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ABSTRACT 

 

Rock armour units forming coastal bed protection are often dumped 

"randomly" from a side stone dumping vessel, barge or flexible fall pipe. 

Random placement may create more protrusions (projections) of stones 

above mean bed level giving stones more exposure to the flow and making 

them more prone to displacement. If a bed protection can be laid to an 

optimum protrusion level, storm damage can be reduced lowering 

maintenance costs over the design life. 

 
Fenton & Abbot (1977) and Chin &Chiew (1993) concluded that Shields 

critical shear stress for a fully exposed stone is as low as 0.01 (i.e., 

protrusion, p=0.82d where d is the stone diameter).  They showed that the 

threshold value of 0.06 originally proposed by Shields (1936) refers to a 

‘levelled’ bed of between p=0 and 0.2d.  However, those observations were 

based on tests using uni-directional currents. 

 
This thesis describes a laboratory study to investigate the effect of stone 

protrusion on threshold stone movement under regular waves. Tests were 

carried out to investigate the incipient motion of light weight test spheres of 

differing density and diameter in the range 9.5mm-31.8mm, resting on a 

rough bed of 19mm spheres in a wave flume.  Protrusion of the test stones 

was varied by changing the space between three supporting spheres. In 

past studies, researchers have used turbulence measurements, shear plate 

apparatus, hot film techniques etc., to quantify bed shear stress.  In the 

present study, it was deduced from direct measurements of the pressure on 
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the surface of a typical bed element. Advance flow measurement techniques 

such as Laser Doppler Velocimetry and Volumetric Three-component 

Velocimetry (V3V) were also used for flow measurement and visualisation. 

It was found that the threshold shear stress is strongly related to stone 

protrusion and followed an exponential relationship in the range of 

conditions considered. For each wave period a different Shields shear stress 

versus protrusion curve was obtained. When the wave period increased the 

curve shifted towards that for the currents suggesting that for longer wave 

periods under the field conditions where high Reynolds number flows exist, 

the curve obtained for currents will be applicable.  

Light weight stones (specific gravity=1.19) with protrusion, p =0, 0.17d and 

0.21d showed remarkable stability even for the largest bed shear stresses. A 

model bed protection made of crushed natural rocks (anthracite) showed 

that the damage to a “levelled” bed is 50% less than in a randomly placed 

bed.  

Measured bed shear stress data were consistent with the published results 

[Kamphuis (1975), Simons et al. (2000)] for a rough bed.  The results 

suggested that the theoretical bed level is located 0.35d below the crests of 

the roughness elements.  

The method of rock armour placement crucially influences the stability of a 

bed protection. Significant reduction in bed damage can be achieved by 

placing stones to an optimum protrusion above mean bed level. 
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1  Introduction 

 

1.1 Background and Motivation 

 

Rip-rap scour protections are employed around offshore marine structures 

such as offshore oil rigs, undersea cables and pipes, wind farms, tidal power 

generators etc. Scour protection aprons are also provided as toe protection 

to coastal structures like breakwaters and revetments. Due to lack of 

understanding of the behaviour of rock armour on a scour protection, 

engineers often have to optimise a design using physical model tests as 

shown in the Figure 1.1.  Each physical model test costs a significant 

amount of money. If there is a reliable method to quantify the stable rock 

size and bed damage without physical model tests, the optimisation process 

could be made cost effective. 

 
Rock armour units forming coastal bed protection are often dumped 

"randomly" from side stone dumping vessel, a barge or a flexible tube 

whereas rock armour on coastal structures like breakwaters and revetments 

are placed individually by crane. Random placement creates protrusions 

(projection) above mean bed level giving stones more exposure to the flow. 

The more a single armour unit projects above mean bed level the more it is 

exposed to flow and the greater are the disturbing forces due to lift, drag and 

inertia. The increased protrusion causes an increase in the destabilising 

moment and a reduction in the resisting moment. This would, therefore, 
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reduce the threshold shear stress that needs to be applied to dislodge a rock 

element out of its pocket.   

 
On the other hand, smaller protrusion will increase the stability of a stone. If 

a bed protection can be levelled mechanically to achieve an optimum 

protrusion, the bed damage can be reduced to a desirable level. 

 

 

 

 

 

 

 

 

 
Figure 1.1:  Scour protection around offshore mono-piles. 

 

Hofland (2005) devised an influence factor (IF) reflecting the importance of 

the various geometric parameters (orientation, protrusion, size, shape etc.) 

of a natural rock that influences its displacement. This is the multiplication 

factor of the critical shear stress in response to a change in the parameter 

within the typical range of the bed. Hofland found that the orientation has an 

IF =10 and protrusion has an IF=5, making the latter the second most 

important parameter. However, incipient motion test data for different 

orientations (i.e., angle of flow attack) published by Chin & Chiew (1993) 

showed that the orientation is less important having an IF =1.5 (see Section 
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2.6.2.6).  Nevertheless, stone protrusion is a dominant parameter affecting 

stone displacement. 

 

Shields (1936) critical shear stress for rough turbulent flow (cr=0.06) is 

often used as the threshold criterion to determine stable rock size. However, 

Fenton & Abbot (1977), based on tests on uni-directional currents, 

concluded that the Shields critical shear stress depends on the particle 

protrusion above mean bed level (p) and  a value of cr=0.06 corresponds to 

a relative protrusion (p/d) value between 0 and 0.2 where d is the particle 

diameter, i.e. Shields used a levelled bed in the original tests.  Based on 

new laboratory flume tests, Fenton & Abbot recommended a value of 

cr=0.01 corresponding to a fully exposed element (p/d   0.82) for the 

design of a scour protection. Therefore, the extent of stone protrusion above 

mean bed level plays a dominant role in the stability of an armour unit. 

 
Design of bed protection in the marine environment becomes more complex 

due to the existence of waves. Therefore, the results of Fenton & Abbot 

(1977) for uni-directional currents should not be adopted for coastal 

engineering applications without further scientific inquiry. In contrast to 

currents in an open channel, wave stirring on a tidal current can generate 

additional turbulence. Due to the steep gradient of the oscillatory boundary 

layer, wave-induced shear stress amplitude should be larger and hence, 

dominate the bed damage.  Shields criterion is only valid for steady uniform 

flows like in an open channel with constant cross-section whilst unsteady 

non-uniform conditions exist in the marine environment, i.e., near roughness 

elements on the bed and close to coastal structures. The unsteady nature of 
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the oscillatory flow induces inertia forces on an element in addition to form 

drag.  

 
To the best knowledge of the author, the influence of stone protrusion on the 

critical shear stress and bed damage under oscillatory flow has not been 

investigated before. Based on a literature survey, it was identified that there 

is a gap in knowledge that needs to be filled in this area of research. 

 
Appreciating the importance of stone protrusion for the incipient motion and 

bed damage of scour protection and also its relevance towards advancing 

the knowledge on sediment transport, this PhD research project was 

designed to focus on variable stone protrusion, its impact on the critical bed 

shear stress and damage to a rock bed protection under the action of 

regular waves. This considers both the stability of the elements and the 

detailed hydrodynamics that act to destabilise them. 

 
The methodology consists of (i) the observation of the first movement of 

idealised spherical stones of different density on a rough bed  (ii) 

measurement and integration of pressure on the surface of a spherical bed 

element of 50mm diameter to compute in-line and uplift forces/shear stress 

for varying protrusion levels (iii) visualisation of flow structures contributing 

to the forces on stones using state of the art V3V three-dimensional PIV 

system (iv) bed damage observation on a model scour protection consisting 

of anthracite coal representing rock armour in the wave flume and stochastic 

modelling of bed damage using the Monte Carlo Simulation.  
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It is hoped that the research methodology and the results can find useful 

applications in coastal engineering practice including in the design of rock 

scour protections, toe protection in breakwaters, revetments etc., as well as 

in coarse sediment transport modelling and contribute to further 

understanding of the fluid-bed interaction under the action of regular waves. 

 

1.2 Aims and Objectives of the present study 

 

 To understand the effect of stone protrusion on the critical bed shear 

stress under the action of regular waves. 

 To determine the bed shear stress through integration of pressure on 

the surface of an idealised rock armour unit (i.e., sphere). 

 To understand the effect of stone protrusion on horizontal and uplift 

forces on a bed element.  

 To study the flow structures that induce forces on an armour stone at 

the time of the incipient movement through flow visualisation. 

 To understand the influence of stone protrusion on wave-induced 

damage to a model bed protection consisting of rock armour. 

 To make recommendations to coastal engineering practitioners on 

measures to reduce wave-induced damage to bed protection 

consisting of rock armour. 

 
1.3 Outline of the Thesis 
 

Physical processes and past experimental/theoretical research relevant for 

the present study were reviewed in Chapter 2. 
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Chapter 3 consists of three main sections: experimental apparatus, 

instrumentation and data analysis.  The section on apparatus describes the 

wave flume, experimental set up designed for the incipient motion tests and 

pressure measurement. Information on the operation procedure and 

principles behind the data capturing mechanism of Laser Doppler 

Velocimetry, Volumetric Three-component Velocimetry (3V3) and wave 

probes are given in the section on instrumentation. Analysis of data is 

described in the last section. 

Wave-induced forces on a sphere resting on a coplanar bed of similar 

spheres is described in Chapter 4. Horizontal and uplift forces on a sphere 

were calculated for three different exposure levels: fully exposed, small finite 

protrusion and a coplanar (zero protrusion). The measured forces were 

compared with the calculated using the Morison’s equation. 

Chapter 5 describes the wave induced oscillatory shear and normal stresses 

at the bed. It also presents the turbulence intensity and Reynolds stresses 

over the course of the wave cycle calculated based on LDV measurements.   

The results of the incipient motion tests are presented in Chapter 6. Shields 

critical shear stress at the time of the inception of stone motion was 

calculated for a number of stone protrusion levels based on visual 

observation of the initial particle displacement.  

Chapter 7 presents the results of the flow visualisation tests obtained using 

V3V. It reveals the three dimensional features of the flow and vorticity 

around a sphere at the moment of its initial movement.  The V3V images 
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also show the formation and ejection of coherent vortices from the 

roughness elements over the wave cycle. 

Chapter 8 details the experiments on a model bed protection constructed 

using crushed natural rocks (anthracite coal) to study the extent of wave-

induced damage to a scour protection. A stochastic model was devised 

using a Monte Carlo simulation method to predict the bed damage. 

Knowledge gathered through experiments described in all preceding 

chapters was utilised to formulate this model. 

The dissertation is concluded with Chapter 9. It provides an overview of the 

experimental study, a summary of the principal research findings and 

suggestions for further work.  
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2. Literature Review 
 

2.1 Introduction 

 

Understanding the point and process of the “first movement” or incipient 

motion of an armour unit is crucial to the design of a stable, robust scour 

protection. This research particularly focuses on the effect of one, important 

geometric parameter - stone protrusion - on the incipient motion and, hence, 

resulting bed damage. It is the objective of this chapter, first, to review the 

current state of knowledge relating to incipient motion of armour stones with 

emphasis to the effect of variable stone protrusion and, second, to identify 

the existing theories governing the physical processes of incipient motion of 

armour stones on which the present research will be founded, through the 

review of previously published studies. 

 

2.2 Scour protection in engineering practice 

 

There are two types of design approach: 

Statically stable design:  This is the conventional approach where no 

movement of individual elements are allowed for the design event. 

Dynamically stable design:  This approach allows the initial configuration 

of the bed protection to undergo limited reshaping. Rip-rap toe protection is 

provided for coastal structures like revetments, groynes, breakwaters etc., to 

provide safety against scouring and undermining of a structure and support 



53 
 

against sliding.  Coastal structures are often constructed using land based 

methods, i.e. dump trucks, placement by cranes etc. 

 
Rock Manual (CIRIA, 2007) mentions three main requirements for rock fill 

bed protection in the offshore. 

 Rock protection to pipelines and cables 

 Scour protection of slender structures like mono-piles (e.g. offshore 

wind farms or jacket type structures such as oil/gas platforms) 

 Scour protection for massive structures such as concrete gravity 

structures 

There are at least three methods of offshore stone dumping: 

 From a side stone-dumping vessel or a barge - stones can be 

considered to fall individually. 

 From a split-hopper barge - stones fall as a single mass exceeding 

the fall velocity of a single stone. 

 From a vessel through a (flexible) fall pipe in order to achieve greater 

           accuracy. 

 
Better control can be achieved in the rock placement process by crane than 

in offshore dumping of rocks where rocks will settle on the bed in a random 

fashion. Therefore, a relatively flat, levelled surface can be achieved in land 

based construction, i.e. breakwater, revetment slopes, than in offshore scour 

protection construction. For individually placed rocks, vertical construction 

tolerance of ±0.3dn50 for dry (above low water) construction and ±0.5dn50 in 

depths less than 5m is recommended by the CIRIA Rock Manual (1991) 

where dn50 is the 50% passing nominal stone diameter. Enhanced vertical 
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rock placement accuracy can be achieved using an advanced Closed Fall 

Pipe System even in depths of 1000m. The procedure called “scrading” 

consisting of dynamic tracking system to control the position of the pontoon 

and the pipe, conveyor belt to control rock feeding rate and screed plate at 

the end of the pipe to level the placed material, offers vertical placement 

accuracy in the order of 0.1m for coarse gradings and 0.5dn50 for light 

gradings (CIRIA, Rock Manual, 2007). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.1: Methods of stone dumping in offshore (CIRIA, 1991). 

 
 
A field example: The rock sizes used in scour protection for offshore mono 

piles have been reported to be in the O(200kg).  Rock Manual (CIRIA, 

2007), in Section 6.4.4.7 gives an example of a scour protection apron for an 

 



55 
 

offshore platform at a depth (h) of 30m with design wave heights up to 

H=10m and currents of 1.5m/s. The armour grading specified in this 

instance was 60-400kg and the installation was performed using a flexible 

fall-pipe system (FFP). 

Assuming a median stone size of 230kg, nominal diameter,    was found to 

be 0.44m using the definition dn=(M/)1/3 and s=2650kg/m3. This would give 

a relative roughness ratio of a/ks=2.46 (based on a 10 second wave period) 

which is in the same order of magnitude, i.e. O(1), as in the tests carried out 

in the wave flume described later in this thesis, where a is horizontal wave 

orbital amplitude at the bed and ks is Nkuradse equivalent roughness height.  

 

2.3 Currently available stability formulae to estimate stable 

stone size 

  
This section reviews existing stability formulae for determining the stable 

rock size in a bed protection. They broadly fall into two categories: (i) 

empirical and (ii) process based formulae. The following discussion is based 

on the review of existing design guidance on the scour assessment and 

protection near marine structures (i.e., Whitehouse, 1998; Sumer & Fredsoe, 

2002; Coastal Engineering Manual, 2006; CIRIA Rock Manual, 2007).  

2.3.1 Empirical formulae 

 
There are a number of empirically derived equations to determine the stable 

stone size. However, these are often applicable to a defined structure type, 

slope, water depth and cross-section within a narrow parameter range. 

While some of them like Van der Meer (1988, 1993) and Hudson (1959) are 



56 
 

famous and widely accepted within the coastal engineering community, their 

usefulness is limited as they cannot be employed in every situation. A 

change to the design or location may render the empirical equations 

inapplicable. 

 
2.3.1.1  Emergent structures 

Unit size for concrete armour on an emergent structure (i.e. breakwater, 

revetment) can be assessed by the Hudson (1959) formula.           is 

known as the stability number where    is the significant wave height, 

          ,     is the density of rock/concrete armour,   is the density of 

water and    is nominal diameter. The stability number has been related to 

structure slope and porosity, wave steepness, the number of waves in a 

storm, damage number etc., by various researchers (for instance, Van der 

Meer, 1988). 

The Hudson formula has been derived by substituting       and       

at the point of wave breaking in a Morison type force formulation,      , 

where    is the stability number,   is the slope angle of the structure,    is 

the wave height at breaking and   is the water depth: 

 
  

   
                                                                                                                              

This equation has been used successfully over decades. However, the 

disadvantage is that the empirical coefficient KD is not constant and depends 

on the armour type, wave type (breaking, non-breaking) and structure slope. 

It also does not take into account the effect of wave period, storm duration, 
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porosity of the structure and damage level (The Coastal Engineering 

Manual, USACE, 2006).  

 
Van der Meer (1988) derived formulae to predict the stability of rock armour 

stones on uniform armour stone slopes with crests above the maximum run-

up level. In contrast to the Hudson formula, these formulae included the 

effects of storm duration or number of waves (N), wave period (Tm), the 

structure's permeability (P) and a clearly defined damage level (Sd).  

 
There has been more research since Van der Meer introduced his famous 

equation in 1988 for rock slopes. Van der Meer (1993), De Jong (1996), 

Burcharth & Liu (1993) and Holtzhauzen (1996) presented stability 

equations for different concrete armour types relating stability number with 

damage number    , number of waves, wave steepness and packing 

density coefficient (see CIRIA, 2007 for more details). 

 
2.3.1.2  Toe and scour protection 

Van der Meer (1993) carried out tests for the 1995 edition of the Rock 

Manual to study the breakwater toe stability (CIRIA, 2007). He derived a 

relationship between      and        .    is the water depth at the toe and 

  is the water depth in front. This relation was valid for      > 0.5 and a 

damage level,    = 0 - 3% (no or minor movement),     > 3%  and up to 10% 

(acceptable damage) and >20% (failure). This study was confined to depth 

limited wave breaking conditions and hence, would not be applicable for 

large water depths, i.e. 20-25m. 

The damage level parameter is defined as: 
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where    is the eroded area and      is the sieve size (nominal diameter) 

passing 50% of the rock sample. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.2: Toe stability as a function of relative toe depth. 

 

2.3.2 Process based formulae 

 
Unlike empirical formulae, process based equations are derived from first 

principles of physics and, hence, can be applied anywhere irrespective of 

the location, structure type, design etc. As general feature of these process 

based formulae is that they use the threshold value of the physical 

parameters like bed shear stress (Shields, 1936), velocity (Izbash & Khaldre, 

1970), discharge (USACE, 2007) etc, to estimate the stable rock size.  
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2.3.2.1  Shields critical bed shear stress 

 
Shields (1936) is the best known stability formula to describe the initiation of 

motion. Non-dimensional Shields parameter is defined by: 

  
  

 

   
                                                                                                                                   

Where u* is shear velocity and  = (s/)-1. Shields found that the non-

dimensional critical shear stress (   ) approaches an asymptotic value of 

0.06 for rough turbulent flows. Bed protections are characterised by very low 

mobility of bed material and fully rough turbulent flow, i.e.    >1000. Fenton 

and Abbot (1977) recommended a value of    =0.01 for a fully exposed 

stone based on experiments. This contrasted with the Shields threshold 

value of 0.06 for a small finite rate of particle transport as originally observed 

by Shields and with the values of 0.03 – 0.07 at high Reynolds numbers for 

the first displacement reported by Breusers & Schukking (1971). 

 
Rock Manual (CIRIA, 2007) recommended following values for the design of 

armour stone layers and rockfill: 

    = 0.03 - 0.035 for the point at which stones first begin to 

move 

    = 0.05 - 0.055 for limited movement 

 
Shields (1936) stability parameter is based on mean flow velocities. 

Recently, Jongeling et al. (2003), Hofland (2005) and Hoan (2008) 

attempted to incorporate turbulent kinetic energy into a Shields type stability 

parameter.  This approach is discussed in Section 2.12.1.3. 
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2.4 Incipient motion of stones 

 

Shields (1936) said ‘‘Considering the grains in a bed of uniform grain sizes, 

the question is: When will the grain be dislodged from the bed and set into 

motion?.” The initiation of movement of a particle is defined as the instant 

when the forces applied by the fluid flow (drag and lift) exceed the stabilising 

force due to particle weight (Raudkivi, 1998). 

Shields discussed two methods for determining threshold shear stress at the 

inception of motion - reference and visual methods. Most authors report that 

Shields might have used the reference method, i.e. extrapolating the bed 

load transport to zero level.  However, Kennedy (1995) disagrees and claims 

that Shields used Kramers (1932, 1935) criteria for general motion for visual 

observation (Buffington, 1999). 

Shields defined that the “beginning of the movement” occurs when the (non- 

dimensional) shear stress just exceeds a certain critical value of 0.06.  The 

dimensionless shear stress or Shields parameter,   is defined by:    

  
 

        
                                                                                                                       

where,  is shear stress, s is density of the particles,  is density of water, g 

is acceleration due to gravity, d is mean grain diameter. Shields parameter is 

roughly equal to the ratio of the tractive force applied by the flow on a 

particle ( u2d2) to the gravitational force on the particle that resists the 

movement ( g(s-)d3). The Shields critical shear stress,     for grain 

Reynolds number, Re*>1000 is defined by: 
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Figure 2.3: Shields Curve (1936). The hatched area depicts the critical shear 

stress as a function of grain Reynolds number. 

 

Shields parameter represents incipient motion in steady uniform flow. 

Therefore, for oscillatory flow, there are limitations for using this formula 

which will be discussed in Section 2.9.  

 

2.5 Previous studies on incipient motion 

 

The classical work of Shields (1936) on steady uniform currents led to a 

relationship between the threshold value of the non-dimensional shear 

stress cr, and the grain Reynolds number, Re* (Figure 2.3). cr  can also be 

expressed as a function of non-dimensional stone diameter, D* : 
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and 

    
   

 

   
 

   

  
      

  
 
   

                                                                                         

where, specific gravity        and  is kinematic viscosity. 

 
Soulsby & Whitehouse (1997) compared data from various studies on 

incipient motion with the Shields curve, i.e. for waves; Willis (1978); Bagnold 

(1946); Manohar (1955); Vincent (1957); Goddet (1960); Rance and Warren 

(1969); Rigler and Collins (1984). Data for currents for D*>100 were below 

the Shields asymptotic value lying around 0.02-0.03 whilst for waves, data 

sit above the Shields curve. The authors concluded that this discrepancy of 

the data could be due to (i) different methods used to calculate friction 

factor,   , in estimating critical shear stress (ii) the use of the shear stress 

amplitude,   , as an appropriate measure of the force on the bed (iii) 

neglecting of horizontal pressure gradient due to wave.  Analysis of Soulsby 

& Whitehouse is shown in Figures 2.4 and 2.5. 

 
Terrile et al. (2006) carried out flume tests to understand incipient motion of 

coarse uniform (              particles of     = 8.8mm and 11.4mm 

under shoaling regular waves.  Their data confirmed that acceleration plays 

a role for the initiation of motion, since combinations of similar orbital velocity 

and varying acceleration magnitude resulted in no motion, some motion and 

motion as acceleration increased. The authors found qualitatively, that the 
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initiation of motion occurs at or is very close to the maximum shear stress 

due to the combined effects of drag/lift and acceleration. 

 

 

 

 

 

 

 

 

Figure 2.4: Threshold of motion by currents in comparison with the Shields 

Curve (Soulsby & Whitehouse, 1997). 

 

 

 

 

 

 

 

 

Figure 2.5: Threshold of motion by waves in comparison with the Shields 

Curve (Soulsby & Whitehouse, 1997). 

 

 

 

 

 



64 
 

2.6 Parameters affecting stability of armour stones 

 

2.6.1 Bottom turbulence  

 
Bottom turbulence, is the single most important factor in the incipient motion 

of stones and will be manifested in shear stresses, for without a 

hydrodynamic traction force, a stone will remain stationery.  Some of the key 

studies on bottom turbulence and shear stress on rough beds relevant for 

this study are; Grass (1971), Kamphuis (1975), Kemp & Simons (1982, 

1983), Sleath (1987), Simons et al. (2000). Turbulent flow processes are 

discussed in more detail in Sections 2.8 and 2.9.    

 

2.6.2 Geometric parameters; stone size, shape, position, orientation, 

bed slope 

 

2.6.2.1    Stone Size 

 
The size of a stone, most often indicated by the diameter, is an important 

parameter that determines its stability. The characteristic size commonly 

used for bed protections is the nominal diameter, defined as the side of an 

equivalent volume cube,    (CIRIA, 1991). 

      
 

 
 

                                                                                                                            

The diameter of an equivalent volume sphere is defined as        
 

 

       . 

When graded materials are used size and weight parameters are 

represented by median and average. When the particles are small enough 
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(i.e., less than 200mm) statistical averages are derived by sieve analysis. 

The median sieve size     on the percentage passing cumulative curve is 

related to median weight,    . 

 

The 50% passing nominal diameter      is the size of the cube with 

equivalent volume to the stone with median weight and is given by: 

             
 

                                                                                                                  

          
                   
The conversion factor relating     to      has been determined 

experimentally. The most extensive study is by Laan (1981) for which 

following relationship was obtained: 

    

   
                                                                                                                                  

 
The grading of rocks is their size distribution. It is usually quantified by the 

parameter         where   percent of the stones in a sample of stones is 

smaller than   , i.e.,     is the sieve size through which 15% of the stones 

by weight in a sample will pass. For most design applications for specifying 

the top armour layers, the grading used is classified as narrow, 

           . 

 
2.6.2.2    Stone Shape 

 
The Rock Manual (CIRIA, 1991) defines the stone shape by an aspect ratio, 

   .   is maximum axial length (given by the maximum distance between 

two points on the block of stone),   is the thickness or minimum axial 

breadth (given by the minimum distance between two parallel straight lines 

between which the block could just pass).  
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The Rock Manual gives five rock shape classifications based on the aspect 

ratio. Irregular rocks have a     of between 2.0-3.0. The Rock Manual 

states that not more than 20% of the number of rocks should exceed an 

aspect ratio     = 3.0. Chien & Wan (1999) give an overview of the factors 

available to describe stone shape. Many of them are difficult and time 

consuming to determine. 

 
A shape factor often used for classifying the stone shape is defined as: 

   
 

   
                                                                                                                                 

Ratio of the three principal body axes a, b, c (respectively, shortest, 

intermediate, and longest) give an idea of the shape. Typically SF = 0.6 for 

crushed rock. 

On average, the Shape Factor for graded stones is defined in the Rock 

Manual (CIRIA, 1991) as: 

    
   

      
                                                                                                                    

                                

Laan's (1981) study used several different rock types and sizes of stone and 

found that the Shape Factor, SFs varied between 0.34 and 0.72. Latham et 

al. (1988) using different shape classes of Limestone fragments found that 

SFs fell between 0.66 and 0.7. 

 
Gogus and Defne (2005) carried out tests on particles of different shapes 

and sizes to determine the effect on incipient motion. They concluded that 

the shape of a particle has a significant effect on its incipient motion. They 
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found that the particle Reynolds number     corresponding to the initiation 

of motion increases as the shape factor decreases. 

 
Objects such as rectangular cylinders and crushed stones have sharp edges 

where flow separation point would be fixed. For such geometries the drag is 

relatively independent of the Reynolds number (Sumer & FredsØe, 2006). 

On the contrary, the flow separation point of circular cylinders and spherical 

objects would depend on the Reynolds number and could experience drag 

crisis at supercritical flow regime, i.e. drag coefficient drops off suddenly as 

Re increases.  As shown in Figure 2.28, the drag crisis occurs for an 

ellipsoid earlier than for a sphere. Therefore, variations in the shape of a 

stone could induce changes to the critical shear stress. 

 
The scale of this variation is of practical importance. Carling et al. (1992) 

observed that the critical shear stress varied by a maximum of 

approximately 20% for single differently shaped stones of same nominal 

diameter placed on rough beds with varying roughness. 

2.6.2.3    Stone position 

 
The position of a stone in a bed can be described by several factors. Three 

often used parameters that can provide information about the position of a 

stone are (Kirchner et al., 1990; Hofland, 2005): 

 protrusion,  p: the height of the apex of a rock particle relative to the 

mean bed level. The mean bed level is determined by averaging the 

elevation at the apex of a large number of stones in the bed.  
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 exposure, e: the height of the apex of the particle relative to the 

local mean upstream bed level.  

 pivoting angle,  : the maximum angle at which the bed can be 

tilted without movement of the particle. Unlike the friction angle or 

angle of repose this is a quantity that refers to a single stone. 

 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 2.6:  Forces on a stone - definition sketch. 

 

When the relative protrusion,       1.0, the stone is fully exposed to flow 

and a large drag force exists.   is the protrusion and   is the stone diameter. 

When,     1.0, a smaller pivoting angle,  , and a relatively large drag 

(due to large exposed area) give a large disturbing moment around the pivot 

point (             ) and small resisting moment (             ) due 

to gravity where FH is the horizontal force, FL is the uplift force and Fw is the 

submerged weight of the stone. When     decreases, the resisting moment 

increases relative to the disturbing moment and hence, the stability of the 

stone will increase.   
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Fenton & Abbott (1977) showed that the critical shear stress for a fully 

exposed sphere (   =0.82), is    =0.01, which is much lower than the 

value Shields (1936) obtained in the fully turbulent flow regime, i.e.    =0.06 

in Re*>1000. They concluded that    = 0.06 refers to a relative protrusion 

value between    =0 and 0.2 which represents the case where the bed is 

well levelled (nearly coplanar). Based on these observations the authors 

recommended a value of    = 0.01 for scour protection design. Coleman 

(1967) carried out tests in a water tunnel to measure the drag and lift forces 

on an over-riding sphere (   =0.82) placed at an interstice of a hexagonal 

array of spheres. His observations matched with those of Fenton & Abbott 

(1977) for a fully exposed sphere, i.e.    = 0.01. 

Chin and Chiew (1993) found that the non-dimensional critical shear stress 

reached a low value of 0.006 for    = 0.94. At low values of    , critical 

shear stress increased rapidly beyond Shields' asymptotic value with     

rising up to 0.1.  

Figure 2.7 shows the relative protrusion values and the test results of Fenton 

& Abbot (1977) in comparison with the classical Shields curve. Figure 2.8 

shows the combined results of both Fenton & Abbot (1977) and Chin & 

Chiew (1993) plotted on the same figure. 
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Figure 2.7:  Non-dimensional Shields parameter against grain Reynolds 
number. Different asymptotic curves for relative protrusion values were 
identified (Fenton & Abbot, 1977). 
 

 

Figure 2.8:  Shields critical shear stress against relative protrusion (Fenton & 
Abbot, 1977; Chin & Chiew, 1993). 
 

Analytical predictions of friction angle and grain protrusion would only be 

possible for simplified bed geometries such as identical spheres on a 

y = 0.1198e-2.883p/d 
R² = 0.86 

0 

0.02 

0.04 

0.06 

0.08 

0.1 

0.12 

0.14 

0.16 

0 0.2 0.4 0.6 0.8 1 

 S
h

ie
ld

s
 p

a
ra

m
e

te
r,

 
c
r 

Relative protrusion, p/d 

 



71 
 

hexagonal packing arrangement (see Chin & Chiew, 1993). For natural beds 

these variables must necessarily be characterised by empirical relationships 

derived from direct measurements. Miller & Byrne (1966) proposed that the 

mean friction angle for natural beds could be described by the relationship: 

          
  

                                                                                                                       

where,    is the average friction angle in degrees,   is the size of a fraction 

of grains,     is the average diameter of the bed grains and ,   are 

empirically determined parameters.  

 
Kirchner et al. (1990) concluded that the critical shear stress,     is strongly 

dependent on grain protrusion, exposure and friction angle, all of which vary 

from point to point on a bed.  

 
Therefore, the critical shear stress of a stone on a rough bed strongly 

depends on the stone protrusion as shown by the exponential relationship in 

Figure 2.8.      of a single grain size on a rough bed is not a single value, 

but a probability distribution. Therefore, an assumption of a single critical 

shear stress value of      0.01 (Fenton & Abbot, 1977) or      0.03 – 

0.035 (CIRIA, 2007) may lead to an unacceptable damage level in the case 

of scour protection. 

 
Therefore, to address the uncertainty posed by the use of a single threshold 

stress value, the CIRIA Rock Manual (2007) recommended to follow a 

probabilistic design approach or to accept a certain amount of bed damage. 

The Rock Manual recommended the use of Monte Carlo Simulation for 

probabilistic analysis of damage to coastal structures with the input of 
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probability distributions to represent different parameters. These input 

parameters should be stochastically independent.  

 
 2.6.2.4    Stone orientation 

 

For gravel river beds it is sometimes seen that the stones have their longest 

axis predominantly in the spanwise direction (Nikora et al., 1998). However, 

gravel beds are subject to armouring and stones can be locked into a 

cluster. A stone minimises its exposure by burying itself in the scour hole 

created around it. However, a stone in a flume would have to follow a 

different strategy to maximise the stability. De Boer (1998) noted that the 

angular stones in a flume experiment were predominantly orientated with the 

longest axis in the direction of the flow after water-working. Carling et al. 

(1992) measured critical shear stress in their experiments with differently 

shaped stones on beds of different roughness. They found that the stones 

placed with their long axis perpendicular to the flow moved sooner than 

when placed parallel.  

 
Chin and Chiew (1993) observed the initiation of movement of a spherical 

stone [d=16.5mm,   =O(1000)] supported on three similar stones glued to a 

rotating disk on the flume bed to understand the effect of the horizontal 

orientation on critical shear stress. The experiment showed that the stability 

of a spherical test stone increased when the angle of attack, reference to the 

direction of flow (i.e. flume axis) increased from 00 to 600. They concluded 

that the horizontal orientation affects the particle stability. 
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Therefore, available evidence suggests that, in nature, stones would be 

aligned to the direction where the exposure is the least, or it would reduce 

the exposure by hiding amongst other stones or burying itself in sand.  

 
Unlike natural beds, for the construction of scour protection, for example, 

stones are placed with the longest axis vertical to minimise the area 

exposed to the flow (Hofland, 2005). Therefore, stones in a scour protection 

are designed to be immobile.  

 
2.6.2.5    Bed slope 

 
On the sloping face of scour protection or a submerged rock fill 

embankment, a component of the gravity force on a stone acts down slope. 

If the bed is tilted gradually, the stone will be displaced when the slope angle 

just exceeds the angle of repose. Therefore, only a fraction of the gravity 

force perpendicular to the slope acts to create a restoring moment. 

Therefore, the critical shear stress on a slope is less than that on a flat bed. 

Whitehouse (1995) and Soulsby & Whitehouse (1997) derived a shear 

stress reduction factor to take account of the effect of the bed slope. 

2.6.2.6   Relative influence of orientation, protrusion, size and shape on 
the inception of motion of stones 
 

It is important to understand what parameters are most dominant 

comparatively in the inception of motion of stones, so that those dominant 

parameters can be included in a predictive model of incipient motion and 

bed damage. 
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Hofland (2005) estimated an approximate influence factor (IF) of the above 

mentioned characteristic parameters on the stability of an element. The 

multiplication factor of the critical shear stress in response to a change in the 

parameter (protrusion, orientation etc.) within the typical values for a bed, 

was determined based on available literature and flume tests.  The following 

Table is reproduced from Hofland (2005): 

 
Table 2.1: Approximate influence of stone characteristics on stone stability 

(Hofland, 2005). 

 

Characteristic/parameter Approximate 
influence factor 

Source(s) 

Protrusion,    =0 - 0.5 5 Fenton & Abbot (1977) 

Orientation >10 Carling et al. (1992) 

Size (d85/d15=1.5) 2 Shields (1936) 

Shape (when dn is used) 0.2 Breusers(1965), Carling 

(1992) 

 

According to the above Table the stone orientation has the highest 

influence. Chin & Chiew (1993) carried out incipient motion tests in a flume 

varying the angle of attack of a current on a fully exposed 16.5mm glass 

marble resting on 3 similar marbles. For zero degree orientation, the critical 

shear stress was 0.0142 and for 60 degrees this value was 0.0207. 

Therefore, when the orientation was changed from 0 to 60 degrees the 

critical shear stress increased only by a factor of 1.5. Therefore, the 

influence factor of 10 obtained by Hofland (2005) based on the data of 

Carling et al. (1992), needs further review.  
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Nevertheless, it is clear from the published experimental evidence that the 

stone protrusion is one of the most significant factors that determines the 

initiation of motion of the stones. 

 

2.7   Wave theory 

2.7.1 Introduction 

 

In the calculation of the wave-induced bed shear stress,    =           
  

and relative bed roughness,     , pre-determination of the bottom wave 

orbital velocity,    and orbital amplitude,   is required. Here, wave friction 

factor is defined by fw. Moreover, the wave-induced pressure,  , on the 

surface of a bed element is also an important parameter relevant for this 

study. These physical parameters can be calculated using a number of wave 

theories. Particularly, linear wave theory (Airy waves) is of importance due to 

its simplicity for use in engineering applications. Therefore, wave theories 

and their validity for use in different relative water depth ranges are reviewed 

in this section. 

Literature on the historical development of wave theory is extensive (see 

Lamb, 1932; Ippen, 1966; Phillips, 1974, 1977; Horikawa, 1978; Schwartz & 

Fenton, 1982; Mei & Liu, 1993; Craik, 2004). However, there is no single 

general solution that covers all wave and water depth ranges.  

Therefore, due to the assumptions made in their derivation, the wave 

theories available can be used to predict wave motion for certain ranges of 

the wave parameters; wave height,  , defined as the vertical distance from 
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the wave trough to wave crest; the wavelength,  ,  defined as the distance 

between successive crests; and the wave period,  , defined as the time 

between successive crests passing a given point.  In addition, the following 

parameters are also important for this study; wave celerity,      , angular 

frequency,       ,  and wave number,       .   

 

 

 

 

 

 

Figure 2.9:  Definition sketch of a two dimensional free surface sinusoidal 
wave. 
 

Le Méhauté (1976) categorised free surface waves into deep, intermediate 

and shallow water regions based on the ratio of water depth to wavelength. 

Values for the depth parameter,      , and the ratio of water depth to 

wavelength,     for different wave regimes are presented in Table 2.2. 
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Table 2.2: Classification of wave regimes by Le Méhauté (1976). 
 

Classification           Wavelength,   

Deep water waves >0.08 >1/2             

Intermediate waves 0.0025 to 0.08 1/20 to 1/2            

Shallow water waves <0.0025 <1/20      

 

Le Méhauté (1976) produced a summary of the ranges of applicability of 

different wave theories based on wave height and water depth parameters, 

      and      . The illustration is reproduced in Figure 2.10.  
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Figure 2.10: Ranges of validity for various wave theories as suggested by Le 

Méhauté (1976). 

 

Robinson (2010) discussed Le Méhauté’s wave classification in detail. He 

observed that Dean (1965) showed similar validity regions. He also noted 

that Le Méhauté’s classification has not been disputed by any one. 

Moreover, Le Méhauté’s figure has been included in the Coastal 

Engineering Manual (2002). However, Robinson (2010) found, during his 

literature review, some discrepancies between Le Méhauté’s wave theory 

limits and other theoretical validity limits.  Nevertheless, the Le Méhauté 
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classification of wave regimes is presented here on the basis of its wide 

acceptance by the coastal engineering community. 

 
2.7.2 Small amplitude (linear) wave theory 

 

The most simple of the wave theories is linear or Airy (1841) wave theory. Its 

derivation starts with the Navier-Stokes equations and makes a number of 

assumptions including incompressible, frictionless flow. Secondly,   

conservation of mass or continuity of the fluid is assumed. The problem was 

linearised by assuming that the wave height, H, is much smaller than the 

wavelength L, and water depth, h, i.e.  H<<L, h.   

 
2.7.3 Wave generated currents (steady streaming) 

 

Stokes (1847) was the first to discuss the concept of a net wave-induced 

velocity.  A fundamental difference between Stokes and Linear wave theory 

is that the Stokes orbital motions of water particles do not close but instead 

lead to a non-periodic current or mass transport of water in the direction of 

wave advance. The associated Stokes drift current is given by  

   
                  

            
                                                                                              

The solution presented by Longuet-Higgins (1953) showed a net flow in the 

direction of wave advance near the water surface and at the bottom, 

balanced by a return flow in the opposite direction at mid depths.   
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Measurements by Russell and Osorio (1957) of the vertical distribution of 

mass transport velocities in a laboratory wave tank found reasonable 

agreement with the theoretical relationships. 

Based on velocity measurements in wave flume, Dixen et al. (2008) found a 

maximum streaming current of O(4cm/s) for   = 0.4m, T=1.6sec and 

H=14.2cm.  Due to the small scale of the velocities, steady streaming should 

be of lesser importance than the instantaneous large scale velocity in the 

order of bottom orbital velocities, i.e., O(20 cm/s) for the removal of large 

stones. 

2.7.4 Comparison of wave theories  

 

Soulsby et al. (1993) noted that, historically, many comparison studies have 

focused on the prediction of the horizontal velocity under the crest, which is 

one of the most important quantities used for design purposes (e.g., Dean 

and Perlin, 1986; Kirkgoz, 1986). Soulsby et al. (1993) observed that linear 

wave theory gives the best overall agreement of bottom orbital velocity with 

data for flat and sloping beds (slopes between 1:100 and 1:4.45) up to the 

breaking point and within the surf-zone. However, this comparison cannot be 

extrapolated to the overall velocity profile.  In particular, velocities under the 

trough are overestimated by a factor up to 1.5 to 2 near the breaking point 

due to asymmetry in the wave profile. The asymmetry can be very important 

in determining the direction and magnitude of the net sediment transport due 

to the waves. This weakness in predicting velocity asymmetries can be 

overcome by Stokes higher order models in intermediate water depths. 
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Figure 2.11 shows a comparison of velocity data and linear and convocoidal 

wave theories presented by Isobe & Horikawa (1982) obtained from Soulsby 

et al. (1993).  The wave parameters for the two cases (a) and (b) are shown 

in Table 2.3 below. 

Table 2.3: Wave parameters - experiments of Isobe & Horikawa (1982) on 

wave orbital velocity. 

Test H(cm) T(sec) h(cm) Bed Slope       Wave Regime 

(a) 

(b) 

9.16 

6.75 

0.97 

2.0 

10.4 

8.8 

0.05 

0.05 

0.0113 

0.0021 

Intermediate depth 

Shallow depth 

 

Linear wave theory predicted the measured peak velocity well both in the 

intermediate and shallow water depths. However, the phase of the wave is 

not predicted.  
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Figure 2.11:  Comparison of computed and measured near-bed water 

particle velocity profiles of shoaling waves on a 1:20 plane beach (Isobe & 

Horikawa, 1982). (a) intermediate depth (b) shallow depth. Measured   , 

Linear theory  - - -.  

. 

2.8.1 Laminar boundary layer 

 
Most theoretical investigations in fluid mechanics are based on the concept 

of a perfect, i.e. frictionless (inviscid) and incompressible fluid. In the motion 

of such a perfect fluid, two contacting layers experience no tangential forces 

(shearing stresses) but normal (pressure) forces. That is a perfect fluid will 

not offer internal resistance to change in shape, i.e. tangential stress is not 

proportional to the strain.   
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However, in contrast to a perfect fluid, a Newtonian fluid exhibits a linear 

stress strain relationship. Newton (1642-1727) postulated that, for the 

straight and parallel motion of a given fluid, the tangential stress between 

two adjoining layers is proportional to the velocity gradient in a direction 

perpendicular to the layers, that is:   

  
 

 
  

  

  
                                                                                                                              

or 

   
  

  
                                                                                                                                   

where, the constant of proportionality,   is constant for a particular fluid at a 

particular temperature, and is known as the coefficient of viscosity. 

Near a solid wall a perfect fluid would not apply a shear stress on the wall 

and hence, no opposite stress on the fluid layer above (Newton’s Third Law) 

to retard the motion. That is, there will be slip. 

However, in a real fluid due to inter molecular attractions the fluid will adhere 

to the wall creating strain of the fluid layers (or velocity gradient) and hence, 

there will be a shearing stress. 

2.8.2 Turbulent boundary layer  

 

Due to the difficulty in explaining turbulent shear flows analytically, scientists 

have used semi-empirical hypotheses to describe turbulent shear stresses. 
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Boussinesq (1877), in analogy with the coefficient of viscosity in equation 

(2.17) introduced a mixing coefficient,   ,  for the Reynolds Stress in 

turbulent flow by putting: 

           

   

  
                                                                                                              

From Prandtl’s mixing length hypothesis (Schlichting,1968): 

      
   

  
 
   

  
                                                                                                                      

Prandtl assumed that the turbulent shearing stress at the wall is zero owing 

to the disappearance of the fluctuations and hence, the mixing length,   is 

proportional to distance from the wall,  . 

                                                                                                                                               

  is known as the Von Karman constant. After substituting in eqn. (2.19): 

        
  

  
 
 

                                                                                                                    

Comparing eqn. (2.18) with eqn. (2.21) we find the following expression for 

the virtual viscosity: 

       
   

  
                                                                                                                          

and for the virtual kinematic viscosity or eddy viscosity: 
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The mixing length is assumed to be independent of the magnitude of 

velocity and is considered to be a local function and not a property of the 

fluid like viscosity (Schlichting, 1968). 

Hence, substituting eqn. (2.23) into eqn. (2.19) 

    
   

  
                                                                                                                                

The eddy viscosity is as shown in eqn. (2.24) is dependent on the time-

mean velocity.  Eqn. (2.23) is still unsatisfactory as the eddy viscosity 

vanishes when         , i.e. at minimum and maximum. In reality this is 

not true. Therefore, Prandtl introduced a simpler relationship for the eddy 

viscosity. Thus: 

                                                                                                                            
 

Prandtl assumed that the lumps of fluids that move in a transverse direction 

during turbulent mixing are of the same order of magnitude as the width of 

the mixing zone,  .     is a non-dimensional coefficient to be determined 

experimentally.             is the maximum difference in the time-mean 

flow velocity. 

At this stage Prandtl assumed a far reaching assumption, i.e., at the bed the 

shearing stress remains constant, i.e.     . 

Introducing the friction velocity,    
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Substituting equation (2.26) in (2.21) 

  

  
 

  

  
                                                                                                                                    

    

After integrating we have 

  
  

 
                                                                                                                              

The constant of integration,   should be determined experimentally and 

depends on the conditions at the wall. 

Assuming that at a certain height,      , the velocity,     

 

  
 

 

 
                                                                                                                        

 

2.8.3 Turbulent boundary layer over rough beds 

 

Nikuradse (1933) carried out very systematic and extensive measurements 

on flow through rough pipes with their inside wall covered with sand of a 

known grain size glued on the wall for varying pipe diameters and roughness 

size. Assuming        where    is the Nikuradse roughness height and 

the Von Karman constant,      . 

 

  
 

 

 
    

 

  
                                                                                                                 

      

Nikuradse found that for a completely rough flow regime 

 

  
        

 

  
                                                                                                                

      
and 
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Based on Nikuradse’s data, after comparing with data for smooth pipes, 

three flow regimes have been identified (Schlichting, 1968). 

 Hydraulically smooth regime: 

 

  
    

 
                                                                              

Where,                ,     is relative roughness,   is the radius of the 

pipe and    is friction coefficient defined as         
   . In this case size 

of the roughness is so small that all protrusions are contained within the 

laminar sub layer.  

 Transition regime: 

 

  
    

 
                                                                                

 

Protrusions extend partly outside the laminar sub-layer and additional 

resistance, as compared with a smooth pipe, is mainly due to the form drag 

experienced by the protrusions in the boundary layer. 

 Fully rough turbulent regime: 

 

    

 
                                                                                                     

 
All protrusions reach outside the laminar sub-layer. By far the largest part of 

the resistance to flow is due to the form drag. For this reason the law of 

resistance becomes quadratic. 

 
2.8.3.1  Nikuradse roughness height, ks 

 

The value of    is a function of the size of the bed particles as well as the 

bed geometry (grain spacing, shape and size distribution). Kamphuis (1975) 
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observed that   = 2    for natural sand and rock particles of the size, 

   =0.5, 2.2, 4.22, 12.2 and 46mm. Following Engelund and Hansen (1972), 

Nielsen (1992) adopted a value of   = 2.5    for use in Swart's (1974) wave 

friction factor formula. 

 
Dixen et al. (2008) reported that   = 2.3    and 2.0    for 3.85cm and 

1.4cm diameter natural stones, respectively. For ping-pong balls of 3.6cm 

diameter glued to the flume bed, they estimated a value of   = 2.5   . 

 
The stone sizes used in the present study varied from1.9cm to 5.0cm and of 

the scale as the roughness measured in previous studies, Hence,   = 2.5    

was assumed in the calculations. 

2.8.4 Theoretical bed level 

 

 

 

 

 

 

Figure 2.12:  Definition sketch of the theoretical bed level. 

 

In contrast to a smooth bed, the choice of the origin of the   axis,    , is 

not obvious. It is generally defined as the level of the origin which leads to 

the best fit of eqn. 2.29 to measured current profiles (Nielsen, 1992). It can 

also be considered as the level at which the mean drag on the surface 

appears to act. In many commonly encountered types of roughness, the 
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expression,     0.7 times roughness height ( ), gives a good estimate 

(Jackson, 1981).  Bayazit (1976, 1983) found that,     is located (0.15-

0.35)  below the top level of the elements. 

 
For oscillatory flow over rough beds, Sleath (1987) and Dixen (2008) 

discussed about the theoretical bed level. Sleath(1987) quoting Einstein 

(1950) suggested that the origin should be taken 0.35  below the crest level 

of the roughness elements or   =0.65 . Dixen reported that the theoretical 

bed level for ping-pong balls (3.6cm diameter) glued to the flume bed and 

stones (1.4cm and 3.85cm) is located 0.23  and 0.25  below the top level of 

the roughness elements, respectively. 

 

Therefore, from available literature, a value of   =0.65  provides a lower 

bound for the displacement height to define the theoretical bed level. 

 

2.9 Shear stress in oscillatory flow over rough beds 

 

2.9.1 Introduction 

 

Jonsson (1966) concluded from dimensional analysis that the structure of 

oscillatory boundary layers depends mainly on the Reynolds number: 

   
   

 
 

   

 
                                                                                                                  

and relative roughness,     , where   is wave orbital amplitude at the bed 

and   is wave angular frequency. 
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In this section, physical processes and parameters related to oscillatory 

boundary layer and shear stress are discussed. 

2.9.2 Nature of oscillatory boundary layer 

In the study of stone movement, the bottom boundary layer, through which 

the main flow will exert shear stress on the bed, is the most important part of 

the flow. When compared to a tidal current, the wave boundary layer, due to 

its short time-scale, is thin and hence, will have a steep velocity gradient and 

high shear stress. If superimposed on a weak current, wave-induced 

oscillatory shear stress will enhance the combined maximum shear stress 

amplitude (Soulsby et al., 1993). Therefore, even if the tidal velocity is much 

larger than the wave-induced velocity, the wave velocity amplitude will 

dominate the shear stress near the bed.  
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                                                          (a) 

 

 

 

 

 

 

 

                                                         (b) 

Figure 2.13:  Definition sketch of the boundary layer development. (a) water 

surface elevation against phase angle,    (b) flow reverses at    900 near 

the bed. 
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The wave boundary layer has a steep velocity gradient and, therefore, 

induces a large bed shear stress when compared to a current making the 

waves more dominant of the two in the incipient motion of stones (see 

Figure 2.14). 

 

 

 

 

 

 

 
         Figure 2.14:  Sketch showing wave and current boundary layers. 

 
 
It is conventional to define the wave-induced shear stresses and forces in 

terms of the maximum free stream velocity amplitude, Um. 

  

 
 
 
 
 
 
 
 
 
 
 
 
     Figure 2.15:  Definition sketch showing maximum velocity amplitude. 
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2.9.3 Boundary layer thickness  
 

 
There are different definitions for the boundary layer thickness. However, 

boundary layer thickness,   , is defined here as the distance from the 

theoretical bed level to the point where U       is maximum at     . 

 

 

 

 

 

 

 

     Figure 2.16:  Definition sketch showing the boundary layer thickness. 

 

For laminar flow Stokes boundary length scale is defined as: 

    
  

 
                                                                                                                                 

The practical limit for measuring boundary layer thickness lies around the 

level where the velocity defect is one percent of the free stream amplitude, 

i.e., 0.01Um (Nielsen, 1992). 

                                                                                                                                       

Sleath (1987) based his definition for the top of the boundary layer on 

experiments using sand (0.2mm, 1.63mm), gravel (8.12mm) and pebbles 

(30mm) and presented the following relation: 
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and is defined as the position where the amplitude of the velocity defect has 

dropped to 5% of the velocity amplitude. 

For rough turbulent flow, researchers have found a correlation between 

      and     . Dixen et al. (2008), based on stone and ping-pong ball 

(glued to the flume bed) tests, concluded that for relative roughness      = 

O(1) or smaller, the boundary layer thickness       = O(0.5 ) or smaller. 

Dixen et al. (2008), after fitting test results with published data of Jonsson 

and Carlsen (1976), Sleath (1987), Jensen et al. (1989), found an empirical 

expression for      : 

  

 
       

 

  
 
    

                                                                                                         

 

2.9.4 Eddy viscosity and mixing length 

 

Relationships used for the prediction of shear stresses within the boundary 

layer for steady uniform flow are commonly used to predict shear stresses 

under oscillatory flow.  However, the assumptions on which theses 

relationships have been based, i.e., zero pressure gradient, eddy viscosity, 

 , and mixing length,  , are constants at a certain height of the boundary 

layer and proportional to the height from the bed, are not directly applicable 

to oscillatory flows.  In oscillatory flow over rough beds, vortices formed 

behind the roughness elements are ejected at each half cycle. These 

ejected vortices will interact with other vortices and with previous vortices to 
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produce a pattern of turbulent eddies which decay with height above the 

bed.  It seems probable that the vortices formed and released into the flow 

will have a significant effect on the turbulence within the boundary layer 

(Sleath, 1991) and hence, on the eddy viscosity and mixing length.   

Sleath (1987) used sand, gravel and pebbles of median diameters 0.2mm, 

1.63mm (sand,     = 24.8-1112), 8.12mm (gravel,     = 2.34-27.7) and 

30.0mm (pebbles,     = 0.74-8.69). 30.0mm pebbles were laid on the bed 

while other sediments were glued to plates fixed on the tunnel bed. He found 

that both eddy viscosity and mixing length vary significantly over a wave 

cycle. 
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Figure 2.17:  Variation of eddy viscosity during the course of the wave cycle. 

x- x, y=3.5mm; o-o, y=30mm. Eddy viscosity has been normalised using its 

cycle mean,    (Sleath, 1987). 

 

 

 

 

 

 

 

Figure 2.18:  Variation of time mean (cycle averaged) eddy viscosity with 

distance from the theoretical bed located 0.35d below the crest level of the 

elements (Sleath, 1987). 

 

In analogy with the Prandtl’s relationship for eddy viscosity (eqn. 2.63), 

Kajiura (1968) assumed that for rough beds, cycle averaged eddy viscosity: 
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where,     is peak shear velocity,        is angular frequency and   is 

wave period. 

As seen from the data of Sleath (1987) in Figure 2.18, there is indeed an 

intermediate range where,          .  He observed that Von Karman 

constant    during the wave cycle was considerably lower (0.059 - 0.078).  

When he used a mean value of the shear velocity,     (i.e.         ), this 

value increased to 0.13 though still lower than the theoretical value of 0.4. 
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Figure 2.19:  Variation of mixing length during the course of the wave cycle. 

x- x, y=3.5mm; o-o, y=30mm (Sleath, 1987). 

 

 

 

 

 

 

 

 

Figure 2.20:  Variation of mean mixing length with distance from the bed 

(Sleath, 1987). 

 
As seen from the Figure 2.19 the mixing length varies over the wave cycle at 

a particular height from the bed. The measured data is in agreement with the 
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linear variation proposed for steady flow when the cycle average shear 

velocity was considered. However, observed Von Karman constant was still 

smaller than 0.4 (i.e., 0.14 - 0.17).  

Therefore, due to the deviation in behaviour of both eddy viscosity and 

mixing length parameters from the steady flow, the fitting of boundary layer 

velocity data to a logarithmic relationship for all phases of the oscillatory flow 

will not be practical.  

Nielsen (1992) reported that better agreement of the velocity distribution with 

the logarithmic relation is obtained for smooth beds such as that of Jensen 

(1989) where the relative roughness,      is >33. Agreement was also 

observed for the data of Jonsson & Carlsen (1976) for      = 28 – 125.  

Dixen et al. (2008) showed (Figure 2.21) that for large roughness elements, 

the velocity data satisfied the logarithmic law when the thickness of the 

boundary layer develops sufficiently to accommodate the logarithmic 

boundary layer. This happens when the phase angle        for the 

roughness,     = (0.5). 
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Figure 2.21:  Logarithmic fit of velocity data for (a) crest (b) trough half 

periods. Water depth =0.4m, H=14.2cm, T= 1.6sec,     =0.72 (Dixen et al., 

2008).  
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2.9.5 Shear stress 

 

Based on experiments, Sleath (1987) concluded that the mean horizontal 

force on a unit area obtained through the momentum integral approach (eqn. 

2.44) is about a factor ten larger than the periodic Reynolds shear stress, 

             .  

 
Total shear stress, 

    
 

  
        

 

 

                                                                                                     

which says that the shear stress at level   is equal to the fluid density times 

the total acceleration defect above  . 

 
Sleath (1987) attributed this phenomenon to the mean pressure gradient in 

oscillatory flows with rough beds and to the momentum transfers associated 

with vortex ejection on flow reversal.  

 
Dixen et al. (2008) found that the shear stress obtained from ensemble and 

space-averaged Reynolds stress is slightly less than that obtained from the 

log-fit method. This is because the maximum of the Reynolds stress occurs 

not at the bed level, but slightly below the top of the roughness elements. 

However, the shear velocity,   , obtained by the momentum integral method 

and log-fit method tallied well. They used natural stones of 1.4cm, 3.85cm 

and ping-pong balls of 3.6cm glued to the flume bed. These observations by 

Dixen et al. (2008) are consistent with those of Sleath (1987). 
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2.9.6 Wave friction factor 

 

Direct determination of the bed shear stress is not possible for practical 

engineering designs. Therefore, researchers have tried to develop semi-

empirical relationships to define bottom shear stress. It is accepted that the 

drag force on a bed element is proportional to the square of the velocity, 

     . On this basis, Jonsson (1966) defined a transfer function,    linking 

the square of the peak orbital velocity to the bed shear stress 

   
 

 
     

                                                                                                                          

Jonsson showed, from dimensional analysis, that the wave friction factor can 

be expected to depend on the Reynolds number       and relative bed 

roughness,     .  

The wave friction factor appears to be related to energy dissipation. The 

time average energy dissipation is given by 

                                                                                                                                               

where       is velocity just above the boundary layer. Jonsson (1966) 

defined the energy dissipation factor,   , by: 

   
 

  
                                                                                                                        

 
 

Nielsen (1992) plotted   ,    data of several studies (Riedel, 1972; Kemp & 

Simons, 1982; Sleath, 1987; Jensen, 1989; Jonsson & Carlsen,1976) for 

rough turbulent flow.  Lofquist (1980, 1986) reported comprehensive 

measurements of bed shear stress over natural sands. Both these authors 
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concluded that though there is considerable scatter of data, for practical 

purposes, it can be assumed that      . 

The wave friction factor,  , due to its practical relevance, has been subject 

to considerable research effort in the past. Some of the equations available 

in the literature to compute the wave friction factor are discussed below.  

Jonsson (1966) proposed:  

 

    
      

 

    
            

 

  
                                                                         

 

Kajiura’s (1968) equation:  

 

       
      

 

    
             

 

  
                                                                

                    

Kamphuis (1975) used an oscillating water tunnel to measure shear stress 

on a smooth bed and five rough beds made of particles of diameter,    = 

0.5, 2.2, 4.22, 12.2 and 46 millimetres. He used oscillation periods from 2.5 

sec to 15 sec and amplitudes between 0.5m and 3m. For the rough turbulent 

flow regime (i.e.,        > 70), Kamphuis proposed a simple relationship for 

the wave friction factor: 

       
 

  
 
     

  
 

  
                                                                                                

Kamphuis (1975) argued, based on his test results, that for rough turbulent 

flow regime where there is no effect of viscosity, friction factor for a particular 

a/ks value, is independent of the flow Reynolds number (Re).  
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Swart (1974) suggested the following formula: 

             
 

  
 
      

                                                                                     

                 

Sleath (1987) calculated the friction factor based on his experiments using 

sand, gravel and pebbles of median diameter 0.2mm, 1.63mm (sand,     = 

24.8-1112), 8.12mm (gravel,     = 2.34-27.7) and 30.0mm (pebbles,     = 

0.74-8.69). The friction factor data obtained from momentum integral method 

tallied well with the curves of Jonsson (1963) and Kamphuis (1975). Data 

obtained from the Reynolds stress method fell well below the above curves 

giving the relationship: 

          
 

  
 
     

                                                                                                         

 

Simons et al. (2000) measured the shear stress directly using UCL Shear 

Cell apparatus (described in Grass et al., 1995 in more detail) for regular 

oscillatory flow over 2D roughness elements of 6mm square placed at 25mm 

centres perpendicular to the flow direction.  They found the following 

relationships: 

        
 

  
 
     

  
 

  
                                                                                               

and 
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Figure 2.22:  Friction factor,    against relative roughness,      (Simons et 

al., 2000). 
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Figure 2.23:  Friction factor,    against Reynolds number (Kamphuis, 1975). 

 

 

 

 

 

 

 

 

 

 

Figure 2.24: Friction factor,    against Reynolds number (Kamphuis, 1975). 
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Dixen et al. (2008) measured bed shear stress using the logarithmic 

boundary layer and momentum integral methods.  The rough bed consisted 

of stones (1.4cm and 3.85cm) and ping-pong balls (3.6cm) glued to the 

flume bed. They plotted the test data and compared with results of various 

researchers, i.e. Bagnold (1946), Kamphuis (1975), Sleath (1987), Simons 

et al. (2000), and found that the data fitted the equation  

        
 

  
 
    

       
 

  
                                                                                    

This relation is very similar to the equation (2.53) proposed by Simons et al. 

(2000). 

 
2.9.6.1   Scale effects and field measurements of friction factor 

Not many field studies that calculated wave friction factor of coarse particles 

in the field scale can be found in the literature.  

Thompson et al. (2012) carried out experiments in the Delta Flume under 

irregular waves. Waves heights ranged from 0.8-1.3m, peak periods 3-10 

sec and water depths, 1.75-3.75m. They used several methods to estimate 

the shear stress (i.e., Reynolds Stress, TKE, Inertial Dissipation) and found 

that only the mean values of fw agreed with previous studies (i.e., 

Kamphuis,1975; Kemp & Simons, 1982; Sleath, 1987).   

Experiments of Kamphuis (1975) were conducted in an oscillating tunnel 

with amplitudes of oscillation varying from 0.5m to 3.0m and period 2.5 sec 

to 15 seconds.   
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Myrhaug et al. (1998) analysed velocity data at two locations (i.e. Strait of 

Juan de Fuca, Washington State in 18m water depth and at a location 

named EDDA, North Sea at a water depth of 70m).  The seabed material at 

the Strait of Juan de Fuca site consisted of rock and gravel of average 

diameter 5cm. The seabed at the North Sea site mainly consisted of fine 

sand with d50=0.2mm. The predicted shear stress agreed well with that for 

the Strait of Juan de Fuca site. The agreement was attributed to the 

absence of suspended material at this location.   

Whilst the number of tests at field scale that quantified friction factor is 

sparse, the existing few seem to agree with the earlier laboratory scale 

studies (i.e., Kamphuis,1975; Kemp & Simons, 1982; Sleath, 1987, Simons 

et al., 2000). 

 

2.10 Wave Forces on a single stone 

 

2.10.1   Profile drag 

 

Skin friction and pressure drag on a 3D object together constitute the profile 

drag. When Red approaches zero, the skin drag is about two thirds of the 

total drag. When separation of the boundary layer occurs, the pressure drag 

makes a proportionately larger contribution, about 90% when Red > 200. 

The present experiments will be conducted in the region of Red=Umd/ > 

1000, and hence, are outside the region where skin friction drag is 

important. For a sphere, a stable separation position is achieved at       

from the front stagnation point when Red  1000. Unlike 2D bodies (i.e., 
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cylinders), 3D objects do not form a vortex street, but a vortex ring which 

becomes unstable and moves downstream when 200 < Red < 2000. The 

drag coefficient,    gradually becomes independent of Reynolds number 

from Red = 2000 (see Figure 2.28). 

 

 

 

 

 

 

 

Figure 2.25: Flow past a sphere at subcritical Reynolds number (Schlichting, 

1968).  

 

At Red   3X105 the boundary layer becomes turbulent before separation, so 

the separation point moves further downstream, the wake becomes smaller, 

and the value of     drops sharply from about 0.5 to below 0.1 (Massey and 

Ward-Smith, 1998). This phenomenon is called the drag crisis.  

 

At supercritical flow (i.e., transition at Red 3.9X105), the point of separation, 

which lies near the equator of the sphere (i.e.,     ) for laminar boundary 

layer, moves over a considerable distance in the downstream direction (see 

Figure 2.26). This will result in a reduced wake area, and the pressure 

distribution becomes more like that for a frictionless motion. 
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Figure 2.26: Flow past a sphere at supercritical Reynolds number 

(Schlichting, 1968).  

 

 

 

 

 

 

 

 

 

 

Figure 2.27: Pressure distribution around a sphere in the subcritical and 

supercritical range of Reynolds numbers with angle     degrees at the 

nose of the sphere (Schlichting, 1968).   

 

 

 

 

 

 



111 
 

 

 

 

 

 

 

 

 

 

 

 
Figure 2.28: Drag coefficient against Reynolds number for a sphere and few 

other objects (Massey and Ward-Smith, 1998). 

 

Concluding remarks 

 
The above Figures from 2.25-2.28 refer to steady uniform flow and the effect 

of the proximity to a solid boundary on flow is not included. Nevertheless, 

they shed light on the flow separation process and variation of drag with the 

Reynolds number on a solid sphere. As the Reynolds numbers (Red) are in 

the O(103 - 104) under the present experimental conditions, they fall within 

the subcritical flow range.  Therefore, the drag crisis will not affect the test 

results. The drag coefficient for a free sphere within this range is 0.4-0.5.  

 

2.10.2   In-Line Force; quasi-steady drag and inertia  

 

For steady currents, the drag force acting on a sphere in the direction of flow 
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is given by 

  
 

 
                                                                                                                             

Where, CD is the drag coefficient and    is the cross-sectional area 

perpendicular to the flow direction.   is measured positive in the flow 

direction. 

In the case of oscillatory flows, however, there will be two additional 

contributions to the total in-line force. 

  
 

 
           

  

  
   

  

  
                                                                                 

        ) is defined as the hydrodynamic mass force and         ) is 

called the Froude-Krylov force. 

 
The hydrodynamic mass force is caused by the acceleration of the fluid in 

the immediate surroundings of the body. This could be best explained by a 

plate moved in still water (instead of stationary plate) in the direction 

perpendicular to its plane with an acceleration  . Here, not only the plate but 

the fluid in the immediate neighbourhood of the plate has to be accelerated 

due to the pressure from the plate. If the hydrodynamic mass is denoted by 

  , the force to accelerate the total mass, is          , where,   is the 

mass of the plate. 
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Figure 2.29: Sketch showing acceleration of displaced fluid around a sphere. 

 

The second effect is that the accelerated motion of the fluid in the outer flow 

region will generate a pressure gradient according to: 

  

  
   

  

  
                                                                                                                            

The pressure gradient in turn will produce an additional force which is 

termed the Froude-Krylov force. Replacing,    in eqn. (2.57) with the mass 

coefficient   , the in-line force can be re-written as: 

  
 

 
             

  

  
   

  

  
                                                                           

By defining a new coefficient, CM=Cm+1 

  
 

 
             

  

  
                                                                                             

This equation is known as the Morison equation (Morison et al., 1950). The 

term             is called the inertia force and CM is called the inertia 

coefficient.  

 
For smaller Keulegan-Carpenter (KC) number flows of the O(1), the potential 

flow value of Cm for a sphere is 0.5.  CM tends to 1.5. KC is defined as: 
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where, Um, T and d are as defined previously. 
 
 
Most of the experimental work relating to forces on a submerged body is 

focused on cylinders due to their wide practical use (Sarpkaya & Issacson, 

1981; Sumer & Freds e, 2006). Studies on small spheres without diffraction 

effects (i.e. in the D/L < 0.2 region) in a wave environment, are limited. Out 

of the studies undertaken, only a very few of them relate to small spheres 

resting on a solid boundary. The majority of the studies on drag, inertia and 

lift coefficients relate to objects that lie away from a solid boundary. The 

limitation of the Morison's equation (1950) is that it is valid for the calculation 

of the in-line force when diffraction effects are negligible. 

 
Hofland (2005) listed a number of studies looking at stones resting on a 

channel bed for steady uni-directional currents. These defined    at various 

positions (i.e.,         - mean velocity (U) measured 0.15  above the top of 

the sphere,      - U measured at the centre of the sphere and      - for    

(friction velocity). These studies are by: 

 Watters and Rao (1971);      2:2,         0.3 0.05 for 

spheres in a hexagonal bed arrangement 

 Xingkui and Fontijn (1993);          0.36 for natural stones 

 Chepil (1958);        =0.26 for hemispheres 

 Coleman (1967, 1972), Patnaik et al. (1992);        0.4 for a 

single sphere sitting on top of other similar spheres 
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Hofland (2005) concluded that the use of         in               gives 

a reasonably constant drag coefficient          0.23 – 0.3 for all protrusions. 

Moreover, Xingkui & Fontijn (1993) found that the correlation between the 

instantaneous velocity at this height and the drag force is a maximum. 

Einstein & El-Samni (1949) found a constant CL for different flow velocities 

at this height. 

 
Dixen et al. (2008) made a comparison of in-line force coefficients for 

oscillatory flow using a bed of ping-pong balls (glued to the flume bed, 3.6cm 

diameter) and natural stones (1.4cm-3.85cm) in a wave flume. Based on the 

least-square-fit they found that the CD = O(0.5) and CM = O(0.1) with the 

exception that CM = 0.5 for the 450 arrangement of ping-pong balls and CM = 

0.4 for the stones. For the same test conditions with KC = 12, they cited 

values of CD = 0.6 and CM = 1.2 for a free sphere from Sarpkaya (1975). The 

reason given by the authors for this significant reduction in CM (or negative 

values of hydrodynamic mass coefficient,  Cm) is due to the wash of the lee-

wake water over the roughness element when the flow reverses. The 

second reason given is that the space around the roughness element is 

limited for the water around to accelerate when compared with a free 

sphere/object. The difference in observed CM  values in the tests was 

attributed to the variation in the stone arrangement.  

 
Iwata and Mizutani (1989) studied wave forces on a submerged sphere. 

They found that for KC < 10, CM has an almost constant average value of 

1.2. Flow separation occurs in almost all cases when KC > 10 and the drag 

force dominates. The estimated average drag coefficient CD = 0.7. They 
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concluded that the uplift forces due to horizontal velocity-induced vortex 

shedding dominate at the bottom and hence, the Morison equation is not 

applicable to estimate the vertical wave force. The range of applicability for 

the Morison equation to estimate vertical wave force is when the ratio of 

vertical velocity to horizontal velocity is larger than 1/3. However, it is not 

clear whether the test sphere rested on the bed.  

 
Torum (1994) conducted direct measurements of wave-induced parallel and 

normal forces on an armour unit on a berm breakwater. He found that the 

parallel force could be rather accurately modelled using the Morison 

equation. Average force coefficients were calculated as CD =0.35 and CM = 

0.2. However, the attempt to model the normal force using the same 

equation was not successful.  

 
Wolfram and Naghipour (1999) concluded that the force coefficients 

obtained from different methods varied significantly. However, there is a 

clear trend that the addition of a current (to a wave) significantly decreased 

the drag coefficient and to a lesser extent the inertia coefficient. For KC > 10 

the use of mean values for drag and inertia coefficients (about 1.7 and 2, 

respectively) for heavily marine roughened cylinders in (irregular) waves 

without current seemed reasonably satisfactory. 

 
Concluding remarks 

Therefore, the force coefficients change depending on whether flow is 

oscillatory or uni-directional, Re - KC flow regime, wall proximity, stone 
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arrangement, stone protrusion, surface roughness, whether a superimposed 

current is present etc.  

 
The results of Dixen et al. (2008) and Torum (1994) show that for a stone 

resting on a rough bed of similar stones in a wave dominated environment 

(i.e. regular oscillatory rough turbulent flow regime), the inertia coefficient 

reaches a low value, i.e. CM=O(0.1) while drag coefficient remains in the 

region,    = O(0.5). 

 
2.10.3   Uplift force 

 
Sources of the uplift force are (1) vortex shedding (2) stones falling within 

the influence of the low pressure wake region of upstream stones (3) moving 

eddies (4) quasi-steady upward directed drag due to the wall proximity 

effect. 

 
The flow around a near-wall sphere is not symmetric. Therefore, a quasi-

steady upward directed mean lift must exist in contrast to a free sphere 

located away from the wall (i.e. gap ratio,      ) where the pressure 

distribution around the sphere is symmetric. Here, e is the distance from the 

wall, d is diameter of the sphere.  Uplift forces are also due to asymmetry in 

the wake vortices which start when KC   4. Well established lift force 

regimes are formed when KC > 6 - 7. 

 

Based on research on cylinders, Sumer & Freds e (2006) concluded that 

the vortex-induced oscillating lift and drag will cease to exist in the case 

when the gap ratio (e/d) is smaller than about 0.3 (with the object being 

close to the bed) due to the suppression of vortex shedding. Therefore, if the 
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same phenomena is true for a stone resting on the bed the wall-induced 

quasi-steady lift force should be more important than the irregular lift force. 

There are two approaches in quantifying the uplift force. In one, the 

maximum value of the lift force,       is considered, while in the other an 

r.m.s value of the lift force,       is adopted (Sumer & Freds e, 2006). 

      
 

 
          

                                                                                                        

      
 

 
           

                                                                                                        

                                                                                                                                

Torum (1994) in his direct measurement of normal force on an armour unit 

on the flat side of a berm breakwater reported that the lift coefficient was 

scattered in the test range KC = 25 - 100 varying between CL = 0.1 and -0.1. 

The particle Reynolds number     =          = 1.5 X 104 and     = 

         = 4.0 X 104. Therefore, the measurements were in the fully 

turbulent flow regime. 

Rosenthal & Sleath (1986) observed that the positive (measured upward 

from the bed) lift coefficient increased when the gap ratio (e/d) reduced. 

They tested a sphere for different gap ratios including a test sphere sitting 

on similar spheres on an oscillating tray and a pendulum rig (for high Red > 

2000). When the sphere diameter   is large relative to viscous boundary 

layer length scale 1/ =         , the amplitude and maximum positive 

values of CL initially increased with increasing Red, reached a maximum and 

then progressively decreased. For the rough bed, for a relatively large 
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sphere ( d = 8.3) maximum positive CL reduced from 0.2 to 0.1 when Red = 

      increased from 0 to 3000. CL is fairly constant at high Re numbers.  

 
Iwata & Mizutani (1991) reported that the vertical wave force is magnified 

and becomes irregular when the submerged sphere is at the bottom 

boundary. Close to the bed, the measured vertical wave force deviated from 

the calculated values. Therefore, they concluded that the use of the Morison 

equation is not valid at the bottom and surface boundaries, most likely due 

to the unsteady random behaviour of the forces. In another study, Mizutani 

and Iwata (1993) concluded that the irregular lift force could be estimated 

stochastically using a Weibull probability distribution. 

 
Previous results for uni-directional flow seem to agree well with those for 

oscillatory flow. At high    , CL,0.15 values of 0.15 to 0.22 were found when 

the test particle is placed between other particles (Einstein & El-Samni, 

1949; Xingkui & Fontijn, 1993; Benedict & Christensen, 1972). The 

measurements of Chepil (1958) indicate that CL,0.15=0.23 for the 

configuration with hemispheres spaced three diameters apart. Based on the 

same data Wilberg & Smith (1985) estimated CL,t = 0.2 at the top of the 

spheres. 

 
Concluding remarks 

 
Therefore, based on available literature, a lift coefficient of CL = 0.1 – 0.2 

would be typical for a stone resting on a rough bed in turbulent oscillatory 

flow. Vortex shedding is suppressed when an object is close to a solid 

boundary and hence, quasi-steady uplift force dominates. However, the 
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effect of the irregular lift force on top of the quasi-steady lift force due to 

vortex shedding does not totally diminish as suggested by the experimental 

observations of Hofland (2005) (see Section 2.12.2). The Morison equation 

is not useful in predicting the uplift force. 

 

2.11 Flow structures, turbulence and their length scales 

 

The turbulence in shear flow comprises of a sea of eddies (lumps, blobs, 

tubes, sheet of vorticity). These vortices are stretched and twisted by the 

velocity field, which is itself dictated by the instantaneous vorticity 

distribution. Vortical structures evolve in the velocity field induced by itself 

and all the other vortical structures.  Diffusion of vorticity is restricted to 

regions where there are large gradients in vorticity. It remains coherent 

(localised) for a certain time because vorticity can spread only by material 

movement (advection) or else by diffusion.  This is unlike linear momentum 

where the pressure force can instantly re-distribute the linear momentum 

throughout all space (Davidson, 2004).   

In the following subsections the length scale of turbulence and the 

processes that contribute to the production of near-bed turbulence, are 

reviewed with the objective to find a relationship later on, between the critical 

shear stress of the stone and the large scale turbulence that is primarily 

responsible for the dislodging of a stone from the bed. 
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2.11.1  Length scale of turbulent eddies 

 

There is a broad spectrum of eddy sizes in a fully developed turbulence 

which are associated with a cascade of energy. At the large scale, there are 

energy containing eddies. In pipe flow these eddies are of the size of the 

radius of the pipe and in open channel flow, these eddies are of the size of 

the water depth. On the lower level of the cascade, there are the smallest 

eddies where viscous dissipation takes place. The Reynolds number of 

these smallest eddies are of the order of unity and their size is as small as 

0.1mm or even smaller (Davidson, 2004). 

 
Hofland (2005) argued that large scale turbulent structures (eddies) of the 

order of the water depth have a larger chance of reaching the bed 

sporadically, bringing fluid parcels of large velocity magnitude to the bed. 

These fluctuations are rare and intermittent, and therefore, hardly alter the 

intensity of turbulence near the bed, while the probability of occurrence of 

extreme forces is increased.  

According to Hofland (2005) two types of flow structures are primarily 

responsible for the entrainment of stones and they vary in size - i.e., quasi-

steady force fluctuations (QSF) and turbulent wall pressure fluctuations 

(TWP). The QSF depend on the near-bed streamwise velocity. Turbulent 

sweep events present at the time of initial stone movement are 2 – 4h in 

length (order of the water depth, h).  Nezu and Nakagawa (1993) reported 

that this size is usual of large scale flow structures in open channel flow. The 

origin of TWP can be small-scale vortices. TWP with a length scale of the 
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order of the stone diameter,  , are most effective in generating forces on a 

stone; a vortex centre at 0.5-2  above a stone will probably induce the 

largest (lift) force. 

 
Davidson (2004) noted that in the outer region (of the boundary layer) 

viscous stresses are negligible. The velocity gradients scale with the water 

depth, h, since the largest eddies, which are most effective at transporting 

momentum, are of the order of h. 

 
In oscillatory flow, the orbital excursion has been considered to be an 

important length scale for large-scale turbulence.  Losada & Desire (1985) 

assumed that the large-scale turbulence and length scales can be defined in 

terms of mean flow parameters: 

 

 
 

 

 
                                                                                                                                        

Here, Losada & Desire assumed that       and    . 

Then, 

   
  

 
 

   

 
 

   

 
                                                                                                      

Loasada and Desire also hypothesised quoting Jonsson & Carlsen (1976) 

that for oscillatory flow the length scale,  , is in the order of the boundary 

layer thickness,   . 

 
Dixen et al. (2008) based on their study and other studies (Jonsson & 

Carlsen,1976; Sleath, 1987; Jensen et al., 1989)  on oscillatory flow over 

rough beds found that: 
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Arnskov et al. (1993) reported that the current has a significant influence on 

sediment transport due to the increase in wave-current combined mean bed 

shear stress. This increase is due to the wave-induced oscillatory flow which 

enhances the momentum exchange between the layers of fluid in the current 

boundary layer. Consequently, the momentum-rich, high velocity fluid in the 

outer layers will be carried into the neighbourhood of the bed in larger 

quantities with the introduction of waves resulting in a substantial increase in 

the bed shear stress. 

It is possible to establish a simple relation between the mixing length,  , and 

a characteristic length of the respective flow. For example, in flows along 

rough walls the mixing length near the wall must tend to a value of the same 

order of magnitude as the solid protrusions (Schlichting, 1968). 

 
2.11.2  Sources of turbulence affecting bed shear stress 

2.11.2.1  Inrush and ejection of fluid   

Using the hydrogen bubble technique, Grass (1971) visually identified two 

well defined features of the flow structures close to the boundary of smooth 

and rough beds in free surface channel flow, i.e. inrush and ejection. The 

ejection phase corresponded with the ejection of low momentum fluid 

outwards from the boundary while inrush phases were associated with 

transport of high momentum fluid inwards towards the boundary. These two 

features were present irrespective of the roughness of the boundary. Whilst 
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coherent effects of the inrush phases appeared to be mainly confined to a 

region close to the boundary, the influence of the ejection phases is far more 

extensive. The ejected low momentum fluid elements, drawn from the 

viscous sub-layer and from between the interstices of the roughness 

elements, travel outward from the boundary into the body of the flow and 

give rise to very large positive contributions to Reynolds stress at points 

remote from the boundary. 

 
2.11.2.2  Turbulent Bursting 

 
Kline et al. (1967) observed through visual studies, the presence of 

surprisingly well-organised spatially and temporally dependent motions 

within the ‘laminar sublayer’. These motions lead to the formation of low-

speed streaks in the region very near the wall. The streaks interact with the 

outer portions of the flow through a process of gradual ‘lift-up’, then sudden 

oscillation, bursting, and ejection. They concluded that these processes play 

a dominant role in the production of new turbulence and the transport of 

turbulence within the boundary layer on smooth walls.  

Runstadler et al. (1963) hypothesized that the production of turbulence in 

the inner layers was largely due to the bursting of the observed flow model, 

and more particularly to the eruptions of the low-speed streaks.  

 
Kim et al. (1971) studied the structure of the incompressible smooth surface 

boundary layer over a flat plate in a low-speed water flow using hydrogen-

bubble measurements and also hot-wire measurements with dye 

visualisation. Particular emphasis was placed on the details of the process 
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of turbulence production near the wall. They reported that in the zone 

0      100 (i.e., from the viscous sub-layer to the log law of the wall 

region) the data show that essentially all turbulence production occurs 

during intermittent ‘bursting’ periods.  Here,     is equal to       . 

 
Carstensen et al. (2010) carried out detailed experiments in an oscillating 

water tunnel to investigate oscillatory boundary layers over smooth beds. 

The experiments revealed the existence of two significant coherent flow 

structures: (i) Vortex tubes, essentially two dimensional vortices close to the 

bed extending across the width of the boundary layer flow, caused by an 

inflectional-point shear layer instability. The imprint of these vortices in the 

bed shear stress is a series of small, insignificant kinks and dips. (ii) 

Turbulent spots, isolated arrowhead-shaped areas close to the bed in an 

otherwise laminar boundary layer where the flow ‘bursts’ with violent 

oscillations. The emergence of the turbulent spots marked the onset of 

turbulence. Turbulent spots caused single or multiple violent spikes in the 

bed shear stress signal.  

 
The authors observed that the emergence of the turbulent spots at a critical 

point of the flow development, i.e. Re>1.5 X 105, marks the onset of 

turbulence. The authors further observed that turbulent spots appear at the 

deceleration phase of the wave cycle. Turbulent spots can cause single or 

multiple spikes in the bed shear stress which can be a factor of 3 or 4 larger 

than the maximum shear stress, m.  
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2.11.3  Concluding remarks 

 

The length scale of large scale turbulence, which can induce sweep 

movements to dislodge a stone, is in the order of the boundary layer 

thickness and water depth. In addition, small eddies with the length scale of 

the stone diameter, with the vortex centre at 0.5-2  from the stone, can 

induce lift forces on the stone.  

 
Two mechanisms can contribute to a large positive enhancement of the 

Reynolds stress. (i) the in-rush of momentum rich parcels of fluid to the bed 

from the upper water column; and (ii) turbulent spots – low momentum 

streaks drawn from the viscous sub-layer, which are gradually lifted, then 

undergo sudden oscillation, bursting and ejection into the upper region of 

flow. The bursting process has been identified in the literature as the main 

mechanism for the production of turbulence in the near wall region and will 

be important for fine sediment transport. However, the impact of the 

turbulence generated by the bursting process on the forces on larger stones 

remains to be investigated. 

 

2.12 Stone entrainment, transport and bed damage 

modelling  

There are two approaches to stone transport and bed damage modelling (i) 

deterministic methods using the mean tractive force concept on a stone, and 

(ii) stochastic methods which are based on the probability of exceedance of 

a threshold value by the applied force/shear stress at the initiation of motion. 
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2.12.1   Stone entrainment and transport (deterministic approach) 

 

The use of (dimensionless) bed load transport () as a bed damage 

indicator is conventional for uniform flow (Paintal, 1971a). However, bed 

load transport is dependent on upstream hydraulics; all the stones passing a 

certain section have been entrained upstream of that section. Bed load 

transport is, therefore, considered a non-local parameter. Stability 

parameters like Shields (), are local parameters. Some researchers in the 

past (Meyer-Peter & Müller, 1948; Parker, 1979 and others) have defined 

bed load transport rate,  =         as a function of Shields shear stress, 

i.e., =f(). This would make  -  a relationship of local and non-local 

parameters. Such a relationship can only be valid for uniform flow where the 

flow condition is unchanged along the channel. To adapt to various flow 

conditions, Hofland (2005) proposed that the  dimensionless entrainment 

rate (E) could be used as a bed damage indicator because it is completely 

dependent on the local hydrodynamic parameters. The dimensionless 

entrainment rate is expressed as: 

   
 

    
                                                                                                                            

where,        ,   is the number of pick-ups per unit time.   is number of 

pick-ups during time   from the area  .      .  

 
This way of defining entrainment rate is different to the damage definition 

given in the Rock Manual (CIRIA, 1991) for rock slopes because it measures 

the eroded area, not the number of extractions. The damage number    is 

thus defined as: 
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Where,    is the eroded area. Initial damage is defined as when    = 2 – 3, 

and will depend on the slope of the structure. 

 
2.12.1.1  Stone transport formulae based on excess shear stress 

concept 

 
There are several widely used equations to predict bed load transport. Most 

take the form            
  defining the sediment transport rate in terms 

of excess shear stress, i.e.      . Most classical sediment transport 

formulae are based on the excess shear stress concept.  

 
The disadvantage of these relationships is that they are based on a single 

threshold stress assuming that the stone transport would start when the 

applied stress just exceeds the threshold value. The threshold shear stress 

varies spatially on a bed depending on the stone protrusion. For a fully 

exposed particle the critical shear stress could be as low as 0.01 whilst a 

grain with zero protrusion could be more stable with a threshold stress as 

large as 0.1 (Fenton & Abbot, 1977).  

 

Meyer-Peter and Müller (1948) used a critical shear stress value of    = 

0.047 in their equation: 

  

     
                                                                                                               

                        

Parker (1979) used a lower value for    = 0.03: 
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The majority of the bed load transport formulae for unsteady flow have been 

adapted from those formulae developed for steady flow assuming that the 

sediment is advected at a mean orbital velocity. 

 
Madsen and Grant (1976) adapted the Einstein-Brown formula for the 

averaged transport rate    during half the wave period as: 

  

   
                                                                                                                               

Where,   is the fall velocity of grains and,             
      . 

Sleath (1978) described his experimental data by 

  

   
          

                                                                                                           

Where,  =    . 

 
Bailard and Inman (1981), based on the work of Bagnold (1963) and Komar 

& Inman (1970) assumed that the volume of solids mobilized,  , is assumed 

proportional to the energy dissipation rate where: 

  
 

    
                                                                                            

Assuming,   = 320. If it is advected at the mean orbital velocity,        , 

then the transport rate for the half period is: 

                                                                                                                           

 
Concluding remarks 

The above list of sediment transport formulae is far from complete. The 

common characteristic of these formulae is that they are based on an 

excess shear stress concept. The majority of the transport formulae have 
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been developed for uni-directional currents and applicable for sand and 

gravel. Some bed load transport models for currents have been adapted for 

waves assuming that the sediment is advected by the mean orbital velocity. 

As each stone on a bed protection has a different critical shear stress value 

depending on the level of protrusion (Fenton & Abbot,1977; Chin & 

Chiew,1993) the use of one single value for     in the bed load transport 

formulae would not be appropriate. Rather, the critical shear stress can be 

more appropriately represented by a probability distribution function.  

 

2.12.1.2  Stone transport rate, E,  incorporating local turbulence 

 
Jongeling et al. (2003) empirically derived the following stone transport 

formula, which showed that the modified Shields parameter, WL, strongly 

correlated with the non-dimensional entrainment rate, E: 

                 
                                                        

 

Jongeling et al. (2003) averaged the local turbulent kinetic energy,    within 

a height above the bed equal to hm=5dn50+0.2h.  refers to the turbulence 

magnification parameter. 

The modified Shields parameter was defined as: 

    
         

 
   

      
                                                                                                      

Hofland (2005) also averaged the turbulent kinetic energy over the mixing 

length, Lm, and defined a new stability parameter 

    
              

  
 

 
 

   
                                                                                      

Hofland’s stone transport formula: 
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Hoan et al., (2008) in their experiments for currents, laid stripes of light 

weight stones made of epoxy resin (dn50=0.82cm, dn85/dn15 = 1.11, s = 1320 

– 1971 kg/m3) surrounded by natural stones (dn50=0.8cm, dn85/dn15 = 1.27, s 

= 2700kg/m3) having a rough permeable layer thickness of 4cm. They used 

a tapering flume to create expanding non-uniform flow conditions. Their 

study showed that the non-dimensional entrainment rate E, has a poor 

correlation with the Shields non-dimensional shear stress, . 

 

However, the relationship they derived using E and the modified Shields 

stability Parameter, u-(u) agreed well with the measured data. u-(u) is a 

parameter that accounts for the turbulence intensity at the bed as opposed 

to the mean velocity used by Shields. 

 
Jongeling et al. (2003), Hofland (2005) and Hoan (2008),  plotted stone 

transport data against the modified Shields parameter incorporating local 

near-bed turbulence and found a strong correlation of the type,       
  .       

 
Concluding remarks 

It is clear from the above three studies that the inclusion of the local 

turbulence fluctuation (and the resulting fluctuation in the shear stress) is 

very important in describing local stone entrainment/transport.  As special 

characteristic of the above three studies is that, the authors attempted to 

average the turbulent kinetic energy over the mixing length or equivalent. 

However, the incipient motion is caused by the interaction of protruding bed 
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elements with the turbulent events at the bed and hence, the turbulence 

statistics gathered over a sufficient time period close to the bed would 

capture the effect of high momentum water parcels moving towards the bed 

from the upper part of the water column (inrush) as well as ‘bursting’ of 

turbulent spots and ejection of vortices from the bed elements. In the 

present study, therefore, instead of averaging the turbulence over the mixing 

zone, the maximum turbulence fluctuation (and hence, maximum fluctuation 

in shear stress) near the bed will be used to find a correlation with the 

observed bed damage. 

 
2.12.1.3  Semi-empirical studies on stone transport/bed damage 

 
Naheer (1979) carried out tests in a wave flume to study the damage of a 

bed protection consisting of natural rocks (5.44 and 5.7mm) and coal (8 and 

11.1mm). In these test he used solitary waves. Naheer observed that the 

bed damage has a linear correlation with the maximum dimensionless shear 

stress. 

  

   
                                                                                                         

Where    is the number of particles moved by the wave in the test area, and 

    is the total number of particles in the uppermost layer in the test area. 

Therefore, this parameter is equivalent to the percentage of stones moved. 

Losada et al. (1987) followed an energy dissipation approach to derive a 

stability equation. After fitting published incipient motion data of various 

researchers, they found the following relationship: 
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Where,   is wave orbital amplitude at the bed,   is grain size,           

and    is non-dimensional grain diameter.    is an empirical coefficient to be 

determined by experiment.  

2.12.2  Stochastic modelling of stone entrainment/bed damage 
                                                                                                                  

Kalinske (1942, 1947), Einstein (1942, 1950) and Frijlink (1952) pioneered 

the probabilistic approach of bed load transport calculation. Einstein 

departed from the mean tractive force concept. In turbulent flow the fluid 

forces acting on a particle vary with respect to time and space and, 

therefore, movement of any particle depends upon the probability, P, that at 

a particular time and place the applied forces exceed the resisting forces 

(Raudkivi, 1998).  

 
Papanicolaou et al. (2002) used a stochastic model to study the probabilistic 

aspects of the incipient motion. The effect of the intermittent nature of the 

near- bed turbulence and bed packing on the commencement of sediment 

motion was studied. In order to isolate the near-bed turbulence effects from 

other parameters like size, shape, etc., uni-sized spherical particles were 

chosen. 

 

The instantaneous velocities     were represented by a Gaussian 

probability distribution. The conventional approach is to represent the flow 

parameters, i.e. normal and shear Reynolds stress components, 

hydrodynamic forces and their moments, by a normal distribution (Einstein, 

1950; Paintal, 1971a,b; Cheng and Chiew, 1998). However, recent 

experimental evidence suggests that the Reynolds normal stress in natural 
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streams is represented well by a gamma distribution and that the Reynolds 

shear stress is represented well by a "peaky shaped" density function. 

Following this new approach using a probability distribution function (PDF) of 

instantaneous velocities instead of other flow parameters, Papanicolaou et 

al. (2002) showed that the conventional approach over predicts the critical 

condition by at least a factor of 2. 

 
The force on an exposed particle was modelled by the drag and lift forces. 

The stability of a particle as determined by the balance of the disturbing and 

restoring moments: 

                                                                                                                    

Where,         ,        ,   is the angle of the bed with the horizontal 

(Figure 2.30). 

This was simplified and re-arranged in terms of    : 

     
     

                                                                                                          

 

 

 

 

 

 

 

 

Figure 2.30: Definition sketch of inter-particle geometry for an exposed 

particle (Papanicolaou et al., 2002). 
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For the exposed particle, the probability of exceedence,    was defined as 

                                                                                                                              

For the fully packed particles (Figure 2.31) movement can only occur, if the 

lift force is greater than or equal to the submerged weight. 

   
 

 
  

   

 
   

                                                                                                                   

The authors concluded that a CL = 0.4 is the best value for fully developed 

turbulence after carrying out a sensitivity test.     is the instantaneous 

velocity atop the bed. 

  
  

  

  
                                                                                                                          

                     

As    follows a Gaussian distribution, its square follows a chi-square 

distribution of the type     
             )/     . 

 
For the fully packed case, the probability of exceedence is denoted by:  

 

                                                                                                                     
 
 
              
 

 

 

 

 

 

 

Figure 2.31: Definition sketch of inter-particle geometry for a fully packed 

bed (Papanicolaou et al., 2002). 
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Papanicolaou et al. (2002) conducted incipient motion tests for spherical 

particles for different packing conditions, i.e. 2%, 50% and 70%. For the 2 

percent case (exposed), the spacing among the particles was 6 diameters. 

The 70 percent case represented the fully packed condition. They concluded 

that assuming a normal PDF for the near-bed velocity resulted in only 33% 

over prediction to the critical condition in the 2 percent (exposed) case while 

for the 50 percent condition (partially packed - one diameter spacing 

between elements) this over prediction was 360%. Use of a Gaussian PDF 

for     resulted in only 7% and 29% over prediction, respectively. 

 
Wu & Yang (2002) calculated the entrainment probabilities of mixed size 

sediments. They observed that, to date, two key factors affecting the 

incipient motion of natural sediments still remain to be incorporated into the 

theoretical formulation of entrainment probabilities: the effects associated 

with near-bed coherent flow structures and randomly configured mixed-size 

sediments. The former is typically characterized by the periodic bursting 

events such as sweeps, ejections, and inward/outward interactions; the 

latter is represented by the random grain protrusion, friction angle, and 

hiding-exposure effect. Wu & Yang assumed the exposure as a probability 

distribution. The applied shear stress on smaller and larger particles were 

distributed according to the relation,       where the hiding factor   was 

determined probabilistically. 

                                                                                                                                          

Einstein (1942, 1950) related the probability of erosion to the ratio between 

the effective weight of a grain and the instantaneous lift. He determined, 
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empirically, a hiding factor to account for sheltering or trapping of smaller 

particles. 

        
 

   
 
      

                                                                                                           

Egiazaroff (1965) defined a hiding or exposure factor for finer sediments in 

terms of the dimensionless Shields critical shear stress for mean dm or d50: 

   
     

                     
                                                                                                             

Hofland (2005), Hofland et al. (2005) and Hofland & Battjes (2006) carried 

out pressure measurements on a hollow 30cm cube, located in a bed of 

natural stones (rough bed). Hofland argued that, due to the sharp edges, a 

cube represents natural rocks better. The PDF of the measured near-bed 

velocities was not perfectly Gaussian, but could be approximated quite well 

by such a distribution (Figure 2.32). The shape of the measured drag force 

PDF fitted well with that obtained theoretically assuming the normal 

distribution for the near- bed velocity,    (Figure 2.33). The prediction was 

quite good for the highest exposure. 

 

 

 

 

 

 

 
Figure 2.32: Measured near-bed velocity compared with Gaussian PDF 

(Hofland, 2005). 
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Figure 2.33:  Normalised PDF of measured drag force on linear (left) and 

semi-logarithmic (right) scale for different exposures and uniform flow 

(Hofland, 2005). Solid line represents theoretically derived PDF. 

 

 

 

 

 

 

 

 

Figure 2.34:  Measured normalised uplift force PDF compared with theory 

(Hofland, 2005). 

 

Assuming that the lift force is due to the quasi steady mechanism, the lift 

force, FL was taken to be proportional to   . The resulting theoretical curve 

for the uplift force PDF, followed a Gaussian distribution. However, Hofland 

(2005) observed that the measured uplift forces for most exposures followed 

a normal distribution (Figure 2.34) indicating that there is another 

mechanism, other than the quasi-steady mechanism, involved in the 

fluctuating lift forces on bed material. Therefore, it can be concluded that the 
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influence of vortex-induced lift is still influential for a stone lying on a solid 

boundary. 

 
2.12.2.1  Exceedance probability of the critical shear stress 

The mobility of stones occur when the applied shear stress on a bed of 

stones exceeds the critical shear stress. As the shape, size, protrusion, 

exposure and orientation of a single element vary, the critical shear stress is 

not a single value, but a probability distribution function even for a single 

stone size. 

Grass (1970) observed that the initial instability of fine sediment particles 

depends on the critical shear stress distribution and the mean shear stress 

distribution applied by the current. Grass argued that the critical bed shear 

stress distribution is an “intrinsic property” of the bed material just like the 

terminal fall velocity, which will be independent of the near-bed turbulence. 

Therefore, at the moment of incipient motion, the applied shear stress,  , 

should just exceed, the critical shear stress,    .  
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Figure 2.35: Probability density functions of the shear stress applied by the 

flow on the bed,  , and critical shear stress of stones,    . 

 

2.12.2.2  Concluding remarks 

 
Stochastic modelling of the incipient motion, would offer a more realistic 

approach for the design of a bed protection than designing for an extreme 

case (i.e., single fully exposed stone) deterministically, as such an approach 

will not take into account the variability of the critical shear stress in space 

and time.  

From the results of the previous studies on the subject, it appears that a 

Gaussian distribution is a better candidate to model near-bed flow velocities.  

However, all those studies cited are for uni-directional currents and hence, 

the applicability of their findings for oscillatory flow needs to be verified by 

measurement. 
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3 Experimental apparatus, 

instrumentation and data analysis 
 

3.1 Introduction 

 

Experiments were carried out to understand the effect of stone protrusion on 

the critical shear stress and the forces on a stone in a model bed protection. 

Stones were idealised as solid spheres (except in bed damage tests 

described in Chapter 8 where crushed natural rocks were used). The main 

apparatus consisted of the wave flume at the Fluids Laboratory at the Civil, 

Environmental and Geomatic Engineering Department of the UCL. The 

90cm long, 45cm wide model bed protection was located at the middle of the 

flume. Wave heights of between 3.5-16.5cm, wave periods between 1-2.5s 

and a still water depth of 40cm mainly (and 30cm for some tests) were used.  

Incipient motion tests were carried out changing the stone protrusion above 

mean bed level. The bed consisted of 19mm glass marbles. The test sphere, 

with diameter 9.5 - 25.3mm, specific gravity 1.19 - 2.53, was placed over 

three similar spheres fixed to a plate on the flume bed. The stone protrusion 

was varied by changing the space between the supporting spheres.  

Forces on a stone in a bed protection were quantified by measuring and 

integrating the pressure on a 50mm sphere located over a coplanar bed of 

similar spheres (billiard balls). A special apparatus was made for this 

purpose.  
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Resistance type wave probes were used to synchronise the water surface 

elevation with the pressure signal from Honeywell 40PC001B2A pressure 

sensors. 

Laser Doppler Velocimetry was used to measure the turbulence parameters 

at the bed. A novel method, Volumetric Three-component Velocimetry, was 

used to compute the three dimensional velocity and vorticity fields to 

visualise the flow patterns near the rough bed and around a sphere (i.e. 

idealised stone).    

 

3.2 Experimental apparatus 
 

3.2.1 Description of the wave flume 

 

The experiments were carried out in the UCL wave-current flume, 

schematically illustrated in Figure 3.1. The flume was 14.5m long with wave 

paddles located at either end. Therefore, excluding the lengths of the wave 

paddles, the test section was 9m long. The width and height of the flume are 

45cm and 65cm respectively.  

The side walls of the flume are constructed of 1cm thick plate glass. The bed 

consists of 183cm long and 45.7cm wide cast aluminium sections. The flume 

is supported along its full length by an iron structure with U-shaped cast 

aluminium sections that provided support at 91.5cm intervals. The water 

supply was provided from an overhead storage tank located above the 

laboratory. The flume was slowly filled via a 150mm diameter supply pipe.  

Tests were conducted about 1 hour after filling the flume to allow for settling.  
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3.2.2 Description of the wave paddles 

 

The novel aspect of the facility is that the wave flume is equipped with two 

identical wave generators with force-feedback wave absorption, one at 

either end of the flume. These are particularly effective in absorbing low 

frequency waves. Simons et al. (2000) noted that when used in conjunction 

with a short , horizontal, perforated metal “beach” suspended below the 

wave trough level at the non-wave generating end, it is possible to maintain 

reflection coefficients less than 5% for waves with periods across the range 

0.8 sec<T<3.0 sec.   The 917mm long 450mm wide perforated plate was 

positioned 38cm from the downstream paddle and was suspended 5cm 

below the still water level.  The beach attenuated the incoming waves 

sufficiently with any remaining residual waves being absorbed by the wave 

paddle. 

The paddles were controlled to generate surface waves using OCEAN 

software developed by Edinburgh Designs Ltd.  Regular sinusoidal waves as 

well as irregular, random waves can be generated for chosen wave 

parameters by instructing the paddles through the software.  
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Figure 3.1:  Wave-current flume at Civil, Environmental and Geomatic 

Engineering Department of the UCL. Approximate dimensions 1450cm X 

45cm X 65cm. 
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                                                              (a) 

 

 

 

 

 

 

 

 

 

   

                                                            (b) 

Figure 3.2:  Wave flume - (a) wave generator (b) wave absorber and raised 

beach in front. 
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3.2.3 Incipient motion tests 

 

Incipient motion of spherical stones of different density was observed 

varying the relative particle protrusion. Three 19mm spheres were screwed 

to a plate, which was, in turn, fixed to the flume bed flush with the floor. The 

movable test stone was placed to rest on the three spheres fixed at the 

middle of the plate as shown in Figure 3.3.  

The test section was 90cm long, spread across the 45cm width of the flume. 

After fitting the plate in to the circular slot on the flume bottom, glass marbles 

were laid in one layer around the three supporting stones, following a 

hexagonal pattern as shown in Figures 3.4 and 3.5. Marbles at the two 

edges of the coplanar bed were glued using epoxy resin to contain the glass 

marbles within the 90cm long section. 

The flume was then gradually filled with water to a 40cm depth (some tests 

at 30cm water depth were also conducted initially). Several test runs were 

conducted before the proper tests to obtain the approximate wave height at 

which displacement occurs. 

The wave height and period were defined within the wave maker software 

developed by Edinburgh Design Ltd to generate a sinusoidal wave pattern. 

The wave height at the start of the tests was chosen to be a low value under 

which the stone was very stable. This wave height was gradually increased 

in 0.5cm increments until the stone starts a rocking movement and then the 

first displacement occurs. At the first displacement, the wave height and 
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period were recorded. 3-4 tests per each case were run to obtain 

average/representative wave conditions at the threshold of movement.  

A sketch showing the inter-particle geometry of the test sphere and the three 

supporting particles (spheres) is shown in Figure 3.6. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



148 
 

 

 

 

 

 

 

 

 

                                                          (a) 

 

 

 

 

 

 

 

                                                          (b) 

Figure 3.3: Apparatus for incipient motion tests - (a) Three spheres screwed 

to the plate (b) test stone (sphere) resting on the supporting spheres. Wave 

direction is shown by an arrow pointed towards the left. 
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                                                           (a) 

 

 

 

 

 

 

 

                                                          (b) 

Figure 3.4(a),(b): Bed of 19mm glass marbles with three supporting stones 

(white) in the middle. 
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       Figure 3.5: Test section in wave flume. 
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Figure 3.6:  Definition sketch of inter particle geometry (a) section (b) plan. 
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3.2.4 Pressure measurement 

 

A special device was designed for the measurement of pressure around a 

sphere. The pressure measuring sphere is shown resting on a bed of similar 

spheres in Figures 3.7-3.9 (fully exposed position). Figure 3.10 shows the 

measuring sphere located within a coplanar bed the pressure data of which 

were used to calculate bed shear stresses. The device was designed as a 

sphere. This device consisted of a 50mm hollow sphere made of two 

hemispheres as shown in Figures 3.11 and 3.12. The upper hemisphere 

was designed to tightly dovetail into the groves of the lower hemisphere.  

1.5mm tappings on a meridian of the sphere surface spaced at 300 angles 

were connected to Honeywell 40PC001B2A pressure sensors via high 

strength silicone flexible tubes, with the tubes having a 2mm internal 

diameter (see Figures 3.13 - 3.15).  Flexible tubes were run through a built-

in solid  pipe (internal diameter 7.5mm and outer diameter 12mm) located at 

the bottom of the lower hemisphere and then connected to the sensors.  

After filling the wave flume slowly, water was bled from the flexible tubes for 

some time to remove any air bubbles that might have trapped inside. 

Bleeding was also carried out while waves were running before the tests.   

Sensors were energised and connected to the Datatranslation data logger.  

The output signal from an analogue wave probe stationed right above the 

measuring sphere in the flume, was also connected to the same data logger.  

DT Measure Foundry software was used to define the capture rate at 

625Hz. The length of the record was defined between 100 to 200 wave 

cycles. 



153 
 

When the sensors were connected to the data logger using ordinary copper 

wires significant background noise was observed distorting the wave profile. 

Signal quality significantly improved when ordinary wires were replaced with 

coaxial cables. 50 Ohm BNC Crimp connecters were used at both ends of 

the coaxial cable. 

The pressure sensor chosen was the Honeywell 40PC001B2A (40PC 

series) which is temperature compensated and supply regulated with its own 

internal amplifier. The analogue output voltage of 0.5V (at atmospheric) to 

4.5V is linearly proportional to input pressure.  The model used had a 

measuring range from 0 to 50mmHg. The sensor’s dimensions measured 

13.2mm x 11.2mm x 9.6mm plus a 10.2mm long funnel at the top. The 

device required an input DC voltage of 4.75-5.25V and current of 10mA. It 

had an operating temperature range of between -45°C and 125°C with a 

response time of 1ms. 
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Figure 3.7:  Sphere (black) with pressure tappings on the surface. 

Supporting three spheres fixed to the plate. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.8:  Measuring sphere (black) over the rough bed of 50mm billiard 

balls. 
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     Figure 3.9: Plan view of the rough bed of 50mm spheres. 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.10:  Measuring sphere with pressure tappings (black) in a Coplanar 

bed. 
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    (b) 

 

Figure 3.11: Upper half of the measuring sphere (a) section (b) 3D model. 

All dimensions in millimetres.   
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                                                          (b) 

 

Figure 3.12: Lower half of the measuring sphere (a) section (b) 3D model. 

All dimensions in millimetres.  
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Figure 3.13: Waves running over the rough bed. Pressure tappings are 

connected to Honeywell 40PC001B2A type pressure sensors housed in the 

boxes below. 

 

 

 

 

 

 

 

 

 

 

Figure 3.14: Honeywell 40PC001B2A pressure sensor. 
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      Figure 3.15: Honeywell 40PC001B2A pressure sensor inside the casing. 

 

3.3 Instrumentation 
 

3.3.1 Wave probes 

 

Three mobile wave probes were used to monitor the surface profile of the 

waves. The principle of operation is based on the change in electrical 

resistance of the probe in response to a change in the depth of immersion. 

The probes were energised with a high frequency voltage. As the resistance 

between the pairs of vertical stainless steel wires change, the output voltage 

from the probes also changes. The output voltage is proportional to the 

depth of immersion. 
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Three mobile probes, WP1, WP2 and WP3 were set up in a group as shown 

in Figure 3.16. One probe (Ch2.) was placed right above the measuring 

sphere connected to six pressure transducers.  The objective was to 

synchronise the wave probes with the pressure transducer. The distance 

between the probes remained constant throughout the tests.  

The voltage output produced by the wave probes was analysed via the wave 

monitor modules and then channelled into the Datatranslation data logger 

simultaneously with the pressure sensor output from the test sphere. The DT 

Measure Foundry software was used to visualise and capture the signal 

from the wave probes. An example of the measured voltage for Channel 2 is 

shown in Figure 3.32.  It shows that the signal was not affected by the 

background noise. 

 

 

 

 

 

 

Figure 3.16: Schematic of the mobile wave probes WP1, WP2 and WP3. 
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3.3.2 Laser Doppler Velocimetry 

 

Laser Doppler Velocimetry is a technique used for measuring fluid velocities 

by detecting the Doppler frequency shift of light scattered by small moving 

neutrally buoyant seeding particles. The Doppler frequency shift, fd, is the 

difference between that of the incident laser beams and the scattered light 

frequencies.  When light is reflected from a moving object, the frequency of 

the scattered light is shifted by an amount, fd, proportional to the speed of 

the object. Therefore, the speed of a moving tracer particle in water can be 

estimated by observing the frequency shift. The main advantages of the LDV 

are the non-intrusive nature of the technique and the accuracy of the 

measurements.  

An incident laser beam is split into two beams of the same frequency and 

intensity, and refocused to intersect at a point in the flow, as shown in Figure 

3.17. 
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                                                           (b) 

      

Figure 3.17(a),(b): Schematic of the laser optics and the measuring volume. 
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At the intersection of the two coherent light beams, an interference fringe 

pattern consisting of alternating zones of brightness and darkness is 

created. This intersected area is referred to as the control volume or 

measuring volume. The dimensions of the measuring volume were given by 

Durst et al. (1981) as: 

   
    

    
                                                                                                                                

   
    

    
                                                                                                                              

                                                                                                                                       

Where, lm, dm and hm are the length, width and height of the measurement 

volume, respectively. 

The measurement volume, Vm is given as: 

   
     

         
                                                                                                                  

Where      is the diameter of the laser beam at the measurement volume. 

This is defined as: 

   
    

     
                                                                                                                             

Where l is the beam wave length, f is the focal length and      is the initial 

diameter of the light beam. 

The fringe spacing, df, is the distance between the sequential bright (or dark) 

zones. When a tracer particle travels through the fringe pattern it reflects 
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light alternatively. The scattered light is collected by a photo detector. 

Assuming the two beams intersect at an angle of 2, the dark fringes are 

separated by a distance: 

   
  

     
                                                                                                                             

Where  is half-angle between the laser beams. 

Fast Fourier Transform (FFT) and autocorrelation techniques are used to 

obtain the burst frequency. A high pass filter removes the intensity ‘pedestal’ 

from the middle of the burst, and a low pass filter then removes high 

frequency noise from the signal. Once the Doppler burst is isolated, the 

dominant frequency is measured and related to the velocity of the particle 

passing through the fringes. 

 

 

 

Figure 3.18: Steps in signal processing.  

 

The amplitude of the signal burst varies with time and provides a measure of 

the particle velocity perpendicular to the fringe pattern. The frequency of the 

amplitude modulation is given by Durst et al. (1981) as: 

   
   

  
                                                                                                                             

Where    is the particle velocity perpendicular to the fringes. 
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Doppler frequency depends only on the magnitude of Vp, not direction, i.e., 

positive and negative values of Vp will produce the same Doppler frequency. 

To correct for this directional ambiguity, the frequency of one of the incoming 

beams is shifted by a known value, fs. This causes the fringe pattern to 

move at a speed Vs = fs df towards the incoming unshifted beam (Figure 

3.19). The frequency recorded by the photodetector is now: 

       
   

  
                                                                                                                  

 

 

 

 

Figure 3.19: Transmitting and receiving optics in the same probe head. 

 

The LDV system at UCL consists of an INNOVA 70C, 5 Watt Argon-ion laser 

and a two-component TSI laser anemometer. The two colour dual beam 

LDV system is capable of measuring horizontal (streamwise direction) and 

vertical components of the velocity.  

The green and blue beams (colour due to different wavelengths) from the 

argon-ion laser were each split and re-focused to form two mutually 

orthogonal planes at a common intersection point, i.e., two blue beams form 

one plane and two green beams form the second plane normal to the 

former. Both focusing lenses and photodetector were inside the single laser 
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probe head as shown in Figure 3.19 operating in the backscatter mode. The 

signal processing was carried out within the TSI IFA-650 signal processor. 

Seeding material (Titanium dioxide) was added to the water to improve the 

data burst rate which was monitored on the oscilloscope and software.  

The LDV system used in the present tests has the following parameters. 

lm=2.4mm - 3.2mm, dm=0.118 - 0.157mm, =2.80, f=512mm,     =0.47mm. 

In a multi-channel LDV system, simultaneous measurement of the velocity 

components is obtained by ensuring that the data-ready signals become 

available within a time window termed the coincidence window. This window 

should be of the order of the fluid transit time through the measuring volume 

and significantly smaller (by an order of magnitude) than the average time 

between data (Kang, 2001). The larger the coincidence window the higher 

the probability that the signal processors will validate Doppler bursts from 

different particles, causing loss of correlation. This value was chosen 

between 500-2000s in the present tests based on earlier trials. 

Because the arrival of each particle is random, the time between the velocity 

estimates is random. Therefore, the velocity is not evenly sampled in time. 

Before most analysis techniques can be applied to the data the record must 

be re-sampled onto an equi-spaced time grid. This can contribute 

uncertainty to the final analysis. Munekata et al. (2001) carried out Reynolds 

stress measurement using different sampling methods and concluded that 

equal time interval method with coincidence data is suitable for the accurate 

measurement of the accurate Reynolds shear stress.  

 



167 
 

3.3.4 Volumetric Three-component Velocimetry 

 

Volumetric Three-component Velocimetry (V3V) is a state of the art 

technique for instantaneous volumetric measurement of the 3D velocity 

fields. The instrument consists of a unique single-body, three-aperture, 12 

mega-pixel camera for 3D imaging. V3V uses volume illumination with 

Nd:YAG laser so that particles inside a large cubic volume up to 

120x120x100 mm3 can be recorded based on two-frame double-exposure at 

a 7.25Hz capture rate.  

 
The raw particle images were processed to obtain the 3D positions of tracer 

particles using a fast and parallel triangle search algorithm. Then a 3D 

particle tracking technique was used to obtain velocity vectors for moving a 

tracer particle from position A at time t to position B at time t+t. Image 

processing is described in more detail under the section on data analysis.   

 
3.3.4.1 System description 

The system consists of the 3D camera probe, a dual head Nd:YAG double 

pulsed laser with optics to generate the volumetric illumination, a 

synchronizer as timing control unit and a computer system with the Insight 

V3V software. The intersection of the viewing region of the camera probe 

and the laser illumination beam determines the size, shape and location of 

the measurement volume (see Figure 3.20). 
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        Figure 3.20:  V3V Schematic representation (Pothos et al, 2009). 

 

3.3.4.2  Operation procedure 

Figures 3.21-3.25 show the V3V set up in the present tests. The laser probe 

was mounted over the wave flume above the test section as shown in Figure 

3.22.  The camera was setup on the side of the flume as shown in the 

figures, with the viewing direction orientated perpendicular to the wave 

direction. The volumetric domain was 120 x 120 x 100 mm3. Two laser 

beams emitting from the probe crossed at a location 670mm in front of the 

camera probe (reference/focal plane) to allow positioning of the probe. The 

measurement region was taken as that region between the reference plane 

and the camera probe.  

The operation of the V3V system and 2D PIV system are quite similar. The 

camera is synchronized with the pulsed laser and images of tracer particles 

are captured during two successive laser pulses separated by a pre-

determined time interval (e.g., 0.005 sec). The velocity of the flow should be 

taken into account in determining the separation interval, as it is common 

practice to allow the particles to move a distance of 4 to 8 pixels between 
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two images.  At the time of generating the laser pulses that trigger the 

capture of images (frames) A and B, a TTL (Transistor-transistor logic) 

signal was sent simultaneously to one of the channels connected to the data 

logger measuring the wave surface profile. This was done to determine the 

phase of the wave at the recording of each image frame. 

 
Before each test, a small amount of concentrated mixture of tracer particles 

(Polyamide with 11% Titanium dioxide, 55 microns mean diameter) 

dissolved in water, was poured upstream and along the flume over the test 

section and allowed to sink and diffuse uniformly into the water column by 

running waves. The flow visualisation test was carried out only after the 

diffusion of particles uniformly over the water depth had occurred. 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.21:  V3V camera mounted in front of the rough bed of glass 

marbles. 
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   Figure 3.22:  Laser illumination beam. 

 

 

 

 

 

 

 

 

 

 

 

 

             Figure 3.23: Illuminated tracer particles inside the laser beam. 
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    Figure 3.24:  Fully exposed 50mm sphere illuminated by the laser beam. 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.25:  A close up view of a fully exposed sphere illuminated by the 

laser beam. 
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3.3.4.3  3D imaging principle  

 
Three image sensors are mounted on a single body in a coplanar triangular 

pattern. The mapping region of the camera is measured from the camera to 

the point where the three image sensors intersect. The image of a particle 

within this mapping region is recorded by the camera from three different 

angles producing three images of the particle. These images form a triangle 

(a triplet) in the image plane as shown in Figures 3.26 and 3.27. 

 
The size of the triangle depends on the depth position. Particles close to the 

camera faceplate will produce a larger triangle than one located further away 

from it. The centre of the triangle determines the x and y positions of the 

particles. z is obtained through the calibrated results that relate the size of 

the triplet triangle to the distance from the focal/reference plane (Figure 

3.29).  
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Figure 3.26:  Sketch showing the formation of a ‘triplet’ in V3V. 

 

 

 

 

 

 

 

Figure 3.27:  Sketch showing particle images in the image domain. 

 

3.3.4.4  System calibration 

The aim of the calibration was to minimise the errors caused by mechanical 

misalignment of the camera, optical distortion and deviations from pin hole 

optics (Pothos et al., 2009). A calibration target as shown in Figure 3.28 

consisting of a high precision grid of dots was gradually moved in stages 

across the flume through the measurement volume. Data capture was done 

 

 



174 
 

one plane at a time. The captured 2D calibration images were analysed and 

a Gaussian fit was used to find the (x, y, z) positions of the dot locations. 

After the calibration was carried out the system was used for actual 

experimental measurements. 

 

 

 

 

 

 

 

   Figure 3.28:  Calibration target in V3V system calibration. 

 

 

 

 

 

 

 

   Figure 3.29:  Spatial calibration data from the present V3V tests. 
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3.3.5 Acquisition of digital images in the bed damage tests 

 

Damage progression to a granular bed protection consisting of light weight 

natural rocks (anthracite), was observed using an overhead camera 

connected to a computer. Software was used to trigger the start and end of 

the capturing of photographic data with data capture carried out at 10 

second intervals. The images were automatically saved to the computer’s 

hard drive. 

An Artec laser scanner (Figure 3.31) was used to obtain a 3D digital surface 

elevation map of the rock armour bed protection. The bed surface was later 

re-digitised to obtain the surface elevation of cross-sections, taking 

measurements at the crest of the bed elements. 

 

 

 

 

 

 

 

 

 

 

    Figure 3.30: Overhead photo camera linked to the computer. 
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Figure 3.31: Artec scanner used for 3D scanning to obtain a digital surface 

elevation map of the model bed protection. 

 

3.4 Data analysis 

 

The laboratory tests provided information on the incipient motion of the 

stones, forces, turbulence parameters, bed shear stresses etc. The 

measured data were analysed using various quantitative methods; both 

stochastic and deterministic. Special software as well as automated excel 

sheets were employed in the analysis. Details of the analysis are provided in 

this section under various sub headings. 

3.4.1 Ensemble-averaging  

 
Ensemble-averaging is a technique that was used throughout this study. 

Instantaneous data of a quantity, M, for example, wave surface elevation, 

velocity, pressure or shear stress etc., were ensemble-averaged using the 

following relationship to obtain the average profile of the quantity over the 

wave cycle. 
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The turbulent fluctuation is 

                                                                                                                                    

Where N, is the number of wave cycles and n=0,1,2,3…N-1. 

 

3.4.2 Wave profile data 

 

The free surface wave profiles were obtained from the analysis of the wave 

probe measurements, as described in Section 3.3.1. The data acquisition 

sampling rate for the test on a coplanar bed was 625Hz.  Data was 

ensemble- averaged over 50 wave cycles as a minimum.  Figure 3.32 shows 

the analogue signal obtained for the wave probe located just above the 

measuring sphere (channel 2).    
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Figure 3.32:  Analogue signal from the wave probe positioned right above 

the test sphere (Ch.2). 

 

The voltage measurement was related to the water elevation through a 

simple calibration assuming that the water level and the voltage are related 

linearly. A calibration graph was produced by plotting the measured voltage 

versus the water level by lowering the water level in the flume when the 

water was static prior to generating waves. 
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Figure 3.33:  Wave probe calibration graph for channel 2. Water 

temperature, T=20 deg. 01/10/2010. 

 

Figure 3.34:  Wave probe calibration graph for channel 2 on different dates.  
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    Figure 3.35:  Ensemble averaged wave surface profile. 

 

A least square fit to the measured voltage data in Figure 3.32 showed a 

correlation coefficient of 0.9999 (R2=1 and 0 refer to a perfect fit and no 

correlation, respectively).  

This correlation could change due to a change in the conductivity of the 

water caused by a change in the water temperature or contamination of the 

water. Therefore, calibration tests were carried out each day prior to 

undertaking any tests. The graph for the test on 4 October 2010 did not 

coincide with the graphs for other two days. This could be due to the drop of 

the water temperature to 180C from 200C on 1 October. 

The ensemble-averaged wave surface profile over a wave cycle obtained 

using the derived calibration coefficients is shown in Figure 3.35.    

-5 

-4 

-3 

-2 

-1 

0 

1 

2 

3 

4 

5 

0.0 0.5 1.0 1.5 2.0 

 W
a

te
r 

s
u

rf
a

c
e

 e
le

v
a

ti
o

n
 (

c
m

) 

t (sec) 



181 
 

3.4.3 Pressure transducer data 

 
Similar to the calibration of the wave probe, the output voltage from the 

pressure transducers was found to follow a linear relationship when plotted 

against the water depth. Figure 3.36(a) shows the transducer locations on a 

meridian and Figure 3.36(b) shows the horizontal angles at which the 

measurements were carried out. Calibration tests were conducted on each 

day prior to undertaking the tests to ascertain whether there was any effect 

due to a change in water temperature etc.,.  However, the position of the 

calibration curve did not change (see Figures 3.37-3.39). In order to convert 

the voltage output from the pressure sensor into hydrostatic pressure during 

calibration, P=gh was used.  

Figure 3.40 shows the pressure profiles for all channels at vertical angles, 

=-60,-30, 0, 30, 60, 90 degrees at the horizontal angle position, =0.  The 

angle, =1800 refers to the direction of wave propagation.  

The pressure was measured at =0, 30, 60, 90, 120, 150 and180 degrees 

on the right hemisphere. In order to ascertain whether the symmetry of 

forces can be assumed in the calculation of forces on the right hemisphere, 

one test on both the left and right hemispheres was carried out. The Figures 

from 3.43 to 3.46 show a comparison of pressure profiles from the 

transducers on the left and right hemispheres at symmetrical positions. 
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Figure 3.36: Definition sketch of the pressure measuring sphere showing (a) 

pressure sensor locations on a meridian (b) horizontal angle of the meridian. 

 
Pressure profiles for symmetrical positions on the sphere measured by 

channel 11 on the top hemisphere (Figures 3.43 and 3.44) and channel 13 

on the bottom hemisphere (Figure 3.45) agreed well.  Good agreement was 

also found for the symmetrical positions for channel 14 at the midpoint 

(Figure 3.46). Therefore, on the basis of the observed symmetry in the 

pressure data, it was decided that the measurements on the left hemisphere 

can be assumed to hold true for the right hemisphere also.    
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Figure 3.37: Pressure transducer calibration graph for channels 10 to 15. 

Water temperature, T=20 deg. 01/10/2010. 

 

Figure 3.38:  Pressure transducer calibration graph for channel 10 on 

different days.  
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Figure 3.39:  Pressure transducer calibration graph for channel 14 on 

different days.  

 

Figure 3.40:  Ensemble-averaged pressure variation at the bed level for all 

channels on a meridian at =0 deg. 
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Figure 3.41:  Ensemble-averaged pressure variation on a meridian at =0 

deg.  

 

 

Figure 3.42: Ensemble averaged pressure variation on a meridian at =0 

deg for channel 10.  
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Figure 3.41 refers to a generated wave of H=8cm and T=2 sec. The 

measured pressure profile for channel 10 at the bed level (roughness apex) 

agreed well with linear wave theory. It is of interest to note that the pressure 

variation for a steeper wave of H=12cm and T=1.6sec (Figure 3.42) also 

matched well with linear wave theory at the bed level. 

The measured pressure distribution around a 50mm sphere for a fully 

exposed and coplanar bed conditions under a regular wave of H=8cm and 

T=2 sec, is shown in Figure 3.47. Readings correspond to (=00 and 1800 at 

the centre of the sphere). The pressure was normalised by the dynamic 

pressure amplitude at the bed, P0=0.5gH/cosh(kh).  

The pressure distribution around a sphere having a finite relative protrusion, 

i.e., p/d=0.216 is compared with a sphere in a coplanar bed for the same 

wave condition in Figure 3.48. Origin (00) refers to the nose of the sphere at 

the equator (i.e., =0, =0 as shown in Figure 3.36). As striking feature to 

note is that the pressure distribution around the sphere with p/d=0.216 

behaves in an approximately similar manner to a sphere in a coplanar bed.  

The pressure distribution is only marginally higher for a stone with p/d=0.216 

compared to  one in the coplanar bed.  
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Figure 3.43:  Comparison of symmetry in pressure reading for Channel 11. 

 

 

Figure 3.44:  Comparison of symmetry in pressure reading for Channel 11. 
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Figure 3.45:  Comparison of symmetry in the pressure reading for Channel 

13. 

 

Figure 3.46:  Comparison of symmetry in the pressure reading for Channel 

14. 
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                                                               (a) 

 

                                                                (b) 

Figure 3.47: Pressure distribution around a sphere for (a) p/d=0.82 (b) 

p/d=0.   
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Figure 3.48: Pressure distribution around a sphere in a coplanar bed (p/d=0) 

and a sphere with finite protrusion, p/d=0.216.     

 

3.4.4 Force integration on a sphere 

 

The force, F on an elemental area, S was computed. 

    
 

 
                                                                                                         

The pressure readings at the four corners of the elemental area, P1, P2, P3 

and P4 were averaged to obtain the force on the elemental area.  

The surface area of the elemental area 
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Which results in the solution: 

                                                                                                            

Therefore, the total horizontal (in line) force 

                                                                                                                        

The vertical (uplift) force 

                                                                                                                               

Where,             ,              ,           ,             (i.e. 

            and            ). 

 

 

 

 

 

 

 

 

 

 

Figure 3.49: Definition sketch of the spherical coordinates. 
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Figure 3.50:  Small elemental area (hatched), S, on a sphere. 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.51:  Pressure readings on a sphere - P1, P2, P3 and P4. 

 

3.4.5 Velocity data 

 

LDV data sampled at 100Hz were ensemble-averaged following the 

procedure stated in Section 3.4.1. The measured velocity data for a point 
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1mm above the bed is shown in Figure 3.52. The wave height, period and 

water depth were 8cm, 2 seconds and 40cm, respectively.  

 

             Figure 3.52:  A typical set of velocity data. 

 

3.4.6 Incipient motion data 

 

Data on the incipient motion consisted of the size and specific gravity of the 

spherical particle, wave height, period and water depth at the time of the 

initiation of motion. The peak orbital velocity amplitude at the bed, Um was 

calculated using linear wave theory. The critical shear stress was found 

using the relationship, cr=0.5fwUm
2. 
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3.4.7 V3V Image processing 

 

Raw images from the 3D camera probe, total six images, were analysed 

using Insight 3V3 software. That is two images each from the three image 

sensors corresponding to time, t=t (Frame A) and t=t+t (Frame B). 

The V3V camera probe has a large depth of field which makes the images 

look identical to typical PIV images. However, the images record particles in 

a large cubic volume in contrast to a thin planar sheet. The objective of 

image processing is to obtain 3D positions of the particles from raw images 

captured by the calibrated system. The data processing consisted of four 

steps: (1) 2D Particle Identification (2) 3D Particle Identification (Triplet 

Search) (3) 3D Particle tracking and (4) Grid Interpolation (Pothos et al., 

2009).  

3.4.7.1  2D particle identification 

Firstly, 2D particles in the images were identified. This was done by setting 

two parameters in the software. The first is a baseline intensity threshold. It 

was assumed that any valid particle would have a peak intensity above this 

threshold. This narrowed down the search area to include valid particles and 

thus eliminating background noise. The second parameter defined the local 

particle peak intensity relative to local background intensity. Lastly, a 

Gaussian intensity profile was fitted, the peak of which represents the centre 

of the particle.  
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3.4.7.2  3D particle identification (triplet search) 

Images from each of the apertures were combined to determine the location 

of each particle in 3D space. Each ‘triplet’ represents a single particle in the 

flow. x,y location of the particle is represented by the centroid of the triangle 

and the depth (z) is represented by the size of the triangle via the calibration 

data (see Figures 3.26 and 3.27). 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.53:  Raw data (illuminated tracer particles) from the present V3V 

tests. 

 

3.4.7.3  3D particle tracking 

The third stage of data processing involved searching for particle pairs in 

two successive images to obtain 3D velocity vectors. In the previous stages 

the particle positions were identified. Three algorithms are available for 3D 

particle tracking: the nearest neighbour method, the relaxation method, and 
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the particle matching method. Pothos et al. (2009) and Lai et al. (2008) 

observed that the relaxation method proposed by (Pereira et al., 2006) is the 

most robust and efficient. Therefore, the relaxation method was used in the 

present analysis. 

The particle matching procedure is described in Pothos et al. (2009) in more 

detail. Once the volumetric particle locations were determined in frame A (at 

t=t) and frame B (at t=t+t), the particles were divided into subgroups called 

clusters according to their spatial locations. Clusters here can be thought of 

as similar to interrogation regions in PIV. Clusters in B are larger in volume 

than corresponding clusters in A because particles may move out of the 

cluster area. Within a cluster, each pair of corresponding particles is 

assigned a number representing match probabilities. For example, P(m,n) is 

the match probability between particle m in frame A and particle n in frame 

B. Initially each particle pair has the same probability, 1/N, where N is the 

number of possible pairs between A and B for each cluster. The probability 

computation is based on the assumption that neighbouring particles move 

similarly. These probabilities are then iteratively recomputed for all particles 

in the cluster, until they converge. For particle m in frame A, the maximum 

match probability P(m,n) is found among P(m,1), P(m,2), …If this maximum 

probability is greater than a given threshold, then (m,n) is considered a 

matched pair. 

Figure 3.54 shows a sketch demonstrating the matching procedure as 

described in Pothos et al. (2009). As shown in the schematised volume to 

the left, the probability is high when, if the displacement from particle m to 
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particle n is applied to the other particles in the cluster, a matching particle is 

nearby. The probability is low when the displacement of other particles in the 

cluster results in no nearby particle matches as shown in the volume to the 

right. 

 

 

 

 

Figure 3.54: Illustration of 3D particle matching procedure between two 

successive camera frames (Pothos et al., 2009). 

 

3.4.7.4  Grid interpolation 

The final stage of the image processing exercise involved grid interpolation. 

After the 3D particle tracking step, the vectors are located randomly 

according to particle locations. It is beneficial to have vectors on a 

rectangular grid in order to compute the flow quantities such as vorticity. 

Therefore, this was carried out through interpolation using a Gaussian-

weighted method. The vectors from an interpolated grid from the present 

experiments and are shown in Figure 3.55. 

 

 

 

 



198 
 

 

 

 

 

 

 

Figure 3.55: Vectors (green) in an interpolated grid from the present tests. 

 

3.4.8 Analysis of photographic images  

 

Photographs of the model bed protection consisting of natural rocks 

(crushed anthracite) were analysed to find the number of rocks moved 

during the 30 minute wave test run time. The photographs were used to 

count the displaced rocks based on visual observation. The displaced rock 

positions are painted white in Figure 3.56 below for easy identification during 

counting. 

A camcorder was used to video the incipient motion of the spherical 

particles. A scale glued to the side of the flume in line with the test stone 

was used to find the phase of the threshold of movement.  A frame from a 

video clip corresponding to the incipient movement is shown in Figure 6.15. 
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      Figure 3.56: Damage to a model bed protection – rock count. 

 

3.4.9 Laboratory model scale effects 

 

Achieving complete hydraulic similitude where all the force ratios are 

constant and equal is impossible except at prototype scale. Two important 

criteria used to measure hydraulic similitude are Froude (       ) and 

Reynolds (    ) scaling. 

Here, the field example mentioned in Section 2.2, i.e., a wave of H=10m, 

T=10 sec in a water depth of h=30m, is compared with the physical model. 

The rock size was dn=0.44m. Here, the Froude number is defined as  

          and Reynolds number, given as         . The Froude 

time-scale based on the wave dispersion relationship is given as        

(Hughes, 1993) where; the  time-scale is          ; and the length scale 

is         . 
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For the prototype case, the relative depth parameter, h/gT2=0.031, and 

hence, the waves are classed as being in the intermediate depth (Le 

Mehaute, 1976). The model tests were carried out in the range, h/gT2=0.01-

0.04 which also falls into the intermediate water depth range.  

The vertical scale, NLy=hp/hm=30m/0.4m=75.  As the horizontal orbital 

amplitude at the bed is a function of both H and h, it was used to find the 

horizontal model scale NLx=ap/am=2719mm/55mm=49.4.  

The time scale of the waves is NT=Tp/Tm=10/2=5. The time-scale satisfying 

the Froude criteria is       =     7.03. As the model time-scale and 

the Froude time-scale are equal approximately this is consistent. As shown 

in Tables 3.1 and 3.2, the Froude number for the prototype is approximately 

equal to that of the model. Therefore, it can be concluded that the model 

satisfies the Froude similarity criterion for a typical prototype example. 

However, the Reynolds number similarity has not been achieved. The model 

flow Reynolds number, Re=Uma/, is much smaller than that of the prototype 

which could induce viscous effects if the flow is in the laminar region.  

The roughness Reynolds number in the model,           2700. This should 

be   200 for rough turbulent flow when a/ks≤ 100.  For a relative roughness 

of the O(1) in the present tests, rough turbulent flow occurs at Re=aUm/ > 

1.0 x 103 (Kamphuis, 1975). In the model Re   8200.  

The stone Reynolds number Red=Umd/ is 2850.  Transition to turbulence 

from laminar flow occurs somewhere around Re=2000 for an individual 
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stone (Schlichting, 1968; Davidson, 2004). Therefore, the flow is outside the 

laminar region and hence, the viscous effects would not be critical.   

 
Table 3.1:  Example prototype parameters. 

H 

(m) 

T (sec) 

 

 

 

h(m) 

 

Um (m/s) 

 

 

a (mm) Fr Re        

 

Red 
10 10 30 1.7 2710 0.1 4.65 x106 4.6 x105 6.6 x 105 

 

Table 3.2:  Laboratory model parameters. 

H 

(cm) 

T (sec) 

 

 

 

h(m) 

 

Um (m/s) 

 

 

a (mm) Fr Re        

 

Red 
8 2 0.4 0.17 55 0.086 8200 2700 2850 
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4 Wave-induced forces on a single 

stone  
 

4.1 Introduction 

 

In this chapter the effect of stone protrusion on wave-induced horizontal (in-

line) and vertical (uplift) forces on a 50mm spherical test stone is 

investigated.  Tests were carried out for three different protrusion levels of 

the stone, i.e. p/d=0 (coplanar bed), 0.216 and 0.82 (fully exposed). The 

pressure on the surface of the sphere was measured using transducers 

connected to tappings on the sphere surface. The pressure was then 

integrated over the full surface of the sphere calculating the force on a small 

elemental surface area formed by 30 degree horizontal and vertical angles 

to obtain the net in-line and uplift forces.  

Table 4.1:  Pressure measurement on a stone - test conditions.  

Test no. H (cm) 

 

 

 

 

T(s) 

 

h(cm) 

 

Um (m/s)*** 

 

 

KC 

PM3 8 1.6 40 0.16 5.2 

PM4 10 1.6 40 0.20 6.4 

PM5 12 1.6 40 0.23 7.4 

PM6 5 2 40 0.11 4.4 

PM7 8 2 40 0.17 6.8 

PM8 10 2 40 0.21 8.4 

PM9 12 2 40 0.26 10.4 

Note: *** Derived from linear wave theory. 

 
The measured forces are normalised by the dynamic wave pressure 

amplitude at the bed. Chakrabarti (1973) analytically determined the forces 

on small objects one order of magnitude smaller than the wave length using 



203 
 

linear wave theory. The present experimental research follows a similar 

approach.  

 

4.2 Wave-induced forces 

 

4.2.1 Fully exposed sphere 

 

Figure 4.1 shows the measured horizontal and uplift forces on a fully 

exposed sphere.  The force was normalised by P0Ap, where P0 is the 

amplitude of the dynamic wave pressure at the bed given by linear theory 

and Ap is projected frontal area of the sphere. 

                                                                                                                         

       
 

 
    

         

        
                                                                                             

At the bed level dynamic pressure amplitude is 

          
 

 
 

   

        
                                                                                                 

Figures 4.1 and 4.2 refer to the forces on a fully exposed (relative protrusion, 

p/d=0.82) 50mm sphere resting on a coplanar bed of similar spheres in a 

hexagonal, bed arrangement. Figure 4.1 shows the time variation of the 

forces induced by H=8cm, T=2 sec waves ensemble-averaged over 50 

cycles. 

The maximum horizontal force, FH-max, and maximum positive uplift force (FL-

max+) correlate well with the dynamic wave pressure amplitude, P0.  

Particularly, the vertical force has a near perfect agreement (Figure 4.2).  
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It should be noted that CH and CV are not coefficients in Morison’s equation. 

Apx and Apy are the projected frontal areas in the x,y directions, which were 

assumed approximately as d2/4 for a fully exposed sphere.  

 

Figure 4.1: Measured horizontal force (FH) and uplift force (FL) variation on a 

fully exposed (p/d=0.82) 50mm sphere. 
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                                                                   (a) 

 

                                                                   (b) 

Figure 4.2: Measured (a) Maximum horizontal force (FH-max) and (b) 

maximum positive uplift (FL-max+) on a fully exposed sphere. 
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                                                               (a) 

 

                                                              (b) 

Figure 4.3:  Measured (a) horizontal and (b) vertical force variation 

compared with linear theory, i.e. F=CP0Apcos(t).  
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The semi-empirical relationships in equations (4.4) and (4.5) obtained for the 

peak horizontal and vertical forces were plotted in Figures 4.3 assuming a 

cosine variation.  It was observed that, even though the time variation is not 

represented accurately, the magnitude of the maximum horizontal force 

amplitude (FH-max) and the maximum positive uplift force amplitude (FL-max+) 

can be modelled reasonably well with these equations for a fully exposed 

sphere. In terms of the forces on a stone, it is the peak value that is 

important for engineering design.  

It was also observed that the maximum positive uplift force (FL-max+) on a 

sphere resting on the bed is about 40% that of the maximum horizontal 

force, FH-max (Figure 4.1).  

 

4.2.2 Sphere on a coplanar bed 

 

The force coefficients, CH and CV were calculated for a sphere in a coplanar 

bed using best fit to the measured data (Figure 4.4).  The projected frontal 

area, Apx for the calculation of horizontal force, was assumed to be that part 

of the sphere above the theoretical bed level perpendicular to the flow 

direction (i.e. Apx=6.13 X 10-4 m2). In calculating the vertical force, Apy=d2/4 

was assumed. 

The fit of the equation F=CP0Apcos(t) to the measured data over a wave 

cycle is shown in Figure 4.5. Linear wave theory over predicted the 

measured maximum horizontal force by 19% whilst the maximum positive 

uplift force was under predicted by 35.4%. Therefore, for a stone on a 
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coplanar bed the error in the prediction of the horizontal and vertical forces 

is larger than for a fully exposed stone (compare Figures 4.3 and 4.5).   
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                                                                  (a) 

 

                                                                  (b) 

Figure 4.4:  Measured (a) Maximum horizontal force (FH-max) and (b) 

maximum positive uplift (FL-max+) on a 50mm spherical element in a coplanar 

bed. 
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                                                              (a) 

 

                                                             (b) 

Figure 4.5:  Measured (a) horizontal and (b) vertical force variation on a 

spherical stone in a coplanar bed (p/d=0) compared with linear theory, i.e. 

F=CP0Ap Cos(t).  
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4.2.3 Summary of force coefficients 

 

Table 4.2 summarises the values obtained for the force coefficients CH and 

CV in the equation, F=C 0.5gHAp/cosh(kh). For both cases of relative 

protrusion, the coefficients appear to be relatively constant within the tested 

KC number range from 4.4 to 10.4. CH varied between 0.09-0.17 and CV 

varied between 0.05-0.057 for a fully exposed sphere. 

It would be interesting to investigate these coefficients further for higher KC 

number flows as force coefficients insensitive to variation in KC number 

would be favoured over Morison’s force coefficients which are a function of 

many variables such as type of flow, flow regime, stone position, surface 

roughness etc. 

Table 4.2:  Summary of the force transfer coefficients deduced from linear 

wave theory. 

p/d CH CV 

0.82 (fully exposed) 0.141 0.055 

0 (coplanar bed) 0.129 0.039 

 

4.3 Morison’s force coefficients 

 

4.3.1 Fully exposed sphere 

 

The measured forces in tests P3 to P9 (Table 4.1) were fitted to the drag, 

0.5ApUm
2 and inertia, V(dU/dt) terms of Morison’s equation, where Apx and 

Apy  are the projected frontal area in the x and y directions and Vx and Vy are 

the displaced volumes of the stone in the x,y directions.  For a fully exposed 

sphere,  Apx, Apy=d2/4 and Vx=Vy=d3/6 were assumed.  
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For the maximum horizontal force, a reasonably good fit of the data was 

obtained for the drag term with a correlation coefficient of 0.79. The data fit 

to the inertia term is slightly less with a correlation coefficient of 0.64 (Figure 

4.7). Interestingly, a better fit of the data was obtained for the quasi-steady 

uplift force (Figure 4.8).   

In these tests the data fell within KC = 4.4 and 10.4. Based on previous 

publications (Sarpkaya & Issaacson, 1981; Iwata & Mizutani, 1989), the 

inertia term dominates over the form drag when KC<10. When Morison’s 

drag (CD) and inertia (CM) coefficients, obtained by dividing the maximum in-

line force by 0.5ApxUm
2 and V(du/dt) terms, were plotted against the KC 

number (Figures 4.9), a better fit was obtained for the inertia term than for 

the drag term indicating the relative importance of inertia within this range.   

In Figure 4.1, the maximum horizontal force occurred on average 30 

degrees after the maximum horizontal acceleration/deceleration. This 

indicates the dominance of inertia over drag. However, the quasi-steady 

uplift force appears to be less affected by inertia.      

Morison’s force coefficients are sensitive to wave theories used for the 

calculation of forces. In this study linear wave theory was used to obtain the 

bottom particle velocity.  Figure 4.6 shows the bottom horizontal particle 

velocity obtained from linear wave theory compared with measured data at a 

point 100mm above the bed level (i.e. two stone diameters above). The 

velocity obtained from linear wave theory, Um, under predicted the measured 

peak velocity by approximately 13% in Figure 4.6(a). For a slightly steeper 

wave in Figure 4.6(b) this error is 8.5%. Whilst the prediction error can be 
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reduced if a higher order wave theory is used, it was decided that for the 

purpose of this study, this accuracy would be sufficient. 
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                                                              (a) 

 

                                                               (b) 

Figure 4.6: Measured bottom particle velocity compared with linear wave 

theory (a) H=8cm, T=2 sec, H/gT2=0.002 (b) H=12 cm, T=2 sec, 

H/gT2=0.0031. 
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Table 4.3 shows the typical wave conditions used for the pressure 

measurements as well as in the other experiments described within this 

thesis. Based on Le Mehaute (1976) the type of waves was classified using 

the wave steepness parameter (H/gT2) and the dimensionless depth 

parameter (d/gT2). All tested waves were within the Intermediate depth 

region.  The recommended wave theories to calculate water particle velocity, 

pressure etc., for the waves in this depth are Stokes 2nd, 3rd and Stream 

function V. Nevertheless, it was found that linear theory matched reasonably 

well with the measured velocity and pressure data.  

Table 4.3: Pressure measurement on a stone - wave parameters and 

relative depth classification. 

Test 

no. 

H(cm) 

(cm) 

 

 

 

 

T(s) 

 

h(cm) 

 

h/gT2 H/gT2 Wave type Recommended  

 

theory 

PM1 6 1 40 0.041 0.006 Intermediate 

depth 

Stokes 3rd 

PM2 8 1 40 0.041 0.008 Intermediate 

depth 

Stokes 3rd 

PM3 8 1.6 40 0.016 0.003 Intermediate 

depth 

Stokes 2nd 

PM4 10 1.6 40 0.016 0.004 Intermediate 

depth 

Stokes 3rd 

PM5 12 1.6 40 0.016 0.005 Intermediate 

depth 

Stream function 

V PM6 5 2 40 0.010 0.001 Intermediate 

depth 

Stokes 2nd 

PM7 8 2 40 0.010 0.002 Intermediate 

depth 

Stokes 2nd 

PM8 10 2 40 0.010 0.003 Intermediate 

depth 

Stream function 

V 

functionfunction 

V 

PM9 12 2 40 0.010 0.003 Intermediate 

depth 

Stream function 

V  

Based on best fit to the measured data, the drag and inertia coefficients for 

the maximum horizontal force were found to be CD=1.92 and CM=2.48 (for 

the crest half cycle).  The drag and inertia coefficients for the maximum 

positive uplift force were found to be CD=0.55 and CM=0.72 respectively (for 

the trough half cycle).   

Dixen et al. (2008) quoted CD=0.6 and CM=1.2 from Sarpkaya (1975) for a 

free sphere (unaffected by boundaries) at KC=12.   Fischer et al. (2002) 
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observed a much higher value for the drag coefficient, CD=1.9, for a bottom 

mounted sphere at Re=500.  

The observed CD and CM values are larger than the typical values obtained 

by previous researchers for a free sphere. For a bottom mounted smooth 

cylinder Sarpkaya & Isaacson (1981) observed based on the study of 

Sarpkaya (1977), that CD reached 2.0 at KC=10.  For the same tests, CM 

approached its potential flow value of 3.29. Sarpkaya attributed this to the 

wall proximity effects - early separation of flow, inhibition of regular vortex 

shedding and the influence of vortices shed in the previous cycles – larger 

forces cause larger force coefficients. Flow visualisation tests on a 50mm 

sphere and flow over rough beds in the present study seem to support this 

view (see flow details in Figures 7.15-7.17 and Appendix C). Similar to 

Sarpkaya’s study, the KC number remained under 10.4 in the present tests. 

The flow separated early and the influence of vortices shed from the 

previous half cycle increased as they were being swept back by the 

reversing flow.  

The physical meaning of the KC number can be given as the stroke length of 

the water particles relative to the size of the stone. Small KC numbers mean 

that the orbital motion of the water particles is smaller than the size of the 

stone. This may result in non-separation of the flow whereas  a large sweep 

could induce flow separation. 

Increased turbulence intensity after the addition of artificial turbulence may 

increase the force coefficients (Cheung & Melbourne, 1983). The bottom 
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mounted sphere, therefore, will be subjected to more turbulence, than one 

unaffected by the proximity to a wall.   

Figure 4.9 shows CD and CM values for individual tests. The drag coefficient 

decreased from 3.0 to 2.1. This reduction is considered to be due to the 

gradual reduction in skin friction drag when the KC number approached 10, 

whilst the inertia coefficient increased to 2.7.   

Using the force transfer coefficients deduced in this study, Morison’s force 

was calculated and compared with the measured horizontal (FH) and vertical 

forces (FL) during the course of a wave cycle. Morison’s formula over 

predicted the maximum horizontal force by 17.9% (Figure 4.10a) and under 

predicted the peak positive uplift force by 13.5% (Figure 4.10b). 
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                                                                   (a) 

 

                                                                   (b) 

Figure 4.7:  Best fit of (a) drag and (b) inertia terms to measured maximum 

horizontal force to find Morison’s force coefficients, CD and CM. 
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                                                                    (a) 

 

                                                                   (b) 

Figure 4.8:  Best fit of (a) drag (b) inertia terms to measured maximum 

positive uplift force to find Morison’s force coefficient, CD and CM.  
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                                                                  (a) 

 

                                                                  (b) 

       Figure 4.9: Variation of (a) CM and (b) CD with KC for individual tests. 
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                                                         (a) 

 

                                                         (b) 

Figure 4.10: Measured (a) horizontal and (b) uplift force variation on a fully 

exposed sphere compared with the Morison’s force.  
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measured force and the prediction improved indicating the dominance of the 

inertia term for low KC number flow (Figures 4.11 and 4.15). However, such 

an improvement was not possible for the uplift force. 

 

Figure 4.11: Measured horizontal force variation on a fully exposed sphere 

compared with the Morison’s inertia force.  
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roughness elements, i.e. Apx=6.13 X 10-4 m2 and Vx=1.8113 X 10-5 m3. 

Apy=d2/4 and Vy=d3/6 were assumed in the calculation of the vertical force. 

For the horizontal force, CD=1.49 and CM=2.39 were obtained. CD=0.42 and 

CM=0.7 were calculated for the uplift force. It is noteworthy that the values 

obtained were very similar to those for a fully exposed sphere. 

The force transfer coefficients deduced from curve fitting were used to 

predict the force on a stone in a coplanar bed (Figure 4.14). Morison’s 

equation over predicted the maximum horizontal force amplitude by 27.1%. 

It under predicted the maximum positive uplift force by 26.0%. 
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                                                                (a) 

 

                                                               (b) 

Figure 4.12: Best fit of Morison’s (a) drag and (b) inertia terms to measured 

maximum horizontal force. 
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                                                               (a) 

 

                                                              (b) 

Figure 4.13: Best fit of Morison’s (a) drag and (b) inertia terms to measured 

maximum positive uplift force. 
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                                                            (a) 

 

                                                            (b) 

Figure 4.14:  Measured (a) horizontal and (b) uplift forces on a spherical 

stone in a coplanar bed (i.e., p/d=0) compared with the Morison’s force. 
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Figure 4.15:  Measured horizontal force variation on a coplanar bed (i.e., 

p/d=0) compared with the Morison’s inertia force.  
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Tables 4.4 and 4.5 show a summary of the force transfer coefficients 
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observation of Fischer et al. (2002) that the drag coefficient approached 1.9 

for a bottom mounted sphere at Re=500 and the results of Sarpkaya (1977) 

(as quoted in Sarpkaya & Isaacson, 1981) for a bottom mounted cylinder 

with CM reaching 3.29 seem to agree with the present results.  

Therefore, the large force transfer coefficients observed in the present tests 

can be attributed to (i) the effect of proximity to the bed (ii) early flow 

separation at low KC numbers <10.    

Table 4.4: Summary of Morison’s horizontal (in-line) force coefficients.  

p/d CD CM 

0.82 (fully exposed) 1.92 2.48 

0 (coplanar bed) 1.49 2.39 

 

Table 4.5: Summary of Morison’s uplift force coefficients.  

p/d CD CM 

0.82 (fully exposed) 0.55 0.72 

0 (coplanar bed) 0.42 0.70 

 

4.4 Effect of stone protrusion on forces 

 

It is one of the primary objectives of this chapter to investigate the effect of 

different stone protrusion levels on wave-induced forces on a stone in a bed 

protection. That would help better understand and interpret the phenomena 

observed in the incipient motion tests described in Chapter 6. 

Figure 4.16 shows the variation of the horizontal and vertical forces over a 

wave cycle for different protrusion levels. p/d=0.82 refers to a fully exposed 

stone and p/d=0 corresponds to a coplanar bed.  The most significant 

feature observed is that the forces on a spherical element with relative 
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protrusion, p/d=0.216, are only marginally larger than the forces on a sphere 

in a coplanar bed. It appears that the stone with p/d=0.216 does not 

protrude enough to perturb the flow to significantly alter the pressure 

gradient around it. Therefore, it behaves almost in a similar manner to a 

stone in a coplanar bed. The incipient motion tests showed that a coplanar 

bed is remarkably stable. A stone with p/d=0.2 exhibited the same degree of 

stability. Therefore, approximately similar pressure distribution and forces 

measured on a stone in a coplanar bed and one with a finite protrusion of 

0.216 explain the reason why light weight marbles (i.e. specific gravity, 

s=1.19) with p/d<0.2 did not move in the incipient motion tests. 
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       (a) 

                                                   

                                                               (b) 

 

Figure 4.16:  Measured (a) horizontal and (b) vertical force variation on a 

50mm spherical stone of different relative protrusion.  
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4.5 Summary 

 

In this chapter the effect of stone protrusion on the wave-induced horizontal 

(in-line) and vertical (uplift) forces on a 50mm spherical test stone was 

investigated.  It was found that the forces on a stone strongly depend on the 

exposure above mean bed level. The key findings in this chapter were: 

1 Horizontal and uplift force variation on a stone of relative protrusion, 

p/d=0.216 over a wave cycle was only slightly larger than the forces 

on a stone in a coplanar bed (i.e. p/d=0). The pressure distribution on 

the stone followed the same trend.   

 
2 Peak values of the in-line (FH-max) and positive uplift (FL-max+) forces on 

a fully exposed spherical element (i.e., p/d=0.82) was predicted well 

by the use of the dynamic pressure amplitude at the bed obtained 

from linear wave theory, i.e., FH-max=CH0.5gHApx/cosh(kh) and FL-

max+=CV0.5gHApy/cosh(kh). However, for a stone on a coplanar bed 

the prediction error increased.   

 

3 Morison’s drag and inertia coefficients assumed similar values for a 

fully exposed stone and one in a coplanar bed, irrespective of the 

exposure level. 

 

4 Morison’s horizontal drag and inertia coefficients for a fully exposed 

sphere were found to be CD=1.92 and CM=2.48 respectively.  The 

values for the uplift force were CD=0.55 and CM=0.72.  
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5 Morison’s force coefficients for a stone in a coplanar bed were found 

to be CD=1.49 and CM=2.39. For the uplift force, these were CD=0.42 

and CM=0.7.  

 

6 The large force transfer coefficients observed in the present tests 

relative to a free sphere are due to the effect of proximity to the bed 

and early flow separation under low KC numbers. 

 

7 Under low KC number flow (i.e., KC<10 in the present tests), the 

inertia force is more dominant. The measured horizontal force agreed 

well with Morison’s inertia force term within this range.  

 

8 Morison’s equation poorly predicted the lift force. Therefore, it is not a 

good predictor for modelling uplift forces.   

 

 

 

 

 

 

 

 

 



233 
 

5 Shear stress and friction factor 

 

5.1 Introduction 

 

Accurate determination of the shear stress applied by oscillatory waves on a 

rough bed is crucial in predicting damage to a granular bed protection.  

Researchers in the past have used several methods to estimate shear 

stress in laboratory experiments. i.e. (i) momentum integration  (ii) Reynolds 

stress (iii) direct measurement using a shear cell, hot film techniques (iv) 

energy dissipation method.  In the present work, a different method, that is 

the measurement and integration of pressure on the surface of a spherical 

element of 50mm diameter set in a coplanar hexagonal bed of similar 

spheres (billiard balls), was used to quantify shear stresses. 

Table 5.1:  Measurement of shear and normal stresses - test cases. 

Test H  

(cm) 

 

 

 

T 

(s) 

h 

(cm) 

Um  

(m/s) 

d  

(cm) 

a  

(cm) 

a/ks 

 

fw 

 

u*ks/ 

 

Re=aUm/ 

 

PM1 6 1 40 0.07 5 1.13 0.09 2.49 9289 7.5E+02 

PM2 8 1 40 0.09 5 1.50 0.12 1.96 10583 1.3E+03 

PM3 8 1.6 40 0.16 5 4.00 0.32 0.86 12462 6.1E+03 

PM4 10 1.6 40 0.2 5 5.00 0.4 0.71 14184 9.5E+03 

PM5 12 1.6 40 0.23 5 6.00 0.48 0.61 15109 1.3E+04 

PM6 5 2 40 0.11 5 3.38 0.27 0.99 9201 3.5E+03 

PM7 8 2 40 0.17 5 5.50 0.44 0.66 11583 8.9E+03 

PM8 10 2 40 0.21 5 6.88 0.55 0.55 13029 1.4E+04 

PM9 12 2 40 0.26 5 8.13 0.65 0.47 15038 2.0E+04 
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5.2 Measurement of forces on a spherical roughness 
element 

 

Pressure transducers were located at points where the latitude at angle,   =     

-90, -60, -30, 0 (equator), 30, 60, 90 degrees cross the meridian. The sphere 

was rotated 180 degrees (half a circle) horizontally at  =30 degree intervals 

each time, running a number of wave cases. Each elemental area formed by 

30 degree arcs in (     directions would have 4 pressure sensors at the four 

corners. The average pressure is P=(P1+P2+P3+P4)/4. An elemental surface 

area of the sphere enclosed by two latitude and two longitude circles 30 

degrees apart, is used to find the force on that element, i.e.         .  

The force on all elements are summed up in   (direction of wave 

propagation) and   (vertical) directions to find the net horizontal and vertical 

forces. The experimental arrangement and calculation methodology are 

discussed in more detail in Chapter 3. 

 

5.3 Shear stress 

 

The shear stress is defined here as the net horizontal force per unit area. In 

order to find the shear stress, the net horizontal force,     was divided by 

the effective planar area of the sphere, 2   R2 or 1.1(d2/4), on the coplanar 

bed where the billiard balls were arranged in a hexagonal array.   

Figures 5.1 and 5.2 show the measured (ensemble-averaged over a 50 

cycles) shear stress, <>, for two wave conditions: a wave height, H=8cm, 

period, T=2 sec and H=8cm, period, T=1 sec at a water depth of h=40cm, 
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respectively.  The predicted oscillatory shear stress determined using the 

relation, m=0.5fwUm
2cos( t) was superimposed on the measured shear 

stress profiles. In this equation, the wave friction factor, fw, was computed 

using the eqn. fw=0.33(a/ks)
-0.84 (Simons et al., 2000).  

As shown in Figure 5.3, the shear stress leads the wave surface elevation 

by an average 64 degrees.  The instantaneous shear stress, , is presented 

in Figure 5.4. 

 

Figure 5.1: Shear stress computed using <>=0.5fwUm
2cos( t) 

superimposed on measured shear stress profile, <> for H=8cm, T=2.0 sec., 

h=40cm.  
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Figure 5.2: Shear stress computed using <>=0.5fwUm
2cos( t) 

superimposed on measured shear stress profile, <> for H=8cm, T=1.0 sec., 

h=40cm.  

 

Figure 5.3:  Shear stress variation. H=8cm, T=2.0 sec., h=40cm. Shear 

stress leads the water surface elevation by an average 64 degrees. 
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Figure 5.4: Variation of instantaneous shear stress, .  H=8cm, T=2.0 sec., 

h=40cm. 

 

 

Figure 5.5: Maximum Reynolds stress magnitude measured from the crest 

level of the roughness elements, R-max.  H=8cm, T=2.0 sec., h=40cm.  
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The maximum Reynolds stress magnitude, R-max, averaged over 50 cycles 

plotted against elevation, y, from the bed level, is shown in Figure 5.5.  The 

maximum Reynolds stress occurs below the bed level (this is consistent with 

the observations of Dixen et al., 2008).  The Reynolds stress is only a 

fraction of the shear stress, i.e. R-max/m=0.33 at a level 0.16d below the top 

of the roughness elements. Looking at the data of Sleath (1987), the same 

ratio is  0.19.  

5.3.1 Phase lead by shear stress 

 

It was found that the shear stress leads the surface water elevation by an 

average angle of 62-67deg. Nielsen (1992) reported a value of 45 deg for 

laminar flow and noted that the bed shear stress in laminar flow is simple 

harmonic.  Jonsson & Carlsen (1976) reported a phase lag of maximum 

31deg. for smaller roughness heights (a/ks). However, the present data 

agree with the recent bed shear stress measurements by Seelam et al. 

(2011) using a shear cell apparatus for a solitary wave. They reported that 

the total shear stress on a smooth bed (i.e., sum of the skin friction plus 

Froude-Krylov force) had a mean phase shift of 50deg with the free stream 

velocity (ranging 40-70deg).  The phase shift of the skin friction shear stress 

had an average 30deg (ranging 5-50 deg).  These tests were conducted in 

laminar and transitional flow regions. 
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Table 5.2:  Phase lead (deg) by the shear stress.  

Test H  

(cm) 

 

 

 

T 

(sec) 

 

h 

(cm) 

 

a/ks 

 

 

 

c
0 

(crest) 

 

t
0  

(trough) 

 


0 

(average) 

 
PM1 6 1 40 0.09 60.5 72.6 66.6 

PM2 8 1 40 0.12 54.1 71.4 62.8 

PM3 8 1.6 40 0.32 58.0 69.8 63.9 

PM4 10 1.6 40 0.40 61.9 69.1 65.5 

PM5 12 1.6 40 0.48 54.7 74.5 64.6 

PM6 5 2 40 0.27 59.9 64.5 62.2 

PM7 8 2 40 0.44 59.0 68.3 63.7 

PM8 10 2 40 0.55 60.2 65.1 62.7 

PM9 12 2 40 0.65 65.0 67.1 66.1 

 

Therefore, the test results exhibit characteristics of laminar flow viewed from 

the present knowledge (i.e. shear stress is sinusoidal and the phase lead is 

greater than 45deg).  Though the flow is within the rough turbulent regime 

on account of roughness Reynolds number,        > 200, the flow near the 

individual elements may not have been fully developed.  This is because of 

the rapid flow reversal as well as the oscillatory nature of the flow, where 

actual velocities remain relatively small during a larger portion of the wave 

half cycle.  The flow Reynolds number during the tests, Re=aUm/, varied 

between laminar and transitional regimes (i.e. 7.5 X102 - 2.0 X104. The 

previous parameters describing the shear stress variation (shape and phase 

lag) were based on turbulence measurements whereas this study followed a 

different approach, i.e. direct pressure measurement. Therefore, it would be 

important to observe the shear stress variation for higher Reynolds number 

(Re=aUm/) flows using the present apparatus.  
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5.4 Normal stress 
 

The normal stress is defined here as the net vertical force per unit area. In 

order to determine the normal stress, the net vertical force,     was divided 

by the effective planar area of the sphere, 2   R2.   

Figure 5.6 compares the normal stress with the shear stress (both were 

ensemble-averaged, over 50 cycles).  

 The instantaneous normal shear stress, nt, is plotted in Figure 5.7. 

Figure 5.6: Shear stress, <> and normal stress, <n> variation. H=8cm, 
T=2.0 sec., h=40cm.  
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Figure 5.7: Variation of instantaneous normal stress, nt. H=8cm, T=2.0 sec., 

h=40cm. 

 

The relative amplitude of the normal stress, nm/m,  for the H=8cm and T=2 
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was observed (Figure 5.9). 
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Figure 5.8: Shear stress, <> and normal stress, <n>. H=8cm, T=1.0 sec., 

h=40cm.  

 

Figure 5.9: Normal stress computed using <n>=<nm>cos( t) superimposed 

on measured normal stress profile, <> for H=8cm, T=1.0 sec., h=40cm. 
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5.5 Friction factor  
 

The wave friction factor, fw, was calculated using the relation: 

   
    

      
 
                                                                                                                            

Where,      is the ensemble-averaged peak shear stress. Figure 5.10 

shows the friction factor for different relative roughness values. The data 

were fitted to a power relationship with a good correlation (i.e., R2=0.99). 

        
 

  
 
    

       
 

  
                                                                                   

 

 

 

       Figure 5.10:  Measured friction factor against relative roughness. 
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Figure 5.11: Measured friction factor compared with the relationship, 

fw=0.33(a/ks)
-0.84 of Simons et al. (2000). 

 

 

Figure 5.12: Measured friction factor compared with the relationship 

fw=0.4(a/ks)
-0.75 of Kamphuis (1975) and fw=0.32(a/ks)

-0.8 of Dixen et al. 

(2008).  
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5.6 Theoretical bed level 
 

Opinions differ as to where the theoretical bed level of a rough bed is 

located. Following a suggestion of Einstein (1950), Sleath (1987) assumed 

that the theoretical bed level is located 0.35d below the crest level of 

roughness elements. Dixen et al. (2008) proposed an average value of 

0.24d (see Section 2.8.4).  

In order to obtain the shear stress and hence, the friction factor shown in 

Figure 5.10, the pressure on the spherical test element was integrated 

assuming that the theoretical bed level is located at 0.35d below the crest 

level of the roughness elements. That is, only the pressure data and surface 

area above this level were used in the calculation. Interestingly, the friction 

factor derived based on this assumption matched well with the equation, 

fw=0.33(a/ks)
-0.84 of Simons et al. (2000). 

The tests of Simons et al. (2000) were conducted for a rough bed consisting 

of 2D roughness elements of 6mm square. They used the UCL shear cell to 

directly measure the shear stress.  Also their equation matched well with the 

data of Kamphuis (1975) who used natural stones for the rough bed. Dixen 

et al. (2008) used ping-pong balls (glued to the flume bed) and natural 

stones for the rough bed and found the equation, fw=0.32(a/ks)
-0.8. Dixen et 

al. compared the relation with the data of Kamphuis (1975), Sleath (1987) 

and Simons et al. (2000) and found good agreement (see Figure 5.12). 

In order to check the sensitivity of the assumed theoretical bed level on the 

results, the shear stress and hence, the friction factor was calculated 
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assuming that the theoretical bed level is located 0.25d below the crest level 

of the roughness elements as shown in Figure 5.13. The agreement of the 

data with the curves of Simons et al. (2000) and Dixen et al. (2008) was 

poor, with the data shifted to the lower part of the graph. 

Therefore, this observation suggests that, for all roughness types (i.e., 2D 

roughness elements, natural rocks, spherical elements), the theoretical bed 

level is located 0.35d below the crest of the roughness elements. 

 

Figure 5.13: Measured friction factor based on pressure integration on a 

spherical bed element. Theoretical bed level was assumed at 0.25d below 

crest level of the roughness elements.  

 

5.7 Variation of friction factor with Reynolds number 
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rough turbulent flow regime, i.e. u*ks/ 200 for a/ks 100 according to 

Kamphuis (1975).  

 

Figure 5.14: Measured friction factor against Reynolds number. Laminar 

solution is given by fw=2/   .  (x) – Lower limit of the rough turbulent flow 

region from Kamphuis (1975). 
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5.8 Fluctuation in bed shear stress 
 

The turbulent fluctuation in the measured bed shear stress, =-<> was 

normalised using, m=0.5fwUm
2 and plotted as shown in Figures 5.15 and 

5.16.  For steady flow, the r.m.s fluctuation, (<2>)1/2/0 is about 0.4, with the 

lower and upper limits of 0.3 and 0.6, respectively (Sumer et al., 2001).  In 

the present tests for regular waves, the upper limit of (<2>)1/2/m was found 

to be 0.28 and 0.44 for T=2 sec and T=1 sec waves, respectively. The 

relatively large r.m.s value  for T=1 sec waves could be due to the rapid 

stirring effect by the shorter period waves. The peak in the r.m.s. fluctuation 

in the shear stress that occurred in the trough half cycle after the maximum 

horizontal deceleration, is slightly higher (about 5-8%) than during the crest 

half cycle as shown in Table 5.3.  

Table 5.3: Maximum r.m.s.fluctuation in the shear stress.  

Test H 

(cm) 

 

 

 

T 

(cm) 

 

h 

(cm) 

r.m.s. fluctuation in the shear 

stress, (<2>)1/2/m 

 

(<2>)1/2   

% 

increase 

Crest Trough 

PM2 8 1 40 0.42 0.44 4.8 

PM7 8 2 40 0.26 

 

0.28 7.7 
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.  

                                                               (a) 

 

                                                                                     (b) 

Figure 5.15(a),(b): Variation of (<2>)1/2during the course of the wave cycle. 

H=8cm, T=2 sec, h=40cm. 
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                                                                                    (a) 

 

                                                               (b) 

Figure 5.16(a),(b):  Variation of (<2>)1/2during the course of the wave cycle. 

H=8cm, T=1 sec, h=40cm. 
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Figure 5.17: Variation of turbulence intensity (<u2>)1/2/Um
 during the course 

of the wave cycle. H=8cm, T=2 sec, h=40cm. y=1mm above the bed.  

 

Kemp & Simons (1982) observed that the horizontal component of the 

turbulence intensity is largest at the maximum horizontal deceleration during 
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Figure 5.17 seems to agree with this observation.  (<u2>)1/2/Um reached a 

peak of 0.4 at the maximum horizontal deceleration. It was 0.28 at the 

maximum accelerating phase in the crest half cycle. This is an increase of 

approximately 43% in the turbulence intensity. 
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Figures 5.15 and 5.16) appears late in the record, i.e. about 60-90deg 
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.  

                                                                (a) 

 

                                                              (b) 

Figure 5.18(a),(b):  Variation of Reynolds stress <R>=-<u’v’> during the 

course of the wave cycle. H=8cm, T=2 sec, h=40cm. y=1mm above the bed.  
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The Reynolds stress 1mm above the bed is shown in Figure 5.18. Large 

peaks in the Reynolds stress appear just after the flow reversal. It is larger 

during the deceleration phase and after flow reversal in the trough half cycle 

than in the acceleration phases closer to the bed and may reach 10 -15% of 

the peak shear stress amplitude, m. Different shapes in the mean oscillatory 

velocity profiles observed in Figures 5.17 and 5.18 are due to the different 

points of measurement on the bed.  

A 43% increase in the turbulence intensity near maximum deceleration and 

after flow reversal during the trough half cycle is quite significant for the 

stability of stone. One of the reasons for the increase in the turbulence 

intensity during the deceleration phases could be due to the bursting of 

turbulent ‘spots’ which is known to register shear stress magnifications as 

much as by a factor of 3 to 4.  The emergence of turbulent ‘spots’ marks the 

onset of turbulence.  For low Reynolds numbers these features appear 

during the late deceleration phase and can appear early (at the passage of 

the crest) for high Reynolds number flows (Carstensen, 2010).  

Another reason could be due to the residual vorticity remaining from the late 

acceleration phases. Flow visualisation tests showed that the vortex ejection 

from the roughness elements occurs predominantly during the acceleration 

phases and this process is suppressed during the deceleration phases. The 

flow visualisation tests also suggested that the vortices can maintain their 

shape longer and return to the same position with the reversing flow.  
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5.9 PDF of shear stress fluctuation 
 

The measured shear stress fluctuation, , during 50 wave cycles was fitted 

to standard normal distribution as shown in Figures 5.19.  For the test PM7 

for example, the number of data points in the sample were 62500 (i.e., 

625Hz data sampling). It was found that for all tests, the shear stress 

fluctuation can be fitted to a standard normal distribution with good 

agreement. 

 

Figure 5.19(a): PDF of instantaneous shear stress fluctuation, .  H=8cm, 

T=2 sec, h=40cm. Skewness=0.34, Kurtosis=0.92. 
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Figure 5.19(b): PDF of instantaneous shear stress fluctuation, .  H=8cm, 

T=1 sec, h=40cm. Skewness= -0.04, Kurtosis= -0.25. 

 

Table 5.4:  Statistics of shear stress fluctuation, . 
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=[(/m) - ]/ 
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Note:  Sample duration = 50 wave cycles, sampling rate = 625Hz, =-<>, 

m=0.5fwUm
2,  = statistical mean,  = standard deviation. 

 

The average minimum and maximum values were found to be /m=-1.01 

and /m=1.00. This means that the fluctuation in shear stress can be as 

large as the shear stress amplitude, m itself. These intermittent peak 
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the normalised shear stress fluctuation ('/m) were found to be 0 and 0.27 

as an average of the above three tests. 

5.10 PDF of normal stress fluctuation 
 

The turbulent fluctuation of the normal stress, 'n/m was also fitted to a 

standard normal probability distribution as shown in Figure 5.20.  A 

summary of the parameters of the distribution is shown in Table 5.5. 

Table 5.5:  Statistics of normal stress fluctuation, n. 

Test H 

(cm) 

 

 

 

T 

(s) 

h 

(cm) 

n/m 

 

=[(n/m) - ]/ 

 

 
min max   min max s s 

PM2 8 1.0 40 -1.43 1.24 0.0 0.31 -4.63 4.02 0.0 1.0 

Note:  Sample duration = 50 wave cycles, sampling rate = 625Hz, n=n-<n>, 

m=0.5fwUm
2,  = statistical mean,  = standard deviation. 

 

Figure 5.20: PDF of instantaneous normal stress fluctuation, n.  H=8cm, 

T=1 sec, h=40cm. Skewness= 0, Kurtosis= 0.02. 
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5.11 Summary 

 

In order to measure the wave-induced bed shear stress, researchers have 

previously used, turbulence measurements (i.e., Reynolds stress, 

momentum integration) and direct measurement using shear cell, hot film 

techniques etc. In the present study a different approach was adopted using 

direct measurement and integration of the pressure on the surface of a 

spherical element embedded in a coplanar bed of the same diameter 

spherical elements set in a hexagonal array. Based on the results of these 

experiments the following observations are made: 

1 For regular waves, the measured mean shear stress profile agreed 

well with the sinusoidal relationship, m=0.5fwUm
2cos( t). 

 
2 The shear stress showed an average phase lead of between 62deg 

and 67deg  relative to the water surface elevation for relative 

roughness, a/ks=0.09 – 0.65. 

 
3 When viewed from the present knowledge, the measured shear 

stress profile exhibits characteristics of laminar flow, i.e., sinusoidal 

variation with a phase shift greater than 45deg (Nielsen, 1992).  

However, the existing parameters describing the shape and phase of 

the bed shear stress have been derived mostly indirectly, using 

turbulence measurements and not by pressure measurement on a 

bed element such as in the present tests.  Therefore, further research 

on the shear stress at high Reynolds numbers using the present 

apparatus is required.    
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4 The measured wave friction factor data fitted well to the power 

relationship, fw=0.33(a/ks)
-0.9. Data also matched the equation, 

fw=102.42Re-0.543. This reconfirms the dependence of fw on both the 

relative roughness and Reynolds number (aUm/). 

 
5 The measured wave friction factor data agreed well with the previous 

relationships of Kamphuis (1975), Simons et al. (2000) and the more 

recent work of Dixen et al. (2008). 

 
6 Good agreement of the wave friction factor data with previous studies 

was obtained when the pressure was integrated above the theoretical 

bed level assumed to be located 0.35d below the crest level of the 

roughness elements.  Previously published studies used various 

types of roughness elements (2D square roughness elements, natural 

stones, spheres). The agreement of the present data with previous 

studies on rough beds suggests that for all types of roughness, the 

theoretical bed is located 0.35d below the crest level of the roughness 

elements.   

 
7 The maximum turbulent fluctuation in the shear stress,  is in the 

order of m  (i.e., /m 1.00) with the possibility of reaching 1.5m. The 

mean and standard deviation of the same parameter are 0 and 0.27 

on average. 

 
8 The turbulent fluctuation in the shear and normal stresses follows a 

normal probability distribution. 
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9 The maximum Reynolds stress occurs below the bed level and is only 

a fraction of the total shear stress, i.e., approximately 33% of the 

peak shear stress, m. It is about 10-15% at the bed level. 

 
10 The turbulence intensity is largest near the maximum horizontal 

deceleration in the crest half cycle and just after the flow reversal 

suggesting that the inception of turbulence occurs in this part of the 

wave cycle. The turbulence intensity increased 43% at the maximum 

horizontal deceleration compared to the value at maximum 

acceleration. Peaks in the Reynolds stress were observed just after 

the flow reversal in the trough half cycle and were larger in magnitude 

than in the other phases suggesting that bursting of turbulent ‘spots’ 

may have contributed to the intense turbulence.  

 
11 The residual vorticity from the late acceleration phases, could also 

have contributed to the heightened turbulence levels during the 

deceleration phases.  

 
12 The overall peak in the turbulent fluctuation in bed shear stress 

occurred closer to the trough of the wave. The r.m.s. value of the 

turbulent fluctuation in shear stress, , is between 5-8% higher at the 

trough than at the crest, showing a clear shift during the trough half 

cycle.  

 
13 The methodology used in the present study, i.e., direct pressure 

measurement and integration on a sphere to find the net horizontal 

force per unit area, with the effective planar area of the test sphere 
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assumed as 2   R2, gives consistent results compared with other 

studies that used different techniques to measure bed shear stress. In 

this instance forces measured at individual bed element level has 

been extended to find the average wave-induced force per unit area 

on the entire bed. 
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6 Incipient motion of idealised stones   
 

6.1 Introduction 

 

It is the primary objective of this research to study the effect of stone 

protrusion on the incipient motion of rock armour under regular waves. Tests 

were conducted in the wave-current flume at the UCL Fluid Mechanics 

Laboratory using the apparatus described in Chapter 3.  Some preliminary 

tests on a coplanar bed were carried out in the Mechanical Engineering 

Fluids Laboratory. The bed consisted of loose glass marbles of 19mm 

diameter arranged in a hexagonal array. Rock armour was idealised using 

light weight spherical particles of different size and density. Spherical 

elements were chosen due to a number of reasons (i) the effect of shape 

can be removed from the test results (ii) forces on the element can be easily 

quantified (iii) the amount of stone protrusion can be accurately controlled in 

the experiments (iv) a sphere is the most unstable of all shapes and hence 

offers a bottom line for threshold shear stress. The test stone was supported 

on three 19mm acrylic spheres screwed to a circular disk which is, in turn, 

fitted flush with the flume bed.  Waves were generated at two water depths, 

i.e., 30cm and 40cm. For a particular wave period, the wave height was 

gradually increased in 0.5cm increments until the test stone started rocking 

and then displaced from its pocket. The critical wave height and period at 

which the first stone movement occurred, was recorded to calculate the 

horizontal orbital velocity using linear wave theory and then the shear stress 
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via equation m=0.5fwUm
2 was calculated also. Table 6.1 gives a summary 

of the test conditions. 

Table 6.1: Incipient motion tests - summary of test parameters.  

Parameter Range 

Water depth, h (cm) 30 and 40 

Wave height, H (cm) 3.5  – 16.5 

Wave period, T (sec) 1 – 2.5 

Test stone size, d1 (mm) Acrylic - 9.5, 12.7, 15.9, 19, 25.3, 

31.8 

Other materials – 19 

Specific  gravity of test stone 1.19 – 2.65 

Bed material size, d2 (mm) 19 (glass marbles) 

 

 

6.2 Stability of stones on a coplanar bed 

 
Fluid exerts a major portion of the force on the projected part of a rock 

element above the mean bed level. In a coplanar bed, this projection or the 

protrusion is zero. This means that the force applied on a perfectly 

flat/levelled bed should be negligibly small (see Figure 4.16). Therefore, a 

coplanar bed, with little force to destabilise a stone and a large pivot angle, 

should be more stable than one having a finite stone protrusion. 

To test this hypothesis, a number of tests were carried out for different wave 

conditions.  The bed consisted of two layers of 19mm diameter glass 

marbles spread on a 90cm x 45cm area, whilst the test section consisted of 

19mm acrylic spheres of specific gravity, s=1.19. The pressure on top of the 
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test element was measured using a Honeywell 40PC006G2A type 

transducer. 

 

6.2.1 Test CP-1A: Coplanar bed of lightweight stones 

It was observed that for varying wave heights, periods and water depths as 

shown in Table 6.2, the test elements were remarkably stable. In the 

absence of exposure to significant streamwise forces, the primary mode of 

stone entrainment in a coplanar bed should be by uplift. However, no such 

instability was observed for the lightweight elements with specific gravity of 

1.19 for the applied Shields shear stress as high as 0.4. The test runs were 

carried out for a duration of 10-15 minutes. 

 

6.2.2 Test CP-2A: Effect of stone density on stability 

 
Two lightweight 19mm diameter spherical stones X, Y close to the neutral 

buoyancy condition with a specific gravity, s=1.04 were placed on the 

coplanar bed in place of two acrylic stones. The same test conditions as in 

the Test CP-1A were applied. The X,Y positions were also changed to 

different locations. However, the tests showed that the X,Y spheres were 

very stable for all test conditions.  

6.2.3 Test CP-3A: Effect of sheltering by overlying elements 

 

Several glass spheres with a specific gravity, s=2.65, were rested above the 

coplanar bed in an overlying position several diameters apart across the 

width of the test section so as not to influence each other. The aim was to 

see if the overlying glass spheres would have any effect on the lightweight 
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spheres (s=1.19) on the lee side in their wake. There was no change to the 

stable condition observed in test CP-1A for the test conditions. 

 
Two glass spheres were then placed in front of the neutrally buoyant X,Y 

spheres (s=1.04) embedded in the top layer. The centre to centre distance 

between the overlying glass sphere and the neutrally buoyant one was 1.0d. 

On this occasion one of the X,Y spheres was displaced out of its pocket for 

the test condition, H=20cm, T=2 sec, h=30cm. Increasing the distance to 

1.5d made the X,Y stones stable again.  

This instability is considered to be due to the effect of the low pressure 

region developed in the wake behind the upstream glass sphere and also 

the uplift forces created by vortex shedding by the overlying glass sphere. 

Comparing the pressure time-series records with and without an upstream 

sphere, a sharp drop in peak pressure over the sheltered/hidden sphere was 

observed when  an upstream overlying sphere was present.  

 

The extraction of neutrally buoyant X,Y stones due to the influence of an 

upstream overlying glass sphere confirms that, given the right hydrodynamic 

conditions, the spheres would be displaced by uplift and there is no 

particular aspect of the apparatus that had made the spheres particularly 

stable in the previous tests.  

6.2.4 Test CP- 4A: Effect of sphere roughness 

 
Two spheres, 19mm diameter, were roughened by gluing sand onto their 

surfaces and placing them on the coplanar bed in place of the smooth 
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spheres. The aim was to investigate the effect of roughness on particle 

stability in a coplanar bed. A range of waves was then generated but there 

was no instability, even for waves with the highest horizontal orbital velocity.   

6.2.5 Tests CP- 1B, 2B, 3B, 4B: Effect of bed arrangement 

 

A series of tests were carried out using a cubic arrangement of the sphere 

matrix as opposed to the hexagonal arrangement in the previous tests. The 

tests carried out for same conditions as in the previous tests CP-

1A,2A,3A,4A showed that there is no change to the observations made in a 

hexagonal bed arrangement and the coplanar bed is very stable for the 

cubic bed arrangement. 
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Table 6.2: Tests on a coplanar bed. 

Test 

  

 

H  

(cm)) 

T  

(s) 

h  

(cm) 

Um  

(m/s) 

a/ks  

( - ) 

Red 

( - ) 

Re
* 

( - ) 

Re 

( - ) 

KC 

( - ) 

  

( - ) 

M.191007.A1 10 2 40 0.21 1.44 4069 1420 14601 23 0.158 

M.191007.A2 10 1.1 40 0.14 0.51 2610 1411 3304 8 0.156 

M.191007.A3 15 1.2 40 0.23 0.93 4374 1835 10122 15 0.263 

M.191007.A4 20 1.7 40 0.40 2.30 7682 2198 44231 36 0.378 

M.191007.A5 20 2 40 0.43 2.87 8138 2123 58402 45 0.353 

M.191007.A8 10 1 40 0.12 0.39 2218 1336 2169 6 0.140 

M.191007.A9 10 2 30 0.26 1.72 4883 1579 21027 27 0.195 

M.191007.A10 15 2 30 0.39 2.58 7325 1997 47312 41 0.312 

M.191007.A11 15 1 30 0.26 0.86 4852 2104 10379 13 0.346 

M.191007.A14 10 1.7 30 0.25 1.41 4692 1652 16502 22 0.213 

M.191007.A15 18 2.5 30 0.49 4.09 9273 2085 94771 64 0.340 

M.191007.A16 18 1.7 30 0.44 2.53 8446 2322 53466 40 0.422 

M.191007.A17 15 1.7 30 0.37 2.11 7038 2089 37129 33 0.341 

M.191007.A18 15 0.8 30 0.17 0.45 3213 1820 3642 7 0.259 

M.191007.A19 6 1 30 0.10 0.34 1941 1237 1661 5 0.120 

M.221007.A4 10 1.3 30 0.22 0.94 4113 1712 9695 15 0.229 

M.221007.A5 15 1.3 30 0.32 1.41 6169 2166 21814 22 0.367 

M.221007.A6 10 1.1 30 0.19 0.70 3600 1700 6285 11 0.226 

M.221007.A7 20 2 30 0.51 3.44 9767 2360 84110 54 0.436 

M.221007.A8 18 2.5 30 0.49 4.09 9273 2085 94771 64 0.340 

M.221007.A9 15 2.5 30 0.41 3.41 7727 1876 65813 54 0.275 

M.221007.A10 18 2 30 0.46 3.10 8790 2220 68129 49 0.385 

M.221007.A12 18 1.25 30 0.38 1.59 7222 2413 28740 25 0.455 

M.221007.A13 15 1 40 0.18 0.59 3327 1691 4880 9 0.224 

M.221007.A15 10 0.8 40 0.06 0.17 1179 1017 490 3 0.081 

M.221007.A16 10 1.3 40 0.17 0.73 3183 1476 5808 11 0.170 

M.221007.A17 15 1.36 40 0.26 1.20 4998 1881 14979 19 0.277 

M.221007.A18 10 1.5 40 0.19 0.94 3564 1484 8402 15 0.172 

M.221007.A19 15 2.5 40 0.34 2.84 6445 1688 45789 45 0.223 

M.221007.A20 18 2 40 0.39 2.58 7325 1997 47306 41 0.312 

M.221007.A21 15 2 40 0.32 2.15 6104 1797 32851 34 0.253 

 

6.3 Variation of Shields critical shear stress with relative 

protrusion 
 

In the preceding section, it was observed that a coplanar bed is remarkably 

stable. The results for the present tests conducted for varying finite 

protrusion levels under waves and published data for currents are shown in 
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Figure 6.1. The incipient motion data showed that the Shields critical shear 

stress has an exponential relationship (Figure 6.2) with the critical shear 

stress with the latter increasing when the relative protrusion decreased. The 

lowest critical shear stress was observed for a fully exposed stone (i.e. 

relative protrusion, p/d1=0.82 and higher).  

For relative protrusion values 0 (coplanar bed), 0.17 and 0.21 a stone was 

remarkably stable even for the largest shear stresses that could be 

produced in the wave flume (see Table 6.3).  The stone started to move 

again when the relative protrusion was increased to 0.24. Therefore, the 

value of p/d1=0.21 appears to be the threshold relative protrusion below 

which stones are stable. Therefore, the test results suggest that a ‘no 

mobility’ condition of a bed protection can be achieved when the relative 

protrusion is within the range 0<p/d1<0.21.  

This finding is of significance in coastal engineering practice, i.e., if a rock 

armour scour protection can be levelled to an optimum protrusion of 0.21d or 

less, the bed damage can be reduced to a desirable level. 

The present test results and the data of Fenton & Abbot (1977) and Chin & 

Chiew (1993) for uni-directional currents were plotted on the same Figure 

6.1, for comparison. In particular, the study of Chin & Chiew (1993) used an 

apparatus similar to the present research with spherical glass and steel 

particles as test stones. The incipient motion data for waves in the present 

tests lie above the data for currents. This seems to suggest, from a first 

observation, that stones are more stable under the action of waves. 
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Table 6.3: Incipient motion of stones of relative protrusion 0<p/d1<0.24. 

d1=d2=19mm, specific gravity =1.19 (acrylic). 

Test  no. p/d1 

( - ) 

H  

(cm) 

T 

(s) 

h 

(cm) 

Um 

(cm/s) 

 

 

    

( - ) 

Re 

( - ) 

Re* 

( - ) 

Red 

( - ) 

Remarks 

W5 0.24 13.5 2.5 30 36.6 0.24 1.1 X 10
5
 1454 6954 Displaced 

W6 0.24 14.5 2.0 40 31.1 0.24 5.0 X 10
4
 1675 5890 Displaced 

W110908.10 0.21 13 2 40 27.8 0.21 4.0 X 10
4
 1647 

 

5269 

 

Stable 

W110908.11 0.21 12 2.5 40 27.1 0.17 5.7 X 10
4
 1478 5137 Stable 

W110908.4 0.17 13 2 40 27.8 0.21 4.0 X 10
4
 1647 5269 Stable 

W110908.6 0.17 12 2.5 40 27.1 0.17 5.7 X 10
4
 1478 5137 Stable 

B2.221007.A8 0 18 2.5 30 48.8 0.34 2.0 X 10
5
 2076 9229 Stable 

B2.221007.A9 0 15 2.5 

 

30 40.6 0.27 1.4 X 10
5
 1868 7691 Stable 

 

However, it appears that, rather than inherent differences in the flow 

structure of waves and currents as assumed at the beginning of this 

research, this discrepancy is due to the effect of the chosen model scale that 

has contributed to laminar flow effects resulting in the apparent stability of 

stones under waves. 

There exists a unique curve for each wave period (Figure 6.2).  When, the 

magnitude of the wave period is increased, the curves appear to flatten and 

fall back on the position for currents. The difference in the wave and current 

curves is smallest for a fully exposed stone (p/d1> 0.82). When the relative 

protrusion decreased, the two curves diverged. 

In the wave flume the maximum sustainable wave period that can be 

generated without breaking due to spilling was 2.5 seconds (Simons et al., 

2000 mentioned a working range of 0.8 - 3.0 sec). Moreover, the wave 

generator became unstable leading to sudden stoppage at wave periods 

larger than 2.5 sec. Therefore, tests were limited to wave periods of 1 – 2.5 
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seconds. The flow visualisation tests described in Chapter 7 show that for 

smaller particles of the order of 19mm diameter, under the wave periods 

used, the flow is not fully developed (see Figures 7.23-727). That is, flow 

reversal occurs before the separation and detachment of the lee-wake 

vortices (before turbulent separation).   

Therefore, the behaviour shown under waves in the present tests, and which 

contrasts with currents, is related to the insufficient flow development due to 

(i) rapid flow reversal (ii) reduced size of the protruding element (iii) 

Reynolds number flow regime at the inception of motion – for a light weight 

fully exposed particle of the same diameter at laminar (unseparated) flow, 

the critical shear stress reached a high 0.1 (tests W128 and W129) whereas 

for glass marbles at relatively high Reynolds number a critical shear stress 

of 0.02-0.03 was observed (tests W113 and W116 – see Table 6.4).  

The longer the wave period, the flatter is the cr vs p/d1 curve. The curve for 

waves approaches the position of the current for larger wave periods. 

Therefore, extrapolating to conditions typical to those experienced in 

engineering practice where longer wave periods often exceeding 8 seconds 

and fully developed rough turbulent flow exists, the curves of Fenton & 

Abbot (1977) and Chin & Chiew (1993) derived for currents should be 

applicable. 
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Table 6.4: Incipient motion of stones - test results. 

Test 

  

 

p/d1 

 ( - ) 

 

d1 

(mm) 

 

s 

 ( - ) 

 

H 

(cm) 

 

T  

 (s) 

 

h  

(m) 

 

Um 

(m/s) 

 

a  

(mm) 

 

a/ks 

( - ) 

 

fw     

( - ) 

 



( - )

Re* 

( - ) 



KC 

( - ) 

W5 0.24 19 1.19 13.5 2.5 0.3 0.36 143 3.0 0.13 0.238 1454 47 

W6 0.24 19 1.19 14.5 2 0.4 0.31 99 2.1 0.18 0.243 1675 33 

W7 0.24 19 1.19 13 2.5 0.4 0.29 117 2.5 0.15 0.189 1477 39 

W10 0.32 19 1.19 13.5 2.5 0.3 0.36 143 3.0 0.13 0.238 1574 47 

W11 0.32 19 1.19 11.5 2.5 0.4 0.26 103 2.2 0.17 0.164 1305 34 

W17 0.40 19 1.23 14 2 0.4 0.30 95 2.0 0.18 0.196 1699 32 

W18 0.41 19 1.36 12.5 2 0.4 0.27 85 1.8 0.20 0.108 1616 28 

W19 0.41 19 1.2 10.5 2 0.4 0.22 72 1.5 0.23 0.159 1461 24 

W20 0.41 19 1.19 9.5 2 0.4 0.20 65 1.4 0.25 0.149 1379 21 

W21 0.41 19 1.38 14.5 2 0.4 0.31 99 2.1 0.18 0.121 1762 33 

W22 0.41 19 1.19 10.5 2 0.4 0.22 72 1.5 0.23 0.167 1216 24 

W31 0.51 19 1.19 14 1 0.3 0.24 38 0.8 0.40 0.320 1728 13 

W32 0.51 19 1.19 11 2 0.3 0.28 90 1.9 0.19 0.218 1426 30 

W33 0.51 19 1.19 9 2 0.4 0.19 61 1.3 0.27 0.140 1142 20 

W34 0.56 19 1.19 13 1 0.3 0.22 35 0.7 0.42 0.293 1613 12 

W35 0.56 19 1.19 10.5 2 0.3 0.27 86 1.8 0.20 0.206 1352 28 

W36 0.56 19 1.19 15 1 0.4 0.18 28 0.6 0.52 0.224 1408 9 

W37 0.56 19 1.19 8.5 2 0.4 0.18 58 1.2 0.28 0.131 1076 19 

W38 0.56 19 1.19 7 2.5 0.4 0.16 63 1.3 0.26 0.092 904 21 

W39 0.60 19 1.23 13 1 0.4 0.15 24 0.5 0.58 0.159 1531 8 

W40 0.60 19 1.23 7.5 2 0.4 0.16 51 1.1 0.31 0.095 1183 17 

W41 0.60 19 1.36 9.5 2 0.4 0.20 65 1.4 0.25 0.078 1379 21 

W53 0.61 19 1.19 9.5 2 0.3 0.24 78 1.6 0.22 0.184 1310 26 

W113 0.81 19 2.65 14 2.5 0.3 0.37 148 3.1 0.13 0.029 1565 49 

W116 0.81 19 2.65 12.5 2.5 0.4 0.28 112 2.4 0.16 0.021 1298 37 

W128 0.82 19 1.19 5 1 0.3 0.09 14 0.3 0.95 0.097 977 4 

W129 0.82 19 1.19 4.5 1.3 0.3 0.10 20 0.4 0.68 0.091 946 7 

ks = 2.5d2 , d2=19mm.  This Table contains only data for d1=19mm.  

Complete list of the tests is provided in Appendix-B.  
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Figure 6.1:  Variation of critical shear stress with stone protrusion. Data for 

uni-directional currents from Fenton & Abbot (1977) and Chin & Chiew 

(1993) are also plotted in the same figure for comparison. 
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                                                             (a) 

 

 

                                                              (b) 

Figure 6.2a,b: Critical shear stress data for different wave periods and for  

currents (Chin & Chiew, 1993) fitted to exponential equation. 
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Figure 6.1 shows wide scatter of data. This is due to factors like different 

wave periods, water depths, stone size, density etc.  The Shields critical 

shear stress was slightly modified to reduce this scatter based on 

consideration of turbulence length scales. It is known from existing literature 

that large scale turbulent sweep events are primarily responsible for the 

displacement of stones. 

The orbital amplitude, “a” has the length scale of the wave-induced 

turbulence. It is also known from the work of various researchers (Nezu & 

Nakagawa, 1993; Davidson, 2004; Hofland, 2005), that the large scale 

turbulent eddies that cause stone displacement have a length scale of the 

order of the water depth, “h”.  A modification to the critical shear stress, 

introduced using water depth, appeared to reduce the scatter to some extent 

(see Figure 6.3). Therefore, the following modified Shields parameter is 

proposed: 
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Figure 6.3: Modified Shields critical shear stress against relative protrusion. 

 

6.4 Effect of stone size  

 

In the tests to measure threshold stone displacement, a solid test sphere 

with diameter d1, was placed over the interstice formed by three spheres of 

diameter, d2=19mm. The supporting spheres themselves were located in 

part of a rough bed of 19mm glass marbles forming a hexagonal matrix. The 

tests can be divided into two types based on particle size. 

I. The diameter of the test sphere is equal to or larger than the diameter 

of the spherical elements forming the rough bed, i.e. d1 d2.  

II. The diameter of the test sphere is equal to or smaller than the 

diameter of the spherical elements forming the rough bed, i.e. d1 d2. 
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as a separate data set in Figure 6.4. They show significant scatter 

particularly for small relative protrusion levels less than 0.5. Test particles 

displaced even when the relative protrusion was in the region between 0 and 

0.2, where no mobility was observed for larger particles (i.e. d1>d2).  

The increased scatter of data indicates that, for smaller stones, in addition to 

the shear stress in the streamwise direction, there is another mechanism 

involved in the displacement of particles. This can be due to the increasing 

influence of the normal stress (uplift) as the dominant force as opposed to 

the shear stress at the moment of entrainment. This is because hiding 

increases due to small stone size and decreasing protrusion, reducing the 

exposed frontal area for the fluid to act on.  

Moreover, the pivot angle becomes larger for small particles, increasing the 

stone’s resistance to displace by rolling over another stone. Therefore, the 

main mode of displacement for smaller stones should be by uplift motion. 
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Figure 6.4: Modified Shields critical shear stress against relative protrusion. 

(X)- Acrylic particles of diameter, d1=9.5, 12.7, 15.9, 16mm, specific gravity 

=1.19, () – particles of various specific gravity, s=1.19-2.65, d1=19, 25.3, 

31.8mm. Particle size of bed material, d2=19mm. 
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prior to stone displacement, turbulent flow separation on the glass sphere 

would have occurred resulting in  increased form drag being exerted 

compared to an acrylic sphere.  

Fenton & Abbot (1977) used two test spheres of 3.8cm diameter by filling 

table tennis balls with homogeneous mixtures of lead shot, polystyrene 

grains and sand. Chin & Chiew (1993) used 16.5mm diameter glass marbles 

and steel balls with diameters between 6.3-13.5mm. The results of the 

present tests and the published data from the above authors for currents are 

compared in Table 6.5.  

Table 6.5: Reynolds number at threshold stone movement for a fully 

exposed stone. 

Details of the 

test 

Present Tests with regular 

waves 

Uni-directional current 

acrylic PVC glass Fenton & 

Abbot (1977) 

Chin & Chiew 

(1993) 

Test no. W130 W127 W116 C3 M7 

d1(mm) 19 19 19 38 16.5 

d2(mm) 19 19 19 38 16.5 

s ( - ) 1.19 1.4 2.65 - 2.64 

p/d1 ( - ) 0.82 0.82 0.81 0.82 0.81 

Re=aUm/ ( - ) 6361 6169 31798 - - 

Re* ( - ) 980 1106 1298 1760 1009 

Red=Umd/ ( - ) 2686 2645 5371 - - 

KC ( - ) 15 15 37 - - 

    ( - ) 0.097 0.045 0.021 0.0104 0.0154 
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Figure 6.5:  Threshold shear stress for glass marbles (in red) compared with 

currents. 

 

For a relative protrusion of  0.82 under currents, the Shields critical shear 

stress for marbles of different material density lies very close to 0.01. In the 

present tests, the threshold stress for glass marbles lies within 0.02-0.03,  

which is closer to data for currents. The Reynolds number (Red) at the first 

displacement is larger for glass than for other light weight particles (Figure 

6.7). 

0 

0.05 

0.1 

0.15 

0.2 

0.25 

0.3 

0.0 0.2 0.4 0.6 0.8 1.0 


c
r 

p/d1 

Chin & Chiew (1993) 

Glass marbles 

Other materials 



279 
 

 

Figure 6.6: Shields critical shear stress against particle Reynolds number, 

Re*, for the present tests and for uni-directional currents (Fenton & Abbot, 

1977; Chin & Chiew, 1993). Fully exposed particles (p/d1=0.82). 

 

Figure 6.7: Shields critical shear stress against Reynolds number, Red, for 

the present tests and for uni-directional current (Fenton & Abbot, 1977; Chin 

& Chiew, 1993). Fully exposed particle (p/d1=0.82). 
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Laminar flow separation on a free sphere occurs at Red   1000 at 800 from 

the front stagnation point. As shown in Figure 2.28, the transition from 

laminar to turbulent flow occurs at a critical Reynolds number, Red=2000. 

About half of the data set lies within the laminar flow region (Red < 2000) 

where the drag coefficient is dependent on the Reynolds number 

(Schlichting, 1968; Massey & Ward-Smith, 1998).  The majority of the data 

lies in the region Red=1000 – 3000 and, therefore, should be in the laminar 

or transition flow regions.  

The Reynolds number, Red=Umd/ is based on the maximum orbital velocity, 

Um, which is achieved only momentarily. A good portion of the wave half 

cycle is, therefore, under lower velocities. Given the short time period of the 

oscillatory flow (1-2.5 sec) the flow reverses before the flow separation.   

As can be seen from the flow visualisation tests in Chapter 7, flow 

separation and a clearly defined lee-wake region was not established for a 

19mm diameter fully exposed spherical stone (see Section 7.4.1). One can 

only see an upward directed residual vorticity structure on top of the sphere 

instead of a wake region on the downstream side as observed for a free 

sphere under steady flow (Figures 2.25 and 2.26). 
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Figure 6.8: Shields critical shear stress against KC number for the present 

tests. Fully exposed particle (p/d1=0.82). 

 

The majority of the data lies in the region KC<10 (Figure 6.8). Flow 

separation will be inhibited when the KC number is low.   
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particle protrusion above mean bed level and for a fully exposed stone, the 

threshold stress must be as low as 0.01. Therefore, for higher Reynolds 

number flows the shear stress should be independent of the Reynolds 

number.  

The Shields parameter ( ) for typical field conditions and test data are 

compared with the Shields curve (Figure 6.9).  Re* for typical field conditions 

vary from 1.8 X 105 to 2.5 X105.  Present experiments were in the range 

Re*= 800 – 2200 (i.e., order of 103) and D* =200-450. Most of the previously 

published incipient motion data for waves, correspond to D*<700 (see 

Figure 2.5, Soulsby & Whitehouse, 1997).  Based on Shields (1936), it has 

been widely assumed in the literature that the critical shear stress is 

constant when Re*  and hence, laboratory results for Re*>1000 have 

been extrapolated to field conditions. The majority of the data in the present 

tests are in the region Re*>1000.   

However, most of the test results, except for the glass spheres, exhibit the 

characteristics of laminar flow. Low values of critical shear stress as 

obtained for currents, can be observed for large period waves for which fully 

developed flow conditions will be achieved. Therefore, data for high 

Reynolds number flow, i.e. glass marbles, from the present tests are valid 

for field conditions. 
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     Figure 6.9:  Shields parameter values for typical field conditions. 

 

 

 

Figure 6.10:  Shields parameter values for typical field conditions.  
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          Figure 6.11:  Shields parameter values for typical field conditions. 

 

Table 6.6: Typical flow parameters under field conditions. 
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6.7 Force balance at incipient motion 

 
Morison’s equation was used to calculate the in-line and uplift forces on a 

fully exposed (p/d=0.82) spherical stone of 19mm diameter sitting on a 

coplanar bed made up of glass marbles of the same diameter (see Table 

6.7). Morison’s force coefficients derived in Chapter 4 by curve fitting to 

measured forces were used in the calculation.  In calculating in-line force 

only the inertia term was used as it was found earlier in Chapter 4 that the 

contribution of the drag force to the total force for KC<10 is not significant. 

According to the theory, the ratio of disturbing moment to restoring moment 

around a pivot point should approach unity at the threshold stone 

displacement (MD/MR=1, see Section 3.2.3 and Appendix-A). However, the 

majority of the data lie between MD/MR =1.7 to 4.2. In the stability equation, 

MD/MR=FH (L2)/(FW-FL)L1, the denominator, MR=(FW-FL) L1 is the restoring 

moment caused by the difference between the gravity force and the uplift 

force and the numerator is the moment caused by the horizontal force. Here, 

the ensemble-average of the lift force, FL, at the time of the peak horizontal 

force, FH-max, was used in the calculation. Morison’s equation calculates the 

quasi-steady forces without considering the turbulent fluctuation.  

The root mean square turbulent fluctuation of the horizontal and uplift forces 

was calculated based on the pressure measurement on a 50mm spherical 

stone for a wave height of 8cm and period of 2 sec at a 40cm water depth. 

The rms fluctuations in the horizontal and uplift forces were found to be 

0.0013N and 0.0027N, respectively. This means that the fluctuation in the 
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uplift force is twice that of the horizontal force. The analysis was based on 

50 wave cycles and a data capturing rate of 625Hz.   

Figures 6.12 and 6.13 show the variation of the MD/MR ratio with the 

Reynolds and Keuligan-Carpenter numbers. Although there is substantial 

scatter, the trend generally shows that the MD/MR ratio decreases when the 

Reynolds number increases and the flow regime moves into fully developed 

turbulence.   

The disturbing moment was plotted against the restoring moment in Figure 

6.14. The graph deviated from the theoretical MD=MR.  With a/ks 1.0 and 

Re=O(104) the flow regime of the tests is in the transition to rough turbulent 

flow region (Kamphuis, 1975).  For an individual sphere, the transition to 

turbulence occurs at Red=Umd/   2300 (Schlichting, 1968). The majority of 

the tests were conducted below this critical Red value. For oscillatory flow, 

rapid flow reversal inhibits full development of the flow. Therefore, the fact 

that the flow is in the laminar and transitional flow regimes could have 

contributed to the increased stability (i.e., MD/MR>1) when Re < 2 x 104 and 

KC < 35 and for the deviation of the observed MD/MR ratio from the 

theoretical value (Figure 6.14). 
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   Table 6.7: Incipient motion test conditions and MD/MR ratio. 

Test no. Specific gravity (-) H (cm) T(sec) h(cm) 
MD/MR 

( - ) 
KC 
( - ) 

Red 

( - ) 
W89 1.19 6 1 40 4.0 3.6 1189 

W90 1.19 4.5 2 40 2.7 10.2 1666 

W94 1.19 5.6 1 30 3.7 3.4 1110 

W95 1.19 4.5 2 40 2.7 10.2 1666 

W120 1.2 6.5 1 40 4.2 3.9 1288 

W121 1.2 4.5 2 40 2.5 10.2 1666 

W137 1.36 8.5 1 40 2.9 5.1 1685 

W138 1.36 5.5 2 40 1.7 12.4 2037 

W143 1.38 6.5 2 40 1.9 14.7 2407 

W144 1.38 10 1 40 3.3 

 

6.0 1982 

W148 1.4 12 1 40 3.9 7.2 2378 

W149 1.4 6.5 2 40 1.8 14.7 2407 

W152 1.7 10.5 2 40 1.8 23.7 3888 

W156 2.53 12.5 2.5 40 0.8 37.2 4887 
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Figure 6.12:  Variation of disturbing moment to restoring moment ratio with 

Re. 

 

Figure 6.13: Variation of disturbing moment to restoring moment ratio with 

KC. 
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Figure 6.14:  Disturbing moment against restoring moment at threshold 

stone movement.  

 

6.8 Phases of stone movement in the wave cycle - visual 

observations  
 

Displacement of fully exposed 19mm diameter spherical elements made of 

different material resting on a rough bed consisting of glass marbles of the 

same diameter, was observed through video recording. Figure 6.15 shows a 

frame from the video at the time of displacement.  A scale glued to the face 

of the flume was used to measure the surface elevation. Several tests were 

carried out to obtain a statistically representative result.    
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          Figure 6.15:  Visual observation of incipient motion.  

Figure 6.16:  Phases of stone displacement within the course of wave cycle. 

 

The phase of the stone displacement is shown in Figure 6.16.  All 

displacements occurred within the trough half cycle near and after the flow 

reversal.  The quasi-steady uplift is positive (beneficial) for the displacement 

during this phase (Figure 4.1). Moreover, the turbulence intensity at the bed 
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is higher (about 43%) during the decelerating part of the wave cycle and 

after the flow reversal compared to the accelerating phase (Figure 5.17). 

Therefore, there are favourable conditions for stone displacement during the 

trough half cycle. 

Figure 6.16 shows that stone displacement can occur at any point in the 

trough half cycle between t=900-1800. For that to happen, the existence of 

a positive uplift force is essential. The flow visualisation tests in Chapter 7 

showed that at the inception of motion, a stone required the aid of an 

instantaneous uplift force induced by a moving vorticity structure, acting 

simultaneously with the shear stress.  

The peak shear stress, m=0.5fwUm
2 has been traditionally used to define 

the bed shear stress in the Shields parameter. The measured shear stress, 

/m varied between 0.95 and 0.43 within the t=900-1800 range where the 

stones were most likely to be displaced (Figure 5.6). Therefore, an average 

shear stress of 0.69m would be more appropriate to describe the shear 

stress at the point of incipient motion. Using a value of shear stress of 

=0.69m in the Shields parameter, the data for glass marbles were plotted in 

Figure 6.17 together with published data for currents (Chin & Chiew, 1993). 

This improved the agreement with the curve for currents.   
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Figure 6.17:  Shields critical shear stress against relative protrusion for glass 

marbles under waves after using =0.69m. Data for currents are plotted for 

comparison. 

 

6.9 Comparison with previous studies 

 

Soulsby & Whitehouse (1997) plotted the Shields critical shear stress for 

existing incipient motion data from various published studies for currents and 

waves against the non-dimensional grain diameter D* (see Figures 2.4 and 

2.5).  Much of the data for currents were below the Shields curve and the 

data for waves were scattered and located above the curve.  

Figure 6.18 shows the critical shear stress data for spherical stones of 

different density from the present tests plotted against the non-dimensional 

grain diameter. Only the data for fully exposed stones p/d=0.82 were 

chosen, to reduce the effect of protrusion. The Shields curve is shown on 

the same graph for comparison. Though there is significant scatter of data, 

the general trend of the Shields critical shear stress is to decrease for 
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increasing D* reaching a lowest value at 0.02 at D*=432. The scattered data 

tend to reach a Shields value of 0.1 as an upper bound. This is due to the 

effect of Reynolds number on the inception of stone motion as discussed in 

Section 6.5 and 6.8 respectively. It appears that for larger D* values or 

higher Reynolds number flows, for a fully exposed stone, the Shields critical 

shear stress approaches the value for current.   

The data set of Rance and Warren (1969) is particularly relevant for this 

study as the authors used a bed of coarse material ranging from 0.4 cm to 

4.8cm. They included limestone chips primarily (d=0.32-2.5cm), concrete 

cubes, coal, glass spheres, Perspex cubes and coarse quartz sand. The 

period of oscillation was 5 – 15 seconds. The authors made visual 

observations on the first movement of particles in a bed of 2-4 stones deep, 

2.44m long and 45cm wide set up in an oscillating water tunnel. In these 

tests different particles on the bed must have had varying stone protrusion 

levels. Therefore, the scatter of the data and the larger Shields values 

observed is considered to be due to the effect of the wave period and 

relative protrusion (see Figure 2.5). Any  deviations due to the choice of 

friction factor/bed shear stress calculation method would not arise in this 

case as this data set is from the same series of  experiments.  
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Figure 6.18: Critical shear stress against non-dimensional particle diameter 

for p/d=0.82.   

 
 

Therefore, based on the results of the present study, the difference between 

the Shields curve and the various published data reviewed by Soulsby & 

Whitehouse (1997) could be attributed primarily to: (i) the effect of particle 

protrusion; and (ii) the Reynolds number regime at the inception of motion.  

 

6.10 Summary 

 

Laboratory tests were carried out using spherical stones to study the effect 

of the varying relative protrusion on stone movement. The rough bed 
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stone diameter is equal to or larger than that of the material forming the bed, 

i.e. d1  d2; and (ii) the test stone diameter is smaller than that of the bed 

material, i.e. d1  d2.   

1 The Shields critical shear stress for waves increased when the 

relative stone protrusion decreased. The data strongly correlated to 

the relative stone protrusion exhibiting an exponential relationship. 

 
2 The critical shear stress data for waves lie above the data for 

currents, giving an impression, on first observation, that the stones 

are more stable under waves than currents. This discrepancy is due 

to processes that inhibit turbulent separation rather than due to an 

inherent difference in the vertical structure of waves and currents as 

assumed initially. They are (i) rapid flow reversal due to the small 

wave periods used (i.e., 1-2.5 sec), (ii) the reduced element size 

exposed to the flow when the protrusion was decreased and, (iii) the 

Reynolds number flow regime at the inception of motion – light weight 

acrylic particles displaced under laminar flow while glass marbles 

displaced at a relatively high Reynolds number. Majority of the data 

were in the region KC<10. At high Reynolds number, the critical 

shear stress approached 0.02-0.03 - closer to the value observed by 

previous researchers for currents (i.e., 0.01 by Fenton & Abbot, 1977 

and Chin & Chiew, 1993).  

 

3 The Shields critical shear stress is strongly dependent on the wave 

period as well as the relative protrusion. A set of critical shear stress 
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versus relative protrusion curves for different wave periods was 

identified. When the wave period increased, this curve became flatter 

and approached the position for currents. This suggests, by 

extrapolation, that the incipient motion data obtained for currents in 

previous studies are applicable to high Reynolds number oscillatory 

flows that exist under field conditions.  

 
4 Good correlation between the critical shear stress and the relative 

protrusion data was obtained when the test stone diameter is equal to 

or larger than the diameter of the glass marbles that make up the 

rough bed (d1  d2). When, smaller diameter test stones were used 

(d1  d2), the scatter of the data increased, indicating the influence of 

another mechanism other than the shear stress. When the data is in 

the range 0<p/d1<0.5, the scatter is significant. In this range, the 

influence of the shear stress in the stone displacement appears to 

diminish as hiding increases. Therefore, for smaller particles at lower 

protrusion levels, the uplift force should play a dominant role in the 

stone displacement.  

 
5 Stones in a coplanar bed (p/d=0) were remarkably stable even for the 

largest bed shear stresses that could be produced in the wave flume. 

This is despite the use of lightweight stones of specific gravity 1.19 

and neutral buoyancy in the tests. It was observed that the stones did 

not move and exhibited the same behaviour as a coplanar bed when 

the stone protrusion was increased to 0.17d and 0.21d. The stone 

started moving again when the protrusion was increased to 0.24d. 
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Therefore, 0.21d is considered to be the threshold protrusion below 

which stones in a bed protection are stable.  

 
6 The ratio of the disturbing moment to the restoring moment on a 

stone due to the horizontal and uplift forces should approach unity at 

the moment of incipient motion. However, this ratio, computed based 

on the force balance on a fully exposed stone using inertia term of the 

Morison’s equation, varied between 1.7 - 4.2 for Re < 2 x 104 and KC 

< 35. This deviation is likely due to the fact that the majority of the 

tests were carried out in the laminar and transitional flow regions. 

However, this ratio approached unity for larger Re and KC values.  

 

7 Visual observation of stone displacement using video recordings 

showed that the displacement is most likely to occur during the trough 

half cycle between the phases of flow reversal and peak velocity. This 

could be due to (i) the existence of positive (beneficial) uplift; and (ii) 

increased turbulence intensity during these phases.  

 

8 The peak shear stress, m=0.5fwUm
2, has most commonly been used 

in the Shields parameter to describe the threshold of movement. The 

visual observations showed that stone displacement could occur any 

time during the decelerating phases of the trough half cycle in which 

the measured shear stress varied from 0.43m to 0.95m. Therefore, 

this indicates that the use of an average value in the Shields shear 

stress parameter would be more suitable.   
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7 Flow visualisation 
 

7.1 Introduction 

 

Flow visualization around an idealised spherical stone sitting on a rough bed 

of similar stones, was carried out in a wave flume using the Volumetric 

Three-component Velocimetry (V3V) system to study the flow features 

contributing to stone displacement. The water depth was maintained at 

40cm for all tests. The rough bed consisted of billiard balls of 50mm 

diameter and glass marbles of 19mm diameter spread across the 45cm 

flume width over a 90cm length.  

The flow features over a coplanar bed were studied in Tests FV1 and FV5 

(Section 7.2). Flow around a fully exposed 50mm sphere (p/d=0.82) is 

shown in Test FV2 (Section 7.3).  

It was observed in Chapter 6 that stones are more stable under the action of 

waves than currents. It was one of the objectives in the flow visualisation 

tests to understand the reason behind this phenomenon. With this objective, 

flow around a fully exposed and partially exposed 19mm diameter glass 

marble was studied in Test FV8 and FV7, respectively (Section 7.4). 

To gain insight into the initiation of motion and entrainment process, it is 

important to understand the flow features near a stone just before, during 

and after the first stone displacement. With this objective, V3V images were 
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captured for a light weight PVC sphere of 19mm diameter at the moment of 

incipient motion (Section 7.5). 

   

7.2 Oscillatory flow over a coplanar bed  

 

7.2.1 Rough bed of 19mm spherical elements 

 

The measured wave surface profile and a raw image of the bed taken from 

the V3V camera probe are shown in Figure 7.1 and 7.2, respectively. The 

measured wave height, period and water depth were 10.1cm, 2.5 seconds 

and 40cm respectively. The flow Reynolds number was Re=1.9 x 104 and 

the roughness Reynolds number was        =3 x 103. 

Figures 7.3 to 7.6 show the V3V images of the flow over a rough bed of 

19mm diameter glass marbles set in coplanar bed. The 3D vorticty 

isosurface (in red) patterns show different types of coherent vortex 

structures; i.e., spherical blobs of water, doughnut shaped vortex rings, 

hairpin vortices, horse-shoe vortices being shed from the bed elements.  

The size of these vortices appears to be of the size of the glass marbles. 

The ejected vortices are lifted off and move up to join the flow above which 

is shown by streamlines. The legend shows the velocity and vorticity 

magnitude. The streamlines are represented by the streaks. 
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     Figure 7.1: Measured wave profile. Test FV5, H=10.1cm, T=2.5, h=40cm. 

 

 

 

 

 

 

 

 

 

 

Figure 7.2: Raw V3V image of the rough bed consisting of 19mm diameter 

elements. 

 

Vortex formation and ejection activity from the roughness elements is 

dominant during the acceleration phases (Figures 7.3 and 7.4).  During the 
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deceleration phases, vortex shedding is not very significant and the vortices 

already shed from the elements appear to move back and forth with the 

wave-induced flow (Figures 7.5 and 7.6). 

This finding is quite paradoxical. The turbulent intensity showed a 43% 

increase during the deceleration phase and just after flow reversal. Yet, 

vortex ejection is suppressed during this phase. Therefore, it could be 

argued that this increase in turbulence intensity is generated by another 

mechanism other than vortex ejection. Two possible causes could be: (i) 

residual vorticity remaining from the acceleration phases; and, (ii) bursting of 

turbulent ‘spots’.  

 

 
 
 

 

 

 

 

 

 

 

Figure 7.3:  Vorticity isosurface and velocity vectors/contours. Test FV5, 

Frame 59, t= -125.50. 
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Figure 7.4:  Vorticity isosurface and velocity vectors/contours. Test FV5, 

Frame 64. t= -26.20. 

 

 

 

 

 

 

 

 

 

 

Figure 7.5:  Vorticity isosurface and velocity vectors/contours. Test FV5, 

Frame 67, t= 33.40
. 
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Figure 7.6:  Vorticity isosurface and velocity vectors/contours. Test FV5, 

Frame 70, t= 93.00. 

 

7.2.2   Rough bed of 50mm spherical elements 

 

Figures 7.9 to 7.12 show the 3D flow information over a rough bed 

consisting of 50mm diameter spheres (billiard balls) set within a coplanar 

hexagonal bed arrangement. The measured wave height and period were 

11.63cm and 2 seconds in a 40cm still water depth and with a flow Reynolds 

number of Re=1.8 x104 and a roughness Reynolds number of        =1.4 x 

104. 

Coherent vortices shed from the roughness elements are larger than for 

19mm diameter spheres and hence, were more visible. Significant 

turbulence was observed in the region 100mm above the bed (about two 
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stone diameters). Vortices ejected from the bed elements are shown to 

move away from the bed to join the flow above. 

Vortex formation and ejection is dominant in the acceleration phases, very 

similar to the observations made in tests on a coplanar bed of 19mm 

diameter marbles described in the preceding section (Figures 7.9 and 7.10). 

Vortex shedding was not very pronounced in the decelerating phases and 

after flow reversal, though vortex formation and ejection did not completely 

cease (Figures 7.11 and 7.12). It appears that vortices already shed are 

being transported back and forth during these phases. 

Flow reversal occurs closer to Frame no. 13 and 20 (Figures C.21 and C.28, 

respectively, in Appendix C).  Though the mean velocity approaches zero at 

the flow reversal, the near-bed turbulence does not cease. The turbulence is 

still strong within a region about one diameter (50mm) above the bed level. 

Kajiura (1968) assumed that for rough beds, the cycle-averaged eddy 

viscosity is a constant within a region 0.5ks above the bed (i.e.   1.0d). The 

results of the present measurements appear to suggest that the eddy 

viscosity is a non-zero quantity throughout the wave cycle giving credence to 

the above assumption. 

 

 

 

 



305 
 

 

 

Figure 7.7: Measured wave profile, Test FV1, H=11.63cm, T=2 sec, 

h=40cm. 

 

 

 

 

 

 

 

 

 

 

Figure 7.8: Raw V3V image of the rough bed consisting of 50mm elements. 
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Figure 7.9: Vorticity isosurface and velocity. Test FV1, Frame 14. t= -76.90. 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.10: Vorticity isosurface and velocity. Test FV1, Frame 15, t= -

52.10. 
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Figure 7.11: Vorticity isosurface and velocity. Test FV1, Frame 20. t= 

72.00. 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.12: Vorticity isosurface and velocity. Test FV1, Frame 21, t= 

96.90. 
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7.3 Flow around a fully exposed 50mm sphere 

 

Visualisation of flow past a free sphere can be found in classical books on 

fluid mechanics (i.e., Schlichting, 1968). However, the details of the three 

dimensional flow field around a sphere resting on a coplanar bed of similar 

spheres subject to oscillatory flow from the point of view of large particle 

sediment transport, is not available in the literature to the author’s 

knowledge. However, there are many studies on cylinders. 

Figures 7.15 to 7.17 show a 3D view of the formation and detachment of 

coherent vortices from the spheres. The flow reverses at Frame 60 (start of 

the crest half cycle) and vortex starts to develop from Frame 61 and 62.  At 

Frame 63 vortex is about to be detached and at Frame 64 (wave crest 

phase) the vortex is completely detached. The velocity vectors on the side 

view in Figures 7.18 and 7.19 seem to follow the curvature of the sphere 

showing an unseparated flow pattern and there is no wake region formed on 

the lee side of the sphere. 

Planar and sectional views in Section C.3 (Appendix - C) show that the flow 

is detached from the outer surface of the sphere rather than forming a vortex 

ring around the exposed surface as observed for a free sphere. This could 

be due to the low flow velocities during most of the wave half cycle and rapid 

flow reversal leading to sub-critical flow. The flow Reynolds number at the 

peak velocity is Re = 1.8 x 104, approximately, the stone Reynolds number 

is Red=Umd/=1.1 x 104 and the Keulegan-Carpenter number is KC=10. 
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Further, the proximity to the bed and surrounding spheres may have 

inhibited the vortex shedding.           

 

         Figure 7.13:  Measured wave profile, Test FV2, H=11.6cm, T=2 sec. 

 

 

 

 

 

 

 

 

 

 

         Figure 7.14:  Raw V3V image of the overlying 50mm sphere. 
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Figure 7.15:  Vorticity isosurface and velocity around 50mm sphere. Test 

FV2, Frame 62, t=-47.20. 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.16:  Vorticity isosurface and velocity around 50mm sphere. Test 

FV2, Frame 63, t= -22.40. 
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Figure 7.17:  Vorticity isosurface and velocity around 50mm sphere. Test 

FV2, Frame 64, t= 2.40. 

 

 

 

 

 

 

 

 

 

 

Figure 7.18:  Vorticity isosurface and velocity (side view) just before the 

vortex detachment. Test FV2, Frame 63, t= -22.40. 
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Figure 7.19:  Vorticity isosurface and velocity (side view) just after vortex 

detachment at the wave crest. Test FV2, Frame 64, t= 2.40. 
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7.4 Flow around a 19mm spherical stone at varying 

protrusion levels 

 

In Chapter 6 on the incipient motion of stones, particles were tested for 

stability at different stone protrusion levels.  Their specific gravity varied from 

1.19 (acrylic) to 2.65 (glass) and the particle diameter varied from 9.5mm to 

31.8mm. The majority of the tests were carried out using 19mm diameter 

spherical elements.  

 

 

 

 

 

Figure 7.20:  Raw V3V image for a fully exposed 19mm spherical stone 

sitting on a bed of same diameter elements in a hexagonal array. 

 
When compared with the published data for currents, a relatively large 

Shields critical shear stress was observed for particles under regular waves 

in the present tests for different protrusion levels, with threshold shear stress 

data lying above the Shields curve. That is, for oscillatory flow under the 

present test conditions, particles were more stable. Therefore, flow 

visualisation tests were carried out for 19mm diameter glass marbles with 

the objective of understanding the cause behind this behaviour. This section 

describes the flow visualisation tests carried out for a fully exposed 

(p/d=0.82) and partially exposed (p/d=0.5) stones (Figure 7.21). 
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Figure 7.21:  Raw V3V images of the bed for (a) p/d1=0.82 (b) p/d1=0.5 (c) 

p/d1=0.2. 
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7.4.1  Fully exposed stone (p/d=0.82) 

 

Figures 7.23 to 7.26 show 3D images of the flow around a 19mm diameter 

glass sphere resting on a coplanar bed of similar sized spheres.  A clearly 

defined lee wake region downstream of the stone was not established over 

the course of the wave cycle. Instead, a residual vorticity structure was 

observed on top of the sphere.  

Figure 7.27 shows side and sectional views of the vorticity structure on top 

of the stone. Due to the low pressure region within the core of the vortex, the 

uplift force would have been significant compared to the horizontal force and 

hence, the uplift force would have contributed more to the displacement of 

the stone. 

Non-existence of a lee-wake region on the downstream side of the stone is 

due to the rapid flow reversal for short period waves used in the laboratory 

(i.e., 1.0 - 2.5 sec). The flow reverses before the full development of the lee-

wake region. Velocities remain low for the most part of the wave cycle. 

Therefore, relatively high Reynolds numbers are achieved only for the peak 

velocity, which lasts for a fraction of the wave period. 

Therefore, the increased stability of particles observed in the incipient 

motion tests is considered to be due to the lack of flow development.    
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Figure 7.22:  Measured wave profile, Test FV8, H=9.5cm, T=2 sec. 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.23:  Vorticity isosurface, velocity vectors/contours and stream lines. 

Test FV8, Frame 54, t= 114.60. 
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Figure 7.24:  Vorticity isosurface, velocity vectors/contours and stream lines. 

Test FV8, Frame 55, t= 139.40. 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.25:  Vorticity isosurface, velocity vectors/contours and stream lines. 

Test FV8, Frame 60, t= 263.60. 
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Figure 7.26:  Vorticity isosurface, velocity vectors/contours and stream lines. 

Test FV8, Frame 61, t= 288.40. 
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                                             (a) 

 

 

 

 

 

 

 

 

 

 

                                            (b) 

 

Figure 7.27: Residual vorticity structure above the stone (a) side view (b) 

section through the midpoint. Test FV8, Frame 56, t=164.30. 
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7.4.2  Partially exposed stone (p/d=0.5) 

 

Vortex shedding from a stone with relative protrusion, p/d=0.5 is shown in 

Figures 7.28. Similar to a fully exposed stone in the preceding section, the 

vortices are shed from the top of the stone rather than from the lee side in 

the streamwise direction. Figure 7.29 shows a sectional view of the vorticity 

structure.  Similar to the flow around a fully exposed stone described in the 

preceding section, the residual vorticity at the crest of the stone is due to the 

lack of flow development as the flow reversal occurs within a short time.            
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                                          (b) 

 

 

Figure 7.28: Residual vorticity structure above the stone (a) 3D view (b) side 

view. Test FV7, Frame 24. 
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Figure 7.29:  Residual vorticity structure – a section through the midpoint, 

Test FV7, Frame 24. 
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7.5 Flow around a light weight stone at incipient movement 
 

Consecutive snap shots showing the sequence of movement of a light 

weight 19mm diameter sphere made of PVC (specific gravity = 1.4) are 

shown in Figure 7.30.  Image (a) refers to the stable position just before the 

movement. The stone starts moving at (b). (c) shows the rolling motion and 

the stone comes to rest at (d) in a new position. 

Figures 7.31 to 7.33 show vortex shedding before the movement. It was 

observed in the incipient motion tests that stones often undergo a rocking 

motion just before their movement. Vortex shedding is likely to contribute to 

this rocking movement. 

At the moment of stone displacement (Frame 116), the stone comes within 

the region of influence of a moving vorticity structure (Figure 7.34). The low 

pressure region (eye) of the vortex moved from Position-A in Frame 115 

(Figure 7.35) to Position-B in Frame 116 (Figure 7.36).  The size of the 

vorticity structure is approximately of the size of the PVC test sphere. 

Therefore, this vorticity structure must have induced a sufficient lift force 

contributing to the displacement of the stone.  

The movement occurred at Frame 116 (7.30b), 15.863 seconds after the 

start of the wave run (H=8.8cm, T=1.6). That is, for approximately 10 wave 

cycles (20 peaks in velocity), the stone did not move. It moved only when 

the uplift induced by the moving eddy and horizontal force/shear stress due 

to the peak streamwise velocity (between 0.175-0.2 m/s) coincided. 

Therefore, the probability of stone displacement is considered to be a 
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function of the probability of joint occurrence of an uplift force sufficient to 

give a lift to the stone simultaneously with a significant in-line force.    
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Figure 7.30:  Displacement of a stone. Raw V3V images for consecutive 

frame nos. (a) 115-stable, rocking (b) 116- start of movement (c) 117- rolling 

(d) 118 – stable new position. 
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Figure 7.31:  Vortex shedding before displacement, Test FV9, Frame 113.  

 

 

 

 

 

 

 

 

 

 

 

Figure 7.32:  Vortex shedding before displacement, Test FV9, Frame 114. 
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Figure 7.33:  Vortex shedding just a moment before displacement, Test FV9, 

Frame 115. 

 

 

 

 

 

 

 

 

 

 

Figure 7.34:  Moment of stone displacement, Test FV9, Frame 116. 
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Figure 7.35:  Vorticity structures just a moment before incipient movement, 

Test FV9, Frame 115.  

 

 

 

 

 

 

 

 

 

 

 

Figure 7.36:  Vorticity structures at the time of stone displacement, Test 

FV9, Frame 116. 
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7.6 Summary 
 

A summary of the observations made in the flow visualisation tests is given 

below:  

1 Tests on a coplanar bed of spherical roughness elements showed 

that, various types of vortices, i.e., spherical blobs, hair pins, horse 

shoe, doughnut shaped rings etc., are detached from the top of the 

roughness elements and ejected into the flow above. These 

momentum rich parcels of fluid could contribute to the fluctuations in 

the Reynolds stresses. 

 
2 Vortex shedding is dominant during the acceleration phases of the 

wave cycle.   

 
3 Over the course of the wave cycle, near-bed turbulence does not 

cease even when flow reversal occurs and the mean velocities 

approach zero. The presence of turbulent eddies in significant 

density, was observed within a distance    1.0d from the bed at flow 

reversal. Therefore, the  eddy viscosity in a rough bed should be a 

non-zero quantity within a one stone diameter distance from the bed. 

This observation is consistent with the assumption of Kajiura (1968) 

that for rough beds, the cycle-averaged eddy viscosity is a constant 

within a height 0.5ks from the bed. 

 
4 A residual vorticity structure on top of a 19mm diameter fully and 

partially exposed glass marble was observed instead of a fully 
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developed lee-wake region and ejection of vortex rings in the 

downstream side of the stone as typically observed for a free sphere. 

This suggests that the apparent stability of stones observed under 

waves is because the flow around the stone was not fully developed.    

 

5 An otherwise stable test stone was displaced when it came under the 

influence of a moving eddy structure. Therefore, uplift forces 

generated by large scale moving vortices contribute significantly to 

the displacement of stones. The in-line force created by the peak 

velocity amplitude alone is not sufficient to move a stone. Probability 

of the threshold of movement depends on the probability of the joint 

occurrence of the horizontal and uplift forces simultaneously. 

 

6 The threshold stone movement occurred at the peak orbital velocity, 

Um. This is consistent with the observations made in the incipient 

motion tests.    
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8 Modelling of wave-induced damage to 

a bed protection  

 

8.1 Introduction 

 

In the preceding chapter on the incipient motion of stones, it was observed 

that   the threshold of movement is strongly influenced by a stone’s 

protrusion above the mean bed level, which in turn depends on its position in 

the bed surface. That is, a fully exposed stone lying on top of similar stones 

is more easily displaced than one in a co-planar bed. As the stone protrusion 

varies over the bed, the threshold shear stress should also vary, following a 

probability distribution. Turbulent fluctuations in shear and normal stresses 

applied by the fluid on the bed follow normal probability distributions (see 

Chapter 5 for a discussion). Therefore, threshold movement of a stone 

depends on the exceedence probability of the critical shear stress by the 

applied shear stresses.     

A model that mimics the stochastic processes involved in the entrainment of 

a stone was set up to randomly generate stone size, protrusion (hence, 

threshold shear stress) and turbulence fluctuation in shear stress using the 

Monte Carlo simulation method.     
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8.2   The model 

 

The following assumptions were made in formulating the model: 

 

1. A stone will be displaced when the shear stress applied by the fluid 

just exceeds its critical value, i.e.  t>cr where, t=t/(s-1)gdi, 

t(t)=mcos(t)+'.                               

 
2. However, the rocks move only during the half cycle when there is a 

positive (upward) lift. Negative lift tends to stabilise the bed. Having a 

periodic peak shear stress alone would not be sufficient to remove a 

stone (see discussion in Section 7.5). It should be aided by a positive 

uplift force. Therefore, it was assumed that the instantaneous normal 

stress relative to the peak shear stress should exceed a certain 

threshold value, i.e., nt/mUL, at the moment of the threshold 

movement where nt (t)=nm cos(t+)+n'.  

 

3. A stone will move if the instantaneous normal stress integrated over 

the footprint (planar) area of the stone exceeds its submerged weight, 

W'.  

 

4. Protrusion above the mean bed level of each stone, i (i=1….N), varies 

according to position on the bed. The critical shear stress for each 

stone, was related to the relative protrusion through an equation 

obtained from the incipient motion tests discussed in Chapter 6. 

These tests were conducted using light weight spheres which are 
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more easily removed than natural rocks, as the latter have to 

overcome inter-granular friction. Due to irregular shape and sharp 

edges, a natural rock can be interlocked more tightly than a sphere. 

Hence, a factor to increase the critical shear stress, -cr was applied. 

 

5. The mean applied shear and normal stresses follow a cosine 

variation with peaks at crest and trough half cycles. The turbulent 

fluctuations of the shear and normal stresses follow a normal PDF. 

For each passing wave, j (  j=1,2,3…M) , turbulent events were 

generated at a sampling frequency, f, at equal intervals, r 

(r=1,2,3…R). For example, if the sampling frequency is 50Hz, for a 2 

sec wave period, the number of turbulent events per wave cycle is 

R=2 X 50 =100.  

 

6. The rock size, di, follows a normal PDF. 

 

7. The relative particle protrusion was represented by a probability 

histogram derived from bed elevation measurements in a: (a) 

randomly placed bed; and, (b) a levelled bed constructed in the 

laboratory.     
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The schematic of the model implementation is shown in the flow chart in 

Figure 8.1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                            Figure 8.1: Stochastic model schematic. 

 

8.2.1 Shear stress  
 

As shown in Chapter 5, the wave-induced mean shear stress can be 

represented by a cosine function, =mcos(t). The instantaneous shear 

stress is given as t=+' where, ' is the turbulent fluctuation in the shear 

stress and m=0.5fwUm
2. ' follows a normal probability distribution as 

shown in Figure 5.19 in Chapter 5.  Based on experimental observations in 

the present tests, a mean and standard deviation of 0 and 0.27 respectively 
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for the parameter '/m, were used to generate the turbulence-induced shear 

stress fluctuations in this model.  

8.2.2  Normal stress  

 

It was found that the mean wave induced normal stress can be represented 

by a cosine relationship, n=nmcos( t). The peak normal stress relative to 

peak shear stress, nm/m was found to be equal to 1.26 from the present 

measurements and was used in this model. Instantaneous shear stress is 

defined as nt=n+n' where n' is the turbulent fluctuation. n'/m follows a 

normal probability distribution with a mean and standard deviation 0 and 

0.31 respectively (see Figure 5.20 in Chapter 5). 

8.2.3 Simulated shear and normal stresses  

 

Figure 8.2 shows the time-series of the simulated shear and normal 

stresses. The turbulence fluctuation was randomly generated following a 

normal PDF.  The sampling time of the turbulence was assumed as 50Hz. 

Based on the observed variation of shear and normal stress as measured 

and presented in Chapter 5, it was assumed that the shear stress leads the 

normal stress by 180 degrees. The positive lift force (upward) occurs during 

the trough half cycle. The negative lift force (downward) tends to make a 

stone stable. Therefore, during the positive lift force time window, it was 

assumed that a stone has a relatively high probability to be displaced, with 

the shear stress and the positive lift force acting simultaneously.   
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                                                                (a)     

 

                                                                (b) 

Figure 8.2: Simulated (a) mean (b) instantaneous shear and normal stress 

time series.  
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8.2.4 Stone protrusion and critical shear stress  
 

Previous studies on currents (Fenton & Abbot, 1977; Chin & Chiew, 1993) 

and the present study on waves (see Chapter 6) showed that the critical 

shear stress has a strong dependence on the relative stone protrusion level. 

As the critical shear stress becomes asymptotic at p/d=0.2, a continuous 

exponential curve would have been more appropriate to represent the 

relationship. However, due to the wide scatter in the data due to water depth 

and wave period effects, good correlation could not be obtained. Therefore, 

a linear equation provided a good fit when p/d>0.2, and hence it was used in 

the model (Figure 8.3). 

 

Figure 8.3: Modified Shields critical shear stress against relative protrusion. 
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In the above relationship, the critical shear stress is based on the mean 

value (phase-averaged). In order to add the effect of turbulence, the rms 

value of the turbulent fluctuation was added to the shear stress (Figure 8.4). 

From the measurements presented in Chapter 5 (see Table 5.4), it was 

found that <'2>1/2/m=0.375. 

Therefore, the modified Shields parameter was assumed as: 

               
 
                                                                                      

 
      

  
        

 

 
                                                                                                 

 

Figure 8.4: Modified Shields critical shear stress accounting for the effect of 

turbulence intensity plotted against relative protrusion. 
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8.2.4.1  Randomly placed bed 

Rocks were dropped from a 40cm height (which is the water line when the 

flume is filled) above the flume bed to construct the bed protection. This was 

intended to simulate the dumping of rocks on the seabed in marine 

construction. 

A 3D digital surface model of the bed was obtained using a laser scanner 

(Figure 3.31). Three cross-sections from this digital surface model were 

extracted to obtain the surface elevation profile. The points on the surface 

profile,    were averaged to obtain the mean bed level    . The protrusion 

was obtained by the relation,          . 

A close-up photo of the granular bed, a 3D representation of the bed, cross- 

sectional views of the bed obtained from the digital surface elevation model 

and the probability histogram for the relative protrusion p/dn50 are shown in 

Figures 8.5 to 8.9.   

 

 

 

 

 

 Figure 8.5: Close up view of the granular bed consisting of anthracite rocks. 
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 Figure 8.6: The digital surface elevation model of the randomly placed bed. 

 

 

 

 

 

 

Figure 8.7:  A cross-section of the randomly placed bed obtained from the 

digital surface elevation model. 
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Figure 8.8: Probability histogram of the relative protrusion of stones – 

randomly placed bed. 

 
The data did not fit a normal PDF. As the model was set up using 

spreadsheets only the functions available for random number generation 

within the spreadsheet program could be used. For this reason, the 

probabilities in this specific histogram found above were multiplied by the 

total number of rocks on the bed to obtain the number of protrusions falling 

within a given range, i.e. p/d=0-0.25, 0.25- 0.5 etc. 
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Figure 8.9: Probability distribution of relative protrusion compared with 

normal PDF. 

 
8.2.4.2  Levelled bed 

It is one of the objectives of this research to study the effect of reduced 

stone protrusion on bed damage. For this purpose, the bed was levelled with 

the aid of a straight edged timber plank and a tubular spirit level. The same 

procedure was followed as for the random bed to obtain the probability 

histogram of the relative stone protrusion.  

A 3D perspective, cross-sectional views of the levelled bed obtained from 

the digital surface elevation model and the probability histogram for the 

relative protrusion p/dn50 are shown in Figures 8.10 to 8.12.   
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      Figure 8.10: The digital surface elevation model of the levelled bed. 

 

 

 

 

 

 

 

Figure 8.11:  A cross-section of the levelled bed obtained from digital 

surface elevation model. 
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Figure 8.12: Probability histogram of the relative protrusion of stones – 

levelled bed.  

 

8.2.5 Stone size, shape and density 
 

8.2.5.1  Rock size 
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consisting of 220 particles were weighed and the three dimensions, i.e. 

longest, shortest, and the intermediate were measured using a Vernier 

calliper.  The nominal diameter was calculated using the relationship, 

dn=(M/)1/3. Figure 8.13 shows the grading curve thus obtained.   
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Figure 8.13:  Grading curve of anthracite particles. 

 

Figure 8.14:  The PDF of the rock size in a sample. 
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The grading curve gives the 50% passing nominal diameter, dn50=8.2mm. 

The mean and standard deviation of the rock sample diameter were found to 

be 8.4mm and 1.18mm, respectively. 

The measured uniformity ratio, d85/d15=9.6mm/7.2mm=1.33, falls into the 

narrow grading (i.e. <1.5). A narrow grading is used for most top armour 

layers in coastal engineering applications. 

8.2.5.2  Shape 

The average shape factor of rocks computed based on SF=a/(bc)1/2 was 

found to be equal to 0.58. This is close to the value SF=0.6 for graded 

stones given in CIRIA Rock Manual (1991). The dimensions a, b and c 

correspond to shortest, intermediate and longest lengths of a rock, 

respectively. 

8.2.5.3  Density 

A graduated glass beaker was partially filled with water. Washed and 

weighed samples of rock were placed in the beaker. The displaced volume 

was then calculated based on water level change.  The mass of the rock 

sample was then divided by the displaced volume to find the density of 

rocks, which was found to be 1.35g/cm3. This agreed with the supplier’s 

specification. 
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8.2.6   Excel functions for random number generation 
 

Table 8.1 lists the Excel functions used to generate random values for the 

model parameters. 

Table 8.1: Excel functions used to generate random numbers. 

Parameter PDF Excel function 

Turbulent fluctuation 

in shear and normal 

stress (', 'n) 

Standard 

normal 

NORMSINV(RAND()) 

Stone size (di) Normal  NORMINV(RAND()) 

Stone protrusion 

(p/d)i 

Probability 

histogram 

RAND()*[(p/d)max-(p/d)min]+(p/d)min 

Where (p/d) max and (p/d)min are 

upper and lower limits of a class 

 

8.3 Comparison of model results 
 

8.3.1 Model calibration 

 

The physical model test RS1 was run for 30 mins (900 waves) and 

photographs of the bed were taken at 10 sec intervals from an overhead 

camera fixed above the test section. The number of rocks displaced after 30 

mins were counted using the photographic information.  

The stochastic model was run for the same period, with the turbulent events 

being generated at 50Hz, i.e., at every time-step (0.02sec interval) a 

turbulent fluctuation was generated.   
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          Figure 8.15: The 30cm X 30cm test section at t=0. Test RS1. 

 

 

 

 

 

 

 

       Figure 8.16: Bed damage after t=30 mins (900 waves). Test RS1. 
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It was assumed that the stones will not be displaced without the aid of a 

significant uplift force (see Chapter 7.5 for a discussion). The shear stress 

and the normal stress (positive uplift) should act simultaneously to displace 

a stone. It was assumed that the instantaneous normal stress should exceed 

a certain threshold limit, nt/m>UL to lift a particle from its pocket and this 

limit is an unknown parameter. Therefore, this threshold value was used as 

a calibration coefficient. That is, the UL value is used to best fit the 

stochastic model results to the physical model results, and the value will 

then be used to predict the bed damage in the other tests. 

The other calibration coefficient used was -cr, which was an enhancement 

factor to the critical shear stress. The relationship obtained for the critical 

shear stress as a function of the relative protrusion was derived in Chapter 6 

using light weight spherical elements which are more easily displaced than 

natural rocks. Therefore, the critical shear stress value obtained from 

equation 8.2 was multiplied by -cr to apply to a bed of natural rocks. 

The number of rocks displaced was more sensitive to a change in the 

parameter UL than for a similar percentage change in -cr. 

Table 8.3 shows the test conditions and number of rocks displaced in the 

physical model test RS1 which was used to calibrate the model. Table 8.4 

presents the predicted results of the calibrated stochastic model. 
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Table 8.2:  Physical model test conditions and observed bed damage – Test 

RS1. 

Test 

no. 

H 

(cm) 

T 

(sec) 

h 

(cm) 

Total number of 

rocks in the test 

area 

No. of rocks 

displaced 

 

% 

removed 

RS1 8 2 40 760 52 6.84 

 

Table 8.3:  Stochastic model prediction – Test RS1. 

p/d No. of rocks 

in the range 

 

No. of rocks displaced 

Run 1 Run 2 Run 3 

0 – 0.25 117 0 0 0 

0.25 – 0.5 109 0 1 2 

0.5 – 0.75 73 15 25 15 

0.75 – 1.0 36 17 14 19 

1.0 – 1.25 29 15 8 10 

1.25 – 1.5 8 5 2 5 

Total  52 50 51 

Prediction error, %  0 -3.8 -1.9 

 

The model results were matched to the physical model results (i.e., 52 rocks 

or 6.84% displaced) by changing the calibration coefficients, mainly, UL. 

The coefficient that gives the best fit of the model result to the bed damage 

observed in the physical model was chosen as the calibration factor. 

Table 8.4:  Stochastic model calibration factors deduced. 

-cr UL 

1.1 2.45 
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8.3.2 Randomly placed bed 

The stochastic model calibrated for physical model test RS1 in the preceding 

section (i.e. H=8cm, T=2 sec) was used to predict the number of rocks 

displaced in Test RS7 (H=10cm, T=2 sec, Table 8.5). The model was run 5 

times to obtain an average value (Table 8.6). The prediction error for 

individual runs varied from -4.8% to 40.5%. However, the average of 5 

model runs gave a 21.4% error when compared with the number of rocks 

displaced in the physical model. 

Table 8.5:   Physical model test conditions and observed bed damage – Test 

RS7. Randomly placed bed. 

Test 

no. 

H 

(cm) 

T 

(sec) 

h 

(cm) 

Total number of 

rocks in the test 

area 

No. of 

rocks 

displaced 

% 

removed 

RS7 10 2 40 571* 42 7.36 

    * without accounting for the red strip as it showed unrealistically large damage. 

 

Table 8.6:  Stochastic model prediction – Test RS7. 

p/d No. of rocks in 

the range 

No. of rocks displaced 

Run 

1 

Run 

2 

Run 

3 

Run 

4 

Run 

5 

Average 

0 – 0.25 88 0 0 0 0 0 0 

0.25 – 0.5 82 9 11 10 7 8 9 

0.5 – 0.75 55 23 20 18 17 19 19 

0.75 – 1.0 27 15 8 11 8 17 12 

1.0 – 1.25 22 10 8 9 8 9 9 

1.25 – 1.5 6 2 4 1 0 3 2 

Total  59 51 49 40 56 51 

Prediction error, 

% 
 40.5 21.4 16.7 -4.8 33.3 21.4 
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8.3.3 Levelled bed 
 

The calibrated model was applied to predict the number of rocks displaced 

from the levelled bed in test RS8 (Table 8.7). Five model runs were carried 

out (Table 8.8). The prediction error in the individual runs varied from -40% 

to 0%.  The average of the five model runs gave a prediction error of -24%. 

Table 8.7:   Physical model test conditions and observed bed damage – Test 

RS8 - Levelled bed. 

Test 

no. 

H 

(cm) 

T 

(sec) 

h 

(cm) 

Total number of 

rocks in the test 

area 

No. of 

rocks 

displaced 

 

% 

removed 

RS8 10 2 40 718 25 3.48 

 

Table 8.8:   Stochastic model prediction – Test RS8. 

p/d  No. of rocks displaced 

No. of 

rocks in 

the 

range 

Run 

1 

Run 

2 

Run 

3 

Run 

4 

Run 

5 

Average 

0 – 0.25 194 1 1 0 4 0 1 

0.25 – 0.5 128 10 6 13 12 14 11 

0.5 – 0.75 24 8 8 12 4 3 7 

Total  19 15 25 20 17 19 

Prediction error, %  -24.0 -40.0 0.0 -20.0 -32.0 -24.0 
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8.3.4 Bed damage progression with time and the effect of 

sampling rate on damage prediction 
 

Figure 8.17 shows the damage progression in Test RS7 plotted against the 

number of wave cycles.  The stochastic model predicted bed damage poorly 

up to about 680 wave cycles (after 22.7 mins) where the two curves 

representing physical model results and model prediction cross. 

 

            Figure 8.17: Bed damage progression with time. 

 

Table 8.9:  Effect of turbulence sampling frequency on prediction accuracy. 

Turbulence Sampling frequency (Hz) 100 50 25 

Rocks displaced in the physical model in 30 

mins 

42 

Rocks displaced in the stochastic model** 76 51 31 

Error in the prediction, % 80.9 21.4 -26.2 

** Average of 5 runs  
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The model was calibrated for a sampling frequency of 50Hz and a model run 

time of 30 mins. It appears that when the chosen calibration factors are used 

for predicting bed damage for smaller time periods or for different sampling 

frequencies different to the calibration conditions, the prediction error 

increases.  

Despite this disadvantage, the model predicts the bed damage reasonably 

well for the calibrated period and sampling frequency (i.e. within 25% 

error). Hoan et al. (2008) reported a 50% error in his bed damage prediction 

model. Therefore, the prediction error achieved in this study is improved 

above those previously presented for a bed damage prediction. It appears 

that the statistical accuracy in the prediction is increased after a large 

number of waves are allowed to pass. A possible application of this model 

would be when a large number of physical model runs in the laboratory have 

to be carried out to optimise a bed protection solution. One or few 

preliminary physical model tests can be used for calibration of the stochastic 

model. The calibrated model could then be used for further tests instead of 

running the physical model. 

 

 

 

 

 

                        Figure 8.18: Sketch of bed damage progression. 
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The model does not take into account stone consolidation, bed armouring 

etc., the processes of which will increase the resistance of the bed to 

damage with time.  It was assumed that the bed updating is not important as 

a scour protection is designed for low mobility conditions. However, in the 

physical model tests, it was observed that the rate of rock displacement 

gradually decreases with time and the bed will reach a stable condition. 

Therefore, the prediction model is valid only up to the time when the rate of 

stone entrainment first approaches a zero value at t=Ts.  The stochastic 

model will continue to displace rocks even when the bed is stable (i.e. when 

t>Ts) as the increasing bed resistance is not factored into the model.  This 

limitation should be considered when selecting the time duration for model 

calibration and bed damage prediction. 

8.3.5 Effect of stone placement method on the stability of a 

bed protection 
 

One of the key objectives of this study is to emphasise the importance of 

stone protrusion on the bed damage of a scour protection.  From the 

experiments conducted it was observed that a levelled bed is more stable, 

with almost 50% less damage compared to a bed prepared by dropping 

rocks randomly from a height of 40cm, i.e. water depth (see Table 8.10).  An 

explanation for this phenomenon can be given in terms of the probability of 

occurrence of exposed stones. In Figure 8.8, for a randomly placed bed, the 

probability of occurrence of fully exposed stones (p/dn50=0.75-1.0) is 4.8% 

whereas this is zero for a levelled bed (Figure 8.12). Stones in the 

p/dn50=0.5-0.75 range occupy 9.6% in the randomly placed bed. However, 
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this is only 3.3% in the levelled bed. Therefore, the lower the probability of 

occurrence of exposed stones, the lower is the percentage bed damage.  

In the histogram for the levelled bed (Figure 8.12) the total number of stones 

in the p/dn50 = 0 – 0.25 range is 27%. This is 15% in the randomly placed 

bed (Figure 8.8).  In the levelled bed, 21.1% of the stones exceeded 

p/dn50=0.25. In contrast, 33.6% of the stones exceeded this value in a 

randomly placed bed.  

Stones with the highest exposure have a high probability of displacement. 

For a randomly placed bed the number of stones falling within p/dn50=0.5-1.0 

is 14.4%. This is only 3.3% in a levelled bed.   
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                                                          (a) 

 

 

 

 

 

 

 

 

 

 

                                                          (b) 

Figure 8.19:  Damage to (a) randomly placed bed (b) levelled bed after 30 

mins. 
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Table 8.10: Summary of physical model test conditions and bed damage 

observations:  Storm duration is 30mins (900 waves). 

Test 

no. 

Placement H 

(cm) 

T 

(sec) 

h 

(cm) 

Total number 

of rocks in the 

test area 

No. of 

rocks 

displaced  

 

% 

removed 

RS1 Random 8 2 40 760 52 6.84 

RS7 Random 10 2 40 571* 42 7.36 

RS8 Levelled 10 2 40 718 25 3.48 

*  One strip was not counted due to errors caused by unrealistic bed damage. 

 
Damage to a randomly placed bed and a levelled bed is shown in Figure 

8.19 for comparison. 
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8.4 Scour protection around a monopile 

 

Wind energy farms consisting of hundreds of monopiles are being 

constructed presently in the North Sea.  Engineers have to provide bed 

protection around every monopile founded on erodible seabed or allow for 

scour in the monopole design. Therefore, due to the practical relevance, it 

was decided to make a brief comment on the scour protection design 

problem around a cylindrical monopole.  

The bed protection around a monopile of diameter, D=100mm was 

constructed by (a) randomly dumping rocks from a 40cm height equal to the 

water depth and (b) levelling the bed with the aid of a straight edged timber 

plank and a spirit level. Both were subjected to the same wave conditions 

and model run time of 30mins. 
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Figure 8.20: Bed protection around a monopile before the start of model run. 

 

 

 

 

 

 

 

 

 

 

             

               Figure 8.21: Damage to randomly placed bed protection.  
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                                                            (a) 

 

 

 

 

 

 

 

 

 

 

 

                                                            (b) 

Figure 8.22 (a),(b): Damage to a levelled bed protection confined to the 

region 0.5D distance from the pile (i.e. yellow coloured area). 
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Damage to the randomly placed bed (Figure 8.21) spread to all 4 circular 

rings each of 50mm (0.5D) width.  Significant damage was observed within 

an area 1.0D from the monopile and some damage in the area from 1.0D-

2.0D.  

However, damage to the levelled bed (Figure 8.22) was confined largely to 

the first circular ring with a width equivalent to half the diameter of the 

monopile (yellow coloured area). Within this 0.5D wide area, damage is 

mostly confined to the area where flow accelerates around the pile and 

where turbulence is magnified.  

Therefore, again this observation reminds the engineer of the importance of 

the construction of the bed protection to achieve a level surface, rather than 

random dumping of rocks where the probability of occurrence of large 

protrusions of the size of the rock, is high. As observed in the tests on 

incipient motion of spherical elements in Chapter 6, if a bed protection can 

be constructed to have an optimum relative protrusion of p/d=0.21, the 

damage to a bed protection can be significantly reduced. 
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8.5 Summary 
 

In this chapter the effect of the stone placement method on wave-induced 

damage to a bed protection has been investigated through laboratory tests 

and  stochastic modelling using the Monte Carlo Simulation.  The key 

observations in this chapter were: 

1. The method of stone placement crucially influences the stability of a 

bed protection. Wave-induced damage to a ‘levelled’ bed protection 

was found to be 50% less than in a bed prepared by dropping stones 

randomly from a height equal to water depth.  

 
2. The stochastic model developed, based on exceedance probability of 

the critical shear stress, predicted damage to a bed protection 

reasonably well (i.e. within an error of 25%).  

 
3. The stochastic model has its limitations. The model needs to be 

calibrated against a known bed damage scenario. The calibration 

coefficients are valid only for the turbulence sampling frequency and 

the time period corresponding to that used within the calibration test. 

The model does not include bed updating, consolidation and 

armouring processes that happen over time increasing the resistance 

of the bed. The physical model tests showed that the rate of stone 

entrainment decreases with time. Therefore, the model is valid for a 

period until the rate of stone displacement first approaches a zero 

value. 
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4. Damage to a levelled bed protection placed around a monopile with 

diameter D, was limited largely to a local area close to the pile within 

a ring of 0.5D from the monopile.  Random placement showed 

significant damage within 1.0D area and some damage between 

1.0D to 2.0D area spreading damage to the full width of the scour 

protection apron. 
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9 Concluding Remarks 

 

9.1 Overview 
 

The research project described within this thesis has sought to investigate 

the effect of stone protrusion on the incipient motion of rock armour in a 

scour protection. In scour protection construction around structures in the 

marine environment, rock armour is randomly dumped from above using 

side stone dumping vessels, barge or flexible fallpipes. These methods of 

placement will create more stone protrusions and make the rocks prone to 

displacement under wave loading. However, if the bed can be laid to an 

optimum uniform protrusion, ideally a coplanar bed, exposure can be 

reduced increasing the stability of the bed.    

The motivation for this research comes from the challenges and difficulties 

faced by the author himself in the design of scour protection for offshore 

meteorological masts and wind energy farms in the North Sea while working 

for engineering consultants. Some of the questions that often come to the 

mind of a designer are: (i) to what extent is the Shields parameter valid and 

what threshold value is to be used to determine the stable rock size in a 

wave environment ?. (ii) what effect will the use of a single threshold stress 

have on bed damage ?. (iii) what is the optimum vertical rock placement 

tolerance/ stone protrusion to minimise the bed damage ?. The research 

focused on finding answers to those practical questions while addressing 

some of the general scientific questions.     
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The starting point of this research has been the work of Fenton & Abbot 

(1977) and Chin & Chiew (1993) who investigated the effect of particle 

protrusion on the Shields critical shear stress. They concluded that Shields 

in his original experiments used a ‘levelled’ bed and the threshold stress of 

0.06 refers to a relative protrusion (p/d) of between 0 - 0.2. Therefore, for a 

fully exposed stone (p/d=0.82), they recommended a value of 0.01 for the 

threshold stress in the design of bed protections. However, it was not clear 

whether the same design criteria can be applied for waves.  

Rock armour was idealised as spheres in this study for a number of reasons: 

(i) it is easier to control the protrusion (ii) the need to exclude the shape 

effect (iii) it is easier to calculate forces on a sphere than on an irregular 

shaped rock element (iv) a sphere is the most unstable and hence, gives the 

bottom line for the threshold stress.  

The incipient motion of spherical stones made of different density material 

resting on a rough bed of similar particles, was observed in the wave flume. 

The tests showed that the threshold stress data lie above the Shields curve. 

It is concluded that this behaviour is due to a majority of the tests being 

conducted in the laminar and transitional flow regimes. The flow visualisation 

tests showed that the flow around the stone in the majority of tests does not 

develop into fully developed turbulence. This is because (i) rapid flow 

reversal inhibits the flow development and (ii) the majority of the tests were 

conducted at low stone exposure levels.   

Shields’ critical shear stress is strongly correlated to the stone protrusion 

through an exponential relationship. It is also dependent on the wave period. 
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There is a unique critical shear stress versus relative stone protrusion curve 

for each wave period. For higher Reynolds number flows with longer wave 

periods, the data for the waves coincided with the data for currents. 

Therefore, for the design of stable rock armour size under the action of 

waves at high Reynolds number flow, i.e., in field conditions where the 

design wave periods typically exceed 8 seconds, the curve of Fenton & 

Abbot (1977) and Chin & Chiew (1993) is applicable. 

It was one of the objectives to determine the optimum stone protrusion to 

which rocks should be laid in a bed protection to increase the stability. A 

coplanar bed with zero exposure to flow would have been ideal. However, in 

practice, this is difficult to achieve with irregular shaped rocks. In the present 

tests a coplanar bed of light weight spheres exhibited remarkable stability 

under the largest bed shear stresses that could be generated in the flume. 

The sphere exhibited the same amount of stability when the protrusion level 

increased to 0.17d and 0.21d. The sphere was displaced when its protrusion 

was increased to 0.24d. Therefore, it appears that 0.21d is the threshold 

level, below which there is no stone movement. If rock armour can be laid at 

or less than this protrusion level, storm-induced bed damage can be 

minimised. It was observed that the force on a stone with finite protrusion, 

p/d=0.216, is only marginally higher than that on a stone in a coplanar bed. 

The measured pressure distribution around the stone followed the same 

trend.  

The test program consisted of incipient motion tests using mostly 19mm 

diameter spherical test stones with varying density, as well as pressure 
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measurements on a 50mm diameter sphere set in a rough bed of similar 

spheres, turbulence measurement using Laser Doppler Velocimetry (LDV) 

and flow visualisation using Volumetric Three component Velocimetry (V3V). 

The pressure measurement was crucial in this study as the forces and shear 

stresses were obtained by the integration of the pressure on a sphere. A 

special apparatus, with pressure tappings on the surface of a 50mm 

diameter sphere connected to pressure sensors, was developed. The data, 

captured via a data logger, was calibrated in a still water tank. The 

instrument was validated using linear wave theory and used to obtain 

pressure readings on the test sphere. 

In the past, researchers have used various techniques to measure bed 

shear stress applied by the fluid flow. They include turbulence 

measurement, direct measurement of shear using a shear cell and hot film 

techniques. In the present tests, a different method – direct measurement of 

pressure and hence, the force on an individual roughness element, was 

used to deduce the average force on the bed. The calculated shear stress 

and hence, the wave friction factor agreed well with the published data of 

Kamphuis (1975) and Simons et al. (2000). This agreement was obtained 

when it was assumed that the theoretical bed level (origin, y=0) is at 0.35d 

below the average crest level of the roughness elements. Sleath (1987) first 

assumed this level as the hydraulic origin following a suggestion of Einstein 

(1950). The roughness elements used by the above authors included 2D 

square elements as well as 3D elements such as natural rocks, spheres etc. 

The fact that the wave friction factor data in the present tests agree well with 
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published data suggests that, irrespective of the type of roughness 

elements, the theoretical bed level is located around 0.35d below the 

average crest level of the roughness elements. 

V3V images showed that the ejection of vortices from the roughness 

elements occurs during the acceleration phases. Ejected vortices moving 

upward may enhance the Reynolds stresses. Such production of vortices 

(turbulence) and their ejection was not significant during the decelerating 

phase and the first half of the trough half cycle. Paradoxically, the measured 

turbulence intensity was higher (  43%) in these phases (t=90-180deg) 

than in the acceleration phases. This enhancement of turbulence intensity 

could be due to (i) bursting of turbulent ‘spots’ and (ii) the residual vorticity 

that remains from the accelerating phases. Moreover, near-bed turbulence 

never ceased within a region 1.0d thick over the wave cycle. This 

phenomenon could give credence to  Kajiura’s (1968) assumption of the 

region of constant eddy viscosity within a height 0.5ks above the bed.    

Reynolds stresses 1mm above the crest of the roughness elements 

remained 10-15% of the maximum shear stress amplitude, m. The 

maximum of 33% m was found at 0.16d below the roughness apex level. 

These observations are consistent with the measurements of Sleath (1987).  

How and when a stone would displace is of practical importance to 

determine damage to a scour protection as well as for the science of 

predicting sediment transport. Flow visualisation tests suggest that forces on 

a stone due to shear and normal (uplift) stresses should act simultaneously 

to displace a stone. Visual observations of the incipient motion through video 
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recording and measured shear and normal stress variation over the wave 

cycle showed that rather than at the time of peak shear stress amplitude, 

displacement can occur at any time in the decelerating phases when there 

are favourable conditions - positive uplift and high turbulence intensity. A 

stone which would not move otherwise, despite being subjected to peak 

oscillatory shear stresses, was displaced when it came under the influence 

of a moving vorticity structure as shown earlier in Figures 7.33 and 7.34. 

This suggests that the probability of stone displacement is dependent on the 

joint probability of occurrence of the lateral and uplift forces. A stone moved 

when the bed shear stress ranged from 0.4m to 0.93m. Therefore, rather 

than using a peak shear stress amplitude in the Shields parameter to 

represent the threshold condition, the use of an average, i.e., 0.67m or 

lower value, i.e. 0.5m, would be more appropriate. Van Rijn (1993) and 

Soulsby & Whitehouse (1997) were among the first to offer answers to this 

question on the appropriate shear stress magnitude.   

The protrusion of rock armour in a bed protection varies in space and hence, 

follows a probability distribution. Consequently, the critical shear stress can 

also be represented by a probability distribution. It was also found, by 

measurement, that the turbulent fluctuation in the bed shear stress and 

normal stress (uplift) applied by the flow can be represented by normal 

probability distributions. Therefore, rather than designing a bed protection for 

a single threshold shear stress, designing for an acceptable damage 

criterion would be realistic. To study the influence of the probabilistic 

processes on bed damage, a stochastic model was constructed and run 
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using a Monte Carlo simulation method subject to the following conditions: 

(i) that the stone will move when the applied shear stress just exceeds the 

critical shear stress and; (ii) the stone will move during the phases of 

positive uplift subject to the exceedance of a threshold uplift. It was found 

that the model predicted the observed bed damage within a ±25% error 

margin.  Physical model tests using a horizontal bed of a crushed natural 

rocks (anthracite coal), showed that a 50% reduction in bed damage can be 

achieved by ‘levelling’ the bed compared to a bed protection constructed by 

random dumping of rocks from the still water level.   

The fraction of rocks within the relative protrusion range, p/dn50=0-0.25 in a 

randomly placed bed was 15%. This increased to 27% after ‘levelling’.  The 

occurrence of a large number of exposed stones will increase the probability 

of damage to a bed protection. The number of exposed stones in the range 

p/dn50=0.5-1.0 was reduced to 3.3% after levelling from 14.4% in a randomly 

placed bed. Therefore, the fraction of exposed stones can be reduced and 

the fraction of stones in the ‘immobile’ range can be increased by ‘levelling’ 

of the bed, resulting in a significant reduction to the bed damage as 

observed in the present tests. 

 

9.2 Conclusions 
 

This work has revealed a number of phenomena related to the incipient 

motion of rock armour in bed protection. Particularly, the research focused 

on the effect of stone protrusion on the Shields critical shear stress and its 
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practical implications in the engineering design of scour protection. The main 

findings are listed below.  

1. The Shields critical shear stress has a strong exponential relationship 

with relative stone protrusion. It is also dependent on the wave 

period. There is a unique critical shear stress versus relative 

protrusion curve for each wave period. At high Reynolds number flow 

with large wave periods, these curves coincide with the curve for uni-

directional currents. Therefore, the design threshold shear stress for 

currents is valid for waves at high Reynolds numbers.  

 
2. Stones in a coplanar bed are remarkably stable under wave action. 

The threshold protrusion below which a bed protection is stable was 

found to be 0.21d.   

 

3. The oscillatory shear stress is not sufficient on its own and requires 

the simultaneous occurrence of an uplift force in order to displace a 

stone. These uplift forces can be induced by the quasi-steady 

mechanism due to the flow around it and/or the stone coming under 

the influence of large-scale moving vortices. Uplift induced by vortex 

shedding also adds to the total uplift force.  

 
4. The formation and ejection of vortices from the roughness elements 

occurs mainly during the acceleration phases. However, the peak in 

turbulence intensity is 43% higher during the deceleration phases 

compared to the acceleration phases. This enhancement could be 
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due to (i) bursting of turbulent ‘spots’ and (ii) residual vorticity 

remaining from the acceleration phases.  

 

5. Incipient movement of stones can occur any time during the 

decelerating phases in the trough half cycle where favourable 

conditions exist (i.e., positive uplift, enhanced turbulence intensity). 

During this phase, the measured bed shear stress varied from 0.4m 

to 0.93m, indicating that the use of the peak shear stress amplitude, 

m, in the Shields parameter will result in an under design. Therefore, 

use of an average value is recommended. 

 

6. The measured bed shear stress, and hence, the wave friction factor 

agrees well with the published data of Kamphuis (1975) and Simons 

et al. (2000). This agreement supports the view that the theoretical 

bed level is located 0.35d below the average crest level of the 

roughness elements irrespective of the type of bed material. 

 

7. Turbulent fluctuations in shear and normal stresses follow normal 

probability distributions.  

 

8. The maximum turbulent fluctuation in the bed shear stress is 

approximately equal to 1.0m when averaged and can reach up to a 

maximum 1.5m. Therefore, the occurrence of instantaneous shear 

stresses twice the magnitude of the peak shear stress amplitude is 

possible. This highlights the importance of accounting for turbulence 

in bed damage prediction models.  
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9. The measured peak Reynolds stress is only a fraction of the peak 

bed shear stress amplitude, m.  It is approximately 10-15% at the 

crest level of the roughness elements and 33% about 8mm (0.16d) 

below this level.  

 

10.  Vorticity (turbulence) is observed continuously over the wave cycle 

within a region approximately one diameter above the bed and hence, 

this is a positive (non-zero) quantity. This observation supports the 

constant eddy viscosity hypothesis within a height equal to 0.5ks 

(Kajiura, 1968). 

 

11.  Morison’s inertia force matched well with the horizontal force 

measured in the present tests for KC<10. This indicates the 

dominance of the inertia force within this range. The uplift force was 

not predicted well.  Force transfer coefficients were much larger, 

being closer to the laminar solution. This is due to (i) the wall 

proximity and (ii) laminar effects.  

 

12.  The method of rock armour placement is crucially important for the 

stability of a bed protection. The damage to a model bed protection in 

the wave flume consisting of crushed natural rocks, reduced by 50% 

when the bed was ‘levelled’ compared to a bed prepared by random 

dumping of rocks from the still water level. 

 

13.  Stochastic modelling using a Monte Carlo simulation method is a 

useful tool to predict storm-induced damage to a bed protection.      
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9.3 Further work 

 

The work presented in this thesis covers a number of sub-topics including: 

the incipient motion of coarse sediment, turbulence, bed shear stresses, 

fluid flow around submerged spheres, rock armour bed protection and 

construction. There is scope to continue the work carried out in the present 

study. Some of the possible avenues requiring further investigation include:  

1. Incipient motion tests for varying stone protrusion levels and pressure 

measurement on a spherical roughness element need to be carried 

out at high Reynolds number for large wave periods. This will provide 

a data set applicable directly to field conditions. 

 
2. The present tests on incipient motion of spherical particles should be 

repeated for angular natural rocks. Crushed natural rock armour used 

for bed protections in the field, are, in general, angular in shape.   

 

3. The effect of random waves and combined wave-current flows on 

incipient motion need to be investigated for different stone protrusion 

levels. The assumption of regular-waves in the present research is 

only a simplification to the actual field conditions. 

 

4. The bed shear stress calculation should be carried out using the 

same pressure measurement apparatus developed in the present 

study under random waves and wave-current flows as more 

understanding on the flow behaviour around roughness elements of 

the scale, a/ks =O(1) and high Re number will be valuable for 



376 
 

extending laboratory data into field scale and explaining some of the 

conclusions in previous studies on combined wave-current flow.    

 
5. Scale effects on incipient motion tests require further investigation. 

This knowledge is important in extending laboratory results to field 

scale. 

 
6. The stochastic model needs further refinement. It assumes a 

threshold value of instantaneous normal stress (uplift) above which it 

begins to aid the incipient motion by simultaneously acting with the 

shear stress. This threshold value was calibrated based on 

preliminary tests and a better way to define this parameter is 

required. 

 
7. A numerical model to simulate the bottom turbulence over a rough 

bed should be developed, with the V3V flow visualisation images from 

the present study used for model verification. 

 

8. The effect of other parameters on the critical shear stress, i.e., shape, 

size, orientation, etc., needs to be investigated. This will allow the 

most dominant parameter/s to be included in this incipient motion 

models. 
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Appendix A: An analytical model for force balance of a 

spherical stone 
 

This analysis implies that the exposed particle rolls over the surrounding 

particles at the threshold condition. Figure A.1 shows the definition sketch of 

the inter-particle geometry of an exposed particle with diameter, d1 and 

supporting particles with diameter, d2. Two pivot points Pb and Pc exist at the 

threshold condition. 

By taking moments around pivot point Pb we get  

                                                                                                                     

   
  

  
   

        

         
                                                                                                     

Where MD is disturbing moment and MR is restoring moment. 
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Figure A.1: Definition sketch of inter particle geometry (a) section at the 

middle (b) plan view. 
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Consider triangle AA’B 

 

                                                                                                                                  

    
 

 
                                                                                                                          

                                                                                                                            

Therefore,  

     
  

 
                                                                                                                      

    
 

 
    

 

  
                                                                                                       

     
 

 
    

 

   
                                                                                                   

Consider triangle AOD:  

   
 

 
                                                                                                                        

                                                                                                                          

        
 

 
         

 

 
                                                                          

Consider similar triangles AOD and A’OD:  
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Hence, we get for L1: 

   
 

   
 

  

     
                                                                                                 

The pivot angle,   is given by: 
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Appendix B: Incipient motion data  
 

Test 

  

 

p/d1 

 ( - ) 

 

 

d1 

(mm) 

 

s 

 ( - ) 

 

 

H 

(cm) 

 

T  

 (s) 

 

h  

(m) 

 

Um 

(m/s) 

 

a  

(mm) 

 

a/ks 

( - ) 

 

fw     

( - ) 

 

cr

( - )

Re* 

( - ) 



KC 

( - ) 

W1 0.01 15.9 1.19 12 2.5 0.4 0.27 108 2.3 0.17 0.206 1034 43 

W2 0.01 15.9 1.19 14 1 0.4 0.16 26 0.5 0.55 0.247 1132 10 

W3 0.13 12.7 1.19 11.5 2.5 0.4 0.26 103 2.2 0.17 0.245 849 51 

W4 0.13 12.7 1.19 12 2.5 0.3 0.32 127 2.7 0.14 0.311 957 63 

W5 0.24 19 1.19 13.5 2.5 0.3 0.36 143 3.0 0.13 0.238 1454 47 

W6 0.24 19 1.19 14.5 2 0.4 0.31 99 2.1 0.18 0.243 1675 33 

W7 0.24 19 1.19 13 2.5 0.4 0.29 117 2.5 0.15 0.189 1477 39 

W8 0.28 15.9 1.19 11 2.5 0.4 0.25 99 2.1 0.18 0.186 1009 39 

W9 0.28 15.9 1.19 12 2.5 0.3 0.32 127 2.7 0.14 0.248 1166 50 

W10 0.32 19 1.19 13.5 2.5 0.3 0.36 143 3.0 0.13 0.238 1574 47 

W11 0.32 19 1.19 11.5 2.5 0.4 0.26 103 2.2 0.17 0.164 1305 34 

W12 0.37 15.9 1.19 10.5 2 0.4 0.22 72 1.5 0.23 0.200 1018 28 

W13 0.37 15.9 1.19 8.5 2.5 0.4 0.19 76 1.6 0.22 0.138 846 30 

W14 0.37 15.9 1.19 16 1 0.3 0.27 43 0.9 0.36 0.446 1522 17 

W15 0.37 15.9 1.19 13.5 2 0.3 0.35 110 2.3 0.16 0.330 1309 44 

W16 0.37 31.8 1.19 7 1 0.3 0.12 19 0.4 0.71 0.085 1935 4 

W17 0.40 18.7 1.23 14 2 0.4 0.30 95 2.0 0.18 0.196 1699 32 

W18 0.41 19 1.36 12.5 2 0.4 0.27 85 1.8 0.20 0.108 1616 28 

W19 0.41 19 1.2 10.5 2 0.4 0.22 72 1.5 0.23 0.159 1461 24 

W20 0.41 19 1.19 9.5 2 0.4 0.20 65 1.4 0.25 0.149 1379 21 

W21 0.41 19 1.38 14.5 2 0.4 0.31 99 2.1 0.18 0.121 1762 33 

W22 0.41 19 1.19 10.5 2 0.4 0.22 72 1.5 0.23 0.167 1216 24 

W23 0.44 9.5 1.19 5.5 2 0.3 0.14 45 0.9 0.35 0.195 490 30 

W24 0.44 9.5 1.19 6 1 0.3 0.10 16 0.3 0.81 0.239 543 11 

W25 0.44 9.5 1.19 6.5 1 0.4 0.08 12 0.3 1.04 0.170 457 8 

W26 0.44 9.5 1.19 4 2 0.4 0.09 27 0.6 0.53 0.109 366 18 

W27 0.46 15.9 1.19 6.5 2.5 0.4 0.15 58 1.2 0.28 0.101 806 23 

W28 0.46 15.9 1.19 8 2 0.4 0.17 55 1.1 0.29 0.146 967 22 

W29 0.46 15.9 1.19 13.5 1 0.3 0.23 37 0.8 0.41 0.366 1416 14 

W30 0.46 15.9 1.19 8.5 2.5 0.3 0.23 90 1.9 0.19 0.167 955 36 

W31 0.51 19 1.19 14 1 0.3 0.24 38 0.8 0.40 0.320 1728 13 

W32 0.51 19 1.19 11 2 0.3 0.28 90 1.9 0.19 0.218 1426 30 

W33 0.51 19 1.19 9 2 0.4 0.19 61 1.3 0.27 0.140 1142 20 

W34 0.56 19 1.19 13 1 0.3 0.22 35 0.7 0.42 0.293 1613 12 

W35 0.56 19 1.19 10.5 2 0.3 0.27 86 1.8 0.20 0.206 1352 28 
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Test 

  

 

p/d1 

( - ) 

  

 

d1 

(mm) 

 

s 

 ( - ) 

 

H 

(cm) 

 

T  

 (s) 

 

h  

(m) 

 

Um 

(m/s) 

 

a  

(mm) 

 

a/ks 

( - ) 

 

fw     

( - ) 

 

cr

( - )

Re* 

( - ) 



KC 

( - ) 

W36 0.56 19 1.19 15 1 0.4 0.18 28 0.6 0.52 0.224 1408 9 

W37 0.56 19 1.19 8.5 2 0.4 0.18 58 1.2 0.28 0.131 1076 19 

W38 0.56 19 1.19 7 2.5 0.4 0.16 63 1.3 0.26 0.092 904 21 

W39 0.60 18.7 1.23 13 1 0.4 0.15 24 0.5 0.58 0.159 1531 8 

W40 0.60 18.7 1.23 7.5 2 0.4 0.16 51 1.1 0.31 0.095 1183 17 

W41 0.60 19 1.36 9.5 2 0.4 0.20 65 1.4 0.25 0.078 1379 21 

W42 0.60 19 1.2 8 2 0.4 0.17 55 1.1 0.29 0.116 1248 18 

W43 0.61 25.3 1.19 10.5 2 0.4 0.22 72 1.5 0.23 0.125 1945 18 

W44 0.61 25.3 1.19 10.5 2.5 0.4 0.24 94 2.0 0.19 0.111 1828 23 

W45 0.61 19 1.38 10.5 2 0.4 0.22 72 1.5 0.23 0.083 1461 24 

W46 0.61 25.4 1.2 11 2 0.4 0.24 75 1.6 0.22 0.125 2006 19 

W47 0.61 25.4 1.2 10.5 2.5 0.4 0.24 94 2.0 0.19 0.105 1835 23 

W48 0.61 19 1.4 11.5 2 0.4 0.25 78 1.7 0.22 0.088 1540 26 

W49 0.61 19 1.19 13.5 1 0.4 0.16 25 0.5 0.56 0.198 1590 8 

W50 0.61 19 1.19 7.5 2 0.4 0.16 51 1.1 0.31 0.113 1202 17 

W51 0.61 19 1.19 11.5 1 0.3 0.20 31 0.7 0.47 0.254 1542 10 

W52 0.61 25.3 1.19 14.5 1 0.3 0.25 39 0.8 0.39 0.250 2288 10 

W53 0.61 19 1.19 9.5 2 0.3 0.24 78 1.6 0.22 0.184 1310 26 

W54 0.61 25.3 1.19 11.5 2 0.3 0.30 94 2.0 0.19 0.172 1898 23 

W55 0.61 19 1.19 15 1 0.4 0.18 28 0.6 0.52 0.224 1565 9 

W56 0.61 19 1.19 8 2 0.4 0.17 55 1.1 0.29 0.122 1155 18 

W57 0.61 25.3 1.19 10.5 2 0.4 0.22 72 1.5 0.23 0.125 1849 18 

W58 0.61 25 1.23 10.5 2 0.4 0.22 72 1.5 0.23 0.105 1922 18 

W59 0.63 25.3 1.19 13.5 1 0.3 0.23 37 0.8 0.41 0.230 2377 9 

W60 0.63 25.3 1.19 12 2 0.3 0.31 98 2.1 0.18 0.181 2107 24 

W61 0.63 25.3 1.19 16.5 1 0.4 0.19 31 0.6 0.48 0.188 2145 8 

W62 0.63 25.3 1.19 9.5 2 0.4 0.20 65 1.4 0.25 0.112 1655 16 

W63 0.64 12.7 1.19 5.5 1 0.3 0.09 15 0.3 0.87 0.162 690 7 

W64 0.64 12.7 1.19 5.5 2 0.3 0.14 45 0.9 0.35 0.146 655 22 

W65 0.64 12.7 1.19 7 1 0.4 0.08 13 0.3 0.98 0.138 638 6 

W66 0.64 12.7 1.19 6 2 0.4 0.13 41 0.9 0.37 0.131 620 20 

W67 0.67 25.4 1.2 14.5 1 0.4 0.17 27 0.6 0.53 0.153 2216 7 

W68 0.67 25.4 1.2 8.5 2 0.4 0.18 58 1.2 0.28 0.093 1728 14 

W69 0.67 25.3 1.19 15 1 0.4 0.18 28 0.6 0.52 0.168 1875 7 

W70 0.67 25.3 1.19 9 2 0.4 0.19 61 1.3 0.27 0.105 1481 15 

  

 

 

 

 



396 
 

Test 

  

 

p/d1 

 ( - ) 

 

d1 

(mm) 

 

s 

 ( - ) 

 

H 

(cm) 

 

T  

 (s) 

 

h  

(m) 

 

Um 

(m/s) 

 

a  

(mm) 

 

a/ks 

( - ) 

 

fw     

( - ) 

 

cr

( - )

Re* 

( - ) 



KC 

( - ) 

W71 0.67 25.4 1.38 11.5 2 0.4 0.25 78 1.7 0.22 0.069 2059 19 

W72 0.67 25.3 1.19 13 1 0.4 0.15 24 0.5 0.58 0.142 2072 6 

W73 0.67 25.3 1.19 8 2 0.4 0.17 55 1.1 0.29 0.091 1662 14 

W74 0.68 25 1.23 12.5 1 0.4 0.15 23 0.5 0.60 0.114 2001 6 

W75 0.68 25 1.23 7.5 2 0.4 0.16 51 1.1 0.31 0.071 1582 13 

W76 0.72 25.3 1.19 10.5 1 0.3 0.18 28 0.6 0.51 0.172 1947 7 

W77 0.72 25.3 1.19 10 2 0.3 0.26 82 1.7 0.21 0.146 1797 20 

W78 0.72 25.3 1.19 12.5 1 0.4 0.15 23 0.5 0.60 0.136 1731 6 

W79 0.72 25.3 1.19 8 2 0.4 0.17 55 1.1 0.29 0.091 1420 14 

W80 0.74 25.3 1.19 9 1 0.3 0.15 24 0.5 0.58 0.144 1735 6 

W81 0.74 31.8 1.19 11 1 0.3 0.19 30 0.6 0.49 0.144 2450 6 

W82 0.74 25.3 1.19 9.5 2 0.3 0.24 78 1.6 0.22 0.138 1699 19 

W83 0.74 31.8 1.19 11 2 0.3 0.28 90 1.9 0.19 0.130 2325 18 

W84 0.74 25.3 1.19 11 1 0.4 0.13 20 0.4 0.67 0.117 1566 5 

W85 0.74 25.3 1.19 7.5 2 0.4 0.16 51 1.1 0.31 0.085 1333 13 

W86 0.74 31.8 1.19 8.5 2 0.4 0.18 58 1.2 0.28 0.078 2056 11 

W87 0.75 15.9 1.19 5.5 1 0.3 0.09 15 0.3 0.87 0.129 864 6 

W88 0.75 15.9 1.19 5.5 2 0.3 0.14 45 0.9 0.35 0.116 820 18 

W89 0.75 15.9 1.19 6.5 1 0.4 0.08 12 0.3 1.04 0.101 765 5 

W90 0.75 15.9 1.19 4.5 2 0.4 0.10 31 0.6 0.48 0.075 657 12 

W91 0.76 16 2.65 14.5 2.5 0.3 0.39 154 3.2 0.12 0.035 1345 60 

W92 0.76 16 2.65 13 2.5 0.4 0.29 117 2.5 0.15 0.026 1118 46 

W93 0.76 31.8 1.19 10.5 1 0.3 0.18 28 0.6 0.51 0.137 2582 6 

W94 0.76 31.8 1.19 11 2 0.3 0.28 90 1.9 0.19 0.130 2518 18 

W95 0.76 31.8 1.19 11.5 1 0.4 0.13 21 0.4 0.65 0.098 2187 4 

W96 0.76 31.8 1.19 8.5 2 0.4 0.18 58 1.2 0.28 0.078 1951 11 

W97 0.76 25.4 1.2 10.5 1 0.4 0.12 20 0.4 0.70 0.105 1838 5 

W98 0.76 25.4 1.2 7.5 2 0.4 0.16 51 1.1 0.31 0.080 1607 13 

W99 0.76 25.3 1.19 10.5 1 0.4 0.12 20 0.4 0.70 0.111 1831 5 

W100 0.76 25.3 1.19 7 2 0.4 0.15 48 1.0 0.33 0.078 1538 12 

W101 0.76 25.4 1.38 11 2 0.4 0.24 75 1.6 0.22 0.066 2006 19 

W102 0.77 25.4 1.52 13 2 0.4 0.28 89 1.9 0.20 0.058 2211 22 

W103 0.77 25 1.23 9 1 0.4 0.11 17 0.4 0.79 0.078 1654 4 

W104 0.77 25 1.23 6.5 2 0.4 0.14 44 0.9 0.35 0.060 1456 11 

W105 0.77 25.3 1.19 8 1 0.3 0.14 22 0.5 0.64 0.125 1663 5 
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Test 

  

 

p/d1 

 ( - ) 

 

d1 

(mm) 

 

s 

 ( - ) 

 

H 

(cm) 

 

T  

 (s) 

 

h  

(m) 

 

Um 

(m/s) 

 

a  

(mm) 

 

a/ks 

( - ) 

 

fw     

( - ) 

 

cr

( - )

Re* 

( - ) 



KC 

( - ) 

W106 0.77 25.3 1.19 9 2 0.3 0.23 74 1.6 0.23 0.130 1690 18 

W107 0.77 25.3 1.19 10.5 1 0.4 0.12 20 0.4 0.70 0.111 1695 5 

W108 0.77 25.3 1.19 7 2 0.4 0.15 48 1.0 0.33 0.078 1424 12 

W109 0.78 31.8 1.19 10.5 1 0.4 0.12 20 0.4 0.70 0.088 1916 4 

W110 0.78 31.8 1.19 7.5 2 0.4 0.16 51 1.1 0.31 0.068 1675 10 

W111 0.81 31.8 1.19 7.5 1 0.3 0.13 20 0.4 0.67 0.093 2014 4 

W112 0.81 31.8 1.19 9 2 0.3 0.23 74 1.6 0.23 0.103 2124 15 

W113 0.81 19 2.65 14 2.5 0.3 0.37 148 3.1 0.13 0.029 1565 49 

W114 0.81 31.8 1.19 8.5 1 0.4 0.10 16 0.3 0.83 0.069 1740 3 

W115 0.81 31.8 1.19 7 2 0.4 0.15 48 1.0 0.33 0.062 1652 9 

W116 0.81 19 2.65 12.5 2.5 0.4 0.28 112 2.4 0.16 0.021 1298 37 

W117 0.81 19 1.7 10.5 2 0.4 0.22 72 1.5 0.23 0.045 1461 24 

W118 0.81 19 1.36 8.5 1 0.4 0.10 16 0.3 0.83 0.061 1216 5 

W119 0.81 19 1.36 5.5 2 0.4 0.12 37 0.8 0.40 0.042 1004 12 

W120 0.81 19 1.2 6.5 1 0.4 0.08 12 0.3 1.04 0.081 1041 4 

W121 0.81 19 1.2 4.5 2 0.4 0.10 31 0.6 0.48 0.059 894 10 

W122 0.81 19 1.38 6.5 2 0.4 0.14 44 0.9 0.35 0.048 1106 15 

W123 0.81 19 1.38 10 1 0.4 0.12 19 0.4 0.73 0.070 1336 6 

W124 0.81 19 1.19 6 1 0.4 0.07 11 0.2 1.12 0.077 994 4 

W125 0.81 19 1.19 4.5 2 0.4 0.10 31 0.6 0.48 0.062 894 10 

W126 0.82 19 1.4 12 1 0.4 0.14 22 0.5 0.62 0.082 1485 7 

W127 0.82 19 1.4 6.5 2 0.4 0.14 44 0.9 0.35 0.045 1106 15 

W128 0.82 19 1.19 5 1 0.3 0.09 14 0.3 0.95 0.097 977 4 

W129 0.82 19 1.19 4.5 1.3 0.3 0.10 20 0.4 0.68 0.091 946 7 

W130 0.82 19 1.19 5.5 2 0.3 0.14 45 0.9 0.35 0.097 980 15 

W131 0.82 19 1.19 5.6 1 0.4 0.07 10 0.2 1.18 0.071 838 3 

W132 0.82 19 1.19 4.5 2 0.4 0.10 31 0.6 0.48 0.062 785 10 

W133 0.83 31.8 1.19 8 1 0.4 0.09 15 0.3 0.88 0.064 1636 3 

W134 0.83 31.8 1.19 7 2 0.4 0.15 48 1.0 0.33 0.062 1609 9 

W135 0.84 31.8 1.19 6.5 1 0.3 0.11 18 0.4 0.76 0.078 1853 3 

W136 0.84 31.8 1.19 8 2 0.3 0.21 65 1.4 0.25 0.090 1984 13 

W137 0.84 31.8 1.19 7.5 1 0.4 0.09 14 0.3 0.92 0.060 1753 3 

W138 0.84 31.8 1.19 6.5 2 0.4 0.14 44 0.9 0.35 0.057 1714 9 

W139 0.87 18.7 1.23 6 1 0.4 0.07 11 0.2 1.12 0.065 978 4 

W140 0.87 18.7 1.23 4.5 2 0.4 0.10 31 0.6 0.48 0.052 880 10 
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Test 

  

 

p/d1 

 ( - ) 

 

d1 

(mm) 

 

s 

 ( - ) 

 

H 

(cm) 

 

T  

 (s) 

 

h  

(m) 

 

Um 

(m/s) 

 

a  

(mm) 

 

a/ks 

( - ) 

 

fw     

( - ) 

 

cr

( - )

Re* 

( - ) 



KC 

( - ) 

W141 0.88 25.3 1.19 4.5 1 0.3 0.08 12 0.3 1.03 0.064 1224 3 

W142 0.88 25.3 1.19 5.5 2 0.3 0.14 45 0.9 0.35 0.073 1305 11 

W143 0.88 25.3 1.19 5 1 0.4 0.06 9 0.2 1.30 0.047 1045 2 

W144 0.88 25.3 1.19 4.5 2 0.4 0.10 31 0.6 0.48 0.047 1045 8 

W145 0.88 25.4 1.2 5.5 1 0.4 0.06 10 0.2 1.20 0.050 1263 3 

W146 0.88 25.4 1.52 8 2 0.4 0.17 55 1.1 0.29 0.033 1668 13 

W147 0.88 25.3 1.19 5 1 0.4 0.06 9 0.2 1.30 0.047 1190 2 

W148 0.88 25.3 1.19 4.5 2 0.4 0.10 31 0.6 0.48 0.047 1190 8 

W149 0.88 25.4 1.38 6.5 2 0.4 0.14 44 0.9 0.35 0.036 1479 11 

W150 0.88 25.4 1.38 10 1 0.4 0.12 19 0.4 0.73 0.052 1787 5 

W151 0.89 25 1.23 5 1 0.4 0.06 9 0.2 1.30 0.039 1176 2 

W152 0.89 25 1.23 4 2 0.4 0.09 27 0.6 0.53 0.034 1098 7 

W153 0.92 31.8 1.19 3.5 1 0.3 0.06 9 0.2 1.28 0.038 1329 2 

W154 0.92 31.8 1.19 4.5 2 0.3 0.12 37 0.8 0.41 0.046 1460 7 

W155 0.92 31.8 1.19 4.5 1 0.4 0.05 8 0.2 1.42 0.033 1236 2 

W156 0.92 31.8 1.19 4 2 0.4 0.09 27 0.6 0.53 0.033 1227 5 
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Appendix C:  Flow visualisation  
 

C.1   Vortex ejection from a rough bed of 19mm spherical elements 

 

 

Figure C.1: Measured wave profile. Test FV5, H=10.1cm, T=2.5, h=40cm. 

 

 

 

 

 

 

 

 

 

 

Figure C.2:  Vorticity isosurface and velocity. Test FV5, Frame 58, t= -

145.40. 
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Figure C.3:  Vorticity isosurface and velocity. Test FV5, Frame 59, t= -

125.50. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure C.4:  Vorticity isosurface and velocity. Test FV5, Frame 60. t= -

105.60. 
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Figure C.5:  Vorticity isosurface and velocity. Test FV5, Frame 61, t= -

85.80. 

 

 

 

 

 

 

 

 

 

 

Figure C.6:  Vorticity isosurface and velocity. Test FV5, Frame 62, t= -

65.90. 
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Figure C.7:  Vorticity isosurface and velocity. Test FV5, Frame 63, t= -

46.10 

 

 

 

 

 

 

 

 

 

 

 

Figure C.8:  Vorticity isosurface and velocity. Test FV5, Frame 64. t= -

26.20. 
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Figure C.9:  Vorticity isosurface and velocity. Test FV5, Frame 65. t= -6.30. 

 

 

 

 

 

 

 

 

 

 

 

Figure C.10:  Vorticity isosurface and velocity. Test FV5, Frame 66, t= 

13.50. 
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Figure C.11:  Vorticity isosurface and velocity. Test FV5, Frame 67, t= 

33.40. 

 

 

 

 

 

 

 

 

 

 

 

Figure C.12:  Vorticity isosurface and velocity. Test FV5, Frame 68, t= 

53.30. 
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Figure C.13:  Vorticity isosurface and velocity. Test FV5, Frame 69. t= 

73.10. 

 

 

 

 

 

 

 

 

 

 

 

Figure C.14:  Vorticity isosurface and velocity.Test FV5, Frame 70, t= 

93.00. 
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Figure C.15:  Vorticity isosurface and velocity. Test FV5, Frame 71, t= 

112.80. 

 

 

 

 

 

 

 

 

 

 

 

Figure C.16:  Vorticity isosurface and velocity. Test FV5, Frame 72. t= 

132.70. 
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Figure C.17:  Vorticity isosurface and velocity. Test FV5, Frame 73, t= 

152.60. 

 

 

 

 

 

 

 

 

 

 

 

Figure C.18:  Vorticity isosurface and velocity. Test FV5, Frame 74, 

t=172.4 0. 
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Figure C.19:  Vorticity isosurface and velocity. Test FV5, Frame 75, t= 

192.30. 
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C.2   Vortex ejection from a rough bed of 50mm spherical elements 

 

 

Figure C.20:  Measured wave profile, Test FV1, H=11.63cm, T=2 sec, 

h=40cm. 
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Figure C.21:  Vorticity isosurface and velocity. Test FV1, Frame 13. t=-

101.80. 
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Figure C.22:  Vorticity isosurface and velocity. Test FV1, Frame 14. t= -

76.90. 
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Figure C.23:  Vorticity isosurface and velocity.Test FV1, Frame 15, t= -

52.10. 
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Figure C.24:  Vorticity isosurface and velocity. Test FV1, Frame 16. t= -

27.30. 
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Figure C.25:  Vorticity isosurface and velocity. Test FV1, Frame 17, t= -

2.40. 
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Figure C.26:  Vorticity isosurface and velocity. Test FV1, Frame 18. t= 

22.40. 
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Figure C.27:  Vorticity isosurface and velocity. Test FV1, Frame 19, t= 

47.20. 
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Figure C.28:  Vorticity isosurface and velocity. Test FV1, Frame 20. t= 

72.00. 
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Figure C.29:  Vorticity isosurface and velocity. Test FV1, Frame 21, t= 

96.90. 
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C.3   Vortex ejection from a 50mm sphere 

 

Figure C.30:  Measured wave profile, Test FV2, H=11.6cm, T=2 sec. 

 

 

 

 

 

 

 

 

 

 

 

Figure C.31: Vorticity isosurface and velocity around 50mm sphere. Test 

FV2, Frame 62, t=-47.20. 
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Figure C.32:  Vorticity isosurface and velocity around 50mm sphere. Test 

FV2, Frame 63, t= -22.40. 

 

 

 

 

 

 

 

 

 

 

Figure C.33:  Vorticity isosurface and velocity around 50mm sphere. Test 

FV2, Frame 64, t= 2.40. 
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Figure C.34:  Vorticity isosurface and velocity with stream lines. Test FV2, 

Frame 59. t= -121.70. 

 

 

 

 

 

 

 

 

 

 

Figure C.35:  Vorticity isosurface and velocity with stream lines. Test FV2, 

Frame 60, t= -96.90. 
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Figure C.36:  Vorticity isosurface and velocity with stream lines. Test FV2, 

Frame 61, t= -72.00. 

 

 

 

 

 

 

 

 

 

 

Figure C.37:  Vorticity isosurface and velocity stream lines. Test FV2, Frame 

62, t= -47.20. 
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Figure C.38:  Vorticity isosurface and velocity with stream lines. Test FV2, 

Frame 63, t= -22.40. 

 

 

 

 

 

 

 

 

 

 

 

Figure C.39:  Vorticity isosurface and velocity with stream lines. Test FV2, 

Frame 64, t= 2.40. 
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Figure C.40:  Vorticity isosurface and velocity with stream lines. Test FV2, 

Frame 65. t= 27.30. 

 

 

 

 

 

 

 

 

 

 

 

Figure C.41:  Vorticity isosurface and velocity with stream lines. Test FV2, 

Frame 66, t= 52.10. 
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Figure C.42:  Vorticity isosurface and velocity with stream lines. Test FV2, 

Frame 67. t= 76.90. 

 

 

 

 

 

 

 

 

 

 

 

Figure C.43:  Vorticity isosurface and velocity with stream lines. Test FV2, 

Frame 68, t= 101.80. 
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Figure C.44:  Vorticity isosurface and velocity (side view). Test FV2, Frame 

59, t= -121.70. 

 

 

 

 

 

 

 

 

 

 

 

Figure C.45:  Vorticity isosurface and velocity (side view) at flow reversal. 

Test FV2, Frame 60, t= -96.90. 
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Figure C.46:  Vorticity isosurface and velocity (side view). Lee vortex starts 

developing at the start of the crest half cycle. Test FV2, Frame 61, t= -

72.00. 

 

 

 

 

 

 

 

 

 

 

Figure C.47:  Vorticity isosurface and velocity (side view). Test FV2, Frame 

62, t= -47.20. 
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Figure C.48:  Vorticity isosurface and velocity (side view) just before the 

vortex detachment. Test FV2, Frame 63, t= -22.40. 

 

 

 

 

 

 

 

 

 

 

 

Figure C.49:  Vorticity isosurface and velocity (side view) just after vortex 

detachment at the wave crest. Test FV2, Frame 64, t= 2.40. 
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Figure C.50:  Velocity contours and vectors, Test FV2, Frame 62, t= -47.20.  
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(a) plan view (b) section at    1.0d from the centre of the sphere. 
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Figure C.51:  Velocity contours and vectors, Test FV2, Frame 62, t= -47.20 

(a) plan view (b) section at    0.5d from the centre of the sphere. 
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Figure C.52:  Velocity contours and vectors, Test FV2, Frame 62, t= -47.20 

(a) plan view (b) section at the centre of the sphere. 
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Figure C.53:  Velocity contours and vectors, Test FV2, Frame 62, t= -47.20 

(a) plan view (b) section at    0.5d from the centre of the sphere. 
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C.4   Flow around a 19mm fully exposed sphere (p/d=0.82)  

 

     Figure C.54:  Measured wave profile, Test FV8, H=9.5cm, T=2 sec. 

 

 

 

 

 

 

 

 

 

 

Figure C.55:  Vorticity isosurface, velocity vectors/contours and stream lines. 

Test FV8, Frame 51, t= 40.10. 
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Figure C.56:  Vorticity isosurface, velocity vectors/contours and stream lines. 

Test FV8, Frame 52, t= 64.90. 

 

 

 

 

 

 

 

 

 

 

Figure C.57:  Vorticity isosurface, velocity vectors/contours and stream lines. 

Test FV8, Frame 53, t= 89.80. 
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Figure C.58:  Vorticity isosurface, velocity vectors/contours and stream lines. 

Test FV8, Frame 54, t= 114.60. 

 

 

 

 

 

 

 

 

 

 

Figure C.59:  Vorticity isosurface, velocity vectors/contours and stream lines. 

Test FV8, Frame 55, t= 139.40. 

 

 

 

 

 

Key 

Vorticity (s
-1

) 

Velocity (ms
-1

) 

Key 

Vorticity (s
-1

) 

Velocity (ms
-1

) 



436 
 

 

 

 

 

 

 

 

 

 

 

Figure C.60:  Vorticity isosurface, velocity vectors/contours and stream lines. 

Test FV8, Frame 56, t= 164.30. 

 

 

 

 

 

 

 

 

 

 

Figure C.61:  Vorticity isosurface, velocity vectors/contours and stream lines. 

Test FV8, Frame 57, t= 189.10. 
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Figure C.62:  Vorticity isosurface, velocity vectors/contours and stream lines. 

Test FV8, Frame 58, t= 213.90. 

 

 

 

 

 

 

 

 

 

 

Figure C.63:  Vorticity isosurface, velocity vectors/contours and stream lines. 

Test FV8, Frame 59, t= 238.70. 
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Figure C.64:  Vorticity isosurface, velocity vectors/contours and stream lines. 

Test FV8, Frame 60, t= 263.60. 

 

 

 

 

 

 

 

 

 

 

Figure C.65:  Vorticity isosurface, velocity vectors/contours and stream lines. 

Test FV8, Frame 61, t= 288.40. 
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Figure C.66:  Vorticity isosurface, velocity vectors/contours and stream lines. 

Test FV8, Frame 62, t= 313.20. 
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