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Abstract

We consider optimal pricing by a profit-maximizing platform running a dynamic search
and matching market. Buyers and sellers enter in cohorts over time, meet and bargain
under private information. The optimal centralized mechanism, which involves posting a
bid-ask spread, can be decentralized through participation fees charged by the intermediary
to both sides. The sum of buyers’ and sellers’ fees equals the sum of inverse hazard rates
of the marginal types and their ratio equals the ratio of buyers’ and sellers’ bargaining
weights. We also show that a monopolistic intermediary in a search market may be welfare
enhancing.
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1 Introduction

Search market intermediaries that charge participation fees to traders and let them search

for and bargain with trading partners play an important role in many markets. Examples

include online trade and auction web sites, job search platforms, online freelancer and tutoring

platforms, and markets created by credit card issuers. Such search market intermediaries (or

platforms) have been at the center of attention for quite some time and have received increased

attention recently, in areas as diverse as labor markets, competition policy, and international
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trade and development. This attention seems justified by the money at stake: as an example,

intermediation services account for over a quarter of GDP in the US (Spulber, 1999, p. 21).

Search platforms differ in who pays the fee. Job search platforms that target a general

audience typically let employers (that is, buyers) pay a job posting fee and make participation

for job seekers free.1 In these job markets, the employers typically have the stronger bargaining

position, especially for low-skill labor. Contrary to this, in high-skill, specialized labor markets

employees have a stronger bargaining position. An example of a platform catering to such high-

skill “$100k” job markets, TheLadders.com, charges job seekers $180 per year additionally to

the job posting fees paid by employers.2

In a different kind of job market – the market for tutors – the tutor typically offers the

student the price for his or her services. An example of a platform for tutors, Tutorz.com,

charges a subscription fee to tutors and makes participation free for students.3 This pattern –

that the seller sets the price and pays fees to be able to participate on the platform, whereas

participation for buyers is free – is common in many other markets. Examples include malls

and convention centers.

What the above-mentioned examples of platforms have in common is their decentralized

nature. They do not dictate prices or store the goods. In other words, they do not make

markets in the variety of goods or services they offer. Instead, they offer services to buyers and

sellers, such as facilitating search or matching. Rather than through centrally setting prices,

they raise their revenues by charging fees to buyers and sellers.

There are several reasons why centralization may be too costly or not feasible. One reason

is that transactions may not be observable (or costly to observe). As an example, a job search

platform may not know whether a candidate eventually took the job or not. A buyer and

seller (or employer and employee) who found each other through the platform may collude

to withdraw from the platform without officially trading and later trade bilaterally, thereby

avoiding payments to the platform. Another argument for decentralization is that the platform

1For example, Monster.com charges employers $395 per job posting and Careerbuilder.com charges $419
per job posting. Participation is free for job seekers on both platforms (see the websites Monster.com and
Careerbuilder.com, accessed on April 10, 2013).

2In the past, TheLadders.com made participation free for employers (see Caplan (2008)). Currently, both
job seekers and employers pay fees (see TheLadders.com, website accessed on April 10, 2013).

3Tutorz.com is currently transitioning from a per month subscription fee to a per match fee (see
www.tutorz.com/student/pricing, accessed on April 10, 2013). As we show later, per match fees and subscription
fees are equivalent in our setup.
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may lack information needed to implement the optimal bid and ask prices.4 In particular, a

misjudgement of demand or supply may result in excess inventories, with associated logistic

costs that may be prohibitively high. A decentralized market is less prone to such problems.

Additionally, decentralization may also alleviate the need for third-degree price discrimination.5

The structure of platforms’ fees is at the core of their business strategy. The above examples

suggest the following pattern: if the price is set predominantly by one side (for example,

employers, tutors, or sellers), then this side pays the participation fee to the platform. More

generally, the side with a stronger bargaining power pays a higher fee.

Motivated by these examples, we develop a theory of optimal pricing by profit-maximizing

platforms in a search market. Our model is stylized to capture some of the main aspects of

such platforms. First, traders have private information about their valuation for the good before

they decide to join the platform. Second, we consider dynamics in such markets. Hence buyers

and sellers have an option value of future trade and distributions in the market are endogenous,

since inefficient traders may need a longer time to trade and may be overrepresented in the

market. Third, prices are formed through bargaining among buyers and sellers.

In our model, buyers and sellers arrive to the intermediary’s platform over time, match and

bargain. Sellers have one unit of an indivisible homogeneous good, buyers have unit demand.

The matching technology is constant returns to scale. The bargaining protocol is assumed to

be a random proposer one: a buyer makes a take-it-or-leave-it offer with some probability, and

the seller makes such an offer with a complementary probability. The proposal probability is a

stylized way of modelling the bargaining power in a private information setup. Two important

special cases are that the seller posts a price (that is, the seller gets to propose with probability

1) and that the buyer posts a price. This constitutes what we call a dynamic matching and

bargaining game.

We focus on the following questions. What is the profit-maximizing allocation rule? Can

this allocation rule be implemented by simple participation fees? What is the optimal fee

structure: should the buyer, the seller, or both pay the fee? How is it related to the bargaining

power of the two sides of the market?

4Hayek (1945) was first to argue for the benefits of decentralization when information is dispersed among
many agents.

5Assume, for example, that a job search platform cannot price discriminate between jobs for engineers and
jobs for janitors. Centrally prescribing the same wage for an engineer and a janitor would be inefficient, whereas
charging the same fee for posting an engineering and a janitorial position may be a reasonable approximation
of the optimal pricing.
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As a benchmark, we first analyze a setup in which the intermediary can centralize the

exchange. We show that the optimal centralized mechanism involves buying the good from the

sellers at a bid price, selling it to the buyers at an ask price, and collecting the spread between

the two prices as the revenue. The optimal spread balances the market in each period in the

sense that the mass of entering buyers equals the mass of entering sellers. Further, the spread

is equal to the sum of the buyer’s and the seller’s inverse hazard rates at the margin (which

can be seen as the semi-elasticities of demand and supply at the margin). In this optimal

mechanism, the most efficient traders, that is, buyers with valuations above the ask price, and

sellers with costs below the bid price, enter and trade immediately upon matching. All other

traders do not enter. We call this the full-trade property.

The maximal revenue from the optimal mechanisms provides an upper bound on the inter-

mediary’s profit in a bargaining market. Our main result is that this upper bound is attainable

by setting appropriate participation fees and letting buyers and sellers meet and bargain in a

decentralized market. Therefore, the platform can achieve the benchmark centralized profit in

a decentralized market with participation fees. With optimal fees, the decentralized market has

a full-trade equilibrium: all sellers propose prices equal to the marginal participating buyer’s

valuation, and all buyers propose prices equal to the marginal participating seller’s cost. These

prices are accepted with probability 1.

Our general results on the per period fee structure are the following. The sum of the

buyer and seller fees is equal to the spread of the optimal mechanism and hence, as described

previously, equal to the sum of the inverse hazard rates at the margin. The ratio of fees for the

buyer and seller is equal to the ratio of the bargaining weights. In other words, the side with

a greater bargaining power ends up paying a higher fee. In the extreme case in which say the

seller posts a price (that is, the seller has all the bargaining power), the seller pays the entire

fee and participation is free for buyers. This supports the pattern suggested by the real-world

examples given above.6

The result that decentralization is possible is not self-evident since the intermediary only

6This result sheds further light on the issue of centralization versus decentralization. In a static variant of
our model, assume aggregate uncertainty of a simple form: both valuations and costs (that is, the demand and
supply) are subject to some additive random shift. Then in order to implement the optimal bid and ask prices,
the intermediary would need to know this random shift. Such knowledge may not be always forthcoming. At the
same time, the spread can be easily shown not to depend on the shift, and therefore the optimal participation
(or per match) fees are also invariant to the shift. This implies that the profit-maximizing outcome can still be
implemented in our decentralized matching and bargaining game.
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has two choice variables (participation fees of buyers and sellers), but has to control at least

four variables (the entry choices of buyers and sellers and the prices set by buyers and sellers).

The basic intuition for this result can be seen in a static setup in which the seller always sets

the price. The intermediary wants to make sure that the price set by the marginal seller is

not higher than the valuation of the marginal buyer to ensure full trade. This reduces to the

requirement that the marginal seller’s optimal markup is not larger than the intermediary’s

optimal bid-ask spread. The intuition for why this requirement is fulfilled is that the interme-

diary wants less trade than the marginal seller, since he has to give rents to both sides and

not just one. Therefore, the intermediary’s optimal spread is larger than the marginal seller’s

optimal markup.

In most of the paper, we consider participation fees that have to be paid in each period a

trader is in the market. Two alternative ways of raising revenues is through per match fees

and transaction fees. Per match fees are only paid if a trader is matched, transaction fees are

only paid if a transaction occurs. In our setup, the optimal mechanism can be implemented

with participation fees and per match fees, but not with transaction fees. The reason for

the optimality of per match fees is that they are equivalent to participation fees in a balanced

market in which a trader is matched in every period with probability 1. The reason transaction

fees are different is that in contrast to participation and per match fees they are not sunk at

the moment of bargaining. To see why it matters that transaction fees are not sunk, consider

a static setup. Recall that in the optimal mechanism, everyone who enters should trade with

probability 1. However, a seller with high costs is willing to enter even if his offer is rejected

with a high probability, since in case the offer is rejected, he does not have to pay transaction

fees. In case his offer is accepted, he makes a positive profit. With participation (or per match)

fees, a seller is not willing to make such a gamble: if his offer is rejected, he still has to pay the

participation fees and hence incurs a loss.

Literature This paper relates to three strands of literature: dynamic random matching (see,

for example, Rubinstein and Wolinsky (1985), Gale (1987), Wolinsky (1988), Mortensen and

Wright (2002), Satterthwaite and Shneyerov (2007, 2008), Atakan (2007a,b), Shneyerov and

Wong (2010a,b), Lauermann (forthcoming), Lauermann, Merzyn, and Virág (2011)), interme-

diaries (see, for example, Rubinstein and Wolinsky (1987), Gehrig (1993), Spulber (1996), Rust

and Hall (2003), Loertscher and Niedermayer (2012)), and two-sided markets (see, for example,
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Caillaud and Jullien (2003), Armstrong (2006), Rochet and Tirole (2006), Nocke, Peitz, and

Stahl (2007), Goos, Van Cayseele, and Willekens (2011)).

We depart from the dynamic random matching literature by assuming that the search

and matching platform is owned by a profit-maximizing intermediary. A full-trade equilib-

rium, which is at the core of our analysis, has been previously identified in Satterthwaite and

Shneyerov (2007) and, in a model with pairwise matching and bargaining as here, in Shneyerov

and Wong (2010a). It turns out that if the search costs incurred by traders are endogenously de-

termined, as fees charged by the intermediary, the equilibrium has the full-trade property. This

enables us to obtain our characterization of the optimal fee structure and a simple, tractable

equilibrium characterization that is a helpful starting point for further analysis.

Our contribution to the intermediation literature is that we let the intermediary design

a mechanism that takes into account the possibility of delay, of changing the steady state

distributions in the market, and traders’ option values of future trade, and lets buyers and

sellers meet randomly and bargain bilaterally. In particular, the monopolistic intermediating

platform in this paper differs from the middlemen in Rubinstein and Wolinsky (1987), Rust

and Hall (2003), Loertscher and Niedermayer (2012) that do not have monopoly power and

take the market equilibrium as given. This difference – that the intermediary has monopoly

power and can shape the distributions in the market – is at the core of the current paper. One

of our main questions is how an intermediary chooses the exchange mechanism in a given period

taking into account two channels through which this affects traders’ behavior in other periods.

First, in preceding periods, traders consider the option value of delaying trade. Second, traders

that did not trade in the given period stay in the market and hence affect the distribution

of types in subsequent periods. We further differ from Loertscher and Niedermayer (2012)

by having a continuum of traders rather than one buyer and one seller (or a small number

of buyers and sellers). Further, we provide a justification for the monopolistic market maker

considered in Spulber (1996, Section 4) and Rust and Hall (2003, Corollary 5.2) by showing

that setting bid-ask prices is indeed an optimal mechanism.7

A direct comparison with the two-sided markets literature is not possible, since the two-

sided markets literature typically deals with buyers and sellers having a reduced form utility

function that depends directly on the number of participants on the other side of the market

7Section 4 in Spulber (1996) and Corollary 5.2 in Rust and Hall (2003) deal with a monopolistic market
maker. Other parts of these articles deal with competing market makers and/or middlemen.
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(see, for example, Armstrong (2006)).8 Caillaud and Jullien (2003) and Goos, Van Cayseele,

and Willekens (2011) do provide a random-matching microfoundation, but gains from trade

are public information and always positive, whereas in our analysis the focus of attention is on

the heterogeneity of agents’ private types, private information bargaining, and the platform’s

strategy to avoid a breakdown of bargaining in equilibrium.9 Rochet and Tirole (2006) mostly

deal with reduced form utility functions, but also consider an extension with a random-matching

microfoundation with two-sided private information (see Rochet and Tirole, 2006, pp. 661-

663). In our setup agents know their type ex ante, that is, before choosing whether to join the

platform, whereas in Rochet and Tirole (2006) agents find out their type ex post, that is, after

joining the platform. This difference is crucial: in contrast to Rochet and Tirole (2006), in our

model it is not possible to implement first-best by using fees collected ex ante to subsidize trade

ex post. Further, our main difference in terms of predictions is that in our setup the optimal

ratio of fees is equal to the ratio of bargaining weights rather than the ratio of the elasticities

of demand and supply.

2 Setup

We consider an infinite horizon model of a market for a homogeneous, indivisible good. Time

is discrete, τ = 0, 1, 2, . . .. In period τ = 0 the market starts out empty. Each period, a unit

mass of newborn buyers and sellers is available for entry in the market. There is a friction of

discounting; the discount factor is denoted as δ. Each buyer has a unit demand for the good,

while each seller has unit supply. All traders are risk neutral.

Potential buyers are heterogeneous in their valuations v of the good. Potential sellers are

also heterogeneous in their costs c of providing the good. In the following, we will also refer to

valuations and costs as types. The types of new potential buyers are private information and

are drawn independently from the continuously differentiable cumulative distribution function

FB(v) for buyers and FS(c) for sellers. Densities are denoted with fB(v) and fS(c) and have

support [0, 1]. We make the standard assumption that Myerson’s regularity condition holds,

8See Nocke, Peitz, and Stahl (2007) for a paper that has an imperfect-competition microfoundation for the
reduced form utility functions.

9Additionally, Caillaud and Jullien (2003) assume that gains from trade are constant for all traders, so that
we also differ in terms of the heterogeneity of traders. Goos, Van Cayseele, and Willekens (2011) additionally
assume non-transferable utility in the main part of their paper, in which they analyze participation, per match,
and transaction fees. In an extension, they consider transferable utility, but only participation fees.
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that is, the virtual type functions

JB(v) := v − 1− FB(v)

fB(v)
, JS(c) := c+

FS(c)

fS(c)
,

are increasing. Each trader’s type will not change once it is drawn. Entry (or participation, or

being active) is voluntary. Potential traders decide whether to enter the market once they are

born.10 Those who do not enter will get zero payoff.

First, we will derive the optimal direct mechanism as a benchmark. We will show that it is

optimal for the intermediary to choose an anonymous, stationary mechanism.

After deriving the optimal mechanism, we will consider the optimal dynamic random match-

ing and bargaining with participation fees implementation in Section 4. Here, the intermediary

could in principle choose non-anonymous, non-stationary fees. That is, the fee offered to a

trader might depend on his identity and on the period in which the he entered the market. The

endogenous distributions of the types of traders who have not traded yet might change over

time. However, because the optimal mechanism is anonymous and stationary, it is sufficient to

only consider anonymous, stationary fees.

We assume throughout the paper that the intermediary can fully commit.

3 Optimal Direct Mechanism

Consider a mechanism in which all buyers and sellers report their valuations and costs, re-

spectively, and the intermediary can arbitrarily match buyers and sellers. Since the good is

homogeneous, this can be expressed in the following equivalent way: the goods of sellers who

sell enter a pool, buyers get their goods from this pool. The only constraint is that the same

number of sellers sell as buyers buy. A buyer’s or seller’s probability of trade and transfers are

determined by his or her report. The highest profits that can be achieved in such a centralized

market will serve as an upper bound for the profits in the decentralized market, where the

intermediary cannot influence how buyers and sellers are matched.

Index the mass 1 of buyers being born in each period τ with i0 ∈ [0, 1).11 Each buyer in the

continuum of buyers ever born is uniquely identified by the tuple (τ, i0), where τ is the period

10One could alternatively think of potential traders also having the possibility to delay entry. This will not
make a difference in our setup, since entry turns out to be either always or never profitable for a trader, so that
in equilibrium no one would delay entry.

11i0 can be thought of in the following way: order all buyers in some order (this order is random, since they
are ex ante identical) and label the buyer who has mass i0 buyers to his left as i0.
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a buyer is born. Similarly, sellers are indexed by j0 ∈ [0, 1) in each period and are uniquely

identified by (τ, j0). To simplify notation, we will use the indices i := τ + i0 and j := τ + j0 to

identify buyers and sellers rather than (τ, i0) and (τ, j0). We denote the birth periods of buyer

i and seller j as τ(i) := ⌊i⌋ and τ(j) := ⌊j⌋, respectively.12 A direct mechanism is defined as

M :=
{

qBi,s(v), q
S
j,s(c), t

B
i,s(v), t

S
j,s(c) : s = 0, 1, 2, ...; i, j ∈ R0+; v, c ∈ [0, 1]

}

,

where qBi,s(v) is buyer i’s probability of trade in period s if he reports type v and similarly

qSj,s(c) is seller j’s probability of trade in period s if he reports c. Two natural restrictions are

that buyers and sellers cannot trade before being born (that is, qBi,s(v) = 0 for all s < τ(i) and

qSj,s(c) = 0 for all s < τ(j)) and that the total probability of trade cannot exceed 1 (that is,
∑∞

s=0 q
B
i,s(v) ≤ 1 for all i, v and

∑∞
s=0 q

S
j,s(c) ≤ 1 for all j, c). Further, define tBi,s(v) and tSj,s(c)

to be payments from buyer i and payments to seller j in period s, respectively. Note that

it is not necessary to condition qBi,s, q
S
j,s, t

B
i,s, and tSj,s on the reports of the other participants,

because there is a continuum of traders and by the law of large numbers the realized distribution

of types is common knowledge. Further, by the revelation principle, we restrict attention to

truthful reporting.

We assume that in each period s, the mechanism must involve a balanced market: the

quantity of goods bought is required to be equal to the quantity sold. This trade balance

restriction takes the form

∫ ∞

0

∫ 1

0
qBi,s(v)dFB(v)di =

∫ ∞

0

∫ 1

0
qSj,s(c)dFS(c)dj, (1)

for each period s = 0, 1, 2, . . .. Note that having an infinite upper bound for the integral with

respect to i is not a problem, since we impose the constraint qBi,s(v) = 0 for τ(i) > s, that is, a

buyer cannot trade before being born. The same applies to sellers.

The intermediary’s goal is to choose a mechanism that maximizes the discounted expected

transfers from buyers and sellers, subject to incentive compatibility (IC), individual rationality

(IR), and the trade balance constraints. Define the buyer’s expected utility given his true type

is v and his reported type v̂,

UB
i (v, v̂) =

∞
∑

s=0

δs−τ(i)
(

vqBi,s(v̂)− tBi,s(v̂)
)

,

12⌊i⌋ denotes the floor function applied to i, that is, the largest integer not greater than i.
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and similarly for the seller,

US
j (c, ĉ) =

∞
∑

s=0

δs−τ(j)
(

tSj,s(ĉ)− cqSj,s(ĉ)
)

.

The intermediary’s objective is to choose M that will maximize

T :=

∞
∑

s=0

δs
∫ ∞

0

∫ 1

0
tBi,s(v)dFB(v)di −

∞
∑

s=0

δs
∫ ∞

0

∫ 1

0
tSj,s(v)dFS(c)dj. (2)

subject to

UB
i (v, v) ≥ UB

i (v, v̂), US
j (c, c) ≥ US

j (c, ĉ), (IC)

UB
i (v, v) ≥ 0, US

j (c, c) ≥ 0, (IR)

for all i, j, v, v̂, c, ĉ, and the trade balance (1). Such an optimal mechanism is completely

characterized by the following proposition.

Proposition 1. The optimal mechanism is stationary and involves trading immediately upon

entry whenever v ≥ v and c ≤ c̄:

qBi,s(v) =

{

1, if v ≥ v and s = τ(i),

0, otherwise,
qSj,s(c) =

{

1, if c ≤ c̄ and s = τ(j),

0, otherwise,
(3)

where the marginal types v and c̄ are determined by

JB(v) = JS(c̄), 1− FB(v) = FS(c̄).

The proof is rather long and is given in Appendix A. That the optimal mechanism is

stationary and involves trading immediately upon entry in a two-sided private information

setup is to be expected, since a similar result was obtained in one-sided setups (see the literature

on durable goods in the context of a large market, for example, Stokey (1979), Segal (2003),

Board (2008)). The optimal price pS set by a profit maximizing seller with cost c is given

by JB(pS) = c according to Myerson (1981).13 Similarly, a profit maximizing buyer would

set the price given by JS(pB) = v. Putting the optimal buying and selling strategy and the

goods market balance condition together determines the marginal types.14 As in Bulow and

13While the argument in Myerson (1981) is more subtle, a simplified version is that JB(pS) = c is the first
order condition when maximizing (pS − c)(1− FB(pS)) with respect to pS.

14See also Baliga and Vohra (2003) and Loertscher and Niedermayer (2012) for the optimal mechanism with
a discrete number of traders in a one-period model.
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Roberts (1989), JB can be seen as marginal revenue and JS as marginal cost. The intermediary

increases the quantity traded, q = 1 − FB(v) = FS(c), as long as marginal revenue is higher

than marginal cost, JB(F
−1
B (1− q)) > JS(F

−1
S (q)), and stops as soon as it is lower.

The implied profit maximizing spread θ∗ = v − c̄ is given by

θ∗ =
1− FB(v)

fB(v)
+

FS(c̄)

fS(c̄)
=

v

ηB(v)
+

c̄

ηS(c̄)
, (4)

where the ηB(v) = vfB(v)/(1−FB(v)) and ηS(c) = −cfS(c)/FS(c) are the elasticities of demand

and supply, respectively, and v/ηB(v) and c/ηS(c) are the inverse semi-elasticities.

There is a straightforward centralized implementation of the allocation rule described in

Proposition 1. The intermediary sets an ask price v and a bid price c in each period. Buyers

with valuation v ≥ v and sellers with cost c ≤ c trade, all others do not. The intermediary

earns the bid-ask spread v − c.

4 Decentralized Implementation: Bargaining with Participa-

tion Fees

The implementation using the fixed spread mechanism mentioned in the previous section is

fully centralized. As explained in the Introduction, in many markets an intermediary might

find it too costly to implement a centralized mechanism. In this section, we turn to the main

question of our paper: a decentralized implementation of the optimal allocation.

We consider a participation fee mechanism: charge buyers and sellers per period participa-

tion fees KB and KS in a dynamic random matching environment with bargaining. We will

show that such a mechanism can generate the same profits as the optimal mechanism. For the

moment, we focus on per period fees. In Section 5.1 we show how results are changed when

looking at per match or per transaction fees.

Each period τ = 0, 1, 2, . . . of the dynamic matching and bargaining game is composed of

the following stages:

1. Potential entrants arrive to the market and make entry decisions. Those who have chosen

to enter, are added to the pool of active traders carried over from the previous period.

2. Each active trader pays the broker his or her participation fee, KB for buyers and KS for

sellers.

11



3. Traders currently in the unmatched pool are randomly matched in pairs of one buyer

and one seller. We assume that the short side of the market is fully matched, so that the

mass of matches is given by min{B,S}, where B and S are the masses of active buyers

and active sellers currently in the market.

4. Matched buyers and sellers bargain according to the random-proposer, take-it-or-leave-it

protocol. The buyer gets to make a take-it-or-leave-it price offer with probability αB .

With probability αS = 1− αB the seller gets to make the offer. If a type v buyer and a

type c seller trade at a price p, then they leave the market with payoff v − p and p − c,

respectively.

5. Unsuccessful traders carry over to the next period.

Note that the proposal probabilities should be seen as a stylized way of modeling bargaining

strength. The two extreme cases of αS = 1 and αB = 1 can be taken literally. In the former

case, the price is always set by the seller (for example, shops in malls), in the latter case,

the price is always set by the buyer (this is a reasonable approximation for markets for low

skilled labor). Further, note that instead of assuming that one side is randomly chosen to make

a take-it-or-leave-it offer, one could also assume that one side is randomly chosen to design

the mechanism for bilateral trade. By Myerson (1981), Yilankaya (1999), and Mylovanov and

Tröger (2012), the party designing the mechanism would choose a take-it-or-leave-it offer as

the mechanism.15

We assume the market is anonymous from the perspective of traders, so the traders do

not know their partners’ market history, for example, how long they have been in the market,

what they proposed previously, and what offers they rejected previously. Anonymity from the

perspective of the intermediary is immaterial, since the optimal mechanism does not condition

on identity or date of entry. We restrict attention to steady-state market equilibria, defined in

parallel to Satterthwaite and Shneyerov (2007) and Shneyerov and Wong (2010a,b). Since the

optimal mechanism has the same allocation rule in every period, the intermediary could not

get higher profits if he were to choose fees that induce a non-steady state equilibrium.

15If the seller is to design the mechanism and her type were public information, it is well known from Myerson
(1981) that her optimal mechanism would be a take-it-or-leave-it offer. In a setup where the seller’s type is private
information Yilankaya (1999), and more generally Mylovanov and Tröger (2012), show that if the mechanism is
endogenously chosen by the seller rather than exogenously given, the optimal mechanism is the same as if the
seller’s type were public information.
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Let χB : [0, 1] → {0, 1} and χS : [0, 1] → {0, 1} be the buyers’ and sellers’ entry strategies,

with the value of 1 assigned to entry. Let AB ⊂ [0, 1] and AS ⊂ [0, 1] be the sets of active

buyers’ and sellers’ types, that is,

AB := {v ∈ [0, 1] : χB(v) = 1}, AS := {c ∈ [0, 1] : χS(c) = 1}.

Let pB(v) and pS(c) be the proposing strategies used by buyers and sellers respectively.

Let ṽ(v) and c̃(c) denote the responding strategies of buyers and sellers. More precisely, when

proposing, for example, type v buyers will propose the trading price pB(v), while when re-

sponding, they will accept a proposed price p if and only if ṽ(v) ≥ p. Let ΦB(v),ΦS(c) be

the (endogenous) steady-state cumulative distributions of types of buyers and sellers who are

active.

Before we can formally define a steady state market equilibrium, consider the sequential

optimality of the responding strategies first. Let WB(v) be the (steady-state) equilibrium

continuation payoff of a type v buyer at the period’s beginning, and letWS(c) be the equilibrium

continuation payoff of a type c seller. Pick a type v buyer.16 Sequential optimality requires

that a buyer accept any offer lower than his dynamic value v − δWB(v), and a seller accept

any offer higher than her dynamic cost c+ δWS(c).
17 These dynamic types determine traders’

responding strategies.

Consider the distributions of traders’ dynamic types, denoted as

Φ̃B(x) :=

∫

v−δWB(v)≤x

dΦB(v), Φ̃S(x) :=

∫

c+δWS(c)≤x

dΦS(c). (5)

It is clear that sequential optimality in the proposing states is satisfied if and only if

pB(v) ∈ argmax
λ

Φ̃S(λ)[v − δWB(v)− λ], pS(c) ∈ argmax
λ

[1− Φ̃B(λ)][λ− c− δWS(c)]. (6)

It follows that the equilibrium proposing strategies are determined as best-responses in the

static monopoly problems where the distributions of responders’ types are replaced by the

distributions of the responders’ dynamic types and the proposers’ types are replaced by the

proposers’ dynamic types.

To introduce the Bellman equations for the continuation values, consider a buyer who

is matched with a seller. Suppose that all traders always use their prescribed equilibrium

16This type v buyer could be either active or not. If he is not active, we are considering an off-equilibrium
path.

17Dynamic (opportunity) values and costs are introduced in Satterthwaite and Shneyerov (2007).
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strategies and that the stationary distributions of active seller and buyer types are at their

equilibrium values ΦS and ΦB . Then a type v buyer’s expected bargaining surplus from the

meeting is equal to

ΠB(v) := αB

∫

c+δWS(c)≤pB(v)
[v − pB(v)]dΦS(c) + αS

∫

pS(c)≤v−δWB(v)
[v − pS(c)]dΦS(c).

Further denote

qB(v) := αB

∫

c+δWS(c)≤pB(v)
dΦS(c) + αS

∫

pS(c)≤v−δWB(v)
dΦS(c),

the buyer’s probability of a successful trade in a given meeting.

Since the entry decision is made in the inactive state and a trader gets 0 if he exits, the

beginning-of-period continuation payoff, WB(v), must satisfy the following recursive equation:

WB(v) = max

{

min{B,S}
B

[ΠB(v) + (1− qB(v))δWB(v)] −KB , 0

}

(7)

where the first maximand represents the payoff for entry, the second represents the payoff for

exiting. Therefore, the buyers’ sequentially optimal entry strategy is

χB(v) = I

{

min{B,S}
B

ΠB(v) ≥ KB

}

(8)

where I (·) is the indicator function.18 Completely parallel logic applies to the sellers’ side; we

have the Bellman equation

WS(c) = max

{

min{B,S}
S

[ΠS(c) + (1− qS(c))δWS(c)]−KS , 0

}

, (9)

with a seller’s expected bargaining surplus from the meeting

ΠS(c) := αS

∫

v−δWB(v)≥pS (c)
[pS(c) − c]dΦB(v) + αB

∫

c+δWS(c)≤pB(v)
[pB(v)− c]dΦB(v),

and the sellers’ sequentially optimal entry strategy is

χS(c) = I

{

min{B,S}
S

ΠS(c) ≥ KS

}

. (10)

To complete the description of a (nontrivial19) steady-state equilibrium, we now consider

the steady state equations for the distributions of active buyer and seller types ΦB and ΦS and

18Note that (8) implicitly assumes that traders enter if they are indifferent between entering or not. This is
only for expositional simplicity because it turns out that the set of such indifferent traders is of measure 0.

19In a trivial equilibrium, no buyer and no seller enters, which implies that it is optimal for both sellers and
buyers not to enter.
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active trader masses B and S. In a steady-state market equilibrium, traders who enter would

not exit until they have traded successfully. Therefore,

∫ 1

v

χB(x)dF (x) = min{B,S}
∫ 1

v

qB(x)dΦB(x), ∀v ∈ [0, 1], (11)

∫ c

0
χS(x)dG(x) = min{B,S}

∫ c

0
qS(x)dΦS(x), ∀c ∈ [0, 1], (12)

which simply state that the inflow mass of every type of a trader must be equal to the corre-

sponding outflow mass.

These preparations allow us to formally define a nontrivial steady-state equilibrium as

follows.

Definition 1. A collection E := {χB , χS , pB , pS , B, S,ΦB ,ΦS} is a nontrivial steady-state equi-

librium if there exists a pair of equilibrium payoff functions {WB ,WS} such that the proposing

strategies pB, pS and entry strategies χB , χS satisfy the sequential optimality conditions (6),

(8), and (10), and the distributions of active buyer and seller types ΦB and ΦS and active

trader masses B and S solve the steady-state equations (11) and (12), and the payoff functions

WB and WS solve the Bellman equations (7) and (9).

It can be shown that in any such equilibrium, buyers above some threshold v and sellers

below some threshold c are active. Non-active traders stay out of the market. This is stated

formally in the following Lemma.

Lemma 1. In any equilibrium, the set of active buyers is [v, 1] and the set of active sellers is

[0, c] for some v, c ∈ [0, 1].

Proof. The proof follows the same logic as Lemma 1 in Shneyerov and Wong (2010b) and

therefore omitted.

Lemma 1 allows us to focus our analysis on the marginal types v and c. The marginal buyer

v gets a zero net expected utility from participating, hence his option value of future trade is

also zero. Further, a seller would never set a price below v, hence the buyer’s utility if the seller

makes the offer is zero as well. Therefore, when looking for the marginal buyer we only need

to consider the buyer’s utility in case he makes the offer, which gives us

min{B,S}
B

αBΦS(pB)(v − p
B
) = KB, (13)
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where p
B

is the optimal price set by the marginal buyer, and ΦS(·) is the steady-state dis-

tribution of seller types in the market. The left-hand side of the equation is the gross util-

ity of participation of the marginal buyer: the product of the probability of being matched

min{B,S}/B, the probability of making the offer αB, of the seller accepting the offer ΦS(pB),

and the buyer’s utility when buying at the price the marginal buyer sets v−p
B
. The right-hand

side is the cost of participation KB . Similarly, for the marginal seller c̄

min{B,S}
S

αS(1− ΦB(pS))(c̄− pS) = KS , (14)

where ΦB(·) is the steady-state distribution of buyer types.

While deriving the market equilibrium is complicated in general in such setups, since there

may be multiple equilibria, a full-trade equilibrium may not exist for all values of KB and

KS (see, for example, Shneyerov and Wong (2010a)), and almost everything in (13) and (14)

is endogenous, it turns out that the analysis is strongly simplified by focusing on the profit-

maximizing equilibrium.

We know from the analysis in the previous section that if an intermediary can implement

the allocation rule of the centralized mechanism, then he cannot do better. In the following

we will show that choosing KB and KS indeed enables the intermediary to do this. We will

hence focus our attention on the optimal allocation rule, which has the properties that there is

full trade (anyone who gets matched, trades with probability 1, here: p
B
= c̄ and pS = v) and

that the market is balanced 1 − FB(v) = FS(c̄) (therefore min{B,S} = B = S). We will first

characterize the fee structure that is implied by the marginal types in a balanced full trade

equilibrium. Then we will show, in Proposition 2 below, that this fee structure indeed induces

a balanced full-trade equilibrium.

Denote the optimal fees as K∗
B and K∗

S . For full-trade balanced market equilibria, the

conditions for the marginal types (13) and (14) reduce to

αBθ = K∗
B , (15)

αSθ = K∗
S , (16)

where θ = v−c̄ is the spread. This is due to the balanced market min{B,S}/B = min{B,S}/S =

1 and full trade ΦS(pB) = 1 − ΦB(pS) = 1. Dividing the first with the second equation gives

us
αB

αS
=

KB

KS
. (17)
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Adding the two equations gives us

θ∗ = K∗
B +K∗

S ,

where θ∗ is the profit maximizing spread chosen by the intermediary. Following the remark

after (4) this can also be written in terms of the elasticities

K∗
B +K∗

S =
v

ηB(v)
+

c̄

ηS(c̄)
, (18)

where v and c̄ are given by the optimal allocation rule. These results mean that the sum of the

fees is equal to the sum of the semi-elasticities of demand and supply for marginal traders. It

further means that the ratio of the fees (the price structure) is independent of the elasticities

and is equal to the ratio of the bargaining weights. Therefore, the side of the market with the

stronger bargaining power will be charged a higher fee. Take, for example, the special case

where the sellers set the price (that is, αS = 1). In this case participation is free for buyers,

K∗
B = 0, and sellers bear the full burden of the fee, K∗

S = θ∗.

Existence of a full-trade equilibrium. Before showing existence of a balanced full-trade

equilibrium in a dynamic setup, the following intuition for existence can be given in the simpler

static setup with δ = 0. A seller faces the following trade-off when considering raising the price:

a higher price increases profits in case of trade, but it also decreases the probability of trade.

An intermediary faces the same trade-off, but can additionally lower his costs as he raises the

price for buyers. This is because less entry on the buyer side means that he can decrease

the number of sellers entering while keeping the trade volume constant, which lowers his cost.

Hence, if the intermediary is not willing to deviate from full trade in the centralized optimal

mechanism, neither are the sellers in the decentralized setup. The same reasoning applies to

the buyers.

Returning to the dynamic case (arbitrary δ), recall that the profit maximizing spread of

the intermediary is given by

JB(v) = JS(c̄). (19)

It can be shown that if the spread between v and c̄ is large enough, then a full-trade

equilibrium exists. Intuitively, the reason is that the marginal seller c does not have an interest

to set a price above v if the difference v− c is large enough. The same applies to the marginal

buyer v. We show this formally in the following Lemma.
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Lemma 2. A full-trade equilibrium exists if the marginal types satisfy the following conditions:

(1− δ)JB(v) + δv ≥ c̄, (20)

(1− δ)JS(c̄) + δc̄ ≤ v. (21)

To gain an intuition for this result consider the static setup, δ = 0. The expected profit of

a seller of type c in any match where she deviates from equilibrium and proposes an ask price

pS is

πS(c, pS) : = αS(pS − c)(1 − ΦB(pS)) + αB(c̄− c) (22)

= αS(pS − c)
1 − FB(pS)

1− FB(v)
+ αB(c̄− c),

= αS

∫ 1
pS
(JB(v)− c)dFB(v)

1− FB(v)
+ αB(c̄− c),

where the last equality can be checked by verifying that both (pS − c)(1 − FB(pS)) and
∫ 1
pS
(JB(v)− c)dFB(v) are 0 for pS = 1 and that

∂[(pS − c)(1− FB(pS))]

∂pS
= −(JB(pS)− c)fB(pS).

The slope of the expected profit is

∂πS(c, pS)

∂pS
= −αS(JB(pS)− c)fB(pS)

1− FB(v)
. (23)

At pS = v, this slope is non-positive for all c ≤ c̄ if JB(v) ≥ c̄, which implies that the seller will

not prefer such a deviation. Intuitively, (23) is the seller’s marginal surplus of trading with a

buyer with valuation v = pS if she gets to make the offer. Since this marginal surplus is always

positive, increasing the price pS (that is, excluding buyers), lowers profits. JB(v) ≥ c is our

condition (20) in the statement of the lemma when δ = 0.

An intuition can be found for the other extreme as well, that is, δ → 1 (infinitely patient

traders) rather than δ → 0. Observe that demand becomes infinitely elastic in the limit at

p = v, since it is (almost) costless for a buyer to delay trade and wait for a better offer.

Therefore, the marginal seller will not offer a price above v. Neither will he offer a price below

c. Therefore, a full-trade equilibrium exists if v ≥ c as stated in (20) for δ → 1. The intuition

for (21) is analogous.

Proof of Lemma 2. We only need to show that sellers do not have an incentive to deviate to

an ask price higher than v, and buyers do not have an incentive to deviate to a bid price lower

than c̄. We will only prove the result for sellers; for buyers, the argument is parallel.
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The probability that an offer pS is accepted depends on the market distribution of buyers’

dynamic values. Consider a buyer of type v. His expected profit in the next market opening,

discounted back to the current one, is equal to

WB(v) = δ (αB(v − c̄) + αS(v − v)−K∗
B) ,

= δ(αB + αS)(v − v) + δαB(v − c̄)− δK∗
B

= δ(v − v), (24)

where the equality in the last line follows from the fact that, in a full-trade equilibrium, αB(v−
c̄) = αBθ = KB . In the current period, he will accept any price pS if v − pS ≥ WB(v).

Equivalently, he will accept any pS at or above his dynamic value

ṽ(v) := v −WB(v) = (1− δ)v + δv. (25)

Going in the reverse direction, the buyer’s type v as a function of his dynamic value ṽ is

v =
ṽ − δv

1− δ
,

and therefore the market distribution of dynamic values is

Φ̃B(ṽ) = ΦB

(

ṽ − δv

1− δ

)

.

The expected seller’s profit in any match is of the same form as in (22), with ΦB(pS) replaced

with Φ̃B(pS). The corresponding virtual valuations are

J̃B(ṽ) : = ṽ − 1− Φ̃B(ṽ)

φ̃B(ṽ)

= (1− δ)v + δv − (1− δ)
1 − ΦB(v)

φB(v)

= (1− δ)v + δv − (1− δ)
1 − FB(v)

fB(v)
(26)

= (1− δ)JB(v) + δv. (27)

In parallel to the reasoning the static setup which leads from (22) to (23), ∂πS(c, v)/∂pS has

the same sign as −(J̃B(v)− c), which equals −((1− δ)JB(v) + δv − c), so (27) implies (20) in

the lemma.

We can use Lemma 2 to show existence of a profit maximizing equilibrium. Using the profit

maximizing spread in (19) and JS(c) ≥ c we can find a lower bound for the left-hand side of
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(20) in Lemma 2:

(1− δ)JB(v) + δv = (1− δ)JS(c̄) + δv ≥ (1− δ)c̄ + δv

which is greater or equal c̄, since v ≥ c̄ for a profit maximizing intermediary. Hence, condition

(20) is always fulfilled for the profit maximizing spread. By an analogous reasoning, condition

(21) is also always satisfied. Since the ratio of the fees KB/KS is chosen such that a balanced

market is achieved if there is full trade, we have shown existence of a full-trade balanced market

equilibrium that maximizes the intermediary’s profit.

Proposition 2. The intermediary’s profit maximizing per period fees K∗
B for the buyer and

K∗
S for the seller in the dynamic random matching setup are given by

K∗
B +K∗

S =
1− FB(v)

fB(v)
+

FS(c)

fS(c)
,

K∗
B

K∗
S

=
αB

αS

,

where the marginal types v and c are given by Proposition 1. For these fees, a balanced full-

trade market equilibrium exists in the dynamic random matching setup, that is, an equilibrium

such that min{B,S}/B = min{B,S}/S = 1 and ΦS(pB) = 1 − ΦB(pS) = 1, where p
B

is the

lowest price set by a buyer and pS is the highest price set by a seller.

Proposition 2 tells us that the insights from a static setup described at the beginning of

this section carry over to a dynamic setup. The reason why we learn something new from

the dynamic setup is that traders face different dynamic incentives than the intermediary. In

particular, the intermediary internalizes the fact that a buyer who does not transact today will

be present tomorrow, whereas a seller does not internalize this. However, this provides further

incentives to a seller to set a lower price than the intermediary. Therefore, dynamics reinforces

the forces at work in the static setup.

5 Discussion

5.1 Other Types of Fees

We now consider two other types of fees: per match fees and transaction fees.
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Per Match Fees Per match fees are only paid if a trader is matched. The only difference

between participation fees and per match fees is that per match fees do not have to be paid if a

trader participates in the market, but is not matched to anyone in a certain period. However,

since the optimal equilibrium chosen by the intermediary is such that the market is balanced,

a match occurs with probability 1. Therefore, payments are the same for per match fees

and participation fees on the equilibrium path. Payments off the equilibrium path do not

change for individual traders either, since the probability of being matched is independent of

a trader’s action. In particular, both per match fees and participation fees are sunk at the

time of bargaining and therefore affect the bargaining behavior the same way. Therefore, the

same reasoning can be applied to per match fees as for participation fees and by analogy to

Proposition 2 we get

K̂B + K̂S =
1− FB(v)

fB(v)
+

FS(c)

fS(c)
,

K̂B

K̂S

=
αB

αS

,

where K̂B and K̂S are the fees to be paid upon a match by the buyer and seller, respectively.

Transaction Fees Transaction fees are only paid if a transaction occurs. The crucial differ-

ence between transaction fees on one hand and per match fees and participation fees on the

other hand is that transaction fees are not sunk at the time of bargaining. Therefore, they

affect the deviation incentives of traders. In the following, we will show that in our setup

the optimal mechanism cannot be implemented by charging only transaction fees, as shown

in part (i) of Proposition 3. While transaction fees alone are not sufficient to implement the

optimal mechanism, a combination of participation fees and transaction fees still is, provided

that transaction fees are not too large as shown in part (ii) of Proposition 3.

Proposition 3. (i) The outcome of the optimal mechanism cannot be implemented in a dy-

namic matching and bargaining game with transaction fees only.

(ii) However, it can be implemented by dynamic matching and bargaining and a combination

of participation fees KB, KS and transaction fees κB, κS with

v − c = KB +KS + κB + κS ,
αB

αS

=
KB

KS

, (28)

where the sum of transaction fees has to satisfy

κB + κS ≤ min{J̃B(v)− c, v − J̃S(c)}. (29)
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In the resulting balanced full-trade equilibrium, sellers set the price pS = v−κB and buyers set

the price p
B
= c+ κS.

The proof is provided in Appendix A. The basic intuition for part (i) of the Proposition is

the following. The marginal seller has a zero utility if she sets a price that makes the marginal

buyer indifferent. If she increases her price by an epsilon, she gets a strictly positive utility if her

offer is accepted (which happens with positive probability). If her offer is rejected, she does not

have to pay any fees (this is different from participation fees and per match fees), so she gets a

non-negative utility by deferring (potential) trade to the future. Therefore, increasing the price

is a profitable deviation for the seller. This implies that the balanced full-trade equilibrium of

the optimal mechanism is not implementable.

An intuition for part (ii) of the Proposition is that if transaction fees are sufficiently low,

marginal traders make a sufficiently large profit from setting a price that is accepted with

probability 1, taking into account that their participation fees are already sunk. This makes it

unprofitable for marginal traders to deviate from a full-trade equilibrium.

It is easy to check that for κB + κS = 0, we are back to the basic participation fee setup.

Note that for δ → 1, J̃B(v) − c → v − c and v − J̃S(c) → v − c in (29), so that by (28)

the intermediary can earn most of the spread v − c in form of transaction fees and charge

participation fees close to zero (but strictly positive20 and satisfying KB/KS = αB/αS).

In our setup, transaction fees do not matter much: the intermediary can avoid charging

transaction fees and simply charge participation fees. Alternatively, the intermediary can re-

duce participation fees and charge the reduced amount as transaction fees (as long as these are

not too large). In reality, we observe some examples for which an intermediary charges both

participation fees and transaction fees. An example are credit card companies that charge both

annual membership (or participation) fees to merchants and consumers and also charge trans-

action fees. The reason why an intermediary would want to “convert” some of the participation

fees in transaction fees have to lie outside of our model.21

20More precisely, the fee is strictly positive on at least one side of the market: for the special case αi = 0 on
one side, the participation fee is Ki = 0 on that side.

21One reason is described in the essentially static setup in Loertscher and Niedermayer (2012): in thin markets
(that is, there is only one buyer and one seller rather than a continuum on both sides as here) an intermediary
prefers transaction fees and a non-full-trade equilibrium to participation fees and a full-trade equilibrium.
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5.2 Exogenous Participation Costs

The model can be easily extended to include both participation fees KB and KS set by the in-

termediary and exogenously given per period search costs xB and xS per period. The conditions

for the marginal types are

αBθ
∗ = KB + xB αSθ

∗ = KS + xS ,

which is essentially the same as before, except that total participation costs KB + xB and

KS + xS are decomposed to fees and exogenous search costs. The optimal spread is v − c =

θ∗ = v/ηB(v) + c/ηS(c) + xB + xS and the market balancing condition becomes αB/αS =

(KB + xB)/(KS + xS). As an example, in a market where sellers always get to make take-it-

or-leave-it offers to buyers (αS = 1) and buyers have positive exogenous search costs (xB > 0),

the platform should charge high fees to sellers (KS = θ∗ − xS + xB) and subsidize buyers

(KB = −xB).

5.3 Comparison with the Two-Sided Markets Literature

It is interesting to compare our results about the fees charged by the platform with those in

the two-sided markets literature. Most of the two-sided markets literature is concerned with

a reduced form approach, in which the utility of the buyer directly depends on the number

of sellers and the utility of the seller directly depends on the number of buyers. Some of the

articles in the two-sided markets literature also provide a random-matching microfoundation

for the reduced form utility function.

In the following, we will compare the predictions of our model with the prediction of the

articles with a random-matching microfoundation and discuss the differences in assumptions.

We will make the comparison with Rochet and Tirole (2006), who assume in the (static)

random-matching microfoundation part of their paper (p. 661-663) that buyers and sellers

do not know their types when choosing whether to enter the market and that the matching

technology is increasing returns to scale (that is, the mass of matches is BS).

In Rochet and Tirole (2006, Proposition 2) the sum of the optimal overall fees22 K̃B and

K̃S is given by

K̃B + K̃S =
K̃B

ηB
=

K̃S

ηS
. (30)

22In Rochet and Tirole (2006) the overall fee is composed of a participation and a transaction fee.
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The difference is mainly due to an increasing returns to scale rather than a constant returns

to scale matching technology in their model. A far more interesting comparison is that of the

ratio of fees. This is given in Rochet and Tirole (2006) as

K̃B

K̃S

=
ηB
ηS

, (31)

that is, by the ratio of the elasticities. One has to be careful with the interpretation of (31), since

ηB and ηS are endogenous.23 In our setup, the fee structure is independent of the elasticities

of demand, but only depends on the relative bargaining weights, KB/KS = αB/αS .

The following intuition can be given for this difference in predictions. In Rochet and Tirole

(2006) buyers and sellers find out their valuations for the good after deciding whether to join

the platform. Therefore, the platform can separately solve two problems: how the overall fees

affect participation by traders and how transaction fees affect the efficiency of trade. The effect

of the overall fee on the participation of traders can be seen as two separate monopoly pricing

problems: choosing K̃B optimally given K̃S and choosing K̃S optimally given K̃B . For choosing

K̃i, (30) can also be written as

K̃i − (−K̃−i) =
Ki

ηi
, i = B,S, −i = S,B, (32)

which is the Lerner formula for monopoly pricing, p − c = p/η (that is, markup equal to

semi-elasticity), with price p = Ki and costs c = −K−i.

At the second stage, after traders have decided about entry and subsequently found out

their types, the platform can set transaction fees with efficiency considerations in mind.

In our setup, however, agents find out their types before deciding whether to enter the

platform. Therefore, the problem of influencing entry decision and the efficiency of trade

cannot be separated. The idea is best illustrated with the extreme case αS = 1, that is, the

seller sets the price. If the buyer were to pay a positive fee KB > 0, the marginal buyer v would

be held up after making the decision to enter the platform and paying KB : a seller would never

set a price below v. Therefore, the marginal buyer would have a zero gross utility and a negative

utility −KB when taking the fee into account. This causes an unraveling of the market, since

no matter who the lowest valuation buyer is, he will anticipate ex ante that he will make a loss

and refuses to enter. Therefore, the optimal buyer fee is KB = 0, or KB/KS = αB/αS = 0.

23The interpretation of this is more subtle than it might appear at first sight: the equality holds in equilibrium
at the optimal fees and optimal elasticities. It should not be interpreted as charging a higher fee to the more

elastic side of the market (see Krueger (2009) for a detailed discussion of this issue).
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In general (for arbitrary values of αS), the sum of fees is equal to the sum of semi-elasticities,

KB +KS =
v

ηB
+

c

ηS
,

in our setup. The difference from (32) reflects the fact that the problem of influencing the entry

decision and the efficiency of trade cannot be separated in our setup.

5.4 Welfare Effects of Intermediaries

Our model can be used to shed light on the debate whether intermediaries reduce welfare.

While a detailed analysis is outside of the scope of this paper, we add a brief discussion of

these issues in light of our theoretical framework. In particular, we ask the following question:

would welfare increase or decrease if the intermediary were removed from the market and

participation were made free?

In this section, we compare a market without fees with the same market run by a for-

profit intermediary. We will use the Walrasian outcome as a benchmark, in which buyers with

types above and sellers below the Walrasian price p∗ trade and the Walrasian price is given by

1− FB(p
∗) = FS(p

∗).

To simplify the exposition, we mostly focus on two extreme cases. In one extreme case the

discount factor is δ → 0. This is essentially a one-shot game, since only the first period profits

of the intermediary and the first period utilities of traders matter. The case δ → 0 can be

viewed as search frictions being large. The other extreme is δ → 1, that is, market participants

are infinitely patient. This can be viewed as search frictions disappearing in the limit.

For an analytically tractable example, we assume that traders’ types follow Generalized

Pareto distributions, FB(v) = 1 − (1 − v)β and FS(c) = cβ with β > 0. Generalized Pareto

distributions result in linear virtual types, JB(v) = (1 + 1
β
)v − 1

β
and JS(c) = (1 + 1

β
)c.24

Walrasian Allocation The Walrasian price is p∗ = 1
2 because of symmetry. Buyers’ welfare

is
∑∞

s=0 δ
s
∫ 1
p∗
(v − p∗)dFB(v). To allow for a comparability across different values of δ, we

normalize by multiplying by (1− δ), which yields the normalized welfare

W ∗
B = (1− δ)

∞
∑

s=0

δs
∫ 1

p∗
(v − p∗)dFB(v) =

1

(β + 1)2β+1
,

24A higher β can be seen as a higher elasticity of demand and supply, since the elasticities are ηB(v) = βv/(1−v)
and ηS(c) = β. Further, as β → 0, informational asymmetries vanish, since in the limit buyers have valuation 1
with probability 1 and sellers have valuation 0 with probability 1.
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for buyers. Similarly,

W ∗
S =

∫ p∗

0
(p∗ − c)dFS(c) =

1

(β + 1)2β+1
.

For-Profit Platform Let us next consider welfare when the market is run by a for-profit

platform charging participation fees as described in our model. By our revenue equivalence

results, the payoffs of buyers, sellers, and the intermediary are the same with participation fees

and with bid and ask prices v and c. We can hence simplify the analysis by looking at payoffs

of a market maker setting bid-ask prices. Here, buyers above v and sellers below c enter and

trade occurs at price v and c. The marginal types satisfy 1−FB(v) = FS(c) and JB(v) = JS(c).

Normalized welfare with a profit maximizing intermediary, WP
B for buyers, WP

S for sellers,

and WP
I for the intermediary, is

WP
S =

∫ c

0
(c− c)dFS(c) =

(

β

β + 1

)β+1

W ∗
S , WP

B =

∫ 1

v

(v − v)dFB(v) =

(

β

β + 1

)β+1

W ∗
B ,

WP
I = (v − c)FS(c) =

ββ

(β + 1)β−1
(W ∗

S +W ∗
B).

Note that both Walrasian and for-profit platform normalized welfare W j
i with i = S,B, I

and j = P, ∗ are independent of δ.

No Intermediary Consider a setup in which there is no intermediary and buyers and sellers

enter without having to pay any participation fees. For simplicity, also assume that they do

not incur any exogenous participation costs either.

First, consider the case δ → 0. In this case, all sellers enter. This is because a seller with

cost c close to 1 still has a positive probability of making the price offer. Since we are in an

essentially static setup, a buyer with v ≥ c will accept the offer, which leads to a positive

expected utility of sellers with c < 1. By the same reasoning, all buyers enter. Welfare for a

seller with cost c is

WN
S (c) = αS(PS(c) − c)(1 − FB(PS(c))) + αB

∫ 1

0
max{0, PB(v)− c}dFB(v),

where the price set by a seller is

PS(c) = argmax
p

(p − c)(1− FB(p)) = J−1
B (c),
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and by a buyer, PB(v) = J−1
S (v). The analogous expression holds for the welfare WN

B (v) of

a buyer with valuation v. Total (normalized) welfare for sellers WN
S =

∫ 1
0 WN

S (c)dFS(c) and

buyers WN
B =

∫ 1
0 WN

B (v)dFB(v) can be computed as

WN
S =

√
πββ(αS + β)Γ(β + 1)

22β+1(β + 1)β+1Γ
(

3
2 + β

) , WN
B =

ββ(αB + β)Γ(β + 1)2

(β + 1)β+1Γ(2(β + 1))
,

where Γ is the gamma function.

When search frictions are small (the exit probability between two subsequent matches van-

ishes, δ → 1), it is known from the literature (see Satterthwaite and Shneyerov (2007) and

Shneyerov and Wong (2010b)) that a dynamic random matching market without an interme-

diary converges to the Walrasian outcome (for any distribution). Therefore, for δ → 1 welfare

is WN
B = W ∗

B and WN
S = W ∗

S .

Welfare Comparison For small search frictions (δ → 1), buyer and seller welfare is clearly

lower in the market with an intermediary (WP
B + WP

S < WN
B + WN

S = W ∗
B + W ∗

S). This

is the standard result of a deadweight loss of monopoly, which comes from the monopolistic

intermediary excluding buyers with v ∈ [p∗, v] and sellers with c ∈ [c, p∗] from trade.

However, for large search frictions (δ → 0), this result can be reversed. Numerical calcula-

tions reveal that for β > 2, welfare is higher with an intermediary than without (WP
B +WP

S >

WN
B +WN

S ).

The reason for this result is that in a search market, there may be excessive entry: inefficient

buyers and sellers who would not trade in a Walrasian equilibrium (v < p∗ and c > p∗) enter,

hoping to find a very efficient trading partner who prefers accepting an unattractive offer to

incurring search costs to find another trading partner. A simple case illustrating this is a seller

with c = 1 − ǫ in a static setup for some small positive ǫ. This seller is willing to enter, since

she can make a positive expected profit by, for example, offering a price 1− ǫ/2, which will be

accepted with a (small) positive probability. The reason a buyer with v ≥ 1− ǫ/2 accepts in a

static setup is that he would get zero utility if he were to reject. Such a seller has a negative

marginal contribution to welfare, since her offer is rejected with a probability close to 1, that

is, FB(1− ǫ/2). In other words, most of the time she just holds up trade.25

An intermediary excludes some of the traders, which has the effect of reducing excessive

entry additionally to the effect of the deadweight loss of monopoly. In some cases, the ensuing

25This is different from an auction, in which an additional inefficient entrant does not prevent the most efficient
bidder from winning the auction.
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efficiency gains dominate the standard deadweight loss of exclusion.26

6 Conclusions

We have derived an optimal dynamic mechanism for profit maximizing intermediaries. While

the proof that the mechanism is optimal in the class of non-stationary, non-anonymous mech-

anism is rather lengthy, there is a very intuitive implementation of the mechanism. The im-

plementation consists of charging stationary, anonymous participation fees and letting buyers

and sellers bargain.

The equilibrium we consider is unique in the class of non-trivial balanced full-trade equi-

libria.27 Outside of this class there may be additional equilibria. One can give the usual

justification provided in the two-sided markets literature why one should focus on the profit-

maximizing equilibrium: the platform can devise off-equilibrium payment schemes to destroy

any other equilibrium than the profit-maximizing one. As an example, consider the trivial no-

trade equilibrium, in which neither buyers nor sellers enter. The platform can offer subsidies

to participants to “jump-start” the market in order to avoid this equilibrium.28 Further, in

a static setup, the profit-maximizing equilibrium can be shown to be the unique non-trivial

equilibrium (see Appendix B).

This paper presents a novel analysis of dynamic for-profit intermediation and it could be

extended in a number of directions. First, we have restricted attention to markets with a

continuum of traders. This may be a useful simplification in the realm of e-commerce, whenever

numerous traders participate in the platform. But obviously there are markets where this

assumption may not be a good one. Deriving an optimal dynamic mechanism in this finite

setting stands as an interesting open question. Second, while we have allowed for non-stationary

mechanisms, the environment itself is stationary. It would be interesting to know how our

results would generalize to non-stationary environments, when the distributions of types in the

entering cohorts change over time. These extensions are left for future research.

26In the above example, overall welfare with an intermediary (including the intermediary’s profits) is always
higher in a static setup (δ → 0). However, one can easily construct examples in which the welfare comparison is
ambiguous even in the static setup.

27For any other non-trivial balanced full-trade equilibrium, the marginal type conditions (13) and (14) would
not be satisfied.

28This is e.g. the story of Diners Club, which initially gave vouchers to customers.
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Appendix

A Omitted Proofs

Proof of Proposition 1. A type-v buyer i who reports v̂ to the mechanism will have expected
utility

UB
i (v, v̂) = vQB

i (v̂)− TB
i (v̂),

where

TB
i (v̂) :=

∞
∑

s=0

δs−τ(i)tBi,s(v̂)
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is the expected net present value of payments and

QB
i (v̂) :=

∞
∑

s=0

δs−τ(i)qBi,s(v̂)

is the ultimate discounted probability of trading (which can be viewed as the “expected net
present value of the probability of trade”). Similarly, define QS

j (c) and T S
j (c). Incentive

compatibility implies the Envelope Formula

UB
i (v, v) =

∫ v

0
QB

i (x)dx+ UB
i (0, 0),

which can be used to back out the expected net present value of future payments

TB
i (v) = vQB

i (v)−
∫ v

0
QB

i (x)dx− UB
i (0, 0).

A standard argument à la Myerson then implies that the expected payment made by type v
buyer to the seller is equal to

TB
i =

∫ 1

0
TB
i (v)dFB(v)− UB

i (0, 0) =

∫ 1

0
JB(v)Q

B
i (v)dFB(v)− UB

i (0, 0).

The expected time 0 present value of the intermediary’s revenue from all buyers is equal to

TB :=

∫ ∞

0
δτ(i)TB

i di =

∫ ∞

0

∫ 1

0
δτ(i)JB(v)Q

B
i (v)dFB(v)di−

∫ ∞

0
δτ(i)UB

i (0, 0)di.

Similarly, the total monetary outlay to the sellers is

T S :=

∫ ∞

0
δτ(j)T S

j dj =

∫ ∞

0

∫ 1

0
δτ(j)JS(c)Q

S
j (c)dFS(c)dj +

∫ ∞

0
δτ(i)US

j (0, 0)dj.

The intermediary’s objective is to design a mechanism M that maximizes the expected
profit

T = TB − T S (33)

subject to the constraint (1) that trade is balanced in each period. As usual, the intermediary
will choose to fully extract the surplus of the most inefficient types: UB

i (0, 0) = US
j (1, 1) = 0.

Our key insight is that we can relax the constraint that trade balance has to hold in each
period. Instead, we impose the weaker restriction that discounted trade balance has to be
satisfied overall. Then we show that a solution of the relaxed problem exists that satisfies the
stronger constraint.

Multiply the equation in (1) for each s by δs and add up:

∞
∑

s=0

δs
∫ ∞

0

∫ 1

0
qBi,s(v)dFB(v)di =

∞
∑

s=0

δs
∫ ∞

0

∫ 1

0
qSj,s(v)dFS(c)dj.
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Interchanging the order of summation and integration, and factoring out δτ(i), δτ(j), we get

∫ ∞

0
δτ(i)

∫ 1

0

∞
∑

s=0

δs−τ(i)qBi,s(v)dFB(v)di =

∫ ∞

0
δτ(j)

∫ 1

0

∞
∑

s=0

δs−τ(j)qSj,s(v)dFS(c)dj.

The sums under the inner integrals can be recognized as discounted trading probabilities
QB

i (v), Q
S
j (c); substituting them, we obtain our relaxed trade balance constraint:

∫ ∞

0

∫ 1

0
δτ(i)QB

i (v)dFB(v)di =

∫ ∞

0

∫ 1

0
δτ(j)QS

j (c)dFS(c)dj. (34)

The intermediary’s problem is to maximize profits as given by (33) subject to the constraint
(34). Note that both (33) and (34) are linear in QB

i (v), Q
S
j (c) and can be handled by a method

similar to the one in Myerson and Satterthwaite (1983).
Specifically, similarly to the approach in Myerson and Satterthwaite (1983), we set up a

Lagrangian

L := LB + LS ,

where

LB :=

∫ ∞

0

∫ 1

0
δτ(i)(JB(v)− λ)QB

i (v)dFB(v)di,

LS :=

∫ ∞

0

∫ 1

0
δτ(j)(λ− JS(c))Q

S
j (c)dFS(c)dj,

and λ is the Lagrange multiplier.
Because L is linear in QB

i and QS
j , maximizing the Lagrangian with respect to QB

i (v), Q
S
j (c)

pointwise yields the bang-bang solution

QB
i (v) =

{

1, if JB(v) ≥ λ,

0, otherwise,
QS

j (c) =

{

1, if JS(c) ≤ λ,

0, otherwise.

The allocation rule provided in the proposition is obtained by choosing the marginal types v,
c such that

JB(v) = JS(c̄) = λ.

This optimal allocation can be implemented by setting period trading probabilities as in (3) in
the proposition. This obviously satisfies the trade balance in each period provided the marginal
types v, c̄ satisfy 1− FB(v) = FS(c̄).

Proof of Proposition 3. Proof of part (i). Assume to the contrary that it is possible to im-
plement the optimal (balanced full-trade equilibrium) mechanism with transaction fees. The
intermediary charges the transaction fee κB to the buyer, κS to the seller. Buyers with valu-
ation above v and sellers with costs below c enter. With probability αB the buyer makes the
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offer, which is p
B
= c+κS . With probability αS the seller makes the offer, which is pS = v−κB .

The indifference condition for the marginal types in a full-trade equilibrium is

αB(v − p
B
) = αBκB , αS(pS − c) = αSκS ,

by the same logic that leads to (15) and (16). The two equations are in fact one equation,
κB + κS = v − c. It is useful to define the sum of fees as κ := κB + κS , since this will matter
most for much of the following analysis. Note that κ = v− c is a necessary, but not a sufficient
condition for implementing the optimal mechanism as a full-trade equilibrium in a dynamic
random matching market.

In the following, we will argue that the marginal seller c has an incentive to deviate by
setting a price which will be rejected with positive probability. An analogous reasoning holds
for the marginal buyer.

Consider the utility of a seller with cost c setting price pS in a static setup (δ = 0),

πS(c, pS) = αS(pS − κS − c)(1 − ΦB(pS + κB)αB(pB − κS − c),

which can be obtained by adding transaction fees to (22). It is useful to rewrite this in terms
of the gross price p̂S = pS + κB :

πS(c, p̂S) = αS(p̂S − (c+ κ))(1 − ΦB(p̂S)) + αB(pB − κS − c)

= αS

∫ 1
pS
(JB(v)− (c+ κ))dFB(v)

1− FB(v)
+ αB(pB − κS − c),

by the same logic as after (22). The derivative at c = c, p̂S = v is positive,

∂πS(c, p̂S)

∂p̂S
= −αS(JB(p̂S)− (c+ κ))fB(p̂S)

1− FB(v)
> 0,

since JB(v) < v and c + κ = v. Therefore, the marginal seller has an incentive to deviate
from the full-trade equilibrium by setting a gross price p̂S > v, which will be rejected with the
positive probability ΦB(p̂S) > 0.

For a dynamic setup (δ > 0), the same logic has to be applied as the one leading from
(22) to (27) and the following expressions, that is, replacing ΦB and JB with their dynamic
counterparts Φ̃B and J̃B . This still leads to a utility function by the seller which increases in
p̂S at c = c, p̂S = v, since

−(J̃B(v)− (c+ κ)) > 0, (35)

and hence this cannot constitute a full-trade equilibrium.
Proof of part (ii). To achieve a full-trade equilibrium, the intermediary has to make sure

that the marginal seller does not have an incentive to set a gross price higher than v. That is,
the inequality in (35) has to be reversed, which is equivalent to

κ ≤ J̃B(v)− c. (36)

By an analogous reasoning, the marginal buyer will set a price c+ κS if

κ ≤ v − J̃S(c). (37)
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Putting (36) and (37) together yields (29). This ensures that deviation from a full-trade
equilibrium is not profitable.

The indifference condition for the marginal seller is

min{B,S}
S

αS(1− ΦB(pS + κB))(c − pS) = KS + αSκS ,

which can be obtained by adding transaction fees to (14). In terms of the gross price p̂S =
pS + κB , this is

min{B,S}
S

αS(1− ΦB(p̂S))(c − p̂S − κB) = KS + αSκS .

Because of min{B,S}/S = 1 and 1− ΦB(p̂S) = 1, this simplifies to

αS(v − c− κ) = KS . (38)

By the same logic for the marginal buyer, we get

αS(v − c− κ) = KB. (39)

Adding (38) and (39) yields the first part of (28); dividing (38) and (39) yields the second
part.
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