
 1 

Title page 

 

 

 

Ovarian Steroid Hormones and Auditory Function 

 

 

 
Deena Al-Mana 

 
 
 

The Ear Institute 
University College London 

 
 
 

A thesis presented to UCL for the degree of 
 Doctor of Philosophy  

2013 
 



 2 

Statement of Originality 
 
 
 

I, Deena Al-Mana, confirm that the work presented in this thesis is my own. 

Where information has been derived from other sources, I confirm that this has 

been indicated in the thesis.



 3 

Abstract 
 

Considerable anecdotal evidence and information from previous studies suggest 

that auditory function may be influenced by hormones. This thesis reviews in 

detail the potential role of hormones in modulating the auditory system and in the 

development of pathological conditions in the auditory system with an emphasis 

on the effect of the ovarian hormones. 

 
Ovarian steroids may influence auditory function directly through their receptors, 

which have been detected in the auditory system, or indirectly through their 

effects on the blood supply, the fluid electrolyte balance of the cochlea, and the 

neurotransmitters of the auditory system. Effects on other parts of the central 

nervous system connected to the auditory system may also be of importance. 

 
The aim of the study was to investigate whether physiological alterations in 

ovarian hormones in women with normal hearing, during the natural ovarian cycle 

and assisted conception treatment were associated with changes in auditory 

function at the cochlear and brain stem level, and whether these variations were 

not seen in men over a similar period of time.  

 
The auditory tests evaluated auditory function from the outer ear to the brainstem 

in both the afferent and efferent system. Hormone levels were assayed only in the 

female subjects at the same time as the auditory testing, four times during the 

ovarian cycle, or three times during the assisted conception treatment. Auditory 

tests were undertaken in the male subjects once a week for four consecutive 

weeks to correspond with the ovarian cycle measurements. 

 
A number of changes in auditory function were observed during the ovarian cycle 

and assisted conception treatment, and gender differences were noted. The OAE 

results may suggest either excitation of the cochlea with higher levels of 

oestrogen, or suppression of the cochlea with higher level of progesterone. The 

longer ABR latency following ovarian stimulation and in the follicular phase of 

the ovarian cycle is consistent with the inhibitory effect of neurosteroids on ABR 

associated with higher levels of oestrogen. The variation in auditory function were 

not observed in men.
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Chapter 1 : General Introduction 

 
The auditory system interacts with other system and structures in the central 

nervous system, which enables the auditory system to adjust to the acoustic 

environment. This is reflected in physiological modulation of the auditory system, 

as a part of the process of adaptation and survival, enabling interaction with other 

members of the species.  

 

The aim of this research is to explore the possible effect of the endocrine system, 

particularly reproductive hormones, on the auditory system. Previous studies 

suggest that reproductive steroids, hormones that regulate the response to stress, 

fluid and electrolyte balance and circadian cycle are all relevant to auditory 

function. The recent advances in the fields of neuroendocrinology and 

neuropharmacology, together with the development of auditory assessment 

techniques have provided new insights into the contribution of hormones and 

neurotransmitters in modulating the auditory function and possible mechanisms of 

certain pathological conditions.   

 

This chapter includes a review of two relevant areas: 

• The functional anatomy of the auditory and endocrine systems. 

• The assessment of auditory function. 

 

The following chapters (Chapters 2 and  3) will review hormones and the basis for 

their physiological action on the auditory system, and  the hormonal cycles that 

may influence the auditory function and possible effect of hormones in the 

development of auditory pathology.  
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1.1 Review of auditory system: structure and physiology 

The auditory system consists of the external, middle and internal ears at the 

periphery and pathways from the eighth cranial nerve to the auditory cortex in the 

temporal lobe, with Heschel’s gyrus considered to be the primary auditory cortex. 

Connecting the ear with the auditory cortex are two parallel ascending (afferent) 

and descending (efferent) pathways. The afferent pathway primarily facilitates 

signal transmission, while the efferent pathway modulates auditory information 

through a complex regulatory feedback mechanism. Hence, the auditory system 

has an ability to modify its activity in response to the acoustic stimuli. 

 

1.1.1 The external and middle ears 

Sound waves are funneled into the external ear canal by the pinna to reach the 

tympanic membrane (a conical shaped translucent membrane which separates the 

external ear from the middle ear as illustrated in Figure 1.1.1). The external ear 

enhances the resonant frequency of the tympanic membrane by 10-15 dB around 

the 3 kHz frequency and assists in sound localization through the funneling effect 

of the pinna and the head shadow effect.  

 

The sound waves lead to the vibration of the tympanic membrane, which is 

transmitted to the inner ear through the three inter-articulated auditory ossicles, 

the malleus, incus and stapes, as well as through the air filled cavity of the middle 

ear (Figure1.1.1). The middle ear acts as a transformer facilitating sound 

transmission from a medium with a low impedance for sound waves (air) to one 

of a high impedance (the fluid filled cochlea), with as little loss of sound energy 

as possible. The impedance matching is largely due to the transfer of sound 

pressure from the larger tympanic membrane area, to the smaller oval window at 

the stapes footplate, with the ossicles exerting a leverage effect, which increases 

the pressure gain by 25-30 dB. The optimal transmission of sounds is around the 

frequency range of 1-2 kHz. The stiffness of the ossicular chain is controlled by 

two muscles, the tensor tympani attached to the malleus and the stapedius 

attached to the stapes.  
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In humans, the stapedius muscle contracts with acoustic stimulation, while the 

tensor tympani muscle contracts if a startle reflex is elicited and it has a much 

smaller effect on acoustic transmission than the stapedius muscle. The contraction 

increases the stiffness of the ossicular chain leading to a reduction in the middle 

ear transmission of up to 15 dB in the low-frequency range (below 1 kHz). The 

stapedial reflex arc is integrated in the lower brainstem and has an ipsilateral and 

contralateral pathway, with the efferent pathway in the facial nerve. On the other 

hand, the tensor tympani is innervated by a branch of the trigeminal nerve. Beside 

contraction to acoustic stimuli, these muscles also contract in response to other 

motor events such as vocalization and chewing. Thus these middle ear muscles 

may provide some protection to the auditory system from low frequency sounds 

and reduce distortion from sounds produced by an individual’s own vocalization 

and mouth movement (reviewed by Yost, 2000). 

 

 

 

 

 

Image removed for copyright reasons 

 

 

 

 

 

 

 

 

 

Figure 1.1.1: The basic anatomy of the ear (adapted from Vitrualmedicalcentre.com, 
2008) 

(Retrieved Febuary 2010, from 
http://www.virtualcancercentre.com/uploads/VMC/TreatmentImages/2191_ear_anatomy
_450.jpg) 
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1.1.2 The internal ear 

The internal ear contains the organs of balance (the cristae of the semicircular 

canals and otolith organs of the vestibule) and hearing (the cochlea). The cochlea 

is a coiled tube like structure of two and a half turns composed of a bony and 

membranous labyrinth, that spiral around a central axis known as the modiolus. 

The interior of the bony labyrinth is partitioned by the Reissner’s membrane and 

basilar membrane into three fluid filled spaces; the scala vestibuli, tympani and 

media. The scala vestibuli and scala tympani contain perilymph and communicate 

with each other at the apex of the cochlea and with the subarachnoid space of the 

posterior cranial fossa via the Sylvian aqueduct. The scala media is continuous 

with the vestibular membranous labyrinth and contains endolymph. There is no 

communication between the spaces filled with perilymph and those filled with 

endolymph (Figure 1.1.2). 

 

 

Figure 1.1.2: Cross section of the cochlea showing the fluid filled chambers and the 
organ of Corti (From Wikimedia Commons, 2004).  

(Retrieved December 2008, from 
http://upload.wikimedia.org/wikipedia/commons/0/0c/Cochlea-crosssection.png) 
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1.1.2.1 The cochlear fluids 

The perilymph composition is similar to other extracellular fluids. The origin of 

perilymph is still unclear, but it seems that the fluid in the scala vestibuli 

originates from plasma, while the perilymph in the scala tympani comes from 

both the cerebrospinal fluid and plasma (Sterkers, et al., 1988). The endolymph, 

on the other hand, is a unique extracellular fluid with a composition similar to that 

of intracellular fluid with a high potassium (K+) and low sodium (Na+) 

concentration (Slepecky, 1996). It is widely accepted that the endolymph is 

formed by the stria vascularis (Figure 1.1.2), which is a multilayer highly vascular 

epithelial tissue. The stria vascularis contains a high concentration of Na+, K+-

ATPase, adenyl cyclase and carbonic anhydrase enzymes, which are associated 

with ion pumping and fluid transport into the endolymph, as well as high levels of 

oxidative enzymes needed for glucose metabolism that provides the fuel for the 

active transport mechanism (Sterkers, et al., 1988; Ciuman, 2009). This latter 

mechanism is needed to maintain the positive electrical potential of +80 mV, 

known as the endolymphatic potential. The main role of the cochlear fluids is to 

transmit the mechanical acoustic stimuli to the organ of Corti, as well as 

participating in the transduction mechanism through ionic exchange with the 

cochlear hair cells (Salt, 2001). 

 

1.1.2.2 The organ of Corti 

The organ of Corti is the sensory organ of hearing and contains two types of 

sensory cells, the inner and outer hair cells as well as supporting epithelial cells 

and neural elements. It is located on the basilar membrane within the scala media 

(Figure. 1.1.2).  

 

The processes of the hair cells, stereocilia, are bathed in endolymph. The 

stereocilia are formed of packed actin filaments and linked together by fine 

extracellular filaments, some of which are known at “tip links”, which play an 

important role in the mechanical transduction system of the hair cells (Pickles, et 

al., 1984). There are tight junctions present between the apical parts of the hair 

cells and the adjacent supporting cells which prevents endolymph reaching the 

base of the cells. However, the basilar membrane is permeable to perilymph that 
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bathes the base of the cells. The inner hair cells (IHC) transform the acoustical 

information to electrical impulses that are conveyed to the type I auditory afferent 

fibers. The outer hair cells (OHC) on the other hand, are characterized by the 

presence of an actin-myosin complex in their cytoskeleton, which makes the cells 

contractile. The cell structure of the OHC, as well as their greater efferent 

innervations (see section 1.1.2.3), suggest they act as a modulator and amplifier 

capable of fine-tuning the receptive function of the cochlea (Santos-Sacchi, 2001). 

 

The sound induced vibration of the stapes footplate in the oval window leads to a 

passive dynamic displacement of the membranous cochlea producing a travelling 

wave that results in the basilar and Reissner’s membranes swinging from side to 

side. This mechanical vibration of the basilar membrane is translated by the organ 

of Corti into neural responses as a consequence of bending of the stereocilia of the 

hair cells. The deflection of the stereocilia leads to stretching of the tip links and 

thus activate the mechanotranducer channels of the hair cells membranes (Pickles 

et al, 1984). However, the cochlea is not only a passive mechanical signal 

analyser, but it also plays an active role in processing sound which is brought 

about by the contractile action of the OHC. The OHC are capable of fast and slow 

contractions. The fast contractions (Brownell, et al., 1985) are phase locked to the 

stimulating sound and help in enhancing the vibration of the basilar membrane 

and thus amplify sound by about 40 dB near threshold. On the other hand, the 

slow tonic contractions of the OHC (Zenner, 1986) alters the stiffness of the 

basilar membrane and, thus, reduces the movement of the basilar membrane, as a 

consequence of the action of the efferent system (see section 1.1.4).  

 

1.1.2.3 Cochlear innervation and blood supply 

The sensory cells of the organ of Corti have both afferent and efferent innervation. 

The afferent fibres are dendrites from cell bodies of the afferent auditory nerve 

located in the spiral ganglion within the modiolus and are of two types. Type I 

fibres are thicker and myelinated and form 90-95% of the afferent fibres. The 

remaining 5-10% of fibres are thinner and unmyelinated and are known as type II 

afferents. Type I pathway is the main sensory pathway that transfers the acoustic 

information to higher centers, while little is known about type II function (Brown, 
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2001). The efferent fibres on the other hand arise from the superior olivary 

complex, which gives rise to two pathways; the lateral and medial olivocochlear 

pathways. These efferent fibers provide feedback from higher auditory structures 

to either enhance or inhibit cochlear function (for more details see section 1.1.4). 

 

Inner hair cell innervation: 

Each IHC has synapses with 20-30 type I afferent fibres which innervates one 

IHC (Liberman, et al., 1990), and the likely neurotransmitter is glutamate (Table 

1.1-A). The efferent  innervation of the IHC is from the lateral olivocochlear 

pathway (LOC), which mainly arises from the ipsilateral superior olivary 

complex. The efferent fibres synapse with the Type I afferent fibers at the base of 

the IHC as demonstrated in Figure 1.1.3. The LOC fibers contain several 

neurotransmitters (see Table 1.1-B) that have both inhibitory and excitatory action 

on the IHC and Type I afferent fibres. 

 

  

Figure 1.1.3: Diagram of the afferent (blue) and efferent (red) innervations of the IHC. 
There is some contribution to the efferent fibres from the contralateral lateral superior 
olive (from a drawing by Blatrix, 2007a, permission to reproduce granted kindly by 
R.Pujol). 

 

Outer hair cell innervation: 

Each type II afferent fibre innervates several OHC as displayed in Figure 1.1.4, 

and their synapses are small and little is known about their function. However, the 

synapses of the efferent fibers with OHC are large and vesiculated. The efferent 

fibres that innervate the OHC are from the medial olivocochlear pathway (MOC) 

that arise mainly from the contralateral superior olivary complex with a small 
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contribution from the ipsilateral superior olivary complex (Figure 1.1.4). The 

main neurotransmitter of the MOC fibers is acetylcholine with !-aminobutyrate 

(GABA), which is present mainly in the apical region of the cochlea (Le Prell, et 

al., 2001). 

 

  

Figure 1.1.4: Diagram of the afferent (green) and efferent (red) innervations of the OHC 
(from a drawing by Blatrix, 2007b, permission to reproduce granted kindly by R.Pujol). 

 

The cochlea also receives sympathetic, adrenergic innervation (Vicente-Torres & 

Gil-Loyzaga, 2002) that originates from both the superior cervical ganglion and 

the stellate ganglion (reviewed by Eybalin, 1993). The sympathetic fibres end on 

the blood vessels in the spiral lamina, some terminate near afferent fibres of the 

cochlear nerve (Brechtelsbauer, et al., 1990), and form part of perivascular fibres 

in the stria vascularis (Liu, et al., 1996). The presence of adrenergic innervation in 

the cochlea suggests its role in controlling vasomotor tone and influencing 

cochlear haemodynamics.  

 

The main blood supply of the cochlea is from the spiral modiolar artery, which is 

a branch of  the cochlear artery, and the main drainage is from the spiral modiolar 

vein (Axelsson, 1988). The control of the cochlear blood flow is a combination of 

both local and systemic mechanisms including vasoactive hormones (Miller & 

Dengerink, 1988). 
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1.1.3 Afferent auditory pathway 

The auditory signal from the organ of Corti travels along the auditory nerve to the 

ipsilateral cochlear nucleus and from there the majority of the afferent auditory 

fibers project to the contralateral superior olivary complex, the lateral lemniscus, 

inferior colliculus, medial geniculate body to the auditory cortex. The rest of the 

fibers from the cochlear nucleus project either directly towards the contralateral 

lateral lemniscus and inferior colliculus bypassing the superior olivary complex or 

project to the ipsilateral superior olivary complex, lateral lemniscus or inferior 

colliculus (Chermak & Musiek, 1997). The contralateral pathways from the 

cochlear nucleus carry the greater number of fibres with auditory information, as 

demonstrated graphically in Figure 1.1.5. 
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Figure 1.1.5: Diagram of the afferent auditory pathway showing the principle and 
secondary afferent auditory pathways (from Noback & Demarest, 1981). 
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The auditory signal is not transmitted to the auditory cortex passively, but 

processed at the different auditory nuclei. The cochlear nucleus enhances the 

contrast of the auditory stimuli (i.e. sharpens the auditory stimulus)  through 

suppressing noise by lateral inhibition, while the superior olivary complex aids in 

sound localization in space as a result of binaural inputs. The inferior colliculus is 

the major integrator of the auditory information before relaying to the auditory 

cortex via the medial geniculate body. The sensory information is conveyed to the 

different auditory nuclei by neurotransmitters that are either excitatory or 

inhibitory and thus modulate the transfer and processing of the acoustical signal 

from one centre to another.  

 

Table 1.1-A summarises the neurotransmitters that have been identified in the 

afferent auditory system and their possible actions. The main excitatory 

neurotransmitter of the afferent auditory system is glutamate, while GABA is the 

main inhibitory neurotransmitter. 

 

Auditory information is not processed in isolation from other sensory stimuli, but 

is integrated with other sensory modalities such as vision and touch and may 

influence the processing of other stimuli (Shimojo & Shams, 2001; Foxe, 2009). 

Integration occurs in the cortex (Beauchamp, 2005) and subcortical areas such as 

the superior colliculus (Meredith & Stein, 1986; Kayser & Logothetis, 2007). This 

mutual interaction between the different sensory modalities may influence the 

way the individual responds to the environment. 

 

The auditory information is also modulated by the efferent auditory pathway that 

arises from the auditory cortex and descends into the brainstem to reach the 

cochlea (Suga, et al., 2000) seen graphically in Figure 1.1.6. 
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Table 1.1-A: Neurotransmitters of the afferent system. 

Afferent Auditory System 
Level 

Neurotransmitter Possible Function 

Inner hair cells 

Glutamate Excitatory  

(Puel, 1995; Le Prell, et al., 2001)  

& neurotoxic in acoustic trauma & ischemic 
injury (Janssen, et al., 1991; Eybalin, 1993) 

Cochlear 
nucleus 

Glutamate, Aspartate 
Acetylcholine 

 
 
GABA, Glycine 

Excitatory 

(Musiek & Hoffman, 1990) 

 

Inhibitory  

(Musiek & Hoffman, 1990) 

Superior 
olivary 

complex 

Glutamate, NMDA 

 

GABA, Glycine 

Excitatory  

(Musiek & Hoffman, 1990) 

Inhibitory  

(Musiek & Hoffman, 1990) 

Lateral 
leminiscus 

GABA Possibly inhibitory  

(Moore & Moore, 1987) 

Inferior 
colliculus 

Glutamate 

 

Glycine, GABA 

Excitatory  

(Faingold, et al., 1989; Musiek & Hoffman, 1990) 

Inhibitory  

(Faingold, et al., 1989; Musiek & Hoffman, 1990) 

Medial 
geniculate 

body 
? ? 

Auditory 
cortex 

Acetylcholine, 
Opioids 

Not clear  

(Musiek & Hoffman, 1990) 

?: not known, NMDA: N-methyl-D-aspartate 
 

1.1.4 The efferent auditory pathway 

The efferent auditory pathway arises in the auditory cortex and descends into the 

brainstem to reach the cochlea (Suga, et al., 2000). The anatomy of the higher 

efferent auditory system is still not clearly defined (Musiek & Oxholm, 2003), but 
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it is thought to run in parallel to the ascending auditory pathway (Figure 1.1.6) . 

The best described part of the efferent system is the olivocochlear pathway that 

projects from the superior olivary complex to the cochlea (reviewed by Warr, 

1992), and has two main pathways (Figure 1.1.3 and 1.1.4): 

• Medial olivocochlear system (MOC) that projects mainly to the 

contralateral cochlea, and connect to the OHC, and to a lesser extent type 

II ganglion cells. 

• Lateral olivocochlear system (LOC) that projects mainly to the ipsilateral 

cochlea, and ends on the type I afferent dendrites that connect to the IHC. 

  

 

 

 

 

 

Image removed for copyright reasons 

 

 

 

 

 

 

 

 

 

Figure 1.1.6: Efferent auditory pathway that arises from the auditory cortex descending 
into the auditory brainstem to reach the cochlea from Noback & Demarest, 1981). 

 

Knowledge about the efferent system function is still very limited. Several 

neurotransmitters have been identified in the efferent auditory system (see Table 

1.1-B) along with possible functions, which provide insight into the role of the 

efferent auditory system in hearing. 
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Table 1.1-B: Neurotransmitters of the efferent auditory system. 

Efferent Auditory System 
Level 

Neurotransmitter Possible Function 

Outer hair 
cells 

Acetylcholine 

 

 

GABA 

 

Mainly Inhibitory 

(Eybalin, 1993; Dallos, et al., 1997; Le Prell, et al., 
2001) 

Inhibitory  
(Eybalin, 1993; Le Prell, et al., 2001) 

Inner hair cells 

Acetylcholine 

 

Dynorphin 

 

GABA 

 

Dopamine, 
Enkephalin 

Excitatory  

(Felix & Ehrenberger, 1992) 

Excitatory 
(Sahley & Nodar, 1994; Sahley, et al., 1999) 

Inhibitory  

(Eybalin, 1993; Le Prell, et al., 2001) 

Inhibitory  

(Pujol, 1994; Gil-Loyzaga, 1995; Le Prell, et al., 
2001) 

Cochlear 
nucleus 

Glutamate 

 

GABA 

 

Excitatory  
(Thompson & Schofield, 2000)  

Inhibitory  

(Thompson & Schofield, 2000) 

Superior 
olivary 

complex 

Glutamate Excitatory  

(Thompson & Schofield, 2000) 

Lateral 
leminiscus  ? ? 

Inferior 
colliculus 

Glutamate 

 

GABA, Glycine 

Excitatory  

(Thompson & Schofield, 2000) 

Inhibitory  
(Huffman & Henson, 1990) 

Medial 
geniculate 

body 

Glutamate Excitatory  

(Thompson & Schofield, 2000) 

Auditory 
cortex 

Possibly Glutamate Excitatory  
(Thompson & Schofield, 2000) 

?: not known 
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The function of the olivocochlear system on hearing is still not fully understood. 

Activation of the MOC neurons leads to a release of acetylcholine, which 

activates the acetylcholine receptors of the OHC that leads to both a fast and slow 

inhibitory effect on OHC activity (Cooper & Guinan, 2003). The reduction of the 

motile action of the OHC is thought to be the fast effect, while the slow effect is 

thought to be due to the reduced stiffness of the OHC brought about by 

acetylcholine (reviewed by Pickles, 2008). The inhibitory effect on the OHC 

dampens the vibration of the basilar membrane and thus decreases the gain of the 

cochlear amplifier (Dallos, et al., 1997). However, the activation of the MOC may 

in some circumstances enhance the vibration of the basilar membrane, but the 

mechanism is still not fully understood (Cooper & Guinan, 2006). An 

enhancement in the transient stimulus by recording the compound action potential 

has been observed in the presence of ipsilateral noise and attributed to an effect of 

the efferent system (Dolan & Nuttall, 1988; Kawase et al., 1993). These findings 

reflect the complexity of the efferent system and suggests its importance in 

processing complex sounds in noise (a complex filter system) with an anti-

masking role (reviewed by Guinan, 2006). 

 

The efferent auditory system could also have a protective effect on the cochlear 

hair cells. Sectioning of the olivocochlear bundle, increases the susceptibility to 

sound induced damage of  hair cells (Le Prell, et al., 2001; Rajan, 2001). In 

addition some neurotransmitters of the lateral olivocochlear efferent system (such 

as enkephalin and GABA), are thought to be involved in postsynaptic inhibitory 

modulation of the glutamatergic afferent synapse at the IHCs (Table 1.1-A and 

1.1-B), and thus may protect the auditory nerve from glutamate excitotoxicity 

(Thompson & Schofield, 2000; Gáborján, 2001). 

 

Thus, the efferent system seems to act as an auto regulatory feedback mechanism, 

that is mainly inhibitory, but may also be excitatory at different levels and so 

adjust and improve the processing of the auditory signal (Suga, et al., 2000).  
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1.1.5 Summary of auditory system 

In summary, the structure of the auditory system is quite complex with 

interactions between the ascending (afferent) and descending (efferent ) pathways 

as demonstrated in Figure 1.1.7.  The neurotransmitter receptors of the afferent 

and efferent auditory system are a potential target for hormonal modulation of 

auditory function, along with the cochlear fluid homeostasis and blood flow (see 

section 2.2). 
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Figure 1.1.7: Schematic illustration of the afferent and efferent auditory system.  

The OHC feeds mechanical 

 oscillation to the IHC that transform the mechanical signal to a neural one that is 
conveyed to the higher auditory nuclei. The efferent system arises from the auditory 
cortex and runs parallel to the afferent system towards the cochlea providing multiple 
feedback loops with greater detail known about the OCB (Ceranic & Luxon, 2008). 

(CN: cochlear nucleus, IC: inferior colliculus, IHC: inner hair cell, LB: lateral bundle, 
LL: lateral lemniscus, LN: lateral nucleus,  MB: medial bundle, MGB: medial geniculate 
body, MN: medial bundle, OCB: olivocochlear bundle, OHC: outer hair cells, SOC: 
superior olivary complex) 
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1.1.6 Links between the auditory and other parts of the central nervous 

system 

The auditory system has connections with other structures of the CNS that may 

modulate auditory function. These extra-auditory structures are targets of certain 

hormones and, thus, indirectly these hormones may influence auditory function.   

 

The main structures of the CNS with connections with the auditory system are: 

 

• The limbic system which regulates instinctive behaviour and emotions, 

has its main connection with the auditory system via the medial geniculate 

body and is thought to be important in attaching emotional significance to 

acoustic stimuli (LeDoux, et al., 1984; LeDoux, 1993). The limbic system 

expresses hormone receptors that include receptors for stress related 

hormones and reproductive hormones (Gray & Bingaman, 1996; Jennes & 

Langub, 2000). 

 

• The hypothalamus, is the integrator centre for the endocrine and 

autonomic systems and is linked with the auditory system through the 

inferior colliculus (Adams, 1980), although, its effect on the auditory 

function is unclear. The hypothalamus contains the supra-chiasmatic 

nucleus, which is thought to regulate the circadian rhythm (Halasz, 2000; 

Levine, 2000), and expresses almost all types of hormone receptors 

(reviewed by Jennes & Langub, 2000).  

 

• The reticular system is concerned with the behavioural state of arousal 

and alertness and projects serotonergic fibers to almost all levels of the 

auditory system from the cochlea (Gil-Loyzaga, et al., 2000) to the 

auditory cortex (Juckel, et al., 1997). The ascending reticular system reacts 

more to “important” than to “unimportant” stimuli, and this may be related 

to hearing in noise and selective attention (Chermak & Musiek, 1997). The 

reticular formation is involved in the stress response and expresses adrenal 

steroid receptors (Jennes & Langub, 2000). The presence of noise, or other 

stressful stimuli was found to modulate the serotonergic system, by 
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increasing the release of serotonin (Singewald, et al., 1998). Serotonin was 

also found to modulate the neural responses in the inferior colliculus 

depending on the type of auditory stimuli, thus influencing auditory 

processing (reviewed by Hurley, et al., 2002). Animal and human studies 

have found that the serotonergic system is sexually dimorphic (structurally 

and functionally different between males and females). For example, there 

is increased serotonin activity in female rat brain compared to males 

(Carlsson & Carlsson, 1988) and a decrease in whole brain serotonin 

synthesis in women compared to men (Nishizawa, et al., 1997). It seems 

that oestrogen contributes to this dimorphism, either enhancing or 

decreasing serotonin binding depending on the site of the receptor in the 

brain, length of oestrogen treatment and species (reviewed by Rubinow, et 

al., 1998). 



 38 

 

1.2 Functional assessment of the auditory system 

There are a number of clinical tests used to evaluate the auditory function at 

different levels of the auditory system. Figure 1.2.1 gives a topographic 

representation of the main afferent auditory tests and the single efferent auditory 

test used in clinical practice and research. 

 

Figure 1.2.1: Topographic representation of auditory tests (adapted from Ceranic, et al., 
2002). 

The efferent test is represented by the red arrow. 
(TYMP: tympanometry, SR: stapedial reflexes, OAE: otoacoustic emissions, ABR: 
auditory brainstem response, PTA: pure tone audiometry, ME: middle ear, OHC: outer 
hair cells, IHC: inner hair cells, OAE: otoacoustic emissions, MOC: medial olivocochlear 
system, CN: cochlear nucleus, SOC: superior olivary complex, LL: lateral lemniscus, IC: 
inferior colliculus, MGB: medial geniculate body, AC: auditory cortex) 
 
 

1.2.1 Pure tone audiometry 

Pure tone audiometry (PTA) is a basic audiometric test that reflects overall 

auditory sensitivity across a range of frequencies. The test is used to ascertain 

normal hearing thresholds, which are less or equal to 25 dB HL at each of the 

tested frequencies (WHO, 2006). The testing method for air conducted thresholds 
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involves presenting tone pulses from a commercial audiometer through earphones 

at 6 frequencies from 0.25 kHz to 8 kHz in octave steps (British Society of 

Audiology, 2004). The test is subjective and limited both in term of topographic 

value and because it only evaluates listening in quiet. 

 

1.2.2 Tympanometry 

Tympanometry is an objective test that evaluates the middle ear. It reflects the 

changes in the physical properties of the middle ear system as the air pressure in 

the ear canal is varied (Hall III & Chandler, 1994). This is achieved with single 

frequency stimulation of 226 Hz at 85 dB SPL, to measure ear canal volume, 

middle ear pressure and tympanic membrane compliance (British Society of 

Audiology, 1992) and the response is recorded as demonstrated in Figure 1.2.2. A 

normal middle ear pressure ranges between -50 and +50 daPa in adults with the 

mean being 0 daPa, and normal compliance ranges between 0.3 and 1.6 ml  with a 

mean of 0.7 ml (British Society of Audiology, 1992). 

 

  

Figure 1.2.2: The trace of a normal tympanogram. 

The peak represent the middle ear pressure (15 daPa) and the height of the peak represent 
the tympanic membrane compliance (1.1 ml). 

 
Normal middle ear function is needed to record valid otoacoustic emissions. 
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1.2.3 Otoacoustic emissions 

Otoacoustic emissions (OAE) were defined by Kemp in 1978 (Kemp, 1978) and 

are signals recorded in the ear canal. They are considered to reflect the integrity 

and function of the outer hair cells (Kemp, et al., 1990). The generation of OAE is 

related to the active motility of the OHC (see section 1.1.2.2), and they reflect the 

nonlinear, biomechanical function of the OHC that is responsible for the 

sensitivity and sharp frequency selectivity of the cochlea (Kemp & Chum, 1980; 

Kemp, 1986). 

 

There are two basic types of OAE, those recorded in absence of acoustic 

stimulation, known as spontaneous OAE, and those recorded following an 

acoustic stimuli, known as evoked OAE. Evoked OAE are divided according to 

the type of acoustic stimuli applied into: transient evoked OAE (TEOAE), 

distortion product OAE (DPOAE) and stimulus frequency OAE (SFOAE). The 

most commonly used in clinical practice are SOAE, TEOAE and DPOAE.  

 

  

 

Figure 1.2.3: Schematic diagram of the standard setup for otoacoustic emission 
recording. 

 
The standard recording setup for OAE includes a probe that contains a 

microphone and a transducer that delivers the stimulus from the stimulus 
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generator. The signal from the ear is picked up by the microphone and delivered 

to the signal averager and the display system as illustrated in Figure 1.2.3. 

 

It is important to note that only a fraction of the acoustic energy from the cochlea 

can be recorded in the ear canal, due in part to loss of up to 15 dB of OAE energy 

through the retrograde transmission via the middle ear (Hall, 2000a). Therefore, 

the status and function of the middle ear has to be taken in account when 

recording OAE. 

 

1.2.3.1 Spontaneous otoacoustic emissions 

Spontaneous otoacoustic emissions (SOAE) are narrow band signals emitted by 

the cochlea in the absence of any acoustic stimulation. They result from the 

micromechanical activity of the outer hair cells (Kemp, 1979).  They can be 

recorded from 40-70 % of the normal hearing population, and are more prevalent 

in females, up to 75% of females compared to 58% of males (Penner & Zhang, 

1997). 

 

Clinical significance 

The presence of SOAE is associated with functionally intact outer hair cells 

(OHCs) and exquisite hearing sensitivity with audiometric thresholds better than 

15 dB HL at the homologous frequency (Probst, et al., 1987; Bonfils, 1989). They 

show intra-session as well as inter-session frequency stability with variations 

being less than 1-2%, however the SOAE amplitude show a wider range of 

variations (Ceranic, 2003).  

 

The SOAE reveal some cyclic physiological variations, circadian (Bell, 1992; 

Haggerty, et al., 1993) and menstrual (Bell, 1992; Haggerty et al, 1993; Penner, 

1995) that are thought to be due to hormonal changes; however circulatory 

changes may also play a role. These fluctuations in SOAE may not only reflect 

cochlear function, but also the higher auditory and neural centres that regulate 

cochlear function (reviewed by Ceranic, et al., 1998a).  
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Method of recording 

• The SOAE are recorded following a weak (about 75 dB SPL) 

synchronizing click (details in section 4.3.1.3). This method is used in the 

ILO 88/92 Otodynamic equipment, and is the most commonly used 

method of recording SOAE clinically. Figure 1.2.4 is an example of a 

trace. 

• The SOAE are recorded using a sensitive microphone placed in the ear 

canal with no stimulus and the signal is averaged in the frequency domain. 

 

  

 

Figure 1.2.4: SOAE trace recorded by ILO 88/92 showing multiple peaks seen in blue. 

 

1.2.3.2 Transient evoked otoacousic emissions 

Transient evoked otoacoustic emissions (TEOAE) are sound signals recorded in 

the sealed ear canal in response to clicks. TEOAE are associated with functioning 

OHC and are present in about 96-100% of normal hearing ears but are commonly 

absent if hearing thresholds are greater than 35 dB HL (Probst, et al., 1991). The 

TEOAE is frequency dispersive, with high frequencies having shorter latencies 

than low frequencies. Another characteristic of TEOAE, is that their amplitude 

exhibit compressive non linearity as a function of the stimulus intensity. The 
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maximum gain in TEOAE amplitude is recorded near hearing threshold levels 

(Kemp, 1978; Ceranic, 2003). 

 

Clinical significance 

The TEOAE is a reliable indicator of OHC structural integrity, and has excellent 

test-retest stability and an intra-subject variability in amplitude of less than 1 dB. 

However, there is great inter-subject variability (Harris, et al., 1991; Franklin, et 

al., 1992; Marshall & Heller, 1996). The absence of TEOAE suggest hearing loss 

of at least 25 dB due to cochlear or middle ear pathology, and in general OAEs 

cannot be recorded from ears  with hearing loss greater than 35 dB HL (Bonfils & 

Uziel, 1989; Probst & Harris, 1993).  

 

Method of recording 

The recording technique most commonly used is the differential non-linear 

method (details in section 4.3.1.3). Click stimuli are delivered through a probe in 

the ear canal. The fast Fourier transform (FFT) spectrum analysis and average 

waveform are calculated automatically by the ILO 88/92 Otodynamic equipment 

commonly used for the test.  

 

1.2.4 Medial olivocochlear reflex (MOC suppression) 

The function of the MOC in humans can be evaluated by recording OAE with and 

without contralateral white-noise stimulation. The difference in responses is 

considered to be the medial olivocochlear effect. The contralateral stimulation 

reduces the amplitude of TEOAE and thus indicates the inhibitory action of the 

MOC. 

 

Clinical significance 

The magnitude of the suppression of the TEOAE depends on the intensity of both 

contra- and ipsilateral stimuli (Collet, et al., 1990; Veuillet, et al., 1996). The 

amount of suppression is normally more than 1 dB and usually between 1 to 3 dB 

using the ILO 88/92 Otodynamics otoacoustic analyser, and is more effective in 

the right ear (Hall, 2000b). There is a inter-subject variability in the level of 
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suppression, with good intra-subject stability (Ceranic, et al., 1998b; De Ceulaer, 

et al., 2001). 

 

Method of recording 

Ipsilateral TEOAE are recorded using linear clicks, while broad band “white” 

noise is used for the contralateral stimulation. The contralateral noise can be 

delivered through a dual channel OAE analyzer (Ceranic, et al., 1998b) or from an 

audiometer (Coelho, et al., 2007). Usually a number of TEOAE recordings are 

undertaken with and without contralateral stimulation to reject any artifacts and 

the average responses of the TEOAE with and without contralateral stimulation 

are calculated and the difference between the means represents the suppression 

effect (details in section 5.3.1.4).  

 

1.2.5 Auditory brainstem evoked responses 

The auditory brainstem evoked responses (ABR) are short latency potentials 

recorded from the scalp during a brief acoustic stimulation. The ABR consists of a 

series of seven positive waves which are labelled by Roman numerals (I-VII) and 

recorded within 10 ms of the stimulus onset (Figure 1.2.5). The wave latencies 

reflect the time lapse between the stimulus onset and the time of the highest 

synchronous activity in the generator site of the wave (Pratt, 2003). The origins of 

the ABR waveforms are still the subject of controversy, but current consensus is 

that Wave I is generated from the spiral ganglion of the cochlea (distal portion of 

the eighth nerve) and wave III is thought to originate from both the cochlear 

nucleus and the superior olivary complex in the lower pons. Wave V is thought to 

be generated from the upper pons with contribution from the superior olivary 

complex, lateral lemniscus and possibly also from the inferior colliculus (Pratt, 

2003). 

 

The evaluation of the ABR waveform provides objective information on the 

integrity of the lower auditory brainstem pathways. Wave I, III and V are usually 

examined in clinical practice, and the absolute wave latencies, interpeak intervals, 

and interaural differences are the most commonly evaluated parameters. 
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Method of recording 

The evoked potentials are recorded using conventional EEG electrodes placed on 

the vertex (Cz) and each mastoid (A1and A2) during acoustic stimulation. The 

subject is asked to lie down and the acoustic click stimulus is delivered via 

earphones (details in section 5.3.1.5). 

 

 

 

 

 

 

 

 

 

 

 

Image removed for copyright reasons 

 

 

 

 

 

 

 

 

 

Figure 1.2.5:Auditory brainstem response. Waves I-VII and the possible generator sites 
(adapted from Duane, 1977). 
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Chapter 2 : The Endocrine System and Potential Effects 

of Hormones on the Auditory System 

 
Body homeostasis is controlled both by the nervous and endocrine systems, which 

regulate and control metabolism, growth, reproduction, and behavioural responses 

to the external environment. 

 

The nervous system provides rapid electrical responses to stimuli via 

neurotransmitters that transmit the signal from one nerve fiber to another. On the 

other hand, the action of the endocrine system is slower and provides long term 

responses to stimuli which are initiated by blood borne hormones to their target 

organs.  

 

2.1 Endocrine system structure 
 
The endocrine system is a collection of ductless glands that produce hormones, 

which target other endocrine glands or non-endocrine tissues. The target cells 

usually have specific receptors for specific hormones. 

 

The following is a short description of some of the major glands of the endocrine 

system that may influence the auditory system. Other endocrine glands not 

described, such as the thyroid and parathyroid gland may also have some affect 

auditory function, but were not reviewed in this thesis.  

 

2.1.1 The hypothalamus 

The hypothalamus is the major neurohormonal control centre and is connected to 

other parts of the central nervous system including the auditory system via the 

inferior colliculus (see section 1.1.5). It is responsible in regulating sleep, hunger, 

thirst, mood, body temperature, reproductive behaviour and the release of 

hormones from other glands especially the pituitary gland.  
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The hypothalamus secretes trophic hormone-releasing and release-inhibiting 

hormones into a portal venous system that targets the anterior pituitary to control 

the release of the anterior pituitary hormones. The cell bodies that produce these 

hormones are present in the paraventricular, preoptic, periventricular and arcuate 

nuclei (Halasz, 2000). They include gonadotophin releasing hormone (GnRH), 

corticotrophin releasing hormone (CRH), thyrotrophin releasing hormone (TRH), 

somatostatin, somatotrophin releasing hormone and a prolactin inhibiting factor, 

which is possibly dopamine (Clemens, et al., 1980). The hypothalamus also 

contains the cell bodies of the magnocellular neurons in the supraoptic and 

paraventricular nuclei that produce the posterior pituitary hormones vasopressin 

and oxytocin (Halasz, 2000). 

 

2.1.2 The pituitary gland 

The pituitary gland is a small gland (weighing about 1g in humans) located in the 

base of the brain and controls all the major endocrine glands in the body. It is 

composed of two parts, the neurohypophysis (posterior pituitary) and 

adenohypophysis (anterior pituitary).  

 

The posterior pituitary  

Contains the axons of the magnocellular neurons of the supraoptic and 

paraventricular nuclei of the hypothalamus that release vasopressin and oxytocin  

into the blood stream (Fink, 2000).  

 

The anterior pituitary  

Produces four glandotropic hormones (i.e. hormones targeting specific peripheral 

endocrine glands) and two aglandotropic hormones (i.e. not gland specific). These 

hormones are under the control of the hypothalamus, which either stimulates or 

inhibits their release through hormonal and neural feedback loops (Fink, 2000). 

 

The glandotropic hormones are: 

• Adrenocorticotrophic hormone (ACTH) which stimulates the release of 

hormones from the adrenal gland.  
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• Thyroid stimulating hormone (TSH) which stimulates the release of 

hormones from the thyroid. 

• Follicle stimulating hormone (FSH) and lutenizing hormone (LH) which 

both target the testis to release testosterone or the ovaries to release 

oestrogen and progesterone. 

 

The aglandotropic hormones are: 

• Growth hormone (GH) which stimulates protein synthesis and skeletal 

growth with the aid of growth factors produced in the liver. 

• Prolactin which stimulates breast enlargement during pregnancy and milk 

production after delivery. The release of prolactin is also stimulated by 

stress in humans (Delitala, et al., 1987).  

 

2.1.3 Pineal body (gland) 

The pineal gland is a small reddish-brown structure almost in the centre of the 

brain and upper part of the midbrain overlying the cerebral aqueduct. It contains 

many bioactive peptides including ACTH and vasopressin, but the most studied 

compound secreted from the pineal gland is melatonin.  

 

2.1.4 The adrenal glands 

The adrenal glands are located above each kidney. The main function of the 

adrenal gland is the release of hormones in response to stress and the control of 

fluid electrolyte balance of the body. 

It has two distinctive sections: 

• The inner medulla, which produces catecholamines as well as endogenous 

opioids.  

• The outer cortex, which produces adrenal steroids.  

 

2.1.5 The ovaries and testicles 

The ovary in females is responsible for the production of the ovarian steroids 

(oestrogen and progesterone), while the testis in males produce androgens such as 
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testosterone. The gonads along with the nervous system control the reproductive 

function and behaviour of the individual. 

 

2.2 Potential effects of hormones on the auditory system 

Other hormones may also be involved in affecting the auditory function but those 

of importance to this work are outlined below:  

• Ovarian steroid hormones (oestrogen and progesterone). 

• Stress related hormones (glucocorticoids , catecholamines and opioids). 

• Fluid and electrolyte regulating hormones (aldosterone and vasopressin). 

• Melatonin. 

 

2.2.1 Ovarian steroid hormones 

Oestrogen and progesterone are the main hormones that regulate reproductive 

behaviour in females and also play an important role in modulating the activity of 

several CNS structures. 

    

2.2.1.1 Oestrogen 

There are three types of oestrogens produced naturally in women, oestradiol (E2), 

oestrone (E1) and oestriol (E3).  Oestradiol is the primary oestrogen produced 

from the ovaries in  premenopausal women with the highest affinity to oestrogen 

receptors. Oestrone is a metabolite of oestradiol, and is also produced by the 

conversion of androstenedione (an adrenal steroid) in the adipose tissue, and is the 

predominant oestrogen in postmenopausal women. Oestriol is the principal 

oestrogen synthesised from the placenta during pregnancy and is also a metabolite 

of oestradiol (Ruggiero & Likis, 2002). 

 

The majority of oestradiol that circulate in the bloodstream is protein bound 

(Anderson, 1974). About 69% of oestradiol is bound to sex hormone binding 

globulin (SHBG), and to a lesser extent to serum albumin (30%), and only a small 

amount (about 1%) is unbound (Speroff & Fritz, 2005). The free and albumin 

bound oestradiol are biologically available and able to enter the cell and bind to 
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the nuclear receptors (Pardridge, 1986). Two types of oestrogen receptors have 

been identified, and are known as oestrogen receptor alpha and beta, (ER" and 

ER#), and are widely distributed in the body (Kuiper, et al., 1998; McEwen & 

Alves, 1999; Nilsson, et al., 2001) including the auditory system (see below). 

 

Oestrogens influence physiological functions in a variety of organs and systems in 

both females (Nilsson, et al., 2001) and males (Sharpe, 1998; Lombardi, et al., 

2001), including the skeletal, cardiovascular and the nervous systems and the 

male urogenital tract, mammary glands and female reproductive organs. Many of 

the physiological effects attributed to testosterone in males have been found to be 

due to oestrogen as a result of the conversion of testosterone to oestrogen by the 

enzyme aromatase, which is present in the CNS (Sharpe, 1998).  

 

General effect on the CNS: 

The effect of oestrogens on the CNS has been studied extensively (Kuiper, et al., 

1998; McEwen & Alves, 1999; Behl & Manthey, 2000; Garcia-Segura, et al., 

2001). They act as central neuroactive and neuromodulator molecules by their 

influence on other neurohormones and neurotransmitters. They are mainly 

excitatory to neurons (Smith, et al., 2002). Oestrogens are also thought to be 

neuroprotective and a decrease in oestrogen levels after the menopause, or in 

Turner’s syndrome, is associated with an increased frequency of 

neurodegenerative disorders. This protective effect is brought about by its 

genomic action on alpha and beta oestrogen receptors (ER" and ER#), possible 

membrane receptors and/or its antioxidant effect (Behl & Manthey, 2000; Garcia-

Segura, et al., 2001).  

 

Oestrogen regulates the serotonergic and GABA-ergic systems (McEwen & 

Alves, 1999), although it seems to have a dual effect on the GABA system. 

During the female reproductive cycle, the preoptic area of the hypothalamus may 

control gonadotropin-releasing hormone production. In this site, oestrogen was 

found to increase the level of GABA by attenuating the GABA-B receptor 

autoinhibition of GABA-ergic neurons as a result of a negative feed back 

function, but when oestrogen reached a higher level it decreased the levels of 

glutamic acid decarboxylase (GAD) so attenuating GABA production (Wagner, et 
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al., 2001). This attenuation of GAD occurs transiently in other areas of the CNS, 

especially the hippocampus and is important in synaptogenesis (McEwen, et al., 

2001). The modulation of specific mRNA subunits of GABA-A receptor by 

progesterone requires the presence of oestrogen (Weiland & Orchinik, 1995). 

Oestrogen also facilitates glutamate mediated neural activity in the cortex 

(Woolley, et al., 1997), and acts as an antioxidant, which protects neurons from 

glutamate excitotoxicity (Behl & Manthey, 2000). 

 

Potential effect on auditory system: 

Theoretically, oestrogen may influence the auditory function at different levels of 

the CNS, through its known actions as a modulator of the GABA-ergic, 

serotonergic, and glutamatergic systems (Woolley, et al., 1997). Oestrogen may 

have an excitatory action on auditory nerve fibres, as it has been found to be 

mainly excitatory to neurons in other areas of the CNS (Smith, et al., 2002). On 

the other hand, oestrogen may exert a neuroprotective effect on the auditory 

system, as it does in other areas of the CNS (Behl & Manthey, 2000; Garcia-

Segura, et al., 2001).  

 

Originally, the messenger RNA (mRNA) that encodes oestrogen receptors in the 

rat cochlea were not identified (Nathan, et al., 1999). However, recent research 

has confirmed the presence of ER" and ER#, mainly by imunohistochemistry, in 

the inner ear (including outer and inner hair cells, spiral ganglion type I cells, the 

stria vascularis and cochlear blood vessels) in both humans (inner ears of normal 

adult and foetal tissue and those with Turner syndrome) (Stenberg, et al., 2001), 

and animal models such as mice and rats (Stenberg, et al., 1999; Meltser, et al., 

2008; Simonoska, et al., 2009a), vocal fish (Forlano, et al., 2005), and zebra 

finches (Noirot, et al., 2009). Oestrogen receptors have also been identified in 

almost all the major auditory nuclei in the brain stem as well as the auditory 

cortex except for the medial geniculate body in mice (Charitidi & Canlon, 2010). 

Previous contradictory findings between studies that looked at the rat cochlea, 

may be the result of the small number of receptors and the low stability of the 

mRNA.  
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The presence of the receptors in the spiral ganglion and outer and inner hair cells, 

suggest that oestrogen may influence auditory transmission, while the receptors in 

the stria vascularis may affect cochlear fluid electrolyte balance (Lee & Marcus, 

2001) and are of importance in the development of cells that produce the 

endolymph in the cochlea (Chen & Nathans, 2007). Additionally, the oestrogen 

receptors in the cochlear blood vessels may influence auditory function, by 

modulating cochlear blood flow (Laugel, et al., 1987). The absence of ER# has 

been associated with hearing loss and susceptibility to acoustic trauma in mice 

(Meltser, et al., 2008; Simonoska, et al., 2009b), and a mutation in the gene that 

encodes the ER# was found to be the cause of one form of autosomal-recessive 

nonsyndromic hearing loss known as DFNB35 (Collin, et al., 2008). The previous 

studies suggest the importance of oestrogen in the normal function of the cochlea 

and the auditory system. 

 

The use of anti-oestrogen treatment (tamoxifin) for three days in ovarectomized 

rats did not effect the oestrogen receptor content of the cochlea (Stenberg, et al., 

2003).  However, a study by Thompson, et al., (2006) demonstrated that blocking 

oestrogen receptors for three months in young adult female CBA mice leads to a 

decline in contralateral suppression of distortion product otoacoustic emissions 

(DPOAEs); which is attributed to the function of the MOC. The decline seen was 

similar to that which occurs with aging and precedes the onset of age related 

hearing loss (Guimaraes, et al., 2004). The differences between the studies 

suggest that prolonged  anti-oestrogen treatment may be needed to show a 

difference. Thompson and coworkers’ (2006) findings support the role of 

oestrogen in influencing the auditory system both in the cochlea and the more 

proximal parts of the auditory system. 

 

2.2.1.2 Progesterone 

Progesterone is the main ovarian hormone produced by the luteinised granulosa 

cells within the ovarian follicles, following an LH surge, and is secreted by the 

corpus luteum during the luteal phase of the ovarian cycle (section 3.1.4). It is 

important in preparing the female genital tract for fertilization and then in 

maintaining pregnancy. Progesterone is also produced in the adrenal glands and 
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the CNS, and is a precursor to other steroid hormones and acts as a neurosteroid 

(Baulieu, 1998). 

 

General effect on the CNS: 

Progesterone and its metabolites are important in the regulation of GABA-A 

receptors (Follesa, et al., 2001), but require the presence of oestrogen as 

mentioned above. They also bind well with GABA-A receptors and act like 

benzodiazepines, displaying anaesthetic, antiepileptic, and sedative-hypnotic 

actions (McEwen & Alves, 1999). Progesterone and its metabolites tend to 

increase serotonin turnover (Genazzani, et al., 2000) and thus may contribute to 

the mood disturbances related to the female reproductive cycle. This action of 

progesterone implies that it has a mainly inhibitory function on the CNS, which 

would balance the mainly excitatory action of oestrogen (Katzenellenbogen, 2000; 

Smith, et al., 2002). 

 

Potential effect on auditory system: 

Specific progesterone receptors have not been identified in the cochlea, but 

progesterone may cross react with other steroid receptors (such as glucocorticoid 

and mineralocorticoid receptors) present in the cochlea or more proximal areas of 

the auditory system (Lang, et al., 1990; Nathan, et al., 1999).  Progesterone and its 

metabolites also interact with the steroid binding sites on GABA-A receptors 

(Follesa et al., 2001), which are present throughout the auditory system (see Table 

1.1-A and 1.1-B).  

 

In the proximal auditory system, it is unclear if progesterone receptors are present 

in specific auditory structures, although they have been identified in other areas of 

the CNS, which have links to the auditory pathways, including the hypothalamus, 

limbic system and the reticular formation. However, such receptors may also be 

present in the auditory pathways, although not reported in the literature to date.  
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2.2.2 Stress related hormones 

 

2.2.2.1 Glucocorticoids 

Cortisol (a steroid-based hormone) is the main glucocorticoid secreted from the 

adrenal cortex in response to stress, and acts through glucocorticoid receptors, 

which are widely distributed in the CNS (Jennes & Langub, 2000) and other 

organs. Cortisol affects carbohydrate, fat and protein metabolism, being anabolic 

in the liver, and catabolic in skeletal muscles (Hadley & Levine, 2006a), which is 

important in adaptation to a stressful stimulus. 

 

Glucocorticoid receptors have been identified in the inner ear of animals (Rarey, 

et al., 1993; Zuo, et al., 1995; Shimazaki, et al., 2002), and humans (Rarey & 

Curtis, 1996) more in the cochlear than the vestibular tissue. Within the cochlea 

they are present in the sensory (the organ of Corti’s hair cells and supporting 

cells) and non-sensory (spiral ligament and stria vascularis) tissues, suggesting 

both a possible role in homeostasis of inner ear fluids and signal transduction 

(reviewed by Horner, 2003). Glucocorticoids may also influence the auditory 

function by interacting with receptors found in the brainstem nuclei, including the 

mesencephalic raphe nuclei and locus coeruleus, which contain serotonergic and 

noradrenergic neurons (Jennes & Langub, 2000). 

2.2.2.2 Catecholamines and endogenous opioids 

Catecholamines (adrenaline and nor-adrenaline) and endogenous opioids (such as 

#-endorphin, enkephalins, dynorphins) are released in response to stress from the 

adrenal medulla and act mainly through the nervous system. Catecholamines are 

the main neurotransmitters of the sympathetic nervous system, which is activated 

during stress (Brook & Marshall, 2001) while, opioids are also released from the 

pituitary and the limbic system during stress (Sapolsky, 2002). 

  

Endorphins and enkephalins act as analgesics and produce a euphoric state (Brook 

& Marshall, 2001). Opioid binding of mu (µ) and delta ($) opioid receptors 

commonly lead to neural inhibition (Crain & Shen, 1998), but may also lead to 
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neural excitation especially through dynorphin sensitive kappa (%) opioid 

receptors (Mains & Eipper, 1999). 

 

Opioid receptors have been identified in the mammalian cochlea 

(Jongkamonwiwat, et al., 2003; Jongkamonwiwat, et al., 2006) and enkephalins 

and dynorphins are thought to act as neurotransmitters in the auditory system (see 

section 1.1.4). Nor-adrenaline fibres of the sympathetic innervation of the cochlea 

surround the labyrinthine artery and the modiolar branches and control cochlear 

blood flow (Brown, 2001). Adrenaline and nor-adrenaline were found to influence 

the function of the stria vascularis by regulating the secretion of K+ and Cl- ions, 

activity of Na+, K+-ATPase, and general metabolism of the cells (reviewed by 

Ciuman, 2009). Sympathetic innervation is also seen in other auditory structures 

including the cochlear nucleus (Thompson, 2003) and the superior olivary 

complex (Mulders & Robertson, 2001) and thus has a potential to modulate higher 

levels of auditory function. 

 

2.2.3 Fluid and electrolyte regulating hormones 

 

2.2.3.1 Aldosterone 

Aldosterone (a steroid based hormone) is the main mineralocorticoid secreted 

from the adrenal cortex and is mainly involved in regulating sodium homeostasis, 

and indirectly volume homeostasis. It is also released during stress. It raises blood 

pressure by increasing plasma volume, and increasing arteriolar sensitivity to 

vasoconstrictor agents (Brook & Marshall, 2001). Aldosterone acts on the distal 

renal tubules and collecting ducts of the kidney by increasing sodium reabsorption 

mainly by regulating the enzyme Na+, K+-ATPase (Brook & Marshall, 2001). 

The action of aldosterone is through mineralocorticoid receptors that are also 

distributed in the CNS, but to a lesser degree than glucocorticoid receptors 

(Jennes & Langub, 2000). 

 

There is a functional similarity between the glomeruli of the kidney and the stria 

vascularis of the cochlea, as both are involved in ion exchange and are separated 
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from circulation by a basement membrane. This analogy may suggest that 

hormones have a role in inner ear fluid homeostasis, as seen in the kidney (Meyer, 

et al., 2002). The enzyme Na+, K+-ATPase, which is regulated by aldosterone, 

has been identified in the inner ear epithelium suggesting the hormonal 

modulation of endolymph secretion and fluid homeostasis (Ferrary & Sterkers, 

1998).  

 

Mineralocorticoid receptors have been identified within the cochlea (Rarey & 

Luttge, 1989) in the marginal cells of the stria vascularis and spiral ganglion cells 

(Furuta, et al., 1994). Thus aldosterone may be involved in endolymph 

homeostasis, although the function of the mineralocorticoid receptors on the spiral 

ganglion cells remains unknown. The absence of circulating adrenal hormones do 

not lead to electrophysiological changes in inner ear fluids (Ferrary, et al., 1996) 

but to a decrease in endolymph volume (Lohuis, et al., 2000).  

 

Aldosterone treatment in mice with autoimmune hearing loss seems to have a 

similar effect to prednisolone in improving hearing thresholds and reversing the 

pathology in the stria vascularis due to autoimmune disease (Trune, et al., 2000). 

This suggests that aldosterone may play a protective role in the cochlea and may 

even have a positive effect on hearing function in the elderly (Tadros, et al., 

2005). The latter authors found that aged men and women with lower levels of 

aldosterone (but still in the clinically normal range) had worse hearing thresholds 

than subjects with aldosterone levels in the upper middle of the normal range.  

2.2.3.2 Vasopressin 

Vasopressin, also known as antidiuretic hormone (ADH) is produced from the 

paraventricular neurons of the hypothalamus. It is involved in fluid homeostasis in 

a similar way to aldosterone, and is also released during stress and stimulates the 

release of adrenocorticotropic hormone (ACTH) (Halasz, 2000). Vasopressin acts 

as a neurotransmitter in the CNS and affects brain development, memory, 

learning, and body temperature (Halasz, 2000; Jennes & Langub, 2000). 

 

The vasopressin membrane receptors include V1a, which is expressed widely in 

the CNS, in the frontal and piriform cortex, olfactory system, hippocampus, and 



 57 

throughout the midbrain, pons and medulla (Jennes & Langub, 2000) and may 

therefore, directly or  indirectly modulate the auditory system. ADH may also 

play a role in regulating cochlear fluid. Adenylate cyclase (an enzyme regulated 

by ADH), which is found in the kidney, has also been identified in the inner ear 

epithelium (Ferrary & Sterkers, 1998). Vasopressin receptors V1a and V2 have 

been identified throughout the developing rat cochlea, but only in the spiral 

ganglion and spiral ligament of the adult cochlea. Thus, this hormone is currently 

thought to be important in cochlear development (Furuta, et al., 1998). 

 

2.2.4 Melatonin 

Melatonin is a neuroactive substance derived from serotonin by the melatonin 

forming enzyme serotonin N-acetyltransferase (NAT) and hydroxyindole-O-

methyltransferase (HIOMT). It has multiple effects on the CNS, but these are 

mainly related to the sleep/wake cycle possibly by its action on high affinity 

binding sites on the supra-chiasmatic nucleus and other areas of the CNS 

(Urbanski, 2000). 

 

Melatonin was found to be synthesised in the guinea pig cochlea by melatonin-

forming enzymes, NAT and HIOMT, and is detectable in the organ of Corti, the 

basilar membrane and to a lesser degree in the cochlear nerve and stria vascularis, 

including the spiral ligament (Biesalski, et al., 1988). The concentration of 

melatonin in the cochlea is affected by light, and correlates with the peripheral 

concentration of melatonin (Lopez-Gonzalez, et al., 1997). The function of 

melatonin in the cochlea is unknown, but may be protective, as it was found to 

prolong both the post-mortem activity of OHC (Lopez-Gonzalez, et al., 1999) and 

ameliorate the ototoxicity of aminoglycosides and cisplatnum in rats (Lopez-

Gonzalez, et al., 2000a; Lopez-Gonzalez, et al., 2000b).  

Melatonin has an anticonvulsant and anxiolytic action by enhancing GABA 

(Golombek, et al., 1996) and benzodiazepine function (Guardiola-Lemaitre, et al., 

1992) and may theoretically have an effect on GABA-ergic fibers of the auditory 

system. 
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2.3 Hormone Measurement 

Hormone levels can be measured in bodily fluids, such as serum, urine and saliva. 

The fluid sample used depends on the hormone being tested and the clinical 

utility. For example salivary cortisol gives a better measure of adrenal gland 

function than serum levels (Vining, et al., 1983; Gozansky, et al., 2005; Lewis, 

2006), while the salivary levels of oestrogen are lower than serum oestrogen 

levels (Lu, et al., 1999), so may not give a reliable measurement if the oestrogen 

level is too low in the tested subject. Serum samples are commonly used in 

clinical practice to test most hormone levels. The method of analysis is by 

immunoassay, either using radioactive or chemilumenescent labelled antibodies 

(Neal, 2000). One or two antibodies may be used depending on the molecular size 

of the hormone. The two antibodies method are used for larger sized hormones 

(such as the growth hormone) in a non-competitive assay where the bound 

labelled antibodies are measured, while the one antibody method is used for the 

smaller sized hormones (such as steroid hormones) in a competitive assay where 

the unbound labelled antibodies are measured (Ekins, 2002). The competitive 

assay technique was used in the study to measure serum oestradiol and 

progesterone (section 5.3.2). 
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Chapter 3 : Physiological Variations in Hormones and 

Auditory Function 

 

3.1 Physiological variations in hormones that may affect 

auditory function 

The levels of hormones vary in response to internal and external stimuli, and 

many vary in a cyclic fashion. These changes are important for the control of 

organism homeostasis. The hypothalamus acts as the neural control centre of the 

endocrine system and regulates the physiological variation in hormones (Halasz, 

2000). 

 

Figure 3.1.1: Hypothalamic pituitary adrenal and gonadal axis and the circadian cycle. 

Light effect on the SCN leads to inhibition of melatonin synthesis from the pineal gland. 
* The inhibitory effect of melatonin on GnRH is only seen before puberty and in certain 
pathological conditions in humans (Silman, 1991; Kadva, et al., 1998). 

Green lines and text: Excitatory effect, Red lines and text: inhibitory effect, ACh: 
acetylcholine, ACTH: adrenocorticotrophic hormone, Ad: adrenaline, CRF: 
corticotrophin releasing factor, Dopa: dopamine, Dyn: dynorphin, E2: oestrogen, Endo: 
#-endorphin, FSH: follicular stimulating hormone, GABA: !-aminobutaric acid, GnRH: 
gonadotrophin releasing hormone, LH: lutenizing hormone, NA: nor adrenaline, Prog: 
progesterone, SCN: suprachiasmatic nuclei, 5-HT: serotonin.  
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The endocrine changes related to reproductive function (ovarian cycle, pregnancy, 

and menopause), daily rhythm (circadian) and exposure to stressful stimuli could 

in turn affect auditory function. However, the hormones involved in these 

physiological changes also influence each other (Figure 3.1.1).  

 

Melatonin plays an important role in the control of reproductive behaviour in 

seasonal breeding mammals (reviewed by Arendt, 1998) possibly through an 

inhibitory effect on the gonadotrophin releasing hormone (GnRH) (Silman, 1991). 

The effect of melatonin on human reproduction is not clear, but low levels of 

melatonin have been associated with precocious puberty and high levels with 

delayed puberty (Hadley & Levine, 2006b). Abnormally high melatonin levels 

have been found in females with functional hypothalamic amenorrhea and males 

with hypogonadotrophic hypogonadism, but it is not clear if melatonin contributes 

to the disorder or is the result of it. The deficiency in GnRH due to Kallman’s 

syndrome or functional hypothalamic amenorrhea is associated with high 

nocturnal levels of melatonin that may be due to the lower levels of oestrogen that 

affect melatonin secretion (Kadva, et al., 1998).  

 

Acute or chronic stress tends to have a negative effect on reproductive function, 

which occurs at multiple levels (reviewed by Kalantaridou, et al., 2004). GnRH 

release is suppressed by corticotrophin releasing factor (Chrousos, et al., 1998), 

cortisol (Saketos, et al., 1993) and dynorphin and #-endorphin through µ and % 

receptors in the hypothalamus (Petraglia, et al., 1986) which reduces plasma 

levels of lutenizing hormone (LH). Glucocorticoids also suppress LH levels 

directly through their receptors (McGivern & Redei, 1994) and inhibit oestrogen 

action (Rabin, et al., 1990). This suppression of the hypothalamic pituitary 

gonadal axis leads to lower levels of oestrogen and progesterone, which, in turn 

may affect auditory function.  

 

The interaction between the different hormones enhances the possible 

multidirectional effects of hormones on the auditory system.  
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3.1.1 The circadian cycle and auditory function  

The circadian pacemaker in mammals is found in the paired supra chiasmatic 

nuclei of the hypothalamus, which also control the rhythm of melatonin synthesis 

through a multi synaptic pathway (Urbanski, 2000). Melatonin, cortisol and 

vasopressin show a clear circadian pattern. Melatonin levels are highest at night 

and lowest during the day (Arendt, 1998). Cortisol levels are highest at dawn and 

low at dusk (Despopoulos & Silbernagl, 1991), while vasopressin levels are 

higher during the night (Kostoglou-Athanassiou, et al., 1998b). This means that 

the circadian cycle influences almost all aspects of human physiology and 

psychology, and therefore the auditory system may also be under this influence. 

 

The rhythm of the suprachiasmatic nuclei is entrained by light through input from 

the eye via the retinohypothalamic tract (Block, et al., 2000). In subterranean 

animals, such as the mole, the inferior colliculus (with auditory information) 

projects to the suprachiasmatic nuclei, and may have a similar function as the 

retino-hypothalamic tract in other mammals so it can entrain to the environment 

(Kudo, et al., 1997). In humans, a recent study has found that auditory stimuli lead 

to a phase shift in circadian rhythms (Goel, 2005). This finding implies that a 

connection between the auditory pathways and the supra chiasmatic nuclei also 

exists in humans, which may lead to the direct effect of circadian cycle on 

auditory function and vice versa. 

 

The possible influence of the circadian cycle on auditory tests has been examined 

in humans. Diurnal changes have been reported in otoacoustic emissions that 

reflect cochlear function. Wit (1985) measured SOAE in two volunteers on ten 

different days, twice daily for the female volunteer and three times daily in the 

male volunteer. He reported that the SOAE frequency significantly shifted to a 

lower frequency in the afternoon sessions compared to the morning 

measurements. Bell (1992) demonstrated a similar finding by monitoring his own 

SOAE and those in two female volunteers. Bell and one of the female subjects 

displayed clear circadian variation in frequency of the SOAE. The SOAE 

frequency was highest in the morning and shifted toward a lower frequency 

during the waking hours and returned during sleep to early morning levels. The 
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changes corresponded to 1% change in frequency, with no amplitude fluctuation. 

Haggerty and co-workers (1993) also reported a significant 24-hour variability in 

SOAE frequency in a male and female subject, which was less than 1 %. The 

pattern of change was not identical in the two subjects; however, it was similar in 

that SOAE frequency decreased during late evening and early morning hours. 

These changes suggest that the SOAE generator is synchronised with the 

biological circadian rhythm. The peripheral auditory structures may be less 

inhibited along with other subcortical structures during sleep (Lancel, 1993). The 

increase in SOAE levels during sleep may be due to the lower inhibition during 

sleep 

 

Diurnal changes were not found in the auditory evoked potentials arising from the 

brain stem (Romani, et al., 2000). However, the auditory evoked potentials which 

arise from cortical structures such as the P300 seem to be affected by the time of 

day (reviewed by Polich & Kok, 1995). This may be attributed to circadian 

changes in cognitive function that contribute to the P300 (Wesensten, et al., 

1990). 

 

3.1.2 The response to stress and auditory function  

The presence of emotional or physical stress initiates the endocrine stress 

response by the release of corticotrophin releasing factor (CRF). This activates the 

hypothalamic pituitary adrenal axis, and leads to the release of cortisol and 

adrenaline from the adrenal gland (Figure 3.1.1) and activation of the sympathetic 

nervous system.  

 

Auditory stimuli, such as noise, can initiate the endocrine response to stress 

(Spreng, 2000; Michaud, et al., 2003). The underlying pathway may be through 

the medial geniculate body, which acts as the interface between the auditory 

system and the stress responsive limbic system. The non-primary area of the 

auditory cortex and the medial geniculate body was found to have more CRF 

mRNA than other areas of the rat’s central auditory system (Imaki, et al., 1991). 

On the other hand, the hormones involved in the response to stress may affect 

auditory function directly by an excitatory effect, which may lead to damage 
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through glutamate induced neurotoxicity (Pujol, et al., 1993). The possible 

interaction between stress and the auditory system is demonstrated in Figure 3.1.2. 

 

 

Figure 3.1.2: Possible interaction between stress, endocrine system and auditory system. 

The stress response can be initiated by noise that may lead to auditory symptoms (tinnitus 
and/or hyperacusis) that in turn can cause stress and can be aggravated by it.  

Fluid & E. H = Fluid and electrolyte hormones, aldosterone and vasopressin, Rep. H = 
Reproductive hormones, Stress. H = Stress hormones, cortisol, catecholamines and 
opioids. 
 

3.1.3 Gender differences in auditory function 

Reproductive hormones have been implicated in gender differences in 

sensorimotor (Becker, 2002) and cognitive (Hampson, 2002) functions in animals 

and humans. The underlying cause for these gender differences may be due to 

sexual dimorphism in CNS structures from the exposure to reproductive hormones 

during development (de Courten-Myers, 1999; Rhodes & Rubin, 1999) which 

may also affect the auditory system. Indeed, sexual dimorphism has been noted in 

auditory structures. The cochlea in females is shorter than the cochlea in males 

(Sato, et al., 1991), and may have a larger number of OHC (Wright, et al., 1987) 
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which are stiffer and thus more sensitive to the acoustic stimulus (Morlet, et al., 

1996). The sexually dimorphic structure of the serotonergic system (Rubinow, et 

al., 1998) as mentioned above (section 1.1.6) may also modulate neural 

transmission in the auditory brain stem and cortical structures. The differences in 

reproductive hormones during development and in adulthood may explain the 

gender effect in the auditory function, which may theoretically be “better” in 

females due to the excitatory and protective effects of oestrogen.  

 

A summary of the major gender differences in auditory function: 

 

• Several studies have reported that adult females have more sensitive 

hearing in higher frequencies (measured by pure tone audiometry) 

compared to males (Jerger & Hall, 1980; McFadden, 1993; Davis, 1995; 

McFadden, 1998). This has also been noted in carefully screened 

populations for noise exposure (Johansson & Arlinger, 2002). In school 

aged children, girls tend to have lower audiometric threshold compared to 

boys, however the difference is not statistically significant (Roberts & 

Huber, 1970; Haapaniemi, 1996). 

 

• Otoacoustic emissions (OAE) are associated with good hearing sensitivity 

(Probst, et al., 1991). Women tend to have OAE with larger amplitudes 

compared to men (McFadden, 1993; Hall, 2000b; McFadden, et al., 

2009a) and are more likely to have recordable spontaneous otoacoustic 

emissions (SOAE) (75% of females compared to 58% of males (Penner & 

Zhang, 1997). The gender difference is also seen in both neonates (Kei, et 

al., 1997) and older children (Lamprecht-Dinnesen, et al., 1998; O'Rourke, 

et al., 2002) and may be due to prenatal hormonal exposure. These sex 

differences in OAE have also been reported in some animals including 

monkeys (Lonsbury-Martin & Martin, 1988; McFadden, et al., 2006), 

mice (Guimaraes, et al., 2004), and sheep (McFadden, et al., 2009b).  

 

• The excitatory effect of oestrogen and sexual dimorphism in the CNS and 

auditory system may affect the neural transmission in the auditory brain 

stem leading to gender differences in auditory brain stem evoked 
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responses (ABR). Female adults were found to have shorter ABR wave 

latencies and larger wave V amplitude compared to males (Jerger & Hall, 

1980; Jerger & Johnson, 1988; Trune, et al., 1988; Dehan & Jerger, 1990). 

The same findings were also noted in neonates (Chiarenza, et al., 1988; 

Stuart & Yang, 2001), but to a lesser extent in older children (Trune, et al., 

1988; Hall III, 1992). Shorter ABR latencies were also reported in female 

rats compared to male rats (Church, et al., 1984). 

 

The effect of reproductive hormones on the auditory function may be more clearly 

noted in the endocrine changes that occur during the ovarian cycle.  

 

3.1.4 Ovarian cycle and auditory function 

The average female ovarian cycle lasts for 28 days (normal range 21-35 days), 

with day one being the first day of menses (Figure 3.1.3). 

 

 
Figure 3.1.3: Schematic representation of the changes in reproductive hormones during 
the average menstrual cycle, and the associated rise of other hormones in the 
periovulatory phase. 
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Oestrogen is secreted during the proliferative (follicular) phase of the cycle, in 

response to FSH. On reaching its maximum level, oestrogen simulates release of 

GnRH from the hypothalamus, which, in turn, initiates the LH surge. Ovulation 

occurs 38-42 hours after the beginning of the LH surge (Djahanbakhch, et al., 

1981). Progesterone secretion starts to rise following luteinisation of the granulosa 

cells in the luteal phase of the cycle. If fertilization does not occur the level of 

both hormones decline and the next cycle begins. 

 

These changes in reproductive hormones levels have an impact on the 

hypothalamic pituitary adrenal axis (Bloch, et al., 1998). The higher level of 

oestrogen during the follicular phase is associated with a rise in other hormone 

levels. The basal plasma level of adrenocorticotrophic hormone (ACTH) was 

found to rise in the late follicular phase (Genazzani, et al., 1975; Mauri, et al., 

1990) possibly due to the enhancing effect of oestrogen on corticotrophin 

releasing factor gene transcription in the hypothalamus (Kirschbaum, et al., 1999). 

The rise of ACTH during the late follicular phase is not associated with higher 

free cortisol, due to oestrogen induced changes in corticosteroid-binding protein 

levels (Kirschbaum, et al., 1999; Altemus, et al., 2001). The lower level of free 

cortisol may affect the physiological response to stress during this phase of the 

menstrual cycle.  

 

Vasopressin levels were also reported to be higher during the follicular phase of 

the cycle compared to the mid-luteal phase (Kostoglou-Athanassiou, et al., 

1998a). The enhancement of vasopressin secretion is possibly due to oestrogen, 

which was found to increase vasopressin levels in females, who had undergone 

oopherectomy (Forsling, et al., 1996). This may lead to fluid retention or 

redistribution, which occurs in some women in the pre-menstrual period of the 

menstrual cycle (Tollan, et al., 1993) and may also affect the fluid balance in the 

cochlea and thus affect auditory function.  

 

The level of #-endorphin peaks two to four days before ovulation followed by a 

dip in levels post ovulation and then there is a gradual rise again during the late 

luteal phase, about 24 hours before the next menses (Vrbicky, et al., 1982; Tang, 

et al., 1987; Ferrer, et al., 1997).  Females with polycystic ovarian disease and 
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amenorrhea have levels of #-endorphin, which are lower than in normal females 

(Martinez-Guisasola, et al., 1999). There is also evidence that oestrogen 

stimulates opioid receptor expression and stabilises the levels of #-endorphins that 

tend to decrease after menopause (surgical or spontaneous). This may be 

associated with mood changes that can be helped by oestrogen treatment, which 

increases #-endorphin levels in plasma (Genazzani, et al., 2000). Oestrogen also 

affects mood by facilitating the function of enkephalin that is also important for 

reproductive behaviour (Pfaff, et al., 2000). It is not clear if the changes in #-

endorphin is intrinsic in the regulation of the ovarian cycle or is due to the effect 

of oestrogen. 

 

Progesterone alone had no effect on #-endorphin levels in the hypothalamus and 

pituitary of oopherectemised (OVX) rats. However, treatment with both oestrogen 

and progesterone reverses the effect of oestrogen alone on #-endorphin levels in 

the pituitary, and increases the levels of #-endorphin in the hypothalamus 

(Genazzani, et al., 2000). Thus the effect of progesterone on #-endorphin levels 

requires the presence of oestrogen.  

 

The changes seen in other hormones other than the reproductive hormones during 

the ovarian cycle may also potentially contribute to the changes reported in 

auditory function during the ovarian cycle (see section 3.1.4.1).   

 

3.1.4.1 Auditory tests during the ovarian cycle  

The fluctuation of hormones during the ovarian cycle may potentially lead to 

fluctuation in auditory function and other sensory processes such as vision, 

olfaction and touch (reviewed by Parlee, 1983). The optimal function of the 

auditory system may occur during the peak of oestrogen circulation due to its 

excitatory and protective effect in the central nervous system. Correspondingly, 

the low levels of hormones during the premenstrual phase may relate to less than 

optimal auditory function. 

 

Sisneros and Bass (2003) found that the auditory nerve fibers of a midshipman 

fish (a vocal seasonally breeding fish) are more responsive to male matting calls 
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during the breeding season and not at other times. A later study by the same group 

(Sisneros, et al., 2004) reported that oestradiol treatment of female midshipman 

fish during the non-breeding season makes their auditory nerves respond more to 

male mating calls. The auditory system of female songbirds becomes more 

sensitive to male birdsong during the breeding season and processes it in a way 

that initiates their reproductive behaviour. This is dependent on the presence of 

oestrogen (Maney, et al., 2006; LeBlanc, et al., 2007; Maney, et al., 2008), and a 

similar finding was also reported in the auditory system of female frogs (Lynch & 

Wilczynski, 2008). No studies have reported these changes in mammals, but 

McFadden and his colleagues (2006) reported that female rhesus monkeys had 

larger OAE amplitudes during the Autumn breeding season which coincide with 

higher levels of estrogen compared to the Summer (non breeding) months. The 

male monkeys in their study also demonstrated smaller OAE amplitudes during 

the Autumn breeding season compared to the summer months that coincided with 

higher testosterone levels. These findings suggest auditory modulation related to 

fluctuation in reproductive steroids may also be found in mammals. 

 

Auditory function in women during the ovarian cycle has been previously 

investigated, with conflicting findings (Table 3.1-A). Fluctuation in auditory 

function during different stages of the cycle has been demonstrated, but the 

studies lacked precise timing of the cycle, together with exact correlation between 

hormonal levels and auditory function. Only a few studies monitored ovarian 

steroid levels during the cycle, and these examined only auditory brainstem-

evoked responses. 
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Table 3.1-A: Studies of auditory function and ovarian cycle and the effect of reproductive hormones. 

Study Subjects 
Auditory test & 

Methodology 

Documentation of 

ovulatory cycle 
Findings 

(Baker & 

Weiler, 1977) 

4 ! 

4 ! OC 

4 " 

PTA (audiometric) at 

0.25, 0.5, 1, 2, 4 & 8 

kHz 

History 

• OC group had lower thresholds than the normal control groups ! and " 

• ! had lower thresholds during the first half of the cycle than the second 

half 

• No change in thresholds in OC group and " during repeated testing 

(Cox, 1980) 
12 ! 

13 ! OC 

PTA (Bekesy) at 0.5, 

1 & 2 kHz  
Daily BBT 

• No significant change in auditory sensitivity between groups 

• Poorer thresholds in the menstrual phase for all 

• Negative middle ear pressure during the menstrual phase in all 

(Petiot & 

Parrot, 1984) 

12 ! 

11 ! OC 

8   " 

PTA (Bekesy) at 4 & 

6 kHz 
Daily BBT  

• ! using OC hearing thresholds lower than ! in all test sessions 

• No change in 4 kHz thresholds during cycle 
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(Swanson & 

Dengerink, 

1988) 

10 ! 

10 ! OC 

12 " 

PTA (Bekesy) at 4 & 

6 kHz 

Daily BBT 

Cervical mucus 

changes 

• ! 4 kHz threshold was lowest during ovulation (cycle day 13-14) and 

highest during menses (cycle day 2-3) 

• ! 4 kHz threshold during ovulation was significantly lower than OC 

group and " 

• No significant change was found in 6 kHz threshold or difference between 

the groups 

(Laws & 

Moon, 1986)  

10 ! 

10 " 

Acoustic reflex 

threshold (ART) 
History  

• ! had significantly higher ART thresholds during menses (cycle day 1-6) 

than during the rest of the cycle (day 7-26) 

• No cyclic changes seen in " during the same test period 

(Bell, 1992) 4 ! SOAE  

History & Daily 

BBT in 2 subjects 

only 

• 3 out of 4 had a clear variation in SOAE frequency 

• #in the frequency before menses and $time of ovulation (cycle day not 

mentioned) 

(Haggerty, et 

al., 1993) 

8 ! 

2 " 
SOAE  History  

• 6 females had monthly variation in SOAE 

• had $ in frequency variation before menses 

• 5 had #in the frequency before menses and $time of ovulation (cycle day 

not mentioned) 
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(Penner, 1995)  

1! (NMC, 

FA , OC)

  

SOAE Daily BBT 

• During NMC " in the frequency of SOAE before menses and # near the 

time of ovulation 

• Less fluctuation in SOAE frequency were noted during amenorrhea and 

the use of OC 

(Yellin & 

Stillman, 

1999) 

13 !  
SOAE, DPOAE, 

TEOAE  
Daily BBT 

• SOAE dominant early in the cycle, gradually decreased and least prevalent 

before menses 

• No cyclic changes in TEOAE or DPOAE were found 

(Amit & 

Animesh, 

2004) 

15 ! TEOAE History 

• TEOAE amplitude significantly higher during menses (cycle day 1-3) and 

lowest during the luteal phase (cycle day 22-25) 

• TEOAE amplitude significantly lower during mid cycle (day 12-15) 

compared to during menses but higher than the luteal phase 

• 3 subjects did not have TEOAE responses during mid cycle and luteal 

phase 

(Arruda & 

Silva, 2008) 
21 !  TEOAE, DPOAE History 

• No change in TEOAE amplitude or reproducibility during three tested 

phases of the cycle (follicular, ovulatory and luteal but days not specified) 

• No change in DPOAE during the cycle 

(Fagan & 

Church, 1986)  
10 !  ABR at 50 dB nHL Daily BBT • No fluctuation in ABR latencies during ovarian cycle 
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(Zani, 1989) 
4 ! 

4 ! OC  
ABR at 65 dB SPL Daily BBT 

• Wave V latency significantly longer during mid-cycle (cycle day 14-15) 

but not in ! using OC 

• Wave I and III latency tends to be longer during mid cycle and 

premenstrually (cycle day 23-24) but not in ! using OC 

(Dehan & 

Jerger, 1990) 
10 ! ABR at 80 dB nHL  

Blood (E2, P, FSH 

and LH)  

• Wave V latency longer just before ovulation and shorter in luteal  and pre-

menstrual period (cycle days not mentioned) 

(Elkind-

Hirsch, et al., 

1992a) 

9 ! 

9 ! OC  
ABR at 70 dB nHL  

Blood (E2, P, FSH 

and LH)  

  

• Significant " in wave III ,V and I-V latency associated with " E2 during 

mid-cycle phase (cycle day 12-15) 

• No significant changes in ABR latencies in the OC group 

(Elkind-

Hirsch, et al., 

1992b) 

5 ! POF 

on HRT 
ABR at 70 dB nHL 

Blood (E2, P, FSH & 

LH)   

• HRT lead to fluctuation in ABR as seen in NMC 

• Wave V and I-V latency significantly "during the E2 only replacement 

compared to P and E2 replacement phase 
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(Elkind-

Hirsch, et al., 

1994) 

5 ! 

9 " 

9 " OC 

5 " POF  

5 " PCOD  

ABR at 70 dB nHL  
Blood (E2, P, FSH, 

LH, DHEAS & T)  

• Wave V latency in descending order: ! , "PCOD (higher androgen 

levels), then "POF , "OC and "  

• Significant # in wave V latency during E2 only replacement for POF and 

mid cycle in " 

(Tasman, et 

al., 1999) 
19 "  ABR at 70 dB   

Daily urine LH & 

BBT 
• Wave V and III-V latency # in follicular phase (cycle day not mentioned) 

(Resende, et 

al., 2000) 
15 " ABR at 85 dB   

History of changes 

in vaginal secretion 
• No significant difference in ABR latencies in the three testing sessions 

(Yadav, et al., 

2002) 
20 " ABR at 70 dB nHL Daily BBT 

• A trend of # in ABR wave latencies and interpeak intervals during the mid-

cycle phase (cycle day 11-15), but not significant. 

(Serra, et al., 

2003) 
94 " ABR at 100 dB SPL 

Ultrasonography & 

serum P level 

• ABR wave latencies and interpeak intervals significantly$ in the 

periovulatory phase (cycle day not mentioned) 

(Caruso, et al., 

2003b) 

94 " before 

& after OC 

ABR at 100 dB SPL 

   

Ultrasonography & 

serum P level  

• ABR wave latencies and interpeak intervals significantly$ in the 

periovulatory phase (cycle day 13-16). 

• No significant difference in ABR wave latencies and interpeak intervals 

during OC 
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(Fleck & 

Polich, 1988) 

10 ! 

10 ! OC 

P300 ERP auditory 

discrimination   
History 

• P300 amplitude smaller in beginning than in mid cycle but not significant 

for both groups 

• P300 latency longer in ! using OC but not significant 

(Yadav, et al., 

2003) 

20 ! 

20 ! OC 

LLAEP at 90 dB 

SPL   
Daily BBT 

• ! P2 and N2 wave latency longest during mid cycle (day 11-15) and pre 

menstrually (day 25-27) and shorter during menses (day 1-3) and luteal 

phase (day 17-22) 

• ! using OC P2 and N2 wave latency shorter during menses (day 1-3) and 

longer when taking pills (day 7-28) 

(Walpurger, et 

al., 2004) 
18 !  

ERP auditory 

discrimination  

History & salivary 

E2 & P level  

• No change in N1 and P2 latency or amplitude during cycle 

• N2 latency longer in follicular (day15-22) and luteal ( 3-9 days before next 

cycle) phase than in menses (day 2-4 ) 

• No change in the P300 with cycle 

 

NMC= normal menstrual cycle, FA= functional amenorrhea OC= oral contraceptives, BBT= basal body temperature, POF= premature ovarian failure, 
PCOD= polycyctic ovarian disease, HRT= hormone replacement therapy, E2= oestrogen, P= progesterone, DHEAS= dehydroepiandroterone sulfate, T= 
testosterone, PP= progesterone phase "=increase, #=decrease, $= males, != females with normal menstrual cycle, LLAEP= long latency auditory evoked 
potentials, ERP= event related potential. 
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The auditory and acoustic reflex thresholds seem to be less sensitive during the 

menstrual phase of the cycle as observed by Cox (1980), Petiot and Parrot (1984), 

Laws and Moon (1986), and Swanson and Dengerink (1988). Baker and Weiler 

(1977) on the other hand reported that audiometric thresholds were higher during 

the second half of the cycle, but it is not clear from the study if that part of the 

cycle included the menstrual phase. The higher thresholds during the menstrual 

phase is unexplained. However, the associated negative middle ear pressure 

observed during the menstrual phase in some subjects could contribute to this 

threshold elevation. An increase in interstitial fluids (possibly due to progesterone 

(Tollan, et al., 1993; Pechere-Bertschi, et al., 2002), affects the Eustachian tube 

function and, thus may lead to worse threshold during the menstrual phase of the 

cycle. Another possibility is that a fluctuation in hormones affects higher areas of 

auditory processing and, thus, leads to changes in auditory thresholds, similar to 

the findings documented in other sensorimotor and cognitive functions (Hampson, 

2002).  

 

Petiot and Parrot (1984), and Swanson and Dengerink (1988) observed that the 4 

and 6 kHz thresholds were lower around the time of ovulation, while Cox (1980) 

did not find any change in thresholds of the frequencies tested during the ovarian 

cycle (see Table 2.1-A). These findings may suggest that the effect of hormone 

fluctuation during the cycle on hearing sensitivity is frequency specific. The 

fluctuation in SOAE frequency with the ovarian cycle may give more weight to 

the this latter hypothesis.  

 

The greater frequency variation of SOAE near the time of ovulation, with a shift 

toward a higher frequency, implies an excitatory effect of oestrogen on the SOAE 

generator and the frequency shift toward a lower frequency and less frequency 

variation in SOAE near menstruation may be due to the low levels of oestrogen 

and progesterone. Oestrogen may be involved in this frequency change, because 

the oestrogen level is lowest in the late luteal phase (before menses) and peaks 

near ovulation, which has been associated with an increase in neuronal excitability 

and inhibition of GABA function (Wagner, et al., 2001). 
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Only three studies evaluated TEOAE during the ovarian cycle (Yellin & Stillman, 

1999; Amit & Animesh, 2004; Arruda & Silva, 2008). Yellin and Stillman (1999) 

and Arruda and Silva, (2008) did not observe any change in TEOAE responses 

during the cycle. On the other hand, Amit and Animesh (2004) reported that the 

TEOAE responses tend to decrease during the cycle and that three of their 

subjects did not have recordable TEOAEs  in two testing sessions (see Table 3.1-

A).  This may have confounded their results as it raises the question whether their 

subjects had a cochlear dysfunction.  More studies are needed to clarify TEOAE 

results during the ovarian cycle. 

 

The majority of studies that recorded ABR reported changes with the ovarian 

cycle (see Table 3.1-A). However, the studies that recorded hormone levels and 

ABR gave conflicting findings. The shorter ABR latencies reported by Caruso et 

al. (2003b) and Serra and colleagues (2003) during the periovulatory phase of the 

cycle suggest that a high oestrogen level is associated with shorter ABR latencies. 

This has also been found in oestrogen treatment of young ovariectomised rats 

(Coleman, et al., 1994). The higher level of oestrogen may alter the speed of 

sensory neurotransmission in the brain stem by modulating glutamate 

transmission (Behl & Manthey, 2000) or may result in an increase in 

neurosteriods (such as allopregnelone) which facilitate GABA inhibition in the 

auditory midbrain (Disney & Calford, 2001). The oestrogen treatment of 

ovariectomised rats increases the level of allopregnelone both centrally and 

peripherally in a dose dependant fashion (Stomati, et al., 2002). This possible 

effect on neurosteriods may explain the results of Dehan and Jerger (1990) and 

Elkind-Hirsch et al (1992a, 1992b and 1994) who demonstrated longer ABR 

latencies during the periovulatory phase. The difference between the ABR 

latencies in the periovulatory phase and luteal phase would be compatible with 

progesterone blunting the effect of oestrogen, by inhibiting its action in the 

auditory brainstem. This mechanism may also explain the larger long latency 

auditory potentials recorded during the periovulatory phase (Yadav, et al., 2003; 

Walpurger, et al., 2004). However, the fluctuation in hormones does not seem to 

affect the P300 component of the auditory evoked response (Fleck & Polich, 

1988; Walpurger, et al., 2004) that reflects higher cognitive auditory processing 

(Polich & Kok, 1995). 
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3.1.4.2 Auditory symptoms during the ovarian cycle  

No studies have reported auditory symptoms during the ovarian cycle. However a 

few case reports in the literature have described women who had fluctuating 

hearing loss, that occurred in the late luteal phase and improved after the onset of 

menses (Miller & Gould, 1967; Andreyko & Jaffe, 1989), or that corresponded 

with the onset of menses (Souaid & Rappaport, 2000) suggesting variations with 

the menstrual cycle. Miller and Gould (1967) described two women with this 

condition one of whom had worse symptoms when given progesterone. A similar 

case was reported by Andreyko and Jaffe (1989). Their patient’s symptoms 

improved during pregnancy, while she was breastfeeding (she was amenorheic) 

and with the use of nafarelin (GnRH analogue that leads to ablation of sex steroids 

by down-regulation of GnRH receptors and decreases secretion of FSH and LH 

leading to anovulation and amenorrhea). On the other hand, Souaid and Rappaport 

(2000) described a case of a 45-year old woman, who had bilateral hearing loss , 

right ear blockage and tinnitus with the onset of menses that improved later during 

the cycle. They also reported that she had an abnormal ABR recorded in the 

middle of her ovarian cycle (prolonged III-V interpeak interval on the left, and 

delayed wave V with prolonged I-V interpeak interval on the right). She was 

treated with diuretics, which improved her symptoms, and the ABR results of the 

right ear but the ABR results of the left ear remained unchanged, and her 

hormonal profile was within normal limits. 

 

These cases suggest that in some women the auditory system is more sensitive to 

the fluctuation of hormones during the ovarian cycle. The effect of diuretics in 

improving the symptoms of one of the cases raises the possibility of the effect of 

fluctuation in reproductive hormones on inner ear fluids. Another possibility is 

that the diuretics lessen the effect of possible fluid retention that can lead to 

oedema in the Eustachian tube and the middle ear (as mentioned above in section 

3.1.4.1). 

 

3.1.5 Pregnancy and auditory function  

During pregnancy there is a higher level of both ovarian hormones compared to 

non pregnant women, as well as other complex changes in the normal female 
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physiology (Hadley, 2000). These changes lead to fluid retention and a 

hyperdynamic circulation, which may impact upon the circulation in the cochlea 

and cochlear fluid homeostasis. 

 

Tsunoda and colleagues (1999), reported no changes in pure tone or impedance 

audiometry comparing pregnant and non-pregnant women. However a study by 

Sennaroglu and Belgin (2001) found that pregnant women had higher pure tone 

thresholds at 125, 250 and 500 Hz, than post-partum and non-pregnant women, 

but were still within the normal range (less than 20 dB HL), and pregnant women 

in the third trimester had significantly lower uncomfortable loudness level 

compared with post-partum and non-pregnant subjects. These findings suggest 

that the physiological changes in pregnancy may affect auditory function 

mimicking the auditory dysfunction seen in Menière disease, i.e. low frequency 

involvement with lowering of uncomfortable loudness levels. 

 

Burns (2009) studied the SOAE in two pregnant women during their pregnancy 

and post partum. He reported that the SOAE frequency shifted to a lower 

frequency in the measurements taken before giving birth and then shifted to a 

highest frequency in the measurement recorded after giving birth, and was 

relatively stable during pregnancy. The shift in SOAE frequency corresponded to 

the drop in the levels of oestrogen and progesterone between late prepartum to 

postpartum (Tulchinsky, et al., 1972).  

 

The higher levels of ovarian hormones in pregnancy may shorten ABR wave 

latencies as seen in previous studies (section 3.1.4.1), but the higher level of 

progesterone may blunt this effect. Neural conduction in the brain stem may be 

slower during pregnancy due to the higher levels of steroids that facilitate GABA 

inhibition (Disney & Calford, 2001). Egeli and Gurel (1997) compared the ABR 

in 62 women in different stages of pregnancy, and 58 non pregnant women, and 

found that only wave I latency was significantly longer in the pregnant women. 

On the other hand, Tandon and co-workers (1990) found that the absolute wave 

latencies were slightly shorter, but did not reach significance in eight pregnant 

women in the third trimester compared to aged matched non-pregnant women. 

However, the I-III, III-V, and I-V inter peak latencies, which indicate neural 
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conduction were significantly longer in pregnant women. An ABR study of 38 

females, 20 in different stages of pregnancy (including post-partum) and 18 non-

pregnant women by Sennaroglu and Belgin (2001) did not find any difference. 

This contradiction may be attributed to difference in methodology and sample 

sizes. 

 

Auditory symptoms such as aural fullness, changes in auditory sensitivity or 

tinnitus have been reported in pregnancy (Gurr, et al., 1993; Tsunoda, et al., 

1999). There has also been a case of a pregnant woman who had severe tinnitus 

and right conductive hearing loss who demanded immediate delivery because she 

could not cope with the tinnitus, which resolved after cesarean delivery 

(Mukhophadhyay, et al., 2007). No specific pathology was found to have caused 

these symptoms, which were attributed to “pregnancy”. The results of a postal 

questionnaire by Gurr and co-workers (1993) found that the prevalence of tinnitus 

in pregnant women (25%) was higher than non-pregnant women (11%) and this 

was statistically significant. Tsunoda and colleagues (1999) noted that 25% of 

pregnant women in their survey reported ear problems, including tinnitus and 

aural fullness that resolved after giving birth which was also significantly higher 

than in non-pregnant women. The underlying cause is not known, but hormones 

or the fluid retention that occurs during pregnancy may be involved. 

 

Sudden hearing loss has also been reported during pregnancy (Lavy, 1998; Wang 

& Young, 2006; Pawlak-Osinska, et al., 2008). Lavy (1998) described two cases 

of sudden hearing loss that occurred during the third trimester. The first case 

presented with bilateral hearing loss with tinnitus and was treated with carbogen 

therapy and bed rest and the hearing improved. The second case complained of 

deafness and a blocked feeling in the right ear, but only had a hearing test three 

weeks post partum that revealed bilateral sensorineural hearing loss and was not 

offered any treatment because the hearing loss was felt to be permanent. The 

author did not describe the investigations the patients had, so an underlying cause 

cannot be dismissed. Wang and Young (2006) described twelve cases of unilateral 

sudden hearing loss, which they have observed during a ten year period in 

different stages of pregnancy. They accounted for 3% of all cases of sudden 

hearing loss seen during that period. The underlying cause of the sudden hearing 
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loss was unknown in 11 of the pregnant women, while one was diagnosed with an 

acoustic neuroma. All cases were in investigated for underlying medical problems 

including clotting deficits and autoimmune diseases. Six of the eleven pregnant 

women received treatment (intravenous dextran to enhance blood flow) while the 

remaining five refused to take any treatment. Hearing improved significantly in 

the women who received treatment (83%) compared to those who did not take 

treatment (20%). Pawlak-Osinska and colleagues (2008), described a women that 

presented with unilateral sudden hearing loss during two consecutive pregnancies. 

The first time she presented she was 27 weeks pregnant and the second time was 

two years later when she was 4 weeks pregnant. The hearing loss was in opposite 

ears in the two pregnancies. She was fully evaluated in both presentations 

including detailed blood chemistry and no specific cause was found. She received 

treatment in her first presentation (vasodilators, steroids  and vitamin B) and her 

hearing recovered to normal after two days. However, she refused treatment 

during her second pregnancy and her hearing was found to be normal after 5 

months.  

 

It is not clear if the sudden hearing loss during pregnancy is due to the 

physiological changes seen in pregnant women (for example the high level of 

oestrogen may predispose pregnant women to thromboembolic diseases that may 

affect the cochlea) or is just a coincidental finding.  However, from these case 

reports it seems that early diagnosis and treatment is associated with better 

hearing recovery. 

 

3.1.6 Menopause and auditory function  

Menopause is defined as the last menstrual period a woman experiences and can 

only be determined after twelve months of amenorrhea (Soules, et al., 2001). 

During the menopausal transition women experience several physiological 

changes which are mainly attributed to the decreasing levels of ovarian steroids 

especially oestrogen (reviewed by Hammond, 1996). The decreasing levels of 

hormones in the post menopausal period has been associated with changes in 

mood and cognitive function (Genazzani, et al., 2007) and may be helped by 

hormone replacement therapy (Sherwin, 1996; van Amelsvoort, et al., 2001). 
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Changes in auditory function have been noted in postmenopausal women 

attributed in part to the lower levels of ovarian hormones. 

 

A few studies explored the possible association of hearing loss assessed by pure 

tone audiometry in postmenopausal women. Kim and co-workers (2002) studied 

a large group of postmenopausal women (n=1830) and 10 % of them were 

described to have a hearing loss by screening audiometry, and the rest acted as a 

control group. The women with hearing loss were significantly older than the 

control group and had lower serum oestradiol levels. The presence of hearing loss 

was significantly associated with age and serum oestradiol levels. Kilicdag and 

colleagues (2004) reported that postmenopausal women using oestrogen therapy 

had lower pure tone thresholds compared to those not using oestrogen therapy. A 

study by Hederstierna, et al. (2007) evaluated the hearing thresholds in a group of 

women (n=143) around the time of menopause and found that 40% were defined 

as having hearing loss. They reported that the group of women who were not 

using hormone replacement therapy (HRT) had a tendency to poorer hearing 

thresholds compared to pre- and perimenopausal and post menopausal women, 

who were using HRT. These studies suggests that HRT and in particular 

oestrogen therapy may have a beneficial effect on hearing sensitivity. A follow up 

hearing study by Hederstierna and her colleagues (2010) on a group of their 

previous cohort of women (n=104), found that there was a rapid decline in hearing 

thresholds that seemed to be triggered by the menopause. 

 

The study by Guimaraes and co-workers (2006) explored the hearing function in 

more detail in a group of 124 postmenopausal women. They found that 

postmenopausal women who were taking the combined oestrogen and 

progesterone HRT had higher pure tone auditory thresholds, lower levels of high 

frequency DPOAE, and poorer performance in the hearing in noise test compared 

to postmenopausal women, who were either on oestrogen only replacement 

therapy or not taking any HRT. Their results suggests that progestin (a synthetic 

progesterone found in combined HRT) has a negative effect on both peripheral 

and central auditory function and this further supports the positive role of 

oestrogen on hearing function. 
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The possible effect of menopause and HRT on auditory evoked potentials has 

also been studied. The low levels of oestrogen and progesterone may alter nerve 

conduction times (Pascual, et al., 1991) and, thus, affect ABR latencies. ABR 

latencies tend to increase with age, however postmenopausal women have 

prolonged ABR wave latencies and inter peak latencies compared to younger 

women of a significantly greater degree than that seen in men of matched age 

groups (Jerger & Hall, 1980; Wharton & Church, 1990). These findings in women 

cannot be solely age related changes and hormones may therefore be of 

importance.  Indeed, HRT, in post menopausal women, brings ABR latencies 

closer to the values seen in premenopausal women (Caruso, et al., 2000). ABR 

latencies were also found to be significantly shorter in post menopausal women 

after the use of different forms of HRT; tibolone (a synthetic steroid with 

combined oestrogenic, progestogenic and androgenic action) (Sator, et al., 1999), 

combined estrogen and progesterone (Khaliq, et al., 2003), trasdermal oestrogen 

therapy (Caruso, et al., 2003a), and oral oestrogen therapy (Khaliq, et al., 2005). 

Moreover, the effect of HRT in post menopausal women on ABR latencies is 

similar to what is seen in females with premature ovarian failure (POF) after 

treatment (Elkind-Hirsch, et al., 1992b) and oestrogen treatment in animal studies 

(Coleman, et al., 1994; Cooper, et al., 1999). These findings suggest that ovarian 

hormones have an effect on synaptic transmission in the auditory brainstem. 

However, the use of HRT does not seem to have an effect on the more central 

auditory evoked potentials, such as the slow vertex response (Khaliq, et al., 2003, 

2005) or the auditory event related potentials (Walpurger, et al., 2005). This is 

possibly due to that these potentials reflect higher and more complex auditory 

processing (Polich & Kok, 1995). 

 

The onset of age related hearing loss is later in women compared to men 

(Pearson, et al., 1995) and seems to coincide with the menopause (Murphy & 

Gates, 1997) suggesting a possible role for reproductive hormones in its 

pathogenesis. The sex difference in age related hearing loss is also seen in mice 

models of age related hearing loss (CBA mice) (Guimaraes, et al., 2004). The age 

related decline in distortion product otoacoustic emissions (DPOAE) amplitudes 

occurred earlier in the male CBA mice, while in female CBA mice the greatest 

decline in DPOAE amplitudes occurred in older age mice following the mouse 
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menopause. This finding suggests that oestrogen my have a protective role on the 

cochlea and outer hair cell function.  

 

3.2 Auditory pathology and hormones 

Hormones may play a role in the development of pathological conditions of the 

auditory system, including: 

- Tinnitus and hyperacusis 

- Menière disease  

- Auditory dysfunction in pre-menstrual syndrome  

  

3.2.1 Tinnitus and hyperacusis  

Tinnitus can be defined as an auditory perception in the absence of any external 

auditory stimulation, while hyperacusis has been described as an intolerance to 

ordinary environmental sounds, often associated with tinnitus (Anari, et al., 1999; 

Andersson, et al., 2001). Both tinnitus and hyperacusis may result from a raised 

rate and/or altered pattern of spontaneous neural activity (Eggermont, 2003). 

Hence, the mechanisms which alter spontaneous auditory activity may generate 

both symptoms.  

 

Tinnitus occurs with abnormalities/dysfunction at any level of the auditory 

system. The tinnitus-related activity, as any auditory signal, is probably, subject to 

the normal process of habituation/adaptation, which protect the auditory system 

from over stimulation through the attenuation of repetitive signals. This is 

supported by the observation that the intrusiveness of tinnitus declines over time 

(Tyler & Baker, 1983; Andersson, et al., 2001).  

 

The process of habituation involves complex neuronal circuits and multiple 

transmitter system (Mesulam, 1990; Kandel, 2001), including acetylcholinergic, 

dopaminergic, GABA-ergic, nitric oxide and serotonergic systems. The 

serotonergic system is thought to play a role in modulating neuronal responses to 

repetitive stimulation and to act as a “gain-control” between facilitating and 

inhibitory mechanisms (Hegerl & Juckel, 1993). There is also evidence for the 
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involvement of the serotonergic system in the process of habituation of sensory 

stimuli (Gottfries, et al., 1976; Hegerl & Juckel, 1993). Dysfunction in these 

neurotransmitter systems may lead to a dysfunction of the process of habituation. 

Indeed, their disregulation has been associated with the pathophysiology of 

depression and mood disorders (Owens & Nemeroff, 1998; Ressler & Nemeroff, 

2000; Meyer, et al., 2001). Serotonin has also been suggested to play a role in the 

generation of tinnitus and hyperacusis (Marriage & Barnes, 1995; Gopal, et al., 

2000; Simpson & Davies, 2000), which may explain the well recognized co-

morbidity of severe tinnitus/hyperacusis and psychological disorders (Forsling, et 

al., 1996; Zoger, et al., 2001). 

 

The contribution of stress, which activates various biological functions, including 

the above neurotransmitter systems, may influence the auditory system through 

different pathways, particularly in individuals with impaired mechanisms of 

habituation, e.g. in individuals with psychological/psychiatric disorders, as 

outlined above. The link between stress and tinnitus is well recognised 

(Erlandsson & Hallberg, 2000; Holgers, et al., 2000), but, in addition dysfunction 

of adrenal stress hormones, such as in Addison’s disease (Henkin, et al., 1967; 

Henkin & Daly, 1968) may lead to hyperacusis. 

 

The reproductive hormones may also have a role in the occurrence of tinnitus and 

hyperacusis, and both oestrogen and progesterone could influence the auditory 

system, as described earlier. Oestrogen has been generally considered to have an 

excitatory role and to have a neuroprotective effect, and there is a strong 

relationship between oestrogen and serotoninergic pathways (Rubinow, et al., 

1998). On the other hand, progesterone and its metabolites are known to have a 

potent inhibitory effect, through the interaction with the GABA receptors. 

Therefore, in some women the alterations in these hormones, both physiological 

and pathological, may lead to increased susceptibility to developing tinnitus. The 

reported finding of tinnitus being more common in women under the age of 40-45 

(i.e. during reproductive years) than in men (Davis, 1983) may also support the 

possible role of the reproductive hormones in the perception of tinnitus. 
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3.2.2 Menière disease and endocrine system  

Menière disease is a disease of poorly understood aetio-pathophysiology. The 

assumption that hormones could play a role in pathogenesis of the disease may be 

supported by the following data from the literature:  

• The female to male ratio shows a slight female preponderance (1.3:1) 

(Schessel, et al., 1998) while a recent study reported that the female to 

male ratio (1.89:1) was significant (Harris & Alexander, 2010). The peak 

incidence for the disease is in the fourth to sixth decade of life (Paparella, 

1991), which spans the menopause. This raises the possibility that the 

alterations in reproductive hormone levels may aggravate or initiate the 

disease. 

 

• The symptoms of Menière disease often become manifest during periods 

of stress (American Psychiatric Association, 1994). The disorder is more 

common in professionals and management occupations (Watanabe, et al., 

1995) raising the suspicion that the endocrine and neural changes 

associated with the stress response may be involved in pathogenesis of the 

disease. 

 

• Endolymphatic hydrops underlying Menière disease may involve 

hormones maintaining fluid and electrolyte balance (Juhn, et al., 1991; 

Naftalin, 1994). 

 

A few studies have tried to explore the relationship between the endocrine system 

and Menière disease especially the possible role of reproductive hormones and 

stress and fluid and electrolyte related hormones.  

 

3.2.2.1 Reproductive hormones 

The possible role of a sharp fall in the levels of reproductive hormones pre-

menstrually with exacerbation of Menière disease has been noted in some studies. 

Andrews and colleagues (1992) found that only 6 out of 109 women reported this 

relationship, while Morse and House ( 2001) noted that in 11 out of the 13 women 

described more symptoms pre-menstrually. A further study by Price and co-
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workers (1994) reported a case in which the patient’s symptoms were exacerbated 

pre-menstrually but disappeared with leuprolide (a GnRH analogue that leads to 

ablation of sex steroids by downregulation of GnRH receptors and decreases 

secretion of FSH and LH leading to anovulation and amenorrhea) treatment. The 

symptoms recurred when she was prescribed progesterone, but not when given 

oestrogen. The fluid retention or redistribution that occurs in some women in the 

pre-menstrual period (Tollan, et al., 1993) may also play a role in exacerbating 

symptoms. The fluctuation of symptoms during the menstrual cycle in some 

patients with Menière disease may imply that variation in either the reproductive 

or stress-related hormones might be involved in the pathophysiology of this 

disease 

 

Pregnancy may also affect Menière disease and may be related to the changes in 

fluid electrolyte balance and higher levels of progesterone. More attacks have 

been reported during early pregnancy, when the serum osmolality is low in a case 

report by Uchide and colleagues (1997), which is possibly related to the sharp rise 

of hormones during the first trimester.  

 

The specific influence of the menopause, when there is a sharp fall in reproductive 

hormones, on the onset or worsening Menière disease has not been reported in the 

literature, but as noted above the peak incidence of the disease spans the age range 

of the menopause and thus suggests a possible link. 

 

3.2.2.2 Stress-related hormones 

Exacerbation of Menière disease tends to occur in relation to stress (Hinchcliffe, 

1967; Soderman, et al., 2004; Takahashi, et al., 2005),  and adrenal hormones are 

thought to be involved (Mateijsen, et al., 2001). Patients with Menière disease 

were found to have higher levels of cortisol compared to healthy controls (van 

Cruijsen, et al., 2005). However, the higher levels of cortisol are possibly the 

result of the disease not the cause because those with a longer history of Menière 

disease had the highest levels of cortisol. Another possibility is that patients with 

Menière disease may have an altered response to stress compared to patients with 
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facial spasm and thus contribute to the pathophysiology of the disease (Horner & 

Cazals, 2005). 

 

3.2.2.3 Fluid and electrolyte related hormones  

Altered inner ear fluid homeostasis may be the underlying mechanism, as seen in 

animal models of endolymphatic hydrops (Juhn, et al., 1991; Naftalin, 1994; Juhn, 

et al., 1999).  

 

The possible effect of ADH (vasopressin) in Menière disease has also been 

studied. An increase in the level of plasma ADH in patients with Menière disease 

has been related to the vertiginous attacks (Takeda, et al., 1995; Aoki, et al., 

2005). The levels of ADH were significantly higher in patients with Menière 

disease compared to patients with chronic otitis media before surgery, and  the 

levels of vasopressin type-2 receptors were higher in the inner ears of patients 

with Menière disease compared to patients with acoustic neuromas (Kitahara, et 

al., 2008). However, patients with Menière were not found to have abnormal 

levels of aldosterone compared with controls (Mateijsen, et al., 2001). 

Aldosterone levels may however be abnormally elevated before or after an attack, 

which may be difficult to measure clinically. 

 

3.2.3 Pre-menstrual syndrome and auditory function  

Females who suffer from premenstrual syndrome (PMS) also known as 

Premenstrual Dysphoric Disorder (PMDD) may have changes in their auditory 

function. PMDD is a syndrome occurring during the late luteal phase of the 

ovarian cycle and is characterized by moderate to severe alteration in mood, 

behaviour and physical well being that impairs the personal, professional and/or 

social function in 5-8% of women during their reproductive years (American 

Psychiatric Association, 1994; Yonkers, 1997). 

 

The underlying pathophysiology is poorly understood, but may be related to 

progesterone in view of the cyclic nature of the symptoms, although no consistent 

finding has been documented (Rubinow & Schmidt, 1995; Yonkers, et al., 2008). 



 88 

 

Dysregulation of the stress response and stress related hormones such as ACTH, 

!-endorphin, and cortisol play a role in mood disorders, such as depression, so 

they have also been implicated in the pathogenesis of PMS. Differences in basal 

levels of these hormones between control females and those with PMS have not 

been firmly established (Bloch, et al., 1998). However, a recent study has found 

that women with PMS have dysregulation of the stress response (activation of the 

HPA axis in response to a external stressor) compared to those without PMS 

(Roca, et al., 2003).  

 

Allopregnenolone, a metabolite of progesterone and a potent GABA-A agonist, is 

also associated with stress (Baulieu, 1998), and has a profound anxiolytic effect 

(Brot, et al., 1997). Females with PMS may have altered GABA (Epperson, et al., 

2002) and/or allopregnenolone (Monteleone, et al., 2000; Girdler, et al., 2001) 

functions, and this may contribute to the mood disorder.  

 

These hormone alterations in females with PMS have a potential effect on the 

auditory system, possibly leading to greater inhibition of auditory function. 

Changes in auditory function have been documented in a study that compared 

ABR latencies between females with and without PMS (Howard, et al., 1992). 

Females with severe PMS had longer wave III and wave V latencies, while those 

with moderate PMS had longer wave III latencies only, compared with females 

without PMS. Howard and colleagues (1992) also noted that ABR latencies did 

not change after treating PMS with fluoxetine (a selective serotonin reuptake 

inhibitor) suggesting that the underlying pathophysiology in females with PMS 

might not be functional but structural. Also, Ehlers and collegues (1996) reported 

that females diagnosed with PMS had longer P3 latency of the auditory event 

related potentials compared to normal controls.  The presence of the difference in 

ABR and auditory event related potentials between females with and without 

PMS may help in identifying women predisposed to PMS.  

Further studies examining auditory function in larger samples of females with 

PMS are needed to clarify these findings.  
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3.3 Summary  

The above text highlights the complexity of the effects of hormones on the 

auditory system, with multidirectional and multidimensional interactions.  

 

The same hormone may exert its action on the auditory system through multiple 

pathways (modulating blood supply, inner ear fluids, sensory neurotransmission 

in the cochlea, brain stem and cortex or through extra-auditory connections), as 

demonstrated in Figure 3.3.1. For example, oestrogen could lead to neural 

excitation and thus facilitate auditory transmission, but the possible increase in 

neurosteriods in the brainstem may counteract this effect. 

 

 

Figure 3.3.1: Hormone action on auditory system. The main effects are denoted with 
solid lines 

 

The difficulty in pinpointing the exact effect of a hormone on the auditory system 

arises from the complex anatomy of the auditory system and the interactions 

between the various hormones that occur as the result of dynamic nature of the 
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physiological processes. However, some general effects can be observed. The 

reproductive hormones, in general, facilitate auditory function, with a protective 

effect on the auditory system. Aldosterone and vasopressin are mainly involved in 

maintaining cochlear fluid balance. Melatonin possibly has a protective effect on 

auditory system. The hormones involved in the response to stress are, generally, 

excitatory, but in the long run may lead to damage and may play an important role 

in auditory pathology.
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Chapter 4 : Thesis Project, Aims and Hypotheses 

 

4.1 Background 

Circumstantial evidence and previous studies suggest that ovarian steroid 

hormones may influence the auditory system (section 2.2.1, 3.1.4, 3.1.5, and 

3.1.6). 

 

Auditory function in women during the menstrual cycle has been previously 

investigated, with inconsistent or conflicting findings (see Table 3.1-A). Although 

fluctuation in auditory function during different stages of the cycle has been 

demonstrated in some studies, they lack the precise timing of the cycle and the 

correlation between the hormonal levels and auditory function. Only a few studies 

have measured ovarian steroid levels and these explored auditory brainstem 

responses.  

 

4.2 Thesis Project 

The project included two case studies and three research studies. 

The case studies were performed before starting the main research studies to 

assess the sensitivity of the techniques and the test protocol. 

Case 1: Otoacoustic emissions in a woman during the menstrual cycle. 

Case 2: Otoacoustic emissions in woman with premature menopause 

treated with hormone replacement therapy. 

 

The research studies were: 

Study I: Auditory function in women during the ovarian cycle. 

Study II: Auditory function in women during the ovarian cycle compared 

with men during a similar period of time. 

Study III: Auditory function in women undergoing assisted conception 

treatment. 
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4.3 The hypotheses 

1. Variation in auditory function at the cochlear and brainstem levels is 

associated with fluctuation of ovarian steroids during the ovarian cycle. 

 

2. There is no variation in auditory function in men tested over a similar 

period of time compared to women during the ovarian cycle.  

 

3. The variation in auditory function in women undergoing assisted 

conception treatment is greater than in women during the ovarian cycle 

due to greater difference in ovarian hormones levels. 

 

4.4 Aims of the thesis 

 
1. To investigate whether there is variation in different aspects of auditory 

function (from the cochlea to the inferior colliculus) using sensitive 

techniques, with simultaneous measurement of hormone levels during the 

ovarian cycle, to document the normal physiological variations that occurs 

during the ovarian cycle.  

 

2. To compare the auditory function between men and women over an 

identical time period. 

 

3. To monitor and compare auditory function in two groups of women: 

I. Women during a single normal ovarian cycle. 

II. Women undergoing standard assisted conception treatment.  
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Chapter 5 : Materials and Methods 

 

5.1 Subjects  

Two groups of healthy women of reproductive age, between 20 and 50 years old, 

with normal hearing and a group of aged matched men: 

 

I. Healthy female subjects during a single normal ovarian cycle (defined in 

section 3.1.4).  

 

II. A group of healthy men matched for age, to assess auditory function in the 

absence of hormonal variation characteristic of the ovarian cycle. 

 

III. Women undergoing standard assisted conception treatment, as defined 

below (section 9.1) 

  

5.1.1 Inclusion Criteria 

The inclusion criteria for all subjects were the presence of normal hearing and 

middle ear function assessed by pure tone audiometry and tympanometry (defined 

in section 1.2.1 and 1.2.2). 

 

Additional criteria for women were: 

• A history of a regular menstrual cycle with a cycle length between 26 and 

30 days. 

• No use of hormonal contraception for at least 3 months prior to 

participation in the study.  

 

The subjects were excluded for the following reasons: 

o endocrinological pathology 

o chronic medical illness (with the exception of allergies) 

o regular drug treatment 

o otological conditions  
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5.1.2 Subject recruitment 

The group of healthy women and men (group I and II) were recruited from the 

staff and students at the National Hospital for Neurology and Neurosurgery, Great 

Ormond Street Hospital, and the Institute of Child Health. 

 

The women undergoing assisted conception treatment (group III) were recruited 

from the Academic Department of Reproductive Medicine, Newham University 

Hospital and the Fertility Centre, The Barts and The London School of Medicine 

and Dentistry. 

 

5.2 General Protocol  

All subjects underwent a protocol that included: 

• An oral interview to provide information on auditory function and to 

establish that the inclusion criteria were fulfilled (see Appendix I). 

 

• Otoscopy, to exclude any obvious otological abnormality of the ear canal 

and tympanic membrane.  

 

• Tympanometry, to ascertain normal middle ear function (defined in 

section 1.2.2), which is necessary to record valid OAE. 

 

• Standard pure tone audiometry (PTA), to determine that the subject had 

normal hearing sensitivity (defined in section 1.2.1). 

 

• Otoacoustic emission recording to assess cochlear function, and included: 

o Spontaneous otoacoustic emission 

o Transient evoked otoacoustic emissions 

 

• Medial olivocochlear function test to assess the efferent auditory pathway 

including and distal to the MOC (section 1.2.4). 

 

• Auditory brainstem responses to assess the eighth nerve and auditory 

brainstem function (section 1.2.5). 
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The auditory tests (except PTA) were repeated four or three times in each subject 

according to the specific research study protocol (section number 7.2, 8.2, and 

9.2), to ensure continuing normality of the middle ear function and to monitor 

auditory function during different hormonal profiles in the same subject and 

between subjects.  

 

In addition to the auditory tests, at each testing session the female subjects had a 

sample of blood taken to document their serum oestrogen and/or progesterone 

levels.  

 

5.3 Procedures  

 

5.3.1 Auditory tests 

All tests were performed in a sound treated booth which met international 

standards (ISO 8253-1, 1989). The booth had double doors and walls covered 

with low reflective, absorbent materials.  

 

The auditory tests took about 45-60 min to perform, according to the study 

protocol as outlined above (section 5.2).  

5.3.1.1 Pure tone audiometry 

Equipment:  GSI 61 audiometer (Grayson Stadler Inc. Model 61) audiometer and 

TDH-50 headphones.  

 

Test method: 

The hearing thresholds for pure tone stimuli at frequencies from 0.25 Hz to 8 kHz 

in octave steps were measured following the standard method of the British 

Society of Audiology (2004). Tone pulses of 1-2 second duration were used to 

avoid adaptation and influence of temporal integration with ascending sound 

levels in steps of 5 dB.  
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5.3.1.2 Tympanometry 

Equipment: GSI 33 Tympanometer (Grayson Stadler Inc. Model 33).  

 

Test method: 

Single frequency tympanometry was performed with a continuous probe tone of 

85 dB SPL at 226 Hz, as recommended by the British Society of Audiology 

(1992). 

 

Test reproducibility: 

The within subject variability in tympanometry is low. Porter and Winston (1973) 

reported that the middle ear pressure may change by 20 daPa. Similar findings 

were found by latter authors (Wiley & Barrett, 1991; Gaihede & Ovesen, 1997). 

The change in the tympanic membrane compliance usually does not exceed 0.1 ml 

(Wiley & Barrett, 1991; Gaihede & Ovesen, 1997). 

 

5.3.1.3 Otoacoustic emission recording  

Equipment: ILO 88/92 Otodynamics otoacoustic analyser hardware and software, 

version 5, connected to a Windows 96 compatible computer to record spontaneous 

and transient evoked otoacoustic emissions. A SGS-type general purpose probe 

was used, which contained a miniature microphone and transducer. The probe was 

fitted in the ear with a rubber tip. 

 

The subjects were tested in a sound treated room with the test equipment outside 

the room to minimise noise contamination. 

 

a) Spontaneous evoked emissions (SOAE) 

Click-synchronised SOAE was recorded using the Otodynamics ILO88/92 in 

“SOAE search” mode. In this mode, a weak (approximately 75 dB SPL) 

synchronizing 80 !s clicks were presented over a period of 80 ms through a probe 

fitted in the external ear canal. As most of the evoked responses last less than 20 

ms, the signals over a 20-80 msec post-stimulus, i.e. silent period that primarily 

represents spontaneous cochlear activity between the stimuli, were analysed. 

Typically, 260 responses were averaged and FFT analysis was performed in the 
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spectral band from 0 to 6250 Hz, with a resolution of 12.2 Hz. The frequency and 

amplitude of SOAE corresponding to the maximum level of the narrow-band 

signal (a spectral peak), in the entire available SOAE spectrum, from 0 to 6250 

Hz, was determined using a cursor. 

 

The SOAE spectral peak amplitude was required to be more than 5dB above the 

noise level and repeatable in two consecutive recordings to be considered present. 

SOAE at frequencies < 500 Hz were not considered due to the higher 

susceptibility to noise contamination in this frequency region.  

  

The following variables were analysed: 

• Number of SOAE peaks. 

• SOAE peak amplitude (dB SPL). 

• SOAE inter-session frequency shift: calculated as a percentage of the 

difference in the frequency of the SOAE peak in each testing session (fx) 

compared to the average SOAE peak frequency (F). 

  

! 

fx " F( )
F

#100 

 

b) Transient evoked emissions (TEOAE) 

TEOAE was recorded using the method described by Kemp, et al. (1990). The 

stimuli were unfiltered rectangular clicks (bandwidth ! 5 kHz), duration of 80 µs, 

presented at a repetition rate 50/s, with peak reception level 80 dB ± 3 dB SPL. 

They were presented in the non-linear differential mode: 4 clicks, with 3 clicks at 

the same level and polarity and fourth click three times greater in level and 

reverse polarity, and 10 dB increase in amplitude. This paradigm cancels the 

linear portion of the stimulus and response, including meatal and middle ear echo, 

so that nonlinear cochlear emissions can be extracted. The number of sweeps, 

during the period of collection, was 260 and they were recorded and averaged 

alternately in two separate, A and B, buffers, using a synchronous time-domain 

averaging technique. The post-stimulus analysis time was 2.5 – 20 ms and the 

passband 0.5 - 6 kHz with the noise rejection level set at 47.3 dB SPL. 
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The TEOAE responses were considered for analysis if they were above 3 dB and 

more than 50 % reproducibility in at least 3 of the frequency bands. 

 

The following variables were assessed: 

• Total TEOAE response (dB SPL). 

• The TEOAE signal-to-noise ratio in five frequency bands centered at 1, 2, 

3, 4, and 5 kHz. 

• The TEOAE inter-session differences: TEOAE response in each session 

was compared to the other testing sessions using the compare function in 

the ILO software provided under the analysis menu. This function 

subtracts any two TEOAE waveforms and provides information about the 

overall difference between the two responses. This sensitive analysis also 

compares the click stimuli and noise levels present in the TEOAE 

recording, so provides greater validity as it compares whether the testing 

situation was similar in the repeated testing sessions and, thus, it identifies 

true differences between repeated TEOAE  responses as displayed in 

Figure 5.3.1a and 5.3.1b. 
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Figure 5.3.1a: An example of a TEOAE trace from the left ear of one of the subjects on 
two different testing sessions, ten days apart.  

The over all TEOAE response in the top panel is 17 dB SPL and 17.7 dB SPL in the 
lower panel. The reproducibility of the TEOAE in both sessions was high, 97%, and is 
seen graphically by the almost identical waveforms recorded in the A and B buffers.  
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Figure 5.3.1b: The subtracted trace from the above subject (Figure 5.3.1a) as performed 
by the compare function of the ILO software. The overall difference in the TEOAE 
response was 5.2 dB.  
 
The response waveform represents the difference between the two above traces (Figure 
5.3.1a) from both the A and B buffers.  
 

Test reproducibility: 

The SOAE has well documented frequency stability with variations ranging 

between 1-2% (reviewed by Ceranic, 2003), however the SOAE amplitude is 

more variable, and can vary by 10 dB (van Dijk & Wit, 1990; Wit, 1993). The 

TEOAE has been found to be highly reliable in the same subject (reviewed by 

Hall, 2000c).  The within subject variability of the TEOAE response has been 

documented to be on average 1 dB (Harris, et al., 1991; Marshall & Heller, 1996) 

with a high test retest correlation (0.99) (Vedantam & Musiek, 1991).  

 

5.3.1.4 Medial olivocochlear function test 

The medial olivocochlear (MOC) function was evaluated using a method similar 

to that described by Ceranic, et al. (1998b). A schematic description of the test 

method is seen in Figure 5.3.2. 
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A dual channel OAE analyzer was used (ILO 88/92), one channel (A) for ipsi- 

and the other (B) for contralateral acoustic stimulation. Both, ipsi- and 

contralateral, stimuli were delivered through identical probes (SGS-type general-

purpose probe). The ipsilateral stimulation was a linear click with a peak stimulus 

level of 60±3 dB SPL. The contralateral stimulation was a 5ms burst of white 

noise (0.5 - 6 kHz) at 40 dB sensation level. An alternating technique, a 

“Difference B on/off” mode, from the ILO92 software was used. This mode 

allows alternating recording of TEOAE responses with and without contralateral 

stimulation. A total of 600 sweeps were recorded, in 10 groups of 60 sweeps. The 

average responses were directly computed and the difference obtained by 

subtraction, represented the suppression effect. According to the departmental 

normative database, a normal MOC suppression was considered ! 1 dB. An 

example is displayed in Figure 5.3.3. 

 

Figure 5.3.2: Schematic description for the MOC suppression test and the neural 
pathways being activated (adapted from Lalaki, 2005, permission to reproduce granted 
kindly by S Hatzopoulos). 

The overall TEOAE amplitude recorded was 4.2 dB SPL without contralateral noise, and 
-0.3 dB SPL with contralateral noise. The overall suppression was 4.5 dB in this example.  
(CN: cochlear nucleus, MSO: medial superior olive, SL: sensation level). 
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Figure 5.3.3: TEOAE trace recoded with contralateral stimulation (lower panel) and 
without contralateral stimulation (upper panel).  

The difference between the responses of the two traces is the amount of suppression, 
which is 4.5 dB in this example. 

 
Test reproducibility: 

The variability in MOC suppression within a subject is low. The test retest 

comparison was performed by the author three times a week for one month, and 

the suppression remained stable, within ±1dB.  

 

5.3.1.5 Auditory brainstem response (ABR) 

Equipment: ABRs were recorded using the Nicolet Biomedical Spirit 2000 

applying the standard clinical methods of the Neuro-otology Department at the 
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National Hospital for Neurology and Neurosurgery (similar to the methods 

described by Musiek, et al., 1994). 

 

Test Method: 

The evoked potentials were recorded using conventional EEG electrodes placed 

on the vertex (Cz) and each mastoid (A1and A2) during acoustic stimulation. The 

subjects were asked to lie down and close their eyes and the acoustic stimulation 

was delivered via THD-39 headphones. The stimuli used were 100!s clicks at 80 

dB HL. The repetition rate was less than 20/s to assess all waveforms and measure 

the wave and inter-wave latencies. The responses were band-pass filtered from 

150-3000 Hz and 1024 sweeps were averaged to obtain one recoding in an 

analysis time of 12 ms. The recording was repeated twice from each ear to verify 

the waves and reject any artifacts. 

 

The following variables were assessed: 

• Wave I, III and V absolute latencies. 

• I-III, III-V and I-V inter-peak intervals. 

 

Test reproducibility: 

The ABR latencies are stable within a subject over several sessions. The 

difference in the absolute latencies between sessions is less than 0.08 ms (Oyler, 

1989).  

 

5.3.2 Serum hormone levels 

Serum hormone levels were measured to monitor: 

• The physiological changes in oestrogen and progesterone levels during the 

ovarian cycle in the women from group I 

• The changes in oestrogen and progesterone levels as a result of assisted 

conception treatment in the women from group III 

  

Serum oestradiol and progesterone levels were measured at the Chemical 

Pathology Laboratory, Newham University Hospital, London, using direct 

chemiluminescence, oestradiol and progesterone, by a competitive immunoassay. 
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The inter- and intra-assay coefficients of variation for the hormone assays were 

respectively: oestradiol 8.5 and 4.0%; progesterone 8.1 and 3.9%. 

 

5.4 Calibration 

The test equipment is regularly calibrated according to the Neuro-otology 

department protocol.  

Calibration of the ILO88/92 system was performed using a 1 cm3 test cavity 

supplied by the manufacturer, on average once every two months. Synthetic 

stimuli, three tones at different frequencies, provided by the ILO88/92 software, 

were delivered through the probe tip inserted into the test cavity. Additional, 

“biological”, calibration was carried out by the author, on average once a month.  

The inter-session performance of the probe remained stable (within ±1dB) 

throughout the project execution. 

  

5.5 Data Analysis  

 

5.5.1 Statistical power analysis 

The difference to be detected in the OAE response is calculated to be 1.4 dB from 

previous studies reported in the literature, and the number of subjects in each 

group was calculated to be eight setting the p value at 0.05 and statistical power at 

80% (Machin, et al., 1997).  

 

5.5.2 Statistical tests 

The statistical tests were performed using SPSS (statistical package for social 

scientists) version 17.0 (SPSS Inc., 2008) and included the following: 

! linear mixed-effect modeling (LMM) was used for a more reliable detection of 

changes in auditory function measures between the test sessions. The LMM 

method takes into account that the subjects in the model leads to variations in 

the variable and that the repeated measures are correlated and not independent. 

The independence of the observations is a key assumption in ANOVA 

analysis which is violated in repeated measures designs. Another major 
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advantage to the use of LMM instead of repeated measures ANOVA, is that 

LMM does not require that each subject has the same number of observations 

and thus accommodates for any missing observation and unbalanced designs   

(McCulloch & Searle, 2001; Garson, 2009). The auditory function measure 

was the dependent variable and the test session was both the fixed and 

repeated factor with pairwise comparison of the estimated marginal means 

between the different test sessions. The between subject factors was either 

gender or study group.  

! Paired sample t-test was used to analyse the TEOAE inter-session differences 

in each group of subjects. 

! Correlation between auditory function measures and serum hormone levels 

were analysed using linear regression for the two groups of women.  

! Independent sample t-test was used to analyse age and auditory tests results 

between the groups.
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Chapter 6 : Case Studies 

 
The case studies were performed before starting the main research studies to 

assess and evaluate the sensitivity of the techniques and the test protocol.  

 

6.1 Case 1: Otoacoustic emissions in a woman during the 

menstrual cycle 

 

6.1.1 Subject 

The subject was a 30 year old healthy woman with a regular normal menstrual 

cycle (28-32 days).  

 

The medical history was unremarkable, and she reported that her hearing was 

normal, without any auditory symptoms.  

 

6.1.2 Procedures 

The procedures included otoscopy, tympanometry, PTA, otoacoustic emission 

recording and the medial olivocochlear (MOC) suppression test, as outlined above 

in the “Methods” section (section 5.3.1). They only difference was that the probe 

used to record the OAEs was a B type probe which records lower levels of  noise 

and responses than a SGS type probe. 

 

6.1.3 Protocol  

Initial baseline recordings of TEOAE, SOAE and MOC suppression were 

performed. This was followed by repeated recording of TEOAEs and MOC on 

average three times per week during two consecutive months. 

 

The test sessions were all undertaken at the same time of day to avoid the 

physiological diurnal fluctuations in OAEs (section 3.1.1). 
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The sessions corresponded to two consecutive menstrual cycles. The suspected 

day of ovulation was assessed by counting back 14 days from the menstrual onset 

of the following cycle. This corresponded to day 15 of the first cycle and day 18 

of the second cycle. 

 

6.1.4 Results 

During the initial session, SOAE were not recordable from either ear in the 

subject, so the further sessions only involved TEOAE recording and MOC 

suppression. 

 

The average TEOAE  response was 10.6 dB SPL in both ears and the average 

MOC suppression was 2.2 dB in the right ear and 2.3 dB in the left ear during the 

two months of testing (Table 6.1-A). The average TEOAE response and the level 

of MOC suppression were similar in both ears. 

 

Table 6.1-A: Mean (± SD) values of TEOAE and MOC suppression during the repeated 

testing 

 Right Ear Left Ear Mean of both ears 

TEOAE Response 

(dB SPL) 
10.6 ± 0.6 10.6 ± 0.5 10.6 ± 0.5 

MOC Suppression 

(dB) 
2.2 ± 0.3 2.3 ± 0.3 2.3 ± 0.2 

 

 

6.1.4.1 Transient evoked otoacoustic emissions 

The range of the TEOAE responses and highest and lowest levels during the two 

studied cycles are presented in Table 6.1-B. The highest responses were recorded 

on day 12 and day 17 in the first and second cycle respectively. The lowest 

response recorded from both ears was on day 3 in the first cycle, and day 22 from 

the right ear, and day 15 and 19 from the left ear in the second cycle. 
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Table 6.1-B: TEOAE response during the two tested cycles 

Right ear Left ear Both ears TEOAE 

Response 

(dB SPL) 1st cycle 2nd cycle 1st cycle 2nd cycle 1st cycle 2nd cycle 

Range 

(mean±sd) 

9.1-11.2 

(10.3±0.6) 

10-11.7 

(10.7±0.5) 

9.4-11.1 

(10.3±0.5) 

10.3-11.7 

(10.9±0.4) 

9.2-11.1 

(10.3±0.5) 

10.3-11.7 

(10.8±0.4) 

Highest 

response 
Day 12 Day 17 Day 12 Day 17 Day 12 Day 17 

Lowest 

response 
Day 3 Day 22 Day 3 

Day 15 

and 19 
Day 3 Day 8 

 

The TEOAE responses recorded from both ears are plotted in Figure 6.1.1. The 

highest response amplitudes were recorded near the time of suspected ovulation in 

both cycles, and lower levels of the TEOAE were recorded in the beginning of the 

cycle as well as after the suspected day of ovulation. 

 

 

Figure 6.1.1: The TEOAE response during two consecutive menstrual cycles. The arrows 
indicate the first day of the cycle and the lines indicate the suspected day of ovulation. 
!highest response  
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6.1.4.2 Medial olivary cochlear suppression test  

The range of  the MOC suppression was 1.8-3 dB for the right ear and 1.6-2.9 dB 

for the left ear. Lower MOC suppression was recorded in the first part of the 

cycles, while higher MOC suppression was recorded in the second part of the 

cycles in both ears as presented in Table 6.1-C. 

 

 

Table 6.1-C: MOC suppression during the two tested cycles 

Right ear Left ear Both ears MOC 

Suppression 

(dB) 1st cycle 2nd cycle 1st cycle 2nd cycle 1st cycle 2nd cycle 

Range 

(mean±sd) 

1.8-3 

(2.3±0.3) 

1.8-2.9 

(2.2±0.3) 

2-2.8 

(2.4±0.3) 

1.6-2.9 

(2.2±0.4) 

2-2.7 

(2.4±0.2) 

1.8-2.5 

(2.2±0.2) 

Greatest 

suppression 
Day 24 Day 23 

Day 15 

and 22 
Day 1 Day 15 Day 23 

Lowest 

suppression 
Day 3 Day 10 

Day 5 and 

10 
Day 17 Day 3 Day 13 

 

 

A lower level of suppression was noted before the suspected day of ovulation in 

both tested cycles as displayed in Figure 6.1.2 and the MOC suppression was 

greater in the second part of the cycles after the suspected day of ovulation. 
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Figure 6.1.2: The MOC suppression results of the left and right ear. The arrows indicate 
the first day of the cycle and the lines indicate the suspected day of ovulation. 
!lower MOC suppression 
 

 

6.1.5 Discussion  

The overall TEOAE response variation between the test sessions in this case study 

was up 2.3 dB in the right ear and 1.7 dB in the left, suggesting higher variation 

than previously reported variability (Harris, et al., 1991; Franklin, et al., 1992; 

Marshall & Heller, 1996). There was a variation in the values of the MOC 

suppression during the repeated testing that was up to 1.2 dB in the right ear and 

1.3 dB in the left ear.  

 

During the first and second cycle in this subject, the highest TEOAE amplitude 

response (Figure 6.1.1) and lower MOC suppression (Figure 6.1.2) were recorded 

before the suspected day of ovulation, and lower TEOAE amplitudes along with 

greater MOC suppression were observed after the suspected day of ovulation in 

the second part of the cycles. Previous studies, either did not report any significant 

changes in TEOAE responses during the cycle (Yellin & Stillman, 1999; Arruda 

& Silva, 2008) or that the responses decrease during the cycle (Amit & Animesh, 

2004). This could be due to different methodologies (reviewed in section 3.1.4.1). 
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MOC suppression during the ovarian cycle had not previously been reported in 

the literature. 

 

The higher TEOAE responses and lower MOC suppression seem to have 

corresponded with the LH surge and the higher level of oestrogen that occurs 

during the ovarian cycle before ovulation (Djahanbakhch, et al., 1984). The lower 

TEOAE responses and greater MOC suppression were observed in the luteal 

phase of the cycle, when progesterone is the dominant hormone (section 3.1.4). 

 

As reviewed in the Introduction (section 2.1), oestrogen is mainly excitatory to 

neurons (Smith, et al., 2002), while progesterone has an inhibitory effect and acts 

as a GABA agonist (McEwen & Alves, 1999). The effect of oestrogen on the 

GABA-ergic or cholinergic fibers of the MOC may lead to inhibition of the MOC 

fibers so that they are less inhibitory to the OHC leading to higher TEOAE 

responses. Progesterone, on the other hand, may facilitate the inhibitory effect of 

the MOC fibers, and thus dampen OHC action leading to lower levels of TEOAE 

responses.  

 

The finding of the higher TEOAE response and lower level of MOC suppression 

in the periovulatary phase of the cycle is consistent with the greater frequency 

shifts seen with the SOAE in previous studies (Bell, 1992; Haggerty, et al., 1993; 

Penner, 1995). The higher oestrogen levels during this phase of the ovarian cycle 

may lead to greater “excitation” in the cochlea. The presence of higher levels of 

progesterone in the luteal phase of the cycle may balance the excitatory effect of 

oestrogen (Smith et al., 2002) and this may lead to an “inhibitory” effect of the 

cochlea reflected by lower TEOAE responses and a greater level of MOC 

suppression observed in the luteal phase of the cycle. 

 

The limitation of this study and the previous reported studies is that the hormonal 

changes were not documented along with the auditory tests. Therefore, a proposed 

larger study of the auditory function in normal subjects with normal ovarian cycle 

with hormone level documentation, and subjects with controlled hormonal profile 

may reveal more conclusive results.  
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6.2 Case 2: Otoacoustic emissions in a woman with premature 

menopause treated with hormone replacement therapy  

 

6.2.1 Subject 

A 36 year old patient with premature menopause was referred for auditory 

investigation because of difficulty in hearing and intermittent tinnitus for the last 

five years.  

 

She was seen before and during treatment with combined cyclic hormone 

replacement therapy (HRT) (Prempak®-C, Wyeth laboratories). During the first 

16 days of the 28 day cycle, the subject was taking conjugated oestrogens (0.625 

mg) followed by 12 days (day 17-28) of 0.625 mg conjugated oestrogens plus 

0.15 mg of norgestrel (acts as progesterone) tablets.  

 

Her past history was unremarkable except for episodes of migraine. 

 

6.2.2 Procedures 

She underwent auditory investigations at different times during three consecutive 

cycles of HRT treatment.  

 

The test procedures were the same as the previous case (section 6.1.2), apart from 

recording of the auditory brainstem responses (ABR) (method described in section 

5.3.1.5), to rule out retrocochlear pathology. 

 

6.2.3 Protocol 

The patient underwent auditory investigations before and at different times during 

three cycles of  HRT.  

 

The auditory tests were performed as follows: 

• Baseline auditory tests before starting HRT. 
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• Monitoring of cochlear function with OAEs during three cycles of HRT 

treatment as outlined above: 

o 7th, 17th and 24th day of the first HRT cycle. 

o 18th day of the second HRT cycle. 

o 7th and 27th day of the third cycle. 

 

6.2.4 Results 

The baseline auditory investigations revealed that the subject had normal hearing 

thresholds levels on PTA and normal middle ear function assessed by 

tympanometry. Her ABR latencies were within the normal range, and TEOAE 

and SOAE were recorded from both ears. The level of MOC suppression was 

normal ( ! 1 dB) according to the departmental database. 

 

6.2.4.1 Spontaneous otoacoustic emissions 

Multiple SOAE were recorded from both ears. The right ear had a greater number 

of spectral peaks (11) compared to the left ear (3).  

 

The repeated test sessions revealed variability in SOAE spectral components in 

both ears as illustrated in Figure 6.2.1. The variability was more obvious in the 

right ear than in the left ear. The variations observed included disappearance of 

some of the frequency components during the second part of the HRT cycle, 

spectral frequency shifts that ranged from 0.4 - 4.3%, and appearance of new 

spectral peaks that were not recorded before HRT treatment. 

 

In the right ear a greater number of SOAE spectral peaks were recorded in the 

first part of the HRT cycle compared to the second part. A similar change was 

seen in the left ear but to a lesser extent as outlined in Table 6.2-A. 
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Table 6.2-A: The number of spectral peaks recorded before and during HRT treatment. 

 Right Ear Left Ear 
Total SOAE 

Peaks 

Baseline 11 3 14 

Day 7 12 3 15 

Day 17 6 2 8 Cycle 1 

Day 24 10 1 11 

Cycle 2 Day 18 10 2 12 

Day 7 12 3 15 
Cycle 3 

Day 27 10 5 15 
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Figure 6.2.1: Example of SOAEs from the right and left ear during the first tested cycle.
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6.2.4.2 Transient evoked otoacoustic emissions 

The overall TEOAE responses revealed the following changes during the test 

sessions, as summarized in Table 6.2-B and displayed graphically in Figure 6.2.2.  

 

Table 6.2-B: TEOAE responses (dB SPL) during HRT treatment. 

 Right Ear Left Ear Mean 

Baseline 18.5 17.8 18.1 

Day 7 17.2 18.4 17.8 

Day 17 13.8 19.5 16.6 Cycle 1 

Day 24 15.4 18.5 16.9 

Cycle 2 Day 18 18.4 17.7 18.05 

Day 7 18.5 19.9 19.2 
Cycle 3 

Day 27 15.6 19.8 17.7 

 

 

There was a greater variation in the TEOAE response in the right ear compared to 

the left ear, with a marked reduction in the total TEOAE responses from the 

baseline by 4.7 dB in the first tested cycle, 0.1 in the second cycle, and by 2.9 dB 

in the third tested cycle. This reduction coincided with the combined progesterone 

and oestrogen replacement. 
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Figure 6.2.2: The TEOAE responses of the subject with premature menopause at 
different days during HRT treatment. The arrows point to the corresponding hormone or 
hormones dominant at time of testing. (E2 = oestrogen, P= progesterone) 

 

6.2.4.3 The medial olivary cochlear suppression test 

The MOC suppression was normal in both ears, which is  ! 1 dB according to the 

departmental database. The MOC suppression recorded during the HRT treatment 

was, on average, lower in both ears compared to the pretreatment recordings, but 

still within normal limits as seen in Table 6.2-C. 
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Table 6.2-C: The MOC suppression (dB) during HRT treatment. 

 Right Ear Left Ear Mean 

Baseline 2.6 2.4 2.5 

Day 7 missing missing missing 

Day 17 2.5 1.5 2 Cycle 1 

Day 24 2.3 1.4 1.85 

Cycle 2 Day 18 2 2.6 2.3 

Day 7 2 2.1 2.05 
Cycle 3 

Day 27 2.6 1.7 2.15 

 

6.2.5 Discussion  

There was a reduction in the number of SOAE spectral peaks and TEOAE levels 

in the second part of the HRT cycle, which coincided with the combined 

progesterone and oestrogen administration. Lower levels of TEOAE responses 

were also noted in Case 1 during the luteal phase in which progesterone is the 

dominant hormone.  

 

Progesterone may have an inhibitory effect on cochlear function. Lower levels of 

TEOAE responses were noted in postmenopausal women who were taking HRT 

that contained progesterone, compared to postmenopausal women who were 

taking oestrogen only HRT (Guimaraes, et al., 2006). A similar finding of lower 

amplitudes of distortion products OAEs were observed in mice treated with 

oestrogen and progesterone, compared to mice receiving only oestrogen or 

placebo (Price, et al., 2009). The inhibitory effect of progesterone on cochlear 

function could be explained by enhancement of the GABA-ergic system (Follesa, 

et al., 2001), as well as counteracting and blunting the excitatory effect of 

oestrogen (Smith, et al., 2002). 
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The marked reduction noted in TEOAE responses and the greater variability in the 

SOAE seen in the right ear, compared to the left, may be due to the fact that, in 

general, the right ear is considered more sensitive than the left (reviewed by 

McFadden, 1993). This ear asymmetry and greater sensitivity in the right ear may 

suggest that the right ear is more susceptible to hormone changes.  

 

The monitoring of cochlear function by OAE at different stages before and during 

treatment in a larger sample together with the evaluation of hormone levels will 

help to clarify these findings.  

 

6.3 Conclusion  

The results of these two cases suggest that cochlear function, as reflected by 

otoacoustic emissions, may be influenced by reproductive hormones.  

 

The higher TEOAE responses in the periovulatary phase of the cycle in Case 1 

and in the oestrogen only phase of the HRT in the second subject with premature 

menopause is possibly attributed to the “excitatory” action of oestrogen on the 

cochlea. On the other hand, the significant reduction in the TEOAE response and 

changes in the SOAE spectral peaks that corresponded to the introduction of 

progesterone in the HRT treatment of the Case 2 and the lower levels of TEOAE 

observed in Case 1 during the luteal phase of the cycle, is possibly due to the 

“inhibitory” action of progesterone on cochlear function. The effect of 

progesterone was not as clear in Case 1, while in the Case 2 the hormonal state 

was more controlled and the cochlear changes were more noticeable. 

 

Case 1 also exhibited a lower level of MOC suppression during the periovulatary 

phase of the cycle, which may also be due to the “excitatory” action of oestrogen 

on olivocochlear bundle and more proximal levels of the auditory system. 

 

The changes observed in the OAE were not always consistent if observing the 

right and left ear separately. However, the mean results of both ears show a 
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clearer pattern (see Figure 6.1.1 and 6.2.1). This trend suggests some synergy 

between the two ears, and, thus, reflects the overall change in cochlear function.  

 

The monitoring of OAE at different stages of the normal ovarian cycle and in 

women with controlled hormonal profiles, with the recording of hormonal levels 

will help in clarifying these changes.  
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Chapter 7 : Auditory function in women during the 

ovarian cycle 

 

7.1 Introduction 

The ovarian cycle in humans is the basis for reproduction, which involves 

different process in different systems to create the optimal condition for 

conception. Oestrogen and progesterone fluctuate during the ovarian cycle 

(described in section 3.1.4). Oestrogen is the main hormone during the follicular 

phase and reaches a peak just before the lutenising hormone (LH) surge, while 

progesterone levels are very low (Owen, 1975). Ovulation occurs after the LH 

surge and the progesterone level starts to rise (Djahanbakhch et al., 1981; Bakos, 

et al., 1994). The corpus luteum continues secreting progesterone and, to a lesser 

extent oestrogen which rises to the second peak near the mid-luteal phase. The 

lengths of the follicular and luteal phases are not consistent in women with normal 

cycles (Lenton, et al., 1984a; Lenton, et al., 1984b; Fehring, et al., 2006). This 

variability inherently leads to difficulty in studying sensory changes precisely 

with respect to the ovarian cycle.  

 

Previous studies suggest that fluctuation in ovarian steroids, oestrogen and 

progesterone, during the ovarian cycle may influence some sensory processes, 

such as greater visual sensitivity (Eisner, et al., 2004), better colour discrimination 

(Giuffre, et al., 2007), a more sensitive sense of smell (Grillo, et al., 2001) and 

lower pain thresholds (Bajaj, et al., 2001) around the time of ovulation. Changes 

in auditory function during the ovarian cycle may also occur as described 

previously (section 3.1.4.1). Due to the diversity in reported methodologies and 

varying numbers of subjects (Table 3.1-A), no consistent and reliable conclusion 

can be drawn. With the exception of a few studies, which examined only auditory 

brainstem-evoked responses (Elkind-Hirsch et al., 1992; Serra et al., 2003), or 

auditory event related  potentials (Walpurger, et al, 2004), no other studies  have 

correlated changes in auditory function with levels of the ovarian hormones 

during the cycle.  
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In this study, several aspects of the afferent and efferent auditory function were 

evaluated with simultaneous measurements of hormone levels at four points in 

time during the ovarian cycle. 

 

7.2 Study protocol 

Normal hearing sensitivity (defined in section 1.2.1) was determined by PTA 

before participating in the study or during the first testing session. 

 

Auditory tests (described in section 5.3.1 except for PTA) were performed four 

times during one ovarian cycle with day one being the first day of menses (Figure 

3.1.3 ) as follows: 

 

Session 1: (5th – 8th day of the cycle) to correspond with the early 

follicular phase.  

 

Session 2: (10th – 14th day of the cycle) to correspond with the late 

follicular phase.  

 

Session 3: (20th – 23rd day of the cycle) to correspond with the early 

luteal phase.  

 

Session 4: (25th – 28th day of the cycle) to correspond with the late luteal 

phase.   

 

Blood samples were taken at each test session to measure serum hormone levels: 

serum oestradiol in sessions 1-4 and progesterone in sessions 3 and 4. The method 

for the serum hormone level estimation is described in section 4.3.2. 

 

Documenting ovulation: 

The timing of the ovulation was determined by measurement of the LH surge 

using a commercial ovulatory kit (Clear Blue ovulation test, Unipath, UK) given 

to each volunteer in the study. The subject checked her urinary LH daily from day 

10 of the cycle using the provided dipsticks until a positive result indicated the LH 
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surge (Nielsen, et al., 2001). The early luteal progesterone level was also used to 

confirm ovulation. 

7.2.1 Statistical analysis 

The statistical tests were performed using SPSS version 17.0 (SPSS Inc., 2008) 

and included the following: 

! Linear mixed-effect modeling (LMM): was used for a more reliable detection 

of changes in auditory function measures or serum hormone levels between 

the test sessions (McCulloch & Searle, 2001; Garson, 2009). The serum 

hormone level or auditory function measure was the dependent variable and 

the test session was both the fixed factor and repeated factor. To examine the 

effect of both the test session and hormone levels on auditory function, 

auditory test was the dependent variable and the test session was the fixed and 

repeated factor and either oestradiol or progesterone was a covariate. Pairwise 

comparison of the estimated marginal means between the different test 

sessions was also performed.  

! Paired sample t-test: was used to analyse the TEOAE inter-session 

differences calculated by the ILO software (section 5.3.1.3). 

! Linear regression: was used to examine the correlation between auditory 

function measures and serum hormone levels (oestrogen or progesterone). 

 

7.3 Subjects 

Twenty three women who fitted the inclusion criteria (section 5.1.1) volunteered 

to take part in the study. However, seven of them did not complete the full study 

protocol (four withdrew after the first test session, one completed only the first 

two sessions, and the remaining two had only completed three of the four test 

sessions).  

 

The positive LH surge, using the ovulatory kit (Clear Blue ovulation test, Unipath, 

UK), was documented in the 18 volunteers who had completed a minimum of 

three sessions, and the results of hormone tests (section 8.4.1) indicated that all 18 

subjects had an ovulatory cycle. 
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The average age of the 18 subjects was 32.3 (± 8) years old (median 30, range 22-

49 years). The median cycle length was 28 days and average cycle length 28.8 (± 

1.7) days. Their cycles ranged between 26-33 days in length as demonstrated in 

Table 7.3-A.  

 

Table 7.3-A: The age and cycle length of the 18 volunteers. 

Subject 
Age 

(years) 

Cycle length 

(days) 

1 39 26 

2 30 28 

3 30 28 

4 30 30 

5 30 28 

6 24 28 

7 31 30 

8 35 28 

9 40 28 

10 27 28 

11 23 28 

12 44 28 

13 49 27 

14 23 30 

15 26 33 

16 22 28 

17 43 30 

18 36 32 

 

The following results are of the 18 subjects (36 ears) that had at least 3 test 

sessions. 
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7.4 Results 

7.4.1 Serum hormone levels 

The serum oestradiol levels changed significantly during the cycle [LMM, F(3, 

35.8) = 17.4; p < 0.001], as demonstrated in Table 7.4-A and Figure 7.4.1. 

Oestradiol levels were significantly higher in session 2 and 3 compared to session 

1 (p < 0.001) and session 4 (p = 0.002, and p = 0.008 respectively). There was no 

significant difference in oestradiol levels between sessions 2 and 3 (p = 0.32). 

The progesterone levels significantly changed between session 3 and session 4 

[LMM, F(1, 15.1) = 43.8; p < 0.001] and was significantly higher in session 3 (p < 

0.001) compared to session 4 (Table 7.4-A), which indicated that ovulation had 

occurred.  

Table 7.4-A: Serum hormone levels (estimated mean ± SE) during the ovarian cycle. 

Time of cycle Oestradiol (pmol/L) Progesterone (nmol/L) 

Session 1 (early follicular) 

(cycle day 5-8) 
168.6 ± 17.3 N/T 

Session 2 (late follicular) 

(cycle day 10-14) 
484 ± 62.5 N/T 

Session 3 (early luteal) 

(cycle day 20-23) 
407.3 ± 46.4 46.2 ± 5.6 

Session 4 (late luteal) 

(cycle day 25-28) 
249.2 ± 34.6 22.4 ± 5.1 

N/T: not tested 
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Figure 7.4.1: The oestradiol levels plotted against the day of the ovarian cycle, with each 
line representing one subject’s oestradiol levels during the ovarian cycle and the stars 
indicate the day of the positive LH measured using the ovulatory kit.  
The means and 95% confidence intervals of the serum oestradiol levels during the 
ovarian cycle for all subjects are superimposed. 
 

7.4.2 Tympanometry 

Tympanometry (method described in section 5.3.1.2) was performed at the start of 

each test session, before recording otoacoustic emissions to establish normal 

middle ear function (section 1.2.2). 

 

The middle ear pressure did not change significantly during the repeated testing 

[LMM, F(3, 47.1) = 2.01, p = 0.13]. However, the pairwise comparison of the 

estimated means revealed that the middle ear pressure recorded in session 3 was 

less than in session 2 (p = 0.019), but was still within the normal range as seen in 

Figure 7.4.2 . 
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Figure 7.4.2: Middle ear pressure (estimated mean and 95 % confidence interval) in the 
four tested phases of the ovarian cycle. *p < 0.05 

 

The tympanic membrane compliance did not significantly change during the 

repeated testing [LMM, F(3, 43.7) = 2.4, p = 0.083]. However, the pairwise 

comparison of the estimated means showed tympanic membrane compliance was 

less in session 4 compared to session 1 (p=0.034) and session 3 (0.049), but still 

within the normal range as seen in Figure 7.4.3. 

 
Figure 7.4.3: Tympanic membrane compliance (estimated mean and 95 % confidence 
interval) in the four tested phases of the ovarian cycle. *p < 0.05 
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The linear regression analysis showed that the middle ear pressure was not 

significantly correlated with the corresponding oestradiol levels across all four 

sessions [r2 = 0.001, F(1,138) = 0.17, p = 0.7]. The middle ear pressure was not 

significantly correlated with the corresponding oestradiol levels in sessions 1 and 

2 (follicular phase) [r2 = 0.006, F(1, 70) = 0.4, p = 0.5], but was significantly 

correlated with the oestradiol and progesterone level in session 3 and 4 (luteal 

phase) [r2 = 0.10, F(2, 65) = 3.6, p = 0.03]. The correlation with oestradiol was 

positive [r = 0.45, p = 0.009], and negative with progesterone [r = -0.35, p = 0.04]. 

 

The tympanic membrane compliance was not significantly correlated with 

oestradiol levels across all four sessions [r2 = 0.003, F(1,138) = 0.41, p = 0.5], or 

with the corresponding oestradiol levels in sessions 1 and 2 (follicular phase) [r2 = 

0.018, F(1, 70) = 1.3, p = 0.3]. There was a significant correlation between the 

tympanic membrane compliance and oestradiol and progesterone levels in session 

3 and 4 (luteal phase) [r2 = 0.14, F(2, 65) = 5.19, p = 0.008]. The correlation was 

positive with oestradiol [r = 0.49, p = 0.004], and negative with progesterone [r = 

-0.2, p = 0.2]. 

 

7.4.3 Otoacoustic emissions 

 

7.4.3.1 Spontaneous otoacoustic emissions 

SOAE were recorded in 23 of the 36 tested ears (63.9%). Out of the 18 subjects, 

13 subjects had recordable SOAE, from both ears in ten subjects, from the right 

ear only in two subjects, and one had recordable SOAE from the left ear only.  

The number of SOAE spectral peaks recorded in the session 3 (early luteal phase) 

was lower than in the other sessions during the ovarian cycle (Table 7.4-B). Most 

of the SOAE spectral peaks were between 1-3 kHz (65.7%).  
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Table 7.4-B: The number and frequency composition of SOAE spectral peaks during the 

ovarian cycle. 

Phase of ovarian cycle  

 SOAE 

Spectral 

Peaks 

Session 1 

(early follicular) 

Session 2 

(late follicular) 

Session 3 

(early luteal) 

Session 4 

(late luteal) 

Number 82 80 65 68 

 

 

SOAE 

frequency 
< 1kHz 1-3kHz 3-4kHz >4kHz 

proportion 17.1% 65.7% 8.6% 8.6% 

 

 

Of all spectral peaks, 52 SOAE peaks were recorded in all testing sessions. 

 

The SOAE amplitudes increased during the session 2 then gradually decreased 

during the sessions 3 and 4 as seen in Figure 7.4.4. However, the changes did not 

reach statistical significance [LMM, F (3, 58.9) = 1.28, p = 0.29]. 
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Figure 7.4.4: SOAE peak amplitude (estimated mean and 95 % confidence interval) in 
the four tested phases of the ovarian cycle. 

 
There was a highly significant change in the SOAE frequency shift in relation to 

the ovarian cycle [LMM, F (3,89.2) = 14.39, p < 0.001]. SOAE shifted to a higher 

frequency in session 1 and 2 (the follicular phase) and to a lower frequency in  

sessions 3 and 4 (the luteal phase). The pairwise comparison of the estimated 

marginal means demonstrated that SOAE frequency shift in the session 1 was 

significantly greater than in session 3 (p = 0.002), and session 4 (p < 0.001), and 

the SOAE frequency shift in the session 2 was significantly greater than in the 

session 3 (p < 0.001) and session 4 (p < 0.001) (Figure 7.4.5). 

 

Serum oestradiol was added to the LMM as a covariate, and was found to have a 

significant negative effect on SOAE frequency shift during the ovarian cycle 

[LMM, oestradiol estimate = -0.0002 (SE = 0.0001), df = 133.7, p = 0.03], but no 

effect on the SOAE amplitude [LMM, oestradiol estimate = -0.002 (SE = 0.002), 

df = 70.5, p = 0.15]. The serum oestradiol in session 1 and 2 (follicular phase) had 

a significant negative effect on SOAE frequency shift [LMM, oestradiol estimate 

= -0.0005 (SE = 0.0002), df = 97.7, p = 0.005], but no effect on SOAE amplitude 

[LMM, oestradiol estimate = -0.0002 (SE = 0.002), df = 68.2, p = 0.92]. 
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Figure 7.4.5: The SOAE frequency shift (mean and 95% confidence interval) in the four 
tested phases of the ovarian cycle. 
 
The SOAE frequency shift in session 1 significantly greater than in session 3 and session 
4; The SOAE frequency shift in session 2 significantly greater than in session 3 and 
session 4. ** p < 0.01, *** p < 0.001 
 

In sessions 3 and 4 (the luteal phase), serum progesterone had a small significant 

negative effect on SOAE frequency shift [LMM, progesterone estimate = -0.004 

(SE = 0.002), df = 71.1, p = 0.05], while oestradiol had no significant effect 

[LMM, oestradiol estimate = 0.0002 (SE = 0.0002), df = 72.9, p = 0.3]. Serum 

oestradiol in session 3 and 4 had a significant negative effect on the SOAE 

amplitude [LMM, oestradiol estimate = -0.01 (SE = 0.004), df = 82.9, p = 0.012], 

while progesterone had no effect [LMM, progesterone estimate = 0.026 (SE = 

0.035), df = 82.8, p = 0.5].  

 
The linear regression analysis showed that the SOAE frequency shift was not 

significantly correlated with the corresponding oestradiol levels, across all four 

sessions [r2 = 0.001, F(1,196) = 0.23, p = 0.6]. The SOAE frequency shift was not 

significantly correlated with the corresponding oestradiol levels in sessions one 

and two (follicular phase) [r2 = 0.017, F(1, 102) = 1.78, p = 0.2] or with the 

oestradiol and progesterone level in session three and four (luteal phase) [r2 = 

0.027, F(2, 91) = 1.28, p = 0.3]. 
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The  SOAE amplitude was not significantly correlated with the corresponding 

oestradiol levels across all four sessions [r2 = 0.004, F(1, 196) = 0.73, p = 0.4], or 

with the oestradiol in session 1 and 2 (follicular phase) [r2 = 0.014, F(1, 102) = 

1.46, p = 0.2]. However, the multiple linear regression analysis between the 

SOAE amplitude and oestradiol and progesterone levels in session 3 and 4 (luteal 

phase) was significant [r2 = 0.13, F(2, 91) = 6.6, p = 0.002], with a negative 

significant correlation with oestradiol level [r = -0.48, p = 0.001] and a weak 

positive correlation with progesterone level [r = 0.26, p = 0.057].  

 

7.4.3.2 Transient evoked otoacoustic emissions 

All 18 subjects (36 ears) had recordable TEOAE from both ears during the 

repeated testing sessions.  

The total TEOAE response increased from session 1 to session 2 and session 3, 

then decreased in session 4, as seen in Figure 7.4.6. However the changes did not 

reach statistical significance as demonstrated in Table 7-C 

 

 
 
Figure 7.4.6: An example of the TEOAE responses in one of the volunteers during the 
four phases of the ovarian cycle. 



 133 

Table 7.4-C: The estimated mean ± SE for total TEOAE response and TEOAE S/N ratio 
in all ears in the five frequency bands during the ovarian cycle. 

Phase of ovarian cycle  

TEOAE 

response 

(dB 

SPL)  

 

Session 1 

(early 

follicular) 

 

Session 2 

(late 

follicular) 

 

Session 3 

(early 

luteal) 

 

Session 4 

(late 

luteal) 

 

Linear mixed- 

effect model  

(fixed effect) 

Total 

TEOAE 

(n=36) 
14.98 ± 0.7 15.04 ± 0.7 15.22 ± 0.7 15.04 ± 0.7 

F(3, 55.02) = 

0.62, 

p = 0.602 

1 kHz 

(n=36) 13.39 ± 0.7 14.08 ± 0.7 14.21 ± 0.7 13.94 ± 0.7 

F(3, 40.9) = 

1.25, 

p = 0.306 

2 kHz 

(n=36) 14.83 ± 0.9 14.97 ± 0.9 15.03 ± 0.9 14.84 ± 0.9 

F(3, 34.2) = 

0.09,  

p = 0.965 

3 kHz 

(n=36) 11.44 ± 1 11.64 ± 1 11.55 ± 1 11.37 ± 1 

F(3, 34.2) = 

0.19,  

p = 0.901 

4 kHz 

(n=36)  8.39 ± 1.2 8.72 ± 1.2 8.77 ± 1.2 8.29 ± 1.2 

F(3, 33.7) = 

0.61, 

p = 0.615 

5 kHz 

(n=35) 3.64 ± 1.2 4.32 ± 1.2 4.56 ± 1.2 3.68 ± 1.2 

F(3, 29.97) = 

0.99, 

p = 0.41 

 

 

Similarly, the TEOAE S/N in all five frequency bands increased during sessions 2 

and 3, then decreased in the session 4, however, the changes were not significant 

(Table 7.4-C). 
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The serum oestradiol was added to the LMM as a covariate, and was found to 

have a small significant, positive effect on the total TEOAE response, during the 

ovarian cycle [LMM, oestradiol estimate = 0.0006 (SE = 0.003), df = 41.6, p = 

0.048]. No significant effect was observed in the TEOAE S/N in any of the five 

frequency bands, as demonstrated in Table 7.4-D . 

 

Table 7.4-D: The linear-mixed effect model of the TEOAE response and TEOAE S/N 
ratio in the five frequency bands. The test session as a fixed factor and oestradiol as a 
covariate.  

Linear 

mixed-effect 

model 

Session (fixed 

effect test) 

Oestradiol 

estimate (SE) 

Degrees of 

freedom (df) 
t, p value 

Total 

TEOAE 

(n=36) 

F(3, 57.2) = 0.89, 

p=0.45 
0.000647 (0.0003) 41.6 

2.03,  

p = 0.048 

1 kHz (n=36) 
F(3, 44.8) = 0.66, 

p=0.58 
0.000618 (0.0009) 60.3 

0.66,  

p = 0.51 

2 kHz (n=36) 
F(3, 45.3) = 0.03, 

p = 0.99 
0.000609 (0.0008) 44.2 

0.74,  

p = 0.46 

3 kHz (n=36) 
F(3, 41.9) = 0.05, 

p = 0.98 
0.000562 (0.0009) 63.4 

0.6,  

p = 0.55 

4 kHz (n=36) 
F(3, 41.9) = 0.16, 

p=0.92 
0.000953 (0.0009) 49.6 

1.02,  

p = 0.31 

5 kHz (n=35) 
F(3, 34.9) = 1.15, 

p=0.34 
-0.0012 (0.0016) 48.8 

-0.77,  

p = 0.44 

 

 

The serum oestradiol in sessions 1 and 2 (follicular phase) had no significant 

effect on TEOAE response or TEOAE S/N in the five frequency bands as 

demonstrated in Table 7.4-E. 
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Table 7.4-E: The linear mixed-effect model of the TEOAE response and TEOAE S/N 
ratio in the five frequency bands. The test session (session 1 and 2) as a fixed factor and 
oestradiol as a covariate.  

Linear 

mixed-effect 

model  

Session (fixed 

effect test) 

Oestradiol 

estimate (SE) 

Degrees of 

freedom (df) 
t, p value 

Total 

TEOAE 

(n=36) 

F(1, 35.3) = 0.009, 

p = 0.92 
0.0003 (0.001) 36.6 

0.31,  

p = 0.76 

1 kHz (n=36) 
F(1, 37.8) = 0.52, 

p = 0.47 
0.0007 (0.0016) 41.4 

0.45,  

p = 0.66 

2 kHz (n=36) 
F(1, 35.8) = 0.04, 

p = 0.85 
-2.76!10-6 (0.002) 38.4 

-0.002,  

p = 0.999 

3 kHz (n=36) 
F(1, 35.97) = 0.03, 

p = 0.86 
0.00099 (0.0016) 37.4 

0.62,  

p = 0.54 

4 kHz (n=36) 
F(1, 31.9) = 0.26, 

p = 0.62 
0.001 (0.0015) 32.7 

1.05,  

p = 0.3 

5 kHz (n=33) 
F(1, 30.8) = 0.003, 

p = 0.95 
0.002 (0.002) 33.5 

0.84,  

p = 0.41 

 

 

In sessions 3 and 4 (the luteal phase), the TEOAE S/N at 4 and 5 kHz were 

significantly higher in session 3 compared to session 4 (p = 0.048, and p = 0.002 

respectively). The serum progesterone had a significant negative effect on the 

TEOAE S/N in the 4 kHz frequency band in sessions 3 and 4 [LMM, 

progesterone estimate = -0.07 (SE = 0.03), df = 27.3, p = 0.018], while oestradiol 

in sessions 3 and 4, had a significant negative effect on the TEOAE S/N in the 5 

kHz frequency band [LMM, oestradiol estimate = -0.01 (SE = 0.004), df = 30.04, 

p = 0.013] as seen in Table 7.4-F. 
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Table 7.4-F: The linear mixed-effect model of the TEOAE response and TEOAE S/N 
ratio in the five frequency bands. The test session (session 3 and 4) as a fixed factor and 
oestradiol and progesterone as covariates.  

LMM 

(n=36) 

Session 

(fixed 

effect test) 

Oestradiol 

estimate 

(SE) 

df  
t, p 

value 

Progesterone 

estimate 

(SE) 

df  
t, p 

value 

Total 

TEOA

E  

F(1, 36) = 

0.3, p = 

0.58 

0.0002 

(0.001) 
31.7 

0.15,  

0.88 

-0.0003 

(0.012) 
35.4 

-0.02, 

0.98 

1 kHz  

F(1, 51) = 

0.55,  

p = 0.46 

-0.002 

(0.002) 
39.4 

-1.05, 

0.3 
0.007 (0.021) 50.7 

0.32, 

0.75 

2 kHz  

F(1, 43.7) 

= 3.39,  

p = 0.072 

0.0008 

(0.003) 
33.96 

0.29,  

0.77 
-0.052 (0.03) 42.8 

-1.96, 

0.056 

3 kHz  

F(1, 36.8) 

= 1.63,  

p = 0.21 

0.004 

(0.002) 
31.6 

1.93,  

0.06 
0.0004 (0.02) 36.1 

0.023, 

0.98 

4 kHz  

F(1, 38.6) 

= 4.18,  

p = 0.048 

0.002 

(0.003) 
32.3 

0.82,  

0.42 
-0.066 (0.03) 27.3 

-2.5, 

0.018 

5 kHz 

(n=31) 

F(1, 38.1) 

= 11.5,  

p = 0.002 

-0.01 

(0.004) 
30.04 

-2.6,  

0.01 

-0.043 

(0.034) 
31.04 

-1.3, 

0.2 

 

 

The paired sample t-test analysis of TEOAE inter-phase differences calculated by 

the ILO compare analysis showed that the difference in the TEOAE responses 

within the same cycle phase (i.e. either within follicular or luteal phase) was 

significantly lower than the difference in TEOAE between the cycle phases (i.e. 

between the follicular and luteal phases) as shown in Figure 7.4.7.  
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Figure 7.4.7: The differences in TEOAE as calculated by the ILO subtraction analysis 
between the different testing sessions (mean and 95% confidence interval). 

The difference in TEOAE responses between sessions 2 and 3 significantly larger than 
the difference in TEOAE response between sessions 1and 2 and between session 3 and 4; 
The difference in TEOAE responses between sessions 1 and 4 significantly larger than 
the difference in TEOAE response between sessions 1 and 2; The difference in TEOAE 
responses between sessions 2 and 4 significantly larger than the difference in TEOAE 
response between sessions 1and 2 and between session 3 and 4. *p<0.05 

 
The difference in TEOAE responses between session 2 and session 3 was 

significantly larger than the difference in the TEOAE responses within the 

follicular phase (session 1 vs. 2) [t(33) = 2.65, p = 0.012] and within the luteal 

phase (session 3 vs. 4) [t(31) = 2.23, p = 0.033]. 

The difference in TEOAE responses between session 2 and session 4 was 

significantly greater than the difference in the TEOAE responses within the 

follicular phase [t(33) = 2.46, p = 0.019] and within the luteal phase [t(31) = 2.52, 

p = 0.017].  

 

The difference in TEOAE responses between session 1 and session 4 was also 

significantly greater than the difference in the TEOAE responses within the 

follicular phase [t(33) = 2.36, p = 0.024] and greater, but not statistically 

significant within the luteal phase [t(31) = 1.96, p = 0.059].  
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The difference in TEOAE responses between sessions 1 and 3 was larger than the 

difference in the TEOAE responses between the two sessions within the follicular 

phase (session 1 and 2) [t(33) = 0.94, p = 0.355] and between the two sessions 

within the luteal phase (session 3 and 4) [t(31) = 1.31, p = 0.2], but it did not 

reach statistical significance. 

 

The linear regression analysis showed that the total TEOAE response and the 

TEOAE S/N in all five frequency bands were not significantly correlated with the 

corresponding oestradiol levels across all four sessions. However, when 

regression analysis was applied in the first two sessions only (follicular phase), a 

significant positive correlation between total TEOAE and oestradiol [r2 = 0.08, p 

= 0.016, F (1, 70) = 6.1] and TEOAE S/N in the 1kHz [r2 = 0.067, p = 0.028, F (1, 

70) = 5.05], 2 kHz [r2 = 0.091, p = 0.01, F (1, 70) = 6.98], and 5 kHz [r2 = 0.073, p 

= 0.03, F (1, 62) = 4.76] band and oestradiol was found, as demonstrated in Figure 

7.4.8. 

 

Regression analysis between total TEOAE response and progesterone and 

oestrogen levels in sessions 3 and 4 (luteal phase) was significant for the total 

TEOAE response [r2 = 0.12, p = 0.014, F(2,65) = 4.58], with progesterone having 

a positive correlation [r = 0.467, p = 0.007] and oestradiol a negative correlation [r 

= -0.473, p = 0.006]. The regression analysis between the TEOAE S/N in the five 

frequency bands and progesterone and oestrogen level in sessions 3 and 4 (luteal 

phase) was significant in the 5 kHz frequency band [r2 = 0.14, p = 0.02, F(1,51) = 

4.17], with oestradiol having a significant negative correlation [r = -0.43, p = 

0.03] but no significant correlation with progesterone levels [r = 0.08, p = 0.7]. 

The regression analysis was not significant in any of the other frequency bands. 

  



 139 

(a)

(d)(c)

(b)

 

Figure 7.4.8:The correlation (R) between the total TEOAE response (a) and serum oestradiol and between the TEOAE S/N in the frequency band centered at 
1 kHz  (b) 2 kHz (c) and 5 kHz (d) and serum oestradiol in the follicular phase. 
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7.4.4 Medial olivocochlear (MOC) suppression 

The MOC suppression significantly changed during the ovarian cycle [LMM, F 

(3, 37.2) = 3.99, p = 0.015]. The MOC suppression in sessions 2 and 4 was 

significantly lower than in session 1 (p = 0.006, 0.0004 respectively), as 

demonstrated in Figure 7.4.9. 

 

 

Figure 7.4.9: The MOC suppression (mean and 95% confidence interval) in the four 
phases of the ovarian cycle.  

The MOC suppression in session 2 and session 4 was significantly lower than in session 
1. **p < 0.01 

 
The serum oestradiol level was added to the LMM as a covariate, and was found 

not to have a significant effect on MOC suppression during the ovarian cycle 

[LMM, oestradiol estimate = -0.0002 (SE = 0.0002), df = 50.8, p = 0.37], while 

the session had a significant  effect on the MOC suppression [LMM, F(3,45.7) = 

2.85, p = 0.048]. The serum oestradiol in session 1 and 2 (follicular phase) had no 

significant effect on MOC suppression [oestradiol estimate = -0.0003 (SE = 

0.0003), df = 42.1, p = 0.29]. In sessions 3 and 4 (the luteal phase), the serum 

progesterone had a significant negative effect on the MOC suppression 

[progesterone estimate = -0.013 (SE = 0.005), df = 62.3, p = 0.007], while 

oestradiol in sessions 3 and 4, had a significant positive effect on MOC 

suppression [oestradiol estimate = 0.0016 (SE = 0.0006), df = 2.7, p = 0.008]. 
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The linear regression analysis showed that MOC suppression was not significantly 

correlated with the corresponding oestradiol levels across all four sessions [r2 = 

0.005, p = 0.4, F(1,138) = 0.7]. However, when the regression analysis was 

applied in the first two sessions only (follicular phase), a significant negative 

correlation between MOC suppression and oestradiol [r2 = 0.054, p = 0.049, 

F(1,70) = 4.03] was found, as demonstrated in Figure 7.4.10.  

 

 

Figure 7.4.10: The correlation (R) between the MOC suppression and serum oestradiol in 
the follicular phase. 

 
The multiple regression analysis between MOC suppression and progesterone and 

oestrogen level in sessions 3 and 4 (luteal phase) was significant [r2 = 0.09, p = 

0.044, F(2,65) = 3.3], with progesterone having a negative correlation [r = -0.36, p 

= 0.037] and oestradiol a positive correlation [r = 0.43, p = 0.014]. 

 

7.4.5 Auditory brainstem response  

The ABRs were recorded from both the right and left ear in all 18 subjects (36 

recordings in total).  
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The LMM analysis suggests that the ABR latencies were longest in the late 

follicular phase (session 2), but no significant overall changes were observed 

Table 7.4-G. The inter-peak intervals tended to shorten during the ovarian cycle 

and they were shortest during the luteal phase (sessions 3 and 4), but the changes 

did not reach statistical significance (Table 7.4-G). 

 

Table 7.4-G: The estimated mean ± SE ABR wave latencies and inter-peak intervals 
during the ovarian cycle. 

Phase of ovarian cycle 

ABR 

(n=36) 

Session 1 

(early 

follicular) 

Session 2 

(late 

follicular) 

Session 3 

(early 

luteal) 

Session 4 

(late 

luteal) 

 

Linear mixed- 

effect model 

(fixed effect) 

I 1.6 ± 0.02 1.62 ± 0.02 1.6 ± 0.02 1.6 ± 0.02 

F(3, 38.4) = 

2.65, 

p = 0.06 

III 3.72 ± 0.02 3.72 ± 0.02 3.72 ± 0.02 3.71 ± 0.02 

F(3, 31.1) = 

0.68, 

p = 0.57 

V 5.55 ± 0.03 5.56 ± 0.03 5.54± 0.03 5.52 ± 0.03 

F(3, 35.1) = 

2.36, 

p = 0.09 

I-III 2.12 ± 0.03 2.1 ± 0.03 2.11 ± 0.03 2.11 ± 0.03 

F(3, 32.3) = 

1.27, 

p = 0.3 

III-V 1.83 ± 0.02 1.83 ± 0.03 1.82 ± 0.02 1.81 ± 0.03 

F(3, 32.9) =  

1.2, 

p = 0.33 

I-V 3.95 ± 0.03 3.94 ± 0.03 3.93 ± 0.03 3.92 ± 0.03 

F(3, 37.98) = 

1.9,  

p = 0.15 
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The pairwise comparison of the estimated marginal means showed that Wave I 

latency in session 2 was greater than the latency in session 1 (p = 0.01) and in 

session 4 (p = 0.03); the Wave V latency in session 4 was significantly shorter 

compared to session 2 (p = 0.02) and session 1 (p = 0.03); and the wave I-V 

interval in session 4 was significantly shorter compared to session 1 (p = 0.03). 

 

The serum oestradiol was added to the LMM as a covariate, and was found not to 

have a significant effect on the ABR latencies during the ovarian cycle as seen in 

Table 7.4-H. The serum oestradiol in session 1 and 2 (follicular phase) had no 

significant effect on the ABR latencies as well. 

 

Table 7.4-H: The linear mixed-effect model of the ABR wave latencies and interpeak 
intervals with the test session as a fixed factor and oestradiol as a covariate. 

Linear 

mixed-effect 

model 

(n=36) 

Session (fixed 

effect test) 

Oestradiol 

estimate (SE) 

Degrees of 

freedom (df) 
t, p value 

I 
F(3, 58.5) = 2.28, 

p = 0.088 

-1.22!10-5 

(1.9!10-5) 
67.7 -0.6, p = 0.52 

III 
F(3, 43.2) = 0.797, 

p = 0.5 

-1.43!10-5  

(1.9!10-5) 
56.01 -0.8, p = 0.44 

V 
F(3, 40.8) = 2.34, 

p = 0.087 

9.88!10-6  

(3.2!10-5) 
61.04 0.3, p = 0.76 

I-III 
F(3, 35.9) = 0.79, 

p = 0.51 

-1.10!10-5 

(2.3!10-5) 
57.02 -0.5, p = 0.64 

III-V 
F(3, 39.2) =1.17, 

p = 0.33 

2.24!10-5   

(3.3!10-5) 
58.9 0.7, p = 0.5 

I-V 
F(3, 42.3) = 2.03, 

p = 0.12 

2.3!10-5     

(3.4!10-5) 
58.2 0.7, p = 0.5 
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In sessions 3 and 4 (the luteal phase), neither progesterone nor oestradiol had a 

significant effect on ABR latencies as demonstrated in Table 7.4-I.  

 

Table 7.4-I: The linear mixed-effect model ABR wave latencies and interpeak intervals 
with the test session (session 3 and 4) as a fixed factor and oestradiol and progesterone as 
covariates.  

LMM 

(n=36) 

Session 

(fixed effect 

test) 

Oestradiol 

estimate 

(SE) 

 df 
t, p 

value 

Progesterone 

estimate 

(SE) 

 df 
t, p 

value 

I 

F(1, 54.5) 

=1.9,  

p = 0.17 

-2.68!10-5 

(6.2!10-5) 
43.1 

-0.4, 

0.67 

-0.0005 

(0.0005) 
54.9 

-1.0, 

0.32 

III 

F(1, 37.8) = 

1.4,  

p = 0.24 

-2.72!10-5 

(5.4!10-5) 
32.5 

-0.5, 

0.62 

-0.0005 

(0.0005) 
37.1 

-0.9, 

0.35 

V 

F(1, 46) = 

2.15,  

p = 0.15 

1.26!10-5  

(9.97!10-5) 
36.3 

0.13, 

0.9 

-0.0009 

(0.0009) 
45.2 

-

0.97, 

0.34 

I-III 

F(1, 37.7) = 

0.71,  

p = 0.4 

-2.65!10-5  

(5.8!10-5) 
32.4 

-0.4, 

0.65 

-0.0004 

(0.0006) 
36.97 

-0.7, 

0.51 

III-V 

F(1, 49.3) = 

0.47,  

p = 0.49 

6.35!10-5  

(8.97!10-5) 
38.4 

0.7, 

0.48 

-0.0004 

(0.0008) 
48.8 

-0.5, 

0.64 

I-V 

F(1, 48.3) = 

0.37,  

p = 0.54 

2.37!10-5  

(0.0001) 
37.8 

0.3, 

0.8 

-0.0002 

(0.001) 
48.5 

-0.2, 

0.82 

 

The linear regression analysis indicated a significant positive correlation between 

the wave III-V interval and the oestradiol level in all four sessions [r2 = 0.035, p = 

0.03, F (1,138) = 5.01] and when the follicular phase (sessions 1 and 2) was 

considered [r2 = 0.078, p = 0.02, F (1,70) = 5.95]. A weak positive correlation was 
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found between the Wave V latency and oestradiol level in the follicular phase [r2 

= 0.05, p = 0.06, F(1,70) = 3.67]. The regression analysis between the I-V 

interpeak interval, and progesterone and oestrogen levels in sessions 3 and 4 

(luteal phase) just reached significance [r2 = 0.085, p = 0.05, F (1,65) = 3.03] with 

a positive correlation with progesterone [r = 0.4, p=0.02] and a negative 

correlation with oestradiol [r = -0.35, p=0.05]. No other significant correlations 

were observed. 

 

7.5 Summary of results  

The expected variation in oestradiol and progesterone levels was confirmed and it 

was consistent with an ovulatory cycle in all women. There was great variability 

in oestradiol levels between the subjects during the second and third testing 

sessions (see Figure 7.4.1), which is most likely due to the variability in the length 

of the ovarian cycle, especially the follicular phase. This is in agreement with 

previous reports on physiological variability in the length of the follicular phase 

(Lenton, et al., 1984b; Wilcox, et al., 2000; Fehring, et al., 2006). Due to this 

variability, a clear demarcation between the late follicular and early luteal phase 

was difficult to achieve, and some points during the ovarian cycle (e.g. two 

oestradiol peaks, or progesterone peak) might not have been captured, as only four 

hormone measurements were obtained.  

 

Tympanometry 

The middle ear pressure and tympanic membrane compliance did not change 

significantly during the ovarian cycle. However, during the luteal phase (session 3 

and 4), oestradiol was associated with an increase middle ear pressure and 

tympanic membrane compliance, while progesterone had an opposite effect.  

 

Cochlear modulation 

The results of otoacoustic emissions in this study showed very subtle changes in 

cochlear function during the ovarian cycle. The number of SOAE spectral peaks 

was greater in the follicular phase (sessions 1 and 2) when oestrogen is the 

dominant hormone, and less in the luteal phase (session 3 and 4) when both 

progesterone and oestrogen were present. The change in SOAE frequency shift 
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was significant in relation to the ovarian cycle (p < 0.0001), with the greatest 

SOAE frequency shift occurring during the late follicular phase (p < 0.001) 

associated with highest oestrogen levels. Regression analysis did not demonstrate 

that these changes were correlated with serum levels of oestrogen or progesterone. 

However, the results of the LMM analysis revealed that oestradiol decreases the 

SOAE frequency shift by 0.0002 % across the ovarian cycle and by 0.0005 % 

during the follicular phase. During the luteal phase, progesterone has a greater 

effect lowering the SOAE frequency by 0.004 %, while no  significant positive 

effect of oestradiol was recorded. 

 

There was no significant change in the SOAE amplitude in contrast to the change 

noted in SOAE frequency, which may be due to the SOAE amplitude being highly 

variable compared to SOAE frequency (reviewed by Ceranic, 2003). However, 

the amplitude in the follicular phase was higher than in the luteal phase. The 

regression analysis and LMM analysis demonstrated that oestradiol levels in 

session 3 and 4 had a significant negative effect in decreasing SOAE amplitude by 

0.01 dB SPL.  

 

The overall TEOAE response and the TEOAE S/N in all five frequency bands 

increased during sessions 2 and 3, then decreased in session 4, but the changes 

were not significant. The TEOAE inter-session differences calculated by the ILO 

subtraction analysis revealed that there was a significant difference in TEOAE 

levels between the two phases of the ovarian cycle (follicular and luteal phase), 

and this may have been consequent upon a hormonal effect. The LMM analysis 

revealed that oestradiol increased the total TEOAE response by 0.0006 dB SPL 

during the ovarian cycle, but had no significant effect on the TEOAE S/N in the 

five frequency bands. Linear regression analysis revealed a significant positive 

correlation between total TEOAE and oestradiol (p = 0.016)  and TEOAE S/N at 

the 1kHz (p = 0.03), 2 kHz (p = 0.01) and 5 kHz (p = 0.03) frequencies and 

oestradiol in the follicular phase. However, the positive effect of oestradiol was 

small, and thus did not reach significance (Table 7.4-E). During the luteal phase, 

both oestrogen and progesterone were significantly correlated with the total 

TEOAE response, with progesterone having a positive correlation (r = 0.5, p = 

0.007), and oestradiol a negative correlation (r = -0.5, p = 0.006) with the TEOAE 
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response. A significant negative correlation between oestradiol in the luteal phase 

with the TEOAE S/N in the 5 kHz frequency band was also observed (r = -0.43, p 

= 0.03). The effect was small for the overall TEOAE response, and thus did not 

reach significance (Table 7.4-F).  However, progesterone was found to decrease 

the TEOAE S/N in the 2 kHz, 4 kHz and 5 kHz frequencies (Table 7.4-F) and the 

effect was significant only at the 4 kHz band (p = 0.02). Oestradiol in the luteal 

phase was found to decrease the TEOAE S/N at the 5 kHz by 0.01 dB.  The 

presence of progesterone in the luteal phase may blunt the effect of oestrogen on 

the cochlea leading to changes in the frequency composition of the TEOAE that 

were seen more clearly in the SOAE.  

 

Olivocochlear suppression 

Olivocochlear suppression decreased in the late follicular phase (p = 0.006), 

which was characterized by a rising oestradiol level. Suppression then increased 

in the luteal phase, when both oestradiol and progesterone were secreted, before 

decreasing again near the end of the cycle, when there were lower levels of both 

steroids, with a significantly lower suppression in the late luteal compared to the 

early follicular phase (p = 0.004). A decline in MOC suppression during the late 

follicular phase was in agreement with the SOAE and TEOAE findings.  

 

There was a significant negative correlation between MOC suppression and 

oestradiol level in the follicular phase (p = 0.049) suggesting that a decrease in 

suppression values in the late follicular phase may have been due to an excitatory 

effect of oestrogen, leading to a reduction of cochlear inhibition. The LMM 

analysis revealed that oestradiol had a small negative effect [LMM, oestradiol 

estimate = -0.0003] on the MOC suppression but the effect was not significant (p 

= 0.3). However, during the luteal phase, progesterone lowered the MOC 

suppression by 0.013 dB and oestradiol increased it by 0.002 dB. This was further 

confirmed by the significant negative correlation with progesterone (r = -0.36, p = 

0.04) and positive correlation with oestradiol (r = 0.43, p = 0.01) in the luteal 

phase. These findings suggested that the effects of ovarian steroids on the 

olivocochlear reflex arc were more complex, with oestradiol possibly having a 

dual action possibly due to the presence of progesterone.  
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Auditory brainstem evoked responses 

The ABR responses showed some significant change during the ovarian cycle, 

with an increase in the wave I and V latencies in the follicular phase (sessions 1 

and 2) and a decrease in the late luteal phase ( session 4). There was also 

shortening of the wave I-V interval (p = 0.03) in the luteal phase. The longer 

latencies in the follicular phase (sessions 1 and 2) suggested that oestradiol might 

have been involved, and the shorter latencies in the luteal phase suggested 

progesterone might also play a role.  The positive correlation between oestradiol 

and III-V interval and wave V latency suggested that higher oestradiol levels were 

associated with longer latencies. However, neither oestradiol nor progesterone 

were found to have a significant effect on ABR latencies by LMM analysis (Table 

7.4-H and Table 7.4-I).  
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Chapter 8 : Comparison of auditory function between 

women and men over a similar period of time 

 

8.1 Introduction 

Gender differences in sensory functions, including the sense of hearing, have been 

described in both humans and animals (reviewed by Velle, 1987, Nelson, 2000, 

Becker, 2002). The major sex differences in auditory function have been 

described above in section 3.1.3, and suggested more sensitive hearing in females. 

The underlying mechanisms of these observations are not fully elucidated, but 

may include sexual dimorphism in the central nervous system and auditory 

structures, exposure to reproductive hormones during development, and adulthood 

(reviewed in section 3.1.3).  

 

The possible role of ovarian hormones in the gender differences in ABR latencies 

has been suggested previously (Trune et al., 1988, Dehan and Jerger, 1990, 

Elkind-Hirsch et al., 1994). However, only a few studies have compared the 

auditory function between women and men, across a similar period of time to 

record any fluctuation in auditory function that could be due to physiological 

cycles in women and men. The majority of studies have examined ABRs (Fagan 

and Church, 1986, Dehan and Jerger, 1990, Wharton and Church, 1990, Elkind-

Hirsch et al., 1994), and only one report studied spontaneous OAE (Haggerty et 

al., 1993).  

 

The purpose of this study was to compare several aspects of the auditory function 

between men and women across a similar period of time. This corresponded to 

one naturally occurring ovarian cycle for women and across a month in the men. 

 

8.2 Study protocol 

Normal hearing sensitivity (defined in section 1.2.1) was determined by PTA, 

before participating in the study or during the first testing session. 
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All volunteers underwent auditory tests (described in section 5.3.1 except for 

PTA) four times while participating in this study. The women were tested during 

one ovarian cycle as described in section 7.2, while the men had the auditory tests 

once a week for four consecutive weeks to correspond with the ovarian cycle 

measurements, but with no hormonal assessment.  

 

8.2.1 Statistical analysis 

The statistical tests were performed using SPSS version 17.0 (SPSS Inc., 2008) 

and included the following procedures: 

! Linear mixed-effect modeling (LMM): was used for changes in auditory 

function measures during the repeated testing in men and women (McCulloch 

& Searle, 2001; Garson, 2009). The auditory function measure was the 

dependent variable and the test session was both the fixed and repeated factor 

with pairwise comparison of the estimated marginal means between the 

different test sessions. Gender was also used as a between subject factor, and 

the interaction between gender and test session was examined. 

! Paired sample t-test: was used to analyse the TEOAE inter-session 

differences calculated by the ILO software (section 5.3.1.3) in each group of 

subjects.  

! Independent sample t-test: was used to compare the TEOAE inter-session 

differences calculated by the ILO software between women and men, and the 

other auditory function measures at each testing session. 

 

8.3 Subjects 

The study involved two groups of subjects: 

• Group of women: 18 women (36 ears) who had taken part in the previous 

study (section 7.3). 

• Group of men: 15 men (30 ears) volunteered, of whom one completed 

only two test sessions and another man completed only three test sessions. 

 

The average age of the women was 32.33 (SD = 8) years, with 30 as the median 

age (range 22-49). The average age of the men was 31.8 (SD = 7.4) years with 33 
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as the median age (range 21-48). The t test showed no significant difference in 

age between men and women [t(31) = 0.2, p = 0.8]. 

 

8.4 Results 

 

8.4.1 Pure tone audiometry 

All subjects had normal hearing thresholds. Women tend to have higher 

thresholds in the low frequencies (250 and 500 Hz) while men tend to have higher 

thresholds in the mid to high frequencies (1000-4000 Hz). However the 

differences were not significant (Figure 8.4.1).  

 

 
 
Figure 8.4.1: Mean PTA thresholds in men and women (women = !, men = "). 

 

8.4.2 Tympanometry 

All subjects had normal middle ear pressures and tympanic membrane compliance 

during the repeated testing. There was no significant difference in middle ear 

pressure between the women and men [LMM, F(1, 64.4) = 0.89, p = 0.35]. 

However, the tympanic membrane compliance was larger in men [LMM, gender 
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estimate = 0.33 (SE = 0.15)] compared to the women, which was significant 

[LMM, F(1, 63.7) = 4.95, p = 0.03]. 

 

8.4.3 Otoacoustic emissions 

 

8.4.3.1 Spontaneous otoacoustic emissions 

SOAE were recorded in  63.9 % of female ears and 36.7% of  male ears.  

The number of SOAE spectral peaks recorded in the four test session are 

summarised in Table 8.4-A.  

 

Table 8.4-A: The number of SOAE spectral peaks during the four testing sessions in 
women and men. 

Number of SOAE 
 

Session 1 Session 2 Session 3 Session 4 

Women 

(n=23 ears) 
82 80 65 68 

Men 

(n=11 ears) 
23 19 24 18 

 

 

There were 66 SOAE spectral peaks recorded consistently in the repeated testing 

sessions; 52 in the women and 14 in the men. 

 

The SOAE amplitude did not significantly change during the four testing sessions 

in both the women [LMM, F(3,58.9) = 1.28, p = 0.29] and men [LMM, F(3,18.1) 

= 1.7; p = 0.2]. The SOAE amplitudes in the women were larger than in the men 

[LMM, gender estimate = 2.45 (SE = 1.55)] but the effect was not significant 

[LMM, F(1,64.03) = 2.49; p = 0.12]. 

 

There was a highly significant change in the SOAE frequency shift in women 

during the repeated testing [LMM, F(3,89.2) = 14.39, p < 0.001]. The SOAE 

frequency gradually shifted during the repeated testing in men and just reached 
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significance [LMM, F(3,19.01) = 3.14; p = 0.05]. The SOAE frequency shift was 

greater in women [LMM, gender estimate = 0.004 (SE = 0.04)], but it did not 

reach significance [LMM, F(1,231.96) = 0.01; p = 0.93], because there was a 

significant interaction between the test session and gender [LMM, F(1,108.6) = 

7.6; p < 0.001]. The SOAE frequency shift was significantly different between 

men and women at each test session using the independent sample T test as seen 

in Figure 8.4.2. 

 

 

Figure 8.4.2: The mean (± 95% confidence interval) of the SOAE peak frequency shift in 
women and men which were significantly different in all test sessions (women = !, men 
= ") *p < 0.05, **p < 0.01, ***p < 0.001. 

 

8.4.3.2 Transient evoked otoacoustic emissions 

All subjects had recordable TEOAE from both ears, so in total there were TEOAE 

from the 36 ears of the women and the 30 ears of the men. There was no 

significant change in the level of the TEOAE response during the four testing 

session in either women [LMM, F(3, 55.02) = 0.62, p = 0.6 ] or men [LMM, F(3, 

27.8) = 1.35, p = 0.3 ]. However, the overall TEOAE responses were larger in the 

women [LMM, gender estimate = 3.16 (SE = 0.99)] and the effect was significant 

[LMM, F(1, 63.9) = 13.3, p = 0.001] across the four test sessions. 

 



 154 

The TEOAE S/N in the five frequency bands did not change significantly during 

the testing sessions in either the women or men (Table 8.4-B-8.4-F). The TEOAE 

S/N in the 1 kHz frequency band was larger in the women [LMM, gender estimate 

= 1.7 (SE = 1.1)], but the effect did not reach significance [LMM, F(1, 63.1) = 

2.3; p = 0.13] as seen in Table 8.4-B. 

 

Table 8.4-B: TEOAE S/N in 1 kHz frequency band (estimated marginal means ± SE) in 
women and men. 

Test Session 
TEOAE 

S/N 1 kHz  
Session 1 Session 2 Session 3 Session 4 

Linear mixed-

effect model 

(fixed effect) 

Women 

(n=36) 
13.4 ± 0.73 14.1 ± 0.71 14.2 ± 0.69 13.9 ± 0.68 

F(3, 40.9) = 

1.2, p = 0.31 

Men 

(n=30) 
12.4 ± 1.02 12.1 ± 0.98 12 ± 1.01 12.4 ± 0.98 

F(3, 32.2) = 

0.3, p = 0.84 

Gender 

t-test* 

t(64) = 0.9  

p = 0.38 

t(64) = 1.5 

p = 0.13 

t(64) = 1.7 

p = 0.09 

t(64) = 1.6 

p = 0.06 

F(1, 63.1) = 

2.3, p = 0.13 

*equal variances assumed 

 

 

The TEOAE S/N in the 2 kHz [LMM, gender estimate = 4.9 (1.3)], 3 kHz [LMM, 

gender estimate = 6.05 (1.4)], 4 kHz [LMM, gender estimate = 6.2 (SE = 1.4)], 

and 5 kHz [LMM, gender estimate = 5.06 (SE = 1.4)] frequency bands were 

significantly higher in the women compared to the men in all test sessions (Table 

8.4-C-8.4-F).  
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Table 8.4-C: TEOAE S/N in 2 kHz frequency band (estimated marginal means ± SE) in 
women and men. 

Test session 
TEOAE 

S/N 2 kHz  
Session 1 Session 2 Session 3 Session 4 

Linear mixed-

effect model 

(fixed effect) 

Women 

 (n=36) 
14.8 ± 0.9 15 ± 0.9 15 ± 0.9 14.8 ± 0.9 

F(3, 34.2) = 0.09,      

p = 0.96 

Men  

(n=30) 
9.8 ± 1 10.5 ± 0.91 9.1 ± 1 9.7 ± 0.95 

F(3, 32.4 ) = 2.1, 

p = 0.12 

Gender 

t-test* 

t(64) = 3.7 

p < 0.001 

t(64) = 3.5 

p = 0.001 

t(64) = 4 p 

< 0.001 

t(64) = 4.1 

p < 0.001 

F(3, 63.9) = 15.3, 

p < 0.001 

*equal variances assumed 

 

 

Table 8.4-D: TEOAE S/N in 3 kHz frequency band (estimated marginal means± SE) in 
women and men. 

Test session 
TEOAE 

S/N 3 kHz  
Session 1 Session 2 Session 3 Session 4 

Linear mixed-

effect model 

(fixed effect) 

Women 

(n=36) 
11.4 ± 1.03 11.6 ± 1.03 11.5 ± 1.01 11.4 ± 1.01 

F(3, 34.2) = 0.19, 

p = 0.9 

Men  

(n=30) 
5.8 ± 0.99 5.7 ± 0.97 5.4 ± 0.96 5.1 ± 0.96 

F(3, 32.7) = 0.88; 

p = 0.46 

Gender 

t-test* 

t(64) = 4.1 

p < 0.001 

t(64) = 4  

p < 0.001 

t(60) = 4.3 

p < 0.001 

t(58) = 4.1 

p < 0.001 

F(1, 63.9) = 19.9, 

p < 0.001 

*equal variances assumed 
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Table 8.4-E: TEOAE S/N in 4 kHz frequency band (estimated marginal means ± SE) in 
women and men. 

Test session 
TEOAE 

S/N 4 kHz  
Session 1 Session 2 Session 3 Session 4 

Linear mixed-

effect model 

(fixed effect) 

Women 

(n=36) 
8.4 ± 1.19 8.7 ± 1.18 8.8 ± 1.2 8.3 ± 1.19 

F(3, 33.7) = 0.6, 

p=0.6 

Men 

(n=30) 
2.6 ± 0.82 2.2 ± 0.79 2.1 ± 0.87 2.6 ± 0.81 

F(3, 26.2) = 0.5, 

p = 0.68 

Gender 

t-test* 

t(58.7) = 

3.8, 

p < 0.001 

t(54.5) = 

4.7, 

p < 0.001 

t(56.5) = 

3.6, 

p < 0.001 

t(51.4) = 

3.9, 

p < 0.001 

F(3, 63.8) = 18.1, 

p < 0.001 

*equal variances not assumed 

 

Table 8.4-F: TEOAE S/N in 5 kHz frequency band (estimated marginal means ± SE) in 
women and men. 

Test session TEOAE 

S/N 5 

kHz  Session 1 Session 2 Session 3 Session 4 

Linear mixed-

effect model 

(fixed effect) 

Women 

(n=35) 
3.6 ± 1.23 4.3 ± 1.23 4.6 ± 1.25 3.7 ± 1.18 

F(3, 30) = 0.99,   

p = 0.41 

Men 

(n=26) 
-1.2 ± 0.69 -0.9 ± 0.54 -0.9 ± 0.79 -1 ± 0.62 

F(3, 18.2) = 

0.15, p=0.93 

Gender 

t-test* 

t(45.8) = 3.9,  

p < 0.001 

t(42.2) = 3.8,  

p < 0.001 

t(39) =  3.7, 

p = 0.001 

t(35) = 2.6,  

p = 0.014 

F(1, 60.7) = 

12.5, p = 0.001 

*equal variances not assumed 

 

The overall difference in the level of TEOAE between the sessions calculated by 

the ILO software was larger and more variable in the female group (Figure 8.4.3).  
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Figure 8.4.3: The mean (± 95% confidence interval) difference in TOAE responses 
between the different testing sessions in women and men calculated by the ILO software 
(women = !, men = "). * p < 0.05, ** p < 0.01, *** p < 0.001. 

The inter session differences in TEOAE levels were significantly larger in women 

compared to men except for the difference in TEOAE levels between session 3 

and 4 as see in Table 8.4-G. 

 

Table 8.4-G: The mean (±SD) difference in TEOAE levels calculated by the ILO 
software in women and men. 

The inter-session TEOAE Difference 

 
Session 1 

vs. 2 

Session 3 

vs. 4 

Session 2 

vs. 3 

Session 1 

vs. 3 

Session 1 

vs. 4 

Session 2 

vs. 4 

Women 

(n=36) 
5.6 ± 6.5 4.9 ± 5.2 7.5 ± 6.3 6.2 ± 5.8 7.3 ± 7 7.6 ± 6.5 

Men 

(n=30) 
2.6 ± 3.7 2.9 ± 3.4 3.3 ± 4.1 3.3 ± 4.6 4 ± 3.9 2.7 ± 3.4 

Gender 

t-test* 

t(56.9) = 

2.4,  

p = 0.02 

t(53.9) = 

1.8,  

p = 0.07 

t(57.4) = 

3.1,  

p = 0.003 

t(56.9) = 

2.2,  

p = 0.03 

t(53.2) = 

2.3,  

p = 0.03 

t(51.99) = 

3.7, 

 p < 0.001 

*equal variances not assumed 
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The inter session difference was significantly larger between the luteal and 

follicular phase of the ovarian cycle in the group of women (section 7.4.3.2). 

However, the inter session difference in the group of men was similar during the 

repeated testing (Figure 8.4.3), except for the difference in TEOAE responses 

between session 1 and session 4 which was significantly larger than the difference 

in the TEOAE responses between sessions 1 and 2 [t(25) = 2.8, p = 0.01].  

 

8.4.4 Medial olivocochlear (MOC) suppression 

The MOC suppression in the women significantly changed during the repeated 

testing [LMM, F(3, 37.2) = 3.99, p = 0.015]. The MOC suppression in men 

decreased during the repeated testing but did not change significantly [LMM, F(3, 

25.03) = 1.11, p = 0.36].  The suppression was less marked in the women 

compared to the men in all the test sessions [LMM, gender estimate = -0.3 (SE = 

0.2)], but the difference was not statistically significant [LMM, F(1, 61.4) = 2.1, p 

= 0.15] as seen in Table 8.4-H. 
 

Table 8.4-H: The MOC suppression (estimated marginal means± SE) in women and 
men.  

Test session 
MOC 

Suppression 
Session 1 Session 2 Session 3 Session 4 

Linear mixed-

effect model 

(fixed effect) 

Women 

 (n=36) 
1.51 ± 0.13 1.29 ± 0.12 1.35 ± 0.13 1.23 ± 0.13 

F(3, 37.2) = 4,   

p = 0.01 

Men  

(n=30) 
1.88 ± 0.23 1.58 ± 0.2 1.57 ± 0.2 1.58 ± 0.22 

F(3, 25) = 1.1, 

p=0.36 

Gender 

t-test*  

t(64) =  

-1.5,  

p = 0.14 

t(64) =  

-1.2,  

p = 0.22 

t(60) =  

-1.04,  

p = 0.3 

t(58) =  

-1.7  

p = 0.1 

F(1, 61.4) = 2.1, 

p=0.15 

*equal variances assumed 
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8.4.5 Auditory brainstem response 

The absolute wave latencies were significantly shorter in women compared with 

men in all test sessions (Figure 8.4.4).  

 

 
Figure 8.4.4: The mean (+SD) of the ABR latencies in women (!) and men (!), with 
the LMM gender estimates and SE. 

 
The ABR latencies did not change significantly during the repeated testing in 

either men or women, as seen in Tables 8.4-I -8.4-K. However, there was a 

significant interaction between the test session and gender for the Wave V latency 

[LMM, F(3, 62.2) = 3.6, p = 0.018]. 
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Table 8.4-I: The absolute Wave I latency (estimated mean ± SE) in women and men. 

Test Session Wave I 

absolute 

latency Session 1 Session 2 Session 3 Session 4 

Linear mixed-

effect model 

(fixed effect) 

Women 

(n=36) 
1.6 ± 0.02 1.62 ± 0.02 1.6 ± 0.02 1.6 ± 0.02 

F(3, 38.4) = 2.65 

p = 0.06 

Men 

(n=30) 
1.77 ± 0.02 1.77 ± 0.02 1.76 ± 0.02 1.78 ± 0.02 

F(1, 26.1) = 0.84 p 

= 0.48 

Gender 

t-test* 

t(64) =       

-5.8  

p < 0.001 

t(64) =       

-5.2  

p < 0.001 

t(60) =       

-5.5  

p < 0.001 

t(58) =       

-5.2  

p < 0.001 

F(1, 63.5) = 35.4, 

p<0.001 

*equal variances assumed 
 
 

Table 8.4-J: The absolute Wave III latency (estimated mean ± SE) in women and men. 

Test Session Wave III 

absolute 

latency Session 1 Session 2 Session 3 Session 4 

Linear mixed-

effect model 

(fixed effect) 

Women 

(n=36) 
3.72 ± 0.02 3.72 ± 0.02 3.72 ± 0.02 3.71 ± 0.02 

F(3, 31.1) = 0.68   

p = 0.57 

Men 

(n=30) 
3.89 ± 0.02 3.89 ± 0.03 3.89 ± 0.02 3.9 ± 0.02 

F(1, 31.9) = 1.81, 

p = 0.16 

Gender 

t-test* 

t(64) =       

-4.8  

p < 0.001 

t(64) =       

-4.7  

p < 0.001 

t(60) =       

-4.5  

p < 0.001 

t(58) =       

-4.6  

p < 0.001 

F(1, 63.97) = 

24.8, p < 0.001 

*equal variances assumed 
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Table 8.4-K: The absolute Wave V latency (estimated mean ± SE) in women and men. 

Test Session Wave V 

absolute 

latency Session 1 Session 2 Session 3 Session 4 

Linear mixed-

effect model 

(fixed effect) 

Women 

(n=36) 
5.55 ± 0.03 5.56 ± 0.03 5.54± 0.03 5.52 ± 0.03 

F(3, 35.1) = 2.36,     

p = 0.09 

Men 

(n=30) 
5.87 ± 0.03 5.87 ± 0.03 5.88 ± 0.03 5.88 ± 0.03 

F(1, 28.5) = 1.06, 

p = 0.38 

Gender 

t-test* 

t(64) =       

-7.5  

p<0.001 

t(64) =       

-7.1  

p<0.001 

t(60) =       

-7.4  

p < 0.001 

t(58) =       

-7.4  

p < 0.001 

F(1,63.9) = 59.3, 

p < 0.001 

*equal variances assumed 
 

 

The interpeak intervals did not change significantly during the repeated testing in 

both women and men (Table 8.4-L-8.4-N). The I-III interpeak intervals were 

shorter in women [LMM, gender estimate = -0.012 (SE = 0.03)], but the 

difference was not significant [LMM, F(1, 64) = 0.13, p = 0.7]. 
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Table 8.4-L: The I-III interpeak interval (estimated mean ± SE) in women and men.  

Test Session I-III 

interpeak 

interval Session 1 Session 2 Session 3 Session 4 

Linear mixed-

effect model 

(fixed effect) 

Women 

(n=36) 
2.12 ± 0.03 2.1 ± 0.03 2.11 ± 0.03 2.11 ± 0.03 

F(3, 32.3) = 1.27,   

p = 0.3 

Men 

(n=30) 
2.12 ± 0.02 2.12 ± 0.02 2.14 ± 0.02 2.14 ± 0.02 

F(1, 31.6) = 0.9, 

p=0.45 

Gender 

t-test* 

t(62.6) = 

0.2  

p = 0.87 

t(63.1) =     

-0.49  

p = 0.6 

t(55) =        

-0.86  

p = 0.4 

t(52.4) =     

-0.86  

p = 0.39 

F(1, 63.96) = 

0.13, p = 0.72 

*equal variances assumed 

 

The III-V [LMM, gender estimate = -0.15 (SE = 0.03)] and the I-V [LMM, gender 

estimate = -0.17 (SE = 0.04)] interpeak intervals were significantly shorter in the 

women in all test sessions (Table 8.4-M and 8.4-N). 
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Table 8.4-M: The III-V interpeak interval (estimated mean ± SE) in women and men. 

Test Session III-V 

interpeak 

interval Session 1 Session 2 Session 3 Session 4 

Linear mixed-

effect model 

(fixed effect) 

Women 

(n=36) 
1.83 ± 0.02 1.83 ± 0.03 1.82 ± 0.02 1.81 ± 0.03 

F(3, 32.9) = 1.2 

p = 0.33 

Men 

(n=30) 
1.97 ± 0.03 1.98 ± 0.03 2.06 ± 0.07 1.97 ± 0.03 

F(1, 28.3) = 0.51, 

p = 0.68 

Gender 

t-test* 

t(64) =       

-4.1  

p < 0.001 

t(64) =       

-3.9  

p = 0.001 

t(60) =       

-3.05  

p = 0.003 

t(58) =       

-4.2  

p < 0.001 

F(1, 64.1) = 18.7, 

p < 0.001 

*equal variances assumed 

 

 

Table 8.4-N: The I-V interpeak interval (estimated mean ± SE) in women and men. 

Test Session I-V 

interpeak 

interval Session 1 Session 2 Session 3 Session 4 

Linear mixed-

effect model 

(fixed effect) 

Women 

(n=36) 
3.95 ± 0.03 3.94 ± 0.03 3.93 ± 0.03 3.92 ± 0.03 

F(3, 37.98) = 1.9   

p = 0.15 

Men 

(n=30) 
4.1 ± 0.03 4.1 ± 0.03 4.12 ± 0.03 4.11 ± 0.03 

F(1, 29.6) = 0.86 

p = 0.47 

Gender 

t-test* 

t(64) =       

-3.2  

p = 0.002 

t(64) =       

-3.5  

p = 0.001 

t(60) =       

-4.3  

p < 0.001 

t(58) =       

-4.4  

p < 0.001 

F(1, 63.9) = 14.9,                                 

p < 0.001 

*equal variances assumed 
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8.5 Summary of results  

This study examined several aspects of auditory function, including cochlear 

modulation (changes in SOAE and TEOAE), olivocochlear suppression and 

auditory brainstem evoked responses, between men and women. The results 

suggest gender differences in auditory function.  

 

Tympanometry 

The middle ear pressure was similar in both men and women, while the tympanic 

membrane compliance was significantly larger in men compared to the women (p 

= 0.03). 

 

Cochlear modulation 

The SOAE were recorded in 72.2 % of the women (in 13 out of 18) and in 46.7% 

of the men  (in 7 out of the 15), which was slightly higher than previously 

reported in the literature (Penner and Zhang, 1997). The SOAE amplitudes in 

women were higher than in the men, but the differences did not reach 

significance, and this is possibly due to the high variability in  SOAE amplitudes 

compared to SOAE frequency (van Dijk & Wit, 1990; Wit, 1993). 

 

The SOAE frequency shift significantly changed during the repeated testing 

sessions in women, but not in, men.  

 

The overall TEOAE responses were three times larger in women compared to 

men (gender estimate= 3.16). The larger overall TEOAE response recorded in the 

women was in agreement with earlier findings reported in the literature (Probst et 

al., 1991, McFadden, 1998, Hall, 2000). The TEOAE S/N ratios in the 2, 3, 4 and 

5 kHz frequency bands were between five to six time larger in women compared 

to the men, which was significant, but the TEOAE S/N in the 1 kHz frequency 

band was only two times larger in women compared to the men and was not 

statistically significant (section 8.4.3.2).  
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The  inter-session difference in the level of TEOAE calculated by the ILO 

software was significantly larger in the female group and more variable compared 

to the men.  

 

Olivocochlear suppression 

The MOC suppression was lower in the women compared to the men (gender 

estimate = -0.3), but the difference was not statistically significant.  

 

The level of MOC suppression significantly changed during the ovarian cycle  in 

the women but not in the men. The lower MOC suppression in women might 

suggest that the MOC fibers were less inhibitory to the OHC leading to lower 

efferent suppression and greater TEOAE response amplitudes being seen in the 

women. 

 

Auditory brainstem evoked responses 

The absolute wave latencies of the ABR were significantly shorter in the women 

(by 0.2-0.3 msec) compared to the men, in all testing sessions. The III-V and I-V 

interpeak intervals were also significantly shorter in the women by 0.2 msec 

compared to the men. The shorter ABR latencies in women may be attributed to 

the excitatory effect of oestrogen and sexual dimorphism in the CNS (Cahill, 

2006). 
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Chapter 9 : Auditory function in women undergoing 
assisted conception treatment 

 

9.1 Introduction 

Subfertility is defined as failure to achieve pregnancy after twelve months or more 

of regular unprotected sexual intercourse (Zegers-Hochschild, et al., 2009). The 

choice of treatment for subfertile couples depends on the underlying cause of 

subfertility and the results of their investigations (Lass, 1999).  

 

There are several treatment techniques, including in vitro fertilization (IVF) and 

intracytoplasmic sperm injection (ICSI), intrauterine insemination (IUI)  and 

ovulation induction (OI).  

 

The first baby born through IVF was in July, 1978. The oocyte used was obtained 

from a natural ovarian cycle (Steptoe & Edwards, 1978). Further research 

revealed that the pregnancy rate with IVF was greatly improved if more than one 

embryo was replaced in the uterus (Edwards & Steptoe, 1983; Fishel, et al., 1985; 

Wood, et al., 1985). This is the rationale behind ovarian stimulation in current 

IVF treatment protocols.  The aim of ovarian stimulation or superovulation is to 

stimulate the woman’s ovaries to produce a larger number of follicles, to collect 

greater number of oocytes for fertilization, which enables a greater chance for a 

number of high-quality embryos for transfer to the uterus and cryopreservation 

(Macnamee & Brinsden, 1999). There are several protocols for ovarian 

stimulation (Hugues, 2002; Cohen, 2003), but there is always a risk of ovarian 

hyperstimulation syndrome (Rizk & Aboulghar, 1999). Patients undergoing 

ovarian stimulation are usually monitored by serum oestradiol levels and 

ultrasonography to anticipate ovarian hyperstimulation syndrome (reviewed by 

Rizk & Smitz, 1992; Kwan, et al., 2008). 

 

The main ovarian stimulation protocol involves the use of gonadotrophin 

releasing hormone (GnRH) analogues with gonadotrophins. The standard long 

protocol is widely used clinically, and involves the following: 
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• A GnRH analogue is administered subcutaneously or as a nasal spray for  

a minimum of 14 days (Porter, et al., 1984), leading to suppression of the 

pituitary and thus suppression of ovarian function with ovarian steroid  

down-regulation to the levels similar to those in postmenopausal women 

(Akagbosu, 1999). The rationale behind ovarian steroid down-regulation is 

to prevent premature LH surge that may lead to cancellation of treatment.  

 

• Ovarian stimulation is started by the administration of gonadotrophins 

after establishing that ovarian down-regulation has been achieved by 

ultrasound to measure endometrial thickness and serum oestradiol levels 

(Macnamee & Brinsden, 1999). The patient continues taking the GnRH 

analogue along with the gonadotrophins to prevent premature LH surge 

and increase the chance of more oocytes available for collection 

(Loumaye, 1990). The ovaries are stimulated to produce several follicles 

and oestradiol levels rise significantly, compared to the natural ovarian 

cycle. The length of treatment is usually eight to ten days (Macnamee & 

Brinsden, 1999). Once the size of at least three dominant follicles reach 

more than or equal to 16-17 mm, human chorionic gonadotrophin (HCG) 

is given to complete oocyte maturation in preparation for oocyte 

collection, which is scheduled 35-36 hours later. 

 

• Progesterone supplement is started after oocyte collection and is continued 

after embryo transfer. This supplement is given as a support because the 

hormone production in luteal phase of a stimulated cycle is different from 

a natural cycle (Loumaye, 1990; Hugues, 2002). A pregnancy test is 

usually performed two weeks after embryo transfer. 

 

The typical timeline of the long protocol IVF treatment is described in Figure 

9.1.1. The dosage and length of the medications is tailored to each subject by the 

treating gynecologist. 
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Figure 9.1.1: Timeline of a standard long protocol IVF treatment cycle. (HCG= Human 
chorionic gonadotrophin).  

 
The assisted conception treatment alters the women’s hormonal profile and may 

affect the auditory system, as seen during the normal ovarian cycle. There has 

been one case report of a patient, who was undergoing IVF treatment, presenting 

with sudden sensorineural hearing loss, tinnitus and vertigo (Hajioff, et al., 2003). 

The underlying cause was attributed to a throboembolic vascular event and was 

not considered a direct hormonal cause due to her normal physiological oestrogen 

level. A thrombotic stroke has been described previously in a patient undergoing a 

similar treatment (Rizk, et al., 1990).  

 

The supraphysiological oestrogen levels in women undergoing assisted 

conception treatment provide a unique cohort for researchers, to evaluate the 

possible effects of ovarian steroids, especially oestrogen on auditory or other 

physiological system. The patient’s hormones are closely monitored making the 

timing for testing more accurate than during the natural ovarian cycle. The 

possible effect of oestradiol on Eustachian tube function (Nir, et al., 1991) and 

ABR (Ben David, et al., 1995) has been studied in women undergoing ovulation 
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induction. Nir and co-workers (1991) correlated their patients (n = 25) oestrogen 

levels with the shift in tympanometric peak pressure, which reflected the 

Eustachian tube function. They found that the Eustachian tube function did not 

change significantly with rising oestrogen levels in the majority of their subjects. 

Ben David and his colleagues (1995) reported longer ABR latencies in the group 

of women with higher oestrogen levels compared to women with lower oestrogen 

levels and women with both higher oestrogen and progesterone, but the 

differences were not significant. 

 

GnRH may also have an effect on the auditory system. Auditory stimuli 

associated with reproductive behaviour in birds and amphibians leads to 

stimulation of GnRH production (Cheng, et al., 1998; Maney, et al., 2007). GnRH 

receptors have been identified in several areas of CNS (reviewed by Wang, et al., 

2010) including some sensory and motor areas in some species (Forlano, et al., 

2000; Kawai, et al., 2009), some of which may be relevant to auditory processing 

(Ubuka & Bentley, 2009). Recently GnRH was found to elevate the auditory 

threshold in fish (Maruska & Tricas, 2011). Another possible action of GnRH on 

auditory system is through its effect on the GABA-ergic system, and GnRH 

analogues have been used to treat some forms of catamenial epilepsy (Bauer, et 

al., 1992; Herzog, 2009; Reddy, 2009). 

 

The aim of this study was to assess the auditory function in a group of women 

undergoing a standard assisted conception treatment with simultaneous 

measurements of their hormone levels at three points during their treatment. 

 

 

9.2 Study protocol 

Normal hearing sensitivity (defined in section 1.2.1) was determined by PTA 

before participating in the study or during the first testing session. 

 

Auditory tests (described in section 5.3.1 except for PTA) were performed at three 

points during the assisted conception treatment as follows: 
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Session 1: minimum 14 days following GnRH stimulation (ovarian steroid 

down-regulation). 

 

Session 2: about 8-10 days following GnRH plus gonadotrophin 

stimulation (ovarian stimulation) before egg collection.  

 

Session 3: about 10-14 days following egg collection when the subject is 

taking progesterone supplement which raises the level of progesterone 

(post embryo transfer).  

 

Blood samples were taken at each test session to measure serum oestradiol and 

progesterone levels. The patients were also monitored by ultrasound by their 

treating gynecologists as part of their treatment. 

 

9.2.1 Statistical analysis 

Statistical analysis was as described above in section 7.2.1. 

Due to the small sample size, the inter-session difference in TEOAE calculated by 

the ILO software was analysed using the non-parametric related samples test 

(Wilcoxon Signed-rank test), instead of the paired sample t-test. 

 

 

9.3 Subjects 

Eighty seven potential subjects initially expressed an interest to participate, but 

when they were asked to take part in the study, 62 declined, as they were offered a 

different fertility protocol, failed to attend the first testing session and could not be 

contacted, became pregnant naturally, or they were still waiting to have their 

fertility treatment.  

 
Twenty five women, who were scheduled to receive assisted conception 

treatment, volunteered for the study. Two women were excluded from the study 

after the first test due to concomitant medical conditions (seronegative arthritis 

and insulin dependent diabetes mellitus) which may have affected their hearing 
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tests. Six women had only the initial first test but did not continue due to their 

treatment being terminated, because they did not respond to either the pituitary 

suppression or the ovarian stimulation. A further three had only one hearing test 

then were unable to continue engagement in the study due to other family or work 

commitments. 

 

The remaining fourteen completed at least two hearing test sessions, with seven 

having completed all three hearing test sessions (subject 1-4 and subject 6-7), but 

some of the serum hormones were not measured as detailed in Table 9.3-A. One 

subject from the 14 was unable to come for the first session (subject 9), one did 

not attend her second session (subject 5), and five could not come for the third 

session, because their treatment failed and they started to bleed (subject 10-14). A 

summary of the auditory test sessions and blood samples performed on the 14 

volunteers is presented in Table 9.3-A. 

 

The average age of the 14 subjects who completed at least two test sessions was 

33.5 (± 3.5) years old (median 34, range 28-40 years). The average age of the 

seven women who completed the three test sessions was 33.6 (± 3.4) (median 34, 

range 29-40 years). 
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Table 9.3-A: Summary of the age, auditory tests and serum hormone levels performed in 
the three test sessions in the 14 volunteers.  

Subject  Age 

Session 1 

Auditory tests 

Serum E2/P 

Session 2 

Auditory tests 

Serum E2/P 

Session 3 

Auditory tests 

Serum E2/P 

1 40 
All except ABR 

E2 only 

All except ABR 

E2 only 

All except ABR 

E2 and P 

2 29 
All 

E2 and P 

All 

E2 and P 

All 

E2 and P 

3 34 
All 

E2 and P 

All 

E2 and P 

All 

E2 and P 

4 34 
All 

E2 only 

All 

E2 only 

All 

E2 and P 

5 33 
All 

E2 and P 
DNA 

All except ABR 

E2 and P 

6 33 
All 

E2 and P 

All 

E2 and P 

All 

E2 and P 

7 31 
All 

E2 and P 

All 

NM 

All 

E2 and P 

8 34 
All 

E2 and P 

All 

E2 and P 

All 

E2 and P 

9 29 DNA 
All 

E2 and P 

All 

E2 and P 

10 35 
All 

E2 only 

All 

E2 only 
DNA 

11 28 
All 

E2 and P 

All 

E2 and P DNA 

12 34 
All 

E2 and P 

All 

NM DNA 

13 36 
All 

E2 and P 

All 

E2 and P 
DNA 

14 39 
All 

NM 

All 

E2 only DNA 

(DNA: did not attend test session, E2: oestradiol, P: progesterone, NM: E2 and P not 

measured) 
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9.4 Results 

 

9.4.1 Serum hormone levels 

The serum oestradiol levels in 14 subjects was not measured in some test sessions 

(Table 9.3-A) as summarized in Table 9.4-A.  

 

The serum oestradiol levels changed significantly during the treatment [LMM, 

F(2, 29) = 9.14, p = 0.001]. The serum oestradiol levels were lowest in session 1 

and reached their highest levels in session 2.  

 

Table 9.4-A: Serum oestradiol levels (pmol/L) in the 14 volunteers.  

Subject  
Session 1 

(ovarian steroid down-
regulation) 

Session 2 

(ovarian stimulation) 

Session 3 

(post embryo transfer) 

1  74 1229 488 

2 192 4343 6571 

3  110 5558 164 

4  49 948 208 

5  77 DNA 6094 

6  76 2232 2390 

7  74 NM 124 

8  116 4442 313 

9  DNA 11241 180 

10  75 3077 DNA 

11  167 11674 DNA 

12 99 NM DNA 

13  209 5705 DNA 

14  NM 1393 DNA 

(NM: not measured; DNA: did not attend test session) 

 

The serum progesterone levels in 14 subjects was not measured in some test 

sessions (Table 9.3-A) as summarized in Table 9.4-B 
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Table 9.4-B: Serum progesterone levels (nmol/L) in the 14 volunteers.  

Subject  
Session 1 

(ovarian steroid down-
regulation) 

Session 2 

(ovarian stimulation) 

Session 3 

(post embryo transfer) 

1 NM NM 50 

2 4 4 190.8 

3 1 4 40 

4 NM NM 49 

5 2 DNA 190.8 

6 2 2 79 

7 2 NM 42 

8 2 3 48 

9 DNA 7 48 

10 NM NM DNA 

11 3 10 DNA 

12 2 NM DNA 

13 1 3 DNA 

14 NM NM DNA 

(NM: not measured; DNA: did not attend test session) 

 

The serum progesterone changed significantly during the treatment [LMM, F(2, 

16.6) = 12.5, p < 0.001]. The serum progesterone level was highest in session 3.  

 

Two of the subjects (subject 2 and 5) who were tested in session 3 were probably 

pregnant (Table 9.4-B). They both had a high level of progesterone (190.8 

nmol/L), which was significantly greater [t(7) = -14.53, p < 0.0001] than the 

progesterone measured in the other seven women tested in session 3. 

 

9.4.2 Tympanometry 

Tympanometry (method described in section 5.3.1.2) was performed in each test 

session before recoding otoacoustic emissions to establish normal middle ear 

function (section 1.2.2). 
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The middle ear pressure significantly changed during the repeated testing [LMM, 

F(2, 19.8) = 4.4, p = 0.03]. The pairwise comparison of the estimated means 

revealed that the middle ear pressure recorded during session 2 was lower than 

during session 1 (p = 0.013) and session 3 (p = 0.04), but was still within the 

normal middle ear pressure range (-50 to +50 daPa, Section 1.2.2) as seen in 

Figure 9.4.1. 

 

 
 

Figure 9.4.1: Middle ear pressure (estimated mean and 95 % confidence interval) in the 
three test sessions. The middle ear pressure in session 2 significantly less compared to 
session 1. *p < 0.05. 

 
The tympanic membrane compliance was highest in the third test session as seen 

in Figure 9.4.2, but the change was not significant [LMM, F(2, 41.03) = 1.7, p = 

0.2].  

 

The linear regression analysis demonstrated no significant correlation between  

the middle ear pressure [r2 = 0.045, F(2,49) = 1.1, p = 0.34] or the tympanic 

membrane compliance [r2 = 0.035, F(2,49) = 1.3, p = 0.43] and corresponding 

oestradiol and progesterone across all three sessions. 
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Figure 9.4.2: Tympanic membrane compliance (estimated mean and 95 % confidence 
interval) in the three test sessions. 

 

9.4.3 Otoacoustic emissions 

 

9.4.3.1 Spontaneous otoacoustic emissions 

SOAE were recorded in 22 of the 28 tested ears (78.6%). Out of the 14 subjects, 

11 subjects had recordable SOAE, from both ears.  

 

The number of SOAE spectral peaks recorded during session 2 was greater than in 

the other two test sessions (Table 9.4-C). Most of the SOAE spectral peaks were 

between 1-3 kHz (58.6%). 

  

Of all spectral peaks, 118 SOAE peaks were recorded in at least two consecutive 

test sessions.  
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Table 9.4-C: The number and frequency composition of SOAE spectral peaks during the 
IVF treatment. 

SOAE 

Spectral 

Peaks 

Session 1 

(ovarian steroid down-

regulation) 

Session 2 

(ovarian 

stimulation) 

Session 3 

(post embryo 

transfer) 

Number 115 125 94 

 

SOAE 

frequency 
< 1kHz 1-3kHz 3-4kHz >4kHz 

proportion 17.2% 58.6% 14.4% 9.8% 

 
 
The SOAE amplitudes were highest during session 2 and lowest during session 3 

as seen in Figure 9.4.3. However, the changes did not reach statistical significance 

[LMM, F (2, 105.2) = 0.67, p = 0.5]. 

 

 

 

Figure 9.4.3: SOAE peak amplitude (estimated mean and 95 % confidence interval) in 
the three test sessions. 
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There was a highly significant change in the SOAE frequency shift during the 

three test sessions [LMM, F (2,205.9) = 18.9, p < 0.001]. The SOAE shifted to a 

higher frequency during session 2 and to a lower frequency during session 3 as 

seen in Figure 9.4.4. The pairwise comparison of the estimated marginal means 

revealed that SOAE frequency shift in the session 1 and 2 was significantly 

greater than in session 3 (p < 0.001).  

 

 
 

Figure 9.4.4: The SOAE frequency shift (mean and 95% confidence interval) in the three 
test sessions: The SOAE frequency shift in session 3 significantly lower than in session 1 
and session 2. *** p < 0.001. 

 
The serum oestradiol was added to the LMM as a covariate and was found to have 

a small positive effect on SOAE amplitude [LMM, oestradiol estimate = 3.8!10-5 

(SE = 7.5!10-5), df = 68.6, p = 0.6], and small negative effect on SOAE frequency 

shift [LMM, oestradiol estimate = -2.5!10-5 (SE = 2.03!10-5), df = 149.7, p = 

0.2], during the three test sessions, but did not reach significance. Serum 

progesterone was added to the LMM as a covariate along with oestradiol and was 

found to have a small negative effect on SOAE frequency shift [LMM, 

progesterone estimate = -0.001 (SE = 0.002), df = 118.4, p = 0.6] and SOAE 

amplitude [LMM, progesterone estimate = -0.018 (SE = 0.01), df = 108.7, p = 

0.07] without reaching significance.  
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The linear regression analysis revealed that the SOAE frequency shift was 

significantly correlated with the corresponding oestradiol and progesterone levels 

across all three sessions [r2 = 0.07, F(2,218) = 8.2, p < 0.001]. There was a 

positive correlation with oestradiol level [r = 0.115, p = 0.08] and a significant 

negative correlation with progesterone level [r = -0.263, p < 0.001]. There was a 

significant correlation between the SOAE amplitude and serum oestradiol and 

progesterone during the three test sessions [r2 = 0.04, F(1,218) = 4.5, p = 0.01]. 

There was a significant positive correlation with oestradiol level [r = 0.201, p = 

0.003] and a negative correlation with progesterone level [r = -0.06, p = 0.34]. 

 

9.4.3.2 Transient evoked otoacoustic emissions 

All 14 subjects had recordable TEOAE from both ears. In total TEOAE were 

recorded from 28 ears. 

 

The total TEOAE responses increased in session 2 and decreased in session 3, but 

the change was not statistically significant  [LMM, F(2, 20.7) = 0.86, p = 0.44], as 

seen in Figure 9.4.5. 

 

 
 
Figure 9.4.5: The total TEOAE response (estimated mean and 95% confidence interval) 
during the three test session 
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The majority of the tested ears (54.2%) had higher total TEOAE responses in the 

session 2 compared to session 1.  

 
Similarly, the TEOAE S/N in all five frequency bands were lower in session 3  

compared to session 1 or session 2, but the differences were not significant (Table 

9.4-D). 

 
Table 9.4-D: The estimated mean ± SE for the TEOAE S/N ratio in all ears in the five 
frequency bands during IVF treatment. 

TEOAE 

S/N  

(dB SPL) 

(n = 28) 

Session 1 

(Ovarian steroid 

down-regulation) 

Session 2 

(Ovarian 

stimulation) 

Session 3 

(Post embryo 

transfer) 

Linear mixed- 

effect model  

(fixed effect) 

1 kHz 16.12 ± 1.19 15.62 ± 1.22 15.14 ± 1.16 
F(2, 22.9) = 2.3, 

p = 0.12 

2 kHz 13.51 ± 0.86 13.41 ± 0.96 12.9 ± 1.37 
F(2, 18.96) = 0.14, 

p = 0.87 

3 kHz 12.09 ± 0.98 12.12 ± 0.92 12.1 ± 0.91 
F(2, 25.6) = 0.002, 

p = 0.998 

4 kHz 11.09 ± 1.18 10.31 ± 1.25 10.46 ± 1.32 
F(2, 21.2) = 1.65, 

p = 0.22 

5 kHz 3.86 ± 1.1 4.78 ± 1.1 3.67 ± 1.2 
F(2, 20.2) = 1.45, 

p = 0.26 

 

 

The serum oestradiol was added to the LMM as a covariate, and was found to  

have a very small negative effect on the total TEOAE response during the IVF 

treatment [LMM, oestradiol estimate = -0.0001 (SE = 6.22!10-5), df = 24.7, p = 

0.08] that was not significant. No significant effect was found in  TEOAE 

frequency bands as demonstrated in Table 9.4-E. 
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Table 9.4-E: The linear mixed effect model of the TEOAE response and TEOAE S/N 
ratio in the five frequency bands. The test session as a fixed factor and oestradiol as a 
covariate.  

Linear 

mixed-effect 

model 

(n = 28) 

Session  

(fixed effect test) 

Oestradiol 

estimate (SE) 

Degrees of 

freedom (df) 
t, p value 

Total 

TEOAE  

F(2, 19.1) = 2.3, 

p=0.13 

-0.0001  

(6.22!10-5) 
24.7 

-1.8,  

p = 0.08 

1 kHz  
F(2, 21.2) = 2.04, 

p=0.15 

-0.0001  

(9.82!10-5) 
29.2 

-1.37,  

p = 0.18 

2 kHz  
F(2, 18.7) = 1.4, p 

= 0.17 
0.0003 (0.0002) 27.1 

1.9,  

p = 0.07 

3 kHz  
F(2, 18.2) = 0.84, 

p = 0.45 

7.78!10-5 

(7.72!10-5) 
18.8 

1.01,  

p = 0.33 

4 kHz  
F(2, 19.7) = 3.44, 

p=0.05 
0.0002 (0.0001) 25.7 

1.37,  

p = 0.18 

5 kHz  
F(2, 20.4) = 0.5, 

p=0.62 
3.66!10-5 (0.0001) 29.4 

0.25,  

p = 0.81 

 

 

The serum progesterone was added to the LMM as a covariate along with 

oestradiol, and was found to have a small negative effect on the total TEOAE 

response during the IVF treatment  [LMM, progesterone estimate = -0.006 (SE = 

0.007), df = 25.1, p = 0.38] that was not significant. No significant effect was 

observed in the TEOAE S/N in the five frequency bands as demonstrated in Table 

9.4-F. 
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Table 9.4-F: The linear mixed effect model of the TEOAE response and TEOAE S/N 
ratio in 24 ears in the five frequency bands: the test session as a fixed factor and 
oestradiol and progesterone as covariates.  

LMM  

(n = 24) 

Session 

(fixed 

effect 

test) 

Oestradiol 

estimate 

(SE) 

 df 
t, p 

value 

Progesterone 

estimate 

(SE) 

df  
t, p 

value 

Total 

TEOAE  

F(1, 23.1) 

= 0.68,  

p = 0.52 

-0.0001 

(0.0001) 
23.02 

-0.89,  

0.38 

-0.004 

(0.008) 
23.5 

-0.44, 

0.66 

1 kHz  

F(1, 22.8) 

= 1.63,  

p = 0.22 

-0.0001 

(0.0001) 
22.7 

-0.99, 

0.33 
0.0038 (0.01) 23.1 

0.36, 

0.72 

2 kHz  

F(1, 29.3) 

= 0.06,  

p = 0.94 

0.0002 

(0.0003) 
29.6 

0.73,  

0.47 

-0.015 

(0.021) 
32.7 

-0.68, 

0.5 

3 kHz  

F(1, 24.5) 

= 0.04,  

p = 0.96 

3.59!10-5  

(0.0002) 
24.3 

0.17,  

0.87 

-0.0002 

(0.015) 
25.7 

-0.01, 

0.99 

4 kHz  

F(1, 23.3) 

= 0.58,  

p = 0.57 

1.48!10-5  

(0.0002) 
23.2 

0.08,  

0.93 
0.006 (0.013) 23.6 

0.49, 

0.63 

5 kHz 

(n=23) 

F(1, 25.1) 

= 0.42,  

p = 0.66 

0.0001  

(0.0002) 
25.1 

0.56,  

0.58 

-0.016 

(0.017) 
26.3 

-0.91, 

0.37 

 

The Wilcoxon Signed-rank test of TEOAE inter-session differences calculated by 

the ILO compare analysis showed that the inter-session difference in the TEOAE 

responses between session 2 and session 3 was greater that the inter-session 

difference in TEOAE responses between session 1 and session 2 as shown in 

Figure 9.4.6, but the difference did not reach statistical significance (p = 0.07). 
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Figure 9.4.6: The differences in TEOAE as calculated by the ILO subtraction analysis 
between the different testing sessions (mean and 95% confidence interval). The bar (-) 
indicates the median value. 

 

The linear regression analysis showed that the total TEOAE responses were not 

significantly correlated with the corresponding oestradiol and progesterone levels 

across the three sessions [r2 = 0.08, p = 0.14, F (2, 47) = 2.05]. The correlation 

with oestradiol was significantly positive [r = 0.3, p = 0.049], while the 

correlation with progesterone was negative [r = -0.07, p = 0.6] but not significant. 

The TEOAE S/N in all five frequency bands were not significantly correlated with 

the corresponding oestradiol and progesterone levels across the three sessions.  

 

9.4.4 Medial olivocochlear (MOC) suppression 

The MOC suppression recorded from the 28 ears, decreased slightly during 

session 2 and session 3, but the change was not significant [LMM, F(2, 15.7) = 

0.98, p = 0.4], as seen in Figure 9.4.7. 
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Figure 9.4.7:The MOC suppression (mean and 95% confidence interval) in the three test 
sessions.  

 
The serum oestradiol was added to the LMM as a covariate, and was found to 

have a small positive effect on MOC suppression [LMM, oestradiol estimate = 

7.13!10-5 (SE = 4.94!10-5), df = 31.96, p = 0.16]. The serum progesterone was 

added to the LMM as a covariate along with oestradiol, and was found to have a 

small negative effect on the MOC suppression during the three test sessions.  

[LMM, progesterone estimate = -0.0036 (SE = 0.006), df = 27.9, p = 0.54] that 

was not significant. 

 

The linear regression analysis showed that the MOC suppression was  not 

significantly correlated with the corresponding oestradiol levels and progesterone 

across the three test sessions [r2 = 0.05, p = 0.3, F(1,47) = 1.19]. The correlation 

with oestradiol was positive [r = 0.2, p = 0.15], while the correlation with 

progesterone was negative [r = -0.12, p = 0.41] but not significant. 

 

9.4.5 Auditory brainstem response 

The ABRs were recorded from both the right and left ear in 13 subjects (26 ears), 

one subject from the 13 did not have ABR recoded in her last test only (Table 9.3-

A).  
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Table 9.4-G: The estimated mean ± SE of ABR wave latencies and interpeak intervals 
during the three test sessions. 

ABR 

(n = 26) 

Session 1 

(ovarian steroid 

down-regulation) 

Session 2 

(ovarian 

stimulation) 

Session 3 

(post embryo 

transfer) 

Linear mixed- 

effect model  

(fixed effect) 

I 1.64 ± 0.02 1.64 ± 0.02 1.59 ± 0.02 
F(2, 15.4) = 3.18, 

p = 0.07 

III 3.76 ± 0.03 3.76 ± 0.03 3.74 ± 0.03 
F(2, 19.9) = 0.33 

p = 0.72 

V 5.6 ± 0.04 5.65 ± 0.04 5.58 ± 0.04 
F(2, 16.2) = 6.6, 

p = 0.008 

I-III 2.12 ± 0.03 2.14 ± 0.03 2.15 ± 0.03 
F(2, 16.3) = 1.05, 

p = 0.37 

III-V 1.84 ± 0.03 1.88 ± 0.03 1.83 ± 0.03 
F(2, 19.2) = 2.97, 

p = 0.07 

I-V 3.96 ± 0.04 4.02 ± 0.04 3.98 ± 0.04 
F(2, 16.3) = 4.7 

p = 0.02 

 

 

The LMM analysis suggests that the absolute wave latencies were shorter in 

session 3 and longer during session 2 (Table 9.4-G), with the change being 

significant for the Wave V latency [LMM, F(2, 16.2) = 6.6, p = 0.008] and the I-V 

interpeak interval [LMM, F(2, 16.3) = 4.7, p = 0.02] . The pairwise comparison 

revealed that the Wave I latency was significantly shorter in session 3 compared 

to session 1 (p = 0.03) and session 2 (p = 0.047). The Wave V latency was 

significantly longer in the second session compared to the first (p = 0.005) and 

third test session (p = 0.01). The pairwise comparison on the interpeak intervals 

demonstrated that the I-V interpeak interval in the second session was 

significantly longer compared to the first session (p = 0.006). The III-V interpeak 
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interval in the second session was longer than in third session, but the difference 

did not reach significance (p = 0.054). 

 

The serum oestradiol was added to the LMM as a covariate, and was not found to 

have any significant effect on the ABR as demonstrated in Table 9.4-H.  

 

Table 9.4-H: The linear mixed effect model of the ABR wave latencies and interpeak 
intervals with the test session as a fixed factor and oestradiol as a covariate. 

Linear 

mixed-effect 

model 

(n=26) 

Session  

(fixed effect test) 

Oestradiol 

estimate (SE) 

Degrees of 

freedom (df) 
t, p value 

I 
F(2, 16.7) = 2.99, 

p = 0.08 

-3.45!10-6   

(3.4!10-6) 
24.3 

-1.01, 

p = 0.32 

III 
F(2, 13.9) = 1.07, 

p = 0.37 

3.22!10-6  

(3.5!10-6) 
17.8 

0.93, 

p = 0.37 

V 
F(2, 14.7) = 2.62, 

p = 0.11 

-1.62!10-6  

(5.2!10-6) 
24.3 

-0.31,  

p = 0.76 

I-III 
F(2, 18.4) = 0.84, 

p = 0.45 

3.45!10-6  

(4.4!10-6) 
22.1 

0.77, 

p = 0.45 

III-V 
F(2, 18.05) = 1.9, 

p = 0.17 

-4.75!10-7   

(4.98!10-6) 
19.4 

-0.09,  

p = 0.92 

I-V 
F(2, 15.7) = 1.96, 

p = 0.17 

1.3!10-7    

(5.1!10-6) 
25.1 

0.03,  

p = 0.98 

 

 

The serum progesterone was added to the LMM as a covariate along with 

oestradiol, and was found to have a small positive effect on ABR wave latencies 

and interpeak intervals as seen in Table 9.4-I. The effect was significant only on 

the Wave III and Wave V latencies (p = 0.003 and p = 0.004 respectively).  
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Table 9.4-I The linear mixed effect model ABR wave latencies and interpeak intervals 
with the test session as a fixed factor and oestradiol and progesterone as a covariates.  

 

LMM 

(n=22) 

Session 

(fixed 

effect test) 

Oestradiol 

estimate 

(SE) 

 df 
t, p 

value 

Progesterone 

estimate 

(SE) 

 df 
t, p 

value 

I 

F(2, 16.4) 

= 2.3,  

p = 0.1 

-4.58!10-7 

(3.7!10-6) 
12.7 

-1.2, 

0.24 

0.0005 

(0.0005) 
16.4 

1.06, 

0.31 

III 

F(2, 13.4) 

= 10.3,  

p = 0.002 

-2.65!10-6 

(3.5!10-6) 
8.4 

-0.7, 

0.47 

0.001 

(0.0003) 
12.4 

3.7, 

0.003 

V 

F(2, 11.2)  

= 9.3,  

p = 0.004 

-3.5!10-6  

(4.2!10-6) 
8.5 

-0.8, 

0.43 

0.0015 

(0.0004) 
7.2 

4.2, 

0.004 

I-III 

F(2, 19.6) 

= 0.35,  

p = 0.7 

-1.5!10-6  

(5.6!10-6) 
14.5 

-0.3, 

0.79 

0.0006 

(0.0005) 
17.1 

1.3, 

0.21 

III-V 

F(2, 15.5) 

= 0.96,  

p = 0.4 

-6.68!10-7  

(5.6!10-6) 
12.8 

-0.1, 

0.91 

0.0004 

(0.0005) 
12.8 

0.86, 

0.4 

I-V 

F(2, 17.1) 

= 1.6,  

p = 0.23 

-1.98!10-6  

(6.6!10-6) 
15.4 

-0.3, 

0.77 

0.0009 

(0.0007) 
14.8 

1.23, 

0.24 

 

The regression analyses between ABR latencies or interpeak intervals with 

oestradiol and progesterone levels across the three sessions were not significant.  
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9.5 Summary of results  

The study had examined several aspects of auditory function with simultaneous 

measurements of serum oestrogen and progesterone levels in a group of women 

undergoing assisted conception treatment, IVF.  

 

The serum oestradiol and progesterone levels were not measured in some subjects 

as mentioned in Table 9.4-A and Table 9.4-B and, however their auditory tests 

were undertaken following an ultrasound assessment, which had confirmed, 

although less accurately than hormone analysis, that they were in the 

corresponding stage of their treatment as described in the protocol (section 9.2). 

 

The results of the serum oestradiol in the three test sessions were as expected with 

oestradiol levels being highest during the second test session following ovarian 

stimulation. The progesterone levels were highest during the third test session 

after embryo transfer as a result of progesterone administration and possible 

pregnancy in two subjects who had the highest progesterone levels (Howles & 

Macnamee, 1990). 

 

The progesterone levels in two of the volunteers (subject 9 and 11 as seen in 

Table 9.4-B) following ovarian stimulation (session 2) was higher than expected ( 

serum progesterone was 7 and 10 nmol/L respectively). Serum progesterone 

levels following ovarian down-regulation and ovarian stimulation are not 

expected to rise above 5 nmol/L, before ovarian rupture (Djahanbakhch, et al., 

1981). However, the rise was small and was not expected to have a major effect 

on the results, as the corresponding oestradiol levels were high (11241 and 11674 

pmol/L respectively as seen in Table 9.4-A). 

 
Tympanometry 

The middle ear pressure significantly changed during the three test sessions 

[LMM, F(2, 19.8) = 4.4, p = 0.03], and was significantly lower following ovarian 

stimulation (session 2). However, the middle ear pressure was still within the 

normal middle ear pressure range (-50 to +50 daPa, Section 1.2.2), and not 

expected to have an effect on OAE results (discussed in Section 10.1.1) . 
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The tympanic membrane compliance did not change significantly during the 

repeated testing.  

 

Cochlear modulation 

The results of the otoacoustic emissions showed very subtle changes in cochlear 

function during assisted conception treatment. Greater number of SOAE peaks 

was recorded during ovarian steroid down regulation and ovarian stimulation 

(sessions 1 and 2) when oestrogen was the main hormone, and progesterone levels 

were low. The number of SOAE peaks was reduced post embryo transfer (session 

3) where progesterone levels are higher.  

 

The SOAE frequencies significantly shifted during the three test sessions (p < 

0.001). The SOAE frequency shifted to a higher frequency during ovarian 

stimulation (session 2), when oestrogen levels were highest, and to a lower 

frequency post embryo transfer (session 3) when progesterone levels were greater. 

The results suggested that oestrogen led to a positive shift in SOAE frequency, 

while progesterone shifted the SOAE frequency in the opposite direction. There 

was no significant change in the SOAE amplitude in contrast to the change noted 

in SOAE frequency as was observed during the ovarian cycle. However, the 

amplitude following ovarian stimulation (session 2) was higher than the during 

post embryo transfer (session 3). 

 

The TEOAE response and the TEOAE S/N in all five frequency bands tend to be 

lower post embryo transfer (session 3) compared to the other two sessions and 

slightly higher after ovarian stimulation (session 2), but the changes were not 

significant. The TEOAE inter-session differences calculated by the ILO 

subtraction analysis revealed that there was a greater difference in TEOAE levels 

between the sessions when oestrogen levels is highest (session 2) and the session 

when progesterone levels is high (session 3) but the change was not statistically 

significant.  

 

There was a significant positive correlation between oestrogen levels and the 

overall TEOAE responses during the three test sessions. The regression analysis 

suggested that oestrogen increased, while progesterone decreased the TEOAE 
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responses. However, from the LMM analysis, the effect of oestradiol was mainly 

positive (i.e. increases TEOAE S/N) in the higher frequency bands, and negative 

(i.e. decreases TEOAE S/N) in the lower frequency bands (Table 9.4-F and Table 

9.4-G). This dual effect may explain absence of a clear change during the repeated 

testing of the overall TEOAE response.  

 

Olivocochlear suppression 

The results showed that olivocochlear suppression was lowest during post embryo 

transfer (session 3) but the change was not significant. Oestrogen effect on the 

MOC suppression was found to be a positive one, where the MOC suppression 

tended to increase with an increase in oestradiol levels, but the effect was small 

[oestradiol estimate = 7.13!10-5]. Progesterone, on the other hand, tended to be 

associated with a decrease the MOC suppression [progesterone estimate = -

0.0036]. However the effect was not significant, but it may be sufficient to blunt 

the positive effect of oestrogen.  

 

Auditory brainstem evoked responses 

Significant changes were observed in the Wave I and V absolute latencies, with 

the longer latencies during ovarian stimulation (session 2) when the oestradiol 

levels were highest. The III-V and I-V interpeak intervals were also longer during 

ovarian stimulation.  

 

The regression analysis revealed that the increase in ABR latencies was not 

associated with oestradiol levels. The effect of oestradiol was mainly negative but 

very small, while progesterone effect was positive (Table 9.4-I), which seems to 

be contradictory to the observed ABR latencies. 

 



 191 

 

Chapter 10 : Discussion 
 

The results of the studies demonstrated that subtle changes in auditory function 

are associated with the fluctuation of the ovarian steroids during the natural 

ovarian cycle and in pharmacologically controlled cycles in women undergoing 

assisted conception treatment. These changes were not observed in men over a 

similar period of time. 

 

10.1 The changes in auditory function 

  

10.1.1 Tympanometry 

The middle ear pressure and tympanic membrane compliance did not change 

during the repeated testing in women throughout the natural ovarian cycle (section 

7.4.2). However, the middle ear pressure was lower during ovarian stimulation in 

women undergoing assisted conception treatment, but still within the normal 

range (section 9.4.2).  

 

The supraphysiological levels of oestradiol seen in ovarian stimulation may be 

associated with greater capillary permeability (Rizk & Aboulghar, 1999) and thus 

lead to congestion and oedema in the middle ear or effect the Eustachian tube 

function leading to lower middle ear pressure. However, the lower middle ear 

pressure recorded was still within the normal range (section 1.2.2) . The change 

was small and can be compared to the slight non-significant decrease in 

Eustachian tube function with higher oestrogen levels observed by Nir et al 

(1991). 

 
Therefore it can be assumed that the small changes in tympanometry observed in 

the study had no mechanical interference on the middle ear transducer function 

and thus did not have an effect on the properties of OAE transduction (Trine, et 

al., 1993; Johansson & Arlinger, 2003).  
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There was no gender difference in middle ear pressure, but the tympanic 

membrane compliance was significantly larger in men by about 0.3 ml.  

 

10.1.2 Cochlear modulation 

The cochlear function was evaluated using OAE, including TEOAE and SOAE. 

In general, the higher levels of both classes of OAE reflect higher cochlear gain 

and they are associated with better hearing sensitivity (Kemp, et al., 1990; Probst, 

et al., 1991; Hurley & Musiek, 1994). The presence of SOAE, reflect exquisite 

hearing sensitivity that correspond to the best thresholds at homologous 

frequencies (Probst et al., 1987; Bonfils, 1989). 

 
In agreement with the literature, the prevalence of SOAE were greater in the 

female ears (70.3%) than in the male ears (36.7%), and the TEOAE responses 

were significantly larger in female ears (section 8.4.3.2). 

 

In women, the number of SOAE peaks were more prevalent in women in the first 

two test sessions of the natural ovarian cycle (Table 7.4-B) and during assisted 

conception treatment (Table 9.4-C) when oestrogen was the dominate hormone, 

and were less prevalent during the third session in both groups, when the levels of 

progesterone were highest. These changes were similar to Yellin  and Stillman’s 

(1999) findings of a greater number of SOAE early in the cycle and less near the 

end. The other studies in the literature that examined SOAE in relation to the 

menstrual cycle (Bell, 1992; Haggerty, et al., 1993; Penner, et al., 1994; Penner, 

1995), did not report any changes in the number of SOAE spectral peaks, but 

concentrated on frequency changes, which seemed to change in relation to the 

cycle. 

 

Significant changes in the frequency shift of SOAE, were noted in women but not 

in the men during repeated testing. These results were similar to those found by 

Bell (1992) and Haggerty and colleagues (1993) in their subjects, in whom no 

variations in SOAE frequency were reported in male subjects but a change was 

found in the female subjects. 
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The SOAE shifted to a higher frequency when oestradiol levels were highest 

(session 2 in both the natural ovarian cycle and after ovarian stimulation) and then 

shifted to a lower frequency when progesterone was present (luteal phase of the 

ovarian cycle and post embryo transfer). These findings are in a similar direction 

to those found by Bell (1992), Haggerty et al (1993), Penner et al (1994) and 

Penner (1995). The negative effect of progesterone on the SOAE frequency shift 

was greater than the positive effect of oestrogen during the luteal phase of the 

ovarian cycle (the approximate progesterone effect was -0.004 %, while the 

oestradiol effect was 0.0002 %). The same effect was identified during assisted 

conception treatment (the approximate progesterone effect was -0.001 % while  

the oestradiol effect was -2.5!10-5 %). These findings suggest that the SOAE 

frequency shift to a lower frequency during the luteal phase of the natural ovarian 

cycle and following progesterone supplementation in assisted conception 

treatment is probably due to the effect of progesterone. 

 

The SOAE amplitudes were higher in the follicular phase compared to the luteal 

phase of the ovarian cycle and following ovarian stimulation compared to post 

embryo transfer during assisted conception treatment. However, the change in 

SOAE amplitudes were not statistically significant. A possible explanation is that 

SOAE amplitudes were more variable than SOAE frequency (reviewed by 

Ceranic, 2003). Previous studies on SOAEs during the menstrual cycle (section 

3.1.4.1) did not report SOAE amplitudes. 

 

The TEOAE responses were larger in women compared to men. It may be 

hypothesised that the gender difference in the overall TEOAE amplitude is mainly 

due to the difference in the responses seen in the 2-5 kHz frequency bands and not 

in the 1 kHz frequency band. This finding may also explain the reported 

observation that women have more sensitive hearing in the higher frequencies 

compared to men (reviewed by Velle, 1987; McFadden, 1993; Davis, 1995).  

 

The results of OAE suggest more sensitive hearing in women than in men. This 

could be, in part, due to sexual dimorphism in the cochlea and CNS (section 

2.1.3). Another contributing factor for the lower OAE in men is the higher middle 
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ear compliance that has been associated with lower the levels of TEOAE 

(Johansson & Arlinger, 2003). 

 

The overall TEOAE response and the TEOAE S/N ratio in the five frequency 

bands were slightly greater in the test sessions, in which oestrogen levels were 

highest, and were lower when progesterone was present. However the changes 

were not significant. As mentioned above (section 3.1.4.1), only a few studies 

evaluated TEOAE during the ovarian cycle, and two of them did not report any 

changes (Yellin & Stillman, 1999; Arruda & Silva, 2008). Amit and Animesh’s 

(2004) finding of lower TEOAE responses during the mid and luteal phase of the 

ovarian cycle compared to the menses phase, may have been confounded by 

possible cochlear dysfunction in their subjects (section 3.1.4.1 and Table 3.1-A).  

 

The TEOAE inter-session differences calculated by the ILO subtraction analysis 

demonstrated a greater difference in TEOAE levels between the sessions in which 

oestrogen was highest (late follicular phase in the natural ovarian cycle and 

following ovarian stimulation in assisted conception treatment) and the sessions 

where progesterone levels were highest (luteal phase of the ovarian cycle and post 

embryo transfer in assisted conception treatment). These changes were not 

observed in the male subjects, suggesting a possible hormonal influence on 

TEOAE.   

 

The changes seen in the SOAE and the greater inter-session differences in 

TEOAE suggest a hormonal effect and that oestrogen and/or progesterone may 

play a role in cochlear function, because these changes were not seen in men.  

 

The interpretation of SOAE shift in terms of auditory processing is speculative, as 

SOAE generation is poorly understood and physiological significance still 

unclear. Nevertheless, SOAE are very sensitive indicators of active cochlear 

processes and their shift may reflect a change in cochlear transducer operating 

point. In addition, it may reflect changes in frequency sensitivity that may be 

similar to those which were found by the change in auditory sensitivity in the 

midshipman fish when treated with oestrogen (Sisneros & Bass, 2003).  
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Women undergoing assisted conception treatment have displayed changes in 

auditory function tests similar to those observed during the natural ovarian cycle. 

A greater variation in OAE was hypothesised in women undergoing assisted 

conception treatment (section 4.3), but was not observed. One possible 

explanation is that the supraphysiological levels of oestradiol may lead to greater 

capillary permeability (Rizk & Aboulghar, 1999) and thus in theory may also 

have an effect on the fluid and electrolyte balance of the cochlear fluids. Changes 

in the cochlear homeostasis may affect the cochlear hair cell function, and thus 

diminish the TEOAE responses. There may also be an effect of the sample size in 

these two studies. 

 

10.1.3 Olivocochlear suppression 

Cochlear function is modulated by the complex efferent feedback system, a part 

of which is the medial olivocochlear (MOC) system. Although the MOC system is 

considered to be mainly inhibitory (Wiederhold, 1986), the presence of the 

receptors for excitatory (cholinergic) and suppressive (GABA-ergic) 

neurotransmitters at the MOC terminals to the OHCs (Altschuler & Fex, 1986; 

Plinkert, et al., 1993; Puel, 1995), reflects the complex function of this system, 

which may be modulated by both oestrogen and progesterone (section 1.3.2). In 

the quiet background, the MOC system displays a predominately suppressive 

effect, but when there is efferent activity in a noisy background, they exhibit an 

enhancement of the transient response (Kawase, et al., 1993) . This is in 

agreement with the limited knowledge on the roles of the olivocochlear system, 

which include signal detection and discrimination (Guinan, 2006). 

 

MOC suppression was lower in women compared to men, but without reaching 

significance. Durante and Carvalho (2002) noted that the contralateral suppression 

of TEOAE was significantly greater in male neonates compared to female 

neonates. However, Ferguson and co-workers (2001) did not find any gender 

difference in TEOAE suppression in a group of adults, while other studies have 

not reported a gender difference in MOC suppression (Williams, et al., 1994; 

Hood, et al., 1996; Abdala, et al., 1999; De Ceulaer, et al., 2001). The MOC 

suppression test is still not widely used in the clinical setting and there are 
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different methodologies in research laboratories, which may explain the 

conflicting findings.  

 

MOC suppression significantly changed during the natural ovarian cycle, but not 

during the assisted conception treatment or in men. During the ovarian cycle, the 

MOC suppression decreased in the late follicular phase, but did not change after 

ovarian stimulation. Suppression was negatively correlated with oestradiol levels 

during the follicular phase of the ovarian cycle, and was positively correlated with 

oestradiol during the assisted conception treatment.  

 

Oestrogen is known as a modulator of the acetylcholine system, which is one of 

the major neurotransmitters of the MOC bundle that leads to inhibition of the 

cochlear amplifier. GABA is also involved and is known to be modulated in other 

parts of the CNS by both oestrogen and progesterone.  

 

The lower suppression during the ovarian cycle could relate to the negative effect 

of oestrogen on GABA that can occur at higher levels of oestrogen. The 

supraphysiological levels of oestrogen in the assisted conception treatment may 

have a greater effect on the acetylcholine system and, thus, increase suppression.  

Oestrogen has a dual effect on the GABA system in the CNS (section 2.2.1.1), 

and higher levels of oestrogen are associated with attenuation of GABA 

production leading to the LH surge (Wagner, et al., 2001). However, during 

ovarian stimulation, GnRH analogues were administered to counteract the effect 

of oestrogen and to suppress the LH production, and this may involve the GABA-

ergic system. GnRH analogues have been used in treatment of epilepsy triggered 

by menstruation (catamenial epilepsy), which involves the GABAergic system 

(Bauer, et al., 1992; Herzog, 2009; Reddy, 2009).  

 

10.1.4 Auditory brainstem evoked responses  

The ABR latencies and interpeak intervals were significantly shorter in women 

compared to men except for the I-III interpeak interval. Previous studies 

comparing ABR parameters in women and men during the ovarian cycle have 

reported significantly shorter wave III and V absolute latencies in women (Fagan 
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& Church, 1986; Dehan & Jerger, 1990), while wave I latency was shorter in 

women, but the difference did not reach significance. Elkind -Hirsch et al (1994) 

only described the wave V latency, which was shorter in normal reproductive 

women. Fagan and Church (1986) reported that only the I-III interpeak interval 

was significantly shorter in women, while no difference was noted in the III-V 

and I-V interpeak interval. On the other hand, Wharton and Church (1990), found 

that all interpeak intervals including the III-V and I-V were shorter in young 

females compared to young men. Dehan and Jerger (1990) and Elkind-Hirsch et al 

(1994) did not report the interpeak intervals in their studies. These conflicting 

findings may be the result of different methodologies.  

 

Dehan and Jerger (1990) and Elkind-Hirsch et al (1994) measured the serum 

hormone levels in women to confirm the hormonal changes that occur in the 

ovarian cycle and noted that wave V latency was significantly longer near the 

time of ovulation, which was also noted in our study, while no changes were seen 

in the men. The shorter ABR latencies in women may be attributed to the 

excitatory effect of oestrogen and sexual dimorphism in the CNS (Cahill, 2006). 

 

The Wave I and Wave V latencies significantly changed during the ovarian cycle 

and during assisted conception treatment. Longer latencies were observed when 

oestradiol levels were the highest (late follicular phase in the natural ovarian 

cycle, and following ovarian stimulation in the assisted conception treatment) and 

were shorter when progesterone was present and when both ovarian steroids were 

lowest at the end of the ovarian cycle. A significant lengthening of the wave V 

peak latency during the mid ovarian cycle and the shorter wave V latency during 

the luteal phase was also reported by Elkind-Hirsch et al (1992a), in a study in 

which the ovarian cycle was also defined by measurements of oestradiol.  

 

There was no strong association between oestradiol or progesterone levels with 

ABR latencies (see Table 7.4-H, Table 7.4-I, Table 9.4-H and Table 9.4-I). 

While oestrogen, generally, has an excitatory effect and it is expected to facilitate  

transmission of the auditory signals, on the other hand, the higher levels of 

oestrogen in the late follicular phase and ovarian stimulation are possibly 

associated with higher levels of neurosteroids, especially allopregnalone (Stomati, 
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et al., 2002; Bernardi, et al., 2003), which is a potent GABA-A receptor agonist 

(Majewska, et al., 1986; Baulieu, 1998) and may have an inhibitory effect on the 

auditory brainstem (Disney & Calford, 2001). The neurosteriods may have a 

greater inhibitory effect on the auditory brainstem compared to the small 

excitatory effect of oestrogen.  

 

10.2 Potential effects of ovarian steroids on auditory function 

The gender differences in auditory function and the correlation between some of 

the auditory function tests with oestradiol and progesterone observed in this 

thesis, suggest that ovarian steroids have an effect on the auditory system as was 

suggested from the previous literature. The following paragraphs consolidate the 

study observations with the previous physiological literature. 

 
At the cochlear level, the effect of oestradiol may be more direct, due to the 

presence of the oestrogen receptors in the sensory and non sensory areas of the 

cochlea (see section 2.2.1.1). The changes observed in otoacoustic emissions, 

which reflect cochlear function, were associated with higher levels of oestradiol 

and may be evidence of this effect. However, the effect of oestrogen may be two 

fold: excitatory at one level, such as the cochlea but inhibitory at another, as seen 

in the auditory brainstem. Other confounding effects may dampen the excitatory 

effect of oestrogen. The supraphysiological levels of oestrogen in ovulation 

induction may have a congestive effect by increasing capillary permeability (Rizk 

& Aboulghar, 1999), and thus the total TEOAE response may not be as high as 

expected.  

 

The effect of  oestrogen in the proximal and central parts of the auditory system is 

possibly more complex. The results of the ABR show, that oestrogen has an 

inhibitory effect, as demonstrated by longer ABR latencies during the late 

follicular phase and ovulation stimulation. A similar finding was observed during 

the breeding season in sparrows were oestradiol levels were highest (Caras, et al., 

2010). The mechanism behind these longer latencies is still speculative but may 

involve other neurosteroids and not be directly due to oestrogen (see section 

10.1.4), or alternatively GnRH (section 9.1), which has been reported to increase 
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auditory thresholds in fish (Maruska & Tricas, 2011) and may in theory, influence 

the auditory system in other vertebrates as well.  

 

The progesterone effect on the auditory system seems to be more inhibitory as 

demonstrated by the mainly negative correlation with auditory function tests 

reported in the above studies, and supported in the literature (section 3.1.4.2, 

3.1.5, and 3.1.6). The presence of a higher level of progesterone seems to 

counteract the effect of oestrogen, both in the cochlea and brainstem as 

demonstrated in the results of these studies.  

 

Ovarian hormones may play a role in maintaining homeostasis in the auditory 

system, and the rapid decline in the levels of both hormones at the end of the 

ovarian cycle (late luteal phase) may alter GABA function, leading to lower 

inhibition (Maguire & Mody, 2009; Gangisetty & Reddy, 2010), and, thus, may 

explain the lower MOC suppression and shorter ABR latencies observed during 

the ovarian cycle (section 7.4.4 and 7.4.5). This may also partly explain some of 

the auditory symptoms or pathologies observed in some women associated with 

the ovarian cycle (section 3.1.4.2 and 3.2) or following the menopause (section 

3.1.6). 

 

The changes observed in auditory function associated with oestrogen and/or 

progesterone may also be associated with more central auditory processes in the 

auditory cortex, which may, in turn influence the peripheral auditory system. 

Oestrogen has been found to play an important role in modulating auditory 

processing in birds (reviewed by Maney & Pinaud, 2010) and improved the ability 

to discriminate communication signals (Tremere & Pinaud, 2011). These findings 

may in theory also be relevant in other vertebrates, including humans. 

 

10.3 Conclusion 

This thesis presents for the first time a detailed correlation of auditory function 

tests and precise levels of female reproductive hormones. 
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The findings suggest that ovarian steroids influence the auditory system. The 

difference in the auditory function tests between men and women suggest better 

hearing sensitivity in women. The inter-session differences seen in women, but 

not in the men, suggest that the auditory system is sensitive to the fluctuations in 

ovarian steroids during the ovarian cycle and may alter the frequency sensitivity 

of the cochlea, and thus contribute to the observed gender differences in auditory 

function.  

 

The effect of oestrogen is mainly excitatory, while progesterone is mainly 

inhibitory and balances the effect of oestrogen. The decline in the levels of both 

hormones may be associated with greater excitability due to loss of tonic 

inhibition by the ovarian steroids. 

 

10.4 Study limitations: 

A number of limitations were recognized, the major ones are listed below: 

• The difficulty in precisely monitoring the natural ovarian cycle 

confounded the results. As seen in Figure 7.4.1, even though all subjects 

reported regular menstrual cycles, the results of the hormone tests suggest 

that the ideal day that was planned to test to coincide with the peak of 

oestradiol or progesterone may have been missed.  

 

• Progesterone levels were not measured in the first two test sessions of the 

ovarian cycle and in a number subjects during the assisted conception 

treatment. These levels might have allowed evaluation of the possible 

effect of progesterone during the whole ovarian cycle and assisted 

conception treatment, and might have revealed that some of the subjects 

ovulated before the expected time. 

 

• The number of patients who took part in the last study was relatively 

small, due to difficulty in recruiting and retraining women in the study and 

time restraints.  
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• The power of the study has been affected by the missing data from some 

of the subjects. The use of LMM analysis was helpful in minimizing the 

effect, due to its ability to handle all available data so not to lose the 

subjects with missing results. 

 

However the results obtained show a trend, which requires confirmation.  

 

10.5 Suggested further studies: 

• Auditory function in pregnant women during the three trimesters and post 

partum. The higher levels of both hormones during pregnancy may have a 

different effect on auditory function and also the levels stay stable over a 

longer period. The levels of both hormones drop dramatically postpartum 

and thus may effect auditory function, similar to that which is seen at the 

end of the ovarian cycle. 

 

• Auditory function in post menopausal women pre and post hormone 

replacement therapy with monitoring of the hormone levels. 

 

• Monitoring of auditory function in women with auditory pathology, such 

as Menière disease or tinnitus during their ovarian cycle with measurement 

of the ovarian steroids levels.  

 

• Central auditory function in women during their ovarian cycle. This study 

may provide more information about the effect of ovarian steroids on the 

auditory system. 

 

• Evaluating auditory function in women with pre-menstrual syndrome with 

measurement of the ovarian steroids levels. 

 

• Measuring the sex hormone binding globulin (SHBG) along with the 

oestradiol serum levels (section 2.2.1.1), to calculate the bioactive 

oestradiol level (Sodergard, et al., 1982; Rinaldi, et al., 2002). This may 
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help in providing a more accurate reflection of the possible correlation 

between oestradiol and auditory function tests.  

 

These studies along with the recent animal studies may provide potential 

pharmacological treatments for women suffering from auditory pathology and a 

greater understanding of the auditory system. 
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Appendix I: Subject Questionnaire 

 
A Study of the Effect of Ovarian Hormones on Auditory Function 
 
Name:      Code: 
Date of Birth: 
Profession: 
 
Menstrual History: 
 
Age of menarche: 
 
Regular cycle:  Yes No 
 
Length of cycle 
 
Did you have menstrual irregularities in the past? Yes No 
 
If yes, was it due to a hormonal problem?   Yes No 
 
Did you receive hormonal treatment?   Yes No 
 
Do you experience symptoms during your cycle?  Yes No 
 
Describe (esp. hearing) 
 
 
 
 
 
Are you using the Pill? Yes No 
 
Did you take it in the last 3 months? Yes No 
 
Medical History: 
 
Drug history: 
 
Allergic history: 
 
Do you have migraines? Yes No 
 
If Yes, are they related to your cycle? 
 
Other medical conditions: 
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Family History: 
 
Hormonal irregularities in the family:  Yes No 
 
 
 
 
Family history of HL:  Yes No 
 
 
 
Family history of migraine:  Yes No 
 
 
 
Auditory History*: 
 
Fullness in the ear: Yes No 
 
Tinnitus:  Yes No 
 
Hyperacusis: Yes No 
 
Distortion:  Yes No 
 
Change in hearing sensitivity:  Yes No 
 
 
Related to cycle? Yes No 
 
*ask at each session
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Appendix II: Subject Information Sheets 

 

The following pages are copies of the information sheets for the study volunteers. 



 

 
 

 

The National Hospital for Neurology and Neurosurgery 
Department of  Neuro-otology 

 Box 127, 
 Queen Square, London  

WC1N 3BG  
  

Telephone: 020 7837 3611  
Fax:  020 7829 8775 

 

The National Hospital for Neurology and Neurosurgery is part of UCL Hospitals 
NHS Trust which also includes the Eastman Dental Hospital, Elizabeth Garrett 
Anderson and Obstetric Hospital, The Heart Hospital, Hospital for Tropical 
Diseases, The Middlesex Hospital and University College Hospital. 

 
 
 
 
 
 
 
 
 

CONFIDENTIAL  
INFORMATION SHEET FOR HEALTHY VOLUNTEER 

 
A Study of the Effect of Ovarian Steroid Hormones on Auditory Function 

 
Version 2, 6th November 2002 

 
We would like to ask you to participate in this research project, the purpose of which is 
to investigate the effect of female hormones on hearing. 
 
Many healthy women experience changes in hearing related to the menstrual cycle, 
pregnancy or the menopause. Similarly, some patients with inner ear/hearing problems 
have also reported changes in their symptoms, as a result of hormonal changes. This 
study may improve our knowledge of how hormonal variations during the menstrual 
cycles influence hearing and, in the long term, help to identify the contribution of 
hormonal changes in some hearing disorders.  
 
If you consent to participate, you will be asked to undergo several hearing tests and, on 
the same day, an intravenous blood sample, about two teaspoonfuls (10 ml), will be 
taken for hormone tests. Blood taking would cause a slight discomfort due to the vein 
puncture and sometimes may cause some bruising. The tests (both hearing tests and 
blood samples) will be performed four times during your menstrual cycle: first, between 
5th-7th day, second, between 9th-11th day, third, between 18th-24th day and fourth, 
between 24th-26th day.  If you take the oral contraceptive pills, we would be unable to 
include you in the study. The dates will be arranged during your first visit. 
 
To assess the time of ovulation, we will also ask you to use the ovulatory kit during 
your cycle. Ovulation is predicted by testing your urine daily using the provided 
dipstick from day 10 of your cycle until you have a positive result (further information 
will be provided with the kit).  
 
Details about your age, menstrual history and hearing will be obtained by an interview. 
 
We are planning to perform the following hearing tests: 
 

1) Standard hearing test: quiet tones at different frequencies are presented through 
earphones, and you will be asked to respond by pressing the button when you 
hear the sound. 
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1) A test to assess middle ear function: a small probe is inserted into your ear and 
you will hear a tone, while the pressure in your ear canal is changed gently. This 
gives the sensation you may experience passing through a tunnel in a train.  

2) A test to assess inner ear function: Clicking sounds are presented through foam 
probes inserted into you ears and the inner ear responses are recorded and 
analysed by computer. 

3) A test of hearing by recording electrical responses from the brain: Clicking 
sounds are presented through earphones and the auditory responses in the brain 
will be recorded from the electrodes attached to your scalp with a special gel. 

 
These tests are harmless and do not cause any discomfort. Except for the first test in 
which you are asked to signal when you hear a sound, the others do not require your 
active participation. They will take about 45 min to perform. We will be pleased to 
reimburse your travel expenses. 
 
Your participation in the trial is entirely voluntary. You are free to decline to enter or to 
withdraw from the study at any time without having to give a reason. If you choose not 
to enter the trial, or to withdraw once entered, this will in no way affect your future 
medical care. All information regarding your medical records will be treated as strictly 
confidential and will only be used for medical purposes. Your medical records may be 
inspected by competent authorities and properly authorised persons, but if any 
information is released this will be done so in coded form so that confidentiality is 
strictly maintained. Participation in this study will in no way affect your legal rights. 
Details about you will be stored on a computer during this research project and will be 
in coded form with the code known only to the research team. The data from the study 
will be kept for ten years and the researchers may use them for further research. The 
security will be the responsibility of Prof. Linda M. Luxon. 
 
We would be pleased to inform you of the results of your investigations and, if we 
identify any abnormality of your hearing or hormone tests, we would inform your 
General Practitioner. 
 
This research project has been reviewed by the National Hospital for Neurology & 
Neurosurgery and the Institute of Neurology Joint Research Ethics Committee. 
 
Thank you for your time and attention 
 
Investigators: 
 
Dr. Deena Al-Mana 020 7837 3611 ext 3386/ 07947 041954 (out of working hours) 
Dr Borka Ceranic 020 7837 3611 ext 3386 
Professor Linda M. Luxon Department of Neuro-otology, The National Hospital for 
Neurology & Neurosurgery, Queen Square, London WC1N 3BG  Tel. 020 7837 3611 
ext 3385 
Professor Ovrang Djahanbakhch Department of Obstetrics & Gynaecology, Barts 
and the London School of Medicine and Dentistry, IV Floor, Holland Wing, The Royal 
London Hospital, Whitechapel, London E1 1BB   Tel: 020 7363 8096 
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The National Hospital for Neurology and Neurosurgery 
Department of  Neuro-otology 

 Box 127, 
 Queen Square, London  

WC1N 3BG  
  

Telephone: 020 7837 3611  
Fax:  020 7829 8775 

 

The National Hospital for Neurology and Neurosurgery is part of UCL Hospitals 
NHS Trust which also includes the Eastman Dental Hospital, Elizabeth Garrett 
Anderson and Obstetric Hospital, The Heart Hospital, Hospital for Tropical 
Diseases, The Middlesex Hospital and University College Hospital. 

 
 
 
 
 
 
 
 
 

CONFIDENTIAL  
INFORMATION SHEET FOR HEALTHY VOLUNTEER 

 
A Study of the Effect of Ovarian Steroid Hormones on Auditory Function 

 
Version 2a, 13th February 2004 

 
We would like to ask you to participate in this research project, the purpose of which is 
to investigate the effect of female hormones on hearing. The study also includes a group 
of men, to allow assessment of hearing in the absence of hormonal changes, which 
occur in women.  
 
This study may improve our knowledge of how hormonal variations in women 
influences hearing and, in the long term, help to identify the contribution of hormonal 
changes in some hearing disorders. 
 
If you consent to participate, you will be asked to attend our clinic to undergo several 
hearing tests once a week for four consecutive weeks. In total, you will be attending our 
clinic four times during one month. The dates will be arranged during your first visit. 
 
Details about your age and hearing will be obtained by an interview. 
 
We are planning to perform the following hearing tests: 
 

1) Standard hearing test: quiet tones at different frequencies are presented through 
earphones, and you will be asked to respond by pressing the button when you 
hear the sound. 

2) A test to assess middle ear function: a small probe is inserted into your ear and 
you will hear a tone, while the pressure in your ear canal is changed gently with 
no or minimal discomfort. 

3) A test to assess inner ear function: Clicking sounds are presented through foam 
probes inserted into you ears and the inner ear responses are recorded and 
analysed by computer. 

4) A test of hearing by recording electrical responses from the brain: Clicking 
sounds are presented through earphones and the auditory responses in the brain 
will be recorded from the electrodes attached to your scalp with a special gel. 
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These tests are harmless and do not cause any discomfort. Except for the first test in 
which you are asked to signal when you hear a sound, the others do not require your 
active participation. They will take about 45 min to perform. We will be pleased to 
reimburse your travel expenses. 
 
 
Your participation in the trial is entirely voluntary. You are free to decline to enter or to 
withdraw from the study at any time without having to give a reason. If you choose not 
to enter the trial, or to withdraw once entered, this will in no way affect your future 
medical care. All information regarding your medical records will be treated as strictly 
confidential and will only be used for medical purposes. Your medical records may be 
inspected by competent authorities and properly authorised persons, but if any 
information is released this will be done so in coded form so that confidentiality is 
strictly maintained. Participation in this study will in no way affect your legal rights. 
Details about you will be stored on a computer during this research project and will be 
in coded form with the code known only to the research team. The data from the study 
will be kept for ten years and the researchers may use them for further research. The 
security will be the responsibility of Prof. Linda M. Luxon. 
 
We would be pleased to inform you of the results of your investigations and, if we 
identify any abnormality of your hearing, we would inform your General Practitioner. 
 
This research project has been reviewed by the National Hospital for Neurology & 
Neurosurgery and the Institute of Neurology Joint Research Ethics Committee. 
 
Thank you for your time and attention 
 
Investigators: 
 
Dr. Deena Al-Mana 020 7837 3611 ext 3386/ 07947 041954 (out of working hours) 
Dr Borka Ceranic 020 7837 3611 ext 3386 
Professor Linda M. Luxon Department of Neuro-otology, The National Hospital for 
Neurology & Neurosurgery, Queen Square, London WC1N 3BG  Tel. 020 7837 3611 
ext 3385 
Professor Ovrang Djahanbakhch Department of Obstetrics & Gynaecology, Barts 
and the London School of Medicine and Dentistry, IV Floor, Holland Wing, The Royal 
London Hospital, Whitechapel, London E1 1BB   Tel: 020 7363 8096 
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The National Hospital for Neurology and Neurosurgery 
Department of  Neuro-otology 

 Box 127, 
 Queen Square, London  

WC1N 3BG  
  

Telephone: 020 7837 3611  
Fax:  020 7829 8775 

 

The National Hospital for Neurology and Neurosurgery is part of UCL Hospitals 
NHS Trust which also includes the Eastman Dental Hospital, Elizabeth Garrett 
Anderson and Obstetric Hospital, The Heart Hospital, Hospital for Tropical 
Diseases, The Middlesex Hospital and University College Hospital. 

 
 
 
 
 
 
 
 

 
CONFIDENTIAL  

INFORMATION SHEET FOR PATIENTS 
  

A Study of the Effect of Ovarian Steroid Hormones on Auditory Function 
 

Version 2, 6th November 2002 
 

We would like to ask you to participate in this research project, the purpose of which is 
to investigate the effect of female hormones on hearing. As your treatment involves 
changes in your hormone levels, which are carefully measured, we are asking women 
undergoing conception-assisted treatment to take part 
 
Many healthy women experience changes in hearing related to the menstrual cycle, 
pregnancy or the menopause. Similarly, some patients with an inner ear/hearing 
problem have also reported changes in their symptoms, as a result of hormonal changes. 
This study may improve our knowledge of how hormonal variations during the 
menstrual cycles influence hearing and, in the long term, help to identify the 
relationship of hormonal changes to some hearing disorders.  
 
If you consent to participate, you will be asked to undergo several hearing tests on the 
same day as your scan appointments. The hearing and blood tests will be performed on 
the same day, three times during your treatment under the Gynaecologist. 
 
Details about your age, menstrual history and hearing will be obtained by a verbal 
interview. 
 
We are planning to perform the following hearing tests: 
 

1) Standard hearing test: quiet tones at different frequencies are presented through 
earphones, and you will be asked to respond by pressing the button when you 
hear the sound. 

2) A test to assess middle ear function: a small probe is inserted into your ear and 
you will hear a tone, while the pressure in your ear canal is changed gently. This 
gives the sensation you may experience passing through a tunnel in a train.  

3) A test to assess inner ear function: Clicking sounds are presented through foam 
probes inserted into you ears and the inner ear responses are recorded and 
analysed by computer. 
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4) A test of hearing by recording electrical responses from the brain: Clicking 
sounds are presented through earphones and the auditory responses in the brain 
will be recorded from the electrodes attached to your scalp with a special gel. 

 
 
 
These tests are harmless and do not cause any discomfort. Except for the first test in 
which you are asked to signal when you hear a sound, the others do not require your 
active participation. They will take about 45 min to perform. We will be pleased to 
reimburse your travel expenses. 
 
Your participation in the trial is entirely voluntary. You are free to decline to enter or to 
withdraw from the study at any time without having to give a reason. If you choose not 
to enter the trial, or to withdraw once entered, this will in no way affect your future 
medical care. All information regarding your medical records will be treated as strictly 
confidential and will only be used for medical purposes. Your medical records may be 
inspected by competent authorities and properly authorised persons, but if any 
information is released this will be done so in coded form so that confidentiality is 
strictly maintained. Participation in this study will in no way affect your legal rights. 
Details about you will be stored on a computer during this research project in a coded 
form known only to the researchers involved in the study. The data from the study will 
be kept for ten years and the researches may use them for further research. The security 
will be the responsibility of Prof. Linda M. Luxon. 
 
We would be pleased to inform you of the results of your investigations and, if we 
identify any abnormality of your hearing, we would inform your General Practitioner. 
 
This research project has been reviewed by the National Hospital for Neurology & 
Neurosurgery and the Institute of Neurology Joint Research Ethics Committee. 
 
Thank you for your time and attention 
 
 
Investigators: 
Dr. Deena Al-Mana 08451555000 ext 723385 / 07947 041954/  
   D.Al-Mana@ich.ucl.ac.uk 
Dr Borka Ceranic 08451555000 ext 723385 
Professor Linda M. Luxon Department of Neuro-otology, The National Hospital for 
Neurology & Neurosurgery, Queen Square, London WC1N 3BG   
Tel. 08451555000 ext 723385 
Professor Ovrang Djahanbakhch Department of Obstetrics & Gynaecology, Barts 
and the London School of Medicine and Dentistry, IV Floor, Holland Wing, The Royal 
London Hospital, Whitechapel, London E1 1BB   Tel: 020 7363 8096 
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Appendix III: Subject consent forms 

 
 
The following pages are copies of the consent forms for the study volunteers. 

 

 



 

     
 

 

 

The National Hospital for Neurology and Neurosurgery 
Department of  Neuro-otology 

 Box 127, 
 Queen Square, London  

WC1N 3BG  
Fax:  020 7829 8775 

 

The National Hospital for Neurology and Neurosurgery is part of UCL Hospitals 
NHS Trust which also includes the Eastman Dental Hospital, Elizabeth Garrett 
Anderson and Obstetric Hospital, The Heart Hospital, Hospital for Tropical 
Diseases, The Middlesex Hospital and University College Hospital. 

 
Centre Number: 

Study Number: 02/N112 

Patient Identification Number for this trial: 

CONSENT FORM FOR HEALTHY VOLUNTEERS 
 
Title of project: A Study of the Effect of Ovarian Steroid Hormones on Auditory Function 
 
Researchers: 
Dr. Deena Al-Mana 020 7837 3611 ext 3386/ 07947 041954 (out of working hours) 
Dr Borka Ceranic 020 7837 3611 ext 3386 
Professor Linda M. Luxon 020 7837 3611 ext 3385 
Professor Ovrang Djahanbakhch    020 7363 8096  
         PLEASE INITIAL BOX 
 

1. I confirm that I have read and understood the information sheet dated 6th 
November 2002 (version 2) for the above study and have had the 
opportunity to ask questions. 

 

   
2. I understand that my participation is voluntary and that I am free to withdraw 

at any time, without giving any reason, without my medical care or legal 
rights being affected. 

 

   
3. 

 
I understand that sections of any of my medical notes may be looked at by 
responsible individuals from the research team or from regulatory authorities 
where it is relevant to my taking part in research.  I give permission for these 
individuals to have access to my records.  

 

   
4. I agree that information from this study may be used in further research 

 
 

   
5. I agree to take part in the above study. 

 
 

 
____________________________         __________ ______________________ 
Name of patient    Date    Signature 
 
_____________________________          __________ ______________________ 
Name of Person taking consent  Date    Signature 
(if different from researcher) 
 
_____________________________          __________     _______________________ 
Researcher     Date    Signature 
 
Comments or concerns during the study  
If you have any comments or concerns you may discuss these with the 
investigator.   If you wish to go further and complain about any aspect of the 
way you have been approached or treated during the course of the study, you 
should write or get in touch with the Complaints Manager, UCL hospitals.  
Please quote the UCLH project number at the top this consent form. 
 
1 copy for Patient 1 copy for researcher  1 copy to be kept with hospital note 

Deena Al Mana
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The National Hospital for Neurology and Neurosurgery 
Department of  Neuro-otology 

 Box 127, 
 Queen Square, London  

WC1N 3BG  
Fax:  020 7829 8775 

 

The National Hospital for Neurology and Neurosurgery is part of UCL Hospitals 
NHS Trust which also includes the Eastman Dental Hospital, Elizabeth Garrett 
Anderson and Obstetric Hospital, The Heart Hospital, Hospital for Tropical 
Diseases, The Middlesex Hospital and University College Hospital. 

 
Centre Number: 

Study Number: 02/N112 

Patient Identification Number for this trial: 

CONSENT FORM FOR HEALTHY VOLUNTEERS 
 
Title of project: A Study of the Effect of Ovarian Steroid Hormones on Auditory Function 
 
Researchers: 
Dr. Deena Al-Mana 020 7837 3611 ext 3386/ 07947 041954 (out of working hours) 
Dr Borka Ceranic 020 7837 3611 ext 3386 
Professor Linda M. Luxon 020 7837 3611 ext 3385 
Professor Ovrang Djahanbakhch  020 7363 8096  
         PLEASE INITIAL BOX 
 

1. I confirm that I have read and understood the information sheet dated 13th  
February 2004 (version 2a) for the above study and have had the 
opportunity to ask questions. 

 

   
2. I understand that my participation is voluntary and that I am free to withdraw 

at any time, without giving any reason, without my medical care or legal 
rights being affected. 

 

   
3. 

 
I understand that sections of any of my medical notes may be looked at by 
responsible individuals from the research team or from regulatory authorities 
where it is relevant to my taking part in research.  I give permission for these 
individuals to have access to my records.  

 

   
4. I agree that information from this study may be used in further research 

 
 

   
5. I agree to take part in the above study. 

 
 

 
____________________________         __________ ______________________ 
Name of patient    Date    Signature 
 
_____________________________          __________ ______________________ 
Name of Person taking consent  Date    Signature 
(if different from researcher) 
 
_____________________________          __________     _______________________ 
Researcher     Date    Signature 
 
Comments or concerns during the study  
If you have any comments or concerns you may discuss these with the 
investigator.   If you wish to go further and complain about any aspect of the 
way you have been approached or treated during the course of the study, you 
should write or get in touch with the Complaints Manager, UCL hospitals.  
Please quote the UCLH project number at the top this consent form. 
 
1 copy for Patient 1 copy for researcher  1 copy to be kept with hospital note 

Deena Al Mana
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The National Hospital for Neurology and Neurosurgery 
Department of  Neuro-otology 

 Box 127, 
 Queen Square, London  

WC1N 3BG  
Fax:  020 7829 8775 

 

The National Hospital for Neurology and Neurosurgery is part of UCL Hospitals 
NHS Trust which also includes the Eastman Dental Hospital, Elizabeth Garrett 
Anderson and Obstetric Hospital, The Heart Hospital, Hospital for Tropical 
Diseases, The Middlesex Hospital and University College Hospital. 

 
Centre Number: 

Study Number: 02/N112 

Patient Identification Number for this trial: 

CONSENT FORM FOR PATIENTS 
 
Title of project: A Study of the Effect of Ovarian Steroid Hormones on Auditory Function 
 
Researchers: 
Dr. Deena Al-Mana 020 7837 3611 ext 3386/ 07947 041954 (out of working hours) 
Dr Borka Ceranic 020 7837 3611 ext 3386 
Professor Linda M. Luxon 020 7837 3611 ext 3385 
Professor Ovrang Djahanbakhch  020 7363 8096    
           PLEASE INITIAL BOX 
 

1. I confirm that I have read and understood the information sheet dated 6th 
November 2002 (version 2) for the above study and have had the 
opportunity to ask questions. 

 

   
2. I understand that my participation is voluntary and that I am free to withdraw 

at any time, without giving any reason, without my medical care or legal 
rights being affected. 

 

   
3. 

 
I understand that sections of any of my medical notes may be looked at by 
responsible individuals from the research team or from regulatory authorities 
where it is relevant to my taking part in research.  I give permission for these 
individuals to have access to my records.  

 

   
4. I agree that information from this study may be used in further research 

 
 

   
5. I agree to take part in the above study. 

 
 

 
____________________________         __________ ______________________ 
Name of patient    Date    Signature 
 
_____________________________          __________ ______________________ 
Name of Person taking consent  Date    Signature 
(if different from researcher) 
 
_____________________________          __________     _______________________ 
Researcher     Date    Signature 
 
Comments or concerns during the study  
If you have any comments or concerns you may discuss these with the 
investigator.   If you wish to go further and complain about any aspect of the 
way you have been approached or treated during the course of the study, you 
should write or get in touch with the Complaints Manager, UCL hospitals.  
Please quote the UCLH project number at the top this consent form. 
 
1 copy for Patient 1 copy for researcher  1 copy to be kept with hospital note 

Deena Al Mana
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Appendix IV: Published papers 

 
The following are copies of  the two published papers. 
 
 
 

Removed due to copyright reasons 
 


