ps). This may
indicate that the triplet excitations “indirectly” generated in the polymer contribute to the CT
state at the polymer/fullerene interface. Note that triplet states cannot be populated by 1SC upon

excitation of the S; state of the polymer as charge transfer would be favoured.
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Figure 3-45. TA spectrain the visible (a) and near IR region (b) for the MDMO-PPV:PCsBM
blend and for MDMO-PPV:PCs,BM + 2.5% Ir-complex (c and d). The TA spectra at the shorter
wavelengths (a and c) were recorded with the ICCD from O to 100 ns after excitation. Figures
courtesy of Giulia Grancini, Center for Nano Science and Technology@PoliMi, Istituto Italiano
di Tecnologia.
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Figure 3-46. TA dynamics at 910 nm for the MDMO-PPV:PCBM + 2.5% Ir-complex, probing
the triplet PA on the polymer. A positive signal is observed that may then be quenched by the
formation of a CT gate with PCsBM. Figure courtesy of Giulia Grancini, Center for Nano
Science and Technology @PoliMi, Istituto Italiano di Tecnologia.

3.5.5.3 Femtosecond TA Measurements

The results of thefs TA experiments are shown in Figure 3-47. We observe:

e thePB of the MDMO-PPV around 500 nm, and

e abroad singlet PA band in the NIR region peaking around 980 nm decaying during the
first hundreds of picoseconds. The residual band around 800 to 900 nm can be due to
PA of triplets.

Thetwo spectra are quite similar, however, it is noted that at around 800 nm one can observe for
the MDMO-PPV:Ir-complex system a dlightly longer lived dynamics (see Figure 3-48), maybe

dueto longer lived triplet species, in agreement with the ns data.

In the NIR (see Figure 3-49) we can observe the MDMO-PPV singlet absorption peaking at
950 nm. One may note that in presence of the Ir-complex thereis a stronger contribution around
800 to 850 nm. A possible initial absorption of triplets may be considered; the triplets quickly

recombine feeding the emissive CT state.
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Figure 3-47. TA spectra and time decay in the visible and near IR region for MDMO-PPV (a)
and MDMO-PPV +25% Ir-complex (b). Note that now we measure the differential

transmission. Figures courtesy of Giulia Grancini, Center for Nano Science and
Technology@PoliMi, Istituto Italiano di Tecnologia.
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Figure 3-48. Normalised differential transmission time decay at 830 nm for MDMO-PPV and

MDMO-PPV + Ir-complex. Figure courtesy of Giulia Grancini, Center for Nano Science and
Technology@PoliMi, Istituto Italiano di Tecnologia.
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Figure 3-49. TA spectra in the NIR region for (8) MDMO-PPV + PC¢BM and (b) MDMO-
PPV + 2.5% Ir-complex + PCsBM, probing the PA signal due to singlet absorption. Figures
courtesy of Giulia Grancini, Center for Nano Science and Technology@PoliMi, Istituto Italiano
di Tecnologia.

3.5.5.4 Conclusion of TA Measurements

The main results from the photo-induced absorption experiments are the following: First, the
TA measurements indicate that triplet transfer occurs from the guest to the donor. Also, the TA
measurements suggests the occurrence of holes on MDMO-PPV upon adding the guest,
meaning that upon photoabsorption, exciton dissociation occurs at the polymer/guest interface
leading to eectron transfer to the guest. Note that the desired route was either charge transfer of

both e ectron and hole, or Forster transfer from the donor to the Ir-complex.

It is also observed that the T, state of the donor seems to be positioned below the CT sate
between MDMO-PPV and the Ir-complex, and that the CT state between the polymer and the
fullerene is below the T, state of the polymer, hence providing a mechanism for charge
separation from the triplet state. The results of the TA experiments are summarised in Figure
3-50.

Note that Forster transfer from the donor to the guest cannot be excluded because by exciting
the polymer at 500 nm, one also excites the Ir-complex. It is hence difficult to disentangle from
fs TA measurements whether the dynamics of the Ir-complex are due to its excitation or to
ultrafast energy transfer from the polymer. However, no clear rise of the PB of the Ir-complex,

which should proof the Forster transfer, was observed.
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Figure 3-50. Possible pathways observed via TA experiments. IRc stands for Ir-complex.
(@ 1SC (S; — Ty) in MDMO-PPV. (b) The Ir-complex was also directly excited leadingtoa T,
state on the complex, which is then feeding the T, state on MDMO-PPV. A CT stateis formed
at the interface between the polymer and the metal complex leading to charge separation. A part
of the CT states transitions into the T, state on the polymer. (c) Charge transfer occurring at the
interface with PCs,BM. (d) In the ternary blend the charge separation at the polymer:PCgBM
interface is the dominant mechanism. However, feeding of the polymer T, stateis still observed.
Figure courtesy of Giulia Grancini, Center for Nano Science and Technology@PoliMi, Istituto
Italiano di Tecnologia.

3.5.6 Discussion

We have so far established that the addition of the triplet emitter to the SC's active layer led to
an improvement of Jsc for overannealed blend devices and for bilayer devices. Also, in the latter
case, we found that the increase in Jsc stems from an increase in the number of excitons
harvested by the polymer. These results are hence consistent with an increase in the exciton
diffusion length.

In the following we will consider the effect of intercalation of polymer and fullerene and try to

understand in more detail the different influence of the guest on blend and bilayer devices.
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3.5.6.1 Intercalation
3.5.6.1.1 What is Fullerene Intercalation

An aspect of polymer-fullerene SCs which was not discussed in this work so far is (fullerene)
intercalation. Intercalation is the interdigitation of fullerenes with a polymer, whereas the
fullerene fits into the gaps between the polymer side-chains (see for example Figure 3-51). The

following information about intercalation is mainly taken from Mayer et al.."®

Whether a fullerene intercalates or not depends on the size of the fullerene and the free volume
between the polymer side chains. As one can imagine, intercalation strongly affects exciton

dissociation, recombination and charge transport. It explains among others

= why PL is completely quenched in some polymer-fullerene systems (in those where
intercalation occurs),

= why large-scale phase separation occurs in some polymer:fullerene blend ratios while
thermodynamically stable mixing on the molecular scale occurs for others, and

= why the hole mobility of MDMO-PPV increases by over two orders of magnitude when
blended with PCs;BM.**

It is interesting to note that the optimum polymer:fullerene blend contains much more PCgBM
(about 1:4 weight ratio) when intercalation occurs as opposed to when it does not (about 1:1).
This is because in a 1:1 ratio, effectively al of the fullerenes will be interdigitated with
polymers. Without further fullerenes, no continuous electron pathway can be achieved (see
Figure 3-52). Note that the above ratios are weight ratios, not number ratios. Assuming roughly
the same densities for polymers and fullerenes, this means that roughly the same volume of
donor and acceptor is needed for non-intercalating blends. If we look at the number ratio of
intercalating blends, i.e. the number ratio of donor repeating units to acceptor molecules, one
finds for example for MDMO-PPV and PCsBM with molecular weights of 288.42 and 910.88
g mol™ that a 1:4 donor:acceptor weight ratio transates into a 1:1.3 number ratio. This means
that at such a "high" fullerene concentration, one has enough fullerenes to fill all donor side

chain gaps, with some extra fullerene molecul es | eft to help dectron conduction.

The first material system in this chapter, i.e. P3HT:PCeBM, does not intercalate'® whereas the
material system in this section, i.e. MDMO-PPV:PCsBM, does seem to intercalate in non-

annealed blends (see next section).
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Figure 3-51. Intercalation of PBTTT (poly(2,5-bis(3-tetradecylthiophen2-yl)thieno[3,2-
b]thiophene) with PC;,BM (phenyl-c71-butyric acid methyl ester). Image reprinted with
permission from Mayer et al.,'® Copyright (2009) WILEY-VCH Verlag GmbH & Co. KGaA,
Weinheim.
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Figure 3-52. Effect of intercalation on charge transport for aPBTTT:PC7BM blend. (a) Dueto
intercalation a higher fullerene ratio is needed to facilitate electron transport. (b) The dectron
mobility goes up to measureable values from 50% fullerene concentration (not weight %).
Points in black are hole mobilities, points in red electron mobilities. Image reprinted with
permission from Mayer et al.,"® Copyright (2009) WILEY-VCH Verlag GmbH & Co. KGaA,
Weinheim.

3.5.6.1.2 Literature on MDMO-PPV:PCs:BM Blends

There is a lot of evidence that blends of MDMO-PPV:PC¢BM intercalate. If we look for
example at Figure 3-53a, we see that charge generation is ultrafast, in the region of ~100 fs.
Furthermore, let us look at the SEM images™’ in Figure 3-53b. There one can see that the type
of tiny domains formed in a 1:1 blend of MDMO-PPV:PCgBM is aso found in a 1:4 ratio
whereas here they are surrounding the big PC¢BM clusters. We can understand this under the
assumption of intercalation, where the small spheresin the 1:1 blend are domains of intercalated
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bimolecular crystals. At higher fullerene loading, pure PCsBM clusters form which are
surrounded by the intercalated bimolecular crystals, exactly what is expected for intercalated
blends. Another indicator for intercalation, the optimum fullerene ratio for SCs of 1:4, is
fulfilled.

Despite the evidence that intercalation occurs in a non-annealed MDMO-PPV:PCgBM blend, it
is not clear what happens in annealed blends. According to Cates et al.,'® there is strong
evidence that phase separation occurs even in 1:1 donor:acceptor blends (a weight ratio at which
there are about three times more repeating units than PC¢BM molecules) if they are annealed.
An AFM image of a 1:1 blend annealed at 130 °C is shown in Figure 3-54. Also, the annealed
blends showed incomplete PL quenching,'® which is a strong sign for incomplete intercalation
(at least for good acceptor materials such as PCs;BM).
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Figure 3-53. Evidence that PCsBM 'usualy' intercalates with MDMO-PPV. (a) Ultrafast
charge formation after ~100 fs. Images reprinted (adapted) from Brabec et al.,'® Copyright
(2001) Elsevier. (b) SEM images of MDMO-PPV:PCsBM blends cast from toluene. The
spheres (20-30 nm in diameter) which can be seen for a 1:1 ratio are surrounding the larger
discs for blends with a higher fullerene ratio. Image reprinted from Hoppe et al.,"® Copyright
(2004) WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

Figure 3-54. AFM image of an annealed (130°C, 1h) 1:1 MDMO-PPV:PC¢sBM blend
showing clear phase separation. Figure reprinted with permission from Cates et al.,"® Copyright
(2010) American Chemical Society.
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3.5.6.1.3 Impact of Intercalation on this Work

Complete intercalation of donor and acceptor renders the idea of increasing the exciton
diffusion length (by converting singlet to triplet excitons) usdess as intercalation implies the
presence of acceptor molecules less than a nanometre away from where the exciton was
generated. It hence comes down to the question of how mixed/intercalated the polymer is with
PCs:BM. As mentioned above, MDMO-PPV showed PL if the blend is annealed at the correct
temperature'® meaning that there must exist somewhat purer donor domains in which the
excitons cannot diffuse far enough to an interface with PCgBM. If most of the donor molecules
are distributed in these donor-rich domains, the improvement of excitons diffusion length via
triplet excitons would be beneficial (of course under the assumption that triplet excitons are
efficiently split at donor-acceptor interfaces).

Note that despite potential intercalation in a 1:1 MDMO-PPV:PCsBM blend, Rand et al'?®
claimed that, similar to the approach attempted here, an increase of the number of triplet
excitons, due to the addition of a phosphorescent guest, led to an increased Jsc.

Another question to be answered is how perfect the fabricated bilayers are with respect to
flatness of the interface and the avoiding of interdiffusion. The crosslinker FPA was shown to
crosslink quite well the donor polymer in terms of film retention upon spin rinsing in a good
solvent (chlorobenzene), with over 90% of the material remaining if 10 wt% of the crosslinker
was added. However, it is not clear how much PCgBM can diffuse and intercalate with
crosslinked MDMO-PPV. A first step to answering this question may be to find out how many
crosslinker molecules (N(FPA)) there are for each donor repeating unit (N(RU)). In the
following, | estimate this ratio, where M is the molecular mass, u the unified atomic mass unit,

N is the number of molecules and r isthe weight ratio of the crosslinker (10 %).

m(FPA)
N(FPA) M(FPA) M (RU) 247U
= = . — /s . ~ :
NQRU) ~ m(PPV) ' M(FPA) 10% 304u 0.081 Eq. 3-36
M(RU)

From this calculation we find that for each repeating unit, there are 0.081 crosslinker molecules,
or vice versa, for each crosslinker molecule, there are about 12 repeating units. A crosslinker
molecule will take up space between two side chains (of two repeating units) and may block
PCs:BM molecules in that region. Hence roughly every 6™ side chain will be attached to a

crosslinker molecule. This short analysis shows that there will be many repeating units which do
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not have a crosslinker molecule attached to them, potentially allowing PCsBM molecules to

take up the position in between side chains.

On the other hand, maybe it is sufficient to stiffen the polymer chains in order to hinder

PCeBM diffusion into the space between the side chains.

3.5.6.1.4 PLQE Measurements

Under the assumption that the exciton diffusion length is very small and that the number of
excitons lost due to non-radiative decays is independent of the guest, the easiest way of getting
an idea of intercalation may be via PL QE (photoluminescence quantum efficiency) experiments.
The higher the PLQE of a donor:acceptor blend, the more excitons cannot reach the interface (or
reach the interface and do not separate, but that can be ruled out for this well-known material
system) and the lower is the degree of intercalation. Also, whether or not energy transfer occurs
from MDMO-PPV to the guest can be indicated by PLQE measurements, which are shown in
Table 3-5.

We see that the PLQE of a pure MDMO-PPV layer was 17%. (The PLQE of a very similar
polymer,  poly[2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylenevinylene]!, MEH-PPV, was
found™®"*® to be between 10 and 24%.'*'® Adding the phosphorescent guest reduced the
PL QE further to about 4%, which could either mean

i. atypell heterojunction isin place and separating the charges (or at least populate a CT
state between MDMO-PPV and the guest), or
ii.  energy transfer occurs from the donor to the guest, or

iii.  the guest increases the non-radiative decay rate of excitons on the donor.

(i) Looking at the HOMO/LUMO levels (on page 134), it may be possible that € ectrons transfer
to the guest while holes remain on the polymer. The electron transfer from MDMO-PPV to the
guest may explain the existent, but small, influence of the guest on charge transport in
fabricated SCs. This hypothesis is further supported by the transient absorption spectroscopy
presented in section 3.5.5 on page 148.

(ii) Due to the lack of PL from the guest we can deduce that if energy is transferred from the
polymer to the guest (the desired mechanism), most of the excitons must have been back
transferred to the polymer triplet state.
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Table 3-5. Photoluminescence quantum efficiency (PLQE) measurements in solid films at room
temperature in air with a laser excitation at 412 nm. If not mentioned otherwise, samples are
irradiated from the material side (as opposed to from the glass side). Films were spin coated
from chlorobenzene (CB) or toluene.

Film composition PLQE
MDMO-PPV from toluene 17%
MDMO-PPV from toluene, 5% Ir compound 4.2%
pure MDMO-PPV + FPA (from CB) 11%
after development next day (day 3) 9.5%
(75 °C for 10 min, UV 10 min, spin rinsing 2x)
bilayer MDMO-PPV + FPA + PC;BM from CB 0.1%
bilayer MDMO-PPV + FPA + PCBM from CB, 5% Ir 0.3%
compound
bilayer MDMO-PPV + FPA + PC¢BM from CB, T
annealing at 140 °C for 10 min
bilayer MDMO-PPV + FPA + PCBM from CB, 5% Ir 0.2%
compound, annealing at 140 °C for 10 min,
bilayer MDMO-PPV + FPA + PC;BM from CB T
on PEDOT/ITO
bilayer MDMO-PPV + FPA + PC¢BM from CB 0.6%
on PEDOT/ITO, irradiated from glass side
1:4 blend from toluene 0
after annealing at 140 °C for 10 min (day 3) ~0
1:4 blend from toluene, 5% Ir compound
after annealing at 140 °C for 10 min (day 3)
1:4 blend from toluene, 90 °C for 10 min
1:4 blend from toluene, 90 °C for 10 min, 5% Ir compound
1:4 blend from CB ~0
1:4 blend from CB, 5% Ir compound 0
1:1 blend from toluene, unbaked 0.4%
after annealing at 90 °C 0.6%
after annealing at 130 °C 1.1%
2:1 blend from toluene, unbaked 0.4%
after annealing at 90 °C 0.5%

after annealing at 130 °C 0.7%
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The bilayers show measurable PLQEs, but they are surprisingly low and did not exceed 0.3%
when the laser beam entered the sample from the material side. This is rather surprising, even
considering that the laser light will be partialy absorbed by PCsBM before it reaches the
MDMO-PPV. The AFM images of these films are shown in Figure 3-39 on page 145. The
donor layers are 56 + 10 nm thick and one would expect incomplete PL quenching due to the
singlet exciton diffusion length of less than 10 nm.*® Also, the AFM images suggest that the
MDMO-PPV layer is only partially covered with PCsBM, with apparently PCgBM -free
regions in form of "petals'. However, even in these petals, the MDMO-PPV may be
interdigitated with PCg,BM.

For alaser beam entering the bilayer sample from the ITO side, a PLQE of 0.6% was measured.
Interdiffusion of PC¢BM into the MDMO-PPV layer can explain this difference in PLQE when
we assume the Beer-Lambert absorption law and a rather fullerene free donor layer close to the
glass side. The PLQE obtained via the beam entering the sample from the glass side is of course
more closely related to the device performance as the solar simulator light also irradiates the

sample from this direction.

3.5.6.1.5 Intercalation vs. Phase Separation in Blends

As we saw in Figure 3-38a, there is an optimum temperature of 70 °C for the (1:4) polymer-
fullerene devices. The loss of performance above that temperature may be attributed to a
reduction of intercalation and an increasing ratio of pure polymer domains. It was already
mentioned that the effective mean diameter of the PCg;BM cluster increased by about 23% by
annealing the substrate to 90 °C.

Therefore, let us now try to answer the following question: Assuming 100% of the polymer is
intercalated prior to annealing at a certain weight ratio of PCBM c¢;, what would be the
maximum increase of the PC¢;BM cluster diameter if complete phase separation occurred upon

annealing at the concentration ¢, used in these experiments?

Let us start by assuming that at 67 wt% PCgBM, 100% of the polymer isintercalated. Thisisa
lower boundary according to Cates et al..”®® (Using the molecular weights mentioned earlier and
a number ratio of 1:1, one obtains 100% intercalation at 76 wt% of PCgBM). The 67 wt%
correspond to a donor:acceptor weight ratio of 1:2. In my devices, a 1:4 ratio was used, so that
the mass of clustered PCBM equals the mass of intercalated PCBM at room temperature
(assuming 100% intercalation). That means if complete phase separation occurred upon

annealing, the volume of those PCBM clusters would increase by a factor of 2. A volume
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increase of 2 corresponds to an increase in radius or diameter of 23

=1.26 for a perfect sphere.
This means that assuming PCs;BM clusters are perfect spheres, a more than 26% increase in
mean effective grain radius/diameter upon annealing is not possible. For flat cylinders of
constant height, the maximum possible increase of the mean effective grain radiug/diameter is

41%.

Our measured increase of 23% upon annealing hence indicates that considerable amount of
PCes:BM becomes "deintercalated” (i.e. phase separated from the donor) upon baking the blend
at ~90 °C. Note that the measured PLQESs of ~0% do not support this approximation.

3.5.6.2 Influence of the Guest on Jsc and IPCE spectra
3.5.6.2.1 Blend Devices

Within the BHJ SCs we only saw (see Figure 3-38) an increase in Jsc upon adding the guest for
blends annealed at arather high temperature of 90 °C and not for 70 °C, which was the optimum
temperature for the reference cell (without guest content). This result is as expected under the
hypothesis that we improved the exciton diffusion length: As the morphology of a blend
annealed at 70 °C is optimized for singlet excitons, an increase in exciton diffusion length can
be small or even negligible, whereas at 90 °C we expect less intercalation and instead the
occurrence of pure or at least purer polymer domains which could indeed benefit from an

increase in the exciton diffusion length.

However, the IPCE spectra (not shown) do not show a clear increase in the range of the
MDMO-PPV absorption, which means that the IPCE originating from PCBM was also
increased upon addition of the triplet emitter or that the increase in performance is the result of

other factors, such as charge transport, charge recombination and morphology.

Furthermore, we observed an increase of the domain size of the PCg;BM clusters for the blend
devices annealed at 90 °C of about 15% upon adding 5 wt% of the guest, indicating that adding
the guest promotes phase separation. As at 90 °C one is well beyond the optimum temperature
of 70 °C for guest-free devices, further phase separation is expected to affect the devices
negatively, in particular it is expected to reduce Jsc due to the reduction of donor/acceptor
interfacial area and to the decrease of the hole mobility in the non-intercalated donor regions.
The occurrence of larger clusters at high guest concentrations may hence explain the reduction
of Jsc if the increase in exciton diffusion length cannot compensate the above effects. Also, if

electron transfer from the donor to the guest, as observed via TA measurements, is indeed quite
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efficient, electrons are likely to be trapped on the guest unless the PCs;BM molecules are in

close proximity.
3.5.6.2.2 Bilayer Devices

Regarding bilayer devices, we saw from the JV curves in the dark (see Figure 3-40a) a small
negative influence of the guest on charge transport. Nevertheless, as expected from an increase
in the exciton diffusion length and a subsequently higher ratio of dissociated excitons, Jsc was

improved upon adding the guest.

The IPCE spectra are also in agreement with an increase of the exciton diffusion length in the
polymer layer as they show an increase of the photocurrent in the range of the MDMO-PPV
absorption (at ~450 nm). Note that although the photocurrent peak stemming from the PCg,BM
absorption is reduced, Jsc is increased because high values near the MDMO-PPV absorption are
more important than those near the PCs;BM absorption due to the stronger solar irradiance at

higher wavelengths.

A question remaining is why the IPCE peak of PCs;BM was reduced upon adding the guest.
Several effects can to be considered:

a) The Ir-complex creates a typell heterojunction with PCsBM. Excitons generated on
PCsBM may hence dissociate at the guest interface with the result of a trapped hole on the
guest. This trapped hole can then only be released upon light absorption or when the guest
is located at the interface with MDMO-PPV. As thetriplet emitter was added to the polymer
layer, one can assume the latter is indeed the casg, i.e. that the guest will almost always find
a polymer chain in close proximity. This effect should hence be negligible.

b) Another possible explanation would be the influence of the triplet emitter on charge
transport. We have seen in Figure 3-40a that the triplet reduces the dark current. A reduction
in hole conductivity would reduce the IPCE spectrum equally over the whole wavelength
range and could, together with the increase of the MDMO-PPV IPCE pesk, explain the
spectrum.

c) It is noted that the reduction of the PC¢BM IPCE peak cannot be solely explained by
detrimental light absorption in this range via the small number of guest molecules. Light
scattering at guest molecules, however, may add to the effect of direct light absorption and
play arole. (No quantitative investigation was attempted as it is not clear how and wherethe

guest molecules aggregate).
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Also noteworthy, a similar trend in the SC behaviour to that observed in bilayers can be
observed if the devices are not exposed to UV-light (see Figure 3-55). Therefore one may also
suggest that the Ir-compound deactivates the crosslinker to some degree. In the following | will
go into more detail regarding this hypothesis: When spin coating the polymer layer with a spin-
speed of 4000 rpm, omitting the UV-exposure step lead to an approximately 8% thinner film as
measured via absorption spectroscopy. Due to the spin-rinsing step we expect a slightly more
porous film as more donor material is being washed away. Also, the missing crosslinking may
allow more efficient intercalation. Hence we expect a larger donor-acceptor interface and a
higher Jsc for such devices. Indeed, Jsc more than doubled if the UV exposure step was omitted
and the main contribution stems from the MDMO-PPV layer as deduced from the
corresponding IPCE curves. Also, a reduction in Voc and a considerable reduction in the
differential resistance at V = O (i.e. approximately the shunt-resistance under the framework of
the equivalent SC circuit) was observed, which may be the result of increased non-geminate
recombination due to the interpenetrating materials.

77—
-« MDMO-PPV / PCBM /’
0.5 | : bilayer with
¢+ Ir-complex

-1.0 ’ -
| L7 0% guest ]
v ——0.5% guest
-1.5 - _v ——2.5% guest 7
S - = 2.5%guest, no UV A
20 PR RETE RPN BT R
Voltage (V)

Figure 3-55. JV curve of devices under illumination. Compared are devices of different guest
concentrations (black, red and green solid lines) with devices with 2.5% guest concentration
where the UV-exposure step was omitted (green dashed line). The spin-speed for polymer and
fullerene was 4000 and 1800 rpm, respectively.

3.5.6.3 Influence of the Guest on Voc and FF

Using the same host materials and e ectrodes, changes in Voc and FF upon addition of the triplet
emitter are mainly determined by changes in the mobility, the field-dependence of exciton
dissociation and non-geminate charge carrier recombination, which in turn depend on a variety
of parameters such as the mobility, doping and density of the charge carriers (which in turn

partly depend on the morphology). Interestingly, whereas there existed a doping load (1 wt%)
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where Voc and FF were improved for BHJ devices, no such region could be found in case of

bilayer devices. Therefore we need to consider the different influences the guest may have on

exciton dissociation and non-geminate charge recombination for the different device

architectures. Such differences are for example:

a)

b)

<)

For (ideal-) bilayer devices, bimolecular non-geminate charge recombination does not exist

due to the separation of electrons and holes in the device architecture.

Therefore, an increase in non-geminate charge recombination, as eg. deduced from the
reduced Voc and FF, can only occur if the bilayer is not perfect, i.e. when PCgBM diffused
into the donor layer. This means that either the bilayer is not perfect to start with and the
guest acts as charge recombination centres, or the bilayer becomes less perfect due to guest.
I noted earlier that the increase of Jsc and the MDMO-PPV IPCE peak may be the result of
the guest somehow reducing the effectiveness of the crosslinker. This process would also

explain the influence of the guest on Voc and FF.

Exciton dissociation may be improved in bilayer devices due to a potential drop at the

interface. ™™

Although it was claimed for MDMO-PPV:PCy;BM BHJ SCs that there is a considerable
field dependence of exciton dissociation and that the ratio of dissociating bound e ectron-
hole pairs is about 60% at room temperature, ™ it was later actually measured that e ectron-
transfer from MDMO-PPV to PCgBM s ultrafast and that it is not an efficiency limiting
factor in such devices, ' essentially in agreement with an intercalated system. We may
therefore assume that exciton dissociation is ideal for blend devices, especially those
annealed below 70 °C, but may be worsened in bilayer devices upon adding the guest. As
Voc and FF decreased in bilayer devices, exciton dissociation may have worsened indeed
upon addition of the guest. Kelvin probe measurements may give further evidence if a

change of dipole at the interface occurs or not.

Traps

HOMO/LUMO measurements (Figure 3-31) indicated a potential hole trapping on the Ir-
guest. According to measurements by our group, the HOMO of the guest is about 0.3 eV
above that of MDMO-PPV, and according to Rand et al.,”® the HOMO is identical within
the uncertainty of the measurements. Hence it was unclear whether the guest may act as a
charge trap within the donor polymer or not. The TA measurements gave further evidence
that upon photoabsorption on the polymer, eectrons are transferred to the guest. The guest
acting as atrap may explain why devices generally degrade at guest concentrations higher
than ~5 wt%.
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As shown in section 3.3.4.2 on page 98, upon the addition of trap states, the first part of the

previously trap-free space-charge-limited dark current™

139-141

is then replaced by a trap-filling
regime, in which the current increases according to a power law with an exponent
larger than two. If traps are already present, and more traps with a different distribution are
added, the exponent should change. A small change in the exponent (seen as the slopein the
log(J)-log(V)) is indeed observed in the dark current (Figure 3-40a). Note that the slope
decreased upon addition of the guest, suggesting that the new traps have a lower

characteristic energy than those which were already present without the guest.
d) Mobility

The charge carrier mobility may be influenced by the guest due to charge trapping,

intercalation, or by changing domain sizes of donor and acceptor.

We have seen for the blend devices an increase of the PCs;BM cluster size upon adding the
triplet emitter, indicating enhanced phase separation. This may actually lead to a reduced
mobility as intercalated donor regions do show improved hole maobility compared to pure
donor regions. A reduced mobility in blend devices would explain the increase in Voc at
1wt% guest concentration (as higher charge densities due to slower extraction times
increase Voc'%'%%) put not the increase in FF. Note that the dark JV curves (Figure
3-38e) do not indicate a reduction in mobility, which would be seen as a smaller increasein

current in the trap-filling or space-charge-limited current regime.

In the bilayer devices we see areduction of the dark current (Figure 3-40a) consistent with a
reduced hole mobility. Note that athough in ideal-bilayer devices, non-geminate
bimolecular charge recombination should be negligible as mentioned in (@), this does not
change the fact that a lower mobility is expected to reduce charge carrier extraction and
hence increase Voc. The observed reduction of Voc must hence have other causes. As we
found charge transfer from the donor to the guest, we create both type of charge carriers
within the donor material, which is then expected to lead to bimolecular charge

recombination and henceto alower Voc.

3.5.7 Conclusion

It was shown that, in agreement with an increased exciton diffusion length in the donor

polymer, the addition of the optimum concentration of the phosphorescent guest led to:

(1) animproved Jsc for bilayer devices,
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(2)
3)

an improved Jsc for blend devices annealed above the optimum temperature, and
an increased photocurrent in bilayer devices stemming from improved exciton

harvesting in the polymer layer as shown by IPCE curves.

After alonger discussion of the possible influences of the guest on blend and bilayer devices, |

reach the following conclusion:

D

(2)

3)

(4)

As followed from TA measurements, the guest acts as a trap by inducing electron

transfer from the polymer to the guest upon photo-excitation. Note that this process

does not seem to be very efficient as blend devices only deteriorate at rather high guest

concentrations of ~5 wt%.

Defect states and traps are expected to reduce the mobility which was indeed observed

for bilayer devices upon the addition of the guest. Despite a reduction in mobility, Voc

did not increase in these devices as may be expected according to macroscopic device

simulations. The reason is likely to be that the occurrence of eectron traps leads to

increased charge recombination, which reduces Voc and hence counteracts the effect of

the mobility reduction on Voc.

Note that in blend devices, where most guest molecules may have PCg;BM moleculesin

close proximity, the guest molecules would act less as traps because the trapped

electron would be transferred further to PCs,BM. This explains why, for moderate guest

concentrations (1 wt%), it was possible to improve all parameters (Jsc, Voc and FF) in

annealed blend devices, leading to an overall improvement of almost 60% for annealing

at 90 °C.

The task of estimating the influence of the guest on specific solar cdl parameters is a

difficult one as a multitude of effects need to be considered:

= The guest molecules act as dectron traps in the absence of PCyBM in close
proximity. These traps change dark and light curves differently as eectrons are not
usually present in the hole conducting polymer in the dark.

= The mobility is influenced by traps and by the degree of intercalation. The latter
depends on the degree of phase separation (— annealing) or on how perfect the
bilayer interfaceis.

= The guest may improve the exciton diffusion length by increasing the number of
long-living triplet excitons. How much these triplet excitons can improve Jsc
depends on the triplet exciton diffusion length, the degree of phase separation and

on how much the guest reduces the mobility and hence the current.
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=  Voc and FF arefunctions of all those effects. They are influenced by any effect that
changes charge transport or bimolecular charge recombination.

To summarise again, the results of this section demonstrate that the addition of phosphorescent
guests to the active layer of organic photovoltaic cells can lead to improved device performance
below a certain threshold, above where the guest's negative influences on charge transport or
bimolecular recombination overwhelm the increase in exciton diffusion length. The approach
presented here may overcome the limitations on domain sizes and the need for intercalation in
OSCs.
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3.6 P3HT:PC¢1BM Solar Cells with Ir-Complex Attached to P3HT
3.6.1 Motivation

Considering many of the requirements mentioned above, using triplet emitters as dopants in a
donor-acceptor blend may not be the optimum system due to possibility of guest aggregation
and the difficult energy level line-up. Instead, it may be better if the donor material itself
showed strong inter-system crossing. To this end | have used modified P3HT derivatives
containing Ir-complexes, synthesised by Egle Sirtautaite-Sidlauskiene at the University of

Nijmegen, Netherlands, in the group of Alan Rowan.

3.6.2 Materials

Two materials containing an Ir-complex were used. A random copolymer containing thiophene
monomers and Ir-bearing polythiophene monomersin a 1:1 ratio (Figure 3-56a), and P3HT end-

capped by the same Ir-complex (Figure 3-56b).

Note that the Ir-complex is absorbing so far in the blue that no Forster transfer from any of the
P3HT polymers to the Ir-complex can be expected. More precisdy, the main absorption peak of
the Ir-complex in thevisible is at 380 nm with alast very small pesk at 490 nm. The end-capped
P3HT and the P3HT copolymer both present a photoluminescence (PL) peak at around 650 nm,
with the onset of the PL at 550 nm, if measured in solid state.

3.6.3 Results and Discussion

The results of baked (solid lines) and unbaked (dashed lines) devices are presented in Figure
3-57. All materials show very low currents compared to the commercial regioregular ADS
P3HT (P3HT from American Dye Source Inc., ADS, Canada) demonstrating problems with the
mobility. Note that a reduction in mobility is indeed expected as the custom made P3HT
polymers are not regioregular and have lower molecular weights. The molecular weights of the
copolymer precursor and copolymer are 34k and 50k, respectively. The molecular weight of the
end-capped precursor polymer and end-capped polymer are only 3k and 4k, respectively. The
absorption spectra in (d) also demonstrate the difference in crystallinity compared to the
commercial regioregular P3HT, which is much more red-shifted and has a vibronic shoulder at
about 600 nm. That is why comparisons can only be made between the polymer and its

respective precursor.
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Figure 3-56. Chemical structures of precursor and final product of the P3HT copolymer (a) and
end-capped P3HT (b). The n:mratio of the copolymer is 1:1.

Looking at the illuminated JV curves in (b), we find that the end-capped precursor device
performance deteriorates upon addition of the Ir-complex, most likely as a result of the Ir-
complex disturbing the crystal structure. For the P3HT copolymer, however, we see that adding
the Ir-complex improves both Jsc and Voc. Note that for the same processing conditions, the
film thickness of the final copolymer precursor was lower than that of the final copolymer,

which certainly explains some of the improvement in Jsc and Voc.

Also, PLQE measurements of the materials are presented in Table 3-6. As we already know, an
improved PL quenching is a necessary (but not sufficient) criterion to establish whether the Ir-
complex actually enhances ISC on the donor or induces energy transfer to the Ir-complex. It was
found that the addition of the Ir-complex did not quench the end-capped polymer, but quenched

the copolymer.
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Figure 3-57. Results of solar cells characteristics and absorbance measurements of P3HT
polymers containing Ir-compounds attached to the backbone. JV characteristics of devicesin the
dark (a) and under illumination (b). The inset in (&) shows the same graph in log-log. IPCE
spectra (c) and absorbance (in solid state at room temperature for films on fused silica
substrates) (d) are also shown. (€) shows the solar cdl parameters for the various materials.
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Table 3-6. Photoluminescence quantum efficiencies (PLQES) of the materials

sample Annealing PEB/?)E
ADS-P3HT unbaked 2.8
ADS-P3HT baked 3.7
Endcapped Prec unbaked 1.7
Endcapped Prec baked 1.7
Endcapped unbaked 9.9
Endcapped baked 10.6
Copolymer Prec unbaked 23.9
Copolymer Prec baked 26.6
Copolymer unbaked 3.2
Copolymer baked 12.7

3.6.4 Outlook

As the copolymer shows PL quenching and some promising improvement of its characteristics
upon addition of the Ir-complex, the next step would be to establish whether the phosphorescent
guest indeed increases the number of triplet excitons in the blend. TA measurements are hence
the next step to investigate the materials further. Note that more materials needs to be

synthesized in order to continue with this work.
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3.7 PBTTT:bis-PC61BM
3.7.1 Motivation

Polymer-fullerene intercalation is very likely to nullify any increase of the number of triplet
excitons due to ultrafast exciton dissociation in the intercalated regions. Therefore we need to
find a system that does not intercalate, such as PBTTT:bis-PCgBM. In the following a possible
donor:acceptor blend is investigated as a candidate for the addition of a phosphorescent guest.
Note that no guest was added to the host blend.

3.7.2 Materials

Poly(2,5-bis(3-hexadecylthiophen-2-yl)thieno[ 3,2-b]thiophene) (PBTTT-C16 or PBTTT, from
Merck) is a conjugated polymer that became popular due to its very high hole mobility in
FETs.® PBTTT furthermore offers the advantage of a very strongly temperature dependent

solubility so bilayers can be more easily fabricated.

In order to avoid intercalation of the fullerene with PBTTT, bis-PCsPM, i.e. the bisadduct of
phenyl-C61-butyric acid methyl ester (from Solenne BV, Netherlands), was used. Due to the
two side groups, this molecule is too big to fit into between the side chains of PBTTT. The
absence of intercalation of this donor:acceptor system was shown by Rance e al.**® and for
PBTTT with bisPC,;BM it was shown by Cates et al.."* As a triplet emitter, the same Ir-
compound as in section 3.5, i.e. ADSO77RE (see Figure 3-30), may be used.

According the HOMO and LUMO levels (see Figure 3-59) we are dealing with configuration 'e
(using the scheme in Figure 3-29 on page 132). This configuration is reasonable if energy
transfer and CT state formation between host and guest are avoided and if no excitons are split
within donor or acceptor domains alone. Note that by estimating the singlet energy levels of
PBTTT and ADSO77RE, one finds that Forster transfer will not be efficient. The singlet level of
PBTTT is around 1.7 eV according to its emission peak at 740 nm and the singlet level of
ADSO77RE isaround 2.1-2.7 €V. By using this triplet emitter one would hence rely on a heavy
atom effect improving ISC from S, to T, on the polymer. By using the triplet emitter fac-tris(2-
phenylpyridine)iridium, Ir(ppy)s, one may avoid eectron trapping from the polymer, but the
singlet level is till too high to allow efficient Forster transfer.
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Figure 3-58. Chemical structures of the materials used in this study. (a) bis-PC¢BM and (b)
PBTTT-Cae.
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Figure 3-59. Work functions and HOMO/LUMO levels of the materials. Enomo(PBTTT) =
5.1eV,” Enomo(ADSO77RE) = 5.36 €V, Ejouo(bisPCsBM) = 5.94 eV, Exouo(Ir(ppys)) =
5.4eV', ELumo(PBTTT) = 3.1V, Eumo(ADSO77RE) = 3.39 €V, Eiumo(bis-PCaBM) =
4.19 eV,"® E umo(Ir(ppys)) = 2.8 eV.*?
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3.7.3 Device Fabrication

Cleaning procedures, spin coating parameters and baking of PEDOT:PSS and the cathode
evaporation remain the same as in the previous section (see page 139). Prior to spin coating the
active layer, the solutions were kept warm by stirring them on a hot plate at 80 °C. The blend
solution has a 1:1 donor:acceptor ratio (which should be close to the optimum for non-
intercalating materials)'®®, and a concentration of 20 mg/ml in ortho-dichlorobenzene (or 1,2-
dichlorobenzene). The spin coating parameters and the annealing procedure were varied to

optimize the device performance.

3.7.4 Results and Discussion
3.7.4.1 Optimisation of Blend Devices without a Triplet Emitter.
3.7.4.1.1 "Normal" Annealing Treatment

The "normal" annealing process consists of baking the samples (after cathode evaporation) on
a hot plate and cooling them relatively fast by taking the samples from the hotplate and putting
them on a metal block.

The results for devices annealed at different temperatures (T) according to the above procedure
are shown in Figure 3-60. From the dark JV curves in Figure 3-60a we see that increasing T
results in smaller slopes around 0.8 V indicating a reduction in mobility. In Figure 3-60b and d
we observe that annealing resulted in a very clear trend in Voc, where Voc steadily increases
with temperature. The behaviour of Jsc and FF is more complicated and suggests a complex

influence of the annealing on domain sizes, charge transport and charge recombination.

Also, slow cooling at 180 °C was found to improve device performance considerably. To
investigate the influence of slow film growth further, dow drying and slow cooling was used in

the next set of experiments to further optimize the devices.
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Figure 3-60. (a) Influence of the temperature on the dark JV curve. (b) Influence of the
temperature on the illuminated devices. (c) Incident photon to current efficiency (IPCE) spectra
for the different temperatures. (b) SC parameters as a function of temperature. PCE is the power
conversion efficiency. Slow cooling was used for 180 °C as well which improved the devices
considerably.

3.7.4.1.2 Slow Drying and Slow Cooling

The "dlow drying" (sd) procedure consists of using 0.1 ml of solvent for each 12x12 mm
substrate (which is relatively much) and spin coating the active layer for only 20 s, so that the
film will still be wet after spin coating. The bottom and edges of the substrates are quickly dried
with tissue and the substrates are put at room temperature under a Petri dish for at least 10 min
(until the colour of the film considerably changes indicating that the film is dry). The "slow
cooling" (sc) procedure means that after annealing for 10 min at the given temperature, the hot
plate is switched off and the substrate Ieft on the hotplate until the hotplate itself is cooled
down, which took > 10 min or > 15 min for temperatures of the hot plate > 140 °C.
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As we can see from Figure 3-61, using slow cooling and slow drying increased the device
performance to some degree. Interestingly, the complicated trend of Jsc and FF could be
reproduced (see Figure 3-61d, the grey squares indicate the parameters for the normal
temperature treatment and the red circles indicate the ones for slow dried (sd) and slow cooled
devices (sc)), showing that it was indeed not the result of device-to-device variation. Also, upon
increasing T the smaller slope of the JV curves are observed again, and more importantly, so is

the clear linear increasein Voc.
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Figure 3-61. SC performance with slow dried and slow cooled devices. Meaning of the
diagrams identical to those in the Figure 3-60 above. Note that for heating at 100 °C, devices
were either slow cooled (sc) or slow dried (sd).

3.7.4.1.3 Overnight Drying and Spin-Coating Parameters from Literature

As device performance is still rather low, the literature treatment™***’

conversion efficiencies with PBTTT:bis-PC71BM blends) was attempted. This treatment

(resulting in > 2 % power

includes spin coating at a lower speed (600 rpm) and for a longer time (60 s), and slow drying
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of the samples over night under a Petri dish. Theresults are shown in Table 3-7 and we find that
the previous procedure (sd and sc) resulted in more efficient devices. Efficiencies are still rather
low, also dueto the use of bis-PC¢BM instead of bis-PC7,:BM (as in the literature™?).

Table 3-7. SC performance of devices fabricated with “own” procedure (800 rpm, 60 s) and the
literature procedure (600 rpm, 20s, overnight drying under Petri dish). The first column
indicates whether annealing happened before or after evaporation.

Procedure Jsc Voc FF PCE
(MA/c) (V) (%)

anneal. spin c. Temp.
before 600 rpm, 60s 90 °C 0.89 0.42 0.42 0.154
before 800 rpm, 20s 90 °C 0.95 0.43 0.40 0.165
after 600 rpm, 60s 100 °C 0.94 0.22 0.27 0.055
after 800rpm,20s 100 °C 1.18 0.36 0.33 0.143
before 600 rpm, 60s 100 °C 0.66 0.37 0.34 0.082
after 800rpm,20s  220°C 0.23 0.42 0.19 0.019
after 800 rpm, 20s 240 °C 0.04 0.21 0.18 0.001

3.7.4.1.4 Morphology

It was found that slow drying and not slow cooling is responsible for the growth of very large
(bis-PCg;BM) clusters (see camera images in Figure 3-62). Note that although the "spots' in
Figure 3-62 look like indentations, this is only an optical illusion; they are in fact "hills" or

clusterslikely dueto the formation of fullerene clusters.

In Figure 3-63 we see AFM images of slow dried and slow cooled devices. Especially looking
at the 5x5 pm images (Figure 3-63b), one can see fascinating morphology changes basically at
every temperature step (20 °C intervals). An increase in phase separation is apparent, yet the
morphology changes are more complex than that. A deep analysis of the morphology may

explain the changes in V¢, Jsc and FF observed in the corresponding devices.
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Figur e 3-62. Video snapshots of PBTTT:bis-PC¢BM devices. () no slow cooling and no slow
drying. (b) slow dried blend, resulting in large clusters. The bright left area on each image
shows the evaporated cathode. The darker area on the right side shows the surface of the active
layer. The small dark shadows on the right show two AFM cantilevers which are close to the
surface creating a reflection on the surface.
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Figure 3-63. Tapping mode AFM images of slow dried and slow cooled devices. The z-scales
are as follows (starting with lowest temperature): (a) 100x100 pm images: 200 nm, 130 nm,
100 nm, 100 nm, 150 nm, 230 nm. (b) 5x5 pm images: 70 nm, 80 nm, 50 nm, 60 nm, 110 nm,
150 nm.
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3.7.4.2 Conclusion and Outlook

The aim of this work was to use phosphorescent emitters to increase the exciton diffusion range
on the donor polymer. After investigating the host blend (PBTTT:bis-PC¢BM), a very
interesting trend in Voc was found. This blend is a prime example of how much the processing
conditions can influence Voc, which is often assumed to be only a parameter depending on the
donor/acceptor materials (in case of pinning of the electrodes) or on the electrode work-

functions (without pinning).

In the future one may try to explain the changes in Voc aswell asin Jsc and FF by investigating
the morphology in more detail and it may be useful to determine the charge carrier
recombination rates in the blends, similar to the work by Credgington et al..'® Once the
properties of the host blend are understood, the material system could then be used for similar
experiments with triplet emitters. Note that the donor PBTTT is particularly interesting due to
the extremely easy method to create bilayers with fullerenes, and the choice of bis-PCgBM will

assure that no intercalation is occurring.
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3.8 The Wider Picture

In this section | would like to move away from my own experimental results and focus on the

general idea of using phosphorescent emitters in a donor/acceptor blend (or bilayer).

Although severa reports have shown an improvement of device performance upon adding
triplet emittersinto SCs, it was not yet possible to improve the best performing devices (such as
those containing an active layer of P3HT:PCgBM) with their help. The problem is that many
conditions and parameters must be fulfilled in order to achieve that. In the following | will list

the requirements, most of which have already been discussed.

3.8.1 Requirements to Improve Exciton Dissociation via the Creation of Triplet
Excitons via Phosphorescent Compounds

1. The entity that transfers the energy to the heterojunction in the pure host blend, i.e. in the
absence of a phosphorescent guest, needs to be a singlet exciton (and not triplet excitons or

aready free polarons as partly in P3HT).

2. The triplet energy level of the polymer needs to lie above the CT level (to efficiently
populate the CT level)**? and the triplet energy of the guest needs to be higher than that of
the host (to avoid triplets being trapped on the guest).

3. The mechanism to convert singlet to triplet exciton needs to work, i.e. either

a. the remote heavy-atom effect improves the singlet to triplet conversion

considerably (approach (a) on page 92), or

b. the energy transfer (or the charge transfer of both electron and hole) from the host
to the guest and the subsequent triplet back Dexter transfer to the host work
efficiently.

4. The difference of the exciton diffusion length between singlets and triplets on the same
material needs to be considerably large, so that the rising ratio of triplet excitons helps to
dissociate more excitons. This condition actually includes that the product of triplet
diffusivity and triplet lifetime is larger than the product of the singlet diffusivity and singlet
lifetime. Whether this condition is fulfilled is not obvious because although it is widely
accepted that triplet excitons have longer lifetimes, Dexter transfer is considered to be less
efficient than Forster transfer (due to the required proximity between triplet donor and
acceptor) and this may lead to a lower diffusivity.
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5. When a third material is added to a host matrix consisting of a donor and an acceptor, most
of the energy level configurations will result in charge trapping on the guest of at least one
type of carrier. This problem can be avoided if the guest has avery high lying LUMO and a
very deep HOMO or if the guest is only added to the donor material. In the latter case at
least the LUMO of the guest is not important as long as no free polarons are created within

the donor domains.

6. Intercalation between donor polymer and fullerene must not occur in the whole active layer

as improving the exciton diffusion length would be meaningless.

7. The guest molecules should not aggregate in big clusters, and they should not localise

themselves only between donor and acceptor domains.

8. Theinfluence of the guest on charge transport needs to be reasonably small. Note that even
if the energy levels are chosen wisely to avoid charge trapping, the presence of guest
molecules in an otherwise rather crystalline region may already effect the mobility
considerably. In a rather amorphous material such as MDMO-PPV thisis|ess problematic.

3.8.2 Results in the Literature and Expected Improvement upon Singlet-Triplet
Conversion

Several publications claim the increase of exciton harvesting by converting singlet to triplet
excitons, 2121923 Apart from adding phosphorescent guests to the donor:acceptor blend or
donor layer in case of bilayer devices, other methods have been used as well. Among them are
the use of a magnetic field to induce ISC,® or the use of the phosphorescent material as the
donor layer itself.?®

Although bilayers fabricated via thermal evaporation serve as much better candidates for this
kind of investigation than spin coated blends, only a few of these publications make use of
them. 2”23 Thermally evaporated bilayers offer the advantage of a tight layer thickness
control and enables the co-evaporation of the phosphorescent guest into the donor layer, hence
circumventing the potential aggregation of the guest. Lee et al. for example claimed an
improvement of Jsc of 40% using a PPV derivate as the host, PtOEP as the guest and Cg as the
acceptor using thermal evaporation. Note that the polymer layer was not evaporated.

In some papers, the increase of Jsc in blend devices is so high that one may wonder whether
such an increase can be the result of an effective increase of the exciton diffusion length alone.
Arif et al.™ for example claimed an improvement of almost 10 by adding trace amounts of Pt in

a ladder-type poly(para-phenylene), and Schulz et al.?® claimed an improvement of almost 10
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by introducing a triplet forming Ir-complex into the polyfluorene-based polymer. As will be
shown in the following, very high improvements of Jsc or IPCE are always possible as long as
the starting morphology is sufficiently unoptimised for "standard" BHJ solar cells (too large
domains) and the increase in exciton diffusion length upon singlet-triplet conversion is

sufficiently large.

The highest possible improvement of Jsc by singlet-triplet conversion, assuming perfect
distribution of the guest in the donor polymer and no negative effects on exciton dissociation or
charge transport, is determined only by the morphology of the active layer, i.e. the distribution
of donor and acceptor materials, and microcavity effects changing the absorption profile. In the
following, the improvement of harvested excitons upon improving the exciton diffusion length

is calculated in case of a sharp donor/acceptor bilayer.

3.8.2.1 Bilayers - 1D Random Walk with Absorbing Wall

In the case of a bilayer we may approximate the problem as a 1-dimensional (1D) random walk

with an absorbing wall, %

or more precisely as a 1D Wiener process with an absorbing wall.
The convergence of a random walk toward the Wiener process is according to the central limit
theorem, which tells us that after a large number of independent steps in the random walk, the
walker's position is distributed according to a normal distribution

_ (e=p)?
e 207 Eq. 3-37

flx,mo®) =

\V]

2no
of total variance o2 = (t/0t) €2, where x is the position of the walker, 4 is the mean or expectation
value, t is the time elapsed since the start of the random walk, ¢ is the size of a step of the
random walk and ot is the time for a step. For a 1D random walk, the diffusion constant D can
be calculated via D = ¢%/(2 Jt) and hence the variance
o? = 2Dt . Eq. 3-38
For a 2D and 3D random walk, 62 = 4Dt and o2 = 6Dt, respectively.

It was further found® that the fraction of a large number of particles (excitons) initially at x= 0

and which are depaosited on the absorbing wall at distance d per unit time, at timet, is

d 1
D,d,t) = — e "4DE Eq. 3-39
q( ) P T q

The geometry of the model isillustrated in Figure 3-64.
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Figur e 3-64. Geometry of the 1D random walk model. The light intensity 1(x) follows the Beer-
Lambert Law.

We further consider the probability of light absorption a(x) in the solar cell as a function of

location x according to the Beer-Lambert Law

I(x) = Iye™®*, Eq. 3-40

where I(x) is the light intensity after absorption of a layer of thickness x, 1 is the light intensity
at x=0, i.e. where the light enters the material, and « is the absorption coefficient. One finds
that

1
a()dx=—-[-dIx)]=-1-(—a) e ™ dx = a-e “*dx
I Eq. 3-41

S alx) =a-e *,

The function for a(x) obtained above satisfies fom a(x)dx = 1. The absorption coefficient was

chosen so that 90% of incoming photons are absorbed after 100 nm, resulting in o = 2.3-10" m'™.

Thisisroughly the value for absorption of a P3HT film near its absorption maximum.*®

If we assume that each absorbed photon generates exactly one exciton, we are ready to find the
formulafor theratio R of the number of incoming photons over the number of excitons reaching
the absorbing wall (PCs;BM):

da T
R(d,D,7) = J. (a(x) . J. q(D,d — x, t)dt) dx, Eq. 3-42
0 0

where 7 is the lifetime of the exciton. Note that this ratio R is an upper limit for the IPCE. Eq.
3-42 cannot be integrated analytically, but it can be rewritten as
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R(d,D,7) fd -“[ f(ld_x) 1]d Eq. 3-43
D1)=al| e erf( = - X, .3
0 ZVD‘L' q

where erf(y) is the error function defined as
f(y) = 1/—,Tfy “2d Eq. 3-44
er — | e Z. . 3-
y . q

Note that Eqg. 3-44 does not contain D or z by themselves, only the product D 7 occurs. We
therefore see that it does not matter whether D is increased and ¢ constant or vice versa. Eq.
3-42 is visualised in Figure 3-65, where R is plotted as a function of the exciton diffusion

lengthL =VD 7.
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Figure 3-65. Shown is the R, i.e the number of excitons reaching the PCgBM interface
normalised by the number of incoming photons. R is shown as a function of donor layer
thickness d with the exciton diffusion length as the parameter. The diffusion constant was
assumed to be constant and the different values of the exciton diffusion lengths were obtained
by assuming longer lifetimes. The black, straight, dashed line roughly goes through all the
maximum values of R for the different exciton diffusion lengths.

First of all we note that for small layer thicknesses d, R is small due to the low number of
absorbed photons. One can further see that for small layer thicknesses d <5 nm, larger exciton
diffusion lengths do not improve the ratio R of excitons reaching PC¢;BM. For high thicknesses
d, however, the reative increase in R upon changing the exciton diffusion length can be very
large. For a 100 nm donor layer, a (singlet) exciton diffusion length of 5nm and a (triplet)
exciton diffusion length of 40 nm, R increases from 1.4% to 25%, i.e. it improves by a factor of
~ 18. Wetherefore see that in principle, when starting with a device that is very unoptimised for
singlets due to too large domains, very high improvements are possible upon increasing the

exciton diffusion length.
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For the sake of completeness, the assumptions and short-comings of the above model are
summarised here:

e Assumed was arandom walk in one dimension.

o The assumption of a Wiener process requires small steps and a large number of steps.
Considering an exciton "jump" of ~ 1 nm length, this is especially inaccurate for values
of d smaller than ~ 10 nm.

e The model assumes an absorbing wall at one side, but not a reflecting boundary at the
origin.

e Microcavity effects modulating the absorption profile are neglected.

o The reflection of light at the cathode was not considered. This effect helps absorbing

more photons as light will travel through the material two times.

3.8.2.2 Blends - 1D Random Walk with Absorbing Shell

Replicating the mode above for a BHJ morphology with a 3D random walk is mathematically
more difficult. One may, however, approximate the problem by a 1D random walk with an
average distance d to the absorbing wall. A distinct difference from the model above is that the
absorption profile does not have to be taken into account because in the limit of small spheres
(small compared to the active layer thickness), one can assume an averaged absorption
probability across the whole sphere without introducing an error. We therefore obtain for Rss (R
for small spheres):

dZ
e 4Dt dt

T T
d
Rec(d,D, T =J. D,d —x,t dt=J- —
ss( ) OQ( ) , t VraDe
1 d

14 Eqg. 3-45
= —_ = —_ —_ ] = L
Rss(d,D,7) =1 erf(2 m) 1 erf(2 L) Rss(d) .

Rss and R are plotted together for the same values of the parameter L in Figure 3-66. To better
denote that L is the parameter and d is the variable, we may define R"ss(d) = Rss(d,D,7) and
R"(d) = R(d,D,7). One can see that for small values of d, R"sg(d) is much larger than R-(d). This
is because for small values of d, the small number of overall absorbed photons reduce
R-(d) considerably. Another interesting observation is that the intersection of R-(d) with R-sg(d)
occurs very close to the maximum of R=(d), which is denoted as a black dashed line in Figure
3-66.
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Figure 3-66. Visualisation of the ratio of excitons that can reach the interface for different
exciton diffusion lengths L in case of a bilayer (R,solid lines with filled symbols) and in case of
smaller spheres with an average distance d to the absorbing wall (Rss, dashed curves with open

symboals).

3.8.3 The Ultimate Solar Cell

It is certainly interesting to ask the question which materials or design concepts are the most

promising ones to achieve the most efficient OSCs. We will assume in the following a single

band gap material (i.e. no tandem cells). Without further restriction or consideration, the

optimum band gap is then 1.4 eV, according to the Shockley-Queisser limit®.

However, let us now also assume that two materials are needed, a donor D and acceptor A, at

whose interface photogenerated excitons can be split effectively. Which energy level

configurations would be optimum? On the one hand, lowering the absorber (donor D) band gap

will improve the light harvesting at lower photon energies (see Figure 3-67) and hence lead to a

higher possible Jsc. On the other hand will a reduced band gap at some point lead to a reduced

effective band gap (ELumo(A) - Enomo(D)) which is proportional to Voc. Hence the increase in

Jsc by lowering the band gap will at some point be overcompensated by the reduction in Voc.



3 Triplet Emittersin Organic Solar Cdls 192

In practice, the optimal band gap energy will depend on the restrictions placed on the energy
needed to induce charge separation, the absorbing properties of the donor and restrictions on the
acceptor used. In the case of an absorbing conjugated polymer in combination with PCsBM, an
optimal band gap of 1.3 to 1.9 eV is reported®® for the absorbing conjugated polymer resulting

in efficiencies of about 6%.%’

If we were allowed to freely chose the energy levels of A, which
is atechnological problem, the optimum band gap would be~ 1.9 - 2.0 eV and efficiencies up to

~ 11% could be reached.?”’
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Figure 3-67. Photon flux according to the AM1.5 spectrum and integrated photon flux.
Assuming all photons with an energy above the band gap of the absorber are absorbed, the
integrated photon flux determines how much light is lost depending on the absorber band gap.
However, lower band gap absorber materials will result in a small Voc. Figure reprinted with
permission from Kroon et al.,”® Copyright (2008) Taylor & Francis.

Considering the ultimate SC morphology, in which exciton dissociation and charge collection
both already work with 100% efficiency without the creation of mainly triplet excitons, as for
example claimed by Park et al.”®®, using triplet excitons is a loss mechanism. (Note that an IPCE
curve is always a measure of the external quantum efficiency at low light intensities, at which
the IPCE is usually measured. OSCs typically perform worse under higher light intensities so
that the internal quantum efficiency under 1 Sun illumination is lower®®). The use of triplets
presents a loss mechanism because each photon loses an additional amount of energy, the
exchange energy, which is ~ 0.7 eV'** for many conjugated polymers. The optimum donor band

gap would hence increase if triplets were used.



3 Triplet Emittersin Organic Solar Cdlls 193

Nevertheless, the requirement of using BHJ architectures to effectively dissociate excitons in
conventional state-of-the-art polymer-fullerene SCs is probably the major problem for efficient
SC fabrication, because the huge influence of any parameter on the morphology makes it very
difficult to obtain a morphology that allows efficiencies near 100% for both exciton harvesting
and charge collection, if it can be reached at all. Note that also the problem of bimolecular

charge recombination is bypassed by the use of bilayers.

The approach presented here may therefore circumvent the problem of morphology optimisation
and decrease development costs of prototypes considerably by enabling the use of bilayers,
which are much more easily reproduced and transferred from the lab scale to large-scale

production.
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3.9 Summary and Outlook

The aim of this work was to increase the number of triplet exciton to increase the effective
exciton diffusion length in the active layer. To this end, two approaches have been proposed,
one relying on Forster and back-Dexter transfer and the other one relying on the external heavy
atom effect. To this end, different host-guest systems have been investigated.

3.9.1 P3HT- PCs1BM with Cu-Complexes

Triplet emitting materials made from Cu complexes have been used with the aim of creating
additional triplets inside P3HT to improve the efficiency of SCs comprising P3HT and PCg;BM
in the active layer. The Cu complexes used offer the advantage of Cu, which is more abundant
and environmentally friendly, and has a high solubility in organic solvents. However, it turned
out that the compounds act as hole traps in the used host. Also, as explained in the section 3.4.2
on page 108 about triplet states in P3HT, free charge carriers may be generated inside P3HT
even without PCg;BM in its proximity, so that the generation of triplet excitons may be of
limited use or even counterproductive as triplet excitons have an even shorter lifetime than

generated polarons.

3.9.2 MDMO-PPV:PC¢:BM with Ir-Complex

For that reason, | tried using other hosts, such as MDMO-PPV:PCsBM and also other triplet
emitters, because the HOMO levels of the used Cu complexes are so high that hole trapping
could occur for arange of host materials. It was claimed by Rand et al.'® that an increase of Jsc
upon increasing the exciton diffusion length was achieved upon doping this host blend with a
phosphorescent guest, which seemed surprising knowing that intercalation is likely to occur for
"normally treated" blends.

| achieved some positive results with respect to the aim of this work in the form of an increase
of Jsc for "overannealed" blend devices and for bilayer devices, which is more plausible as
intercalation is likely to be reduced in such systems. The bilayer devices also showed an
increase in the MDMO-PPV IPCE peak as expected from an increase in the exciton diffusion
length on the donor polymer. Photo-induced absorption measurements showed that the used Ir-
complex attracts dectrons from MDMO-PPV, leading to some deterioration of the charge

transport, and that Dexter transfer from the guest to the donor is occurring.
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3.9.3 P3HT:PCs:1BM Solar Cells with Ir-Complex Attached to P3HT

First results were obtained with a P3HT copolymer containing an Ir-complex and a polymer
where P3HT is end-capped with an Ir-complex. Results show low conductivities compared to
commercial P3HT as expected from the lower molecular weight and the absence of a high
degree of regioregularity. Nevertheless, the copolymer precursor was improved upon addition of
the guest. Some of the improvement comes from a larger film thickness of the final copolymer.
However, the copolymer also showed PL quenching upon addition of the Ir-complex, indicating
the possibility of an increased ISC rate on the host.

3.9.4 PBTTT:bis-PCs1BM

To avoid the problem of intercalation fully, PBTTT was used in combination with a large
fullerene derivative that cannot fit into the side chains of PBTTT and hence prevents
intercalation. We observed a strikingly clear trend in Voc as a function of annealing temperature,
which seems linked to the phase separation of the donor:acceptor blend. Adding a
phosphorescent guest would be the next step.

3.9.5 P3HT:PCs:1BM Solar Cells Stirred in or Synthesised with FeCl;

P3HT was synthesized with FeCl; (see appendix on page 208) to see whether Fe may bond to
the polymer resulting in triplet exciton enhanced Js., similar to the claim of Arif et al..'®
However, due to the lack of regioregularity and crystallinity, currents were generally low and a

reasonable comparison to purchased P3HT was not possible.

In another set of experiments, P3HT was stirred in an aqueous FeCl; solution in order to dope

the polymer with Fe without reducing the crystallinity of the polymer®'°

(see appendix
page 210). The several hours long stirring in air did not deteriorate the polymer considerably,
i.e. absorption peaks did not change their position and the conductivity in devices was still high.
SCs made out of the doped material performed almost identical to the untreated polymer. More
experiments need to be carried out using the doping of conjugated polymers with salts in order
to establish whether this is a viable, more general strategy to dope donor materials with heavy
atoms to increase the spin-orbit coupling and hence the number of triplet excitons under

illumination.
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3.9.6 The Wider Picture

| listed all the requirement needed to befulfilled in order to improve the exciton diffusion length
in OSCs by adding phosphorescent guests to the host. The literature claiming an increase in
solar cdl performance due to improved exciton harvesting was reviewed. Depending on the
morphology and the change of exciton diffusion length via singlet-triplet conversion, very high
improvements of Jsc and the IPCE are indeed possible as demonstrated with a 1D random walk
model with an absorbing wall. The lack (in most publications) of a more direct proof of an
increased ratio of triplet excitons in the active layer, for example via TA spectroscopy, is
observed. It is also noted once again that the author found no publication where a high-
performing solar cell (with a power conversion efficiency of > 3 %) was improved by adding

phosphorescent guests, demonstrating the complexities connected with this approach.

| also reviewed the properties of the ultimate single layer solar cell and came to the conclusion
that if solar cells can be made to dissociate excitons and collect charges with 100% efficiency
without using triplet excitons, the singlet to triplet conversion attempted in this work presents a
loss mechanism in form of the (S;-T;) exchange energy. In this sense, the ultimate solar cell

should be designed to avoid the creation of triplet excitons.

However, probably the major problem faced by the OSC community is precisely that obtaining
a BHJ morphology that simultaneously optimises both exciton harvesting and charge transport
is so difficult to achieve. The approach in this work may overcome this problem by enabling the
use of bilayers, which help to avoid non-geminate bimolecular charge recombination and the

problem of morphology optimisation.
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4.1 Towards Bilayer Devices

Bilayer devices offer the advantage of a better controlled morphology and, most importantly for
the work here, a possibly fullerene free layer of donor polymer. In order to create bilayers,

several attempts were undertaken, which will be briefly presented here.

4.1.1 Using a Bad Solvent for MDMO-PPV

One approach to achieve bilayers, i.e. to spin coat a material B on top of another material A, is
by finding a solvent that dissolves A much less than B. One such suggested solvent was
dichloromethane (DCM).

To find out how insoluble the polymer really isin DCM, | made solutions of MDMO-PPV in
the good solvent chlorobenzene (CB) and spin coated it at different spin-speeds on spectrosil
substrates. Then | spin coated DCM on top of the MDMO-PPV layer at 1800 rpm.

The result can be seen in Figure 4-1, where the absorption of the samples before and after spin
coating (i.e "rinsing") in DCM is shown for MDMO-PPV layers spin coated at 800, 1800 and
4000 rpm. Although DCM s indeed a bad solvent for MDMO-PPV, considerable amounts of
material have been washed away. We therefore need to consider other methods to achieve

bilayers.
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Figure 4-1. Solubility test of MDMO-PPV in dichloromethane (DCM). The sample spin coated
at 800 rpm has been baked at 140 °C for 10 min prior to spin coating it with DCM. The other
samples have not been baked. One can see a considerable loss in absorption upon spin coating
DCM, indicating that a considerable amount of MDMO-PPV has been dissolved and removed.

4.1.2 MDMO-PPV/ Alqs Bilayer Devices

Another method of achieving bilayersisto move (partially) away from solution processing. One
layer may be spin coated and the other evaporated on top. Searching for an eectron transporting
layer that may be evaporated on top of MDMO-PPV, tris(8-hydroxyquinolinato)aluminium
(Algs, chemical structure can be seen in Figure 4-2b) madeit into thefinal sdection.

According to literature values for MDMO-PPV, its LUMO (2.8 eV) should lie slightly above
that of the electron transporting material Algs (3.0 eV) and its HOMO (5.3 eV) should lie as
well above the HOMO of Algs (5.7 eV). Algs should hence form a type Il heterojunction with
MDMO-PPV potentially enabling exciton dissociation. The energy levels are shown in Figure
4-2. Note that now Ca has to be used instead of Al (to obtain an ohmic contact and pinning of
the electrode work function to the LUMO of Algs).



4 Appendices 200

(b) 29eV
28¢ |——  |——
3.0eV Ca
_ 52 | s3ev
PEF'?SgTi MDMO- 57 eV
PPV Al

Figure 4-2. (@) Chemica structure of the eectron transporting material Algs. (b) Work
functions and HOMO/LUMO levels of the materials used during this experiment.

The JV curves of PEDOT:PSS/MDMO-PPV/Algy/CalAl devices are shown in Figure 4-3,
presenting some interesting features. The devices seem to be ohmic (i.e. present a linear
relationship between current and voltage) within the “usual” regime of 0 to 1.5 V (see right
image in Figure 4-3). The diode behaviour, or rather, the more than linear increase in current,

shows at voltages above~ 3 V.

Within the equivalent SC circuit, the resistance in the low voltage regime (at V ~ 0) is a good
approximation for the shunt resistance (Rsy) for small Rs. According to that approximation, Ry
would be about 10" Q. (Pixel P2 (orange curve in Figure 4-3) even has a resistance of 10° Q at
V = 0). If everything else in these devices would work ideally, the high Rsy would actually help
to achieve a high FF. However, we observe a virtually zero Jsc in the devices. This can have
two causes. It ether means (a) no current is generated in the cell in the first place or (b) the
series resistance (Rs) is very high (possibly due to problems with the Ca evaporation or very
low electron or hole mobilities). Note that the approximation for Rsy as the resistance at V=0

breaks down for large values of Rs.

(a) The absence of considerable Jsc may indicate problems with exciton dissociation. Indeed,
depending on the exact distribution of LUMO levels on MDMO-PPV, dectrons may stay on the
donor instead of transferring to Algs. The sameistrue for the HOMO levels. Assuming a lack of
exciton dissociation is the cause for near zero Js, the values measured by Charlotte Fléchon
(leading to virtually identical HOMO and LUMO levels on MDMO-PPV and Algs) are very
reasonable.

(b) Rs (idedlly zero) can be approximated as the resistance at a large forward bias. For all the
devices, this value is large, around 0.4 kQ. Such a high Rs can indeed reduce Jsc to very small

values. Note that Rgy does not affect Jsc. Hence, if Rgy was large as well (idedlly infinitely
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large), Voc would still be expected to show "normal values', i.e. those that are expected taking
into account the effective band gap of the material system (|E umo(acceptor) - Exomo(donor)|,
around 2V for MDMO-PPV/Algs). The orange curve in Figure 4-3 is special as it is the only
curve that does not have a near zero Voc. More precisely, whereas all the other devices have a
Voc of ~0.02 V, the orange curve has a Voc of 1.17 V. The difference between the orange and
the other curves may indeed result from a difference in Rsy. So in conclusion, all pixels seem to
suffer from a large Rs and a small Rsy, except of the orange curve, which appears to have a
much better (higher) Rs..

Whether or not MDMO-PPV/Alg; is efficient regarding exciton dissociation remains uncertain
at this point. Due to the very low SC performance of this material system, further investigations

have not been carried out.

0.20

Tt
- | MDMO-PPV / Alg3
8 | | —=—800 rpm, dark
—#— 800 rpm, illum.

0.15

& [ | —=— 1800 rpm, dark

E 6| 1800 rpm, illum.

L | [ —=—5000rpm, dark (P1) 0.10
<< —=— 5000 rpm, illum. (P1)

E 4 5000 rpm, illum. (P2) e

-

- R —&— 5000 rpm, dark (P3) 4 0.05

—a— 5000 rpm, illum. (P.

1 0.00

0 2 4 6 8 10 00 05 10 15 20 25
Voltage (V) Voltage (V)

Figure 4-3. JV-curves of devices from Batch [r35X. The spin-speed for the active polymer layer
is indicated. Three pixels (P1, P2 and P3) are shown for the devices with the high spin-speed.
Interestingly, there was only one device (P2), which, after driving it at voltages up to 10V,
showed a considerable open circuit voltage. More explanation in the text.
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4.2 P3HT:PCBM Solar Cells with Cu-Complex C

20 P3HT:PCBM:C
— — 0% dark

o 0% illum.

10} 1% -
g 2% /
<
£
ﬁ 0 - — . e— —-— — — =, PP+ s e s e e s s s .-
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-0.2 0.0 0.2 04 06 0.8 1.0
Voltage (V)

Figure 4-4. JV curves of devices with P3HT:PCBM solar cells with different amount of the Cu-
complex C. The dashed line shows the dark JV curve. All other curves are taken under
illumination. One can see a short-circuit like behaviour upon including 2% or more of the triplet
emitter.
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4.3 FET Characteristics of P3HT:PCBM Blends with Cu-Complex E

In the following the transfer (Figure 4-5) and output characteristics (Figure 4-6 and Figure 4-7)
of FETs made with an active layer consisting of P3HT, PCBM and the Cu-complex E are
presented. The shift of the threshold voltage (Vr) in Figure 4-5¢ points™* towards an increase of
the number of (donor-like) hole traps near the HOMO as more guest molecules are added. The
shifts of Vr in Figure 4-5a and b may indicate a reduction of eectron traps as more guest

molecules are added.
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Figure 4-5. Transfer characteristics of FETs with an active layer blend made from P3HT,
PCBM and the Cu-complex E with different concentrations of the Cu-complex (0, 1 and
5wt%). Figure (a) and (b) were used to determine the eectron mobility for the unbaked and
baked devices. Figure (c) was used for the hole mohility for the unbaked devices. Due to lack of
good output characteristics, no hole mobilities were extracted from (d) and from the 0% curvein

@).
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Figure 4-6. Output characteristics of FETs made of P3HT, PCBM and Cu-complex E. The
curves demonstrate clear n-conduction enabling the extraction of electron mobilities for all
tested guest concentrations (0, 1, 3%) and for both unbaked and baked devices.
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Figure 4-7. Output characteristics of FETs made of P3HT, PCBM and Cu-complex E. Only the
unbaked devices (l€ft) show clear p-conduction.
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4.4 P3HT:PCBM Solar Cells Blended with Ir-Complex

According to the energy levels in Figure 3-31 (i.e. according to Charlotte Fléchon's
measurements), blending P3HT with the Ir-compound should result in a type Il heterojunction
with holes transferring to the guest. However, no PL quenching is observed for P3HT upon
adding the guest, indicating that no energy transfer or exciton dissociation occurs. (The
PL QE was measured to be 3.0 % without and 4.1 % after addition of 5 wt% of the guest).

SCs consisting of blends of P3HT:PCBM in the active layer showed a reduction in performance
upon adding the triplet, more precisely a reduction of FF and Jsc at all guest concentrations and
a reduction of Voc mainly at high guest concentrations (see Figure 4-8 and Figure 4-9).""
Mobility measurements on FETs (Figure 4-10), however, showed a reduction of electron
mobilities when adding the triplet.”™ As electron transport happens mainly via PCBM, this raises
the question why SCs made out of MDMO-PPV and PCBM did not deteriorate in such a way

when mixed with the Ir-compound.

It is well known, however, that mobilities as measured via FETs are different from those
determined via investigating the JV curves. This has to do with (a) the direction of charge
transport which is along the substrate plane in FETs but perpendicular to that that in SCs, and
(b) it is not always clear which material is dominating the channel. PCBM may or may not
preferentially aggregate at the channel depending on the polymer it is blended with.

0.002 T T T T v T T 5T g
o o
S A
0.001 4 p—
— 010/0
< ——02%
——0.5%
& 0.000
g 0 110
5 Voltage (V) '
O -0.0014 .

-0.002

Figure 4-8. JV curves of P3HT:PCBM devices with different amounts of guest concentration.
Figure taken from the literature. ™2

Vil Solar cell devices with PBHT:PCBM and the guest ADSO77RE have been fabricated and characterised
by Shiv Kodam.

* Mohility measurements of FETs with PSHT:PCBM and the guest ADSO77RE were carried out by
Giovanni Mattia Lazzerini.



4 Appendices

=
=2

. 0.40 . v
1.4 s PCE = FF
L4t 03r
w27 0.35+",
éo'l‘.! : ' @
.
B0 w80
O ~ 0.30}
D-‘ - ‘,D-QZE — —
0.8} -~ . T ——eD22
Te0Ty «ti27
0. - " 25 .
%.0 0.2 04 0.6 0 B.O 0.2 0.4 0.6
Emitter (%) Emitter (%)
0.56} it a0 & Voo 5 4,"‘9‘“9‘
boss 8.
0.54} g 751,
— 7
> ~
0s2| < 7.01
g 2o |
0.50 6.0} ~ansee 1
. =
0.48} w048 5 T asai |
0.0 0.2 0.4 0.6 8.0 0.2 0.4 0.6

Emitter (%)

Emitter (%)

Figure 4-9. SC performance parameters corresponding to the curves shown in Figure 4-8.
Figure taken from the literature.
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Figure 4-10. Mobility measurements of P3HT:PCBM FETs with different amount of guest
concentrations after baking at 140 °C for (left) 5 min and (right) 10 min. Figure taken from the

literature.*?
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4.5 P3HT:PCBM Solar Cells with P3HT Synthesized with FeCl3
4.5.1 Motivation

It was claimed by Arif et al'® that triplet enhanced ladder-type poly(para-phenylene) polymer
with covalently bound trace amounts of Pd shows PCEs almost ten times greater than with the
pristine ladder-type polymer. The enhanced IPCE was attributed to the presence of long-lived
mobiletriplet excitons.

A similar approach was attempted here, with P3HT as the donor and FeCl; as the catalyst in the
synthesis. The polymer (from here on called P3HT-FeCl3) was synthesized by Egle Sirtautaite-
Sidlauskiene at the University of Nijmegen, Netherlands, in the group of Alan Rowan.

4.5.2 Results and Discussion

The device fabrication is identical to that described on page 110. The results are shown in
Figure 4-11. Compared was P3HT synthesised by different companies (American Dye Source,
ADS, and Lumtec) with P3HT-FeCls. Also, baked and unbaked samples are compared.

From the absorbance in (Figure 4-11a) we already see a large blue-shift of the P3HT-FeCls.
indicating a lack of crystallinity. The PL (Figure 4-11b) was considerably less blue-shifted. The
biggest problem of the P3HT-FeCl; is its low mobility due to the lack of crystallinity. Jsc
(Figure 4-11c) is about an order of magnitude smaller than that achieved with the commercial
materials.

4.5.3 Summary and Outlook

Due to the huge differences in crystallinity and mobility, a direct comparison between P3HT-
FeCl; and the commercial materials is not reasonable. Note that using FeCl; in the synthesis

was expected to lead to less regioregular P3HT (and generally more irreproducible results).
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temperaturein air. Solar cell performance parameters are shown in (c).
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4.6 P3HT:PCBM Solar Cells with P3HT Stirred in FeCl3
4.6.1 Motivation

There was an interesting paper by Kdkar et. a*° regarding the doping of a polythiophene with
FeCls. It was claimed that a complex formed between FeCl; and the polythiophene, that an
increase in crystallinity takes place, and that this improved the thermal stability of the polymer.
The proposed mechanism is the attachment of the Cl™ at the C=C bond of the polymer. Also, the
S content seems to decrease upon increasing the doping duration, indicating that S is being
replaced by Fe" during doping. Thisis hence a very interesting result with regards to the work in
this dissertation, because we have seen that in most cases the guest will have a negative effect
on charge transport in SCs, and this paper proposes the possibility of doping the polymer with a

heavier atom without sacrificing mobility (as the crystallinity is claimed to improve).

4.6.2 Experiment

The agueous FeCl; solution was prepared as 0.05g/ml, i.e 1 gFeCl; in 20 ml water. As the
FeCl; comes as FeCl3*6 H,O, 1.67 g of this material was dissolved in 20 ml of water. The
polymer was added to the solution and stirred in air at room temperature for 6 hours. Finally the

polymer was rinsed in distilled water before storing it under nitrogen atmosphere.

4.6.3 Results and Discussion

The devicefabrication isidentical to that described on page 110.

The results are shown in Figure 4-12, where commercially available P3HT from ADS (black
lines) is compared with the same polymer stirred in the agueous FeCl; solution. Also compared
are postannealed (after evaporation, filled symbols) with preannealed devices (after spin
coating, open symboals).
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Figure 4-12. Results for P3HT:PCBM solar cells. Untreated commercial ADS P3HT is shown
in black and ADS P3HT stirred in FeCl; is marked in red. Annealing is indicated by open
symbols. Note that different samples were used for measurements of the absorbance (c) and the

solar cell measurements (a, b, d).

Thefirst noteworthy result is that stirring the polymer in water for several hours did not degrade
it considerably. The dark curves are affected to some degree, showing higher leakage.
Nevertheless, the doped postbaked device still works fairly well under illumination, showing
only a small decrease in FF and Voc. The prebaking affected both the undoped and doped

devices negatively. The doped devices experienced a much larger loss in Ve though.

From the absorption measurements of the unanneal ed samples we see that the vibronic shoulder
at around 600 nm is more pronounced in the doped polymer than in the undoped one, but the
main peak around 500 nm is actually slightly more in the blue for the doped polymer. Both
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baked samples show a considerable vibronic shoulder and a similar main absorption peak

wavelength. It hence cannot be easily concluded which material has the higher crystallinity.

The SC performance parameters are shown in Table 4-1. Regarding the postbaked devices we
see a dlightly higher Jsc for the doped polymer, but a lower Voc. The FF remained constant.
Note that the origin of the improvement of Jsc is not clear according to the IPCE spectra, which
show an increase of the PCBM signal for the doped devices. For the prebaked devices we find a
strong reduction in Voc, which is partially compensated by an improved FF. Js is lower in the
doped sample.

Table 4-1. Solar cell performance results. Pre-(post-) annealing means annealing before (after)
cathode evaporation.

. Jsc Voc FF n
sample annealing
(mA/lcm?) (V) (%)
ADS-P3HT 140 °C postannealing 7.19 0.63 0.40 1.79
P3HT-FeCl; 140 °C postannealing 7.45 0.58 0.41 1.78
ADS-P3HT 120 °C preannealing 7.06 0.57 0.28 1.11
P3HT-FeCl; 120 °C preannealing 6.39 0.37 0.43 1.01

4.6.4 Conclusion and Outlook

The results presented above show that doping P3HT with different salts can lead to an
improvement in Jsc. More experiments need to be done to obtain better statistics and to find out

whether triplets are created upon the insertion of Feinto the polymer.
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