

# Web Services & The Internet of Things

ELEC6017

29 November 2013

Last edit 29 November

Enrico Costanza



# The Internet of Things (IoT)

- Everything is connected to the internet
- Not just computers, smart phones and tablets
- ..but also printers, cars, electricity meters, washing machines, refrigerators, thermostats, medicine containers...
  - Future or present?



# The Internet of Things & UbiComp

- Formal definition? Seems not to be available, yet
- Ubiquitous Computing (UbiComp): computational power is everywhere
  - Research theme started in the 90s



#### IoT and Web Services

- Can we use existing web services architectures for the IoT?
- Take advantage of available and well understood infrastructure
- Easier integration with web applications running on computers, phones and tablets



#### IoT in Practice

- A number of existing "things" are already connected to the Internet
  - Examples: <u>AlertMe energy monitor</u>,
    <u>CurrentCost energy monitor</u>, some ambient displays
    (e.g. <u>Philips multi-colour lamp</u>)
  - Use existing APIs
- Prototyping new devices using microcontrollers (uControllers) and network modules



# Example: Networked Electricity Sensor

- AlertMe Energy Monitoring kit
- Price tag about £50







# Example: Networked Electricity Sensor

- AlertMe Energy Monitoring kit
- Price tag about £50





Existing company server



# Interfacing with AlertMe

- Use existing <u>HTTP API defined by AlertMe</u>
- Cache and expose the data again in a format that is more compatible with what we need



# Prototyping New IoT: Microcontrollers

- Small embedded computational devices
- Include CPU, RAM and a number of peripherals



Image from http://elm-chan.org/works/avrx/rc/avrs.jpeg



# uController vs. Your Usual Computer

|                              | Standard Computer                             | uController                                                                                         |
|------------------------------|-----------------------------------------------|-----------------------------------------------------------------------------------------------------|
| Needs to be plugged to power | Plug to wall socket:<br>AC at 220V or 110V    | DC at 2.7V to 5.5V<br>(typically) 3.3V<br>convenient                                                |
| Built-in<br>peripherals      | Video card, audio card, network card,         | Analog-to-digital converter (ADC), timers, PWM,                                                     |
| Ports                        | USB, FireWire, VGA, HDMI, audio jack sockets, | Serial, I2C, TWI,                                                                                   |
| External peripheras          | Printer, Scanner, External monitor, speakers, | WiFi module, other radio module (BT, ZigBee,), Ethernet module, display, motor controllers, relays, |



#### More about uControllers

- Several brands and models
  - Differences in 8-, 16- or 32-bits architecture,
    computational power, RAM, physical size, built-in
    peripherals, cost, popularity (=community support?), ...
- Several programming languages
  - Assembly, C, C++, ...
  - Abundance of open source libraries
- My personal experience: <u>Atmel AVR</u> in plain C (8bits)



#### How to Learn More?

- Guess what? ..search on the Internet!
- Look at the "instruction manual" of the microcontroller, AKA "datasheet"
  - Large document, but don't be intimidated
  - For example, <u>Atmel AVR ATMega48/88/168 datasheet</u>



# Arduino as a Prototyping Framework

- Open Source prototyping platform, both software and hardware (including IDE) <a href="http://arduino.cc/">http://arduino.cc/</a>
- Originally built around the AVR ATMega168, now expanding to other platforms
- C++ based "language" in reality a collection of libraries
- Collection of prototyping boards and extensions ("shields")
  - Boards include USB to serial converter
- Great <u>online community!</u>



#### Wi-Fi Module

- Microchip (was Rovio) <u>RN-XV WiFly Module</u>, around £24
- Just one example of a radio module, very convenient because it leverages existing ubiquitous infrastructure
- Very low power (supposed to run 2 years on 2 AA batteries)





Images from:

http://www.iaacblog.com/mai/2013/01/beat-glove-proto\_2-wifly-osc/ and

http://www.antratek.com/rn-xv-wifly-module



## Wi-Fi Module (cont.)

- Serial port interface with simple API (yet temperamental..)
- Documented in the module manual
- We can use the serial port interface to connect to a uController





Images from:

http://www.iaacblog.com/mai/2013/01/beat-glove-proto\_2-wifly-osc/ and http://www.antratek.com/rn-xv-wifly-module



# Let's look at one example!

- Connect the WiFi module to the computer
  - Arduino board used simply as a USB to Serial converter
- Try different commands on the WiFi module and see the response
  - Join a wireless network
  - Connect to a server (opens TCP socket)
  - Make HTTP requests to a Node.js web service
- Think about how this task could be done programmatically



# Raspberry Pi?

- It is "a tiny and cheap computer for kids"
- Somewhere between a uController board and a standard computer
  - Simplicity vs. complexity
  - Power consumption
  - Cost
- http://www.raspberrypi.org

# RCA VIDEO AUDIO LEDS USB LAN CPU & GPU HDMI

Image from http://www.raspberrypi.org/faqs



## Summary

- RESTful web services can be used to implement IoT services and applications
- Some existing networked devices ("things") already offer RESTful-ish APIs (e.g. Alertme electricity sensor)
- To prototype new connected devices we can use uControllers equipped with WiFi modules
- Briefly looked at example requests to existing web service implemented in Node.js