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Electronic excitations in long polyenes revisited

Maximilian Schmidt and Paul Tavan®
Lehrstuhl fiir BioMolekulare Optik, Ludwig—Maximilians Universitdt Miinchen,
Oettingenstr. 67, 80538 Miinchen, Germany

(Received 2 November 2011; accepted 6 March 2012; published online 27 March 2012)

We apply the valence shell model OM2 [W. Weber and W. Thiel, Theor. Chem. Acc. 103, 495,
(2000)] combined with multireference configuration interaction (MRCI) to compute the vertical
excitation energies and transition dipole moments of the low-energy singlet excitations in the
polyenes with 4 < N < 22m-electrons. We find that the OM2/MRCI descriptions closely resem-
ble those of Pariser-Parr-Pople (PPP) rr-electron models [P. Tavan and K. Schulten, Phys. Rev. B 36,
4337, (1987)], if equivalent MRCI procedures and regularly alternating model geometries are used.
OM2/MRCI optimized geometries are shown to entail improved descriptions particularly for smaller
polyenes (N < 12), for which sizeable deviations from the regular model geometries are found.
With configuration interaction active spaces covering also the o- in addition to the m-electrons,
OM2/MRCI excitation energies turn out to become smaller by at most 0.35 eV for the ionic and
0.15 eV for the covalent excitations. The particle-hole (ph) symmetry, which in Pariser-Parr-Pople
models arises from the zero-differential overlap approximation, is demonstrated to be only weakly
broken in OM2 such that the oscillator strengths of the covalent 1B states, which artificially vanish
in ph-symmetric models, are predicted to be very small. According to OM2/MRCI and experimental
data the 1B state is the third excited singlet state for N < 12 and becomes the second for N > 14. By
comparisons with results of other theoretical approaches and experimental evidence we argue that
deficiencies of the particular MRCI method employed by us, which show up in a poor size consis-
tency of the covalent excitations for N > 12, are caused by its restriction to at most doubly excited

references. © 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.3696880]

I. INTRODUCTION

Based on multireference configuration interaction
(MRCI) calculations for the Pariser—Parr-Poplel’3 (PPP) and
Hubbard* models of polyenes (see Fig. 1 for the chemical
structure of these linearly conjugated molecules) as well
as using analytical results on the infinite Hubbard chain,>°
Tavan and Schulten published in 1987 a seminal paper on
the “Electronic excitations in finite and infinite polyenes.”’
In view of the rather simple m-electron model Hamiltonians
employed in this study, its apparent and lasting success is
surprising. Considering the substantial progress in computer
technology, in the efficiency of configuration interaction
(CI) programs (see, e.g., Ref. 8) and in the development of
improved valence shell Hamiltonians particularly achieved by
the so-called OM2 model,'° a reinvestigation of this issue
seems worthwhile and is the purpose of this contribution.

A. Theory of =-electron excitations in long polyenes

Although the quoted paper’ in part solely exploited a pre-
vious PPP/MRCI prediction!! on the energetic ordering of the
electronically excited singlet states S;, i = 1,2, ... inregularly
alternating polyenes N = 4, 6, ..., 16 m-electrons, it added
important insights, e.g., by relating the excitation energies
AE;(N) to two different dispersion relations EP(k), of quasi-
particles 8 = 1, 2 in the infinite system, i.e., polyacetylene.
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Two classes of quasi-particle excitations 8 were identified, the
triplet-triplet (#f) magnons and the particle-hole (ph) excitons.
As explained in more detail in Sec. I A of the supplementary
material'?> (SM), each excited state S; in a polyene of size N
is characterized by the quasi-particle label 8 and by a mo-
mentum quantum number g = 1, 2, ..., which defines the dis-
crete quasi-particle momentum k,(N) = g /(N + 1). Then the
excitation energies derive through AE(’IS (N)=E ﬂ(kq (N)).
This connection is exact in one-electron theory. In many-
electron theory it becomes exact in the limit of large systems
(N — 00).13

The three lowest covalen excited singlet states
of the polyenes were shown to belong to the class of #-
magnons.7’13 Here, the name “covalent” derives from the
dominant covalent Rumer diagrams appearing in valence
bond descriptions (see, e.g., Refs. 16-18). The covalent ex-
citations are the 2Ag_, 1B, and 3Ag_ states as classified by
the irreducible representations of the C,, point groups of
the all-frans polyenes and by the “Pariser alternancy sym-
metry” (PAS), which provides the additional labels “+” and
“—. 1419 The PAS is an artificial symmetry appearing in 7-
electron models such as Hiickel,2° PPP, or Hubbard, which as-
sume a zero-differential overlap (ZDO) between the atomic p,
orbitals. In correlated ZDO models the covalent singlet states
of the polyenes are all characterized by the PAS label “—.”

On the other hand, the two lowest ionic!'-!1%15 7z *.
excitations 1B and 1A} of the finite chains belong to the

t1]’14’15

dispersion EP"(k) of the ph-excitons.”'3 All ionic states are
characterized by the PAS label “+.”

© 2012 American Institute of Physics
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FIG. 1. Chemical structure of all-frans polyenes H(CH=CH),H, with
N = 2n m-electrons.

Adding the PAS labels “4” or “—" to the group theoret-
ical state symbols is common in polyene spectroscopy'®2!-23
although the PAS is an exclusive feature of ZDO models
and is absent in real polyenes. According to the PAS, tran-
sitions between states of identical PAS symmetry (such as
the 1A, ground state and the 1B excited state) are strictly
dipole-forbidden and, correspondingly, many authors erro-
neously were misled to think that this peculiar property of
ZDO models is valid also in actual polyenes (see, e.g., the dis-
cussions on p. 2397 in Ref. 24). However, since 1998 several
authors®%" have demonstrated that the 1B states actually
carry small transition dipole moments.

Because the description of the diatomic overlap has
been greatly improved in the OM2 valence shell Hamilto-
nian, which has been developed and carefully evaluated by
Thiel and co-workers for a series of different dye molecules
and various levels of CL>!" we expect that our following
OM2/MRCI treatment can properly account for the excita-
tion energies and oscillator strengths of the covalent and ionic
excitations in the polyenes.

Figure 2 illustrates the early computational results”'! ob-
tained by PPP-MRCI calculations on the vertical excitation
energies AE;(N) of the low-lying singlet states S; in regularly
alternating polyenes with N =4, 6, ..., 16 m-electrons. In par-
ticular, these results predicted that the 1B:r state, which causes
the strong optical absorption band of the all-trans polyenes
and is the second excited singlet state S in shorter polyenes, '
becomes the third excited singlet state S in long polyenes (N
2 10), because the excitation energy of the lowest covalent
state of B, symmetry (1B) decreases more steeply with in-
creasing polyene length than that of its ionic relative (1B]").
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FIG. 2. Excitation energies AE(N) of the low-lying ionic (1B{,1Af) and
covalent (2Ag’,lB; ,3Ag’) singlet states in polyenes with 4 < N < 16
7-electrons from early PPP-MRCI calculations.”> !
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Similarly, the 3A;" state and higher 7-excitations should also
fall below the 1B state in sufficiently long polyenes.”

B. Development of polyene spectroscopy

Concerning polyene spectroscopy, the prediction that an
increasing number of covalent ##-excitations should appear in
the energy gap AEgs = E(1B]) — E(2A;) > 0 between the
optically bright 1B state and the lowest covalent excitation
2A; in long polyenes was the key result of Ref. 7, which
distinguished this theory from earlier ones and from the sta-
tus of experimental knowledge available at that time. Since
the early 1970s the excited state sequences S; = 2A, and >
= 1B had been firmly established theoretically and experi-
mentally for short polyenes (N < 10), the finding of which had
led to the assumption that this sequence of singlet states holds
for all polyenes.'®?%2° Note, however, that this sequence is
still a matter of debate’*3* for the shortest polyenes with
N <8 (cf. Sec. I B in the SM).

It took more than a decade until the quoted predic-
tion was verified experimentally’*3* and it has been fre-
quently emphasized that the intermediate covalent states of
the carotenoids (e.g., 1B,,3A,) can support the efficient en-
ergy transfer to the chlorophylls in the light harvesting pro-
cess of photosynthesis.?!>233

It may be, however, that the presence of the 1B sin-
glet state below the 1B state has been actually observed in
pure polyenes much earlier. In 1985 Snyder et al.>® interest-
ingly observed a drastic qualitative change of the polyene flu-
orescence spectrum upon increasing the size of an all-trans-
polyene from N = 12 w-electrons to N = 14. They attributed a
fluorescence newly appearing at N = 14 energetically a little
below the onset of the 1B~ absorption to this state despite the
370 cm™! Stokes shift and the lack of symmetry between the
absorption and emission spectrum, both of which are easily
rationalized in terms of another electronic state (1B) slightly
below the 1B state. According to Wang et al.’” the 1B state
appears below the 1B} state in the carotenoids for N > 14,
i.e., at a size very close to that of the pure polyene studied
in Ref. 36. Thus, the 0-0 transitions of the two B, states ap-
pear to switch their respective energetic ordering somewhere
above N = 10 in agreement with the early PPP/MRCI results
displayed by Fig. 2, which however refer to model geometries
and vertical transitions.

Note here that the SM (Ref. 12) provides in Table S4
experimental (gas phase) polyene excitation energies con-
structed and compiled by us from many sources available
in the literature.’**> Additionally, these data are graphically
represented in the accompanying Figs. S15 and S16.

C. Quantum chemical descriptions of polyene spectra

The apparent success of the quoted PPP/MRCI
descriptions’>!! has subsequently inspired several theory
groups to search for additional covalent excitations ener-
getically below the bright 1B} absorption in long polyenes
(N > 12) using more advanced theoretical methods.2%43—4
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For instance, in 2004 Kurashige et al.** studied the all-
trans-polyenes with 6 < N < 28m-electrons in a correlated
ab initio setting, which restricted the active space for full CI
expansions to the five highest occupied and five lowest unoc-
cupied molecular orbitals (MOs), and estimated o -7 interac-
tions by second order perturbation theory. According to these
calculations the vertical transition to the 1B, state appears
below the lB:r transition at N > 14 and the transition to the
3Ag state at N > 22. In the carotenoids the latter state switch
is observed for the 0-0 transitions at N > 20,7 while the early
PPP/MRCI treatment yielded an extrapolated switch at
N> 20.

Using various ab initio basis sets and a correlation treat-
ment applying the “extended second order diagrammatic
construction” [ADC(2)-x], Starcke et al.** considered the
polyenes with 4 < N < 12. Their calculations predicted not
only the 2A; state but also the 1B, state for all polyenes
with N > 6 below the transition to the ionic 1B state. Sim-
ilarly, the “density matrix renormalization group” approach
(DMRG), which was combined with complete active space
self-consistent field (CASSCF) calculations, of Ghosh et al.,?®
which were carried out for polyenes with N = 8§, 12, 16, 20, 24
m-electrons, placed already at N = 8 the covalent excitations
2Ag‘,1B; , and 3Ag‘ below the optical transition.

Finally, Marian and Gilka®* applied the “density
functional theory multireference configuration interaction”
method (DFT/MRCI) to polyenes with 6 > N > 26 using
extended basis sets, geometries optimized for single deter-
minant Kohn-Sham ground states, and described dynamic
correlations by MRCI expansions “kept short by extensive
configuration selection at a few thousand configuration state
functions.”® According to these results the 1B state be-
comes the S, state for N 2 22 at the chosen Franck-Condon
geometry, while the 3A; singlet excitation stays above the
1B state in all polyenes considered.

In summary, the quoted calculations and, here,
particularly Refs. 43 and 45, essentially confirmed the early
PPP/MRCI descriptions of the low-lying electronically ex-
cited singlet states concerning the relative spacings of the
covalent and ionic states in the polyenes. In contrast, con-
ventional and very expensive correlated ab initio treatments
based, e.g., on third order coupled cluster theory,47 which are
applicable only to relatively small polyenes, tend to invert the
experimental state order by assigning negative gaps AEga of
—0.19 eV, —0.14 eV, and —0.03 eV for N = 4, 6, and 8, re-
spectively [for discussions of this issue see Ref. 48 (N = 4)
and Sec. I B of the SM (N = 8)].

26,43-45

D. Open questions

In view of the well-established theory of polyene spec-
tra outlined above it may seem that a renewed study of the
polyene spectra using a combination® of extended CI with
a valence shell model such as OM2%!? cannot add impor-
tant insights. In fact, concerning the excited state orderings
in long polyenes we cannot expect much more than a confir-
mation of previous results. However, concerning other issues
OM2/MRCI can open new perspectives.

J. Chem. Phys. 136, 124309 (2012)

First, it enables an answer to the important theoretical
question why the PPP/MRCI descriptions were so success-
ful despite the use of model geometries instead of optimized
geometries and despite the inherent neglect of o-7 interac-
tions. Here, it will allow us to check how strongly the exci-
tation energies change, if relaxed ground state geometries are
used and if o-7 (and o-0) correlations are included. Second,
by comparison with carefully compiled experimental data
(cf. Sec. I B in the SM) it will indicate which type of MRCI
approach is necessary for high-quality OM2 calculations of
polyene excited states. Third, it will yield transition dipoles
for the 1A, — 1B excitations in long polyenes and, thereby,
indicate to what extent the PAS (Refs. 14, 19) is actually bro-
ken in OM2/MRCI. These issues represent the program of our
current contribution. In a subsequent contribution we intend
to address the geometry relaxations occurring in the various
excited singlet states thus getting access to 0-0 transitions.

Il. METHODS

We carried out large scale CI calculations on the polyene
spectra using the OM2 valence shell model Hamiltonian® and,
for comparison with previous CI descriptions of the correlated
m-7* excitations,”!! also with the PPP mr-electron model.'
We applied the PPP Hamiltonian in the form and with the
parameters employed previously.”!!

A. Cl methods

The CI expansions were made up from spin adapted
configurations (SACs). The associated CI matrices were cal-
culated using the matrix element formulas of Tavan and
Schulten* combined with the algorithm for efficient eval-
vation and compact storage of CI matrices of Strodel and
Tavan.® The corresponding CI program offers, in addition to
PPP, an interface to the MNDQO97 (Ref. 50) program pack-
age, and therefore enables also OM2/CI calculations.®*3

Disregarding the possibilities of individual configuration
selection, in the following OM2/CI study we either included
all SACs, which are singly and doubly excited with respect
to the closed shell Hartree-Fock (HF) ground state (DCI),
or all SACs, which are additionally triply and quadruply ex-
cited (QCI). Furthermore we carried out MRCI calculations,
in which the reference SACs were selected for each excited
state from the DCI wave function according to certain selec-
tion criteria.

B. Active HF-MO spaces

The “active” space of HF MOs included into CI consisted
in the case of PPP of all 7-MOs. In the case of OM2 we se-
lected certain MO subsets to keep the CI expansions hand-
ily small. Here we used either all N m-orbitals and called
a corresponding calculation “OM?2/CI(xr),” or we added cer-
tain sets of o-orbitals. We chose either all 4N + 2 o -orbitals
[“OM2/CI(o,m)”] or only the subset consisting of the N + 1
energetically highest occupied and the N + 1 energetically
lowest unoccupied HF-MOs [“OM2/Cl(o,,7)”]. The latter
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distinction is suggested by a peculiar band gap separating in
the OM2 model of the polyenes the N energetically lowest
occupied and N energetically highest unoccupied o -orbitals
from the remaining (o ,,7) MO set just introduced. This gap
is apparent in Fig. S17 provided in the SM.

C. MRCI reference sets and SAC dimensions

MRCI methods aim at a size-consistent description
of excitation energies through a cancellation of the size-
extensiveness errors inherent to truncated CI expansions. The
specification of a particular MRCI method requires the defi-
nition of a procedure for selecting the set R(s,N) of reference
SACs characterizing a given electronic state s in a polyene
with N m-electrons. The MRCI basis then consists of the set
R(s,N) and of all those SACs, which are singly and doubly
excited with respect to the elements of R(s,N). We chose two
different procedures for the selection of the reference sets
R(s,N).

In a global approach we included for the ground state
solely the closed shell HF determinant into R(lA; ,N), while
for the excited states the reference sets covered the complete
DCI bases of the associated symmetries. Thus, the ground
state is calculated by DCI and the excited states are calculated
by QCI. We call this approach MRCI., because the reference
sets are (on the DCI level) “complete” for all states.

In a state specific and more approximate approach we se-
lected the excited state reference sets R(s,N) from DCI cal-
culations by including only those SACs into R(s,N) which
have the largest CI coefficients and whose cumulative con-
tribution to the DCI wave function exceeds a certain thresh-
old 6.'-*% We arbitrarily chose the value 6 = 92 %. We call
the approach associated with this state specific reference se-
lection “MRCI;.” Like in MRCI, also here the set R(1A; .N)
was restricted to the HF determinant. Therefore, differences
of MRCI and MRCI, excitation energies solely derive from
excited state energies.

For the PPP Hamiltonian of the polyenes with 4 < N
< 22 m-electrons our DCI based MRCI; reference selection
procedure yields reference sets R(s,N), whose sizes |R(s,N)|
are listed in Table I. For the excited states the threshold
0 =92 % leads to numbers |R(s,N)|, which increase with N.

TABLE 1. Numbers of references |R(s,N)| used in PPP/MRCI; for different
polyenes N. For the excited states the reference SACs in the sets R(s,N) cover
at least 92 % of the DCI wave functions.

N 1A; 2A; 1B 1B}
4 1 6 - 1
6 1 11 9 1
8 1 17 18 1
10 1 23 31 2
12 1 32 47 2
14 1 48 66 2
16 1 67 88 3
18 1 86 118 4
20 1 110 151 5
22 1 141 194 6

J. Chem. Phys. 136, 124309 (2012)

TABLE II. PPP/CI SAC dimensions for the lA; ground state, for the Ay
and B, excitations treated by MRClI, and for three low-lying excited states
described by MRCI; at different polyene lengths N.

MRCI MRCI, MRCI;

N 1A7 Ag B, 2A; 1B 1B}

4 9 12 9 12 - 9
6 30 87 79 86 78 41
8 81 611 585 557 525 130
10 182 3328 3274 2471 2700 551
12 361 14198 14081 8628 11271 1225
14 650 49 495 49291 26637 34572 2379
16 1089 47273 146913 68547 89264 5933
18 1722 386498 385938 164267 212574 16355
20 2601 917076 916201 327127 438757 36138
22 3782 1933501 2002647 680759 830266 61908

This increase is much smaller for the ionic 1B state than for
the two covalent excitations. Among the latter it is more pro-
nounced for the 1B, than for the 2A; state indicating that
correlation effects are even more important for the higher co-
valent excitations than for the already highly correlated 2A;
state. Note that the 1B state does not yet exist in butadiene (N
= 4), because it is a simultaneous excitation of three 77 -bonds
into three local triplets coupled to an overall singlet state’ and
because butadiene has only two such bonds.

In OM2/MRCI;(7r) calculations one gets slightly smaller
numbers of references (cf. Table S15 in the SM). The
OM2/MRCI, () excitation energies turned out to be very sim-
ilar to those from the more expensive MRCI, approach, which
is why we do not show them here.

Table Il compares for the PPP/CI calculations the dimen-
sions of the SAC expansions, which result for the MRCI de-
scription of the 1A, ground state, for the MRCI. expansions
of the excited states with A, and B, symmetries, respectively,
and for the MRCI; treatments of the three low-lying cova-
lent and ionic excitations. Note here that we did not utilize
the PAS to further reduce the dimensions of the CI matrices
like in the earlier work.”"!! Therefore, the dimensions listed
in the table also apply to OM2/CI(;r) descriptions, as long
as the lAg_ state and OM2/MRCI.(;r) are considered. For
OM2/MRCI(7r) the SAC dimensions (not shown) are simi-
lar to those given in the table for PPP/CI.

At N = 22 the excited state MRCI, descriptions cover
about 2 x 10% SACs for both spatial symmetries. For MRCI
the dimensions are seen to vary strongly among the excited
states. At N = 22 the MRCI; expansions cover 3 % (1B}),
35 % (2Ag), and 41 % (1B) of the associated MRCI, ba-
sis sets, respectively. These percentages become systemati-
cally smaller with increasing polyene size N showing that
the computational advantage of MRCI over MRCI, increases
with N.

If one includes also o-MOs into the active space, then
the MRCI, dimensions become rapidly very large with in-
creasing N. Therefore, we chose in these cases the more cost
effective MRCI approach. The sizes of the excited state refer-
ence sets R(s,N) resulting from the same DCI density thresh-
old 8 = 92 %, which was used for the () active spaces of the
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TABLE III. OM2/MRCI; SAC dimensions for the (o,,7) and (o,7) active spaces.

1A, 2A; 1B, 1B}
N (o) (o.m) (0,7) (0,m) (0,7) (0,m) (o,7) (o,m)
4 350 2234 3028 16 468 ... 1696 13 646
6 1263 9661 32419 284 025 26 840 242 105 7623 63 402
8 3782 28 254 143 995 1665 782 160 503 1621 807 22992 192 416
10 8 557 65 887 518 699 tx 703 502 tx 82611 715 746
12 16 874 132 542 1502 330 tx 2191414 tx 260 465 2291 309

PPP model, are listed in Table S5 in the SM for the complete
(o,m) active spaces. One finds that the reference sets R(s,N)
of the covalent excitation states are essentially unchanged
upon expanding the () active spaces of PPP to the complete
(o,m) active spaces of OM2. In contrast, the sets R(IB:r ,N)
become considerably larger. Thus, the properties of the 1B}
state should be more strongly affected by -7 and o-0 cor-
relations than those of the covalent excitations. Note that the
strong influence of these correlations on the 1B state has
been first described for N = 4, 6 by Cave and Davidson.>'>?

We used the reference sets R(s,N) of OM2/MRCl(o,7)
determined from OM2/DClI(o,7) also for OM2/MRCI(7)
and OM2/MRClI(o ) to single out the effects of o -7 and
o-o correlations. For all active spaces the OM2/MRCI;
ground state was represented by DCI.

Table III lists the SAC dimensions of the OM2/MRCI
expansions constructed from the reference sets in Table S5
(SM) for the restricted (o ,,77) and the complete (o,7) active
spaces. Note that for N = 10 the MRCI(o,7) matrix of the
2A; and 1B states did not fit anymore into the 64 GiB of
dynamic memory available on the computer used by us for
these calculations, because the dimensions were 5 030 739
and 5 819 320. Similarly, for N = 12 the MRCI(o ) matrix
of the 1B state exceeded the available memory. But whereas
in the latter case the iterative diagonalization of the matrix
through repeated reading of the matrix from hard disk could
be completed within about half a day of computer time, each
of the former diagonalizations would have required an esti-
mated time of 40 days, which we considered as “too expen-
sive” (tx). Correspondingly, these omitted computations are
labeled by “zx” in Table III.

D. Polyene geometries

For comparison with PPP/MRCI. we carried out
OM2/MRCI () calculations at the polyene model geome-
tries employed in PPP.”-!! This geometry featured 120° bond
angles within the carbon backbone and lengths of 1.45 A
and 1.35 A for the C—C single and C=C double bonds, re-
spectively. The C—H bond lengths were set to 1 A and the
C—C—H bond angles to 120°.

To study the effects of geometry relaxation on vertical
excitation energies we subsequently calculated by OM2/DCI
optimized geometries of the 1A, state for the () and
(o,m) active spaces. For N = 12 we checked to what ex-
tent the addition of a second reference SAC, which was
the HOMO? —LUMO? double excitation, to the reference

set R(1A,,N) changes the OM2/MRCI; optimized geometry
(method MRCI*). During geometry optimizations the planar
Cyn symmetry was strictly enforced.

lll. RESULTS

Here we will first address the question, why the early
PPP/MRCI; descriptions of the electronic excitations in long
polyenes were so successful despite the use of model geome-
tries instead of optimized geometries and the inherent neglect
of o -1 interactions. To separate these two issues we first com-
pare PPP/MRCI with OM2/MRCI(rr) for equivalent model
geometries (cf. Sec. II D).

Such a comparison requires a MRCI method, which
treats the PPP and OM2 models of the polyenes as simi-
larly as possible. Here, the established state specific MRCI
approach”!! has the disadvantage of yielding different refer-
ence sets R(s,N) and correspondingly different SAC dimen-
sions for the excited states despite the use of an identical DCI
density threshold 8. MRCI, (Sec. II C), in contrast, provides
identical SAC bases for PPP and OM2(sr) and, therefore, al-
lows us to single out the effects of the different Hamiltonians
on calculated polyene spectra. Choosing MRCI, instead of
MRCI; raises the initial question, how well PPP/MRCI, com-
pares with PPP/MRCI.

A. PPP/MRCIs and PPP/MRCI, are nearly equivalent

To check how well PPP/MRCI; excitation energies
AE(s) of the m-electron excitations s € {ZAQ, 1B, 1B/}
are reproduced by PPP/MRCI. we applied both methods to
the polyenes in the range 4 < N < 22 (cf. Sec. II C, numerical
values are listed in Tables S6 and S7 in the SM).

Figure 3 compares the excitation energies AE(s,N)
(gray) and AE (s,N) (black) of three low-lying m-electron ex-
citations obtained with PPP/MRCI; and PPP/MRCI,, respec-
tively. Because the ground state is described by DCI in both
cases, differences reflect those of excited state energies
E(s,N). As a consequence of the variational principle, the en-
ergies E(s,N) resulting from the less extended MRCI; treat-
ment are everywhere above the MRCI. energies E.(s,N).
Apparently, however, the differences AE; _ .(s,N) = E(s,N)
— E.(s,N) are small such that the two MRCI approaches rep-
resent similar descriptions.

The differences AE _ .(s,N) are displayed in a magnified
fashion in Figure S18 in the SM and are thoroughly discussed
in the accompanying text. In particular, we discuss the fact
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FIG. 3. PPP/MRCI; (gray) and PPP/MRCI, (black) excitation energies
AE(s,N) of the singlet states s € {ZAQ,IB; ,lBlT } in the polyenes with
4 < N < 22 m-electrons.

that MRCI; results are connected with a certain degree of un-
certainty, because there are many different and a priori rea-
sonable procedures for reference selection. However, no such
uncertainty is connected with MRCI,. For our comparison of
PPP with OM2 we therefore chose the latter approach.

B. PPP/MRCI. and OM2/MRCI. () are nearly
equivalent at the PPP model geometries

If one chooses the () active spaces in OM2/MRCI,
treatments, then the variational CI spaces have the same di-
mensions (see Table II) as in PPP/MRCI.. If one additionally
chooses for OM2 regular model geometries, which are iden-
tical to those used in PPP (see Sec. II D), then MRCI, excita-
tion energy differences are exclusively caused by differences
of the two model Hamiltonians PPP and OM2.

A striking difference is the artificial PAS (Refs. 14, 19)
of the PPP model, which is absent in OM2 (cf. Sec. I A). Cor-
respondingly, the classification of a given OM2/MRCI.(rr)
state as “4-” or “—" must rely on matchings with PPP/MRCI,
expansions. Fortunately these matchings are straightforward,
because the PPP and OM2 CI expansions turned out to be very
similar.

Consider, for instance, the PPP/MRCI. and
OM2/MRCI.(r) wave functions of the 2Ag_ state in
hexatriene, whose most important contributions are depicted
in Figs. 4(a) and 4(b), respectively. As a consequence of
the PAS, the PPP/CI wave function displays a particle-hole
symmetry, which is obtained by taking the mirror images of
the MO energy levels and orbital occupation patterns with
respect to the Fermi level and by subsequently exchanging
particles (filled circles) with holes (empty circles) and
vice versa. Hence, the shown double excitation is invariant
under this operation, whereas the two single excitations map
onto each other. Therefore, the coefficients of the latter SACs
have identical absolute values but different signs. Here, the
sign change indicates the “—” symmetry class.

The prerequisite for the PAS and the associated particle-
hole symmetry is that the particle and hole levels are symmet-
rically spaced around the Fermi level. Figure S19 in the SM
demonstrates for hexatriene that this symmetry is present in
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FIG. 4. Three singlet SACs strongly contributing to the 2A; excitation of
hexatriene (N = 6) according to (a) PPP/MRCI, and (b) OM2/MRCI.(r) in
a particle-hole representation covering the () active space.

PPP but is violated in OM2. As a consequence and as shown
in Fig. 4(b) the OM2/CI coefficients of two single excita-
tions have slightly different absolute values and the OM2/CI
wave function lacks the “4/ —” symmetry. On the other hand,
the absolute values of the PPP and OM2 CI coefficients are
quite similar indicating that the PAS is only weakly bro-
ken in the transition from PPP to OM2(xr). As a result, the
OM2/MRCI,(;r) wave functions are easily classified as “+”
or “—” by matching onto their PPP/MRCI, relatives. There-
fore, we will maintain the PAS symmetry labels “+/ —” also
in denoting excited states calculated by OM2/MRCI.

The close match of the CI expansions lets expect that the
size dependence of the polyene MRCI, excitation energies
should be similar in OM2 and PPP. This expectation is ver-
ified by Fig. 5, which displays for five low-lying singlet ex-
citations the differences AAEy of excitation energies calcu-
lated by the two methods at identical geometries. Because the
ground state correlation energies resulting from PPP/MRCI,
and OM2/MRCI. () are nearly identical (see Tables S7 and
S8 in the SM), the shown differences AAEy are mainly due
to different excited state energies (relative to the respective
HF energies).

4 6 8 10 12 14 16 18 20 22

N

FIG. 5. Differences AAEy = AEom2 — AEppp of excitation energies
obtained with PPP and OM2 by MRCI(xr) for the singlet excitations
s € {2A; 1B}, 1B ,3A; ,1A] ) of polyenes with regularly alternating model
geometries and sizes N.
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In the longer polyenes (N > 8) MRCI,(rr) predicts for the
two ionic states 1By and 1AJ excitation energies which
are by about 0.27 eV larger for OM2 than for PPP. For the
three covalent states ZA;, 1B, , and 3Ag , still larger blue
shifts are obtained. They are comparable for all three excita-
tions, decrease a little with NV, but still measure at least 0.40 eV
at N =22.

Thus, if one would shift the PPP/MRCI, excitation en-
ergies of the 1B state in Fig. 3(a), by 0.27 eV and those
of the covalent 2A; and 1B, excitations by about 0.43 eV
toward larger values, then one would get a visualization of
the OM2/MRCI. () prediction on the excitation energies of
these three states for regular geometries. One concludes, in
particular, that OM2/MRCI,(7r) assigns smaller values to the
energy gaps AEga than PPP/MRCI,. At N = 20, for instance,
the gap is predicted at 0.45 eV (OM2) and 0.58 eV (PPP),
respectively. However, apart from these nearly uniform spec-
tral shifts of the covalent and ionic excitations, respectively,
PPP/MRCI. and OM2/MRCI.(rr) yield essentially equivalent
descriptions of the w-electron excitations in regularly alter-
nating polyenes.

C. OM2 optimized geometries

As one can conclude from the r-electron bond orders re-
sulting from PPP/CI descriptions of polyene ground states, the
bond length alternation should vary within a given molecule.
The alternation should be pronounced near the two ends of
the chain and reduced at its center.’ Unfortunately, -electron
models such as PPP do not enable a rigorous optimization of
the polyene geometries. This drawback is removed with OM2,
because it includes all valence electrons. Here, the question
arises, which level of theory one should choose for the compu-
tation of ground state geometries. This question is important,
because calculated vertical excitation energies will differen-
tially and sensitively depend on the bond length alternation in
the chosen ground state geometry”'®4 (cf. also Sec. IIl F in
the SM).

As a simple observable for judging the bond length alter-
nation we chose the order parameter’

Almz(—l)’"(lm—l_c), m=1,2,...,N—1, eh)
where m counts the C—C bonds along the polyene chain,
¢ = N/2 is the number of the central bond, and I, = (I,
+1.+1)/2 is the average length of the central C—C bonds.
In a regularly alternating polyene the order parameter Al is
constant and positive along the chain. For realistic polyene
geometries Al,, will vary along the chain. Here, large values
of Al, indicate a pronounced and smaller values indicate a
reduced alternation at bond m.

To understand the geometrical effects of w-electron cor-
relation and of o-m and o-o interactions we have calcu-
lated the Cy;, ground state geometry of dodecahexaene at dif-
ferent levels of theory. We applied OM2/HF, OM2/DClI(r),
OM2/DCI(o,7), and OM2/MRCI*(o ) (which includes two
references, cf. Sec. II D). Figure 6 compares the order
parameters Al, obtained by these methods for the bonds
m=6,7,...,11,ie.,m—6>0.
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FIG. 6. Order parameter Al, (Eq. (1)) evaluated for the ground state of do-
decahexaene (N = 12) using different levels of theory (the parameters Is are
listed in Table S9 in the SM).

Figure 6 reveals that the bond alternation Al, is largest
at the OM2/HF ground state geometry (dashed-dotted curve).
It decreases from the ends of the polyene chain toward the
central bond m — 6 = 0. Including m-electron correlation at
the DCI level decreases the alternation Al,, (dotted curve).
Adding o-m and o-o interactions at the OM2/DCl(o,7)
level slightly increases Al,, again (dashed curve). Extending
the CI treatment beyond that level [OM2/MRCI*(o,7)] re-
verses this increase (solid curve). Thus, the inclusion of triply
and quadruply excited SACs into the CI basis significantly
changes the ground state geometry although it decreases the
ground state energy by only 0.029 eV.

As a result, the much less costly OM2/DCI(rr) calcula-
tion yields an alternation, which is very close to that of the ex-
tended OM2/MRCI*(o,m) treatment (the six non-redundant
C—C bond lengths /,, show a root mean square deviation of
only 0.002 A). Therefore, we chose the OM2/DCI(r) opti-
mized geometries for all further calculations.

The OM2/DCI(rr) geometries are given in the SM (Ta-
ble S17). In the SM, Figure S20 and Table S11 additionally
compare the alternations A/, for N = 10, 20, 30, and 40.
Al, is shown to become nearly constant near the chain cen-
ters at large N. Here, the geometry is quite close to exper-
imental findings®® for the infinite chain (cf. SM) such that
OM2/DCI(;r) geometries are reasonable at large N. For
N = 4 the OM2/DCI(7r) bond lengths differ from the experi-
mental values®® by a root mean square deviation of 0.007 A.
Thus, the OM2/DCI(r) polyene geometries should be reason-
able for all N.

D. Spectral effects of geometry optimization

With the OM2/DCI(;r) geometries now at hand we can
address the question how geometry optimization changes the
OM2/MRCI,(;r) excitation energies. The answer is given by
Fig. 7, which shows the effect AAEg of geometry optimiza-
tion on the singlet excitation energies in the polyenes with
4 < N < 22 m-electrons. AAE are the differences between
the excitation energies AEqpimized and AEeouiar at the opti-
mized and regular polyene geometries, respectively.
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FIG. 7. Changes AAEG = AEoptimized — AEreguar of vertical
OM2/MRCI. () excitation energies AE, which are caused by OM2/DCI(rr)
ground state geometry optimization.

In the polyenes with N > 8 all excitation energy differ-
ences AAE are seen to be negative for all five excited states,
i.e., the transition from a constant alternation AI’*" = 0.05 A
to more realistic geometries generally leads to lower excita-
tion energies. According to Fig. 7 this lowering is larger for
the covalent (gray symbols) than for the ionic states (black
symbols).

The geometry-induced excitation energy lowering
AAE; partially compensates the excitation energy increase
AAEy documented in Fig. 5, which results from abandoning
PPP in favor of OM2 (while maintaining the restriction of
dynamic correlations to the m-electrons). Thus, polyene
singlet spectra calculated by OM2/MRCI () at realistic
geometries more closely resemble the PPP/MRCI predictions
than originally suggested by Fig. 5.

The fact that the covalent states experience for N> 8
larger redshifts AAEs than the ionic states upon geom-
etry optimization is explained by the early PPP/MRCI
calculations.” Accordingly, a removal of the alternation (Al,,
= 0) reduces the covalent excitation energies substantially (re-
moving, in particular, the covalent gap at N — o0), while it
decreases the ionic excitation energies much less (preserving,
in particular, a sizable optical gap at N — o0). Reconsider-
ing Fig. 6 (and Fig. S20 in the SM) shows that Al,, is smaller
than the standard PPP value AI’"® = 0.05 A in most parts of
longer polyenes (except at the ends) after geometry optimiza-
tion. The reduced Al,, thus rationalize the red-shifts AAEg
shown in Fig. 7. In the shortest polyene (N = 4), which ex-
clusively consists of “ends,” the alternation is 0.055 A and,
thus, larger than AI'PP. Correspondingly, in Fig. 7 the values
AAEz > 0 at N = 4 signify blue shifts of all excitation
energies.

As a result, the general trends of the excitation energy
shifts AAEg in Fig. 7 follow from different alternations in
the optimized and regular geometries. The details of these ef-
fects, however, which indicate that, in each of the two PAS
classes of polyene excitations, the red-shifts AAEg(s) be-
come smaller with increasing excitation energy AE(s) of state
s, are a surprise.

J. Chem. Phys. 136, 124309 (2012)

.
IA]
4 -== covalent
L1B ., o
X —_. = jonic

AE; ./ eV

FIG. 8. Vertical OM2/MRCI.(7) excitation energies AE. (;) evaluated at
the OM2/DCI(r) optimized ground state geometries as a function of the
polyene length N.

For five low-lying m-electron excitations s, Fig. 8 dis-
plays the vertical transition energies AE. ((s,N) predicted
by OM2/MRCI.(7r) at the optimized ground state geome-
tries as a function of N. The shown N-dependence closely re-
sembles that of the early PPP/MRCI; descriptions'' (Fig. 2).
However, comparing Figs. 2 and 8 reveals two marked dif-
ferences. First, the new calculations cover a larger range of
polyene sizes. Second, according to OM2/MRCI(7r) the 1B,
state appears below the 1B} state near N = 14, whereas early
PPP/MRCI; (like the new PPP/MRCI,, Fig. 3(a)) localized
this level switch at N = 10.

E. Transition dipole moments of the 1B state

As discussed in Sec. III B the PAS is only weakly bro-
ken in OM2. Therefore, the 1A, — 1B, transitions carry
non-vanishing but very small transition dipole moments.
Figure S22 and Sec. III G in the SM present and discuss cor-
responding OM2/MRCI, (;r) results. Accordingly, the squared
transition dipole moments d?(1B}) are on an average by a
factor of 4 x 10* larger than @*(1B;) (6 < N < 22) with the
exception of N = 12, where the quasi-degeneracy of the two
B, states enhances d?(1B;) by a factor of 10%.

The quoted factors are much larger than correspond-
ing ratios of oscillator strengths published by other authors.
Zhang and Liu?’ derive for the polyenes with 6 < N < 12 from
non-PAS-PPP/full-CI and ab initio Cl-singles calculations
factors of 30 and from time dependent density functional the-
ory factors of 4 x 10°. Nakayama et al.>> obtained from per-
turbation theory combined with CASSCF factors of 2 x 10?
(N = 6, 8). As a result it seems that in OM2 the breaking of
the PAS is much less pronounced than in other approaches.

F. Effects of -7 and o-0 correlation

Up to now we have solely considered dynamical corre-
lations among m -electrons. However, the valence shell model
OM2 additionally enables a study of o-7 and o-o correla-
tions. For this purpose we have introduced in Sec. II B the CI
active spaces (o,7) and (o,,7). As explained in Sec. II C the
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FIG. 9. Effects AAE, ; of o-m and o-o correlations on the vertical tran-
sition energies AE(s,N) of the singlet excitations s € { 1B, 2Ag, 1B, } as
functions of N. The changes AAE; - (s,N) of the OM2/MRClI(rr) excita-
tion energies AE; (r)(s,N) upon including the restricted (o ,,7m) and complete
(o,m) active spaces into OM2/MRCI treatments are drawn as dashed and
solid curves, respectively.

choice of these more extended active spaces leads to much
larger variational spaces even in the cost-effective MRCIj set-
ting (cf. Table III). Given the computational resources acces-
sible to us this choice restricts the MRCI calculation of the
low-lying covalent excitations 2A, and 1B to polyenes cov-
ering at most N = 8 and N = 12 carbon atoms, respectively.

For the three prominent singlet excitations, Fig. 9 shows
the changes A AE, ;(s,N) of the excitation energies AE(s,N),
which result from expanding the (;r) active space to the re-
stricted (o,,m) (dashed curves) and complete (o,7) (solid
curves) active spaces. Note that we used the reference
sets R(s,N), which were determined for the (o,7) active
spaces (cf. Table S5 in the SM) also for the MRCI ()
and MRClI(o,,) calculations, because this procedure iso-
lates the effects AAE, ,(s,N) of dynamic o-7 and o-o
correlations.

Figure 9 demonstrates that the transition energies of the
2A; and 1B states are nearly invariant as long as only the
restricted set of 0-MOs is added to the (;r) active space. If
the remaining 2N ¢-MOs are also included, their excitation
energies decrease by about 0.15 eV. Whether this decrease
becomes actually smaller for polyenes with N > 8 cannot be
judged from our limited data basis. We therefore will assume
that AAE, ;(s,N) ~ 0.15eV forall Nand s € { 2A;,1B; }.

In contrast, the excitation energies of the ionic 1B:r
state are seen to be affected already by the extension to
(o,,m) and these redshifts are even larger than those experi-
enced by the covalent excitations upon further extension to
(o,m). Physically this difference points to the fact that the
1B states consist of electron-hole pairs, which strongly dis-
turb the charge distributions of the o-cores (cf. Cave and
Davidson®? for the importance of o-7 correlations in the
1B -state of hexatriene). In the covalent excitations, in con-
trast, the m-electrons stay essentially at their ground state lo-
cations where they solely feature different spin coupling pat-
terns and correspondingly weakened w-bonds. The redshifts
AAE, (1B ,N) of AE,(1B],N) increase by about a factor
of two, if all o-7 and o-o correlations are considered, and
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become smaller with increasing N. When plotted on a 1/(N
+ 1) scale AAE, (1B} ,N) approximately forms a straight
line (data not shown). Therefore, one can easily extrapolate
AAE, (1Bf,N) to larger N with the limiting value of 0.2 eV
at N — oo.

Note here that the vanishing or small values AAE, ;(s,N)
calculated for the covalent excitations hide the large influence,
which the extension of the active space exerts on the ener-
gies of these states. OM2/DCI(r) yields for the 1A, ground
state, for instance, a correlation energy per ethylenic unit of
—0.26 eV, extension to (o ,,7) renders —0.33 eV and to (o,7)
—0.61 eV. The stated near invariance of the excitation ener-
gies in the transition () — (o ,,7) thus demonstrates that the
(o ,,m) correlations are extremely similar in all covalent states.
Although the correlation energies of the covalent excitations
slightly exceed that of the ground state in the (o ,,7) — (o,7)
transition, the excited state correlations still largely resemble
those in the ground state.

As we have seen above, including the complete (o,7)
space shifts the transition energies of all three low-lying 7-
electron excitations by 0.15-0.3 eV to the red and this effect is
more pronounced for the 1B state than for the 2A; and 1B
states. Computational limitations have restricted the analysis
for the (o,7) space and the covalent excitations to N < 8.

On the other hand, the available results provide rea-
sonable estimates on the effects AAE,; (s,N) of the
(o,m) correlations also for much larger polyenes. When
adding these estimates to the OM2/MRCI () excitation
energies AE. (r)(s,N) (cf. Fig. 8) one arrives at “best
estimates” AE; (,r)(s,N) for the OM2/MRClI.(o,7) verti-
cal transitions of the three prominent r-electron excitations
s € {2Ag_,1Bu+,lB; }. The details of this construction are ex-
plained in Sec. IV in the SM. The resulting numerical values
are listed in Table S14.

IV. DISCUSSION

Figure 10(a) compares the thus obtained best estimates
for the OM2/MRCI.(o,m) vertical transitions to the 2Ag‘ and
1B singlet excited states with our best estimate for the cor-
responding “experimental” gas phase data collected in Table
S4 and explained in Sec. I B in the SM. The figure addition-
ally contains the OM2/MRCI.(o,7) predictions on the ver-
tical transitions to the 1B state, for which no experimental
data are available.

According to Fig. 10(a) our best estimate on the
OM2/MRClI(o,7) description of the 1B/ excitation ener-
gies (black solid levels) matches the depicted experimen-
tal data (gray solid levels) state quantitatively very well as
is apparent from the root mean square deviation (RMSD)
of only 0.07 eV. Only at N = 4 and N > 12 the calcu-
lated values AE. , »(1B,N) represent slight underestimates
of the experimental vertical transitions. Also for the 2A;
state the experimental excitation energies are very well repro-
duced as long as N < 12. For N > 12 the calculated values
AE,, (gm(ZAg’ ,N) increasingly overestimate the observed ex-
citation energies. According to the OM2/MRCI,(;r) descrip-
tion shown in Fig. 8 the 1B, state becomes the first ex-
cited singlet state already for polyenes with N > 12. In mild
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FIG. 10. (a) Best estimates for the vertical OM2/MRCl.(o,7) ex-
citation energies AEc (o )(s,N) (black) of the excited singlet states
S€E {2Ag’,1Bu+,lB,j } in the polyenes with 4 < N < 22 are compared with
best estimates for the experimental gas phase values (gray) compiled by us
fors e {2Ag’,1B;r } (see Secs. I B and IV in the SM). (b) Corresponding com-
parison for PPP/MRCI.

contrast, the best estimate in Fig. 10(a) assigns this level
switch to polyenes with N > 14.

The PPP/MRCI, description of the m-7* energy lev-
els shown in Fig. 10(b) does not differ much from
OM2/MRCI,(o,7) as far as the 1B excitation is concerned
and also shows a RMSD of only 0.07 eV from the experimen-
tal data. The 2Ag’ state, however, is described at a compara-
ble quality only for N > 12, where both descriptions over-
estimate the excitation energies. PPP/MRCI, somewhat un-
derestimates the 2A; excitation energies for N < 12 quite in
contrast to OM2/MRCI.(o,7) which, here, matches the ex-
perimental data much better.

A glance at Fig. 5, which illustrates the effects of includ-
ing the o -electrons by choosing OM2 instead of PPP, explains
the improved description of the 2A, excitation achieved with
OM2/MRCl(o,7) for N < 12. This figure reveals a strong
blue shift of the covalent excitations due to the transition from
PPP to OM2 which, according to Fig. 7, remains for N < 12
nearly unaffected by choosing optimized instead of regular
geometries.

As a first result we thus may state that the transition from
PPP to OM2, the inclusion of o-7 and o-o correlations, and
the choice of optimized geometries yield quantitatively im-
proved descriptions of the low-lying -7 * excitations in the
shorter polyenes (N < 12). Independently of the Hamilto-
nian, the 1B excitation energies appear to be reasonable for
N > 12, whereas, here, the 2Ag‘ excitation energies deterio-
rate.

We will argue now that the systematic MRCI,. overesti-
mate of the 2A; excitation energies for N > 12 is caused by
an imbalanced description of ground and excited state corre-
lations. This imbalance is shown to be due to the fact that the
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reference SACs employed for the covalent excited states do
not cover necessary triples and quadruples. For the polyenes
with N > 12 this omission leads to increasingly poor esti-
mates of the correlation energies in the covalent excited states
and to a lacking size consistency of the associated excitation
energies.

A. Effects of imbalance

We have introduced MRCI, as a more costly variant of
the MRCI;. The latter approach features for each excited state
s an individual selection of the sets R(s,N) of reference SACs
from the DCI wave function using a common density thresh-
old. MRCI,, in contrast, considers all singles and doubles as
references such that it becomes a QCI treatment for all ex-
cited states. Both MRCI approaches choose the closed shell
HF determinant as the sole reference for the ground state and,
therefore, treat the ground state correlations at the DCI level.
Thus, the two MRCI methods rest on the common assumption
that the most important contributions to the wave functions of
the excited states s are collections R(s,N) of singly and doubly
excited SACs and that, concurrently, the HF determinant pro-
vides a reasonable and equally good zeroth order description
of the ground state.

The OM2/QCI(x) wave functions resulting from
OM2/MRCI,(;r) now allow us to check whether the above
assumptions are actually valid. Here we take advantage of
the fact that the state local OM2/MRCI, () reference selec-
tion procedure, which applies a 92% density threshold at the
DCI level, yields certain numbers |R(s,N)| of singly and dou-
bly excited reference SACs (see Table S15 in the SM). If one
now collects the |R(s,N)| most important contributions to the
QCI(r) wave functions, one can find out whether these SACs

(i) cover similar percentages 7(s,N) of the QCI(wr) wave
functions for each state s at a given N and

(i) solely comprise vanishing percentages M(s,N) of triples
and quadruples.

If both checks find positive answers, both MRCI methods
should yield balanced treatments of the correlations in all
states and, therefore, size-consistent excitation energies. Con-
versely, violations of the two requirements will point to cer-
tain imbalances. Note that this consistency check is close in
spirit to the MRCI selection procedures used in Ref. 10.

To check (i) and (ii) we calculated the percentages 7(s,N)
and M(s,N) for the states s € {1A;, 2A,, 1B, 1B} from
the OM2/QCI(;r) wave functions. Figures 11 and 12, respec-
tively, display the corresponding results.

According to Fig. 11 the |R(s,N)| most important SACs
contribute for each polyene N about equal percentages 7(s,N)
to the OM2/QCI(;r) wave functions of the two covalent ex-
citations 2A; and 1B;. The much smaller sets of impor-
tant SACs characterizing the 1B states nevertheless cover
slightly larger percentages of the corresponding OM2/QCI(rr)
wave functions. Considered as functions of N the curves
T(s,N) are approximately parallel for all three excited states.
For the ground state, in contrast, one notices that T(lAg_ ,N)
(gray symbols in Fig. 11) is larger than the percentages 7(s,N)
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FIG. 11. Total contributions 7(s,N) of the |R(s,N)| (cf. Table S15) most im-
portant SACs to the OM2/QCI(;r) wave functions of the polyenes with N
m-electrons and s € {lAg*,ZAg’,lB;,lBlT}.

of the covalent excitations as long as N < 12. For N > 12,
however, the HF determinants cover percentages T(1A, ,N) of
the OM2/QCI(sr) ground state wave functions, which become
increasingly smaller than the percentages 7(s,N) of the excited
states (black symbols).

The latter finding indicates that the zeroth order descrip-
tion of the ground state by a single reference leads for N > 12
to an increasingly inferior description of the ground state cor-
relations compared to that of the excited states. To arrive at a
more balanced description we tried a modified procedure for
selecting the ground state reference SACs by requiring that
the number |R(1Ag‘,N)| should be chosen such that T(lAg‘ ,N)
> T(ZAgT ,N) at all N.

As shown by Table S16 in the SM, this prescription
leads for N > 12 to increasing numbers IR(1A,.N)|. A cor-
responding MRCI; treatment of the 1A, state yields then
for N > 12 corrections AEy(N) of the ground state energy.
With these corrections we obtain the modified best estimates
AEQ(U,,,)(S, N) of the polyene spectra shown in Fig. S23 of
the SM. This figure reveals a nearly perfect agreement of
AE. 5 (1BF,N) with the best estimates of the experimental
data that can be summarized by a RMSD of only 0.04 eV. In
particular, the slight underestimate of the experimental 1B
excitation energies visible for N > 12 in Fig. 10(a) is now es-
sentially gone and the description of the 1A, and 1B states
has apparently become balanced.

Furthermore, for these two states requirement (ii) that
M(s,N) should vanish is fulfilled. Thus, the MRCI assump-
tion of a cancellation of size-extensiveness errors is valid for
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FIG. 12. Contributions M(s,N) of the triply and quadruply excited SACs
among the |R(s,N)| (cf. Table S15) most important SACs to the OM2/QCI(rr)
wave functions for two covalent excitations.
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these two states and the OM2/MRCI excitation energies of the
1B state are very accurate (cf. Fig. S23).

B. Causes and effects of lacking size consistency

Figure 12 provides for the two covalent excitations
se€ {2Ag ,1B, } the check of the MRCI assumption (ii). The
figure displays for these states the contributions M(s,N) of
triply and quadruply excited SACs among the |R(s,N)| most
important configurations to the respective QCI wave func-
tions. These triply and quadruply excited SACs are missing
in the reference sets R(s,N) employed in our MRCI methods.

One recognizes in Fig. 12 that the contribution M(s,N) of
important triples and quadruples starts to become non-zero at
N > 8 for the 2A; state and at N > 10 for the 1B state,
respectively. In the shorter polyenes the important higher
than doubly excited SACs are exclusively triples. Important
quadruples are first found at N > 12 (2A;)and N> 14 (1B,),
respectively. Here, a balanced and size-consistent MRCI de-
scription would require the inclusion of triply and quadru-
ply excited SACs into the references sets R(2A,,N) and
R(1B;,N), which then would lead to the appearance of quin-
tuply and hextuply excited SACs in the MRCI bases of the
covalent excitations. Because our current MRCI code can-
not (yet) cope with higher than quadruply excited SACs, our
MRCI computation of transition energies inherits, for the co-
valent excited states, a part of those errors that are caused by
the lacking size-extensiveness™ of CI expansions truncated at
a predefined excitation level.

The resulting size-inconsistency of our MRCI ap-
proach concerning the covalent excitations is highlighted by
Fig. 13(a), which compares the experimental evidence (cf.
Sec. I B in the SM) on the energy gap AEga(N) = E(lBj,N)
— EQA,.N) with our MRCI, predictions for the OM2
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FIG. 13. Various theoretical predictions (black) of the energy gaps AEga ()
between the ionic 1B} and the covalent 2A; excitations are compared with
our best estimate of the vertical “gas phase” transition (gray, cf. Sec. I B
in the SM). (a) OM2/MRClI.(o,7) (solid) and PPP/MRCI. (dashed) from
our work. (b) Theoretical predictions by Kurashige et al.*> (dashed) and by
Marian er al.*> (solid; numerical values extracted from Fig. 6, p. 1510).
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and PPP models of the polyenes. Experimentally, the gap
AEga(N) is seen to increase monotonously with growing
polyene size N and to approach a limiting value for very
large polyenes. The MRCI, predictions, in contrast, erro-
neously assign decreasing gaps to the longer polyenes, while
more (OM2) or less (PPP) correctly covering the increase of
AEga(N)up to N =10 (PPP) and N = 12 (OM2). Because the
electron correlations in the 1A, and 1B state are covered
in a balanced fashion implying excellent descriptions of the
1B excitation energies (cf. Figs. 10 and S23), the decrease
of AEga(N) at large N is exclusively due to the imbalanced
and, therefore, size-inconsistent description of the 2Ag state
predicted by Fig. 12.

As a result the apparent success of OM2/MRCI concern-
ing the 1B excitation for 4 < N < 22 suggests that the ex-
pansion of the reference sets required by Fig. 12 should be
capable to remove the apparent size-consistency problem also
for the 2A; and 1B states and lead to correct gaps AEga(N)
over a much wider range of polyene sizes N.

The above analysis is supported by Fig. 13(b), which
shows predictions on the gap AEpa(N) obtained by other
authors,*>* who employed different correlation treatments,
which apparently were not (black dashed curve) or hardly
(black solid curve) affected by the size-consistency problem,
because both curves show (nearly) monotonous increases of
the gap within the depicted range of polyene sizes.

In the case of the dashed curve® the monotonicity is a
necessary consequence of the applied correlation treatment,
which consists for N > 10 of a complete CI within a restricted
5 x 5 active space made up of the five energetically lowest oc-
cupied and the five energetically highest virtual 7-MOs. For
N < 10 they chose a complete CI among all 7-MOs (o-7
interactions were approximately treated by perturbation the-
ory). Such treatments are size-consistent, of course. On the
other hand, the restriction of the active space to a constant
size could lead to a neglect of important correlations in the
longer compounds and the perturbational treatment to errors
concerning the o - correlations.

We have checked whether the |R(s,N)| most important
contributions to the OM2/QCI(;r) wave functions of the low-
energy polyene singlet states contain SACs, which are outside
the 5 x 5 active CI space characterized above. We found that
this is, indeed, the case for the polyenes with N > 14 (2Ag )
and N > 12 (1By)), respectively. As a result, one expects cer-
tain inaccuracies in the treatment of Kurashige et al.,*> which
may be the cause for the too steep increase of the covalent
gap with N in Fig. 13(b) and for the too strong decrease of
all excitation energies with N displayed by Fig. S24(a)
in the SM.

The solid curve® in Fig. 13(b) stems from a DFT/MRCI
treatment,*® whose references are only singly and doubly ex-
cited (like in our MRCI). In this case a more detailed analysis
is precluded by the partially empirical procedures, by which
DFT/MRCI tries to avoid double counting of dynamical cor-
relations that are already included by the DFT.*® The method
underestimates the energy gap AEpa(N) at all polyene
sizes by about 0.2 eV. Concerning excitation energies (see
Fig. S24(b) in the SM) it increasingly underestimates those of
the 1B states toward larger N (at N = 22 by about 0.65 eV).
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For N > 12 the DFT/MRCI calculations also underestimate
those of the ZAQ state (at N = 22 by about 0.43 eV). Thus,
it seems that DFT/MRCI considerably overestimates the dy-
namical correlations in the excited states as compared to those
in the ground state and favors ionic over covalent excitations.

According to the comparison between the available
experimental evidence and the theoretical predictions of
Kurashige ef al.** and Marian et al.*> on the polyene spec-
tra depicted in Fig. S24 in the SM, the too steep decrease of
the predicted excitation energies with the polyene length N in-
dicates that these computational approaches, despite their size
consistency (Fig. 13(b)), apparently do not provide balanced
treatments of the electron correlations in the ground and ex-
cited states of the polyenes. OM2/MRCI (Fig. S23 in the SM),
in contrast, lacks size consistency for the covalent excitations
in the long polyenes (N > 12) but otherwise provides balanced
and accurate descriptions.

For comparison with further results on excitation ener-
gies in long polyenes, which, however, only cover either the
covalent'®2® or the ionic>® excitations and were obtained by
DMRG/CASSCF,?® valence bond DFT,'® PPP/DMRG,® and
PPP/CCSD,* respectively, Sec. IV B of the SM provides
graphical representations of corresponding data in Figs. S25
and S26 together with a discussion. While the excitation en-
ergies obtained by these treatments may be inferior com-
pared to a properly extended (and yet to be implemented)
OM2/MRCI, they are certainly valuable for the computation
of other properties, e.g., PPP/CCSD for non-linear polyene
polarizabilities.>

V. SUMMARY AND OUTLOOK

As a result of our comparisons with the predictions of
other theoretical approaches and with the available experi-
mental evidence it seems that we were on the right track with
our OM2/MRCI approach toward a quantitative description
of the low-lying excitations also in polyenes with more than
12 m-electrons. We fell short of this goal solely because the
reference sets were restricted to singles and doubles and the
maximum degree of excitation to quadruples. For the cova-
lent excitations in polyenes with N > 12 this restriction leads
to overestimation of the transition energies that are increasing
with N. But apart from this issue, the OM2/MRCI descrip-
tion turned out to be quite accurate in all polyenes for the
ionic 1B excitation and in the shorter polyenes also for the
covalent excitations. Hence, an extension of the method to-
ward the inclusion of triple and quadruple excitations into the
reference sets and of quintuples and hextuples into the MRCI
expansions should largely remedy the remaining inaccuracies.

At the same time, the accurate descriptions obtained par-
ticularly for the shorter polyenes by OM2/MRCI and the rea-
sonably similar descriptions rendered by PPP/MRCI, which
were shown to be due to partial cancellations of errors asso-
ciated with the previous use of model instead of optimized
geometries and with the neglect of o-m and o-o interac-
tions, explain the well-known success of the early PPP/MRCI
descriptions.” In a sense it was fortunate that computational
limitations did not allow the treatment of longer polyenes
at that time (1986), because then the errors of the MRCI
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approach that are connected with its restriction to singly and
doubly excited references could not spoil results. Instead, the
excitations in the longer polyenes were accessed by extrapo-
lations using the excitation energies in the shorter compounds
as references and these excitation energies were quantitatively
reasonable as we have demonstrated above.

On the other hand, the extension of the description from
PPP/MRCI to OM2/MRCT has added the new insight that the
breaking of the PAS by OM2 is extremely weak and even
weaker than in other treatments (cf. Secs. III BandIIl E).
Therefore, the oscillator strengths of the transitions to the 1B
states are very small in almost all polyenes except for the com-
pound at which the level switch with the 1B} occurs. Accord-
ing to our best estimates (see Fig. 10(a)) this switch occurs
near N = 14, which is in close agreement with the spectro-
scopic data of Snyder et al.*® and Wang et al.’” discussed in
the Introduction.

Our analysis of the various MRCI procedures has addi-
tionally fixed the details of the methods that should be used in
future OM2/MRCI studies of polyene excited states. Such cal-
culations can provide insights into the effects of excited state
geometry relaxation and the sizes of the 0-0 transition ener-
gies. Within the accuracy limits of the present calculations,
this extension toward 0-0 transitions may follow the compu-
tational procedures used above. However, if for a substantially
enhanced accuracy in the description of the covalent excited
states, an extension of the MRCI to triply and quadruply ex-
cited references is inevitable.
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