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We define a general game which forms a basis for modelling situations of static search and concealment
over regions with spatial structure. The game involves two players, the searching player and the conceal-
ing player, and is played over a metric space. Each player simultaneously chooses to deploy at a point in
the space; the searching player receiving a payoff of 1 if his opponent lies within a predetermined radius r
of his position, the concealing player receiving a payoff of 1 otherwise. The concepts of dominance and
equivalence of strategies are examined in the context of this game, before focusing on the more specific
case of the game played over a graph. Methods are presented to simplify the analysis of such games, both
by means of the iterated elimination of dominated strategies and through consideration of automor-
phisms of the graph. Lower and upper bounds on the value of the game are presented and optimal mixed
strategies are calculated for games played over a particular family of graphs.

� 2013 The Authors. Published by Elsevier B.V. All rights reserved.
1. Introduction While this paper is theoretical in nature, the SSSG provides a
In this paper, we define a general search and concealment game
that takes full account of the spatial structure of the set over which
it is played. The game is static in the sense that players do not
move, but deploy simultaneously at particular spatial points and
receive payoffs based on their relative positions. In this way, the
static spatial search game (SSSG) provides a theoretical foundation
for the study of the relative strategic value of different positions in
a geography. Using the theory of metric spaces, we model situa-
tions in which the searching player may simultaneously search
multiple locations based on concepts of distance or adjacency rel-
ative to the point at which they are deployed.

While the SSSG does build upon previous work, particularly that of
Ruckle (1983) and White (1994), its simplicity and generality together
with its explicit consideration of spatial structure set it apart from
much of the literature (see Section 3 for a detailed review of related
work) and lend it the versatility to describe games over a huge variety
of different spaces. The primary contributions of this article are there-
fore to both propose a highly general model of spatial search and con-
cealment situations, which unites several other games presented in the
literature (see Section 4.2), and to present new propositions and ap-
proaches for the strategic analysis of such scenarios.
framework for the analysis of a diverse range of operational re-
search questions. Aside from explicit search and concealment sce-
narios, the game may be used to model situations in which some
structure or region must be protected against ‘attacks’ that could
arise at any spatial point; for example, the deployment of security
personnel to protect cities against terrorist attacks or outbreaks of
rioting, security software scanning computer networks to elimi-
nate threats, the defence of shipping lanes against piracy, the pro-
tection of a rail network against cable theft or the deployment of
stewards at public events to respond to emergency situations.

We provide a brief overview of all necessary game theoretic
concepts in Section 2 and a review of the literature on games of
search and security in Section 3, before formally defining the SSSG,
examining its relationship to other games in the literature and pre-
senting some initial propositions in Section 4. In Section 5, we
examine the SSSG on a graph and identify upper and lower bounds
on the value of such games before presenting an algorithm in Sec-
tion 6 which simplifies graph games by means of the iterated elim-
ination of dominated strategies, focusing particularly on the
application of the algorithm to games played on trees. Section 7
contains further results, including a way to simplify graph games
through consideration of graph automorphisms and an examina-
tion of a particular type of strategy for such games, which we de-
scribe as an ‘‘equal oddments strategy’’. In Section 8, we use the
concept of an equal oddments strategy to find analytic solutions
for a particular family of graph games, while Section 9 forms a con-
clusion to the paper, containing a summary of our key results and
suggestions of potential avenues for further research. Two proofs,
which were too complicated to include in the main text, are pre-
sented as appendices.
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2. Game theoretic concepts

The definitions and notation relating to game theory used in
this section are adapted from Blackwell and Girshick (1954) and
Morris (1994).

When discussing two-player games, we assume the following
definition:

Definition 2.1. Two-player games in normal form
A game in normal form between Players A and B, consists of:

� strategy sets RA, RB

� payoff functions pA; pB, with:
pA : RA � RB ! R

pB : RA � RB ! R
If the payoffs are such that for some constant c:
pAðx; yÞ þ pBðx; yÞ ¼ c; 8x 2 RA; 8y 2 RB

then the game is described as a constant-sum game.
The game is played by Players A and B simultaneously choosing

strategies (described as pure strategies in cases where there may
be any ambiguity) from their respective strategy sets x 2 RA, y 2 RB

and receiving payoffs pAðx; yÞ, pBðx; yÞ. The objective of each player
is to maximise their payoff.

In certain circumstances, we may allow players to adopt mixed
strategies, whereby they choose their pure strategy according to a
specified probability distribution. If RA and RB are finite, with:

RA ¼ fx1; . . . ; xjA
g

RB ¼ fy1; . . . ; yjB
g

for some positive integers jA, jB, then the mixed strategies rA, rB

can simultaneously be regarded as vectors:

rA ¼ ðrA½x1�; . . . ;rA½xjA
�Þ 2 ½0;1�jA

rB ¼ ðrB½y1�; . . . ;rB½yjB
�Þ 2 ½0;1�jB

and as functions, which allocate probabilities to pure strategies:

rA : RA ! ½0;1�
x # rA½x�

rB : RB ! ½0;1�
y # rB½y�

X
x2RA

rA½x� ¼
X
y2RB

rB½y� ¼ 1

The following definitions relate to the maximum expected pay-
off that players can guarantee themselves through careful choice of
their mixed strategies:

Definition 2.2. Values of the game
Given a two-player game, the values of the game uA, uB to

Players A and B respectively, are defined as:

� uA ¼maxsA minsB E½pAðsA; sBÞ�
� uB ¼maxsB minsA E½pBðsA; sBÞ�

where sA and sB range across all possible mixed strategies for Play-
ers A and B respectively and

E½pAðsA; sBÞ�
E½pBðsA; sBÞ�

represent the expected payoffs to each player, given that they
respectively adopt mixed (or pure) strategies sA and sB.
Definition 2.3. Optimal mixed strategies
Given a two-player constant-sum game, where the payoffs sum

to c 2 R, mixed strategies rA, rB for Players A and B are described
as optimal if and only if:
� minsB E½pAðrA; sBÞ� ¼ uA

� minsA E½pBðsA;rBÞ� ¼ uB

where sA and sB range across all possible mixed strategies for Play-
ers A and B respectively.

For a constant-sum game, where the payoffs sum to c 2 R, we
have:

uA þ uB ¼ c ð1Þ

Also, provided that RA and RB are finite, optimal mixed strategies
are guaranteed to exist for both players.

Both of these facts are consequences of the Minimax Theo-
rem (see Morris, 1994, p. 102).

Given a constant-sum two-player game with finite strategy sets,
a solution of the game comprises optimal mixed strategies RA; RB

and values uA; uB for each Player.
The following definition allows for a crude comparison of the

efficacy of different strategies.

Definition 2.4. Strategic dominance and equivalence

Consider a two-player game with strategy sets RA; RB and
payoff functions pA; pB. Given particular pure strategies
x1; x2 2 RA for Player A, we have:
� x2 very weakly dominates x1 if and only if:
pAðx2; yÞP pAðx1; yÞ; 8y 2 RB
� x2 weakly dominates x1 if and only if:
pAðx2; yÞP pAðx1; yÞ; 8y 2 RB
and 9y� 2 RB such that:
pAðx2; y�Þ > pAðx1; y�Þ
� x2 strictly dominates x1 if and only if:
pAðx2; yÞ > pAðx1; yÞ; 8y 2 RB
� x2 is equivalent to x1 if and only if:
pAðx2; yÞ ¼ pAðx1; yÞ; 8y 2 RB
Since the designation of the players as A and B is arbitrary,
obtaining corresponding definitions of strategic dominance and
equivalence for Player B is simply a matter of relabelling.

Note that weak dominance, strict dominance and equivalence
are all special cases of very weak dominance. Also, strict domi-
nance is a special case of weak dominance.

In this paper, weak dominance is of most relevance. Therefore,
for reasons of clarity, the terms ‘‘dominance’’ and ‘‘dominated
strategies’’ will be used to refer to weak dominance unless other-
wise stated.

Since a player aims to maximise his or her payoff, we would
intuitively expect that they should not play any dominated
strategies.

For a general definition of dominance in game theory, see
Leyton-Brown and Shoham (2008, pp. 20–23), from which the
above definition was adapted.

3. Games of search and security: a review

Games of search and concealment, in which one player
attempts to hide themselves or to conceal some substance in a
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specified space while another player attempts to locate or capture
the player or substance, have been widely studied.

3.1. Simple search games

One of the simplest search games is the well-known high-low
number guessing game in which one player chooses an integer in
a given range, while the other player makes a sequence of guesses
to identify it, each time being informed whether the guess was too
high or too low (Gal, 1974). Continuous versions of the game have
also been studied (Gal, 1978; Baston et al., 1985; Alpern, 1985a).

Another simple search game involves one player attempting to
locate an object that the opposing player has hidden at a location
chosen from a finite or countably infinite set with no spatial struc-
ture (except a possible ordering). Variants of these games include
examples where the searching player has some chance of overlook-
ing the object despite searching the correct location (Neuts, 1963;
Subelman, 1981) or where the searcher must also avoid the loca-
tion of a second hidden object (Ruckle, 1990).

3.2. Search games with immobile targets

A more complicated class of search games is that in which the
searching player is mobile and their target is immobile, with pay-
offs to each player typically (though not universally) being depen-
dent on the amount of time that elapses before the target is
located. Such games have been examined over many different
types of graph (Anderson et al., 1990; Alpern, 2008, 2010; Buyang,
1995; Reijnierse & Potters, 1993; Kikuta et al., 1994; Kikuta, 2004;
Pavlović, 1995), though in general the space may be a continuous
region (Gal, 1979). While the starting position of the searching
player is often fixed, games in which the searching player can
choose their position have also been studied (Alpern, Baston, &
Gal, 2008a; Dagan et al., 2008), as have games with multiple
searchers (Alpern & Howard, 2000; Peshkin, 1994).

3.3. Accumulation games

Accumulation games are an extension of this concept in which
there may be many hidden objects (Kikuta et al., 1997) or in which
hidden objects are replaced with some continuous material that
the hiding player can distribute across a set of discrete locations
(Kikuta et al., 2002; Zoroa, Fernández-Sáez, & Zoroa, 2004) or
across a continuous space (Ruckle et al., 2000). The payoffs in these
games are typically dependent on the number of objects or the
quantity of material that the searching player is able to locate.

3.4. Search games with mobile targets

Adding a further layer of complication, there is the class of search
game in which both the searching player and the hiding player are
mobile, including so-called ‘‘princess and monster’’ games. Again,
the payoffs in such games are typically dependent on the amount
of time that elapses before the hiding player is captured and players
are typically ‘invisible’ to each other, only becoming aware of the
location of their opponent at the moment of capture.

Such games have been considered over continuous one-dimen-
sional spaces such as the circle (Alpern, 1974) and the unit interval
(Alpern, Fokkink, Lindelauf, & Olsder, 2008b), over continuous
graphs or networks (Alpern et al., 1986; Anderson et al., 1992;
Alpern, 1985b) and over continuous two-dimensional spaces
(Foreman, 1977; Garnaev, 1991; Chkhartishvili et al., 1995). In
the latter case, it is necessary to introduce the concept of a detec-
tion radius, with a capture occurring if the distance between the
players drops below this value. In some cases, the probability of
capture is allowed to vary based on the distance between the
players (Garnaev, 1992).
Analyses of search games over discrete spaces in which both
searcher and hider are mobile have tended to consider spatial
structure in only a very limited way. While this structure may
determine the freedom of movement of the players, very little
work has been done to introduce an analogous concept to the
detection radius to such games. Generally, players move sequen-
tially and may only move to locations that are sufficiently close
to their current position (e.g. Eagle et al., 1991), though variants
have been considered in which either the searching player (Zoroa,
Fernández-Sáez, & Zoroa, 2012) or the hiding player (Thomas et al.,
1991) has the freedom to move to any location regardless of adja-
cency or distance.

Further variations on the search game with mobile searcher and
hider include games in which the searching player follows a pre-
determined path and must decide how thoroughly to search each
location visited (Hohzaki et al., 2000), games in which the search-
ing player must intercept an opponent attempting to move from a
given start point to a given end point (Alpern, 1992) and games
with a variegated environment and the possibility that the hiding
player will be betrayed by ‘citizens’ of the space (Owen et al.,
2008). Such games have also been used to model predator–prey
interactions (Alpern, Fokkink, Timmer, & Casas, 2011a).
3.5. Allocation games

Allocation games are a related concept, in which the searching
player does not move around the space individually, but rather dis-
tributes ‘search resources’ to locate the mobile hiding player. Such
games may include false information (Hohzaki, 2007) and may
incorporate spatial structure by allowing the influence of resources
to spread across space (‘‘reachability’’), an area which has seen ‘‘lit-
tle research’’ (Hohzaki, 2008).

Variations on this idea include situations in which searching re-
sources are deployed sequentially (Dendris, Kirousis, & Thilikos,
1997) or in which both players distribute resources to respectively
locate or protect a hidden object (Baston et al., 2000). Cooperative
allocation games, in which multiple players combine their search-
ing resources to locate a moving target, have also been considered
(Hohzaki, 2009).
3.6. Rendez-vous games

Rendez-vous games are a parallel concept to games with mobile
searching and hiding players, the difference being that these games
are cooperative, with both players wishing to locate the other as
soon as possible (see Alpern, 2002, for an overview). Typically, in
a rendez-vous game, the structure of the space is known to all, with
consideration given to the amount of information available to play-
ers regarding their relative positions, and their ability to distin-
guish between symmetries of the space (whether they have a
common understanding of ‘‘North’’, for example).

Rendez-vous games have been studied over various continuous
one-dimensional spaces, such as the line (Alpern et al., 1995; Lim
et al., 1996; Alpern et al., 2000) and the circle (Alpern, 2000), over
continuous two-dimensional spaces, such as the plane (Kikuta
et al., 2010) or a general compact metric space (Alpern, 1995)
and over discrete spaces, such as lattices (Alpern et al., 2005; Ruc-
kle, 2007) and other graphs (Alpern, Baston, & Essegaier, 1999).
Costs may also be introduced for movement and examination of
particular locations (Kikuta et al., 2007).

Work has also been done on ‘hybrid’ games of search and ren-
dez-vous, where, for example, two agents attempt to meet without
being located by a third (Alpern et al., 1998) or where the seaching
player does not know whether the other player is attempting to
rendez-vous or to evade capture (Alpern et al., 2002).
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3.7. Security games

Security games are used to model situations in which some
public resource (e.g. airports, transport infrastructure, power facil-
ities) must be protected from attack with limited defensive re-
sources. A good introduction to the topic is provided by Tambe
(2012).

Such situations tend to be modelled as Stackelberg games,
where it is assumed that the defensive player first commits to
some strategy to protect the vulnerable sites and that this strategy
is observed by the attacking player, who then chooses an optimal
response (Tambe, 2012, pp. 4–8). Stackelberg-type security games
related to the mobile-searcher-immobile-hider games of Sec-
tion 3.2 have also been proposed to examine optimal patrolling
strategies (Alpern, Morton, & Papadaki, 2011b; Basilico, Gatti, &
Amigoni, 2012).

A related concept is that of the much studied Colonel Blotto game,
in which two players must simultaneously distribute a fixed quan-
tity of discrete or continuous resources across a number of sites,
each site being ‘won’ by the player who distributed the greater quan-
tity of resources to it, with payoffs determined by the number of sites
that each player wins (see Roberson, 2006). The many extensions of
the Blotto game have included asymmetric versions (Tofias, Merolla,
& Munger, 2007; Hortala-Vallve & Llorente-Saguer, 2012), examples
in which resources are allocated to battlefields sequentially rather
than simultaneously (Powell, 2009) and examples in which defen-
sive resources are heterogenous (Cohen, 1966).

Though the deployment sites in such models are often assumed
to be wholly separate, with events at one location having no effect
on events at other locations, certain security games and Blotto
games with strategically interdependent sites have been consid-
ered. For example, Shubik and Weber (1981) introduce the concept
of a ‘‘characteristic function’’ for such games, which allocates val-
ues to subsets of the sites, thus allowing interdependencies be-
tween them to be captured. Other approaches to modelling such
interdependence include an extension of the Colonel Blotto game
in which a successful attack on a ‘‘radar site’’ ensures the success
of attacks on other sites (Grometstein & Shoham, 1989), while
Hausken (2010, 2011) discusses a classification of the underlying
infrastructures of security games based on the interdependence
of their sites (e.g. series, parallel, complex, . . .) and Powell (2007)
analyses the relative value of defending borders over protecting
strategic targets directly.

Though analyses of interdependence in security games and
Blotto games may be quite general (that of Shubik & Weber,
1981, for example), interdependence that arises explicitly from
the spatial structure of the deployment sites has not been consid-
ered in a general setting.

3.8. Geometric games

One of the most general and theoretical analyses of search and
concealment type situations is Geometric games and their applica-
tions (Ruckle, 1983). In this book, the author defines a geometric
game as a two-player zero-sum game (with players called ‘‘RED’’
and ‘‘BLUE’’) played over a given set S, where the strategy sets
for each player RRED;RBLUE are subsets of the power set PðSÞ (the
set of all subsets of S). Pure strategies for each player are therefore
subsets R;B # S. The payoff to each player is a function of R and B,
typically depending directly on the intersection R \ B.

This concept of a geometric game allows Ruckle to model a wide
variety of situations of search, ambush and pursuit, as well as a
range of abstract games, taking full consideration of the structure
of the space S over which the games are played.

Most published work based on Ruckle’s ideas (e.g. Baston,
Bostock, & Ferguson, 1989; Zoroa et al., 1993; Zoroa, Fernández-
Sáez, & Zoroa, 1999; Zoroa, Zoroa, & Fernández-Sáez, 1999, 2001,
2003; Alpern, Baston, & Gal, 2009, 2010) has focused on specific
examples of geometric games, rather than on general results.

3.9. Conclusion: motivations for the SSSG

Much of the literature on search games and related concepts
has focussed on analysing specific games, rather than attempting
to present general frameworks for such situations and identifying
more broadly applicable results. While spatial structure may be
considered for games in which players are mobile, the geography
of the space over which games are played is often given little or
limited consideration, particularly in the literature on security
games. The concept of ‘‘reachability’’, as described by Hohzaki
(2008), in which a searcher or searching resource deployed at a
point has influence over a neighbourhood of that point, has re-
ceived very little attention. Games which concentrate purely on
the strategic value of a player’s chosen position in a space, rather
than on strategies for moving through the space for the purposes
of search or rendez-vous, have also seen little research, at least
since the work of Ruckle (1983).

4. The static spatial search game (SSSG)

The definitions and notation relating to metric spaces used in
this section are from Sutherland (1975, pp. 19–44).

4.1. Definition of the SSSG

The static spatial search game (SSSG) is a two-player game
played over a metric space M ¼ ðX; dÞ, where X is a set of points
x and d : X�X! ½0;1Þ is the metric or distance, which has the
standard properties:

ðM1Þ dðx; yÞP 0; dðx; yÞ ¼ 0() x ¼ y

ðM2Þ dðx; yÞ ¼ dðy; xÞ; 8x; y 2 X

ðM3Þ dðx; yÞ þ dðy; zÞP dðx; zÞ; 8x; y; z 2 X

The metric d reflects the spatial structure of X. In Rn; d may be the
Euclidean distance, while in a graph d may be the length of the
shortest path connecting two points. However, depending on the
interpretation of the game, d could also represent an abstract dis-
tance, indicating dissimilarity, difficulty of communication or per-
ceived costs.

In specific cases, it may be sensible to relax some of these con-
ditions. For example, in a graph that is not connected, we could al-
low infinite distances between vertices that are not connected by a
path (an extended metric). Alternatively, to represent a directed
graph, we may wish to ignore the symmetry condition (M2) (a qua-
si-metric; see Steen & Seebach (1970)). However, for the sake of
simplicity, we do not consider such cases at this time.

We define a non-negative real number r called the detection ra-
dius and use the notation Br½x� to designate the closed ball centred
on x:

Br½x� ¼ y 2 X : dðx; yÞ 6 rf g

The strategies for Player A (the searching player) and Player B
(the concealing player) are specific points of X at which they
may choose to deploy. In a single play of the game, each player
simultaneously picks a point xA, xB from their own strategy set,
RA; RB # X.

For the sake of clarity, we use masculine pronouns to refer to
Player A and feminine pronouns to refer to Player B throughout this
paper.

We define the payoff functions for Player A and Player B respec-
tively as:
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pAðxA; xBÞ ¼
1; xB 2 Br ½xA�
0; otherwise

�

pBðxA; xBÞ ¼ 1� pAðxA; xBÞ

This is a constant-sum game and can be analysed accordingly.
In interpreting the game, we imagine that Player B chooses to

hide somewhere in X, while Player A attempts to locate his oppo-
nent. To do this, Player A selects a point of X and searches a neigh-
bourhood of this point. If Player B’s hiding place falls within the
detection radius of Player A’s chosen point, the attempt to hide is
unsuccessful and Player B is located. Otherwise, Player B remains
undetected.

The game is illustrated in Fig. 1.

4.2. The SSSG and other games

The SSSG is not strictly a geometric game by Ruckle’s definition
(1983, p. 2), since it is not zero-sum. However, it could be trans-
formed into a zero-sum game without altering the subsequent
analysis, simply by subtracting 1

2 from all payoffs. The decision that
all payoffs should be 0 or 1 has been taken to ensure the clarity of
the payoff matrices considered later in this paper.

Given this proviso, certain of Ruckle (1983)’s geometric games
can be formulated as particular cases of the SSSG. For example, if
transformed to a zero-sum game as described, game AAGV (Ruckle,
1983, p. 86; adapted from Arnold (1962)) is an example of the
SSSG, with X ¼ ½0;1� � R; RA ¼ RB ¼ X and dðx; yÞ ¼ jx� yj.

Similarly, White (1994)’s Games of strategy on trees are exam-
ples of the SSSG, where X is the set of vertices of a tree,
RA ¼ RB ¼ X; r ¼ 1 and d is the length of the shortest path be-
tween two vertices.

A game that demonstrates the potential complexity that can
arise from apparently simple cases of the SSSG is the ‘‘Cookie-Cut-
ter’’ game (or the ‘‘Hiding in a Disc’’ game), in which Player A
chooses a point in a disc of unit radius and Player B simultaneously
places a circular ‘cookie-cutter’ centred at any point of the disc,
winning the game if Player A’s point lies within the ‘cookie-cutter’.
Given appropriate payoffs, this game is an example of the SSSG,
where X is the closed unit disc, RA ¼ RB ¼ X and dðx; yÞ ¼ jx� yj.

The particular case of this game with r ¼ 1=2 was originally
proposed by Gale et al. (1974), for which optimal mixed strategies
were presented by Evans (1975). The game was extended to all
r > 0 by Bordelon (1975), who proposed optimal mixed strategies
for all r > 1=2, but these results were disputed by Ruckle (1983,
p. 108). Ruckle’s disproof was disputed in turn by Danskin
Fig. 1. The general SSSG. Players deploy simultaneously at points in some metric
space X. Suppose Player A deploys at x and can search all points within a radius of r.
Player B loses the game if deployed at y, but wins if deployed at z. A win results in a
payoff of 1; a loss results in a payoff of 0.
(1990), who showed that Bordelon (1975)’s results were correct
for some values of r > 1=2, though false in general. Despite the
apparent simplicity of the problem, Danskin (1990) was only able
to find optimal mixed strategies for a small range of values of
r around r ¼ 1=2 and for all r P

ffiffiffi
2
p

=2, thus illustrating the hidden
complexity of many games of this form.

A particularly simple example of a game that can be repre-
sented as an SSSG is ‘‘Matching Pennies’’ (see Blackwell & Girshick,
1954, p. 13), in which Players A and B simultaneously call ‘‘Heads’’
or ‘‘Tails’’, with Player A receiving a payoff of 1 if the calls are the
same and �1 otherwise, and Player B receiving a payoff of �1 if
the calls are the same and 1 otherwise. Taking
RA ¼ RB ¼ X ¼ fHeads;Tailsg; r ¼ 0, with d as any valid metric,
this is an SSSG, again with the proviso that the payoffs must be
transformed appropriately.

A more complicated example of a game that can be represented
as an SSSG is the graph security game of Mavronicolas, Papadopou-
lou, Philippou, and Spirakis (2008) if the number of attackers is re-
stricted to one. This game is played over an undirected graph
G ¼ ðVðGÞ; EðGÞÞ with one defender and (in general) multiple
attackers. Simultaneously, the defender chooses an edge and the
attackers each choose a vertex. The defender receives a payoff
equal to the number of attackers who choose vertices incident to
his chosen edge. Each attacker receives a payoff equal to 0 if their
chosen vertex is incident to the defender’s edge and 1 otherwise.

Consider the graph G0 obtained by inserting a new vertex at the
midpoint of each of the edges of G. Let the set of new vertices cre-
ated in this way be denoted VðG0Þ� while the complete vertex set
VðG0Þ includes both the new vertices and the original vertices. With
the defender as Player A, a single attacker as Player
B;X ¼ VðG0Þ;RA ¼ VðG0Þ�; RB ¼ VðGÞ; r ¼ 1 and with d as the
length of the shortest path between two vertices in G0, this game
is also an example of the SSSG.

The SSSG provides a framework that unites all of these games
and allows for a general consideration of the relative strategic
values of the different points of a space. It implicitly encom-
passes the concepts of reachability, interdependence based on
spatial structure and the detection radius, as discussed in
Section 3.

4.3. The SSSG with finite strategy sets

Consider an example of the SSSG in which the strategy sets
RA; RB are finite. One of the simplest possible mixed strategies
available to each player in such a case is the mixed strategy that
allocates equal probabilities to all points in a player’s strategy
set. We denote these mixed strategies by qA and qB for Players A
and B respectively.

The following proposition establishes a sufficient condition for
qA; qB to be optimal mixed strategies:

Proposition 4.1. Consider the SSSG played over a metric space X,
with finite strategy sets RA; RB and distance d. If there exists a positive
integer f such that:
jBr½xA� \ RBj ¼ f; 8xA 2 RA

jBr½xB� \ RAj ¼ f; 8xB 2 RB
ð2Þ

then qA and qB are optimal mixed strategies for Players A and B respec-
tively and fjRAj�1 ¼ fjRBj�1 ¼ u is the value of the game to Player A.
Proof. Suppose that Player A employs the mixed strategy qA which
allocates a uniform probability of jRAj�1 to all points xA 2 RA. In a
particular play of the game, suppose that Player B deploys at point
xB 2 RB.
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In this situation, since jBr½xB� \ RAj ¼ f, the expected payoff to
Player A is fjRAj�1, the probability that Player A’s point xA lies in
Br ½xB�. Therefore, for any mixed strategy rB for Player B:

E½pAðqA;rBÞ� ¼ fjRAj�1

and thus:
u ¼max

rA

min
rB

E pAðrA;rBÞ½ �P fjRAj�1 ð3Þ

Now suppose that Player B employs the mixed strategy qB which
allocates a uniform probability of jRBj�1 to all points xB 2 RB. In a
particular play of the game, suppose that Player A deploys at point
xA 2 RA.

In this situation, since jBr½xA� \ RBj ¼ f, the expected payoff to
Player A is fjRBj�1, the probability that Player B’s point xB lies in
Br ½xA�. Therefore, for any mixed strategy rA for Player A:

E½pAðrA;qBÞ� ¼ fjRBj�1

and thus:

u ¼max
rA

min
rB

E pAðrA;rBÞ½ � 6 fjRBj�1 ð4Þ

Now, (2) together with the symmetric property of the distance (M2)
imply that fjRAj ¼ fjRBj and thus that jRAj ¼ jRBj. By (3) and (4), we
therefore have:

jRAj�1
6 u 6 jRBj�1 ) u ¼ jRAj�1 ¼ jRBj�1

and qA, qB are optimal mixed strategies, by Definition 2.3. h
4.4. Dominance and equivalence in the SSSG

We can now examine strategic dominance and equivalence (see
Definition 2.4) in the context of the SSSG using the notation estab-
lished in Section 4.

Proposition 4.2. Consider the SSSG played over a metric space X,
with strategy sets RA, RB and distance d. For strategies
x1; x2 2 RA; x1 – x2, for Player A:

� x2 very weakly dominates x1 if and only if:
ðBr½x1� \ RBÞ# ðBr ½x2� \ RBÞ
� x2 weakly dominates x1 if and only if:
ðBr½x1� \ RBÞ � ðBr½x2� \ RBÞ
� x2 strictly dominates x1 if and only if:
ðBr ½x1� \ RBÞ ¼ ;
ðBr ½x2� \ RBÞ ¼ RB
� x2 is equivalent to x1 if and only if:
ðBr½x1� \ RBÞ ¼ ðBr½x2� \ RBÞ
This proposition states that for Player A:

� x2 very weakly dominates x1 if and only if, when deployed at x2,
Player A can search every potential location of Player B that
could be searched from x1.
� This dominance is weak if there exist potential locations of

Player B that can be searched from x2 but that cannot be
searched from x1 (inclusion is strict).
� Strict dominance only occurs in the trivial case in which no

potential locations of Player B can be searched from x1 while
every potential location of Player B can be searched from x2.
� x2 and x1 are equivalent if and only if precisely the same set of

potential locations of Player B can be searched from both points.
Proof. We consider each of the four parts of Definition 2.4 and
show that, in the context of the SSSG, they are equivalent to the
corresponding statements of Proposition 4.2. Recall that pA takes
values in f0;1g.

� Very weak dominance
pAðx2; yÞP pAðx1; yÞ; 8y 2 RB ð�Þ
() ½pAðx1; yÞ ¼ 1) pAðx2; yÞ ¼ 1�; 8y 2 RB

() ½y 2 Br ½x1� ) y 2 Br½x2��; 8y 2 RB

() ðBr ½x1� \ RBÞ# ðBr ½x2� \ RBÞ ð��Þ
� Weak dominance
Since ð�Þ () ð��Þ, it suffices to observe that, if ð��Þ is assumed
to be true:
9y� 2 RB : pAðx2; y�Þ > pAðx1; y�Þ
() 9y� 2 RB : y� 2 Br ½x2� and y� R Br½x1�
() ðBr ½x1� \ RBÞ � ðBr½x2� \ RBÞ ½by ð��Þ�
� Strict dominance
pAðx2; yÞ > pAðx1; yÞ; 8y 2 RB

() y 2 Br ½x2� and y R Br½x1�; 8y 2 RB

()
ðBr ½x1� \ RBÞ ¼ ;;
ðBr ½x2� \ RBÞ ¼ RB

�

� Equivalence
pAðx2; yÞ ¼ pAðx1; yÞ; 8y 2 RB

() ½y 2 Br ½x2� () y 2 Br½x1��; 8y 2 RB

() ðBr ½x2� \ RBÞ ¼ ðBr½x1� \ RBÞ �
We now consider dominance and equivalence for Player B:

Proposition 4.3. Consider the SSSG played over a metric space X,
with strategy sets RA; RB and distance d. For strategies
x1; x2 2 RB; x1 – x2, for Player B:

� x2 very weakly dominates x1 if and only if:
½x2 2 Br ½y� ) x1 2 Br ½y��; 8y 2 RA
� x2 weakly dominates x1 if and only if:
½x2 2 Br ½y� ) x1 2 Br ½y��; 8y 2 RA
and 9y� 2 RA such that:
x1 2 Br ½y�� and x2 R Br ½y��
� x2 strictly dominates x1 if and only if:
x1 2 Br ½y� and x2 R Br½y�; 8y 2 RA
� x2 is equivalent to x1 if and only if:
½x2 2 Br ½y� () x1 2 Br½y��; 8y 2 RA
This proposition states that for Player B:

� x2 very weakly dominates x1 if and only if, wherever Player A
deploys, if he can search x2 then he can also search x1.
� This dominance is weak if there exists a position for Player A

from which he can search x1 but cannot search x2.
� Strict dominance only occurs in the trivial case in which, wher-

ever Player A deploys, he can search x1 but cannot search x2.
� x2 and x1 are equivalent if and only if, wherever Player A

deploys, he can search x2 if and only if he can search x1.
Proof. We consider each of the four parts of Definition 2.4 and
show that, in the context of the SSSG, they are equivalent to the
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corresponding statements of Proposition 4.3. Recall that pB also
takes values in f0;1g.

� Very weak dominance
pBðy; x2ÞP pBðy; x1Þ; 8y 2 RA ð�Þ
() ½pBðy; x1Þ ¼ 1) pBðy; x2Þ ¼ 1�; 8y 2 RA

() ½x1 R Br ½y� ) x2 R Br ½y��; 8y 2 RA

() ½x2 2 Br½y� ) x1 2 Br½y��; 8y 2 RA ð��Þ
� Weak dominance
Since ð�Þ () ð��Þ, it suffices to observe that:
9y� 2 RA : pBðy�; x2Þ > pBðy�; x1Þ
() 9y� 2 RA : x1 2 Br ½y�� and x2 R Br½y��
� Strict dominance
pBðy; x2Þ > pBðy; x1Þ; 8y 2 RA

() x1 2 Br½y� and x2 R Br ½y�; 8y 2 RA
� Equivalence
pBðy; x2Þ ¼ pBðy; x1Þ; 8y 2 RA

() ½x2 2 Br½y� () x1 2 Br ½y��; 8y 2 RA
�

The necessary and sufficient conditions for dominance and
equivalence for Player B established in Proposition 4.3 can be
shown to be equivalent to a simpler set of conditions, clearly anal-
ogous to those relating to dominance and equivalence for Player A
seen in Proposition 4.2:

Proposition 4.4. Consider the SSSG played over a metric space X,
with strategy sets RA; RB and distance d. For strategies
x1; x2 2 RB; x1 – x2, for Player B:

� x2 very weakly dominates x1 if and only if:
ðBr½x2� \ RAÞ# ðBr ½x1� \ RAÞ
� x2 weakly dominates x1 if and only if:
ðBr½x2� \ RAÞ � ðBr ½x1� \ RAÞ
� x2 strictly dominates x1 if and only if:
ðBr ½x1� \ RAÞ ¼ RA

ðBr ½x2� \ RAÞ ¼ ;
� x2 is equivalent to x1 if and only if:
ðBr½x2� \ RAÞ ¼ ðBr ½x1� \ RAÞ
Proof. We consider each of the four statements of Proposition 4.3
(which has already been proven) and show that they are equiva-
lent to the corresponding statements of Proposition 4.4.

� Very weak dominance
½x2 2 Br½y� ) x1 2 Br½y��; 8y 2 RA ð�Þ
() ½y 2 Br½x2� ) y 2 Br ½x1��; 8y 2 RA ½by ðM2Þ�
() ðBr½x2� \ RAÞ# ðBr½x1� \ RAÞ ð��Þ
� Weak dominance
Since ð�Þ () ð��Þ, it suffices to observe that, if ð��Þ is assumed
to be true:
9z 2 RA : x1 2 Br½z� and x2 R Br½z�
() 9z 2 RA : z 2 Br ½x1� and z R Br ½x2� ½by ðM2Þ�
() ðBr½x2� \ RAÞ � ðBr ½x1� \ RAÞ ½by ð��Þ�
� Strict dominance

x1 2 Br½y� and x2 R Br ½y�; 8y 2 RA

() y 2 Br½x1� and y R Br ½x2�; 8y 2 RA ½by ðM2Þ�

()
ðBr ½x1� \ RAÞ ¼ RA;

ðBr ½x2� \ RAÞ ¼ ;

�

� Equivalence
½x2 2 Br ½y� () x1 2 Br½y��; 8y 2 RA

() ½y 2 Br ½x2� () y 2 Br½x1��; 8y 2 RA ½by ðM2Þ�
() ðBr ½x2� \ RAÞ ¼ ðBr½x1� \ RAÞ �
While Proposition 4.4 is apparently simpler than Proposition
4.3, note that every part of its proof depends on the symmetric
property of the distance (M2). If this condition were to be relaxed,
as discussed in Section 4.1, Proposition 4.4 would not be valid and
dominance and equivalence for Player B would have to be analysed
on the basis of Proposition 4.3.

Definition 4.1. Pairwise Equivalence
Consider the SSSG played over a metric space X, with strategy

sets RA; RB and distance d. For Player A or Player B, a subset of their
strategy set R̂ # RA or R̂ # RB exhibits pairwise equivalence if and
only if x is equivalent to y; 8x; y 2 R̂.

We conclude that a subset R̂ # RA or R̂ # RB exhibiting pairwise
equivalence can be reduced to any singleton fx̂g# R̂ without alter-
ing the analysis of the game. Since all points in R̂ are equivalent, a
player would neither gain nor lose by playing another point in the
set over x̂.

The following proposition states that if x2 very weakly domi-
nates x1 for Player A (and x1 is adjacent to at least one potential
location for Player B), then the distance between the two points
must be no greater than 2r.

Proposition 4.5. For the SSSG played over a metric space X, with
strategy sets RA; RB and distance d, if x2 very weakly dominates x1 for
Player A and Br ½x1� \ RB – ;, then x2 2 B2r ½x1� \ RA.
Proof. If x2 very weakly dominates x1 for Player A and
Br ½x1� \ RB – ;, then:

;– ðBr ½x1� \ RBÞ# ðBr ½x2� \ RBÞ ½by 4:2�
) 9 y 2 Br½x1� \ Br½x2�
) dðx1; yÞ 6 r and dðx2; yÞ 6 r
) dðx1; x2Þ 6 2r ½by ðM2Þ; ðM3Þ�
) x2 2 B2r½x1� \ RA

�

The condition that Br ½x1� \ RB – ; simply removes trivial strate-
gies that are very weakly dominated by every other strategy.

An analogous result holds for Player B. The proof is similar to
that of 4.5 and is therefore omitted:

Proposition 4.6. For the SSSG played over a metric space X, with
strategy sets RA; RB and distance d, if x2 very weakly dominates x1 for
Player B and Br½x2� \ RA – ;, then x2 2 B2r½x1� \ RB.

In this case, the condition that Br½x2� \ RA – ; removes strategies
that very weakly dominate every other strategy.

Note that both of these propositions depend on the symmetric
property of the distance (M2) and the triangle inequality (M3).

4.5. Iterated elimination of dominated strategies

The concepts of dominance and equivalence provide us with a
method for reducing the SSSG through an iterative process of
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removing dominated strategies from RA and RB, reducing pairwise
equivalent subsets to singletons and reassessing dominance in the
new strategy sets. This is known as the iterated elimination of
dominated strategies (IEDS) (see, for example, Berwanger, 2007;
Börgers, 1992; Dufwenberg et al., 2002). Given any game, the
aim of IEDS is to identify a simplified game, whose solutions are
also solutions of the complete game. These solutions can then be
identified using standard techniques (see, for example, Morris
(1994, pp. 99–114)). The application of this method to games
played over graphs is discussed in Section 6.

It should be noted that because we are considering weak
rather than strict dominance, IEDS may not be suitable for iden-
tifying all the solutions of a particular game. The results of this
form of IEDS are dependent on the order in which dominated
strategies are removed (Leyton-Brown & Shoham, 2008, pp.
20–23) and some solutions may be lost. It is also necessary to
observe that, while IEDS has been shown to be valid for games
with finitely many possible strategies, for games with infinitely
many possible strategies the process may fail (Berwanger,
2007). Indeed, such infinite games may not have solutions (Ruc-
kle, 1983, p. 10).

However, though IEDS is not guaranteed to produce optimal
mixed strategies for the SSSG in such cases, given a pair of mixed
strategies rA, rB obtained by this method, it is straightforward to
check whether or not they are optimal by verifying that, for some
u 2 ½0;1�, we have:

inf
x2RB

E½pAðrA; xÞ� ¼ u

inf
y2RA

E½pBðy;rBÞ� ¼ 1� u
ð5Þ

where u is the value of the game to Player A.
This method is described by Blackwell and Girshick (1954,

p. 60) and used extensively by Ruckle (1983) to verify proposed
optimal mixed strategies for geometric games.
Fig. 2. The SSSG on a graph. Players deploy simultaneously at vertices of the graph.
Suppose that Player A deploys at the vertex marked w. If r ¼ 1, Player B loses the
game if she deploys at any of the vertices marked w or x, but wins if she deploys at
any of the vertices marked y or z. If r ¼ 2, Player B loses the game if she deploys at
any of the vertices marked w; x or y, but wins if she deploys at either of the vertices
marked z. A win results in a payoff of 1; a loss results in a payoff of 0.
5. The SSSG on a graph

The definitions and notation relating to graph theory used in
this section are adapted from Bondy and Murty (1976).

5.1. Definition of the SSSG on a graph

Consider a simple undirected graph G, characterised by the
symmetric adjacency matrix M ¼ ðaijÞ, with a set of j vertices:

VðGÞ ¼ fv1; . . . ; vjg

and a set of edges:

EðGÞ ¼ ffv i;v jg : v i;v j 2 VðGÞ and aij ¼ 1g

We suppose that G is connected, to ensure that the metric space axi-
oms are fulfilled, but this assumption could be relaxed if we allowed
for infinite distances between vertices. We also suppose that all
edges of G have unit weight.

The graph game G ¼ ðG;RA;RB; rÞ over a finite graph G is de-
fined to be an example of the SSSG, with
X ¼ VðGÞ; ;– RA;RB # VðGÞ; r a positive real number, and the dis-
tance function dGðv ;wÞ for v ;w 2 VðGÞ; v – w, defined to be the
length of the shortest path from v to w in G. We also define
dGðv ;vÞ ¼ 0; 8v 2 VðGÞ. The assumption that G is undirected en-
sures that the symmetry condition dGðv;wÞ ¼ dGðw;vÞ holds
8v ;w 2 VðGÞ.

Setting r ¼ 1, we have that Br ½v �, the zone that can be searched
by Player A when deployed at v, is the closed neighbourhood N½v�
of v, the set of all vertices adjacent to v united with fvg itself.
The game proceeds by Player A choosing a vertex vA 2 RA and
Player B simultaneously choosing a vertex vB 2 RB. The payoff
functions are:

pAðvA;vBÞ ¼
1; ifvA and vB areequaloradjacent;
0; otherwise:

�

pBðvA;vBÞ ¼ 1� pAðvA;vBÞ

In this game, the pure strategies for each player are particular
vertices. In the following analysis, we use the words ‘‘strategy’’
and ‘‘vertex’’ interchangeably, depending on the context.

The graph game is illustrated in Fig. 2.

5.2. Graph games with r – 1

The restriction to r ¼ 1 is not a significant constraint, since any
graph game can be reduced to this case by means of a minor
alteration.

For situations with r – 1, we can define:

G0 ¼ ðVðGÞ; EðG0ÞÞ

such that:

EðG0Þ ¼ ffv i;v jg : v i;v j 2 VðGÞ and 1 6 dGðv i;v jÞ 6 rg

and apply our analysis to G0 with r ¼ 1.
Equivalently, if r 2 N, we can replace the adjacency matrix

M ¼ ðaijÞ of G with M0 ¼ ða0ijÞ, where:

a0ij ¼
0; if bij ¼ 0 or i ¼ j
1; otherwise:

�

with ðbijÞ ¼
Pr

q¼1Mq, the matrix which shows the number of paths
in G of length no greater than r connecting v i to v j.

It therefore suffices to exclusively study graph games G with
r ¼ 1, since these methods for redefining G ensure that such anal-
ysis will be applicable to games for any r 2 N.

5.3. Preliminary observations

Analysis of the graph game requires the statement of some pre-
liminary results and definitions. For these results, we use the fol-
lowing notation:

� NA½v � ¼ N½v � \ RA Set of all potential positions for Player A in N½v�.
� NB½v � ¼ N½v � \ RB Set of all potential positions for Player B in N½v�.
� a½v � ¼ jNA½v �j Number of potential positions for Player A in N½v�.
� b½v � ¼ jNB½v�j Number of potential positions for Player B in N½v�.
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� DðGÞ ¼maxw2VðGÞ½degðwÞ�Maximum degree of the vertices of G.
� dðGÞ ¼minw2VðGÞ½degðwÞ� Minimum degree of the vertices of G.

The following proposition states that if Player A can search a
globally maximal number of potential positions for Player B from
a vertex v, then v is not dominated by any other vertex and is only
equivalent to those vertices which have the same closed neigh-
bourhood as v. In a graph in which all vertices have a distinct
closed neighbourhood, such as a rectangular grid graph, such a ver-
tex v cannot be very weakly dominated by any other vertex.

Proposition 5.1. For the graph game G ¼ ðG;RA;RB; rÞ, with r ¼ 1,
consider a vertex v 2 RA and the subset RðvÞA ¼ fz 2 RA : N½z� ¼ N½v�g.
We have that if:

b½v � ¼ DðGÞ þ 1 ð6Þ

then:

(i) RðvÞA exhibits pairwise equivalence for Player A;
(ii) v is not very weakly dominated for Player A by any strategy in
RA n RðvÞA .
Proof. To prove (i), observe that 8w1;w2 2 RðvÞA ;N½w1� ¼ N½w2�.
Hence, NB½w1� ¼ NB½w2� and therefore w1 is equivalent to w2 for
Player A, so RðvÞA exhibits pairwise equivalence for Player A.

To prove (ii), suppose for a contradiction that v satisfies (6) and
is very weakly dominated by v̂ 2 RA n RðvÞA .

Observe also that:

If b½w� ¼ DðGÞ þ 1; for some w 2 VðGÞ;
then NB½w� ¼ N½w�:

ð7Þ

and note that DðGÞ þ 1 is an upper bound for b½w�.
Now, we have that:

NB½v� # NB½v̂� ½by very weak dominance�
) DðGÞ þ 1 6 b½v̂ � 6 jN½v̂ �j ½by ð6Þ�
) DðGÞ þ 1 6 b½v̂ � 6 DðGÞ þ 1
) DðGÞ þ 1 ¼ b½v � ¼ b½v̂�
) NB½v� ¼ NB½v̂� ½since NB½v�# NB½v̂ ��
) N½v � ¼ N½v̂ � ½by ð7Þ�
) v̂ 2 RðvÞA

This is a contradiction, since we supposed that v̂ 2 RA nRðvÞA . h

The next proposition is a stronger result. It states that, for Player
A, given a vertex v that is known not to be very weakly dominated
by any vertices outside of a certain subset S, if Player A can search
strictly more potential hiding places for Player B when deployed at
v than could be searched from any other vertex in S, then v is not
very weakly dominated by any other vertex.

Proposition 5.2. For the graph game G ¼ ðG;RA;RB; rÞ, with r ¼ 1,
consider a vertex v 2 RA. Let S # RA be such that v 2 S and such that
RA n S contains no vertices that very weakly dominate v for Player A.
We have that if:

b½v � > max
w2Snfvg

ðb½w�Þ ð8Þ

then v is not very weakly dominated for Player A by any other strategy
in RA.

Proof. For a contradiction, suppose that v satisfies (8) and is very
weakly dominated by v̂ 2 RA for Player A. We must have that
v̂ 2 S, since vertices outside S cannot very weakly dominate v.

From the very weak dominance, we have:
NB½v � # NB½v̂ �
) max

w2Snfvg
ðb½w�Þ < b½v � 6 b½v̂� ½by ð8Þ�

This is a contradiction, since v̂ 2 S n fvg. h

The following proposition is a restatement of Proposition 4.5,
reformulated in the context of the graph game. It states that any
vertex that very weakly dominates v for Player A can be no more
than 2 steps away from v on the graph. Its proof is identical to that
of Proposition 4.5 and is thus omitted.

Proposition 5.3. For the graph game G ¼ ðG;RA;RB; rÞ, with r ¼ 1, if
w very weakly dominates v for Player A and NB½v �– ;, then:

w 2 B2½v � \ RA
Corollary 1. For the graph game G ¼ ðG;RA;RB; rÞ, with r ¼ 1, con-
sider a vertex v 2 RA. We have that if:

b½v� > max
w2S0
ðb½w�Þ

where:

S0 ¼ B2½v � \ RA n fvg

then v is not very weakly dominated for Player A by any other strategy.
Proof. This follows directly from Propositions 5.2 and 5.3, where
the set S from Proposition 5.3 is defined as:

S ¼ B2½v � \ RA �

The corollary states that any vertex from which Player A can
search strictly more potential hiding places for Player B than could
be searched from any other valid vertex lying no more than two
steps away, cannot be very weakly dominated by any other vertex.
These results allow us to considerably narrow down our search for
dominated and equivalent vertices.

Analogous results to Propositions 5.2 and 5.3 and Corollary 1
hold for very weak dominance for Player B. The proofs of these re-
sults are similar to those presented above and are thus omitted.

Proposition 5.4. For the graph game G ¼ ðG;RA;RB; rÞ, with r ¼ 1,
consider a vertex v 2 RB. Let S # RB be such that v 2 S and such that
RB n S contains no vertices that very weakly dominate v for Player B.
We have that if:

a½v� < min
w2Snfvg

ða½w�Þ

then v is not very weakly dominated for Player B by any other strategy
in RB.
Proposition 5.5. For the graph game G ¼ ðG;RA;RB; rÞ, with r ¼ 1, if
w very weakly dominates v for Player B and NA½w�– ;, then:

w 2 B2½v � \ RB
Corollary 2. For the graph game G ¼ ðG;RA;RB; rÞ, with r ¼ 1, con-
sider a vertex v 2 RB;a½v �– 0. We have that if:

a½v� < min
w2S0
ða½w�Þ

where:

S0 ¼ B2½v � \ RB n fvg

then v is not very weakly dominated for Player B by any other strategy.



676 T.P. Oléron Evans, S.R. Bishop / European Journal of Operational Research 231 (2013) 667–689
5.4. Bounds on the value of a graph game

A first step in the analysis of a particular graph game is to deter-
mine lower and upper bounds on the values of the game (see
Definition 2.2).

Recall that for a two-player constant-sum game, it makes sense
to restrict discussion to the value to Player A, since this also deter-
mines the value to Player B through the condition that the sum of
the two values is a fixed constant (see (1)).

Proposition 5.6. For the graph game G ¼ ðG;RA;RB; rÞ, with r ¼ 1,
let u represent the value to Player A. u is bounded as follows:

min
v2RB

a½v �
jRAj

6 u 6 max
v2RA

b½v �
jRBj

Note that in the case where RA ¼ RB ¼ VðGÞ, these inequalities
become:

dðGÞ þ 1
jVðGÞj 6 u 6

DðGÞ þ 1
jVðGÞj ð9Þ

The proposition derives from a consideration of qA and qB, defined
in Section 4.3 as the mixed strategies that allocate equal probabili-
ties to all vertices in a player’s strategy set. If Player A employs
mixed strategy qA, then Player B can do no better than to deploy
at the vertex whose closed neighbourhood contains the fewest pos-
sible vertices in RA. The value of the game to Player A cannot there-
fore be less than the sum of the probabilities that qA assigns to these
vertices. This reasoning produces the left hand inequality. The right
hand inequality follows in a similar fashion from an analysis of qB as
a strategy for Player B. A formal proof follows:

Proof. Suppose that Player A employs the mixed strategy qA which
allocates a uniform probability of jRAj�1 to all vertices w 2 RA. In a
particular play of the game, suppose that Player B deploys at vertex
v 2 RB.

In this situation, the expected payoff to Player A is a½v �jRAj�1.
Therefore, for any mixed strategy rB for Player B:

E½pAðqA;rBÞ�P min
v2RB

a½v�
jRAj

and thus:

u ¼max
rA

min
rB

E pAðrA;rBÞ½ �P min
v2RB

a½v �
jRAj

The proof of the right hand inequality is similar. h

The following corollary is a consequence of (9):

Corollary 3. Consider the graph game:

G ¼ ðG;RA;RB; rÞ

where G ¼ ðVðGÞ; EðGÞÞ is a regular graph of degree D;
RA ¼ RB ¼ VðGÞ; r ¼ 1 and let u be the value of G to Player A. Then:

� u ¼ ðDþ 1Þ=jVðGÞj
� The strategy q that allocates a uniform probability of jVðGÞj�1 to all

vertices, is an optimal mixed strategy for both players.

u can also be bounded in a different way:
Proposition 5.7. For the graph game G ¼ ðG;RA;RB; rÞ with r ¼ 1,
let u represent the value to Player A and:

W ¼ W 0 # RA :
[

w2W 0
N½w� � RB

( )

Z ¼ Z0 # RB : dGðz1; z2Þ > 2;8z1; z2 2 Z0
� �
Then u is bounded as follows:

min
W 02W
jW 0j

� ��1

6 u 6 max
Z02Z
jZ0j

� ��1

The left hand inequality is derived from consideration of the
mixed strategy sA for Player A that allocates uniform probabilities
to a minimal subset of vertices whose closed neighbourhoods
cover RB.

The right hand inequality is derived from consideration of the
mixed strategy sB for Player B that allocates uniform probabilities
to a maximal subset of vertices with the property that no two ver-
tices are connected by a path of length less than 3.

Proof. First consider the left hand inequality.
Consider a subset of vertices W 0 2W of minimum cardinality.

Suppose that Player A employs the mixed strategy sA that allocates
uniform probability jW 0j�1 to vertices w 2W 0 and zero probability
to all other vertices.

In a particular play of the game, suppose that Player B deploys
at vertex v 2 RB. Since W 0 2W , we have:[
w2W 0

N½w� � RB

Therefore 9w0 2W 0 such that v 2 N½w0�. Since sA allocates a proba-
bility of jW 0j�1 to w0, the expected payoff to Player A is greater than
or equal to jW 0j�1. Therefore, for any mixed strategy rB for Player B:

E½pAðsA;rBÞ�P min
W 02W
jW 0j

� ��1

and thus:

u ¼max
rA

min
rB

E pAðrA;rBÞ½ �P min
W 02W

jW 0j
� ��1

Now consider the right hand inequality.
Consider a subset of vertices Z0 2 Z of maximum cardinality.

Suppose that Player B employs the mixed strategy sB that allocates
uniform probability jZ0j�1 to vertices v 2 Z0 and zero probability to
all other vertices.

In a particular play of the game, suppose that Player A deploys
at vertex w 2 RA. Since dGðz1; z2Þ > 2; 8z1; z2 2 Z0, we clearly have
that:

jN½w� \ Z0j 6 1

So, in this situation, the expected payoff to Player A is less than or
equal to jZ0j�1. Therefore, for any mixed strategy rB for Player A:

E½pAðrA; sBÞ� 6 max
Z02Z
jZ0j

� ��1

and thus:

u ¼max
rA

min
rB

E pAðrA;rBÞ½ � 6 max
Z02Z
jZ0j

� ��1

�

Following these results, we label the bounds on u as follows:

� LB1 ¼minv2RB

a½v �
jRA j

� LB2 ¼ minW 02W jW 0 j
� 	�1

� UB1 ¼maxv2RA

b½v �
jRB j

� UB2 ¼ maxZ02Z jZ0j
� 	�1

For a particular graph game, each of these bounds may or may
not be attained. For example, consider the four graphs shown in
Fig. 3. In each case, consider the graph game G ¼ ðG;RA;RB; rÞ with



(a) (b)

(c) (d)

Fig. 3. Four simple graphs. Solutions of games played over these graphs and the
values of the four bounds LB1, LB2, UB1, UB2 are summarised in Table 1.
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RA ¼ RB ¼ VðGÞ and r ¼ 1. For such small graphs, optimal mixed
strategies are easy to calculate (for example, using the method de-
scribed by Morris (1994, pp. 99–114)). Table 1 summarises the
optimal mixed strategies, the true values of u (the value of G to
Player A) and the values of the bounds for each of the four games.

It should be noted that while LB1 and UB1 will generally be easy
to calculate, LB2 and UB2 may not be, since the minimal and max-
imal cardinalities of W 0 2W and Z0 2 Z respectively may be diffi-
cult to determine.
6. Simplifying graph games algorithmically

6.1. An IEDS algorithm for graph games

The results of Section 4.4 and Section 5.3 allow for the creation
of an IEDS algorithm (see Section 4.5) for the graph game
G ¼ ðG;RA;RB; rÞ. Since the game has finitely many strategies, this
approach is always a valid method for finding a solution of the
game (though it may not identify all optimal mixed strategies),
as discussed in Section 4.5.

The algorithm identifies vertices that may be very weakly dom-
inated for Player A or Player B and checks for dominance and equiv-
alence over a small subset of their surrounding vertices. Very
weakly dominated vertices are eliminated and the strategy sets
for the players are iteratively reduced, forming sequences
ðRA;KÞK2N and ðRB;KÞK2N of subsets of RA and RB respectively, until
there is no dominance or equivalence in the remaining vertices.
The aim is to simplify the game as far as possible, such that optimal
mixed strategies can be more easily identified.
Table 1
Summary of the values of bounds LB1, LB2, UB1, UB2, the true values u to Player A and exam
graphs shown in Fig. 3, with RA ¼ RB ¼ VðGÞ and r ¼ 1. Bold cells indicate that the relevan

Bounds

Graph u LB1 LB2 UB1 UB2

a 0.75 0.75 0.50 0.75 1.00
b 0.50 0.50 0.50 0.75 0.50
c 1.00 0.50 1.00 1.00 1.00
d 0.40 0.33 0.33 0.56 0.50
The explicit identification of vertices that cannot be dominated
and the subsequent restriction of the set of vertices that should be
examined when searching for dominance of a given vertex are in-
tended to facilitate the creation of an efficient computer pro-
gramme to apply IEDS in the graph game. An application of the
algorithm in a very simple case is presented in Section 6.11.

For the purpose of iteration, our existing notation is extended as
follows:

NA;K ½v� ¼ N½v � \ RA;K

NB;K ½v� ¼ N½v � \ RB;K

aK ½v � ¼ jNA;K ½v �j
bK ½v � ¼ jNB;K ½v �j
6.2. Step one: transformation of G to G0

If r – 1, we transform G to G0 using the method outlined in
Section 5.2.

We then set the iteration variable K ¼ 0 and define:

RA;0 ¼ RA

RB;0 ¼ RB
6.3. Step two: identify vertices that cannot be very weakly dominated
for Player A

By Propositions 5.1 and 5.3 and Corollary 1, in a graph in which
all vertices have a distinct closed neighbourhood, a vertex v for
which:

bK ½v � ¼ DðGÞ þ 1
or NB;K ½v� – ; and B2½v� \ RA;K ¼ fvg
or bK ½v � > max

w2S0ðvÞ
ðbK ½w�Þ

where:

S0ðvÞ ¼ B2½v� \ RA;K n fvg

cannot be very weakly dominated for Player A by any other vertex.
We need not therefore consider such vertices when looking for
dominated or equivalent strategies.

Formally, we define a reduced set of strategies for Player A:

R�A;K ¼ RA;K n Cð0ÞA;K [ Cð1ÞA;K [ Cð2ÞA;K

h i
with:

Cð0ÞA;K ¼ v 2 RA;K : bK ½v � ¼ DðGÞ þ 1
� �

Cð1ÞA;K ¼ v 2 RA;K : NB;K ½v � – ;; B2½v � \ RA;K ¼ fvg
� �

Cð2ÞA;K ¼ v 2 RA;K : bK ½v � > max
w2S0ðvÞ

ðbK ½w�Þ
� 


For a graph in which two vertices may have the same closed
neighbourhood, Proposition 5.1 is not used, and we instead define:
ples of optimal mixed strategies for each player for graph games played over the four
t bounds are attained. All figures are rounded to two decimal places.

Optimal strategies

Player A Player B

Probability allocated to each vertex marked.

X Y Z X Y Z

0.25 N/A N/A 0.25 N/A N/A
0.00 0.50 N/A 0.50 0.00 N/A
0.00 1.00 N/A 0.33 0.00 N/A
0.00 0.20 0.20 0.15 0.10 0.00
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R�A;K ¼ RA;K n Cð1ÞA;K [ Cð2ÞA;K

h i
6.4. Step three: eliminate very weakly dominated vertices for Player A

Now we must look for very weakly dominated vertices for
Player A in R�A;K .

Vertices v 2 RA;K for which NB;K ½v � ¼ ; are dominated automat-
ically by any vertex w 2 RA;K for which NB;K ½w�– ;, while Proposi-
tion 5.3 states that for each v 2 R�A;K with NB;K ½v �– ; we need
only look for vertices that very weakly dominate v in B2½v � \ RA;K .

Vertices are checked sequentially according to some pre-deter-
mined ordering and very weakly dominated vertices are removed
and are not considered when searching for dominance and equiv-
alence of any remaining vertices. Sequential checking and the
immediate removal of identified vertices ensure that pairwise
equivalent subsets are not eliminated from RA;K in their entirety,
but rather reduced to singletons as required.

Let the set of very weakly dominated vertices identified in this
way be denoted as WA;K .

Formally, we define a new strategy set for Player A:

RA;Kþ1 ¼ RA;K nWA;K

Note that in the trivial case where NB;K ½v � ¼ ;; 8v 2 RA;K , all ver-
tices under consideration are equivalent for Player A, so we choose
any vertex v 2 RA;K , define RA;Kþ1 ¼ fvg;WA;K ¼ RA;K n fvg and con-
tinue to Step Four. This ensures that RA;Kþ1 is not empty.

6.5. Step four: identify vertices that cannot be very weakly dominated
for Player B

In a similar fashion to Step Two, we use Proposition 5.5 and
Corollary 2 to define a reduced set of strategies for Player B, remov-
ing those strategies that cannot be very weakly dominated:

R�B;K ¼ RB;K n Cð1ÞB;K [ Cð2ÞB;K

h i
with:

Cð1ÞB;K ¼ v 2 RB;K : NA;Kþ1½v �– ;; B2½v� \ RB;K ¼ fvg
� �

Cð2ÞB;K ¼ v 2 RB;K : aKþ1½v� < min
w2S00 ðvÞ

aKþ1½w�ð Þ
� 


where:

S00ðvÞ ¼ B2½v � \ RB;K n fvg

However, in the trivial case where 9v� 2 RB;K with NA;Kþ1½v�� ¼ ;,
observe that v� (which need not be unique) very weakly dominates
every other vertex for Player B, so we define R�B;K ¼ RB;K and con-
tinue to Step Five.

Note the use of NA;Kþ1½v � and aKþ1½v � rather than NA;K ½v � and
aK ½v � at this step.

6.6. Step five: eliminate very weakly dominated vertices for Player B

Now we must look for very weakly dominated vertices for
Player B in R�B;K .

If 9v� 2 R�B;K with NA;Kþ1½v�� ¼ ; then v� very weakly dominates
every other vertex for Player B, as discussed, so we define
RB;Kþ1 ¼ fv�g; WB;K ¼ RB;K n fv�g and continue to Step Six.

Otherwise, Proposition 5.5 states that for each v 2 R�B;K we need
only look for vertices that very weakly dominate v in B2½v � \ RB;K .

Vertices are checked sequentially and very weakly dominated
vertices are removed and are not considered when searching for
dominance and equivalence of any remaining vertices.

Let the set of very weakly dominated vertices identified in this
way be denoted as WB;K .
Formally, we define a new strategy set for Player B:

RB;Kþ1 ¼ RB;K nWB;K
6.7. Step six: condition for continued iteration

If no very weakly dominated vertices were identified at Steps
Three and Five (WA;K ¼ WB;K ¼ ;), then no further pure strategy
dominance or equivalence exists. In this case, proceed to Step Se-
ven. Otherwise, increase the iteration variable K by one and return
to Step Two.
6.8. Step seven: find optimal mixed strategies for the simplified game

Construct the payoff matrix for the simplified game defined by
the strategy sets RA;K ;RB;K . If optimal mixed strategies for this game
can be found (for example, using the method described by Morris
(1994), pp. 99–114), they are optimal mixed strategies for the com-
plete graph game (see Morris, 1994, pp. 48–49; Berwanger, 2007,
p. 2).
6.9. Termination and efficiency of the algorithm

Note that this algorithm must terminate for some K 2 N. The
condition for continued iteration (Step Six) is only fulfilled if new
pure strategy dominance or equivalence is identified and this nec-
essarily results in the elimination of strategies from one player’s
strategy set. Also, graph games have been defined on graphs with
a finite set of j vertices, which implies that RA;0 and RB;0 are finite
sets. Therefore the integer sequence:

jRA;K j þ jRB;K jð ÞK2N ð10Þ

is strictly decreasing and positive, and so must terminate for some
K ¼ K 0 2 N.

Though a thorough investigation of the computational com-
plexity of the algorithm is beyond the scope of this paper (and
would depend to some extent on its precise implementation), a
crude measure of the algorithm’s efficiency can be determined by
considering the number of pairs of vertices that must be tested
for very weak dominance before the algorithm terminates. Given
a graph game G ¼ ðG;RA;RB; rÞ with jVðGÞj ¼ j, an (extremely con-
servative) upper bound for this number can be determined as
follows.

At each of Steps Three and Five, a particular vertex can be tested
against no more than j� 1 other vertices. Therefore, the number
of vertex pairs tested for very weak dominance at a single iteration
certainly does not exceed 2j2. Also, since (10) is a strictly decreas-
ing positive sequence and jRA;0j; jRB;0j 6 j, the number of iterations
clearly cannot exceed 2j. Therefore, for any graph game, the total
number of vertex pairs that must be tested for very weak domi-
nance before the algorithm terminates will not exceed a cubic
function of the number of vertices j.

Alternatively, since the algorithm only tests vertex pairs for
very weak dominance if the distance between them is less than
3, at each of Steps Three and Five, a particular vertex will be tested
against no more than DðG0Þ2 other vertices (where DðG0Þ is the max-
imum degree of the vertices of the graph after the completion of
Step One). Therefore, the number of vertex pairs tested in a single
iteration certainly does not exceed 2DðG0Þ2j. Again using the fact
that the number of iterations cannot exceed 2j, we may conclude
that, for any graph game, the total number of vertex pairs tested
before termination will not exceed a quadratic function of DðG0Þj.

Which of these bounds is more useful will depend on the struc-
ture of the graphs under consideration.
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6.10. The algorithm applied to games on trees

In this section and the next, we demonstrate that the algorithm
of Section 6.1 offers a distinct advantage over the method proposed
by White (1994) for solving games played on trees (with r ¼ 1).
Proposition 6.2 establishes that the algorithm always succeeds in
reducing games of this type to cases that are trivially simple to
solve, while Section 6.11 presents a simple example which shows
that the algorithm can also be applied to games on graphs that
are not trees. Also note that White (1994) exclusively considers sit-
uations where RA ¼ RB ¼ VðGÞ, while the algorithm presented here
is not restricted to such cases.

Recall that a tree is a graph in which there is a unique path be-
tween any pair of vertices. In particular, if G is a tree, we may des-
ignate a vertex t 2 VðGÞ as the ‘‘root’’ of G, such that any vertex
v – t has precisely one neighbour vp (the ‘‘parent’’ of v) for which:

dGðt;vpÞ ¼ dGðt;vÞ � 1

For any other neighbour vc of v (a ‘‘child’’ of v) we have:

dGðt;vcÞ ¼ dGðt;vÞ þ 1

As in Section 4.3, let qA and qB represent the mixed strategies for
each player that allocate equal probabilities to all vertices in their
strategy set. The following proposition is a restatement of Proposi-
tion 4.1 in the context of graph games, with f ¼ 1.

Proposition 6.1. Consider the graph game:

G ¼ ðG;RA;RB; rÞ

with r ¼ 1. If we have:

a½v� ¼ 1; 8v 2 RB

b½w� ¼ 1; 8w 2 RA

then qA and qB are optimal mixed strategies for Players A and B respec-
tively and jRAj�1 ¼ jRBj�1 ¼ u is the value of the game to Player A.

The following proposition states that, for graph games on trees
with r ¼ 1, either the value of the game to Player A is zero and anal-
ysis of the game is trivial or the algorithm of Section 6.1 reduces
the game to the form given in Proposition 6.1, for which qA and
qB have been shown to be optimal mixed strategies.

Proposition 6.2. Consider the graph game:

G ¼ ðG;RA;RB; rÞ

where G is a tree and r ¼ 1. When applied to G, the algorithm of Sec-
tion 6.1 terminates for some K ¼ K 0 2 N, such that:

� Either:
RA;K 0 ¼ fwg; bK 0 ½w� ¼ 0
RB;K 0 ¼ fvg; aK 0 ½v � ¼ 0
and u, the value of the game to Player A, is 0;
� Or:
aK 0 ½v � ¼ 1; 8v 2 RB;K 0

bK 0 ½w� ¼ 1; 8w 2 RA;K 0
and thus, by Proposition 6.1, the mixed strategies qA;K 0 and qB;K 0 , which
allocate equal probabilities to all vertices in the players’ respective
strategy sets RA;K 0 and RB;K 0 , are optimal mixed strategies and the value
of the game to Player A is:
u ¼ jRA;K 0 j�1 ¼ jRB;K 0 j�1
A proof of the proposition is presented in Appendix B.
6.11. An application of the algorithm

A computer programme was written in Python (Python Soft-
ware Foundation, 2012) using NumPy (Numpy Developers, 2012)
to implement the algorithm of Section 6.1.

The single example presented here is clearly very simple and is
included purely to demonstrate that the algorithm can be applied
to games on graphs other than trees, though the extent to which it
is able to simplify such game varies greatly. Note particularly that
this example has r – 1 and RA – RB.

Consider the graph game G
� ¼ ðG�;RA;RB; rÞ, where r ¼ 2 and G�

is the graph over 14 vertices v0 to v13 defined by the adjacency
matrix:

M ¼

0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 1 0 0 1 0 0 0 0 0 1 0 0
0 1 0 1 0 0 1 0 0 0 0 0 0 1
0 0 1 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 1 1 0
0 1 0 0 1 0 1 0 0 0 0 0 1 0
0 0 1 0 0 1 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 1 1 1 1 0
0 0 0 1 0 0 0 0 0 1 0 1 1 0
1 0 0 0 0 0 0 1 1 0 0 0 0 1
0 0 0 0 0 0 1 1 0 0 0 1 1 0
0 1 0 0 1 0 0 1 1 0 1 0 0 0
0 0 0 0 1 1 0 1 1 0 1 0 0 0
0 0 1 0 0 0 0 0 0 1 0 0 0 0

0
BBBBBBBBBBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCCCCCCCCCA

with:

RA ¼ VðG�Þ
RB ¼ fv1; v2;v5; v6;v8; v10; v11;v12;v13g

The graph is shown in Fig. 4.
The algorithm reduces the game to the following case:

� Remaining strategies for Player A : v1;v7;v8;v13

� Remaining strategies for Player B : v0;v2;v6;v12

� Payoff matrix (for Player A):

Player B

v0 v2 v6 v12

Player A

v1

v7

v8

v13

0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0

0
BBB@

1
CCCA

Calculating the optimal mixed strategies from this matrix is
simple, for example, using the method described by Morris
(1994, pp. 99–114). Alternatively, observe that we may apply Prop-
osition 4.1 to this reduced game, setting f ¼ 3.

An optimal mixed strategy for Player A is to play vertices
v1;v7;v8;v13, each with probability 0.25; an optimal mixed strat-
egy for Player B is to play vertices v0;v2;v6;v12, each with proba-
bility 0.25. The value of the game to Player A is 0.75.
7. Further methods for analysing graph games

7.1. Exploiting the automorphisms of a graph game

The definitions and notation relating to group theory
used in this section are from Neumann, Stoy, and Thompson (1994).

An automorphism of a graph G ¼ ðVðGÞ; EðGÞÞ is a mapping of
the graph to itself, which preserves adjacencies. The following def-
inition is adapted from Bondy and Murty (1976, pp. 5–7):
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Definition 7.1. Consider a simple undirected graph
G ¼ ðVðGÞ; EðGÞÞ.

� An automorphism / of G is a permutation of the vertices:
Fig. 4.
RA \ RB
/ : VðGÞ ! VðGÞ
v # /ðvÞ
such that:
fv ;wg 2 EðGÞ () f/ðvÞ;/ðwÞg 2 EðGÞ
� The automorphism group CðGÞ is the permutation group
formed by the set of all automorphisms of G, with the operation
of composition.
� The orbit OH½v � of a vertex v 2 VðGÞ under a subgroup H 6 CðGÞ

is the set:
OH½v � ¼ fw 2 VðGÞ : 9/ 2 H with /ðvÞ ¼ wg
The orbits of the vertices of G under H form a partition of VðGÞ.

Note that this definition is valid for simple graphs. For more
general graphs, which may include directed edges, loops, or multi-
ple edges connecting the same vertices, a permutation of the edges
also needs to be specified.

We extend the concept of a graph automorphism to that of a
graph game automorphism, an automorphism of the graph that
also preserves the strategic status of the vertices:

Definition 7.2. Consider a graph game:

G ¼ ðG;RA;RB; rÞ

with r ¼ 1. A graph game automorphism / of G is an automor-
phism of G, such that:

� v 2 RA () /ðvÞ 2 RA; 8v 2 VðGÞ
� v 2 RB () /ðvÞ 2 RB; 8v 2 VðGÞ

We can also define automorphism groups and vertex orbits in
terms of graph game automorphisms:

Proposition 7.1. Consider a graph game:

G ¼ ðG;RA;RB; rÞ

with r ¼ 1.

� The set of all graph game automorphisms of G, with the operation
of composition, forms a subgroup CðGÞ (the graph game auto-
morphism group) of CðGÞ.
The graph G� . Square vertices lie in RA only, while circular vertices lie in
.

� The orbits of the vertices of G under any subgroup H 6 CðGÞ form a
partition of VðGÞ.

For CðGÞ to be a subgroup of CðGÞ, we require that CðGÞ is
closed under composition, contains the identity and contains an in-
verse for every element. Since the only restriction on CðGÞ is that
RA; RB are invariant under its elements, these conditions are
clearly satisfied. The second part of the proposition is true of any
permutation group.

The following proposition describes a relationship between cer-
tain optimal mixed strategies of G and the graph game automor-
phism group CðGÞ.

Proposition 7.2. Consider a graph game:

G ¼ ðG;RA;RB; rÞ

with VðGÞ ¼ fv1; . . . ;vjg and r ¼ 1. Let O½v� denote the orbit of v un-
der some subset H of the graph game automorphism group CðGÞ.

There exists a pair of optimal mixed strategies:

rA ¼ ðrA½v1�; . . . ;rA½vj�Þ
rB ¼ ðrB½v1�; . . . ;rB½vj�Þ

where rA and rB respectively allocate probabilities rA½v i� and rB½v i� to
vertex v i , such that 8i; j 2 f1; . . . ;jg:

O½v i� ¼ O½v j� )
rA½v i� ¼ rA½v j�
rB½v i� ¼ rB½v j�

�
ð11Þ

Note that in particular the proposition is true for H ¼ CðGÞ. A
proof of the proposition is presented in Appendix B.

Proposition 7.2 implies that, when looking for optimal mixed
strategies for a graph game G, it suffices to consider those strategies
that allocate equal probability to all vertices lying in the same orbit
under graph game automorphisms. For graphs with high numbers of
symmetries, this can significantly simplify the analysis of the game.

Furthermore, the fact that the proposition is valid for any sub-
group H 6 CðGÞ ensures that even if not all graph game automor-
phisms of G are known, to find a pair of optimal mixed strategies, it
is sufficient to restrict consideration to those strategies that allo-
cate equal probability to all vertices lying in the same orbit under
the subgroup generated by those graph game automorphisms that
can be identified.

Note that, though stated and proved in a different setting, this
proposition is strongly related to Theorem 2.1 of Zoroa et al.
(1993, pp. 526–528), which relates to games played over sets that
admit certain transformations. However, Zoroa et al. require that
the transformations considered be commutative, which is not nec-
essarily true of the automorphisms of a graph.

7.2. Example: Using automorphisms to find solutions of G

Consider the graph game G ¼ ðG5;5;RA;RB; rÞ, where G5;5 is the
the 5� 5 rectangular grid graph depicted in Fig. 5,
RA ¼ RB ¼ VðG5;5Þ and r ¼ 1. Each player has 25 possible pure strat-
egies: VðG5;5Þ ¼ fv1; . . . ;v25g.

Note that since both Players may deploy at any vertex,
CðGÞ ¼ CðG5;5Þ, so we consider all automorphisms of G5;5. These
automorphisms are rotations through multiples of p=2, reflection
about a vertical axis and compositions of these transformations.
The vertices can be partitioned into six orbits, which we denote
as OðiÞ; i 2 f1; . . . ;6g. The vertices belonging to each orbit are indi-
cated in Fig. 5.

By Proposition 7.2, there exist optimal mixed strategies rA;rB

for Players A and B, which allocate the same probability to all ver-
tices lying in the same orbit. Let xðiÞA and xðiÞB be the respective
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probabilities that rA and rB allocate to individual vertices in orbit
OðiÞ, and define:

Ai ¼ jOðiÞjxðiÞA ; Bi ¼ jOðiÞjxðiÞB ; 8i 2 f1; . . . ;6g ð12Þ

Observe that:

X6

i¼1

Ai ¼
X6

i¼1

Bi ¼ 1

Ai and Bi represent the total probability that rA and rB respectively
allocate to all vertices in orbit OðiÞ.

Let rð1Þ; . . . ;rð6Þ be the mixed strategies (for either player),
which allocate uniform probability to all vertices in the corre-
sponding orbit and zero probability to other vertices:

rðiÞ ¼ ðrðiÞ½v1�; . . . ;rðiÞ½v25�Þ

with:

rðiÞ½v j� ¼
jOðiÞj�1

; v j 2 OðiÞ

0 ; otherwise:

(

We see that rA and rB are linear combinations of the rðiÞ, weighted
by the orbit probabilities Ai and Bi:

rA ¼
X6

i¼1

Air
ðiÞ; rB ¼

X6

i¼1

Bir
ðiÞ

This observation allows us to take a different perspective on the
problem. Suppose that we treat the rðiÞ as if they were pure strategies.
The following strategies would be optimal strategies of such a game:

sA ¼ ðsA½rð1Þ�; . . . ; sA½rð6Þ�Þ
sB ¼ ðsB½rð1Þ�; . . . ; sB½rð6Þ�Þ

with:

sA½rðiÞ� ¼ Ai; 8i 2 f1; . . . ;6g
sB½rðiÞ� ¼ Bi; 8i 2 f1; . . . ;6g

To find these optimal mixed strategies, we analyse the matrix of
expected payoffs to Player A for each of these six strategies against
one another:

Player B

rð1Þ rð2Þ rð3Þ rð4Þ rð5Þ rð6Þ

Player A

rð1Þ

rð2Þ

rð3Þ

rð4Þ

rð5Þ

rð6Þ

1=4 1=4 0 0 0 0
1=4 1=8 1=4 1=4 0 0
0 1=4 1=4 0 1=4 0
0 1=4 0 1=4 1=2 0
0 0 1=4 1=2 1=4 1
0 0 0 0 1 1

0
BBBBBBBB@

1
CCCCCCCCA
Fig. 5. The 5� 5 rectangular grid graph G5;5. Vertices marked i belong to orbit OðiÞ
under CðG5;5Þ.
The optimal mixed strategies sA and sB can be computed from
this payoff matrix using standard methods (see, for example, Mor-
ris (1994, pp. 99–114)), giving:

A1; . . . ;A6ð Þ ¼ 69�1ð16;28;10;4;6;5Þ
B1; . . . ;B6ð Þ ¼ 69�1ð16;28;10;4;6;5Þ

Using (12) we then find:

xð1ÞA ; . . . ;xð6ÞA

� �
¼ 138�1ð8;7;5;2;3;10Þ

xð1ÞB ; . . . ;xð6ÞB

� �
¼ 138�1ð8;7;5;2;3;10Þ

This fully determines the optimal mixed strategies rA and rB for G.
These optimal mixed strategies are illustrated in Fig. 6.

Note that by identifying the six orbits of VðGÞ under graph game
automorphisms of G, rather than solving a game with a 25� 25
payoff matrix, we needed only to solve a game with a 6� 6 payoff
matrix. A similar method could be applied to any graph game
G ¼ ðG;RA;RB; rÞ with r ¼ 1, for which non-trivial graph game
automorphisms can be found.
7.3. Equal oddments strategies

The example of the graph game G played over the 5� 5 rectan-
gular grid G5;5 exhibits two curious and related properties.

Firstly, and most obviously, the optimal mixed strategies that
were calculated for each player are identical rA ¼ rB ¼ r. This
means that the optimal mixed strategy for Player A allocates iden-
tical probabilities to the vertices of G5;5 as does the optimal mixed
strategy for Player B (though these optimal mixed strategies need
not be unique). Given the interpretation of the game, this is a sur-
prising result. Player B is attempting to hide from Player A, so we
might have expected that her best mixed strategy would involve
avoiding vertices at which Player A was more likely to deploy.

Note that the method of Section 7.1 does not produce identical
optimal mixed strategies for all graphs, nor for all grid graphs. For
example, when applied to the 6� 6 grid graph G6;6, the method
produces distinct optimal mixed strategies rA;rB (see Fig. 7) that
appear to be more consistent with our intuition, in that vertices
to which rA allocates fairly high probability seem to be allocated
fairly low probability by rB and vice versa.

Secondly, in Fig. 6, observe that for all vertices v 2 VðG5;5Þ, the
sum of the probability oddments allocated by r to the vertices in
the closed neighbourhood N½v � is equal to 22. Formally, we make
the following definition:
Fig. 6. Probability oddments (integer values proportional to the probabilities)
allocated to each vertex of G5;5 by the (identical) optimal mixed strategies rA and rB

for the graph game G ¼ ðG5;5;RA;RB; rÞ, with r ¼ 1 and RA ¼ RB ¼ VðG5;5Þ. Darker
shading indicates lower probability oddments.



Fig. 7. Probability oddments allocated to each vertex of G6;6 by the optimal mixed
strategies rA and rB for the graph game G ¼ ðG6;6;RA;RB; rÞ, with r ¼ 1 and
RA ¼ RB ¼ VðG6;6Þ. Darker shading indicates lower probability oddments.
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Definition 7.3. Given a graph game G ¼ ðG;RA;RB; rÞ, with r ¼ 1
and RA ¼ RB ¼ VðGÞ ¼ fv1; . . . ;vjg, an equal oddments strategy r
is a vector:

r ¼ ðr½v1�; . . . ;r½vj�Þ

with:
0 6 r½v i� 6 1; 8i 2 f1; . . . ;jg

Xj
i¼1

r½v i� ¼ 1

such that:X
w2N½v j �

r½w� ¼ u; 8j 2 f1; . . . ;jg

For some u 2 R. We call u the neighbourhood sum of r.
The following proposition links those situations in which Play-

ers A and B have identical optimal mixed strategies with the exis-
tence of equal oddments strategies.

Proposition 7.3. Given a graph game G ¼ ðG;RA;RB; rÞ, with r ¼ 1
and RA ¼ RB ¼ VðGÞ, then the following statements are equivalent:

� r is an equal oddments strategy of G with neighbourhood sum
u 2 R.
� r is an optimal mixed strategy of G for both players and u 2 R is

the value of the game to Player A.
Proof. Suppose that r is an equal oddments strategy of G with
neighbourhood sum u 2 R. Observe that for all pure strategies
v 2 VðGÞ for either player, we have:

E½pAðv ;rÞ� ¼ u

E½pBðr;vÞ� ¼ 1� u

Therefore, by (5), r is an optimal mixed strategy of G for both play-
ers and u is the value of the game to Player A.

To prove the opposite implication, suppose that r is an optimal
mixed strategy of G for both players and that u is the value of the
game to Player A. Let:

VðGÞ ¼ fv1; . . . ;vjg
r ¼ ðr½v1�; . . . ;r½vj�Þ

Also let:

m� ¼ min
v2VðGÞ

X
w2N½v�

r½w�
" #

mþ ¼ max
v2VðGÞ

X
w2N½v�

r½w�
" #
and let v�, vþ be vertices for which this minimum and maximum
are respectively attained.

Assume (to derive a contradiction) that r is not an equal
oddments strategy. Then:

m� < mþ ð13Þ

Therefore:

mþ ¼ E½pAðvþ;rÞ�P E½pAðr;rÞ� ¼ u

1�m� ¼ E½pBðr; v�Þ�P E½pBðr;rÞ� ¼ 1� u

Since r is an optimal mixed strategy, the above inequalities must be
equalities. Specifically:

m� ¼ mþ ¼ u

This contradicts (13). Therefore r is an equal oddments strategy. h

Proposition 7.3 means that, given a graph game
G ¼ ðG;RA;RB; rÞ, with r ¼ 1 and RA ¼ RB ¼ VðGÞ, if we can find a
distribution of positive real numbers across the vertices such that
the sum of these numbers in any closed neighbourhood is equal to
a constant, and we scale these numbers to produce a valid proba-
bility distribution across the vertices, this distribution defines a
mixed strategy that is optimal for both players. This offers an alter-
native approach to proving Corollary 3 on optimal mixed strategies
for games played over regular graphs, since the mixed strategy q,
as defined in the corollary, is clearly an equal oddments strategy.

8. Games on poly-level graphs

8.1. Poly-level graphs

The concepts discussed in Section 7 suggest a potential ap-
proach for finding general expressions for the optimal mixed strat-
egies of games played over certain families of graphs. To
demonstrate this approach, we consider games played over a spe-
cific family of graphs, which we describe as poly-level graphs. The
vertices in such graphs are arranged in levels and each vertex
exhibits a local structural similarity in the way that it is connected
to other vertices in its own level and to those in the levels above
and below.

Definition 8.1. Poly-level graph

A graph G ¼ ðVðGÞ; EðGÞÞ is called a poly-level graph if and only
if the vertices can be partitioned into h subsets L1; L2; . . . ; Lh # VðGÞ
called levels, with jLij ¼ ci, such that each vertex in Li is adjacent to
precisely:

� j other vertices in Li (the intradegree);
� k vertices in Liþ1 (the superdegree), for i – h ;
� l vertices in Li�1 (the subdegree), for i – 1 ;
� 0 vertices in any other level.

where j is a non-negative integer and h; k; l; c1; . . . ; ch are positive
integers.

Fig. 8 provides a visual representation of a general poly-level
graph, while Figs. 9–13 show specific examples of such graphs. In
each example, vertices in L1 are coloured black, with higher levels
being indicated by progressively lighter shades.

The appearance of a poly-level graph may be highly symmetric
(Figs. 9 and 10) or quite irregular (Fig. 11). Also, two poly-level
graphs with the same parameters may be topologically quite dif-
ferent (Fig. 12), while the parameters used to describe a particular
poly-level graph are generally not unique (Fig. 13).

Note that it suffices to specify the number of vertices c1 in L1 to
determine the number of vertices ci in any level Li, as established in
the following simple proposition:
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Proposition 8.1. Given a poly-level graph G, with levels L1; . . . ; Lh,
superdegree k, subdegree l and jLij ¼ ci, we have:

ci ¼ ðkl�1Þ
i�1

c1; 8i 2 f1; . . . ; hg
Proof. The number of edges linking vertices in Li to vertices in Liþ1

can be expressed in two forms, which must be equal:

lci ¼ kci�1; 8i 2 f2;3; . . . ; hg

Thus, the ci form a geometric progression with common ratio kl�1

and the proposition follows immediately. h

The following proposition establishes two intuitively obvious
constraints on the parameters of a poly-level graph.
Fig. 9. Poly-level graph with h ¼ 4, j ¼ 2, k ¼ 1, l ¼ 1, c1 ¼ 4.

Fig. 10. Poly-level graph with h ¼ 3, j ¼ 2, k ¼ 2, l ¼ 1, c1 ¼ 3.

Fig. 8. Visual representation of a poly-level graph. ci represents the number of
vertices in level Li ; j; k and l represent the number of edges connecting a single
vertex in the level at the tail of the arrow to vertices in the level at the head of the
arrow.
Proposition 8.2. Given a poly-level graph G, with levels L1; . . . ; Lh,
intradegree j, superdegree k, subdegree l and jLij ¼ ci, we have that
8i 2 f1; . . . ; hg:

ðaÞ ðkl�1Þ
i�1

c1 2 Z

ðbÞ ðkl�1Þ
i�1

c1 P jþ 1
These constraints arise immediately from the fact that the num-

ber of vertices ci in any level Li (replaced in Proposition 8.2 by the
expression from Proposition 8.1) must (a) be an integer and (b) ex-
ceed the intradegree j.
8.2. Equal oddments solutions on poly-level graphs

Given a poly-level graph G, from Section 7.3, we know that if
there exists a probability distribution across the vertices of the
graph such that the sum of the probabilities in any closed neigh-
bourhood is equal to some constant u 2 ð0;1�, then this probability
distribution defines an optimal mixed strategy for both players for
the game G ¼ ðG;RA;RB; rÞ, with r ¼ 1; RA ¼ RB ¼ VðGÞ, and the
value of the game to Player A is u.

Suppose that such a distribution exists, and suppose that this
distribution allocates an equal probability xi to each vertex in level
Li. Through consideration of the structure of the graph, we can
write the following equations, which must hold for all
i 2 f2;3; . . . ; h� 1g:
Fig. 12. Two topologically different poly-level graphs with identical parameters
h ¼ 2, j ¼ 1, k ¼ 2, l ¼ 1, c1 ¼ 2.

Fig. 11. Poly-level graph with h ¼ 2, j ¼ 3, k ¼ 1, l ¼ 2, c1 ¼ 16.
Fig. 13. A poly-level graph that admits two different sets of parameters: (a) h ¼ 3,

j ¼ 1, k ¼ 1, l ¼ 1, c1 ¼ 2 and (b) h ¼ 2, j ¼ 1, k ¼ 2, l ¼ 1, c1 ¼ 2.
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ðjþ 1Þx1 þ kx2 ¼ u
lxh�1 þ ðjþ 1Þxh ¼ u

lxi�1 þ ðjþ 1Þxi þ kxiþ1 ¼ u

9>=
>; ð14Þ

We also have the following constraints, to ensure that the xi define
a valid probability distribution:

Xh

i¼1

xici ¼ 1 ð15Þ

xi P 0; 8i 2 f1;2; . . . ;hg ð16Þ

Note that it is not necessary to explicitly include the constraint
xi 6 1, since this is implied by (15) and (16).

We now perform the change of variables:

wi ¼ u�1ðjþ kþ lþ 1Þxi; 8i 2 f1; . . . ;hg ð17Þ

and introduce additional unknowns wi; 8i 2 Z.
The question of finding a function xi of i that satisfies (14)–(16)

can be reformulated as follows:

� Given a non-negative integer j and positive integers h; k; l; c1

satisfying the conditions of Proposition 8.2, find a function wi

of i, such that, 8i 2 Z:
lwi�1 þ ðjþ 1Þwi þ kwiþ1 ¼ jþ kþ lþ 1 ð18Þ
� Subject to the boundary conditions:
w0 ¼ whþ1 ¼ 0 ð19Þ
� With the constraint:
wi P 0; 8i 2 f1;2; . . . ;hg ð20Þ
If suitable wi can be found, an equal oddments solution is then
given by:
u ¼ c�1
1 ðjþ kþ lþ 1Þ

Xh

i¼1

ðkl�1Þ
i�1

wi

" #�1

ð21Þ

xi ¼ wiuðjþ kþ lþ 1Þ�1
; 8i 2 f1; . . . ;hg ð22Þ

Applying the change of variables (17): (18) and (19) are derived
from (14), (20) is derived from (16), (21) is derived from (15) and
Proposition 8.1, while (22) is immediate.

8.3. Exact solutions

To find a solution to the problem, let:

wi ¼ wGS
i þwPS

i

where wPS
i is any particular solution of (18), and wGS

i is the most
general solution of the homogeneous difference equation:

lwi�1 þ ðjþ 1Þwi þ kwiþ1 ¼ 0; 8i 2 Z ð23Þ

An obvious candidate for the particular solution is:

wPS
i ¼ 1

For wGS
i , there are three cases to consider:

8.4. Case 1: ðjþ 1Þ2 > 4kl

Look for a solution of the form:

wGS
i ¼ Aþk

i
þ þ A�k

i
�

where Aþ;A� are arbitrary constants and kþ; k� are unknown con-
stants to be determined. Substituting into (23), we find:
k	 ¼
�ðjþ 1Þ 	

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðjþ 1Þ2 � 4kl

q
2k

So:

wi ¼ Aþk
i
þ þ A�k

i
� þ 1

Applying the boundary conditions gives:

Aþ þ A� ¼ �1

Aþk
hþ1
þ þ A�k

hþ1
� ¼ �1

which can be solved to give:

Aþ ¼
1� k�

hþ1

khþ1
� � khþ1

þ

A� ¼
1� kþ

hþ1

khþ1
þ � khþ1

�

Note that in this case, kþ – k�, and therefore Aþ and A� both exist.

8.5. Case 2: ðjþ 1Þ2 ¼ 4kl

Look for a solution of the form:

wGS
i ¼ ðAþ iBÞki

where A;B are arbitrary constants and k is an unknown constant to
be determined. Substituting into (23), we find:

k ¼ � jþ 1
2k

So:

wi ¼ ðAþ iBÞki þ 1

Applying the boundary conditions gives:
A ¼ �1

B ¼ 1� k�½hþ1�

hþ 1

Again, A and B exist for all values of the parameters.

8.6. Case 3: ðjþ 1Þ2 < 4kl

Look for a solution of the form:

wGS
i ¼ ki½P cosðhiÞ þ Q sinðhiÞ�

where P; Q are arbitrary constants and k; h are unknown constants
to be determined. Substituting into (23), we find:

k ¼
ffiffiffiffiffiffiffi
l=k

q
ð24Þ

h ¼ arg �ðjþ 1Þ þ i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4kl� ðjþ 1Þ2

q� �
ð25Þ

So:

wi ¼ ki½P cosðhiÞ þ Q sinðhiÞ� þ 1

Provided that h½hþ 1� is not an integer multiple of p, applying
the boundary conditions gives:

P ¼ �1

Q ¼ cosðh½hþ 1�Þ � k�½hþ1�

sinðh½hþ 1�Þ

If h½hþ 1� is an integer multiple of p then no values of P and Q can be
found to satisfy the boundary conditions (19) and no solution wi ex-
ists, except in the particular case where h½hþ 1� is an even multiple
of p and k ¼ l. In the latter instance, the boundary conditions are
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satisfied for all values of Q, with P ¼ �1, identifying an infinite fam-
ily of possible solutions.

8.7. Summary

To summarise, given any poly-level graph G with suitable
parameters h; j; k; l; c1, we have found wi satisfying (18) and (19)
in all cases except where ðjþ 1Þ2 < 4kl and h½hþ 1� is an integer
multiple of p (barring the special case where h½hþ 1� is an even
multiple of p and k ¼ l), where h is defined as in (25).

Note that the non-existence of such a wi in the specific cases
mentioned does not necessarily imply that no equal oddments
strategy exists for the corresponding graph game, simply that
any such strategy cannot be expressed as the solution to a differ-
ence equation of the form discussed.

Where such a wi does exist, it remains to check whether con-
straint (20) is satisfied. If so, then there exists an equal oddments
solution to the graph game G ¼ ðG;RA;RB; rÞ, with r ¼ 1 and
RA ¼ RB ¼ VðGÞ, defined by (21) and (22), which allocates a proba-
bility of xi to each vertex in level Li. By Proposition 7.3, this equal
oddments solution is an optimal mixed strategy of G for both
players.

Table 2 summarises the equal oddments strategies for the
graphs shown in Figs. 9–11.

In this section, we have demonstrated that the concepts out-
lined in Section 7 may be used to find general expressions for opti-
mal mixed strategies of games played over a particular family of
graphs. It may therefore be possible to use or adapt this approach
to seek optimal mixed strategies for games played over other fam-
ilies of graphs, thus suggesting a potentially valuable focus for fu-
ture work.

9. Conclusions and further work

In this paper, we have defined a search and concealment game,
the SSSG, which differs from the games considered in the bulk of
the literature both in its generality and in its explicit consideration
of the strategic interdependence of positions based on spatial
structure. We believe that formulating the game in terms of metric
spaces may allow new tools and results from this area of mathe-
matics to be applied to search and concealment problems, facilitat-
ing the identification of optimal mixed strategies in a variety of
different cases.

We have examined the way in which the game theoretic con-
cepts of dominance and equivalence of strategies are manifested
in the context of the SSSG and have presented various methods
for analysing the SSSG played over a graph, including:

� The reduction of graph games with detection radius r – 1 to
games with r ¼ 1.
� The formulation of lower and upper bounds on the value of a

graph game.
� An algorithm that applies the concept of IEDS in the explicit

context of graph games and which has been demonstrated to
reduce games played on trees to cases in which optimal mixed
strategies can be immediately determined.
Table 2
Table detailing the equal oddments solutions to the poly-level graphs shown in Figs. 9–11.
both players) allocates to each vertex in level Li .

Figure Poly-level graph parameters Equal

h j k l c1 x1

9 4 2 1 1 4 3/40
10 3 2 2 1 3 1/15
11 2 3 1 2 16 3/64
� A method for simplifying the the analysis of graph games using
automorphisms of the graph.
� The introduction of the concept of an ‘‘equal oddments strat-

egy’’, and the demonstration that such mixed strategies are
optimal for both players.
� The presentation of explicit optimal mixed strategies for a par-

ticular family of graph games; those played over ‘‘poly-level
graphs’’.

In terms of future work, of immediate interest would be the
extension of the results and methods of Sections 5 and 7, which
have been formulated explicitly for the SSSG played over a graph,
to the SSSG over a general metric space. It is our belief that ana-
logues of many of these results could probably be formulated
through the careful application of topology and measure theory.
This would be an important first step in increasing the applicability
and relevance of the SSSG.

With regard to the algorithm of Section 6, it would be useful to
have explicit results on its computational efficiency and on how
the structure of a graph affects the extent to which a corresponding
graph game can be simplified using IEDS. It may be possible, for
example, to identify other families of graph game (aside from those
played on trees) for which the the method is particularly effective.

It would also be valuable to find analytic expressions for the
optimal mixed strategies of a wider range of graph games, perhaps
extending the ideas used to analyse games played over poly-level
graphs to games played over rectangular lattices. For highly irreg-
ular graphs, algorithmic methods to find equal oddments strategies
could be sought. Where equal oddments strategies do not exist, but
where equal oddments ‘distributions’ that fail to satisfy (16) can
nonetheless be found, an investigation into the connection be-
tween the true optimal mixed strategies and these invalid equal
oddments distributions may be instructive.

Thinking more broadly, there are many ways in which the game
could be extended. For example, by increasing the number of
searching and concealing players, by allowing players to deploy
at multiple points, by investigating situations in which payoffs
are dependent on location, by relaxing the metric space axioms
to consider directed graphs and other spaces, by investigating the
game over weighted graphs or by allowing the players to move
around the space.

For the SSSG as described, a particular area of interest is the
analysis of games in which X is a region of R2, where the searching
player can search a disc of radius r. An understanding of such cases
would make the game more applicable in real operational research
scenarios, such as the deployment of patrol ships to locate pirates
over areas of the ocean or searching archaeological sites for fea-
tures of historical interest. If optimal mixed strategies cannot be
obtained directly, one approach to such continuous situations
would be to examine a discretised version of the game, superim-
posing a rectangular grid over the region in question and analysing
a corresponding graph game over this grid.

Finally, it would be valuable to investigate the initial ways in
which the SSSG could be profitably applied to real world scenarios.
For example, following the riots in England in the summer of 2011,
the game could be used to examine possible deployment strategies
xi is the probability that the equal oddments strategy (an optimal mixed strategy for

oddments solution Game values

x2 x3 x4 uA uB

1/20 1/20 3/40 11/40 29/40
0 1/15 N/A 1/5 4/5
1/32 N/A N/A 7/32 25/32
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for the police. Manchester city centre, where a number of incidents
occurred over a relatively compact area (Rogers, Sedghi, & Evans,
2011), could be represented as a graph to which the algorithm of
Section 6 would be applied to determine the optimal location for
a police unit (the searching player) to protect retail centres from
a band of rioters (the concealing player). After the deployment of
a first police unit, vertices within the detection radius could be re-
moved and new optimal mixed strategies could be calculated on
the rest of the graph to determine the placement of a second unit.
It may be of interest to test the strategies obtained from such a pro-
cess by simulation of an outbreak of rioting and to compare the re-
sults with the actual events of summer 2011.
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Appendix A. Proof of Proposition 6.2

We reproduce the proposition here for ease of reference:

Proposition 6.2. Consider the graph game:
G ¼ ðG;RA;RB; rÞ

where G is a tree and r ¼ 1. When applied to G, the algorithm of Sec-
tion 6.1 terminates for some K ¼ K 0 2 N, such that:

� Either:
RA;K 0 ¼ fwg; bK 0 ½w� ¼ 0
RB;K 0 ¼ fvg; aK 0 ½v � ¼ 0
and u, the value of the game to Player A, is 0;
� Or:
aK 0 ½v � ¼ 1; 8v 2 RB;K 0

bK 0 ½w� ¼ 1; 8w 2 RA;K 0
and thus, by Proposition 6.1, the mixed strategies qA;K 0 and qB;K 0 , which
allocate equal probabilities to all vertices in the players’ respective
strategy sets RA;K 0 and RB;K 0 , are optimal mixed strategies and the value
of the game to Player A is:
u ¼ jRA;K 0 j�1 ¼ jRB;K 0 j�1
Proof. To derive a contradiction, assume that, when applied to G,
the algorithm of Section 6.1 terminates for some K ¼ K 0 2 N for
which at least one of the following two conditions holds:

� 9v 0 2 RB;K 0 such that aK 0 ½v 0� > 1
� 9w0 2 RA;K 0 such that bK 0 ½w0 � > 1

We will demonstrate that this assumption is false by identifying
two vertices in RA;K 0 or RB;K 0 , one of which very weakly dominates
the other for the appropriate player. This will be a contradiction,
since the algorithm only terminates when no dominance or equiv-
alence can be found in the reduced strategy sets.
Define the following subsets of VðGÞ:

S1 ¼ fs 2 RB;K 0 : aK 0 ½s� > 1g
S2 ¼ fs 2 RA;K 0 : bK 0 ½s� > 1g
S ¼ S1 [ S2

Now choose a vertex t 2 VðGÞ to designate as the root of G and
let s0 2 S be such that:

dGðt; s0Þ ¼max
s2S

dGðt; sÞ½ � ð26Þ

Since S ¼ S1 [ S2 there are two possible (non-mutually exclu-
sive) cases: s0 2 S1 or s0 2 S2.

If s0 2 S1 then s0 2 RB;K 0 and at least two vertices in NK 0 ½s0� lie in
RA;K 0 . We consider two possible scenarios.

� First, suppose that at least one of the children of s0 lies in RA;K 0 .
So, since s0 2 S1, there exist distinct s1; s2 2 NA;K 0 ½s0 � such that:
dGðt; s1Þ 6 dGðt; s2Þ ¼ dGðt; s0Þ þ 1 ð27Þ
Observe that neither s2 nor any of its children lies in RB;K 0 , since this
would imply that s2 2 S2 # S, which is a contradiction by (26) and
(27). Therefore:

0
NB;K 0 ½s2� ¼ fs g# NB;K 0 ½s1�
which means that s1 very weakly dominates s2 for Player A, by
Proposition 4.2.
� Now suppose that none of the children of s0 lies in RA;K 0 . Since

s0 2 S1, this means that s0 and its parent both lie in RA;K 0 . i.e. there
exist s1; s2 2 NA;K 0 ½s0� (where s2 ¼ s0) such that:
dGðt; s1Þ < dGðt; s2Þ ¼ dGðt; s0Þ
If none of the children of s2 lies in RB;K 0 , then:
NB;K 0 ½s2�# NB;K 0 ½s1�
which means that s1 very weakly dominates s2 for Player A, by Prop-
osition 4.2.
Otherwise, at least one child of s2 lies in RB;K 0 . Call this child s00 and
note that:
dGðt; s00Þ ¼ dGðt; s0Þ þ 1 ð28Þ
Observe that neither s00 nor any of its children lies in RA;K 0 , since this
would imply that s00 2 S1 # S, which is a contradiction by (26) and
(28). Therefore:
NA;K 0 ½s00� ¼ fs0g# NA;K 0 ½s0�
which means that s00 very weakly dominates s0 for Player B, by
Proposition 4.4.

So if s0 2 S1, in both possible scenarios, we have identified very
weak dominance in one of the strategy sets RA;K 0 or RB;K 0 . In the
case where s0 2 S2, very weak dominance can also be identified by
following very similar logic (the complete proof is omitted). As
previously discussed, this is a contradiction and thus our initial
assumption was false. Therefore:

aK 0 ½v� 6 1; 8v 2 RB;K 0

bK 0 ½w� 6 1; 8w 2 RA;K 0
ð29Þ

To complete the proof, note that:

� Any vertex w 2 RA;K 0 for Player A such that bK 0 ½w� ¼ 0 is clearly
very weakly dominated by any other vertex for Player A.
� Any vertex v 2 RB;K 0 for Player B such that aK 0 ½v � ¼ 0 clearly very

weakly dominates any other vertex for Player B.
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� Statements ð�Þ and ð��Þ are equivalent:
aK 0 ½v� ¼ 0; 8v 2 RB;K 0
� 	

ð�Þ
bK 0 ½w� ¼ 0; 8w 2 RA;K 0
� 	

ð��Þ
� Since the algorithm has terminated, no very weak dominance
exists in RA;K 0 or RB;K 0 .

These facts, combined with (29) imply that:

� Either:
RA;K 0 ¼ fwg; bK 0 ½w� ¼ 0
RB;K 0 ¼ fvg; aK 0 ½v � ¼ 0
and u, the value of the game to Player A, is clearly 0;
� Or:
aK 0 ½v � ¼ 1; 8v 2 RB;K 0

bK 0 ½w� ¼ 1; 8w 2 RA;K 0
and, by Proposition 6.1, qA;K 0 and qB;K 0 are optimal mixed strategies
for each player and the value of the game to Player A is:
u ¼ jRA;K 0 j�1 ¼ jRB;K 0 j�1
This proves the proposition. h

Appendix B. Proof of Proposition 7.2

The definitions and notation relating to group theory used in
this section are from Neumann et al. (1994). The proof requires
the orbit-stabilizer theorem (adapted from Neumann et al., 1994,
p. 62):
Theorem 9.1. Orbit-Stabilizer Theorem
Given a group C, which acts on a finite set X:

jStabCðxÞj ¼
jCj
jOC½x�j

; 8x 2 X

where OC½x� is the orbit of x under the action of C, and StabCðxÞ is the
stabilizer of x under C:

StabCðxÞ ¼ fg 2 C : gx ¼ xg
To prove Proposition 7.2, we will use the following corollary of

the theorem. It states that if two vertices v ; w of a graph game lie
in the same orbit with respect to graph game automorphisms, then
the number of graph game automorphisms that map v to some
other vertex z is the same as the number that map w to z.
Corollary 4. Consider a subgroup H of the graph game automorphism
group CðGÞ for the graph game G ¼ ðG;RA;RB; rÞ, with r ¼ 1 and let
O½v � be the orbit of v 2 VðGÞ under H.

Then, for all v;w; z 2 VðGÞ, we have:

O½v� ¼ O½w�

) jH½v; z�j ¼ jH½w; z�j ¼
jHj
jO½v�j ; z 2 O½v�
0 ; z R O½v �

(

where we define:

H½v ; z� ¼ f/ 2 H : /ðvÞ ¼ zg
Proof. Clearly, if O½v � ¼ O½w� and z R O½v� then by the definition
of an orbit under H, we have that:

jH½v ; z�j ¼ jH½w; z�j ¼ 0
We claim that in the case where z 2 O½v �, we have:

H½v ; z� ¼ wv;zStabHðvÞ ð30Þ

where wv;z 2 H is any graph game automorphism in H such that
wv ;zðvÞ ¼ z and wv;zStabHðvÞ is the left coset of StabHðvÞ in H con-
taining wv;z:

wv;zStabHðvÞ ¼ fwv;z 
 / 2 H : / 2 StabHðvÞg

where 
 represents the operation of composition.
To justify the claim, we first observe that:

w 2 wv;zStabHðvÞ ) w 2 H½v ; z�

because:

w 2 wv ;zStabHðvÞ
) wðvÞ ¼ wv ;zð/ðvÞÞ; /ðvÞ 2 StabHðvÞ

¼ wv ;zðvÞ
¼ z

) w 2 H½v ; z�

We also observe that:

w 2 H½v ; z� ) w 2 wv;zStabHðvÞ

because:

w 2 H½v ; z�
) w ¼ wv;z 
 ðw�1

v;z 
 wÞ

and:

w�1
v;zðwðvÞÞ ¼ w�1

v;zðzÞ ¼ v

so:

w�1
v;z 
 w 2 StabHðvÞ

and therefore:

w 2 wv;zStabHðvÞ

This demonstrates the claim (30).
Now, combining this result with a standard result about cosets

(Neumann et al., 1994, p. 3) gives us that:

jH½v ; z�j ¼ jwv;zStabHðvÞj ¼ jStabHðvÞj

So by the orbit-stabilizer theorem:

jH½v ; z�j ¼ jHj
jO½v �j

Clearly, bearing in mind that jO½v�j ¼ jO½w�j, identical logic could be
employed to demonstrate that:

jH½w; z�j ¼ jHj
jO½v�j

This proves the corollary. h

We now prove Proposition 7.2, reproduced here for ease of
reference:

Proposition 7.2. Consider a graph game:

G ¼ ðG;RA;RB; rÞ

with VðGÞ ¼ fv1; . . . ;vjg and r ¼ 1. Let O½v� denote the orbit of v un-
der some subset H of the graph game automorphism group CðGÞ.

There exists a pair of optimal mixed strategies:

rA ¼ ðrA½v1�; . . . ;rA½vj�Þ
rB ¼ ðrB½v1�; . . . ;rB½vj�Þ
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where rA and rB respectively allocate probabilities rA½v i� and rB½v i� to
vertex v i , such that 8i; j 2 f1; . . . ;jg:

O½v i� ¼ O½v j� )
rA½v i� ¼ rA½v j�
rB½v i� ¼ rB½v j�

�
ð11Þ
Proof. Let sA; sB be any optimal mixed strategies for Players A and
B:
sA ¼ ðsA½v1�; . . . ; sA½vj�Þ
sB ¼ ðsB½v1�; . . . ; sB½vj�Þ

Given / 2 H, let:

sA;/ ¼ ðsA½/ðv1Þ�; . . . ; sA½/ðvjÞ�Þ
sB;/ ¼ ðsB½/ðv1Þ�; . . . ; sB½/ðvjÞ�Þ

So sA;/; sB;/ are the mixed strategies that respectively allocate prob-
abilities sA½/ðv iÞ�; sB½/ðv iÞ� to vertex v i, for all i 2 f1 . . . ;jg.

We first show that if sA is an optimal mixed strategy for Player
A, then sA;/ is also an optimal mixed strategy for Player A, for all
/ 2 H.

For a particular / 2 H, consider the graph G0 ¼ ðVðG0Þ; EðG0ÞÞ and
the sets R0A;R

0
B constructed by relabelling the vertices of G such that:

v i # /�1ðv iÞ; 8i 2 f1; . . . ;jg

sA;/ and sB;/ are clearly optimal mixed strategies for the resulting
game G

0 ¼ ðG0;R0A;R
0
B; rÞ.

However, since / 2 H 6 CðGÞ; RA; RB are invariant under /
(see Definition 7.2) and and thus:

R0A ¼ RA; R0B ¼ RB

Also, because / is an automorphism, we have:

VðG0Þ ¼ VðGÞ; EðG0Þ ¼ EðGÞ

Therefore G
0 ¼ G and so sA;/ and sB;/ are are optimal mixed strate-

gies of G for Players A and B respectively, as required.
Now, let:

rA ¼
1
jHj
X
/2H

sA;/

rB ¼
1
jHj
X
/2H

sB;/

These mixed strategies are optimal mixed strategies for G, because
any weighted average of optimal mixed strategies is itself an opti-
mal mixed strategy.

It remains to prove that rA and rB satisfy Property (11). Observe
that, 8i 2 f1; . . . ;jg:

rA½v i� ¼
1
jHj
Xj
j¼1

jH½v i; v j�j sA½v j�

rB½v i� ¼
1
jHj
Xj
j¼1

jH½v i; v j�j sB½v j�
ð31Þ

where H½v i;v j� is defined as in Corollary 4.
Using the corollary, (31) can be rewritten as follows, 8v 2 VðGÞ:

rA½v � ¼
1
jO½v�j

X
w2O½v �

sA½w�

rB½v � ¼
1
jO½v�j

X
w2O½v �

sB½w�

This demonstrates that rA and rB satisfy Property (11) and thus
proves Proposition 7.2. h
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