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One of the most intriguing discoveries in neuroscience of the past decades has been 

showing that experience is able to induce structural modifications in cortical microcircuit that 

might underlie the formation of memories upon learning (for a review, see Caroni, Donato 

and Muller 2012). Hence, learning induces phases of synapse formation and elimination that 

are strictly regulated by a variety of mechanisms, which impact on cortical microcircuits 

affecting both excitatory and inhibitory neurons. Nevertheless, the extent to which specific 

configurations might be implemented to support specific phases of learning, as well as the 

impact of experience-induced structural modifications on further learning, is still largely 

unknown. 

Here, I explore how the remodeling of identified microcircuits in the mouse hippocampus and 

neocortex supports learning in the adult.  

In the first part, I identifiy a microcircuit module engaging VIP and Parvalbumin (PV) positive 

interneurons to regulate the state of the PV+ network upon experience. This defines states 

of enhanced or reduced structural plasticity and learning based on the distribution of PV 

intensity in the network. 

In the second part, I demonstrate how specific hippocampal subdivisions are exploited to 

learn subtasks of trial-and-errors forms of learning via the deployment of increasingly precise 

searching strategies, and sequential recruitment of ventral, intermediate, and dorsal 

hippocampus.  

In the third part, I highlight the existence of genetically matched subpopulations of principal 

cells in the hippocampus, which achieve selective connectivity across hippocampal 

subdivisions via matched windows of neurogenesis and synaptogenesis during 

development. 

In the fourth part, I investigate the maturation of microcircuits mediating feedforward 

inhibition in the hippocampus, and highlight windows during development for the 

establishment of the proper baseline configuration in the adult. Moreover, I identify a critical 

window for cognitive enhancement during hippocampal development. 

In the fifth part, I study how ageing affects the PV network in hippocampal CA3, providing 

evidence for which age related neuronal loss correlates to reduced incidental learning 

performances in old mice. Therefore, by manipulating the PV network early during life, I 

provide strategies to modulate cognitive decline. 
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Cortical microcircuits represent the substrate on which our brain exerts its complex 

functions, ranging from exhibiting conditional reflexes to specific stimuli (for example, the 

startle reflex to an unexpected tone), to performing abstract reasoning about ethics and 

morality or addressing complex scientific questions about neuronal computation and 

function. Moreover, they constitute the system that, by performing association between 

sensory perceived stimuli and physical or abstract concepts, allows learning about the 

environment and producing memories of these associations. And yet, cortical microcircuits 

are not only active when contingencies require their abilities, but they are likely in a state of 

perpetual activation, even in the absence of environmental or body-derived stimuli. When 

these stimuli come into play, they likely create perturbations from these internally generated 

programs, perturbations that are absolutely essential to adapt the brain’s internal operations 

to perform its computation (Buzsaki, 2006). Hence, it would be reasonable to hypothesize 

that the baseline state of a brain microcircuit might be able to influence the efficiency to 

which its computation is executed upon external recruitment: in other words, we could 

imagine the existence of particular microcircuit configurations in which processing of newly 

perceived stimuli is enhanced, as opposed to configurations that instead support the 

processing of learned associations but impinge a higher filter to the learning of new stimuli. 

Moreover, a broad body of scientific literature has clearly demonstrated that experience is 

able to act on cortical microcircuits to change their properties at a functional or structural 

level, thereby allowing the brain to exert the aforementioned functions of learning and 

memory. In particular, experience supports a rewiring of cortical microcircuits which is 

required for learning, and the extent to which this rewiring takes place is a function of the 

complexity of the task as well as the particular period during life when learning takes place 

(for review, see Hensch T, 2005; Holtmaat and Svoboda, 2009; Caroni et al., 2012). 

If we could know all the connections and wiring patterns of the brain of an individual, could 

we understand how he/she thinks, feels, and gives rise to behavior? The answer is 

debatable, although many labs are now involved in such a daunting task as mapping all the 

connections in brains ranging from simple to more complex organisms. Nevertheless, we 

can turn the question around and provide an answer to which many neuroscientists will 

agree, that is that we can never understand brain computation without elucidating the basic 

principles of its connectivity, and how this is shaped (again, functionally or structurally) by 

experience. Building such knowledge is not only necessary, but perhaps mandatory to 

understand how perception gives rise, through learning, to the expression of a memory, 

which most likely predicts the behavior that a person is going to enact in the future. 

Moreover, it requires a combined effort at a triple level: first, we need to uncover the rules 

governing the basic wiring of cortical microcircuits; second, we need to uncover the rules 
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governing interactions among neurons and neuronal systems; third, we need to uncover the 

rules by which specific behaviors impinge on defined microcircuit modules, or specific 

systems in the brain. 

The latter three levels of investigation are conceptually at the basis of my work of thesis. I 

explored each of them individually or in combination by focusing on a model organism (the 

mouse) that is simple enough to provide a starting point for study, yet evolutionary complex 

to allow me to aim at generalizing my findings. At first I focused my attention to microcircuits 

in the hippocampus due to the fact that its connectivity principles and cell types are fairly 

conserved when looking at higher order areas in the brain (i.e., neocortex) and yet organized 

in such a way that allowed me to distinguish and study separately how specific inputs 

behave upon experience at a structural level; in addition, its involvement in specific learning 

paradigms and behavior is well established since many years (although with some caveats, 

see the Introduction), which makes it an attractive model to study how learning underlies 

plasticity, and vice versa. 

 

In the first part of my thesis, I have investigated the possible existence of microcircuit 

configurations that underlie states of enhanced or reduced plasticity and learning (Flavio 

Donato and Pico Caroni, in preparation). Following the observation that environmental 

enrichment and contextual fear conditioning induce opposite modulations of structural 

plasticity in the CA3 area of the hippocampus (fast and lower synaptic turnover, 

respectively), and opposite performance in a further hippocampal dependent task (Novel 

object recognition: enhanced performances for enrichment, reduced for conditioning), I 

define “Plastic” or “Crystallized” states relying on prevalence of Low or High expressing 

parvalbumin interneurons, respectively, which causally modulate plasticity and learning. 

After characterizing structural and functional properties of these two categories of 

interneurons, I elucidated the mechanisms that impinge on single interneurons to modulate 

the composition of the PV network, which relies on enhancement of the excitatory or 

inhibitory drive onto these interneurons by means of increase density of feedforward 

inhibitory or disinhibitory synapses as results of experience. Then, I investigated if 

incremental forms of learning exploit different configurations to support defined aspect of the 

learning process. The morris water maze (a hippocampal dependent incremental learning 

paradigm) implements a Plastic configuration early during learning, to shift to a Crystallized 

state upon learning completion. Although the overall mechanisms mediating state transitions 

was coincident with the one elucidated before, I described a higher degree of input 

specificity in the structural plasticity underlying configurations, describing a dedicated 
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microcircuit module based on the enhancement of disinhibition provided by VIP+ 

interneurons onto PV+ interneurons early during learning, followed by enhancement of FFI 

mediated by the large mossy fiber terminals in CA3 upon learning completion. Lastly, I 

confirmed that the transition trough a VIP-mediated plastic state was necessary for learning, 

and that the same microcircuit module described in the hippocampus could be responsible of 

other forms of incremental learning in neocortex, with particular focus on Primary Motor 

cortex upon Rotarod learning. 

 

In the second part of my thesis, I have focused my attention to understanding how the same 

basic microcircuit might be used to learn specific aspects of a learning task in a manner that 

is dependent from the neuronal system where the microcircuit is located (Sarah Ruediger*, 

Dominique Spirig*, Flavio Donato* and Pico Caroni, Nature Neuroscience 2012). Therefore, I 

exploited how different regions of the hippocampus along the dorsoventral axis might be 

recruited to learn different aspects of the morris water maze task. Although each region 

(defined as Dorsal, Intermediate and Ventral based on gene expression, spatial distribution, 

extrinsic connectivity, and functional recruitment: Bannerman et al., 2002; Czerniawski et al., 

2009; Fanselow, 2000; Lee and Kesner, 2004; Moser et al., 1993; Moser et al., 1995; 

Pothuizen et al., 2004; Bannerman et al., 2003; Kjelstrup et al., 2002) would host the same 

organizational principles (Anderson et al., 1971), and display increase in FFI upon learning 

completion, we showed by means of structural, functional and lesion experiments that their 

recruitment upon learning followed a marked ventral-to-dorsal directionality, with ventral 

hippocampus being recruited early during learning, followed by intermediate and dorsal at 

later time points. Moreover, recruitment of each region would underlie different aspect of the 

task, with the ventral hippocampus being tuned to both spatial and reward-based signals and 

thus mediating task-specific goal-oriented searching, and dorsal being instead tuned 

specifically to spatial computation. In addition, although performance and strategy 

deployment progressed continuously at the population level, single mice showed discrete 

learning phases, each characterized by particular searching habits and implemented by 

each specific region, for which targeted lesions of each region would disrupt defined habits. 

Therefore, we could conclude that trial-and-error navigational learning processes in naïve 

mice involve a stereotype sequence of increasingly precise subtask learned through distinct 

hippocampal subdivision.  

In the third part of my thesis, I shifted the focus to structural aspects of microcircuit 

investigation by exploiting to what extent excitatory microcircuits in the hippocampus are 

equivalent in terms of cell diversity and connectivity, or rather if genetically and 
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developmentally identified principal neurons subpopulations might connect selectively across 

hippocampal subdivision (Yuichi Deguchi*, Flavio Donato*, Ivan Galimberti*, Erik Cabuy and 

Pico Caroni, Nature Neuroscience 2011). Therefore, I took advantage of sparse reporters 

mice lines created in the lab (Thy1.2 driven, Lsi1 and 2 mice lines) which express 

membrane-targeted GFP in a subset of neurons of each subdivision in the hippocampus. 

Previous works in the lab had already shown that granule cells expressing membrane-bound 

GFP in these two lines behaved differently in terms of intrinsic plasticity of their mossy fiber 

terminals, hosting one (Lsi1 Mouse line) or more (Lsi2 mouse line) “terminal arborizations” 

(TAs), which in the Lsi1 would follow a topographic arrangement along the CA3 projection 

based on cell body position and developmental instructive signals (Ivan Galimberti*, Ewa 

Bednarek*, Flavio Donato and Pico Caroni, Neuron 2010). Thus, we showed that cells 

highlighted by GFP expression in the same mouse line could indeed be considered as 

distinguishable subpopulations, since they would exhibit a unique and matched pattern of 

gene expression profiles across hippocampal subdivisions, shared distinct neurogenesis and 

synaptogenesis time windows, and selective connectivity at dentate gyrus-to-CA3 and CA3-

to-CA1 synapses. The mechanisms underlying selective connectivity would effectively rely 

on the matched time of synaptogenesis between pre- and post-synaptic partners belonging 

to the same subpopulations, since in heterochronic co-cultures we were able to force cross-

subpopulation connectivity by playing with the explants age. Therefore, we concludde that 

the hippocampus contains parallel connectivity channels assembled from distinct principal 

neuron subpopulations through matched schedules of synaptogenesis. 

 

The specific interplay between excitation and inhibition which gives rise in the adult to 

complex phenomena like selective tuning of cells to preferred stimuli (see introduction), or 

creates states of enhanced or reduced plasticity and learning upon experience (see part1 of 

results), is a distinguishable feature of microcircuits even during development, and regulates 

the occurrence of “critical periods” in sensory cortices. Therefore, in the fourth part of my 

thesis I have studied how the feed-forward inhibitory component would be integrated upon 

development in hippocampal microcircuits, by studying the maturation of parvalbumin 

interneurons and their connectivity in the CA3 area of the hippocampus (Flavio Donato and 

Pico Caroni, unpublished results). Thereby, I could demonstrate that the maturation of FFI 

connectivity from mossy fiber terminals upon PV interneurons constituted the driving force 

for the expression of the protein Parvalbumin in CA3, which is usually taken as an indicator 

of interneuron maturation in the neocortex (Sugiyama et al., 2008). Moreover, Lsi1 and 2 

subpopulations participated differently to the process, with the first exhibiting a 

counterhomeostatic response to MFT release modulation (thereby trying to compensate for 
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the delay in PV maturation), and the latter responding homeostatically to it. Interestingly, 

developmental intervention that modulated PV maturation selectively in an Lsi1 or Lsi2 

responsive windows, elicited long-lasting consequences upon baseline CA3 microcircuits 

that extend further into adulthood, with features associated to the “Plastic” or “Chrystallized” 

state respectively (prevalence of High or Low PV interneurons, modulation of active zone 

turnover at mossy fiber terminals, enhanced or reduced performances in the novel object 

recognition task, modulation of learning in the morris water maze task). We hypothesize that 

the integration of Parvalbumin interneurons in hippocampal microcircuits defines critical 

window in which basic properties of these interneurons are established. Hence, the correct 

subpopulation-based maturation of the PV network produces the proper balanced 

configuration that will constitute the baseline state of cortical microcircuit in the adult; 

nevertheless, perturbations of this process might set the system in an incorrect configuration 

which is usually achieved upon experience. Moreover, we provide developmental temporal 

windows of pharmacological treatments that produce cognitive enhancement in the adult. 

 

Last but not least, in the fifth part of my thesis, I focused my attention on how ageing impinge 

on cortical microcircuits to produce declining performances in incidental learning tasks 

underlying episodic memory (Flavio Donato and Pico Caroni, unpublished results). 

Therefore, I have followed the evolution of the PV network in CA3 upon physiological ageing, 

and analyzed if changes in the network might underlie the decline in incidental learning 

performances occurring with age, since it causally regulates performance in the Plastic or 

Crystallized state (see Part1). In CA3, ageing was correlated with a decrease in the absolute 

number of PV expressing interneurons, which produced a marked shift toward the Low PV 

component of the network. Moreover, incidental learning in single mice correlated to the 

extent of survival of PV interneurons, which would predict with high probability the behavioral 

performance of the mouse. High PV interneurons showed a higher vulnerability toward age 

related neuronal loss, producing the highest decrease in old mice: therefore, I tried to 

modulate this process by applying strategies that reduce or increase the PV context in a 

large cohort of interneurons via remote experience or developmental manipulation. Both 

strategies resulted effective in preserving cognitive performances to levels of younger 

individuals, by reducing the extent of neuronal loss among PV interneurons. Therefore, we 

propose new strategies to mitigate or even abolish the cognitive decline in episodic memory 

that is usually occurring with ageing by promoting survival of PV+ interneurons in CA3. 
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3.1 Structure and function of cortical microcircuits 

 

 

 

3.1.1 An interplay between excitation and inhibition 

 

 

Synaptic processing reflects the interplay between cortical excitation and cortical inhibition: 

even the most simple sensory stimuli, like deflecting a whisker (Okunand Lampl, 2008; 

Swadlow, 2003; Wilent and Contreras, 2005), a brief tone (Tan et al., 2004; Wehr and Zador, 

2003; Wu et al., 2008), an odor (Poo and Isaacson, 2009), or an oriented bar in the visual 

field (Anderson et al., 2000; Monier et al., 2003) lead to the concomitant occurrence of 

excitation and inhibition in sensory cortices (for review, see Isaacson and Scanziani, 2011). 

Moreover, these co-occurrence of excitation and inhibition is not limited to sensory 

experience, but underlies spontaneous activity, spontaneous oscillations or up and down 

states during cortical processing (Isaacson and Scanziani, 2011). 

 

Therefore, cortical microcircuit have to be structured in a way to make this interplay possible, 

without ending up with an excess of excitation or inhibition, which may both underlie 

pathological states. Inhibition in the cortex is exerted by neurons that release the transmitter 

GABA, and comprise roughly around 20% of the cortical neuronal population (Meinecke and 

Peters, 1987). In contrast to their excitatory counterpart, they usually do not form long range 

connections (although important exceptions have been pointed out recently, see Melyer et 

al., 2012), and for this reason they have collectively acquired the name of interneurons 

(Ascoli et al., 2008; Freund and Buszaki, 1996). 

The connectivity patterns by which inhibition can be incorporated in excitatory cortical 

microcircuits can have multiple shapes, which assume different names based on the net 

physiological result, and differ in the way in which excitatory and inhibitory neurons interact 

(Schema 1) (Kullmann 2011): 

 Feed-Forward Inhibition (FFI, Schema1, 1): the discharge from an excitatory neuron 

A produces the activation of a postsynaptic excitatory cell B and of an interneuron I 

whose synapses influence the activity of the same postsynaptic cell B. This can 

substantially increase the temporal precision of firing (Buzsaki 1984), as well as 

narrowing the window of non-zero probability of discharging (Pouille and Scanziani, 

2001); 
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 Feed-Back Inhibition (FBI, Schema 1, 2): the discharge from an excitatory neuron A 

produces the activation of an interneuron I whose synapses influence the same 

presynaptic neuron A. An extreme case of this wiring diagram is rapresented by 

lateral inhibition, where the activation of an interneuron I from a principal cell A 

suppresses the activity of surrounding principal cells (N, N+1, …); 

 Disinhibition (Dis, Schema 1, 3): this peculiar wiring diagram takes place when a 

principal cell A activates an interneuron I1, which in turn suppress the activity in a 

second interneuron I2 thereby limiting its inhibitory influence on a second principal 

cell B which is post-synaptic to I2. 

 

 

Schema 1: Connectivity patterns mediating inhibition in cortical microcircuits. 

The schematics shows the wiring diagrams by which inhibitory neurons can exert inhibition in cortical microcircuits.  Note that 

while the first two arrangements (feedforward inhibition, feedback inhibition and lateral suppression) result in a net increase in 

inhibition on pyramidal cells, the third, by means of inhibition of inhibitory neurons, actually increase excitability of target 

pyramidal cells. 

 

Through the recruitment of FFI and FBI, inhibition in cortical microcircuit is somehow 

proportional to the incoming excitation: it has been observed, for example, that a sensory 

stimulus lead to concomitant changes in the strength of both (Anderson et al., 2000; Poo and 

Isaacson, 2009; Wehr and Zador, 2003; Wilent and Contreras, 2004; Zhang et al., 2003). 

Furthermore, manipulation of cortical microcircuit that decouple E and I shift cortical activity 

toward a hyperexcitable (epileptiform) or silent (comatose) state (Dudek and Sutula, 2007): 

thereby, the proper “balance” (although not literal, Isaacson and Scanziani, 2011) between 

these two forces seems to be necessary for keeping a proper physiological function of 

cortical microcircuits, that otherwise deviate toward pathological states (Turriggiano, 2011). 
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The physiological functions of inhibition seem to be vast: from gain and dynamic range 

control (Pouille et al., 2009; Shadlen and Newsome, 1998), to sharpening of tuning (Katzner 

et al., 2011, Wu et al., 2008, Poo and Isaacson, 2009,Liu et al., 2011), and pacing of cortical 

oscillations especially in the “gamma” frequency range (Atallah and Scanziani, 2009; Cardin 

et al., 2009; Hasenstaub et al., 2005; Sohal et al., 2009; Traub et al., 1996, 1997; Wang and 

Buzsaki, 1996). 

 

 3.1.2 A plethora of inhibitory neurons subpopulations 

 

With such a complex repertoire of functions performed by cortical mircocircuits, it is perhaps 

not surprising that there is a wide variety of subpopulations of interneurons defined by 

physiological and structural features (Ascoli et al, 2008; Somogyi and Klausberger, 2008). 

Here, I’ll try to describe three criteria to define diversity among interneurons in relation to 

their function, considering that often one class can span transversally multiple criteria, and 

that even interneurons that fulfill the same requisites (e.g., targeting the perisomatic region 

of excitatory cells) can have different roles as a function of their intrinsic properties (e.g., 

Parvalbumin and CCK expressing Basket cells). Moreover, I will focus on hippocampal area 

CA1, since it is the most studied in terms of interneuron variety 

1. Expression of Markers. 

Cortical interneurons can be divided in classes according to the expression of a series of 

marker that belong to different categories. For example, they can be classified according to 

the expression of Calcium binding proteins, like Parvalbumin (PV), Calretinin (CR), or 

Calbindin (CB) (Kosaka et al., 1987; Katsumaruet al., 1988); neuropeptides, like 

Cholecystokinine (CCK), Somatostatin (SOM), VIP or NPY (Danglot, Triller and Marty, 2007; 

Freund and Buysaki 1996); or by the expression of specific receptors, like CB1 or 5HT3A 

(Fishell and Rudy, 2012). The expression of specific proteins is sometimes sufficient to 

confer defined physiological features to a subpopulation of interneurons: it is the case, for 

example, with the expression of the protein Parvalbumin and the characteristic “fast spiking” 

profile of basket and Chandelier cells (Contreras, 2004: although exceptions can be 

observed, see Freund and Katona 2007).  

 

 



18 
 

2. Developmental origin. 

Interneurons originate largely in the subpallium, from where they migrate toward their 

specific locations using a combination of radial and tangential migration (Anderson et al., 

1997; Pleasure et al., 2000, Marin et al., 2000). Different proliferative regions of the 

subpallium give rise to different classes of interneurons, which populate specific structures: 

the Medial Ganglionic Eminence produces exclusively PV+ and SOM+ Interneurons, with a 

small fraction of CR+ being produced as well (Wichterle et al., 2001); by contrast, the Caudal 

Ganglionic Eminence (CGE) produces largely the CR+ or VIP+ interneurons (Fishell, 2007). 

Other classes of neurons (NPY, CB, etc) are produced in both regions (for review, see 

Danglot, Triller and Marty, 2007). Fast Spiking cells seem to be produced exclusively in the 

MGE (Fishell, 2007). 

3. Specificity of innervation. 

The specialization in stratification of axonal and dendritic ramification is another distinguish 

feature of cortical interneurons. Dendrites can stratify in specific layers of the hippocampal 

formation (OLM cells, neurogliaform cells), or be largely unspecific in their ramifications (Ivy 

cells, bistratified cells) (for a comprehensive review, see Freund and Buzsaki 1996, 

Klauberger and Somogyi 2008). This organization is reflected on the input that an 

interneuron receives, which in the hippocampus largely coincide with the region where 

dendrites stratify. From an axonal point of view, interneurons can be distinguished based on 

the dendritic territory that they innervate: therefore, interneurons can innervate the dendrites 

(most of the classes of interneurons), the soma and proximal dendrites (basket cells), or the 

axon initial segment (chandelier cells) of principal neurons. Moreover, even among the same 

compartment, interneurons can show a great deal of specificity in the region targeted: for 

example, OLM neurons are defined in this way because they receive input exclusively in 

stratum Oriens (where their dendrites ramify), and extend their axonal projections selectively 

to the portion of the principal neurons dendrites that is located in stratum Lacunosum-

Moleculare , parallel to enthorinal cortex inputs (hence their name, Oriens-Lacunosum 

Moleculare neurons) (Leao RN et al., 2012). Last, a small portion of interneurons specifically 

innervates other interneurons (Acsady et al., 1996 a and b). These neurons selectively 

express either VIP or Calretinin, and present different properties in term of receptors (can 

express 5HT3A) or specificity in the input source (polarized or multipolar in dendritic 

ramifications) (Acsady et al., 1996 a and b). These interneurons selectively mediate 

disinhibition.  

An overall view on the classes of interneurons present in the CA1 area of the hippocampus 

is provided in Figure 1 (modified from Klausberger and Somogyi, 2008). 
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Figure 1: Interneurons classes in CA1 

This schema summarizes the identified classes of interneurons that have been characterized via the three principles 

enumerated before. In my work, I will pay particular attention to the Basket PV (class 2), Basket CCK/CGLUT3 (class 4), and 

Interneurons specific VIP expressing (multipolar, class 19, or polarized, class 20). 

 

3.1.3 Dendritic and Perisomatic inhibition 

 

The specificity in innervation of subcellular domains in principal cells has profound 

consequences on the function that interneurons exert in cortical microcircuits (Miles et al., 

1996). Dendritic inhibitory innervation likely controls the membrane potential around the 

region of innervation, and produces small and slow IPSC at the soma due to the fact that the 

reversal potential of Cl- is close to the resting potential of the membrane, and therefore gives 

low driving force. Nevertheless, a major effect of Cl- channel activation is ‘shunting 

inhibition.’ If the conductance is large, shunting inhibition can be very effective. When 

positive charge from an activated excitatory synapse arrives at the inhibitory synapse, it 

attracts Cl- ions through the activated Cl- channels, thus reducing the EPSP (Spruston N, 
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2009). Therefore, Interneurons that innervate pyramidal cell dendrites are responsible for the 

control of the efficacy and plasticity of glutamatergic inputs from specific sources (Freund 

and Katona, 2007).  

On the other hand, sitting at a region where dendritic inputs get integrated and action 

potential are generated (Megias et al., 2001; Papp et al., 2001), interneurons impinging on 

the somaequivalent region (soma, proximal dendrites and axon initial segment) are likely to 

control the output of principal cells, most notably the synchrony of action potentials of large 

populations of cells (Cobb et al., 1995; Miles et al., 1996). These interneurons are largely 

constituted of Basket cells (which can be divided in two classes according to the expression 

of the protein Parvalbumin and CCK, and form synapses on the soma and proximal 

dendrites), and Chandelier cells (wich target the axon initial segment of principal cells, 

thereby likely controlling the action potential inhitiation) (figure 2). 

Basket cells expressing Parvalbumin and CCK differ for a great variety of properties. PV+ 

Basket cells are fast-spiking (Connors and Gutnick 1990, McCormick et al. 1985), have only 

a few receptor types for subcortical modulatory signals, but are efficiently and faithfully 

driven by local principal cells, as expected from an ‘‘oscillator’’ (Freund, 2003), and 

participate in the production and maintenance of fast oscillations in the Gamma band (Traub 

et al., 2004; Bartos et al., 2007; Cardin et al., 2009). CCK+ basket cells, on the other hand, 

are regular-spiking, modulate synchronous ensemble activities as a function of subcortical 

inputs that carry information about motivation, emotions, and the autonomic state of the 

animal (the ‘‘inner world’’; Buzsaki, 1996) due to the expression of 5HT3 and nicotinic 

receptors (Freund and Katona, 2007), and likely mediate the anxiolytic effect of 

benzodiazepines since they act specifically on postsynaptic GABA receptors containing the 

subunit Aα2. Most importantly, due to their low time constant, PV Interneurons are sought to 

mediate specifically FFI, while CCK interneurons have longer time constant that give them 

the unique ability to summate feedforward and feedback inputs, and to get activated only 

when local pyramidal cells are also activated (Glickfeld and Scanziani, 2006) (figure 2, panel 

C). 

A clear example of the dichotomy between these two populations of perisomatic innervating 

interneurons comes from Gamma (30-80 Hz) oscillation production and regulation. Indeed, 

an elegant work of Sohal et al (Sohal et al, 2009) has demonstrated that direct excitatory 

activation of PV interneurons is sufficient to generate gamma-frequency oscillation and 

enhance information transmission in the neocortex, while inhibition of these interneurons 

disrupt underlying gamma rhythms. On the other hand, CCK positive neurons can be 

recruited only transiently by repetitive stimulation (Glickfeld and Scanziani, 2006); moreover, 
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activation of CB1 cannabinoid receptors, which are present in CCK but not PV basket cells, 

markedly reduces the power of gamma oscillation (Hajos et al., 2000). Therefore, we might 

conclude that the overall clockwork that control rhythmic populations activity reside in the PV 

In network, while CCK interneurons would carry on the fine-tuning of normal network 

operations to respond to subcortical modulatory signal about the “state” of the system. 

Pathology comes in support of this division of labor: in epilepsy, which is known to be a 

disorder of abnormal rhythmical activity in cortical networks, PV interneurons seem to be 

critically involved (Cossart et al., 2005; Magloczky and Freund, 2005; Ogiwara et al., 2007), 

unlike CCK-containing interneurons (Monory et al., 2006); on the other hand, at least six 

different receptors that are implicated in anxiety (5-HT3,nicotinic a7 and a4, CB1, GABAA 

enriched in a2 subunit, estrogen a) converge onto the CCK-containing cells, but are absent 

or expressed at very low levels in PV cells (Freund, 2003). 

 

Figure 2: perisomatic inhibition 

Schematic expressing peculiar properties of the two classes of basket cells, which can be differentiated by their preferential role 

in FFI (PV basket cells, panel B) or both feedforward and feedback inhibition (CCK basket cells, Panel B), being active when 

the pyramidal cells are activated. From Freund and Katona, 2007 
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3.1.4 Interneurons and regulation of critical periods 

 

Recently, a lot of attention has been paid to interneurons as regulators of windows of 

enhanced plasticity during development, that are generally known as “critical periods”. 

Critical periods are best (and longest) studied in sensory systems, where over 40 years of 

study have revealed their presence and part of the mechanisms responsible of these 

windows of opportunity. Indeed, during a brief period of postnatal life whose extent and 

timing depend on the structure analyzed (Hensch 2005), an external perturbation of the 

proper sensory experience like the occlusion of one eye, the shaving of a whisker, or a white 

noise, can produce long-lasting rearrangements in the mcirocircuits that underlies that 

sensory modality. Therefore, in the binocular visual cortex, inputs from the spared eye in the 

case of monocular deprivation can invade the territory normally occupied by the other eye, in 

an attempt to overcome the external insult (Wiesel and Hubel 1963 a to d, Hubel et al, 1976, 

Shatz C end Stryker, 1978). This great degree of plasticity present during development 

seem to be lost in adulthood, where monocular deprivation cause little to no rearrangements 

of cortical microcircuits, although during the years it has been shown that many interventions 

are able to restore to a certain extent a high degree of plasticity even in the adults 

(Pizzorusso T et al., 2002; Vetencourt et al., 2008). 

In the last decade, many studies have implicated the development of the inhibitory 

component of cortical microcircuits in the regulation of the opening or closure of critical 

periods (for review, see Hensch 2005). Therefore, in mice that lack the enzyme GAD-65 

(which is critically involved in the synthesis of GABA, Tian N et al, 1999) ocular dominance 

plasticity is suppressed until the proper level of inhibition is restored by infusion of Diazepam 

(GABAAa2 agonist, Hensch et al 1998). Conversely, the onset of critical periods can be 

accelerated if GABA transmission is enanced (Fagiolini et al, 2000 and 2004), or GABA 

neurons maturations is accelerated (for example via BDNF overexpression, Huang et al 

1999, Hanover et al 1999). Moreover, in an elegant study in 2010, Southwell et al. implicated 

causally the development of interneurons in the opening of critical periods: when they 

transplanted immature neurons (in a mixed populations composed of PV, CR, NPY and 

SOM) into a more mature cortex, they were able to observe the opening of an additional 

period of enhanced plasticity that correlated with a specific window during interneurons 

development (Southwell et al., 2010). This topic will be treated further in the third part of this 

introduction. 
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Figure 3: Critical period regulation via maturation of inhibiton in cortical microcircuits 

During cortical microcircuit development, the maturation of inhibition exerted by define interneuron classes (in 

particular, PV+ interneurons providing perisomatic inhibition), is responsible for regulation of plasticity defining 

“critical periods”. Indeed, intervetions that impinge on inhibitory development (Benzodiazepines, BDNF, Dark 

rearing, GAD deletion) can modulate the timing and the extent of the critical period. Modified from Takao Hensch, 

Nature review neuroscience 2005 

 

 

The extent to which all the subpopulations of interneurons would contribute with the same 

importance to the opening and closure of critical period has then been immediately 

addressed by targeted experiments. In birdsongs, it has been shown that critical period for 

song learning coincide with perineuronal nets formation around PV interneurons in HVC, 

which is where song learning take place, and that failure in learning is mirrored by failure in 

developing proper PNNs (Balmer et al, 2009). When it became clear that restoring plasticity 

in the adult could be achieved by specifically shaving the prineuronal nets in the extracellular 
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matrix that form around Parvalbumin expressing interneurons (Pizzorusso et al., 2002), this 

class of interneuron was immediately under investigation to elucidate their contribution to the 

developmental critical periods. In their 2008 study, Sugiyama et al. demonstrated that during 

development, experience is instrumental in inducing the synthesis of the homeobox 

transcription factor Otx2 in early sensory areas (retina and Lateral geniculate nucleus), and 

promoting the transport of this protein to the visual cortex where, through local concentration 

induced by the formation of PNNs, it accumulates in PV+ interneurons thereby regulating 

their maturation and concomitantly critical period timing (Sugiyama et al. 2008).  

Therefore, the state of the interneuron network (and in particular that of PV interneurons) 

regulates the extent of plasticity during development, establishing those window of 

opportunity that are generally observed in sensory areas. Moreover, it might also be defining 

states that support learning in defined windows, as for song learning in zebra finches. 

Nevertheless, the possibility that this regulation mechanisms holds even in adult 

microcircuits, as well as the modalities by which it is implemented by experience, are still 

open questions in neurobiology. Moreover, the forces regulating the development of the 

inhibitory component in cortical microcircuits that lies further away from sensory experience 

remains to be elucidated. 
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3.2 The Hippocampal Formation 

 

3.2.1 Hippocampal Function 

 

Sitting underneath the cortical surface in the medial temporal lobe, the Hippocampus is one 

of the structures in the brain that has gained an overwhelming attention due to its 

involvement in learning and memory. Indeed, since the studies about the patient H.M, it is 

largely accepted that damages to the hippocampus (and other structures of the hippocampal 

formation, and more in general the medial temporal lobe) produce anterograde amnesia as 

well as temporally graded retrograde amnesia: both spare the ability to recall remote 

memories, but impair the ability to form new one or retrieve recent memories, respectively. In 

this prospect, the hippocampus is thought to play a role in consolidating information from 

short-term to long-term memories, which are dependent on neostriatal structures (Squire, 

2004).  

Specifically, the Hippocampus is involved in the formation of episodic memory, which 

consists in the ability to remember personal past experiences; this is achieved by creating a 

relational representation of various aspect of experience (the “what, where and when” 

components) that can be later recalled by partial input cues (Eichenbaum, 1999; Greene, 

2001). The ability to form representations without obvious reinforcers is known as “incidental 

learning”, as opposed to the other forms of learning producing  “semantic memory” which 

refers to the ability to acquire general knowledge without being specifically related to 

personal experience. Both forms of memory are known as “declarative”, due to the 

deliberate and conscious effort made to recall that information, which is usually about factual 

knowledge of people, places or events which bear a meaning attached to them (Kandel, 

2000): the Hippocampus is well known to play a role in both (Rosenbaum et al., 2000; 

Tulving, 2002). 

Moreover, the Hippocampus has long been studied for its contribution to spatial memory and 

navigation. Many neurons in the hippocampus possess the ability to fire action potentials 

when the animal passes through a specific part of the environment, a peculiar property that 

has led to the definition of these cells as “place cells” (O'Keefe and Conway, 1978; O'Keefe 

and Dostrovsky, 1971; O'Keefe and Nadel, 1978). Based on this peculiar property, it has 

been hypothesized that the hippocampus mediates memory for spatial relations among 

objects in an environment (O’Keefe and Nadel, 1978, McNaughton et al., 2006; Moser et al., 
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2008), thereby providing a representation of the external world known as “cognitive map” 

(O'Keefe and Nadel, 1978). To do so, place cells in the hippocampus likely work in close 

correlation with Grid cells (that fire action potentials in defined positions in the environment 

thereby describing regular grids of hexagonal form which can be distinguished by spacing 

and orientation, Hafting T et al., 2005), Head direction cells (which fire action potentials 

depending on the orientation of the animals, Sargolini F et al., 2006), and border cells (which 

fire action potentials in close proximity to a physical border, Solstad T et al., 2008) in the 

Medial Enthorinal Cortex.  

Therefore, although its contribution to learning and memory is widely accepted, the specific 

modality by which the Hippocampus participates in different forms of learning is still under 

debate. Experimental evidence for both concepts has been provided. For example, in vivo 

recordings have identified hippocampal cells that solely encode spatial or non-spatial 

information (Okeefe and Dostrovs.J 1971; Hampson, Simeral et al. 1999; Lee, Griffin et al. 

2006; Royer, Sirota et al. 2010). In addition, a population of hippocampal neurons has been 

reported to encode both non-spatial as well as spatial information (Hampson, Simeral et al. 

1999; Wood, Dudchenko et al. 2000; Lee, Griffin et al. 2006). Therefore, place cells might 

contribute to episodic memory as a component of contextual representation (Smith and 

Mizumori 2006 a and b), but at the same time the hippocampus might extract common 

features across episodes and therefore play a critical role in semantic memory as well 

(O’Reilly and Rudy, 2001), thereby binding all kind of stimuli into a unitary representation 

that can later be recalled from partial input cues (Eichembaum et al, 1999; O’Reilly and 

Rudy, 2001). 

 

3.2.2 Hippocampal Connectivity 

 

The hippocampal formation in rodents is a C-shaped structure composed of three distinct 

subregions, which are populated by different types of excitatory cells: the Dentate Gyrus 

(DG), which comprises the granulare layer and the Hilus, is where the Granule and Mossy 

cell bodies are located; The Cornu Ammonis, divided in Area 3, 2 and 1 (CA3, CA2 and 

CA1, respectively), hosts the somas of the Pyramidal cells; the Subiculum (Sub, to which are 

associated the presubiculum and parasubiculum) connects the hippocampus proper to the 

Enthorinal cortex by its own Pyramidal cells.  
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This anatomical division is instrumental in understanding the unidirectional flow relaying 

information from the Enthorinal cortex to the hippocampus, and then back to the enthorinal 

cortex itself, which constitute the trisynaptic circuitry of the hippocampus proper (Figure 1). 

Hence, Cortical inputs from layer two enthorinal cortex enter the hippocampus to engage 

synapses with the DG Granule cells, whose axons are sent via the mossy fiber pathway to 

CA3 pyramidal neurons; by means of their Schaffer collateral, these neurons project to CA1 

pyramidal cells, whom, in turn, project back to the EC directly or via the subiculum. 

Moreover, extensive axon ramifications from CA3 pyramidal cells innervate other pyramidal 

cells in the CA3 area itself, thereby creating an intricate recurrent connection. Although this 

closed loop constitutes the main route of information flow in the hippocampus, the enthornial 

cortex projection (called Perforanth Path, PP) can project directly to every area in the 

hippocampus proper. Therefore, input arising in Layer 2 EC can project to the DG or directly 

to CA3 pyramidal neurons, while inputs originating in Layer3 EC project directly to the 

pyramidal cells in CA1. Moreover, the Enthorinal cortex can be divided anatomically in 

Medial (MEC) and Lateral (LEC), which convey different spatial and emotional information, 

and which project both to the Dentate gyrus and the hippocampus proper.  

 

Figure 1: basic anatomy of the Hippocampus 

From Neves et al., 2008. Here, the projection relaying the enthorinal cortex to the hippocampus proper is highlighted as main 

source of incoming information to the hippocampus. To organize its inputs, the trisynaptic hippocampal circuit relaying granule 

cells to pyramidal cells in CA3, which in turn project to pyramidal cells in CA1, shows a high degree of lamination along the 

dendrites of its neurons. 

 



28 
 

Such an intricate network of connectivity is structured in laminated fashion for which inputs 

that share their presynaptic origin stratify at different levels along the postsynaptic cell 

dendrites. Hence, inputs to the dendrites of granule and pyramidal cells can be analyzed 

according to position, which defines strata in each subdivision. 

In the dentate gyrus, the dendrites of granule cells extend from the granular layer (where cell 

bodies are located) to the molecular layer, without any ramification toward the Hilus (hilar 

dendrites are present during development but retracted in a later time point).  Hence, the 

region closest to the cell body is defined “inner molecular layer”, where inputs from the hilar 

mossy cells constituting the commissural/association fibres stratify (Blackstad, T. W, 1956 

and 1958). The outer molecular layer is accupied by inputs arising from L2 enthorinal cortex, 

that again stratify according to their origin: the inner part of the layer is accupied by inputs 

arising in the MEC, while the outer part hosts inputs coming from LEC. 

In CA3, pyramidal cells receive synapses onto both basal and apical dendrites. Basal 

dendrites are present in the Stratum Oriens, which receives inputs from the septal fibers and 

the commissural fibers from the contralateral hippocampus. Immediately above the Stratum 

Pyramidale, where the cell bodies of pyramidal cells are located, the lamination of the mossy 

fibers defines the Stratum Lucidum, where the large mossy fiber terminals relay information 

from the granule to the pyramidal cells. Further above, the Stratum Radiatum contains the 

ramification from the Schaffer Collaterals, which relay pyramidal cells in CA3 to each other, 

thereby forming the intricate recurrent innervation typical of this region. Stratum Lacunosum-

Moleculare defines the most apical stratum where inputs from L II Enthorinal cortex synapse 

directly upon CA3 Pyramidal cells.  

In CA1, the division in strata is somehow similar to the CA3 subregion; nevertheless, since 

CA1 misses entirely the inputs from granule cells, no Stratur Lucidum can be distinguished, 

and its position is occupied by a larger Stratum Radiatum where inputs from the CA3 

Schaffer collaterals stratify. 

 

 

3.2.3 The mossy fiber projection 

 

 

Making synapses on the apical tract of the CA3 pyramidal cells dendrites, the mossy fiber 

projection consists of unmyelinated axons arising from granule cells, running in the Stratum 

Lucidum of CA3, and exhibiting a strict lamellar organization parallel to the transversal 
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hippocampal axis (Gaarskjaer, 1986; Henze et al., 2000). Mossy fiber axons exhibit three 

morphologically distinct presynaptic specializations: large ‘giant’ boutons (large mossy fiber 

terminals, LMTs) that are thought to represent the main bodies of mossy fibers (Galimberti et 

al., 2006), small en passant varicosities, and filopodial extensions emerging from the LMT 

core (Amaral and Dent, 1981) (Figure 2). LMTs are large (> 2.5 μm in diameter) and potent 

presynaptic terminals that innervate complex clusters of dendritic spines called thorny 

excrescences (or thorns) on CA3 pyramidal neurons (Blackstad and Kjaerheim, 1961; 

Hamlyn, 1962; Rollenhagen et al., 2007). The mossy fiber synapses made by LMTs are very 

powerful and are also known as “detonator synapses”, due to their ability to generate large 

postsynaptic currents and potentials in CA3 pyramidal neurons under conditions of high 

activation (Henze et al., 2002; Lawrence et al., 2004; Maccaferri et al., 1998). Moreover, 

they present most of the features that are attributed to “driver” synapses (The Pasquale et 

al., 2011).  LMTs can exhibit “satellites”, or terminal appendices that are connected to the 

main core through 10 – 200 μm processes (Galimberti et al., 2006) (Figure 2). Like core 

LMTs, satellites are larger than 2.5 μm in diameter, exhibit filopodia and establish excitatory 

contacts onto distinct postsynaptic pyramidal neurons, thereby mediating feed‐forward 

excitation (FFE) (figure 2). Furthermore, LMTs have been shown to exhibit structural 

plasticity as a consequence of age, experience and learning (De Paola et al., 2003; 

Galimberti et al., 2006; Ruediger et al., 2011). As opposed to these powerful excitatory 

connections, mossy fibres establish synapses with inhibitory GABAergic interneurons in the 

hilus and stratum lucidum via en passant varicosities and LMT filopodial extensions (Acsady 

et al., 1998; Szabadics and Soltesz, 2009). In turn, these interneurons make inhibitory 

synapses on CA3 pyramidal neurons, thereby mediating feed‐forward inhibition (FFI. Figure 

2). At low‐frequency firing, FFI dominates over CA3 pyramidal neuron excitation (Acsady et 

al., 1998), providing powerful regulatory control over CA3 principal cell excitability and timing 

of action potential generation (Lawrence and McBain, 2003 and 2004). 
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Figure 2: Connectivity of the Mossy Fiber pathway in CA3 

Schematic of connectivity in CA3. The large mossy fiber terminals are able to mediate both feedforward excitation via excitatory 

synapses onto excitatory cells (Core and satellites LMTs on CA3 pyramidal cells), and Feedforward inhibition via Parvalbumin 

(PV) positive interneurons recruitment largely mediated by filopodial synapses. 

 

 

 

3.2.4 Developmental origin  

 

 

The developmental origin of the hippocampus proper lies in the subpallial region of the 

developing brain called hippocampal neurepithelium (Altman and Bayer, 1990 a, b and c), in 

close proximity to the cortical Hem. Here, a continuous sheet of Nestin+ progenitor cells 

(radial glia-like) facing the wall of the ventricular formation undergo a final asymmetric cell 

division to give rise to both Pyramidal cells of areas CA3 and CA1, as well as granule cells of 

the dentate gyrus: hence, the hippocampal neurepithelium can be segmented in ammonic 

neurepithelium, primary dentate neurepithelium, and fimbrial glioepithelium, according to 

their increasing proximity to the Hem (Altman and Mayer, 1990; Li and Pleasure, 2005 and 



31 
 

2007). This latter stuctures is known to produce many of the morphogens that are required 

for cells specification and maturation in the hippocampus, including WNT3a (Grove EA et al, 

1998; Mangale VS et al, 2008) which lies upstream of a cascade of transcription factor that 

define hippocampal fate (like Lef1, Emx2 and Lhx5, Li Q et al., 2011). 

During the course of the second week of the mouse embryonic development, the 

hippocampus neurepithelium undergoes a sustained period of cell division (Altman and 

Bayer, 1990), which produces postmitotic pyramidal cells and a mixed population of 

postmitotic granule cells as well as a larger fraction of granule cells progenitors (Altman and 

Bayer, 1990 b). The postmitotic pyramidal cells , which are overall produced in a time 

window spanning from E10.5 to E18.5 in the mouse (Danglot, Triller and Marty 2007), start 

then their path of radial migration toward their final destination in stratum piramidale of the 

cornu ammonis, where they settle in the classical cortical inside-out order with older cells in 

the outer layer. Granule cells, on the other hand, are produced in two waves: a first, pioneer 

subset of postmitotic granule cells start to migrate to the final territory of the dentate gyrus as 

early as E 10.5, thereby settling in the outer layer of stratum granulare (Altman and Bayer, 

1990); a second, larger cohort of granule cells will instead be produced postnatally from the 

pool of progenitors that had previously settled in the hilar region, in a window that comprises 

the first ten days of postnatal life. Nevertheless, a small portion of progenitors will be 

retained in the subgranular zone for the whole life of the animal, giving rise to the adult born 

granule cells (Kempermann et al., 2000). 

This early period of neurogenesis is followed by an extensive period of synaptogenesis in 

which all the synaptic connection in the hippocampus are formed, in a marked temporal 

order which favors inputs closer the soma as early established, followed by the other inputs 

in a centrifugal manner. The recognition between pre and postsynaptic partners seem to be 

favored by selective interaction of adhesion molecules, like synCAMs (Forgel AI et al., 

2007). Moreover, the program establishing a correct lamination of inputs in the hippocampus 

seems to rely entirely on genetic factors, with little influence from activity (Forter, Zhao and 

Frotscher 2006). 

 

 

3.2.5 Neuronal diversity 

 

 

The extent to which, in cortical mircorcuits, excitatory cells of the same type can be 

considered as a homogeneus population or divided according to some specific properties is 
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still an open question in neurobiology. In the hippocampus, this has led many researchers to 

try to understand if all pyramidal and granule cells share the same properties in the adult 

microcircuits. It has been already pointed out that most, but not all the pyramidal cells in CA3 

and CA1 exhibit “place cells” properties in vivo, thereby creating a first functional difference 

among hippocampal cells (O’Keefe J., 1976). More recently, Kenji Mizuseki and Yuri Buzsaki 

have demonstrated that pyramidal cells in CA1 can be distinguished base on their 

physiological properties and position in deeper or superficial layers: deep pyramidal cells 

fired at higher rates, bursted more frequently, were more likely to have place field and were 

more strongly modulated by slow oscillations during sleep (Mizuseki et al., 2011). This might 

suggest that pyramidal cells in CA1 might form functional distinguishable subclasses that 

might go beyond the intrinsic morphological and physiological difference observed in CA3 ( 

Bilkey DK et al, 1990).  

Moreover, at the genetic level, Thompson et al., have demonstrated the existence of a 

robust cohort of transcripts that show a strong, regionalized expression in the hippocampus. 

This thereby defines a complex molecular parcellation into a relatively coherent set of nine 

expression domains in the septal/temporal and proximal/distal axes in CA3, with reciprocal, 

nonoverlapping boundaries (Thompson et al, 2008). The exstensive presence of adhesion 

molecules among those transcripts suggests that the underlying rule defining this 

parcellation might reside in differential connectivity, as demonstrated to connectivity toward 

the lateral septum. 

Nevertheless, the extent to which a group of cells might share similar genetic and 

physiological porperties in a defined subregion, and find a correlate in groups belonging to 

other subregions (thereby defining horizontal subpopulations across DG, CA3 and CA1), is 

not yet known. Moreover, the possibility that connectivity might be organized differently 

among cells belonging to the same subpopulation as opposed to different ones, and the 

rules governing the achievement of this selective connectivity, might highlight the existence 

of parallel microcircuits in the hippocampus whose function would remain to be determined.  
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3.3 Structural plasticity upon learning: regulations and functions 

Published Review: 

Pico Caroni, Flavio Donato, Dominique Muller. 

Nature Review Neuroscience 2012 Jun 20; 13(7) 478-90 

 

 

The contributions of brain networks to information processing and learning and memory are 

classically interpreted within the framework of Hebbian plasticity and the notion that synaptic 

weights can be modified by specific patterns of activity. However, accumulating evidence 

over the past decade indicates that synaptic networks are also structurally plastic, and that 

connectivity is remodeled throughout life, through mechanisms of synapse formation, 

stabilization and elimination1. This has led to the concept of structural plasticity, which can 

encompass a variety of morphological changes that have functional consequences. These 

include on the one hand structural rearrangements at pre-existing synapses, and on the 

other hand the formation or loss of synapses, of neuronal processes that form synapses or 

of neurons. In this Review we focus on plasticity that involves gains and/or losses of 

synapses. Its key potential implication for learning and memory is to physically alter circuit 

connectivity, thus providing long-lasting memory traces that can be recruited at subsequent 

retrieval. Detecting this form of plasticity and relating it to its possible functions poses unique 

challenges, which are in part due to our still limited understanding of how structure relates to 

function in the nervous systems.  

We review recent studies that relate the structural plasticity of neuronal circuits to behavioral 

learning and memory and discuss conceptual and mechanistic advances, as well as future 

challenges. The studies establish a number of strong links between specific behavioral 

learning processes and the assembly and loss of specific synapses. Further areas of 

substantial progress include molecular and cellular mechanisms that regulate synapse 

dynamics in response to alterations in synaptic activity, the specific spatial distribution of the 

synaptic changes among identified neurons and dendrites and the relative roles of excitation 

and inhibition in regulating structural plasticity.  

The new findings provide exciting early vistas of how learning and memory may be 

implemented at the level of structural circuit plasticity. At the same time, they highlight major 

gaps in our understanding of plasticity regulation at the cellular, circuit and systems levels. 

Accordingly, achieving a better mechanistic understanding of learning and memory 
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processes is likely to depend on the development of more effective techniques and models 

to investigate ensembles of identified synapses longitudinally, both functionally and 

structurally.  

 

3.3.1 Molecular mechanisms of synapse remodeling  

 

A remarkable feature of excitatory and inhibitory synapses is their high level of structural 

variability2 and the fact that their morphologies and stabilities change over time3. This 

phenomenon is regulated by activity, and the size of spine heads correlates with synaptic 

strength4, presynaptic properties5 and the long-term stability of the synapse6. The 

morphological characteristics of synapses thus reveal important features of their function 

and stability. Most importantly, there is a continuity of regulatory processes relating synaptic 

activity to the strength, shape and long-term retention of existing synapses.  

 

Synapse restructuring. Early electron microscopy studies provided the first evidence that the 

induction of synaptic plasticity could affect the size and shape of dendritic spines7. Later, two 

photon glutamate uncaging and imaging experiments demonstrated a close association 

between increased synaptic strength and an enlargement of the spine head4. The 

significance of this enlargement could reflect several important functional modifications of 

the synapse. It could be linked to the changes in receptor expression that are thought to 

account for the increase in synaptic strength at many synapses8. It could also result from the 

mobilization of subcellular resources to potentiated synapses, such as ribosomes or 

additional cytoskeleton-associated proteins9. In addition, this restructuring could be part of a 

more global set of changes that promote the stabilization of the synapse10. Several recent 

studies have indeed highlighted the importance of synapse stabilization as a defined feature 

associated with behavioural learning. Novel sensory experience was shown to promote the 

stabilization of a new set of persistent spines in the somatosensory cortex in vivo6. Similarly, 

in motor skill learning experiments, new spines that grow on selective populations of neurons 

are preferentially stabilized during subsequent training, with the spines persisting long after 

training has stopped11,12.  
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Figure 1: Molecular mechanisms regulating activity-mediated stabilization of dendritic 

spines. 

Induction of synaptic plasticity at individual synapses is associated with a rapid enlargement of the spine head, an increase in 

synaptic efficacy and a switch in the stability of the synapse that could make them persistent. Recent findings implicate an 

important role of protein kinases (such as PKC (protein kinase C) and CaMKII (calcium/ calmodulin protein kinase II)) 

contributing to long-term potentiation (LTP) maintenance, spine enlargement and in vivo spine stability (for PKC). In addition, 

local protein synthesis (for example of BDNF (brain-derived neurotrophic factor), TRKB (tyrosine kinase B), MAPK (mitogen-

activated protein kinase), PI3K, (phosphoinositide 3‑kinase), PTEN (phosphatase and tensin homologue), AKT, TSC1 

(tuberous sclerosis 1), TSC2, mTOR (mammalian target of rapamycin) and FMRP (fragile X mental retardation protein)) 

contributes to LTP maintenance, spine enlargement and spine stability. Proteins implicated in the regulation of the actin 

cytoskeleton (such as DISC1 (disrupted in schizophrenia 1), CDC42 (cell division control protein 42), RAC1 (Ras-related C3 

botulinum toxin substrate 1), PAKs (p21‑activated kinases) and adducin) contribute to LTP maintenance and spine 

enlargement (and spine stability for PAK3). The actin cytoskeleton is indicated as F‑actin. Moreover, adhesion molecules and 

molecules of the postsynaptic density (including PSD95 (postsynaptic density protein of 95 kDa), SHANKs (SH3 and multiple 

ankyrin repeat domains proteins), neuroligins, N-cadherins, AMPA receptors (AMPARs) and NMDA receptors (NMDARs)) are 

implicated in LTP maintenance, spine enlargement and spine stability. 

In birds, song learning by imitation during a juvenile sensitive period leads to a rapid 

stabilization and enlargement of dendritic spines that is correlated with an enhancement of 

synaptic activity13. These different studies support the idea that the stabilization of selective 

subpopulations of spines could represent a structural basis for memory storage. Although 

this stabilization process is often associated with the induction of plasticity, several important 

issues remain to be addressed. How does this stabilization relate to changes in synaptic 

strength or spine size? Are changes in synaptic strength required for the stabilization of a 

synapse? How stable is this mechanism? A recent study suggests that reconditioning 
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following a procedure of conditioning and extinction preferentially eliminates dendritic spines 

formed and stabilized by extinction14. Accordingly, stabilization may be considered as a key 

reversible property of individual synapses that is linked to the induction of plasticity.  

Molecular mechanisms of synapse stabilization. The molecular mechanisms accounting for 

synapse stabilization are likely to implicate a variety of factors, which have often been 

inferred from indirect analyses of either mechanisms contributing to long-term potentiation 

(LTP) maintenance or mechanisms implicated in activity-mediated spine enlargement. 

Relatively few studies have examined molecular mechanisms contributing to spine 

stabilization by directly measuring the persistence of dendritic spines in vivo. Current 

evidence, however, suggests that there is a significant overlap between the molecular 

pathways implicated in these different aspects of stability (FIG. 1), emphasizing the close 

link existing between induction of plasticity and synapse stability.  

First, an important part is likely to be played by phosphorylation mechanisms. Both 

calcium/calmodulin-dependent protein kinase II (CaMKII) and protein kinase C (PKC) have 

been directly implicated in LTP maintenance and behavioural learning15,16. CaMKII activity is 

required for activity-mediated spine enlargement17, and PKC contributes to in vivo spine 

stabilization18. Another central mechanism for spine stabilization involves the local regulation 

of protein synthesis, which includes the signaling cascades (such as the mitogen-activated 

protein kinase (MAPK) and phosphoinositide 3 kinase (PI3K) pathways) downstream of 

receptor tyrosine kinase B (TRKB; also known as NTRK2) activation, the mammalian target 

of rapamycin (mTORsignalling complex and the translation of mRNAs that encode proteins 

such as ARC or CaMKII. Interference with this signaling, with protein synthesis or with ARC 

translation have been strongly implicated in LTP maintenance and in spine enlargement19–23, 

whereas in vivo blockade of protein synthesis results in synapse destabilization18. A third set 

of molecular factors critical for spine stabilization includes the various signaling pathways 

and actin-regulatory proteins that control the spine actin cytoskeleton. Interference with actin 

polymerization impairs LTP maintenance and changes in spine size23–25. Furthermore, 

phosphorylation of the cytoskeleton-stabilizing protein β-adducin through PKC is required for 

the stabilization of populations of synapses induced by environmental enrichment18. 

Additional evidence supporting a role of the cytoskeleton in spine stabilization comes from 

the implications of Rho GTPases and several upstream or downstream modulators of this 

pathway, such as kalirin 7, DISC1 (disrupted in schizophrenia 1) or PAKs (p21 activated 

kinases). Interference with this signaling affects LTP mechanisms and the capacity of spines 

to enlarge26,27. Finally, one important mechanism through which synapse stability could be 

improved is by changes in the organization of the postsynaptic density (PSD) that promote 

trans-synaptic adhesion and contact. Expression of PSD95 and/or AMPA receptors 
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enhances synaptic strength and synapse stability28,29. Several adhesion molecule systems 

have also been linked to spine stability, including neuroligin 1 29,30 and N cadherin. Activity-

mediated expression of N cadherin correlates with, and is required for, the long-term 

stabilization of spines activated by theta-burst stimulation31. Secreted members of the C1q 

family have also been shown to rapidly induce changes in synapse numbers by, for 

example, stabilizing synapses in the mature cerebellum in vivo through the formation of 

trans-synaptic complexes32. Taken together, these data highlight how spine stabilization is 

regulated by a multiplicity of molecular mechanisms, probably reflecting the importance and 

complexity of the phenomenon.  

3.3.2 Synapse turnover specificity in vivo  

A comparatively small but significant fraction of synapses in the adult in vivo undergo a 

continuous turnover process, which may allow a continuous adaptation of synaptic networks 

to experience1. The magnitude of this turnover process varies strongly during develop¬ment, 

decreasing significantly in adult brain6,33,34, but a substantial capacity for circuit rewiring is 

maintained throughout life and can be reactivated by lesions1. As discussed below, 

processes known to involve enhanced plasticity also enhance the fraction of synapses that 

undergo turnover in the adult.  

Remodelling of connectivity. An important feature of synapse turnover is its regulation by 

activity and sensory experience33. Whereas initial in vitro experiments mainly focused on 

spine growth and synapse formation in response to neuronal activation34–36, more recent 

experiments have shown that activity also destabilizes existing synapses10,35. Under in vivo 

conditions, training in motor skill learning tasks results in a rapid rewiring through the 

formation and elimination of spines in the primary motor cortex, affecting different sets of 

synapses for different motor skills11,12. Spine elimination and formation caused by fear 

conditioning and extinction, respectively, occur in a cue- and location-specific manner14. 

Similarly, a major correlate of environmental enrichment is a marked increase in synapse 

remodeling, including synapse formation and destabilization18.  

An interesting feature of activity-mediated spine dynamics is that it might be regulated 

locally: evidence suggests that induction of plasticity is facilitated in the vicinity of potentiated 

spines and that new spines preferentially form close to activated spines10,37. Two recent 

studies further support these results. Using a repetitive motor learning task, it has been 

shown that new spines formed during the acquisition of learning emerge in clusters as 

neighbouring spine pairs that are more likely to persist than non-clustered spines38. Another 

study carried out during development by monitoring synaptic activity through calcium 

imaging shows that neighbouring synapses are more likely to be co active than synapses 
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farther from each other39. Local regulation of spine dynamics may thus be an important 

mechanism to promote such clustering activity.  

A different aspect of the regulation of spine turnover is that, in some cases, the effect may 

be more global and differentially affect spine formation and elimination, resulting in actual 

changes in spine density40. In the motor learning task experiments, the increase in spine 

formation and spine loss roughly cancelled each other out, resulting in no marked changes 

in spine density11,12. By contrast, the enriched environment protocols greatly promoted spine 

growth, leading to an increase in the absolute numbers of spines18. Regulation of spine 

dynamics thus not only promotes rewiring but also controls the level of connectivity of the 

network. Taken together, these observations suggest that the rewiring observed under 

behavioural learning conditions represents a structural correlate of learning (FIG. 2).  

 

Figure2: Learning-induced structural rewiring of synaptic networks. 

a-c. Schematic showing a characteristic spine turnover sequence under baseline activityconditions, which includes both loss of 

existing spines and gain of new ones, and affects a small subpopulation of transient spines (small dark spines), leaving a larger 

population of more stable, persistent spines unaffected. d–f | Under conditions of behavioural learning, this turnover is markedly 

enhanced, leading to the formation of additional new spines (small dark spines), and the elimination of pre-existing spines 

(dashed spines). Although connectivity is modified, spine density can remain unchanged. The new spines formed following 

learning tend to occur in clusters (encircled areas) and exhibit a higher probability to become stabilized as persistent spines, 

introducing a lasting modification of the synaptic network. 
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Regulation of spine and synapse turnover. One important factor controlling synapse turnover 

appears to be the balance between excitation and inhibition. Alterations of this balance 

during critical (or sensitive) periods — that is, developmental time windows of enhanced 

plasticity — strongly affect the capacity for structural plasticity41. Furthermore, several recent 

studies have shown that manipulations that reduce inhibition in adulthood are able to restore 

visual plasticity to levels comparable to those observed during development42,43. Although it 

remains unclear how exactly modulation of the excitatory–inhibitory balance can promote or 

reduce cortical plasticity, part of the effect could implicate changes in synapse dynamics. 

Consistent with this possibility, spine changes correlate with the capacity for visual plasticity 

in vivo44 and, during development, short-term anaesthesia or administration of drugs that 

enhance GABAergic inhibition results in rapid and marked changes in spine growth and 

synapse gain45. 

Several additional molecular mechanisms have also been reported to modify spine numbers 

and dynamics. Estrogens, for example, can rapidly shift the balance of spine turnover 

towards increased growth and stabilization, thus leading to an increase in spine density in 

the hippocampus46,47. The effect is reversible and probably accounts for the variations in 

spine density reported during the estrous cycle. Brain-derived nerve growth factor (BDNF) 

also affects spine formation mechanisms by enhancing both destabilization of spines and 

spine formation in the cortex and hippocampus, and could thus contribute to some of the 

activity-dependent regulations of synapse dynamics48,49. The mechanisms through which 

BDNF influences spine growth are as yet unclear, but could be linked to a regulation of 

protein synthesis. Thus, PI3K, which interacts with AKT and has functional links with mTOR 

signal-ling, also regulates spinogenesis50. Furthermore, protein synthesis, mTOR signaling 

and spine turnover are affected in fragile X mental retardation protein (FMRP) knockout 

mice, a mouse model of fragile X syndrome51. A further group of molecular mechanisms 

affecting spine growth includes proteins implicated in the regulation of the cytoskeleton, such 

as Rho GTPases and their regulatory proteins. The extent to which some of these factors 

can diffuse locally could account for the mechanisms of clustered spinogenesis52,53. Notably, 

RAS, which is activated by LTP induction, has been shown to diffuse locally and promote 

plasticity in neighbouring spines37. Through its activation of the MAPK pathway and its 

effects on protein synthesis, it could also locally modulate spine growth. Although substantial 

progress has been made recently, more work will be needed in order to better understand 

how precisely these molecular mechanisms control spine turnover. 
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3.3.3 Distribution of the structural plasticity  

 

Circuit rearrangements can be confined to the neurons involved in the particular learning 

process, or to neuronal subpopulations within systems involved in the learning process. 

However, under different circumstances, structural rearrangements can also be induced in a 

broad range of systems in the brain (for example, upon environmental enrichment, see 

below). An issue that arises is whether the differences in plasticity distribution reflect 

different roles of structural plasticity or whether a common logic may underlie these distinct 

phenomena. In this context, it is useful to take into account that synapse gains and losses 

related to a particular learning process are mostly specified subsequent to the initial learning 

event. Accordingly, if memory consolidation upon learning involves the selective stabilization 

and strengthening of some synapses combined with the weakening and loss of other 

synapses, the different spatial scales of the structural plasticity may involve the distinction 

between the potential substrates of memory consolidation, which may be distributed locally 

or broadly, and the actual substrates of the consolidation, which may be specifically 

associated with the neurons involved in the particular learning process. Consequently, two 

crucial issues concern the specificity of the structural changes at the local level and whether 

more global structural alterations may serve as potential substrates for specific local 

modifications.  

Plasticity within local microcircuits. A remarkable aspect of the recent studies relating 

learning to changes in dendritic spines and axon terminals is that the structural plasticity 

could be detected readily using sparse labeling approaches in vivo, provided that cortical 

areas relevant to the particular form of learning were analyzed repeatedly during an 

appropriate time window. One might expect that changes in synapse numbers that correlate 

with new learning may only affect a very small fraction of the synapses within a relevant 

network, and for that reason methods that only sample 0.1–1% of the neurons of a given 

kind1,6,35 may not be adequate to detect such changes. The dramatic detection sensitivity of 

these structural plasticity studies is probably owing to the fact that these experiments have 

involved longitudinal analysis of the same large ensembles of synaptic structures, an 

approach that is far superior to comparisons of synapse groups, which tend to underestimate 

the extent of the structural plasticity. In addition, the detection of structural changes was 

probably facilitated by the fact that behavioral learning initially increases the dynamics of a 

fraction of spine synapses that is larger than the fraction ultimately retained as a structural 

trace of learning11,12,40. Nevertheless, the detection of synapse remodeling events did not 

reflect a lack of specificity in the circuit elements involved in the structural plasticity. For 
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example, in agreement with behavioral observations, structural plasticity in the motor cortex 

upon learning of a grasping movement was specifically confined to projection neurons 

driving distal limb muscles and did not affect those driving proximal muscles54. The 

specificity was particularly remarkable considering that the different projection neurons are 

locally inter-mingled within the primary motor cortex. Notably, the extent of the structural 

plasticity was correlated with the magnitude of the learned movement54. Evidence for 

specificity was also provided in experiments in which sensory deprivation in the adult 

produced specific patterns of growth and retraction in cortical axons and dendrites55,56.  

In support of the notion that the local structural plasticity was specifically associated with 

learning, re learning the same task or a second occurrence of the same kind of sensory 

deprivation did not elicit further plasticity in the same neurons11,12,40. These findings suggest 

that learning-induced structural plasticity can initially affect a substantial fraction of the 

neurons involved in the learning, and that less abundant but more persistent alterations 

reflect ‘lasting structural traces’ of learning40. The number of structural traces of learning that 

become long lasting may depend on intrinsic processes that regulate plasticity and on the 

amount of repeated training that triggers memory consolidation and reconsolidation 

processes. Elucidating the extent to which the new synapses may truly mediate the 

encoding of memories (that is, whether they represent ‘engrams’) will require more 

sophisticated methods to combine structural and functional imaging of synapses in vivo57 

(see below). Nevertheless, two recent studies have provided some evidence that there may 

indeed be a direct correspondence between new synapses and engrams in learning. In one 

study, fear learning and its extinction affected the formation and disappearance of spines 

within two microns of distance on the same dendrites, suggesting that opposite changes in 

the numbers of spatially closely related synapses are associated with opposite behavioral 

outcomes14. Evidence for specificity was provided by the observation that learning–extinction 

cycles for different tones, which produced separate regulation behaviorally, were associated 

with distinct stretches of dendrites14. In a second study, new spines assembled upon 

repeated motor learning had a high probability to appear in the close vicinity of spines that 

had appeared at previous days during the same motor learning process, suggesting a 

striking correspondence between the gradual encoding of specific new memories and the 

spatial position of new spines along particular dendrites38.  

In addition to alterations at subsets of neurons and synapses, behavioral learning can 

produce more global alterations in the numbers of specific types of synapses within systems 

involved in the particular learning. For example, different forms of behavioral learning can 

lead to up to a doubling in the numbers of excitatory synapses onto fast-spiking inhibitory 

interneurons in the hippocampus and/or cerebellar cortex (feedforward inhibitory (FFI) 



42 
 

growth)58. Using targeted virus-mediated rescue experiments in a β-adducin mutant 

background deficient in learning-induced synaptogenesis, the same study provided causal 

evidence that this plasticity is critically important for the behavioural precision of the memory, 

but not for the memory of the learned association itself 58. Although the high level of local 

prevalence of the FFI growth might suggest a lower circuit level specificity for this form of 

structural plasticity, this may in fact not be the case. Thus, fast-spiking interneurons are 

thought to detect local levels of circuit excitation through the convergence of large numbers 

of weak excitatory synapses onto them and to broadcast that signal to most excitatory 

neurons within their local environment. Accordingly, the broad FFI growth plasticity may be 

specifically adjusted to the connectivity properties of fast-spiking feedforward excitation 

targeting cell bodies and proximal dendrites. Whether learning produces additional broadly 

distributed alterations in defined elements of neuronal circuits remains to be determined.  

Plasticity affecting multiple systems and neurons. Several factors have been shown to 

influence future learning and behavioral outputs by inducing major modifications in the 

numbers, arrangements and dynamics of synaptic connections. For example, environmental 

enrichment and estrogen both produce large increases in synapse turnover and synapse 

numbers at multiple neuronal systems18,46,47. Conversely, stress can reduce synapse 

numbers in some systems (for example, in the hippocampus), while increasing them in other 

systems (for example, in the amygdala)59. Synapse dynamics and numbers are further 

influenced by seasonal changes and developmental age60. For environmental enrichment, 

the increased synapse turnover has been causally related to improved learning18. Common 

to these influences of external and internal contingencies on structural plasticity is the fact 

that they do not involve specific learning processes. The structural alterations related to 

experience, hormones and age are not confined to a few neuronal systems, but their 

distribution has not yet been investigated in sufficient detail to extract possible patterns. It is 

possible that these alterations may reflect the properties of the signals that induced them, 

such as the distribution of hormone receptors and the ways through which novel sensory 

experience influences circuit function.  

Widespread dynamics followed by confined consolidation. How can the presence of broadly 

distributed structural alterations upon experience and learning be reconciled with the 

specificity necessary for the structural modifications to selectively reflect learned relation-

ships? It is possible that some of the broad changes in circuit structure affect function in 

ways that are unrelated to mechanisms of learning. However, many of the alterations as a 

result of experience, hormones and ageing are likely to affect learning and memory by acting 

on the same cellular and molecular processes. As discussed in previous sections, LTP and 

learning are accompanied by enhanced rates of synapse assembly and disassembly 
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events10,61. Several studies of learning-related synapse dynamics in vivo have provided 

strong evidence that enhanced dynamics is specifically correlated with new learning in intact 

birds, rodents and primates, and with recovery after stroke in the human adult13,44,59,62,63. 

Similar studies have further shown that a subpopulation of new synapses is subsequently 

stabilized during a process depending on repeated training, which lasts for many days and 

even weeks11–13,63. A study of how zebra finches learn to sing from a tutor provides a 

particularly compelling case for the relationship between behavioural learning and synapse 

turnover13. Thus, at the appropriate developmental stage, enhanced spine turnover was 

detected on sensorimotor neurons involved in the learning, and the learning experience 

stabilized some of these spines. An age-related decline in spine dynamics was delayed if the 

birds were raised without a tutor13. Furthermore, enhanced learning upon environmental 

enrichment was dependent on increased gains and losses of synapses18. These were, in 

part, provided by the population of additional dynamic synapses that were induced upon 

enrichment18. Similar principles seem to apply to the increase in labile synapses induced by 

oestrogen46,47. It is likely that several types of signals, some acting locally and directly related 

to new learning, and others acting more globally and related to experience, hormones and 

age, may all produce alterations in synapse turnover and in the numbers of dynamic 

synapses that provide potential substrates for learning. The presence of larger numbers of 

dynamic synapses before learning may facilitate learning, whereas the selective stabilization 

of small subsets of dynamic synapses upon repeated learning may provide structural traces 

of learning (FIG. 3). As enhanced learning upon environmental enrichment also depends on 

synapse loss18, it is likely that learning also involves the selective elimination of synapse 

subpopulations.  
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Figure 3: Global and local synapse turnover regulation processes affecting learning 

and memory. 

The schematics represent dendrites of two excitatory neurons and their spine synapses. Increasing plasticity is represented as 

darker grey tones. Dynamic spines are green (gains) and red (losses); spine changes upon learning are indicated by green and 

red arrows; orange spines appear upon learning, but do not persist during consolidation; and structural traces of learning upon 

consolidation include spine gains (blue) and spine losses. a–c | Learning-induced structural plasticity enhances the turnover of 

subpopulations of new and pre-existing synapses specifically in excitatory neurons involved in the learning (a versus b), and 

leads to the selective stabilization of some learning-induced spines (c). d–f | Enhanced baseline levels of synapse turnover as a 

consequence of enrichment, developmental stage or hormones (d versus a) may augment the magnitude of learning-induced 

spine gains and losses (e versus b), and may lead to more robust structural traces of learning (f versus c). The enhanced 

structural plasticity baseline levels underlie improved behavioural learning upon enrichment18, and improved song learning in 

the presence of a tutor during zebra finch development
13

. 

It is conceivable that learning and memory, under a regime of previously enhanced (for 

example, after environmental enrichment) or reduced widespread synapse dynamics, might 

be subject to regulation that differs, in part, from that involving synapse dynamics specifically 

induced during learning. That may, for example, involve distinct molecular compositions and 

stabilization mechanisms at synapses involved in learning. Such differences could have 

important implications for how experience (for example, stress) influences internal states and 

learning, but an adequate investigation of these phenomena will probably depend on the 

establishment of more sensitive experimental paradigms to study specific relationships 

between the structure and function of neuronal networks in living animals (see below). 
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3.3.4 Plasticity regulation  

 

What mechanisms regulate the potential for structural plasticity (metaplasticity) in the brain? 

Much of the current knowledge and concepts about plasticity regulation are derived from 

studies of juvenile animals in which time windows of enhanced plasticity facilitate adjust-

ments that are important for adult function41,42,64–66. Whereas most of the studies have 

investigated plasticity to adjust for malformations such as strabismus or monocular 

deprivation, a recent study revealed that within the binocular visual cortex, critical period 

plasticity produces a matching of the orientation preferences of individual neurons in 

response to each eye67. Critical period studies in the visual and auditory system have 

provided evidence for profound structural plasticity during learning, including the assembly 

and long-term retention of alternative extra circuits that can be recruited in the adult under 

appropriate conditions64,65,67–69. Studies in barn owls have revealed that the additional 

learned circuits that had been assembled during a sensitive period in juvenile birds were 

turned on and off in the adult through mechanisms distinct from those that turn innate natural 

circuits on and off (disinhibition versus AMPA/NMDA ratios for the innate and learned 

circuits, respectively), suggesting that innate and acquired circuit arrangements can be 

distinguished functionally64,65. At the mechanistic level, the studies of critical periods have 

uncovered a major role for the maturation of inhibitory circuits, and in particular those 

established by parvalbumin-positive (PV+) fast-spiking interneurons, in opening and closing 

plasticity windows41,66,70. Recent findings suggest that similar mechanisms may regulate 

plasticity in the adult, and that the regulatory mechanisms may in part involve structural 

plasticity at inhibitory interneurons.  
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Figure 4: Mechanisms of structural metaplasticity regulation. 

The capacity for structural plasticity can be regulated at various levels. Alterations in expression of certain genes in target 

neurons (shown in purple) and their transport into dendrites and to synapses (straight arrow) results in structural plasticity by 

mechanisms that may enhance the formation of excitatory synapses (such as calcium/calmodulin kinases (CaMKs), miR‑132, 

CREB (cAMP response element-binding), UBE3A (ubiquitin protein ligase E3A) and histone acetylation) or reduce the 

formation of such synapses (such as MEF2 (myocyte enhancer factor 2) and miR‑134). Expression of the transcription factor 

NPAS4 (neuronal PAS domain-containing protein 4) promotes the formation of inhibitory synapses (indicated by a curved 

arrow). Structural plasticity can result from neuromodulatory modifications of the excitatory–inhibitory balance (including the 

cholinergic system, LYNX1 (Ly‑6/neurotoxin-like protein 1), serotonin and dopamine). LYNX1 inhibits nicotinic acetylcholine 

(nACh) receptors, which can be found presynaptically, on dendrites and around somas. Furthermore, structural plasticity can be 

achieved through diffusible factors (including brain-derived neurotrophic factor (BDNF) and WNT, indicated by the green 

shading) that can affect synaptic signalling pathways (such as CaMKII, MAPK (mitogen-activated protein kinase), ARC and 

UBE3A) or through alterations of the extracellular matrix (matrix metalloprotease 9 (MMP9) and perineuronal nets (PNNs)). 

Factors promoting and inhibiting plasticity. Some of the molecular pathways known to 

regulate plasticity are illustrated in FIG. 4. In most cases, plasticity regulation involves 

signalling pathways relating neuronal activity to the expression of key activity-regulated 

genes71–73. Consistent with its central roles in mediating signalling downstream of synaptic 

activity, calcium has prominent roles in activity-regulated gene expression. One of the genes 

regulated by calcium is the transcription factor MEF2 (myocyte enhancer factor 2), which 

reduces excitatory synapse numbers. Genes regulated through MEF2 include the synaptic 

components ARC and HOMER1, and the neurotrophin BDNF, which augments inhibitory 

synapse numbers71. Although many growth factors can enhance plasticity when applied to 
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cultured neurons or in vivo, only a few of them, particularly BDNF, have been related 

conclusively to endogenous plasticity regulation under physiological conditions74. Strong 

evidence supports the notion that BDNF signalling has a key role in promoting plasticity, and 

that this signaling pathway is recruited upon enhanced excitation48,49. Intracellular signaling 

molecules and pathways relating excitation and BDNF signaling to plasticity include: ARC, 

MAPK, CaMK, CREB (cAMP response element-binding) activation, histone acetylation and 

the microRNA miR-132 (REFS 19, 75–82). Mechanisms through which age influences 

plasticity regulation can involve chromatin remodeling pathways81. Extracellular factors that 

facilitate plasticity include the proteases matrix metalloprotease 9 and urokinase-type 

plasminogen activator83. In addition, WNT signaling can enhance synapse numbers84. 

Further important signaling molecules with a major role in regulating plasticity include the 

neuromodulators acetylcholine, noradrenaline, serotonin and dopamine. Among them, a 

particularly strong case has been made for a link between nicotinic cholinergic transmission 

and enhanced plasticity. Thus, cholinergic transmission is critically important for skill learning 

and for functional recovery after brain injury85–87.  

In addition to enhanced excitation, reduced inhibition augments plasticity under a number of 

different conditions, including environmental enrichment, the effects of fluoxetine treatments 

and the reduction of perineuronal nets around the cell body and proximal dendrites of PV+ 

interneurons41,88–90. Several lines of evidence have directly related reduced inhibition to 

enhanced plasticity during critical periods and in the adult in rodents41,62,90.  

Finally, important recent studies have introduced the notion that the potential for plasticity in 

the adult may be as robust as that detected in juvenile animals, but that adult plasticity is 

effectively prevented through ‘brake’ mechanisms62. The reduced plasticity in the adult may 

prevent aberrant plasticity after the formation of lesions and may ensure the transmission of 

adaptive behaviors learned from conspecifics across generations. In addition to perineuronal 

nets and myelin-associated inhibitors, which may in part have structural roles, LYNX1 (Ly 

6/neurotoxin-like protein 1) has been identified as a specific inhibitor of nicotinic cholinergic 

signaling that suppresses plasticity in the presence of widespread cholinergic innervation in 

the adult43. An important transcriptional pathway involving NPAS4 (neuronal PAS domain-

containing protein 4) also specifically links excitation to the establishment of a higher number 

of inhibitory synapses onto activated neurons91. Furthermore, miR 134 has been identified 

as a major negative post-transcriptional regulator of plasticity downstream of SIRT1 (NAD-

dependent protein deacetylase sirtuin 1) and upstream of CREB92.  

Inhibitory circuit rearrangements. Whereas most studies of structural plasticity initially 

focused on excitatory neurons, several recent studies have revealed that structural plasticity 
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by inhibitory neurons93 precedes that by excitatory neurons and may have a critical role in 

regulating plasticity during learning. An initial series of studies documented structural 

plasticity of dendritic tips by GABAergic neurons in adult mouse cortex, with most of the 

plasticity contained within a superficial strip of layer 2/3 (REFS 94–96). A subsequent study 

documented pronounced structural plasticity of inhibitory axons upon sensory deprivation, 

which preceded sprouting by excitatory axons, and several-fold enhanced spine and axonal 

bouton turnover55,56. Changes in structural plasticity were detected within hours following 

peripheral lesions, suggesting that they might account for rapid changes in functional 

plasticity of receptive fields. Furthermore, dramatic changes in structural plasticity by fast-

spiking striatal inhibitory neuron axons that specifically target the indirect striatal pathway 

were detected following lesions that result in dopamine deprivation97. Finally, two recent 

studies in sensory-deprived visual cortex provided evidence that regulation of structural 

plasticity by inhibitory interneurons may provide permissive conditions for subsequent 

plasticity by excitatory neurons. One study reported an early loss of spines, thus reducing 

excitatory inputs onto a subpopulation of inhibitory interneurons (mainly neuropeptide Y-

positive), and a subsequent loss of axonal boutons, thus reducing inhibitory output by the 

same interneurons upon sensory depriva¬tion98. The second study reported a loss of 

excitatory inputs onto inhibitory neurons in layer 2/3 upon visual deprivation99. Together, the 

studies suggest that early structural plasticity in sensory-deprived cortex may lead to a 

diminished excitatory drive onto inhibitory interneurons, suggesting a possible structural 

basis for disinhibition and enhanced excitation.  

Is it inhibition or excitation? The recent discovery of early structural plasticity at inhibitory 

interneuron subpopulations preceding plasticity at excitatory neurons suggests a possible 

conceptual framework to account for how excitation–inhibition balances may regulate short-

and long-term structural plasticity in the adult. The mechanisms involved appear to resemble 

those regulating plasticity during circuit maturation, consistent with the notion that plasticity is 

controlled in similar ways in young animals and in adults. Instead of focusing on excitatory or 

inhibitory neurotransmitter levels, or on global levels of excitation and inhibition, this 

emerging framework addresses plasticity regulation at the circuit level, thus offering possible 

mechanistic solutions to account for fine-tuned regulation and specificity in learning-related 

plasticity. Findings discussed in previous sections that may be particularly relevant are: at 

the level of individual neurons, structural plasticity is augmented by enhanced excitation; 

reducing inhibition is sufficient to enhance plasticity in the adult; and salient activity (for 

example, exposure to light after dark rearing) can produce disinhibition of excitatory neurons 

by activating ‘second layer’ (disinhibiting) inhibitory interneurons, partly through structural 

plasticity. Accordingly, signals that trigger plasticity may initially reduce the activation of 
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GABAergic neurons, such as PV+ interneurons that target excitatory neurons; depending on 

the extent of the plasticity, this may involve recruitment of disinhibitory interneurons and/ or 

structural plasticity to reduce the connectivity of PV+ interneurons, in turn leading to 

enhanced excitation and structural plasticity of excitatory neurons (FIG. 5). Targeting 

inhibitory neuron networks first might have a plasticity-facilitating effect at the network level. 

The enhanced potential for plasticity could then serve as a basis for more specific synapse 

remodeling processes at the level of individual excitatory neurons. The validity of the model, 

the identity of the particular interneuron subpopulations and the circuit mechanisms involved 

in short- and long-term plasticity regulation processes remain to be determined.  

 

 

Figure 5: Circuit mechanisms of plasticity regulation. 

Left: schematic representing a local circuit arrangement involving two inhibitory neurons (ovals 1 and 2, perisomatic and 

disinhibiting, respectively) impinging onto one excitatory cell (triangle 3). Circles: excitatory inputs; bars: inhibitory inputs. Right: 

circuit mechanisms leading to enhanced plasticity. Decreased connectivity (decreased synapse numbers (a,b) or decreased 

synapse function (c)) is represented by red colours; increased connectivity is represented by green colours. Structural plasticity 

in the excitatory cell is enhanced (shown in purple) under conditions of decreased excitatory connectivity (a), increased 

inhibitory connectivity (b) or perineuronal net reduction (c) on the perisomatic interneuron that directly inhibits the excitatory cell. 

Whereas the three scenarios involving structural plasticity at inhibitory interneurons lead to broad disinhibition of excitatory 

cells, a direct increase of the excitatory drive onto the excitatory neuron can also enhance plasticity. 
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3.3.5 From structural plasticity to memories  

 

It is generally assumed that structural plasticity provides a mechanism for long-term storage 

of memory traces upon learning100. However, the temporal sequences of events and the 

regulatory mechanisms relating learning and structural plasticity to long-term memory are 

still poorly understood. An important aspect involves the temporal delay between the early 

potentiation of pre-existing synapses, spine growth and synaptogenesis upon learning. Such 

delays may differ among learning protocols and systems involved. Thus, some studies have 

suggested that synapses involving new spines or filopodia are assembled within the first 1–3 

hours after potentiation101, whereas other studies have provided evidence for delays of 12–

18 hours102. The longer delays provide a potential mechanism to relate learning to the 

consolidation of memories, for example, during sleep. Such scenarios may enhance the 

specificity of synapse remodeling processes upon learning by uncoupling contingencies 

present during learning from the consolidation of new synapses and their integration into 

memory networks. Further structural plasticity may occur during longer lasting system-level 

consolidation processes, but experimental evidence for such plasticity is not available yet. 

Likewise, whether and how memory retrieval and reconsolidation processes involve 

structural plasticity remains to be determined. Addressing these fundamental issues in 

learning and memory at the structural level will require the development of more specific and 

sensitive approaches to investigate circuit and network remodeling processes in vivo, at the 

level of identified synapse ensembles.  
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Table 1: Synaptic proteins with genetic defects that have been associated with 

developmental psychiatric disorders 

Synaptic proteins for which genetic defects (single point mutations, deletions, translocations or copy number variations (CNVs)) 

have been associated with autism spectrum disorders (ASDs), intellectual disability or schizophrenia. Supporting references 

can be found in recent reviews
72,103,114,115

. ARHGEF6, Rho guanine nucleotide exchange factor 
 
6; CYFIP1, cytoplasmic FMR1‑

interacting protein 1; DISC1, disrupted in schizophrenia 1; EPAC2, Rap guanine nucleotide exchange factor 4; FMRP, fragile X 

mental retardation protein; IL1RAPL1, interleukin‑1 receptor accessory protein-like 1; LIMK1, LIM domain kinase 1; MINT2, 

MUNC18‑interacting protein 2; PAK3, p21‑activated kinase 3; PSD, postsynaptic density; PTEN, phosphatase and tensin 

homologue; RSK2, ribosomal S6 kinase 2; SAP97, synapse-associated protein 97; SHANK, SH3 and multiple ankyrin repeat 

domains protein; srGAP3, SLIT-ROBO Rho GTPase-activating protein 3; SSCAM, membrane associated guanylate kinase, 

WW and PDZ domain containing 2; SynGAP, Ras GTPase-activating protein; TSC, tuberous sclerosis; UBE3A, ubiquitin 

protein ligase E3A. 
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3.3.6 Synapse remodeling and mental health  

 

The important contribution of structural plasticity to various behavioral learning situations 

highlights the importance of connectivity remodeling and synapse stabilization as substrates 

for learning processes and memory retention. Accordingly, any defect in synapse dynamics 

can be expected to have a significant impact on the development, organization or specificity 

of synaptic networks. Indeed, the mechanisms regulating synapse dynamics have been 

implicated in several developmental psychiatric disorders as discussed below.  

Synapse rearrangements in disease and upon lesions. Analyses of the synaptic defects 

associated with a number of synaptic proteins implicated in intellectual disability, autism 

spectrum disorders or schizophrenia show alterations of synapse structure or numbers 

(TABLE 1). Consistent with a key role for structural plasticity and the excitation–inhibition 

balance in controlling circuit maturation, many of the psychiatric conditions manifest during 

early life. SHANK3 (SH3 and multiple ankyrin repeat domains protein 3), PSD95, synapse-

associated protein 97 and ubiquitin protein ligase E3A are involved in excitatory synapse 

stabilization. FMRP, PTEN (phosphatase and tensin homologue), TSC1 (tuberous sclerosis 

1; also known as hamartin) and TCS2 (also known as tuberin) regulate local protein 

synthesis, possibly affecting mechanisms of synapse stabilization. Several molecules (such 

as DISC1, kalirin, EPAC2 (also known as RAPGEF4), PAK3 and ARHGEF6 (Rho guanine 

nucleotide exchange factor 6)) are implicated in signalling through Rho GTPases, and could 

perturb cytoskeletal functions that regulate spine and synapse dynamics. Finally, MECP2 

(methyl- CpG-binding protein 2) and molecules of the neuroligin–neurexin complex appear to 

be important for regulating the balance between excitation and inhibition and could therefore 

interfere with spine formation and dynamics103. All these observations point to the possibility 

that alterations of structural plasticity mechanisms may have an important role in these 

diseases. Consistent with this notion, defects in connectivity between layer 5 cortical 

neurons have been reported in a mouse model of Rett syndrome104, and this is associated 

with important alterations of spine dynamics105. Other recent evidence from in vivo imaging 

in a mouse model of fragile X syndrome suggests that synapse dynamics could be 

exaggerated, leading to an increased proportion of unstable synapses and an excessive 

remodelling of synaptic circuits106,107. Similarly, mutation of the intellectual disability gene 

PAK3, which is an effector of the Rho GTPases RAC1 (Ras-related C3 botulinum toxin 

substrate 1) and CDC42 (cell division control protein 42 homologue), results in excessive 

spine growth and defects in activity-mediated spine stabilization53. Alterations in synapse 

dynamics, either through excessive or insufficient rewiring or defects in synapse 
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stabilization, could perturb the specificity of the mechanisms through which learning shapes 

the formation of synaptic networks.  

Structural plasticity is also important to restore function following lesions. Several recent 

studies have highlighted the extensive remodeling of both dendritic spines and axons in 

cortical tissue recovering from stroke or in the visual cortex following lesions55,98,108. 

Synapse-restructuring-associated growth and pruning correlates with functional changes 

recapitulating the structural plasticity seen in early development.  

 

3.3.7 Outlook: network structure–function  

 

Studies of structural plasticity related to learning and memory have led to major advances 

during the past couple of years. First, specific synapse assembly and synapse loss 

processes have been related conclusively to animal learning, and to structural traces of the 

learning. How the new synapses contribute to memory is not yet clear57, but the current 

evidence favors the notion that the new synapse arrangements do have specific roles in 

memory encoding. Second, causality relationships could be established between the new 

assembly of identified synapses upon learning and the behavioral expression of the learned 

memories. Third, important mechanisms and principles underlying the regulation of synapse 

remodeling upon enhanced synaptic activity and learning are being defined at the molecular 

and cellular level. Among them, an important new insight involves the assembly of new 

synapses in spatial clusters, suggesting mechanisms of local co regulation for synapses that 

may involve the same or connected learning-related memories. Finally, recent results 

suggest first conceptual frameworks to account for plasticity regulation mechanisms at the 

circuit level.  

The emergence of structural plasticity as a growing research area in learning and memory 

raises new immediate and long-term challenges. Major unresolved mechanistic issues 

include: defining the relationships between gains and losses of identified individual synapses 

upon learning and the memory of what was learned at the microcircuit and systems level; 

identifying causal sequences of events that relate experience and learning to alterations in 

structural plasticity and the balance between excitation and inhibition, which includes 

elucidating how structural remodeling of identified inhibitory and excitatory neuron 

microcircuits impinge on long-term plasticity regulation during development, in the adult and 

in disease; and relating genes involved in psychiatric conditions to synapse and microcircuit 
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maturation and remodeling and to the functional consequences of these remodeling 

processes for system function and animal behaviour.  

What will be the probable impact of these new findings for research in neuroscience? The 

recent advances suggest that structural plasticity processes may be integral components of 

most aspects of learning and memory. Accordingly, this field of research is likely to have an 

increasing impact on cognitive neuroscience. The main limitations going forward are of a 

technical nature. Although functional imaging techniques in intact animals are extremely 

valuable for uncovering volume alterations in grey matter or axonal projections upon learning 

or in disease models, they still lack the resolution required to detect structural plasticity at the 

microcircuit level. Nevertheless, future research will have to tackle network functions at the 

level of ensembles of individual identified synapses and neurons in vivo. Further progress 

will probably depend on the development of methods to image synapses and their molecular 

components with high sensitivity and spatiotemporal resolution in situ109–111. Exciting recent 

developments mainly, but not exclusively, based on calcium imaging have achieved 

sufficient resolution to monitor function at the level of ensembles of spines in the 

neocortex112,113. Combining such methods in vivo and in slice preparations should allow 

neuroscientists to bridge important gaps between the anatomy of microcircuits, their 

plasticity and their function. In parallel, modeling efforts will probably be important for the 

development of testable conceptual frameworks that take into account specific structural 

rearrangements within realistic neuronal networks. The addition of structural plasticity rules 

to current functional plasticity models may reveal new behaviors or properties that are 

important for learning capacity. Finally, targeted manipulations in situ — for example, 

through cellular, but possibly even subcellular, compartment-specific optogenetic methods 

— will be key in order to establish causal relationships between defined structural alterations 

in network architecture and network function in behaving animals. Combining cell- and 

synapse-specific imaging, modelling and optogenetic methods should allow neuroscientists 

to tackle learning, memory and cognition at the level of defined neuronal circuits. 
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4.1.1 Summary 

 

Behavioral learning involves sensory perception of new information from the environment, 

the establishment of new associations related to goals, and corresponding long-lasting 

behavioral alterations that underlie the formation of a memory trace. The wiring pattern and 

physiological properties of cortical microcircuits confer to them the ability to carry out the 

computation needed at each step of the process of memory formation (Bourne and Harris, 

2008, Hubener and Bonhoeffer, 2012); moreover, experience produces long-lasting 

alterations of both connectivity and physiology at identified synapses impinging on neurons 

recruited by the task (for a review, see introduction), which are thought to be the molecular 

correlate of learning and memory (Hubener and Bonhoeffer, 2012). Yet the extent to which 

cortical microcircuit might display different configuration which are suited to exploit the 

sequence of perception, computation and memory formation is an open question in 

neurobiology. Here, we take advantage of the hippocampal microcircuit to study how 

experience alters the network configuration to regulate plasticity and learning. We focus our 

analysis on the network of Parvalbumin expressing interneurons for their role in regulating 

plasticity during development: hence, we found that experience can modulate the PV 

network in opposite ways, with different impact on structural plasticity and further learning. 

Environmental enrichment induced a net increase in the density of inhibitory synapses onto 

PV neurons (disinhibition), which in turn produced a modulation of the level of PV expression 

intensity in single neurons enhancing the fraction of neurons in the network that express low 

levels of PV; the modulation of the PV network distribution was causally linked to an overall 

enhancement of structural plasticity and further learning, thereby defining a “Plastic State” 

for cortical microcircuits. In contrast, contextual fear conditioning induced a net increase in 

the density of excitatory synapses onto PV interneurons (feedforward inhibition), which in 

turn produced a modulation of the level of PV expression intensity in single neurons 

enhancing the fraction of neurons in the network that express high levels of PV; the 

modulation of the PV network distribution was causally linked to an overall decrease of 

structural plasticity and learning performances, thereby defining a “Crystallized State” for 

cortical microcircuits. 

Surprisingly, complex “incremental” forms of learning exploited a sequence of states during 

training favoring the Plastic State during learning, to shift to the Crystallized State upon 

learning completion. The transition to the plastic state was induced via the recruitment of a 

dedicated microcircuit module which enhanced disinhibitory connectivity produced by VIP 

positive interneurons onto PV cells: the modulation of this pathway was necessary and 
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sufficient to modulate learning in the hippocampus upon learning of the Morris water maze, 

but the same module was recruited in motor cortex upon rotarod learning. 

In conclusion, we show evidence that supports a mechanism by which changes in 

connectivity impinging onto PV neurons can modulate the configuration of the PV network to 

define states of enhanced or reduced cognitive performance and structural plasticity in 

cortical microcircuits. Moreover, we show that incremental forms of learning require the 

establishment of a first Plastic state based on the recruitment of a dedicated VIP-PV 

disinhibitory microcircuit module that might support exploration during learning; then, 

enhancement of FFI connectivity from a specific input source mediates the transition to the 

Crystallized state that might support exploitation upon learning completion. 
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4.1.2 Introduction  

 

Behavioral learning involves sensory perception of new information from the environment, 

the establishment of new associations related to goals, and corresponding long-lasting 

behavioral alterations that underlie the formation of a memory trace. The wiring pattern and 

physiological properties of cortical microcircuits enable them to carry out the computation 

needed at each step of the process of memory formation (Bourne and Harris, 2008, Hubener 

and Bonhoeffer, 2012); moreover, experience produces long-lasting alterations of both 

connectivity and physiology at identified synapses impinging on neurons recruited by the 

task (for a review, see introduction), which are thought to be the molecular correlate of 

learning and memory (Hubener and Bonhoeffer, 2010). Yet the extent to which cortical 

microcircuits might display different configuration which are suited to exploit the sequence of 

perception, computation and memory formation is an open question in neurobiology. 

The existence of different configurations upon learning phases might be related to their 

different requirements: machine learning algorithms pose that reinforcement learning 

consists of a tradeoff between the exploration of new combinations or strategies, which 

involve gathering information about the task or the environment, and the exploitation of 

previously acquired knowledge to solve the task (for further reading, see the problem of the 

Multi-Armed bandit in Game theory). Therefore, cortical microcircuits might go through a 

series of configurations which support the specific requirement of each phase, thereby 

optimizing the learning process: indeed, many reports pose that, at a structural microcircuit 

level, learning can be organized in distinguishable phases which implement synapse 

formation early during learning, to produce synapse elimination later on (Roberts et al., 

2010, Hofer SB et al., 2008, Yang et al., 2009; ). These reports therefore pose that structural 

plasticity might be tightly and differentially regulated during learning. 

The potential for plasticity that cortical microcircuits experience is not equal during the life of 

the animals. The pioneer work of Hubel and Wiesel in the 60s, and the sequential 

contribution of many labs worldwide, has shown how plasticity is enhanced during “critical 

periods” of development when cortical microcircuits are able to autonomously overcome 

external perturbations of the proper development (i.e., the development of the binocular 

region in the cat visual cortex upon monocular deprivation). Recent works have shown that 

the temporal extent of this enhanced plasticity, which is signaled by the opening and closure 

of the critical period, is tightly regulated by the maturation of the inhibitory component of 

cortical microcircuits: hence, the maturation of perisomatic inhibition exerted by PV+ 
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interneurons would define the critical period (Hensch, 2005; Sugiyama et al., 2008, 

Southwell et al., 2010). Interestingly, interventions in the adult that have been showed to 

reinstate a period of enhanced plasticity which molecularly might converge on the same 

pathways exploited during development (Pizzorusso er al., 2002, Fazzari et al., 2010), 

directly target the PV inhibitory component of cortical microcircuits. It has indeed been 

shown that enzymatic digestion of perineuronal nets via topical application of the enzyme 

Chondroitinase ABC are able to restore plasticity in the visual system (Pizzorusso er al., 

2002); to which extent this form of plasticity is similar to the developmentally regulated 

critical periods remain to be determined. Nevertheless, experiments in other model 

organisms (for example the barn owl visual system) have clearly demonstrated that even 

adult microcircuit are capable of elevated plasticity without external manipulations, although 

reaching that state proved to be more difficult after critical period ending (deBello and 

Knudsen, 2004). 

Maturation of PV interneurons is tightly coupled to the maturation of excitatory and inhibitory 

connectivity upon these interneurons, for which the opening of the critical period would 

underlie strong inhibitory drive upon their dendrites, while the end of the critical period would 

be accompanied by a net increase in the excitatory connectivity as well as the formation of 

thick and organized perineuronal nets of chondroitin-sulfate proteoglycan impinging on PV 

basket cells. In addition, the process of interneuron maturation during development might 

also underlie important features of learning: previous studies in zebra finches have posed 

that song learning (which in birds is mediated by the exposure of the young males to the 

singing of an adult tutor) coincides with the maturation of PV+ interneurons in the area which 

is critically involved in the process (HVC, REF). Therefore, the formation of PNNs around PV 

interneurons would signal the closure of a period of learning in which the bird is able to learn 

to sing by practicing the proper song it heard from the tutor via a trial-and-error process, to 

crystallize the proper repetition of syllables that constitute the mature song. Importantly, if 

birds are raised in isolation and never listen to the tutor, PV interneurons in HVC never 

develop the proper extent of perineuronal nets. Moreover, in an elegant study published last 

year, Ruediger S et al., have demonstrated that learning in the adult mice is accompanied by 

a similar change in the connectivity impinging onto PV interneurons both in the hippocampus 

and the cerebellar cortex: here, learning completion would produce an increase in the 

number of excitatory synapses impinging onto fast-spiking interneurons via the formation of 

filopodial synapses from mossy fiber terminals. The extent of filopodial growth was 

correlated to, and necessary for, memory precision upon learning (Ruediger S et al., 2011).  

Here, we hypothesize that the parvalbumin network might undergo structural modification 

upon experience that underlies states of enhanced or reduced plasticity and learning in adult 
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microcircuits. Hence, we study the structural changes induced by environmental enrichment 

(which is known to induce an enhancement of cognitive performances and learning) and 

contextual fear conditioning (which induces an increase in excitatory connectivity upon 

parvalbumin interneurons), taking the hippocampal CA3 as a model microcircuit; then, we 

determine how incremental learning might exploit the PV network to implement exploration 

and exploitation in the hippocampus and cortex, and which elements of the cortical 

microcircuits are recruited to produce transitions among states. 
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4.1.3 Results: 

 

 

Parvalbumin+ interneuron network state regulates plasticity and learning. 

 

In order to investigate the existence of microcircuit configurations favoring plasticity or 

crystallization, we tested how experience-induced microcircuit rearrangements would 

influence structural plasticity and further learning. We took the CA3 area of the hippocampus 

as a model microcircuit, due to its critical involvement in incidental learning, and the defined 

configurations in which experience shapes connectivity on excitatory and inhibitory neurons 

in the area (Galimberti et al., 2006; Bednarek and Caroni, 2011; Ruediger et al., 2011): here, 

environmental enrichment (EE) is able to increase performances in  various set of learning 

paradigms, and to enhance structural plasticity (Bednarek and Caroni, 2011); on the other 

hand, an hippocampus-dependent pavlovian-conditionig task (contextual fear conditioning, 

cFC) shapes the CA3 microcircuit with the increase of excitatory connectivity onto 

parvalbumin-expressing interneurons (feed-forward inhibition, FFI. Ruediger et al., 2011).  

Therefore, we analyzed how previous experience would impact on further incidental learning 

using the Novel Object Recognition (NOR) task as readout of CA3 microcircuit configuration. 

In this task, mice are allowed to interact with a novel and a familiar object, and their ability to 

discriminate between them is quantified as a function of time spent with each. At a 

microcircuit level, discrimination index is critically linked to active zones turnover in mossy 

fiber terminals (MFTs) (Bednarek and Caroni, 2011). 

 As previously reported (Bednarek and Caroni, 2011), EE enhanced discrimination index in 

NOR (Discrimination Index Control: 0.33, Enrichment: 0.52, p<0.01. Fig 1A) and active-zone 

turnover at MFTs (Difference to controls: 6h p<0.01; 12h: p<0.05; 24h: p<0.001. FIG 1B); in 

stark contrast, cFC produced a significant decrease in discrimination (DI: 0.15, p< 0.05. FIG 

1A) accompanied by slower synapse turnover (Difference to controls: 12h p<0.05; 24h 

p<0.001 FIG 1B). To specifically rule out any stress-related effect on incidental learning due 

to the conditioning protocol, we performed a slightly modified task that resulted in fear 

learning without involvement of the hippocampus (FC in the dark, Ruediger et al., 2012). 

Mice conditioned in the dark showed no significant difference to controls in the NOR, 

strongly associating incidental learning performances to FFI increase upon parvalbumin 

expressing interneurons (Discrimination index: 0.36, non-significant. Fig 1A). Thus, to 

analyze how experience could affect the network of Parvalbumin (PV) expressing 
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interneurons in CA3, we looked at the intrinsic structural properties of these neurons upon 

enrichment and fear conditioning (see Materials and methods). EE induced a robust 

increase in the fractions of PV IN that exhibited low level of PV expression (“Low PV”, 

controls: 2%; enrichment: 35%. P<0.001 Fig 1C and D), while cFC resulted in more high-

expressing PV IN (“High PV”, controls: 19%, conditioning: 52%. P<0.001. Fig 1C and D). 

Moreover, PV expression in single interneurons could be correlated to GAD-67 (an enzyme 

that critically determines the levels of GABA synthesis, CIT, Suppl fig 1. Pearson correlation: 

0.92), and to firing frequency upon 300pA stimulation in acute slices (with higher firing 

frequency for higher PV content, Manxia Zhao Unpublished work). Taken together, these 

data indicate that experience regulates the state of the PV interneurons network along with 

the regulation of structural plasticity and further learning.  To determine whether 

rearrangements in the PV IN network are sufficient to enhance NOR performance and AZ 

turnover, we infused mice topically in CA3 with Chondroitinase ABC and BDNF via 

chronically implanted cannulas. While the first is commonly used to shave perineuronal nets 

around PV+ interneurons and reopen plasticity in the adult (Pizzorusso et al., 2002), the 

second activates pathways involved in PV IN maturation during development (Huang et a., 

1999) (a period when PV, GAD expression, and firing frequency are known to change in 

defined directions, He et al., 2010). Both treatments were sufficient to alter the state of PV IN 

network in the same way and to the same extent as enrichment and cFC, respectively (fig 

1x), with ChABC increasing the fraction of Low PV (28% over total PV IN, p<0.01. FIG 1E), 

and BDNF increasing the High PV (45% over total PV IN, p<0.05. Fig 1E); moreover, both 

induced modulation of NOR performances (ChABC: enhanced discrimination, DI: 0.48, 

p<0.01; BDNF: impaired discrimination, PI: 0.17, p<0.05 , Fig 1F) and synapse turnover 

(ChABC induced higher turnover: 6h p<0.001; 12h p<0.05; 24h p<0.01. BDNF induced 

higher stability: 12h p<0.01; 24h p<0.001. Fig 1G). 

These results demonstrate that the network of parvalbumin interneurons is plastic, 

experience regulates the state of the PV interneurons network to increase the fractions that 

express extreme levels of the protein parvalbumin, and the amount of Low or High PV is 

causally linked to the extent of structural plasticity and to performances in an incidental 

learning paradigm. Moreover, they suggest the existence in cortical microcircuits of a “plastic 

state” relying on Low PV and characterized by enhanced structural plasticity and learning, 

and a “crystallized state” relying on Hich PV and characterized by reduced structural 

plasticity and learning. 
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Figure 1: Parvalbumin network state regulates structural plasticity and learning 

Experience impinges on CA3 microcircuits to modulate performance (A) and structural plasticity (B). Moreover, it modulates the 

compostition of the network of PV interneurons to enhance the fractions that express extreme levels of the protein PV ( C and 

D), to which other structural and functional properties of these interneruons correlate (suppl. Fig. 1). Moreover, topic 

interventions that reproduce the modulation of the network observed upon experience are sufficient to regulate structural 

plasticity and learning in similar ways (E, F, G), providing causality for experience.induced modifications. 

 

 

 



74 
 

Presynaptic connectivity upon PV interneurons modulates the expression of PV 

 

What might be the mechanism by which experience acts upon the network of PV expressing 

interneurons to regulate structural plasticity and learning? During development, changes in 

PV IN properties are accompanied by changes in the excitatory or inhibitory drive upon 

these neurons. Moreover, learning completion is accompanied by an increase of FFI 

synapses upon PV IN dendrites. Therefore, we analyzed how experience could impact on 

presynaptic inputs to PV interneurons by looking at the density of excitatory (mediating feed 

forward inhibition, FFI) and inhibitory (mediating disinhibition, Dis) synapses onto their 

dendrites.  For this purpose, we quantified the density of bassoon (excitatory synapse 

marker, Bs) and gephyrin (inhibitory synapse marker, Ge) immunodetected puncta upon the 

dendrites of genetically labeled, Parvalbumin expressing interneurons in hippocampus CA3b 

(PV-Cre/ rosa-CAG-STOP-tdTomato, Fig 2A). cFC produced an increase in excitatory 

synapse density on PV neurons both in stratum lucidum (input from mossy fiber terminals, 

consistent with previous reports. 1.44 fold difference to controls, p<0.001, Fig 2B) and 

stratum radiatum (input from other CA3 pyramidal cells. 1.35 fold difference to controls, 

p<0.001. Fig 2B), while inhibitory synapses were comparable to controls (in a balance that 

favors FFI over Disinhibition, Fig 2B. SL: 0.91 fold difference, SR: 0.89 fold difference. Not 

significant); on the contrary, EE produced minor changes in the density of excitatory 

synapses (SL: 0.89 fold to controls, SR: 1.1 fold to controls. Not significant. Fig 2C), but a 

significant increase in the density of inhibitory synapses of both strata (in a balance that 

favors Disinhibiton over FFI, FIG. SL: 2.12 fold to controls, p<0.001; SR: 1.94 fold to 

controls, p<0.001. Fig 2C).  

 

 

 

Figure 2: Presynaptic connectivity onto PV+ interneuorons defines PV levels 

Experience produces changes in presynaptic connectivity onto PV+ interneurons (A) that favor feedforward inhibition (B) or 

Disinhibition (C) upon cFC and EE, respectively. Both types of changes are input-aspecific (B, C and D). At the level of single 

cells, a balance between excitatory and inhibitory synapses density correlates to PV levels (E), thereby defining Hig PV 

interneuorns as those having high density of excitatory, low inhibitory synapses; and Low PV interneurons as those exhibiting 

high density of inhibitory, low excitatory synapses (E). enhancement of FFI or Dis can be causally linked to the regulation of PV 

expression in the network via both pharmacology and optogenetic experiments (F, G and H) 
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Despite hippocampal excitatory inputs, which are largely stratum-specific, the origin and 

organization of disinhibitory synapses is far less clear: they can however be distinguished by 
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their nature in those that come from purely disinhibitory neurons (i.e., interneurons that 

selectively innervate other interneurons, Acsady et al., 1996 a and b, Somogy-Klausberger 

2008), and those made by interneurons with no specificity for excitatory or inhibitory targets. 

Since PV Interneurons receive purely disinhibitory inputs only from VIP+ neurons (David C 

et al., 2007), we classified the inhibitory synapses present on PV IN in two classes: those 

that come from purely disinhibitory, VIP expressing interneurons (Ge+/VIP+), and those 

made by the other interneurons (Ge+/VIP-). Therefore, to test if both sources contributed 

equally to the increase of disinhibition, we quantified the prevalence of Ge+/VIP+ synapses 

in control and after environmental enrichment: while only a fraction of Ge puncta were VIP+ 

at baseline ( 42% VIP+ over total Ge positive. Fig 2D), both input contributed equally to the 

increase in inhibitory synapse density observed upon experience (p<0.001, Fig 2D).  

Prevalence of High PV in contextual fear conditioning is accompanied by the increase in FFI 

connectivity on PV IN at each input level. In contrast, increase in Low PV after environmental 

enrichment is accompanied by the increase in disinhibitory (Dis) connectivity arising from 

both VIP+ and VIP- interneurons. To determine whether a balance between FFI and Dis 

could modulate PV expression, we analyzed synapse density on each dendritic arbor as a 

function of PV intensity. When analyzing the data as a pool from different network states, 

excitatory and inhibitory synapse density correlated with PV expression following a robustly 

significant power law (Pearson correlation Bs-PV: 0.9, p< 0.0001; Pearson correlation Ge-

PV: 0.73, p<0.001. Fig 2E). Thus, higher levels of PV were associated to higher bassoon 

and lower gephyrin puncta density (“High PV”, Fig 2E), and lower levels of PV to higher 

gephyrin and lower bassoon puncta density (“Low PV”, Fig 2E). When considering the data 

distribution as a function of the network state (i.e. filtering based on experience), each 

condition produced a shift of the cloud of data along the ideal trend line defined by the power 

law, with no effect on the correlation between FFI, Dis and PV (Supplementary figure 2). 

This implied that, for each value of PV intensity, each neuron is defined in a logarithmic 

correlation space as a function of the balance between excitatory and inhibitory input that it 

receives, and that each variable can largely predict the others. 

To verify that connectivity on PV IN regulates the state of the network, we enhanced FFI or 

Dis synaptic activity in organotypic slice cultures (that preserve all microcircuit elements, 

Supplementary figure 3) and analyze the effects on the PV network. Hence, pharmacological 

enhancement of FFI release from MFTs (LY341495, mGluR2 antagonist, 100 nM, 

Supplementary figure 3) increased the fraction of High PV (Saline: 20% over total PV+; 

LY341495: 41%. P<0.01. Fig 2F), while enhancement of disinhibition via VIP neurons (VIP, 

1nM, REF, Supplementary figure 3) produced increase of Low PV (saline: 12% ; VIP: 31%. 

P<0.001. Fig 2F). Moreover, to further causally link recruitment of FFI or Dis to network 
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states, we used otpogenetic to stimulate directly PV+ (enhanced FFI) and VIP+ (enhanced 

Dis) interneurons by targeted expression of a high sensitivity Channelrhodopsin construct 

(“Catch”, Kleinlogel S et al., 2011) in defined interneurons subpopulations (Supplementary 

figure 4). Thus, direct photostimulation of PV neurons (PV-cre VIRUS) produced a transient 

increase of High PV at about 6 hours after stimulation (pooled controls: 19%. 6h after 

stimulation: 40%. P<0.001, Fig 2G), to be back at baseline at 24h (24h: 21%, not significant. 

Fig 2G); besides, photostimulation of VIP neurons (which could contact directly PV 

dendrites, Supplementary figure 4) increased Low PV with similar temporal dynamics (Fig 

2H), with a peak effect at 6h and return to baseline levels 24h after stimulation (pooled 

controls: 10%. 6h after stimulation: 38%. P<0.001. 24h after stimulation: 12%, not significant. 

Fig 2H). These experiments causally link the prevalence of FFI or Dis to the state of the PV 

network.  

Likewise, to investigate whether the state of an interneuron expressed by the level of PV 

could impact on its presynaptic inputs, we studied FFI and Dis after ChABC and BDNF 

treatment. Topical ChABC produced an overall increase in both VIP+ and VIP- puncta 

density (Total Ge positive synapses: SL: 1.7 fold to controls, SR: 1.66 fold to controls, 

p<0.001. VIP+ and VIP- increase to controls: p<0.01. Excitatory synapses: SL:1.05 fold to 

controls, SR: 0.96 fold to controls, not significant. Supplementary figure 5) (fitting the 

increase in Low PV, Fig 1E), while BDNF increased Bs density ( SR Bassoon puncta: 1.61 

fold to controls, p<0.001; SR Gephyrin puncta: 0.83 fold to controls, not significant. 

Supplementary figure 5)(fitting the increase in High Pv, Fig 1E).  

Altogether, these data provide evidences for a bidirectional modulation of the PV network 

based on the prevalence of FFI or Dis, where an initial, activity based modulation of PV 

intensity induces the adjustment of presynaptic input to the interneuron itself (Schema 1). 

We then sought to determine if rearrangements in presynaptic connectivity upon PV IN 

produced a functional effect on the pyramidal cell network in CA3, since increase in FFI or 

Dis could affect the number of excitatory cells recruited upon experience. Therefore, we 

confirmed that changes in PV expressions at the soma were mirrored at the level of CA3 

pyramidal cells baskets (Supplementary figure 6); moreover, enhanced disinhibition by Low 

PV after EE correlated with higher number of cFOS positive cells upon NOR, while 

enhanced FFI by High PV after fear conditioning decreased that fraction (control: 14% of 

cFOS positive cells over total NeuN positive; EE: 21%, p<0.01; cFC: 6%, p<0.01. 

Supplementary figure 6).  
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Schema 1: Bidirectiona modulation of PV network 

Data support a view where an initial, possibly activity-based modulation of activity onto PV cells (1) could produce a shift toward 

Low or High expression of PV. Then, presynaptic connectivity impinging on the neuron would be adjusted to support the newly 

achieved state of the cell (2). 

 

 

Implementation of a plastic state during learning, and a crystallized state upon 

learning completion during incremental learning 

 

In contrast to single-trial learning tasks like the fear conditioning, trial-and-error forms of 

learning proceed in an incremental way for which mice learn to master the task progressively 

along the course of several days; moreover, they likely progress through defined stages of 

learning in which information about the task is collected and consolidated to define strategies 

for task solution, and later exploited to reach a goal (Exploration and Exploitation, March J., 

1991). One of such complex incremental learning paradigms is the Morris water maze 

(MWM), in which mice learn to navigate a maze toward a hidden platform based on the 

external reference cues present in the room (vorhees CV, Williams MT, 2006). Since the 

task is hippocampus-dependent (Morris et al., 1982), and learning produces an increase in 

FFI in CA3 that is comparable to the cFC and accountable for memory precision (Ruediger 

et al. 2011), we investigated the impact of learning the water maze on the PV IN network. To 

this end, we analyzed High and Low PV relative abundance at defined time points early 
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during learning (MWM day 2 and 4, Fig 3A) and upon learning completion (MWM Day10). 

Surprisingly, we observed two phases of structural rearrangements: during the learning 

process (Day2 and 4), Low PV increased compared to swim controls, while High PV 

remained unaffected (MWM 2d: 27% low PV. P<0.001., Fig 3B); in stark contrast, learning 

completion produced and increase in High PV, with Low PV largely comparable to controls 

(MWM 10d: 42% High PV. P<0.001., Fig 3B). This would suggest that, instead of a linear 

progression toward network states supporting enhanced or reduced plasticity and learning 

(EE and cFC respectively, Supplementary figure 7), a complex incremental learning task 

would deploy a bimodal progression through a first, “open” phase of plasticity early during 

learning, followed by a final, “crystallized” configuration upon learning completion. 

Supporting the hypothesis that maze learning progresses through two stages of plasticity 

regulation by PV IN, we observed enhanced NOR and synapse turnover respect swim 

controls upon prevalence of Low PV on day2 (Fig 3C and D. Synapse turnover difference to 

controls: 6h: p<0.001; 24h: p<0.001. Discrimination index difference to controls: 1.7 fold, 

p<0.01), and reduced performances and synapse turnover upon prevalence of High PV on 

day 10 (Fig 3C and D. Synapse turnover difference to controls: 24h: p<0.01. Discrimination 

index difference to controls: 0.6 fold, p<0.01). These results confirm the existence of a 

plastic state supported by Low PV prevalence early during learning, and a crystalized state 

relying on High PV upon learning completion. 
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Figure 3: A microcircuit module to implement the Plastic state during learning, 

Crystallized state upon learning completion 

Learning the morris water maze task (A) requires the implementation of a first, plastic state during learning, followed by a shift 

to the crystallized state upon learning completion (B, C and D). The connectivity undelying transitions to these states is input 

specific, for which only VIP+ inhibitory synapses in Stratum Radiatum produce enhancement of Low PV during the plastic state 

(E and G), and only excitatory synapses in stratum lucidum shift the network to the crystallized configuration (F). Moreover, 

targeted modulation of VIP transmission is sufficient to modulate learning at a behavioral (H) and streuctural level (I). This 

provides a mechanism to explain metaplasticity (L) as e result of different starting configurations exhibited upon previous 

experience. 

 

To determine if the same mechanism modulating PV expression upon experience is 

responsible for the network-state transitions associated with the water maze, we quantified 
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prevalence of FFI or Dis on PV dendrites at different stages during learning. Whereas the 

overall mechanism was conserved (enhancement of disinhibition during learning, FFI upon 

learning completion, Fig 3E and F), we could observe a higher degree of specificity in 

synapse density increase. This implied that only increased Dis in SR would account for the 

“open” state during learning (Fig 3E and supplementary figure 8. MWM 2d gephyrin in SR: 

1.6 fold to controls, p<0.001), while only FFI in SL would induce the shift toward 

“crystallization” upon learning completion, with the complementary input sources largely 

unaffected at each time point (Fig 3F. MWM10d Bassoon in SL: 1.4 fold to controls, 

p<0.001). Besides, and in contrast to environmental enrichment, the increase in disinhibition 

observed during learning was produced exclusively by the increase of VIP+ synapses on PV 

dendrites (Fig 3G VIP+/Ge+ synapse increase to control: p<0.001; VIP-/Ge+ synapse 

increase to control: not significant), pointing toward a dedicated VIP-PV microcircuit module 

responsible for the enhancement of disinhibition that produces the “open” network 

configuration observed early during water maze (Supplementary figure 8) .  

To investigate if targeted modulation of VIP+ disinhibition was sufficient to regulate maze 

learning, we treated mice with topical infusion (supplementary figure 9) of VIP receptor 

agonist (VIP, Tocris, Cunha-Reis D, et al., 2004, 1nM) and antagonist ([Ac-Tyr1,D-Phe2]-

GRF 1-29, Tocris, Cunha-Reis D, et al., 2004, 300 nM), and tested their performances in the 

early phase of learning. VIP-treated mice were faster in locating the platform on day 2 and 3 

(Fig 3H, p<0.01), exhibited a significant reference memory already on day 4 (Supplementary 

figure 10, Target quadrant occupancy: 41%, p<0.05), and were characterized by an 

enhanced proportion of Low PV compared to controls (Fig 3I Low PV: 51% over total PV+ 

interneurons, p<0.01): therefore, modulation of VIP+ disinhibition is sufficient to modulate 

learning. In contrast, [Ac-Tyr1,D-Phe2]-GRF 1-29 completely prevented learning (Fig 3H, 

difference to control on day3: p<0.05), did not affect reference memory formation 

(Supplementary figure 10, occupancy of target quadrant not significantly different to 

controls), and largely prevented the increase in Low PV neurons during the initial phases of 

the water maze (Fig 3I Low PV: 20% over total PV+ interneurons, p<0.05), providing 

evidences that VIP mediated disinhibition is necessary for learning.  

Both experiments prove that VIP-mediated disinhibition on PV IN is causally responsible for 

the network transition toward the “open” state, which is necessary for maze learning: this 

suggests that starting the water maze training in a disinhibited configuration might improve 

performances and reference memory acquisition to the same extent as VIP treatment, while 

the opposite would be true with FFI as the starting point. Hence, we studied how previous 

experience would influence further incremental learning by training mice that had previously 

experienced an enriched environment or learned the fear-conditioning task (being in the Low 
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or High PV state, respectively). Enriched mice showed enhanced performances on the first 

phase of learning (Fig 3L, orange curve: difference to controld on day 2, 3 and 4: p<0.01; 

difference to controls on day6: p<0.05)), and significant reference memory on day 4 

(Supplementary figure 11, target quadrant occuplancy: 43% of time, p<0.02); conditioned 

mice instead lagged behind controls in the learning curve for the whole training (Fig 3L, 

purple curve. Difference to controls on day 4, 7 and 9: p<0.05; day5: p<0.01; day6: 

p<0.001), and showed impaired reference memory on day 10 (Supplementary figure 11. 

Difference to controls on target quadrant occupancy: p<0.001. Left quadrant: p<0.05). Mice 

conditioned in the dark showed no difference to controls in performance or reference 

memory (Fig 3L, blue curve and supplementary figure 11), again linking performance to 

experience-induced states of VIP-PV microcircuit. 

 

A microcircuit module mediating the transition toward the plastic state during 

learning in cortical microcircuits 

 

To test whether the VIP-PV module could be recruited to regulate learning beyond the 

hippocampus, we analyzed a form of motor learning that is incremental, hippocampus-

independent, and produces long-lasting effects on specific cortical microcircuits. We 

therefore choose to study the regulation of Rotarod learning (RR) in primary motor cortex 

(M1), a task in which mice learn to coordinate their movement to run on an accelerated rod 

(Yang G et al., 2009). This has been shown to require at least 6 consecutive days of 

repeated training to reach stable, plateau performances (Fig 4A), and to produce long lasting 

alterations in connectivity in primary motor cortex (M1). In M1, rotarod learning produced an 

initial increase in the Low PV interneurons in the early phases (Fig 4 C. RR Day2: 30% Low 

PV over total PV+ IN, difference to control p<0.001), followed by a shift toward High PV 

increase upon learning completion (Fig 4B and C. RR day7: 39% High PV over total PV+ IN, 

difference to controls p<0.0001). The proportions of Low or High PV during rotarod learning 

or upon learning completion resembled the ones observed in the hippocampus during maze 

learning (Supplementary figure 12). Moreover, learning-induced transitions among PV IN 

network states were supported by the same mechanism based on FFI and Dis prevalence 

onto PV IN (Fig 4D., Gephyrin puncta upon RR 2d: p<0.001 difference to controls; Bassoon 

puncta upon RR 7d: p<0.01 ), with VIP+ interneurons being largely responsible for the 

increase in disinhibition (Fig 4E, Difference to fonctol p<0.001). As a control, neither 

changes in FFI, Dis or PV expression, nor changes in NOR performances could be detected 

in the hippocampus at any time during rotarod learning (Supplementary figure 13).  
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Figure 4: VIP-PV module implemented upon incremental learning in neocortex 

In M1, incremental learning (A) requires the implementation of a plastic state followed by crystallization (B and C) to the same 

extent as hippocampal learning (suppl. Fig. 12). The mechanism underlying states transitions is conserved between 

hippocampus and cortex, where and enhancement of VIP+ inhibitory synapses mediates the plastic state, while excitatory 

synapse density produces a shift to the crystallized state (D and E). 

 

Thus, incremental forms of learning proceed through a first, “open” configuration with the 

recruitment of a VIP-PV microcircuit module that supports prevalence of Low PV, and a 

network state enhancing learning and structural plasticity. Then, they shift to a FFI based, 

“crystallized” phase that support prevalence of High PV and is characterized by reduced 

learning and plasticity, but is necessary for memory precision (Ruediger et al., 2011) 

(Schema 2). The recruitment of the disinhibitory VIP-PV module to regulate plasticity and 

learning can be extended to diverse cortical areas upon incremental learning, and produce 

effects that can be transferred to different learning paradigms relying on the same 
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microcircuits; nevertheless, it is strictly specific to those cortical microcircuit involved in the 

task.  

 

 

Schema 2: Implementation of the Plastic state upon learning, Crystallized state upon 

learning  

Our model poses that the shift between a baseline and a plastic configuration, necessary for learning, is carried out by a 

dedicated microcircuit module relying VIP interneurons to make disinhibitory synapses onto PV interneuron, thereby shifting the 

network configuration toward Low PV. The specificity of input highlighted in the schema is inferred from the hippocampal 

connectivity, but a similar principle might stand in cortex too, where VIP+ neurons, which are abundant in the superficial layers, 

receive massive connections from Thalamus. 

Moreover, upon learning completion, an increase in FFI connectivity would mediate the transition toward the crystallized state 

via High PV prevalence, to support memory precision. 
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4.1.4 Discussion 

 

To summarize, this study reveals that learning recruits a dedicated microcircuit module 

impinging on VIP+ and PV+ interneurons to regulate the amount of learning and structural 

plasticity of cortical microcircuits. Hence in hippocampal CA3, environmental enrichment and 

contextual fear conditioning were able to produce the enhancement or decrease in structural 

plasticity and learning, and induce a rewiring in the network of PV expressing interneurons to 

enhance the formation of inhibitory or excitatory synapses onto the dendrites of these 

interneurons, respectively. Change in connectivity would underlie the amount of expression 

of the protein Parvalbumin (which correlated with Gad-67 expression and firing frequency): 

accordingly, enrichment increased the fraction of interneurons which display Low levels of 

Parvalbumin, and were characterized by high density of inhibitory synapses and low density 

of excitatory synapses onto their dendrites; conversely, conditioning increased the fraction of 

interneurons that display High levels of Parvalbumin, and were characterized by low density 

of inhibitory synapses and high density of excitatory synapses.  Changes in synapses 

density were causally linked to the modulation of PV expression and interneuron distribution 

in the network, which would in turn be causally responsible of regulating the amount of 

plasticity and learning in the microcircuit. Therefore, enrichment produced an increase in PV-

mediated disinhibition that would underlie a “Plastic state” of enhanced learning, while 

conversely conditioning increased feed-forward inhibition via PV interneurons to produce a 

“Crystallized state” of reduced further learning. 

Incremental, trial-and-error forms of learning are hypothesized to proceed through two 

distinguishable phases, in which information about the task is acquired (exploration), and 

later used to solve the task (exploitation). Similarly, we observed that a hippocampal 

dependent incremental learning paradigm like the Morris water maze would deploy a plastic 

state during learning, followed by a crystallized state upon learning completion. In stark 

contrast to enrichment and conditioning, the amount of structural plasticity mediating the 

network transitions toward the plastic or crystallized state was highly input specific: 

enhancement of disinhibition upon learning was mediated exclusively by VIP+ interneurons 

making synapses onto the portion of PV dendrites in stratum radiatum, while enhancement 

of FFI upon learning completion was carried out exclusively by filopodia sprouting by mossy 

fiber terminals in stratum lucidum. This uncovered a dedicated microcircuit module impinging 

on VIP-PV connectivity that is used upon incremental tasks to regulate plasticity and 

learning: accordingly, the transition to a plastic stated was necessary for learning, and 

targeted modulation of VIP release was sufficient to modulate learning itself. In addition, the 
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recruitment of a VIP-PV module to regulate plasticity and learning was not specific to the 

hippocampus, but could be observed in other cortical areas upon specific recruitment during 

learning. 

 

What might be the significance of having an interneuron network shifted toward High or Low 

PV? PV expression in single cells might just be an indicator of a whole peculiar state in the 

cell, with effect on physiology (frequency of spiking), connectivity (higher or lower density of 

excitatory or inhibitory synapses), or gene expression profile. This last aspect in particular 

would be fascinating to explore: dendritic connectivity might determine parvalbumin intensity 

(and vice versa), which in turn might signal calcium concentration intracellularly. Previous 

literature has shown how membrane depolarization and calcium influx in the cell are able to 

induce new transcription (West AE et al., 2001). Therefore, High and Low PV cells might be 

characterized by a set of differentially expressed transcripts and proteins which might 

underlie their functional significance; exploring how differential regulation might be brought 

about (i.e., via transcriptional, translational or epigenetic mechanisms) might help us to 

understand peculiar properties characterizing the plastic or crystallized state. 

Nevertheless, the correlation between parvalbumin expression and GAD-67 as well as firing 

frequency strongly suggests that the state of PV network might have significant functional 

implications for cortical microcircuits computation. Therefore, prevalence of Low PV might 

underlie a decrease in the inhibition exerted on pyramidal cells that makes those cells more 

prone to be recruited upon external stimulation (Supplementary figure 6), while prevalence of 

High PV would increase inhibition and reduce the fraction of cells recruited upon further 

experience (Supplementary figure 6). In this scenario, the state of the PV network would 

control a threshold by which sensory experience can recruit pyramidal cells in cortical 

microcircuits. In complex, incremental forms of learning we would thereby assist to two 

independent phases: a first state in which pyramidal cells would be more excitable by 

sensory experience, followed by a configuration which would in turn make it harder for 

excitatory microcircuits to be recruited by non-salient stimuli. In a behavioral prospective, 

these two phases would coincide with what computer scientists call Exploration and 

Exploitation: in the first phase (exploration), a lower threshold for excitation (produced by the 

disinhibitory configuration of the PV network) would promote acquisition of sensory 

experience, facilitating those stimuli that, although weak, might correlate with a positive 

outcome in the task (thereby allowing the microcircuits to keep an “open mind” about the 

environment); once a successful association has been created, an increase in the threshold 

for the acquisition of new sensory information (exploitation), achieved by the FFI 
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configuration of the PV network, would filter all those stimuli that might function as 

“distractors”, and hence allow the microcircuit to increase its attention toward those input 

which have been successfully (via dopamine or serotonin?) correlated to positive outcome in 

the task (thereby allowing consolidation via the strengthening of previous associations or 

strategies). 

 

What would be the mechanism by which the network of PV interneurons would modulate the 

threshold for excitation, thereby filtering sensory experience? One striking feature that 

distinguishes High and Low PV biologically is the density of excitatory or inhibitory synapses 

onto their dendrites. Previous work has shown that excitatory recruitment of PV+ 

interneurons produces the emergence of coherent membrane fluctuations in the population 

of pyramidal cells in cortical microcircuits, which gives rise to rhythms in the gamma band 

(30-80 hz) (Penttonen et al. 1998, Gloveli et al. 2005 a and b, Hasenstaub et al. 2005, Mann 

et al. 2005, Quilichini et al. 2010, Buzsaki and Wang, 2012); moreover, excitation onto PV 

interneurons was found to enhance gamma, while inhibition onto these interneurons to 

suppress it (Sohal et al., 2009). Modeling a network with reduced amount of parvalbumin 

expression at the PV-to-PC synapse produced a decrease in both power and frequency of 

gamma oscillation (Volman et al., 2011). For brain rhythms, the frequency of the oscillation 

influences the length of the window for the dendritic integration (usually 10-30 ms, coincident 

to one gamma cycle) of inputs from multiple upstream sources (which present a certain 

temporal jitter, Harris et al., 2003). All things considered, the amount of excited or inhibited 

PV interneurons in the network might therefore modulate the length of the window for 

dendritic integration. Many inhibited PV interneurons (Low PV) might reduce the frequency 

of oscillation to lower levels: this would increase the duration of the window for dendritic 

integration in the excitatory network, thereby allowing weak inputs with no temporal 

organization (like those of the input pattern 2 in the schema 3) to elicit a response in a 

postsynaptic excitatory neuron. In stark contrast, many excited PV interneurons (High PV) 

might increase gamma oscillation to higher levels: this would shorten the duration of the 

window for dendritic integration in the excitatory network, thereby allowing only strong input 

with a clear temporal structure (that is, inputs arriving with a delay of few milliseconds like 

the ones of the input pattern 3 in the schema 3) to elicit a response in the postsynaptic 

excitatory neuron. Moreover, this mechanism might impact on the number of neurons 

recruited synchronously upon stimulation, with an High PV network organizing the activity of 

an ensemble of neurons so that their collective spiking would be seen from the postsynaptic 

“reader” neuron (in our example, CA1 upon CA3 network reorganization) as a single event 

(as reviewed by Buzsaki, 2010). 
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Schema 3: Proposed model for differential filtration of input stimuli based on PV 

network state 

The model poses a possible mechanism by which the composition of the PV network, by modulating the frequency of the 

gamma rhythm, is able to regulate the filter to incoming input patterns based on strength and temporal coincidence. 

 

The recruitment of the VIP-PV module upon the learning phase of the Morris water maze 

showed a high degree of specificity, for which the transition to the network configuration in 

which Low PV are prevalent was carried out entirely by the increase in VIP+ inhibitory 

synapses onto the stratum radiatum portion of PV dendrites in CA3. To achieve such a high 

level of specificity in structural plasticity, two different scenarios could be hypothesized: in 

the first, regulatory mechanisms in the postsynaptic PV interneuron would restrict the 

amount of structural plasticity only in a specific segment of the dendrite, but not in the 

neighboring fraction; moreover, another layer of regulation would be required to enhance 

solely synapses coming from VIP interneurons, probably relying on a highly specific code of 

adhesion molecules expression. The first hypothesis instead relies instead on the 

presynaptic partner to achieve the level of specificity exhibited during learning. In CA1, VIP+ 

disinhibitory interneurons have been divided in two classes according to their shape (Acsady 

et al., 1996): multipolar VIP neurons ramify their dendrites in both stratum radiatum and 
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stratum oriens, and contact postsynaptic partenrs in both strata as well; in contrast, some 

VIP+ neurons show a very polarized morphology for which they stratify their dendrites only in 

stratum lacunosum-moleculare, and contact postsynaptic partners only in stratum radiatum. 

The observation that such a type on neurons exist also in CA3 (Supplementary figure 8) 

allowed us to hypothesize that the recruitment of polarized VIP+ neurons upon learning 

could be entirely responsible for the specificity observed during learning (Supplementary 

figure 8). That would also imply that the two inputs to hippocampal area CA3 would 

dissociate their impact in separate parts of the learning process: the perforant path from 

Medial Enthorinal cortex would produce recruitment of VIP+ interneurons to induce 

disinhibition via PV interneurons during learning, thereby promoting the transition to the 

Plastic State (See Schema 2); on the contrary, the mossy fiber pathway from the dentate 

gyrus would be recruited to promote the enhancement of FFI upon learning completion and 

hence the transition to the crystallized state (See schema 2). Moreover, enhancing inhibition 

only onto the stratum radiatum of PV interneurons might selectively influence the efficiency 

by which excitatory inputs from CA3 pyramidal cells recruit those interneurons, due to the 

high degree of shunting inhibition that dendritic inhibition exerts. This would imply that the 

auto-association pathway, which usually exerts a strong FFI in the network for which 

stimulation of the Shaffer collaterals produce IPSC in CA3 pyramidal cells (Chevaleyre V, 

and Siegelbaum SA, 2010), would be facilitated during learning so to allow the formation of 

spatial representation in CA3, which might later be recalled with a high degree of specificity 

upon learning completion (when the strong FFI from MFTs filopodial synapses would 

suppress any unrelated neuronal ensemble). Therefore, disinhibition upon learning would be 

meant to facilitate the strengthening of those synapses among the ensemble of neuron that 

underlie the association learned, while FFI upon learning completion would arise from the 

consolidation of that ensemble to suppress unrelated representations. 

 

What mechanisms might trigger the recruitment of VIP+ disinhibitory interneurons upon 

learning to promote transition to the Plastic state? We have shown that the modulation of 

VIP signalling during learning is sufficient to modulate learning; therefore, understanding the 

principles underlying such recruitment might provide a useful entry point to produce cognitive 

enhancement or rescue deficits in pathological conditions. A limited excitatory activity driving 

VIP+ interneurons might not be sufficient to permanently shift the system toward the Plastic 

state (the effect of optogenetic stimulation of VIP+ interneurons onto the PV network are 

only transitory and not sustained at 24 hours). Therefore, we should hypothesize that a 

second signal might strengthen the extent of VIP interneurons recruitment to produce a 

stable transition toward plasticity. Hence, a fraction of VIP+ interneurons express ionotropic 
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receptors for both serotonin (5HT3 Yang et al., 2009) and acetylcholine (Porter et al., 1999). 

It is tempting to speculate then that VIP+ interneurons might be activated by the coincidence 

of 2 signals: one carrying sensory information (Enthorinal conrtex for the hippocampus, 

Thalamus for motor cortex), and the other signaling the salience of the sensory information 

to produce associations. Only conincidence in these two signals would then be sufficient to 

allow the stable transition toward the plastic state observed early during learning. 

 Nevertheless, this process should be highly specific for the brain areas recruited upon 

learning, which would be the only areas to transition to the plastic state (Supplementary 

figure 13). At least two scenarios could be envisioned to obtain this specificity. The first 

implies that neuromodulator axons originating in different nuclei would specifically innervate 

different cortical areas: if this were true, specificity would be achieved by selective 

recruitment of neuromodulatory nuclei upon learning. The second scenario instead poses 

that specificity is entirely ascribed to sensory experience, and neuromodulatory release 

would instead happen unspecifically in a variety of sensory areas. This would imply that 

learning might happen only in those regions where sensory stimulation coincide temporally 

with neuromodulatory stimulation, thereby impinging a plastic state in those systems that are 

sensory recruited upon learning. This latter hypothesis would imply a mesmerizing 

consequence: upon whatever type of incremental learning, we could induce ectopic 

transitions toward the plastic state in systems that are not selectively recruited by the 

learning itself by means of artificial stimulation (which would pair with the general 

neuromodulatory release induced by learning).   
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4.1 5 Supplementary material 

 

 

 

PV expression in single interneurons correlates with levels of GAD-67, which are critical to 

determine the amount of GABA synthesized and released in the synaptic cleft (Lau, CG 

2012) 
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Power laws describing the correlation between excitatory or inhibitory synapse density and 

expression of PV in CA3 network upon differen experiences. 
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Targeted nhancement of feedforward inhibition or disinhibition via pharmacological 

modulation of synaptic activity (LY 241495 and VIP), or direct excitatory recruitment of PV+ 

and VIP+ interneurons via optogenetics.  
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Optogenetic stimulation of VIP+ or PV+ interneurons in vitro. Panel C provides histological 

identification of VIP interneurons, and their synapses onto PV+ interneurons.  
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Direct manipulations targeting PV interneurons and modulating PV content are sufficient to 

induce structural plasticity onto their dendrites. Increase in Low PV via ChABC treatment (fig 

1E) is sufficient to induce enhancement of inhibitory synapse density from both VIP+ and 

VIP- inputs (A and B); increase in High PV via BDNF (fig 1E), in contrast, increases 

excitatory synapse density onto PV dendrites.  
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Enhanced Disinhibition and FFi upon experience is reflected in the probability of CA3 

pyramidal cells recruitment upon further learning.  
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Linear progression in the PV network distribution toward the plastic or crystallized state upon 

enrichment and fear conditioning. 
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Specificity in the extent of structural pasticity upon MWM 2d (A) and the existence of 

polarized VIP+ neurons in CA3 exhititing dendritic arborization in SLM and axonal 

ramifications in SR (B), suggest the existence of a microcircuit module that regulates 

learning in the first phase of the MWM (C). 
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Coronal section of cannula-impalnted brains for VIP modulation upon learning.  
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Mice treated with VIP during the early phase of water maze learning exhibits a significant 

reference memory already on day 4, when saline or GRF treated mice show a permancence 

in the target wuadrant that is not different prom chance levels.  
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Enriched mice, which start the maze training in a plastic configuration of the CA3 network, 

show significant reference memory on day 4 (with controls performing slightly better than 

chance levels), with no difference to controls on day 10 (data not shown). In stark contrast, 

mice who learned the contextual fear conditioning immediately before training started were 

impaired in their performance on the whole timecourse of the experiment (figure 3L), and fail 

to form a proper reference memory on day 10. Conditioning in the dark did not produce any 

deviation to controls. 
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Conparable extent of PV network remodeling in the hippocampus and M1 upon incremental 

learning. 
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PV network rearrangement upon learning is specific for the microcircuits involved in the 

learning process. Indeed, upon rotarod learning (which is hippocampus-indipendent), neither 

rewiring upon PV neurons in the hippocampus, nor changes in NOR performances could be 

observed.  
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4.2.1 Summary 

 

 

Most behavioral learning in biology is trial and error, but how these learning processes are 

influenced by individual brain systems is poorly understood. Here we show that ventral-to-

dorsal hippocampal subdivisions have specific and sequential functions in trial-and-error 

maze navigation, with ventral hippocampus (vH) mediating early task-specific goal-oriented 

searching. Although performance and strategy deployment progressed continuously at the 

population level, individual mice showed discrete learning phases, each characterized by 

particular search habits. Transitions in learning phases reflected feedforward inhibitory 

connectivity (FFI) growth occurring sequentially in ventral, then intermediate, then dorsal 

hippocampal subdivisions. FFI growth at vH occurred abruptly upon behavioral learning of 

goal-task relationships. vH lesions or the absence of vH FFI growth delayed early learning 

and disrupted performance consistency. Intermediate hippocampus lesions impaired 

intermediate place learning, whereas dorsal hippocampus lesions specifically disrupted late 

spatial learning. Trial-and-error navigational learning processes in naive mice thus involve a 

stereotype sequence of increasingly precise subtasks learned through distinct hippocampal 

subdivisions. Because of its unique connectivity, vH may relate specific goals to internal 

states in learning under healthy and pathological conditions. 
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4.2.2 Introduction 

 

 

Trial-and-error forms of learning and memory involve the deployment of complex individual 

learning sequences that lead to sustained modifications of behavior and efficient mastery of 

complex tasks1,2. Whether the learning sequences underlie principles reflected in the 

organization and recruitment of distinct brain systems has remained unclear. Trial-and-error 

learning has mainly been investigated in the context of striatal circuits, in which increasingly 

effective habits support optimization of learning processes, and it may be implemented by 

parallel loops of striatal subcircuits3–7. Accordingly, theoretical studies have predicted that 

complex trial-and-error tasks are best broken down into subtasks to be addressed 

independently by separate subsystems8. Further, studies of machine and animal learning 

have suggested that effective early search strategies should focus on local associations to 

goals, but whether and how such goal-oriented searching occurs has remained unclear1,8. 

The hippocampus provides an attractive system to investigate the notion that trial-and-error 

learning of biologically relevant tasks might involve the recruitment of functionally 

complementary subsystems. Thus, the hippocampus is of crucial importance in supporting 

trial-and-error navigation tasks that involve the rapid combination of episodes in space and 

time9–11. Furthermore, although local circuits are comparable throughout the hippocampus, 

the vH, intermediate hippocampus (iH) and dorsal hippocampus (dH) subdivisions differ 

substantially in tuning, connectivity, gene expression and function12–19. Gene-expression 

studies have revealed the existence of discrete spatial boundaries between principal 

neurons in vH, iH and dH, suggesting that the subdivisions reflect discrete entities14,15,17. On 

the basis of their connectivity in distinct brain networks15,20,21, vH (anterior in humans) is 

thought to be more concerned with emotions and body states15, whereas dH (posterior in 

humans) has predominantly visuo-spatial and cognitive functions12–16. Although dH is 

important in spatial learning12,13,16, the function of vH in learning has remained less clear15. 

This might be because most studies have focused on the endpoints of complex 

hippocampus-dependent tasks, which are often highly spatial and cognitive, and on average 

population performances instead of how individual animals learn a task. 

Hippocampal learning can be associated with a robust local growth of new excitatory 

synapses by large mossy fiber terminals (LMTs) in CA3 onto fast-spiking GABAergic 

interneurons (FFI growth), which are crucial for memory precision22. The new synapses do 

not stabilize in mice lacking β-adducin23, and local virus-mediated reintroduction of β-
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adducin in granule cells restores structural plasticity and memory precision22. At the 

physiological level, FFI growth is required to recruit comparatively small ensembles of 

pyramidal neurons expressing the transcription factor c-Fos in CA3 upon learning, a function 

that seems to underlie the role of FFI growth in memory precision22. Here we exploited these 

structural traces of learning to map and probe the involvement of hippocampal subdivisions 

during navigational learning. We investigated longitudinally how individual naive laboratory 

mice learn to navigate a Morris water maze24 and combined these detailed behavioral 

analyses with anatomical and local genetic-rescue studies to dissect the roles of the 

hippocampal subdivisions in this complex trial-and-error learning process. 
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4.2.3 Results 

 

Individual mouse strategies reveal three learning phases 

We first analyzed the average learning patterns of mice in the Morris water maze. In this task 

a platform is hidden at a fixed position in the water, and mice are released facing the wall at 

different positions in the circular maze. Performance is recorded as time to locate the 

platform (escape latency) during training trials (Fig. 1a), and spatial memory is assayed as 

persistence in searching the platform quadrant in the absence of the platform (reference 

memory)12,24. In addition to these conventional readouts, and to augment the power of the 

analysis, we categorized the behavior of individual mice according to the incidence of distinct 

search strategies25–27 as a function of training trial (Fig. 1b and Online Methods). Consistent 

with previous reports24–26, this detailed behavioral analysis revealed that mice applied 

qualitatively different search strategies as they became more proficient at this spatial task: 

global (random swim) and then local search strategies (scanning and chaining) were 

predominant during early phases of learning, and spatial search strategies (directed search, 

focal search and direct swim) took over during late phases (Fig. 1c). Average latencies and 

strategies evolved continuously as a function of trial number (Fig. 1a,c). 
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Figure 1: Sequential deployment of search-strategy habits during water maze 

learning. 

(a–c) Behavioral analysis of water maze learning at the population level. Mean values for 30 mice. Performance (a) was 

evaluated as average escape latency and percentage of successful trials at each trial and training day. A schematic 

representation and color code for each strategy (b) and the average prevalence of each strategy by trial number (c) are shown. 

(d–h) Behavioral analysis of water maze learning in individual mice. (d) Strategy and latency versus trial number for four 

representative mice. (e) Distribution of strategy-block boundaries for 25 individual mice, with percentages of mice for which 

block 2 (blue) ended and blocks 3 or 4 (green) and 5 or 6 (orange) began, represented as a function of trial number. (f) Total 

block-length values for individual mice, averaged over 25 mice. (g) Extent to which the latencies of individual trials involving the 

exploration of alternative strategies differed from the mean latencies for that phase of the training process. The individual 

values represent the latency deviations for individual trials, ordered according to the strategy of the exploratory trials (25 mice; 

see Online Methods). (h) Prevalence of heading-angle error by training day. Cumulative plots; four trials per day, 25 mice. Each 

dot represents the relative incidence of angles ranging between two consecutive data points (for example, between 20° and 

10°). The colored lines highlight learning phases and connect averages for indicated training day intervals. Error bars, s.e.m. 

We then analyzed the learning curves of individual mice. In contrast to what could be 

detected at the population level, individual mice showed notable search habits, consisting of 

repeated use of the same search strategy in at least three consecutive trials (see Online 

Methods), interrupted by one or two trials involving alternative, and in most cases more 

‘advanced,’ strategies (Fig. 1d). Individual latency curves oscillated substantially during the 

first half of the learning process (Fig. 1d). To provide average measures of these individual 

behaviors, we then determined whether features of the search habits were shared among 

cohorts of mice during learning. A detailed analysis of 28 individual learning curves revealed 
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that the majority of mice (21/28) ended a first block, involving strategy 2 (random swim) after 

trial 7 (just before the end of day 2), and initiated a second block, involving strategy 3 

(scanning) or 4 (chaining) at trial 10–12 (during day 3), which was followed by a third series 

of blocks involving strategies 5 and 6 (directed search and focal search, respectively; 

denoted as 5/6) during trials 22–26 (between days 5 and 7) (Fig. 1e). The majority of mice 

(25/28) showed a strategy progression of 2-4-5/6 (13/25) or 2-3-5/6 (8/25), and a smaller 

fraction of mice (3/28) showed a 2-5/6 pattern (Fig. 1d, right, and Supplementary Fig. 1). 

Among different cohorts of mice, individual search habits seemed to begin and end at 

comparable stages during learning. Consistent with this notion, average total block lengths 

per mouse for each search habit were also comparable (strategy 2: 5.2 ± 1.2 trials; strategy 

3: 6.7 ± 0.95 trials; strategy 4: 3.65 ± 0.85 trials; strategies 5/6: 5.46 ± 1.17 trials (s.e.m.); 

Fig. 1f and Online Methods). Furthermore, even when mice explored alternative strategies 

during a particular search habit, corresponding individual latencies matched average values 

for the particular learning phase across the mouse cohort (Fig. 1g). Finally, a population 

analysis of initial heading-angle errors as a function of training day (see Online Methods) 

provided additional independent evidence that progress during the maze learning process 

had some discontinuous features, with prominent improvements again occurring between 

days 2 and 3 and between days 6 and 7 (Fig. 1h). Taken together, these results suggested 

that the learning processes of individual naive mice might involve learning phases 

characterized by distinct search habits. In most mice, the learning phases corresponded to 

training days 1–2 (trials 1–8; first phase: blocks of strategy 2, >50% of trials with heading-

angle errors >50°), days 3–6 (trials 9–24; second phase: blocks of strategies 3 and 4, >50% 

oftrials with heading-angle errors <30°) and days 7–9 (trials 25–36;third phase: blocks of 

strategies 5/6, >50% of trials with heading-angle errors <10°). 

 

FFI growth at hippocampal subdivisions during learning 

 

To investigate the neural basis of the sequential phases of maze learning, we investigated 

hippocampal patterns of FFI growth at LMTs in CA3b (ref. 22). Cohorts of mice underwent 

repeated daily training periods of different total durations (four trials per day, as described 

above), and we determined values for number of filopodia per LMT (filopodia/LMT) on the 

day after the final training day. We detected distinct baselines and learning-related patterns 

of filopodia/LMT values in vH, iH and dH (mean baseline number of filopodia/LMT = 1.74 ± 

0.1 (dH), 2.32 ± 0.1 (iH) and 3.11 ± 0.15 (vH); Fig. 2a,b and Supplementary Fig. 2; see 

Online Methods). In vH, filopodia/LMT values increased abruptly after day 2 (in 12/12 mice 
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analyzed) and reached plateau levels 1.8-fold higher than ventral baseline values by day 3 

(Fig. 2b). No filopodial increases were detected at 1 h or 4 h after the last trial on day 2, 

suggesting that this FFI growth reflected an overnight memory consolidation process (data 

not shown). The marked increase in synapse numbers was accompanied by a 

corresponding increase of c-Fos recruitment upon training in CA3b pyramidal neurons from 

day 3 in vH (percentage of c-Fos+ vH neurons = 2.34 ± 1.2 (day 1) and 3.2 ± 1.6 (day 2), not 

significant (n.s.), and 13.4 ± 2.4 (day 3), P < 0.001; Fig. 2b). In iH, filopodial growth was first 

detectable on day 3 and increased gradually to reach plateau values (also ~1.8-fold higher 

than intermediate baseline levels) by day 5–6 (Fig. 2b). FFI growth in iH was specifically 

correlated to increasing c-Fos recruitment upon training in the same subdivision (percentage 

of c-Fos+ iH neurons = 2.68 ± 1.3 (day 3) and 16.95 ± 1.7 (day 6), P < 0.01; Fig. 2b). Finally, 

in dH, filopodia/LMT values did not increase significantly up to day 5 of the training protocol, 

and then they increased gradually to reach plateau values (also ~1.8-fold higher than dorsal 

baseline values) at day 8–9 (percentage of c-Fos+ dH neurons = 1.8 ± 1.2 (day 1) and 15.4 

± 2.2 (day 9), P < 0.01; Fig. 2b). As with vH and iH, FFI growth in dH was specifically 

correlated to increased c-Fos recruitment in that hippocampal subdivision (percentage of c-

Fos+ dH neurons = 1.8 ± 1.2 (day 1) and 15.4 ± 2.2 (day 9), P < 0.01; Fig. 2b). Furthermore, 

FFI growth in dH was correlated with the quality of reference memory in individual mice, 

whereas FFI growth in vH and iH was not (Pearson correlationr = 0.75 (dH), P < 0.001 and 

0.24 (iH) and 0.03 (vH), n.s.; Fig. 2c).  
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Figure 2: Sequential recruitment of hippocampal subdivisions during maze learning. 

(a) Representative examples of GFP-positive LMTs (left, photographs; right, camera lucida drawings) in CA3b of vH and dH on 

days 3 and 9, respectively, of the maze training procedure (MWM). Arrows indicate varicosities (putative presynaptic 

terminals22) at the tips of filopodia. Scale bars, 5 μm. (b) FFI growth (left) and percentage of c-Fos+ CA3b pyramidal neurons 

(right) in vH, iH and dH during maze training. n = 6–10 mice. Individual dots at days 2, 3, 4, 6 and 8: filopodia/LMT values for 

individual mice shown for transition time points (left). (c) FFI growth at dH (but not iH or vH) is correlated to spatial learning 

(reference memory). Fil, filopodia. Target quadrant occupancy, percentage of test time spent in target quadrant (values are 

given as 1/10 of actual percentage). Dots represent values for individual mice, collected between day 5 and day 9 of the 

training procedure. (d) Schematic illustration of the relationship between the prevalence of search-strategy habits (blue, green 

and orange areas) and FFI growth at vH, iH and dH as a function of trial number (for search habits; red) and training day (for 

FFI growth; black) during maze learning. Individual values are averages from the data shown in b and Figure 1e. Error bars, 

s.e.m. 

We compared how average search-strategy habit distributions (per trial number) and FFI 

growth at hippocampal subdivisions (per day) evolved during maze learning (Fig. 2d). In 

most mice, vH FFI growth (beginning at day 3) anticipated the onset of local search habits 
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such as scanning and chaining (at trial 10, >80% of mice) (Fig. 2d). Gradual FFI growth at iH 

(from day 3 to day 6) coincided with the deployment of local search habits and reached 

plateau values when most mice had switched to spatial search habits. Finally, gradual FFI 

growth in dH coincided with the consistent deployment of spatial search strategies. 

Together, these findings suggested that, in mice, trial-and-error learning to navigate a water 

maze involves a stereotyped sequence of learning phases. These results were consistent 

with a specific role for dH in fine-scale spatial-map learning late in maze navigation and 

suggested that vH and iH may have distinct and sequential roles during earlier phases of 

maze learning. 

 

vH FFI growth and the learning of specific task-goal associations 

 

We next sought to determine what aspects of trial-and-error tasks might be learned through 

vH. Because this hippocampal subdivision is connected to goal-related networks, and recent 

studies have provided evidence that it contains single units tuned to goal15,18,19, we explored 

the possibility that vH might support the learning and implementation of specific associations 

between invariant features of the task and reward-related goal28. To this end, we first 

investigated mice that underwent a novel-object recognition task in the absence or presence 

of a positive food reward. In the absence of reward (incidental learning), mice did not show 

alterations in novel-object discrimination in subsequent training sessions or alterations in 

filopodia/LMT values in vH or dH (Supplementary Fig. 3). By contrast, when a food reward 

was repeatedly associated with the familiar object, relative exploration time for the familiar 

object increased gradually beginning on day 3–4 (Supplementary Fig. 3). Furthermore, 

beginning on day 11–12, but not yet on day 10, mice showed a strong preference for the 

familiar object, even in the absence of food reward (reference memory). Notably, mean 

filopodia/LMT values increased selectively between days 10 and 12 in vH but not dH, and 

the vH increase was closely correlated with reward-controlled learning in individual mice 

(Supplementary Fig. 3; see Online Methods). These results provided evidence that 

conversion of an incidental goal-free task into a reward-based one is sufficient to induce FFI 

growth at vH upon behavioral learning (tested as reference memory). Because acquisition of 

a behavioral bias and FFI growth were closely correlated at the individual level in mice, the 

results further suggested that FFI growth occurred in vH within 1 d of bias learning in these 

experiments. 
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In further experiments aimed at determining whether FFI growth in vH depends on 

behavioral learning of hippocampal associations to reinforcers, we carried out fear-

conditioning experiments (negative reward) under normal light conditions (contextual 

conditioning, hippocampus dependent) and in complete darkness (conditioning to explicit 

cues, not hippocampus dependent). We found that, whereas mice that underwent contextual 

fear-conditioning showed FFI growth in vH and dH, those that had been conditioned in the 

dark froze when re-exposed to the same odor or cage floor but did not show alterations in 

mean filopodia/LMT values or c-Fos recruitment in vH or dH (Supplementary Fig. 3; see 

Online Methods). These results were reminiscent of the perceptual requirements for 

hippocampal encoding29 and suggested that FFI growth upon behavioral learning is induced 

in vH only if the behavioral protocol involves conditions producing hippocampal associations 

between context and reward. We then determined whether vH FFI growth during maze 

navigation might involve learning about a specific task-goal relationship28. As we expected, 

when we subjected mice to the maze protocol in the absence of a platform (and, hence, in 

the absence of a reward-related goal), we did not observe an increase in vH filopodia/LMT 

values at any time (filopodia/LMT = 3.25 ± 0.2 (naive mice) and 3.29 ± 0.3 (after 2 d of free 

swim), n.s.; Fig. 3a). We further found that (i) omitting the platform on the first or second day 

of training suppressed FFI growth; (ii) 2 d of training, each involving four trials, were required 

for FFI growth; (iii) the second day of training did not have to immediately follow the first day 

to elicit FFI growth and (iv) introduction of a goal-free training day between the first and 

second day of goal-oriented learning inhibited ventral FFI growth after the second platform 

training day (Supplementary Fig. 4). Further supporting an association between vH FFI 

growth and reward-related goals, the extent of induction of vH FFI growth was 

indistinguishable whether the platform was hidden or visible (Fig. 3a). Notably, however, 

when the position of a visible platform was changed from a peripheral position on day 1 to 

positions closer to the center of the pool on day 2, no vH FFI growth was detected on day 3, 

suggesting that the structural plasticity might reflect learning about a specific association 

between the platform and its distance from the wall (Fig. 3b, right). In support of this 

interpretation, changing the position of the visible platform with respect to the external cues 

while keeping it within a comparable distance from the pool wall did not suppress vH FFI 

growth on day 3 (Fig. 3b, left). Taken together, these results suggested that, in maze 

learning, structural plasticity in vH on day 3 might involve establishing a consistent 

association on day 1 between the goal (the platform) and a specific aspect of the task (for 

example, the distance of the platform from the wall) and confirming that association on day 2 

(Fig. 3c). To provide additional evidence that FFI growth at vH involves a classical reward 

mechanism, we interfered with signaling by the reward neuromodulator dopamine30 and its 

D1/D5 receptor during water maze learning31. To this end, the D1/D5 antagonist SCH23390 
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was applied systemically 20 min before each training day, and control mice were treated with 

vehicle lacking the drug. The antagonist interfered with learning and strategy selection 

throughout the training procedure and completely blocked FFI growth in vH (Supplementary 

Fig. 4). 

 

Figure3: Specific task-goal association reflected by vH FFI growth during maze 

learning. 

(a) Analysis of experimental conditions (platform submerged, visible or absent) that produce FFI growth (fold increase) at vH. 

(b) Influence of platform position constancy on vH FFI growth. Moving a visible platform to a new position at a comparable 

distance from the wall on day 2 did not compromise FFI growth on day 3 (left), whereas moving the platform toward the center 

of the maze on day 2 suppressed FFI growth on day 3 (right). Mean values; n = 5–8 mice. (c) Schematic of requirements for 

FFI growth at vH. 

 

Function of vH in water maze learning 

 

Having defined task features that lead to FFI growth at vH early during maze training, we 

next addressed the function of this hippocampal subdivision during water maze learning. We 

reasoned that all hippocampal subdivisions might synergistically contribute to the learning 

process throughout training or that each subdivision might make its main, specific 

contribution at a distinct phase of the learning process. 

We first analyzed mice with excitotoxic bilateral lesions of vH. All mice included in the 

analysis had nearly complete lesions of vH CA3 (and CA1) and <15% losses at iH CA3 

(Supplementary Fig. 5). Ventrally lesioned mice showed strongly compromised latency 

values at days 3–5 of training (day 3 escape latency = 23.2 ± 5.5 s (vehicle) versus 36.5 ± 

4.1 s (vH lesion), P < 0.01) and improved later to reach values comparable to controls at 

days 10–11 (day 10 escape latency = 10.3 ± 2.2 s (vehicle) versus 12.2 ± 3.1 s (vH lesion), 

n.s.; Fig. 4a). Ventrally lesioned mice also showed disruption of the progression of local 
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search-strategy deployment during days 2–4 (use of strategy 4 on day 4 = 28 ± 3.3% of trials 

(vehicle) versus 15 ± 6.5% (vH lesion), P < 0.01), and a delayed onset of spatial search 

strategies, but use of those strategies during late phases of maze learning was comparable 

to that of control mice (use of strategy 5 and 6 on day 9 = 33 ± 3.8% of trials (vehicle) versus 

29 ± 5.1% (vH lesion), n.s.; Fig. 4b). Strategy habits were less prominent in vH-lesioned 

mice; random swim was particularly affected by the lesions, whereas scanning habits were 

comparatively preserved (Supplementary Fig. 1 and Fig. 4c). Furthermore, vH lesions led to 

a loss of correlation between single-trial strategies, single-trial latencies and mean latencies 

(Supplementary Fig. 6). In what is probably reflective of this inconsistency in trial latencies, 

individual lesioned mice had notably unpredictable trajectories of daily variation in latency 

through most of the training procedure (Fig. 4d). In spite of these disruptions in performance 

consistency, ventrally lesioned mice showed delayed but ultimately normal reference 

memory16 and extents of FFI growth in dH (Fig. 4e). These results suggest that vH is 

important in learning during days 2–5, when global and local search strategies predominate, 

and in search and performance consistency throughout maze learning. 

 

 

 

Figure 4: Role of vH in water maze learning. 

(a,b) Population-level analysis of latencies (a) and strategies (b) in mice with excitotoxic lesions of vH (vH lesion) versus 

controls. To highlight progress within and between days, the strategy plot (b) reflects the mean strategy-recruitment values for 

the first and fourth trials of each day. Analysis in a,b as described in Figure 1c; n = 15 mice. (c) Strategy-block lengths for mice 

with vH lesions, as described in Figure 1f. (d) Enhanced variability of individual trials during maze learning in mice with vH 

lesion versus controls. Latency versus latency variance is plotted for three individual mice each. Stars indicate values for 

training day 1; 

lines connect values from day 1 to day 8. (e) Delayed but undiminished dH FFI growth and reference memory in vH-lesioned 

mice. T, target; L, left; R, right; O, opposite. n = 4 (FFI growth) and 15 (reference memory). (f–h) Learning with FFI growth 

restricted to vH. Impaired maze learning in Add2−/− mice and specific rescue of early learning phase upon reintroduction of β-

adducin into granule cells of vH. Population- and individual-level analysis was done as described in a–c. n = 12 mice. WT, wild 

type; Ctrl, controls injected with vehicle only; fil, filopodia. Error bars, s.e.m.; *P < 0.05, **P < 0.01, ***P < 0.001. 
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To further define the function of vH in maze learning, we devised experiments in which 

learning-related FFI growth was confined to vH. In mice lacking the actin cytoskeleton–cell 

cortex linker protein β-adducin (Add2−/−), which are deficient in learning-related FFI growth 

and procedure (day 3 latency = 24.5 ± 1 s (wild type) versus 38.3 ± 3.4 s (Add2−/−), P < 

0.01; day 5 latency = 14.8 ± 3.2 s (wild type) versus 32.1 ± 2.6 s (Add2−/−), P < 0.001; day 7 

latency = 12.3 ± 2 s (wild type) versus 23.8 ± 2.3 s (Add2−/−), P < 0.001; Fig. 4f,g). 

Furthermore, Add2−/− mice showed very few learning-related habits throughout training (Fig. 



118 
 

4h). In Add2−/− mice in which β-adducin had been reintroduced locally in vH (but not iH or 

dH) granule cellsusing a lentivirus expressing a β-adducin–green fluorescent fusion protein 

(GFP–β-adducin)23, learning-related FFI growth was specifically rescued in vH (day 3 

filopodia/LMT = 2.78 ± 0.3 (Add2−/−) versus 5.96 ± 0.3 (vH rescue), P < 0.0001; 

Supplementary Fig. 7). Supporting the notion that behavioral learning involving vH is crucial 

specifically during early phases of maze learning, ventral rescue restored average latency 

and strategy curves to wild-type values beginning on day 3 and continuing until day 5 of 

training (day 5 latency = 14.8 ± 3.2 s (wild type) versus 20.1 ± 4 s (vH rescue), n.s.), 

whereas further improvements beyond that early phase were still inhibited (day 11 latency = 

10.2 ± 1.1 s (wild type), 19.4 ± 1.9 s (Add2−/−) and 16.1 ± 1.7 (vH rescue), P < 0.05; Fig. 

4f,g). The analysis of individual mice revealed that the second learning phase (local search 

habits) was specifically rescued (average block length for strategy 4 = 3.65 ± 0.85 (wild type) 

and 1.1 ± 0.41 (Add2−/−), P < 0.01, and 2.45 ± 1.1 (vH rescue), n.s.), whereas the first 

phase (average block length for strategy 2 = 5.2 ± 1.2 (wild type); 0.2 ± 0.1 (Add2−/−), P < 

0.001, and 0.51 ± 0.4 (vH rescue), P < 0.01) and the third phase (average block length for 

strategies 5/6 = 5.46 ± 1.2 (wild type), 0.84 ± 0.3 (Add2−/−), P < 0.001, and 0.76 ± 0.4 (vH 

rescue), P < 0.001)) were not (Supplementary Fig. 1 and Fig. 4h). 

 

Function of iH in water maze learning 

 

To investigate the function of iH in maze learning, we analyzed mice with complete bilateral 

excitotoxic lesions of iH (Supplementary Fig. 5). None of the mice showed neuronal losses 

extending >10% into the anterior-posterior extension of adjacent vH or dH (Supplementary 

Fig. 5). The learning curves of mice with iH lesions were specifically delayed between day 4 

and day 7 of the learning process, and iH-lesioned mice reached latency values comparable 

to non-lesioned controls by day 11 (day 11 latency = 9.8 ± 2 s (vehicle) and 11.4 ± 2 (iH 

lesion), n.s.; Fig. 5a,b). iH-lesioned mice showed much smaller variations in latency across 

individual trials than vH-lesioned mice (Fig. 5c; compare to Fig. 4d). A strategy analysis 

revealed a very prolonged deployment of local search habits (scanning and chaining; 

average block length forstrategy 4 = 6.12 ± 0.7, P < 0.05) and delayed deployment of spatial 

search strategies (Fig. 5b,d). Consistent with this delay in spatial search strategies, spatial 

reference memory in iH-lesioned mice was greatly impaired at day 9 but comparable to 

control reference memory values at day 11 (day 9 target quadrant occupancy = 47.8 ± 3% 

(vehicle), 34.2 ± 4% (iH lesion), P < 0.05; day 11 quadrant occupancy = 48.1 ± 5%, n.s. (iH 

lesion); Fig. 5e). Taken together, these results suggest that iH contributes during 
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intermediate phases of water maze learning33, when local search habits are deployed and 

spatial search habits have not yet emerged. Consistent with previous reports16, the 

presence of an intact iH is not an absolute requirement for spatial learning. 

 

 

 

 

Function of dH in water maze learning 

 

Mice with bilateral excitotoxic dH lesions (Supplementary Fig. 5) were specifically impaired 

during the late phases (days 6–11) of maze learning (day 11 latency = 9.2 ± 2.3 s (control) 

and 16.5 ± 2.1 s (dH lesion), P < 0.01; Fig. 6a,b). dH-lesioned mice showed normal strategy 

deployments up to day 5 of training but failed to consistently deploy spatial search strategies 

during late phases of maze learning (average block length for strategy 5/6 = 0.9 ± 0.6 (dH 

lesion), P < 0.001; Fig. 6b,c). In addition, dH-lesioned mice did not show abnormally large 

variations in inter-trial latencies throughout maze learning (Fig. 6d; compare to Fig. 4d). 

Consistent with previous reports that dH is specifically required for spatial learning14,16, 

mice with dH lesions did not establish a spatial reference memory (Fig. 6e). In control 

experiments, smaller, partial dH lesions with longitudinal extents comparable to those of the 

iH lesions (Supplementary Fig. 5; iH lesions: 800 ± 110 μm; complete dH lesions: 1,250 ± 

120 μm; partial dH lesions: 600 ± 80 μm) produced late-phase learning latencies that were 

slightly better than those observed when complete dH lesions were present (Fig. 6a). 

Notably, however, the partial dH lesions also interfered with spatial searching (Fig. 6b) and 

Figure 5: Function of iH in water maze learning. 

(a,b) Population-level analysis of latencies (a) and strategies (b) in mice with 

excitotoxic lesions of iH (iH lesion) versus controls. (c) Variability of individual trials 

during maze learning in iH-lesioned mice. Latency versus latency variance is 

plotted for three individual mice (analysis as in Fig. 4d). (d) Strategy-block lengths, 

as described in Figure 1f. (e) Delayed but undiminished reference memory in iH-

lesioned mice. n = 8 mice; analysis in a,b as described in Figure 4a,b; in c as in 

Figure 4d; in d as in Figure 4c; in e as in Figure 4e. Ctrl, controls injected with 

vehicle only. Error bars, s.e.m.; *P < 0.05, **P < 0.01, ***P < 0.001. 
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suppressed establishment of reference memory (Fig. 6e), further supporting the notion that 

dH is specifically required for spatial learning whereas iH is not. 

β-adducin rescue specifically in dH of Add2−/− mice markedly improved latencies at days 7–

11 but did not influence latency values at days 3–5 of training (Fig. 6f). Consistent with a 

specific action of dH in spatial learning late during maze training, reintroduction of β-adducin 

in dH granule cells improved the progression of global spatial search strategies (Fig. 6g) and 

rescued the deployment of spatial search-strategy habits (average block length for strategies 

5/6 = 0.84 ± 0.3 (Add2−/−) and 3.95 ± 0.7 (dH rescue), P < 0.001; Fig. 6h), but it did not 

improve local strategy deployment (average block length for strategy 4 = 0.54 ± 0.1, n.s.; 

Fig. 6g,h) or the correlation between single-trial and mean latencies (Supplementary Fig. 6). 

These results suggest that dH is required specifically to establish a spatial map of the task 

during late phases of water maze learning and that learning processes involving vH or dH 

may be recruited independently of each other during a hippocampal spatial task. 

 

 

 

Figure 6: Function of dH in water maze learning. 

(a,b) Population-level analysis of latencies (a) and strategies (b) in mice with complete or partial excitotoxic lesions of dH 

versus controls. (c) Strategy-block lengths in dH-lesioned mice, as described in Figure 1f. (d) Variability of individual trials 

during maze learning in dH-lesioned mice (complete lesions). Latency versus latency variance is plotted for three individual 

mice. (e) Absence of fine-scale spatial learning (reference memory) in dH-lesioned mice (complete and partial lesions). 

Analysis in a–h as described in Figure 4a–h. n = 8 mice each (a–e). (f–h) Learning with FFI growth restricted to dH. There is 

specific rescue of late learning phase in Add2−/− mice upon reintroduction of β-adducin into granule cells of dH. Population and 

individual mouse analysis as described in a–c. n = 12 mice; Ctrl, control; WT, wild type. Error bars, s.e.m.; *P < 0.05, **P < 

0.01. 
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vH-dependent maze learning, independent of dH 

 

To investigate whether maze learning involving vH can occur in the absence of a 

requirement for dH, we modified the water maze task so that it would not require fine-scale 

spatial learning. We reasoned that if the area of the hidden platform were larger, mice would 

no longer need to systematically apply spatial search strategies to effectively locate it. 

Indeed, when the standard platform area (A) was doubled from 78.5 cm2 (corresponding to 

10 cm in diameter) to 157 cm2 (14 cm diameter, in a pool of diameter 140 cm), mice learned 

the task more rapidly (day 2 latency = 38.9 ± 4.6 s (A) and 23.8 ± 2.1 s (2A), P < 0.001; Fig. 

7a). Mice also showed directed search and direct swim on the fourth trial throughout the 

training process (that is, they took ‘shortcuts’), but they did not show a consistent increase in 

the application of spatial search strategies during the second half of the training procedure 

(Fig. 7b,c). In what is probably a reflection of less challenging learning conditions and the 

successful application of ‘shortcuts’, the analysis of individual mice revealed a reduced 

deployment of habits (Supplementary Fig. 1 and Fig. 7c). Notably, although vH FFI growth 

was indistinguishable between the two platform areas (day 3 filopodia/LMT = 5.94 ± 0.7 (A) 

and 6.1 ± 0.8 (2A), n.s.), mice developed no reference memory of the platform quadrant (day 

9 average target quadrant occupancy = 49.8 ± 4% (A) and 28.3 ± 2% (2A), P < 0.01) and did 

not learn to head directly for the platform between day 7 and day 9 of training. Further, mice 

did not show an increase in dH filopodia/LMT under 2A platform conditions (filopodia/LMT 

=1.7 ± 0.1 (swim control), 2.88 ± 0.2 (A, day 9) and 1.74 ± 0.1 (2A, day 9), n.s.; Fig. 7d). iH 

filopodia/LMT also did not increase under 2A platform conditions (at day 9; data not shown). 

Consistent with the notion that dH is not required for mice to learn to navigate a maze with a 

2A platform, learning curves and strategy progressions were indistinguishable between mice 

with complete dH lesions and controls under 2A conditions (day 2 latency = 22.5 ± 2.1 

(control) and 20.8 ± 1.8 (dH lesions), n.s.; Fig. 7a,b). 
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Figure 7: vH-dependent maze learning, independent of dH. 

(a–c) Analysis of maze learning, as in Figure 4a–c, with platforms of area A and 2A. The 

schematic in a is to scale. n = 15 (2A, A and control) and 8 (2A, dH lesion) mice. (d) 

Absence of FFI growth in dH, but not vH, and corresponding absence of spatial learning 

(reference memory, heading angle) in mice navigating a maze with a 2A platform. Ctrl, 

swim control. n = 15 mice; fil, filopodia. Error bars, s.e.m.; *P < 0.05, ***P < 0.001. 
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4.2.4 Discussion 

 

Our detailed behavioral analysis of how individual mice learn to navigate a water maze—a 

biologically relevant task—combined with the analysis and local manipulation of its specific 

anatomical counterparts in the hippocampus, provides insights into the mechanisms of 

complex trial-and-error learning. We provide evidence that maze navigation involves a 

stereotyped sequence of subtasks that involve learning at distinct hippocampal subdivisions. 

The connectivity and functions of hippocampal subdivisions may thus influence how the 

individuals of a species address declarative trial-and-error tasks involving the hippocampus. 

Our results further reveal that vH is crucial early in goal-oriented learning and searching, and 

they thus assign a key function to vH (anterior hippocampus in humans) in complex 

behavioral learning. Our longitudinal analysis of water maze learning has revealed the 

presence of a structured learning process throughout the training procedure, as indicated by 

the sequential roles of vH, iH and dH during maze learning and the sequential deployment of 

increasingly sophisticated spatial search habits (Supplementary Fig. 8). The mechanisms 

linking successful subtask learning to FFI growth at hippocampal subdivisions remain to be 

determined and may differ among individual networks. For example, vH switches appear to 

occur abruptly, whereas incremental FFI growth at iH and dH during maze learning may be 

coupled to gradual error-function mechanisms3,30. In a possibly related issue, the 

mechanisms underlying strategy selection and the establishment of search habits3,5 also 

remain to be determined. Because basal ganglia systems have prominent roles in the 

adjustment of learning and habits to performance through dopamine-mediated reward 

systems3,5,30, it is tempting to speculate that the processes of strategy selection discovered 

in this study may involve cost-reward computations at striatal circuits. This possibility seems 

particularly plausible for learning involving vH, which has extensive connectivity with striatal 

circuitry15,21. 

Our study assigns a key function to vH in the early stages of complex trial-and-error learning. 

We provide evidence that FFI growth at vH reflects previous behavioral learning of 

consistent task-specific goal-context relationships and supports deployment of local search 

habits during further learning and that an intact vH is crucial in supporting performance 

consistency throughout maze learning. These results tie in well with previous reports that 

‘simplified learning’, which consists of pre-training rats with a visible platform (a task 

involving learning in vH), accelerates subsequent maze learning and reduces its requirement 

for NMDA-mediated plasticity34,35. Previous studies have not assigned functions to vH in 
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hippocampus-dependent spatial learning. That may be owing to a predominant focus on the 

endpoint of complex hippocampus-dependent learning, which usually involves cognitive and 

highly spatial aspects depending on dH, and to the fact that most studies have not focused 

on how learning is achieved longitudinally by individual animals36. However, previous studies 

have provided evidence that vH lesions impair aversive learning and reduce anxiety15,37, and 

these findings are consistent with the notion that vH has a crucial function in relating 

reinforcers to context in learning. The strong direct connectivity of vH with body state and 

emotional and reward systems15 might underlie its early function in goal-oriented learning 

and searching. Although it is possible that all hippocampal subdivisions participate in the 

learning process from its onset, vH might be more directly tuned to the detection and 

consolidation of consistent associations between goal and local task-specific features. 

According to this hypothesis, subsequent support of increasingly spatial and cognitive 

networks involving first iH and then dH might involve indirect connectivity of iH and dH with 

ventral reward-linked networks—for example, via thalamic nuclei and/or peri-postrhinal 

cortices15. Whether and how the specific connectivities of hippocampal subdivisions underlie 

their hierarchical recruitment during goal-oriented, trial-and-error learning remain to be 

determined, however. Our results provide evidence that vH acts in maze learning up to day 

6, and they suggest a partially overlapping and later function for iH. The function of iH is 

poorly understood, but it can mediate rapid place learning33 and has been suggested to 

integrate ventral and dorsal functions in hippocampus-dependent behavioral learning15,33. 

One possibility consistent with our findings is that FFI growth at vH on day 3 is important to 

support place learning mediated by iH between days 3 and 6 (Supplementary Fig. 8). 

The assignment to vH of a crucial function in early goal-oriented learning has implications for 

future research. Thus, efficient goal-oriented learning and searching and rapid mastering of 

intermediate goals are likely to be key determinants of success in realistic biological settings. 

Furthermore, the linkage of emotional processes to declarative learning through vH may 

affect behavioral learning in emotionally complex settings, including social interactions. 

Accordingly, it will be of interest to determine how vH influences the learning of emotionally 

complex tasks under healthy and pathologic conditions. 
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4.2.5 Supplementary Materials 
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4.2.6 Materials and methods 

 

Reagents and anatomical procedures. 

 

Add2−/− mice32 were from Jackson Laboratories, Bar Harbor, Maine; the reporter line Thy1-

mGFP(Lsi1) was as described38. The GFP-β-adducin construct was cloned into a lentivirus 

vector, and dentate gyrus infections were done as described9. We analyzed structural traces 

of learning at GFP-positive LMTs of ventral and dorsal hippocampus (CA3b) using the 

'sparse' transgenic reporter line Thy1-mGFP(Lsi1)22. In parallel, the main findings were 

confirmed in mice in which we labeled mossy fibers randomly using a lentivirus expressing 

membrane-targeted GFP (mGFP)22. On the basis of boundaries identified by previous gene-

expression studies14, 17, we defined subdivisions along the dorsoventral axis of the 

hippocampus as follows: dorsal, within 20–30% of total length; intermediate, within 45–55%; 

ventral, within 70–80%. 

 

Behavioral procedures and their analysis. 

 

Mice were kept in temperature-controlled rooms on a constant 12-h light-dark cycle, and all 

experiments were conducted at approximately the same time of the light cycle. Before the 

behavioral experiment, mice were housed individually for 3–4 d and provided with food and 

water ad libitum unless otherwise stated. All animal procedures were approved and 

performed in accordance with the Veterinary Department of the Canton Basel-Stadt. 

All behavioral experiments were carried out with male mice that were 55–65 d old at the 

onset of the experiment and were performed according to standard procedures22, 23. 

The Morris water maze consisted of a circular (diameter: 140 cm) pool filled with opaque 

water at 24 °C. The circular escape platform (10 cm in diameter) was positioned at a fixed 

position 0.5 cm above (visible) or 0.5 cm below the water (hidden). Training involved four 60-

s trials separated by 5-min intervals every day. For each trial, mice were placed at random 

starting locations in the pool facing the pool wall. At the end of each trial, mice were allowed 

to sit on the platform for 15 s; when trials were unsuccessful, mice were manually guided to 

the platform. Latencies and reference memories were determined as described. Heading 
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angles were determined using the starting position of the mouse, a line connecting that 

position to the platform and a second line connecting the start position to the position of the 

mouse after swimming 18 cm. We selected this distance to exclude variations due to initial 

rotations away from the pool wall. 

We collected and analyzed data from training sessions and probe trials using Viewer2 

Software (Biobserve, Bonn, Germany). The software Viewer III (Biobserve) was used to 

sample animal positions during Morris water maze trials. Search strategies were as defined 

in previous studies25, 27. For quantitative identification of search strategies, we developed 

an algorithm in collaboration with Biobserve. We corrected all swimming trajectories to 

compensate for errors owing to incorrect object detection during the first 1.5 ± 1 s of tracking 

(for example, water movement caused by immersion of the mouse close to the border or 

experimenter's hand). We further corrected tracking to start subsequent to a 90° turn (away 

from the wall) around the center of a 5-cm radius defining the immersion point (center of 

gravity of the mouse body). Chaining annulus and direct-swimming corridor were adjusted 

accordingly, and prevailing strategies were then assigned automatically by the software's 

algorithm. Search strategies were defined as follows27: thigmotaxis: >35% of swim time (60 

s) within closer wall zone (5 cm from pool wall) and >65% of time within wider wall zone (10 

cm from pool wall); random search: >70% surface coverage; scanning: <70% surface 

coverage and >15% surface coverage <0.7 s.d. distance to the pool center; chaining: >65% 

of time within annulus zone; directed search: >80% of time in goal corridor (rectangular goal 

corridor 20 cm wide, centered along direct connection between start and platform positions); 

focal search: <0.35 s.e.m. body angle, <0.25 s.d. mean distance to present goal; direct 

swim: 100% in goal corridor. When we used these definitions and the algorithm in 

combination with the adjustments described above, only <3% of the trials could not be 

assigned univocally to one strategy. Strategy blocks were defined as a sequence of at least 

three trials with the same strategy (or two trials for blocks of strategies 5 and 6). For block 

lengths, one-trial interruptions were tolerated but not counted (for example, a 2225223422 

sequence was scored as a block length of 5 for strategy 2). Total block lengths were the sum 

of all blocks for one strategy and one mouse. For strategy/latency deviation values, mean 

latencies within days 1–2, days 3–6 and days 7–9 for a particular condition or genotype were 

subtracted from corresponding single-trial latencies when the strategies of those trials 

deviated from those of a sequence of at least two trials involving the same strategy by at 

least two strategy levels (for example, latency of the fourth trial in the sequence 222422). 

Statistical analyses were performed using Student's t-tests and one-way ANOVA; P < 0.05 in 

post hoc comparisons. Results are presented as mean ± s.e.m. 
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For fear-conditioning experiments, the conditioning chamber was cleaned with 2% acetic 

acid before and after each session. Once placed inside the training chamber, mice were 

allowed to explore the apparatus for 2.5 min, and then they received a series of five 

footshocks (1 s and 0.8 mA each, inter-trial interval of 30 s). Control mice were subjected to 

the same procedure without receiving footshocks. We assessed contextual fear memory by 

returning mice to the training chamber 24 h after fear conditioning during a test period of 2.5 

min. Freezing was defined as the complete absence of somatic mobility other than 

respiratory movements. Fear conditioning in the dark involved the same procedure but with 

all lights switched off. Recall 24 h after conditioning was in the following training context: in 

the presence of odor A (2% acetic acid) or B (0.25% benzaldehyde) and on a shock floor or 

plastic floor. 

For novel-object recognition experiments, mice were first habituated to the testing arena for 

10 min. On the next day, each animal was allowed to explore two identical objects placed in 

the arena for 10 min. Twenty-four hours later, mice explored the same arena for 5 min, with 

one of the familiar objects replaced by a novel object. Recognition memory was expressed 

by the discrimination index (D), which was defined as D = (T(novel) − T(familiar)) / (T(novel) 

+ T(familiar)). 

For the reinforced-learning version of the object recognition task and its controls, we fed all 

mice sufficiently only after each training session to maintain their body weight at 85% of their 

initial weight. Wheat flakes (three to five flakes; 100–120 mg in total) were placed as a 

reward on top of the familiar object (a cube of ~4 cm in height with an inserted cylinder of an 

additional 3 cm in height; reward flakes were placed on top of the cube and the cylinder). To 

habituate mice to the reward, we placed two to three wheat flakes in the home cages after 

each habituation and training session. For all object recognition task protocols, we cleaned 

the testing arena with 70% ethanol after each mouse on each day. 

 

 

Drug delivery and stereotactic surgery in vivo. 

 

SCH23390 (Tocris Bioscience) was dissolved in saline 0.9% and injected i.p. at a doses of 

0.05 mg/kg 20 min before water maze training at day 1 (habituation) and throughout the 

training. Coordinates for lentiviral injections into mouse dentate gyrus were (in mm from 

Bregma): 1.70 posterior, 1.10 lateral, 1.70 down (dorsal hippocampus); 3.16 posterior, –2.5 
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lateral, 2.10 down (ventral hippocampus). The lentivirus for β-adducin rescue was as 

described9. Add2−/− mice were trained 5 weeks after injection of eGFP–β-adducin 

lentivirus. For hippocampal subdivision lesions, ibotenic acid (Ascent Scientific) was 

dissolved in PBS to a final concentration of 10 mg/ml, and injections of 50 nl were made at 

two or three sites. Injections coordinates were (in mm from Bregma): 3.08 posterior; 2.7 

lateral; 3.2, 3.4 and 3.6 down (vH lesion); 2.3 posterior; 2.3 lateral: 1.3, 1.5 and 1.7 down (iH 

lesion); 1.58 posterior; 1.25 lateral; 1.3 and 1.6 down (dH lesion, complete). Upon injection, 

mice were given 7 d recovery before training. 

 

Immunocytochemistry and histology. 

 

Antibodies were as follows: rabbit antibody to GFP (Molecular Probes, Eugene, OR, USA), 

1:1,000; rabbit antibody to c-Fos (Santa Cruz; sc-253), 1:10,000; mouse antibody to NeuN 

(Chemicon; MAB377), 1:200. Secondary antibodies were Alexa Fluor 568 (Molecular 

Probes; A10037 or 488 (Molecular Probes; A11008); 1:500. 

 

Morris water maze, c-Fos expression. 

 

Mice performed a single probe trial 24 h after the final training session and were returned to 

their home cage for 90 min before perfusion (transcardially with 4% PFA in PBS, pH 7.4). 

Brains were kept in fixation solution overnight at 4 °C. Hippocampi were dissected, 

embedded in 3% agarose gel and sliced transversally on a tissue chopper (McIlwain) to yield 

lamellar hippocampal sections of 100-μm thickness. c-Fos immunocytochemistry was 

performed and analyzed as described21. 

Imaging and image analysis. 

 

For high-resolution imaging of LMTs in fixed tissue, we imaged lamellar sections on an 

upright spinning-disk microscope using an alpha Plan-Apochromat ×100/1.45 oil-immersion 

objective (Zeiss) and Metamorph 7.7.2 acquisition software (Molecular Devices, Sunnyvale, 

CA, USA). Voxel size was 0.106 μm × 0.106 μm × 0.2 μm. For c-Fos analysis, we processed 

all samples belonging to the same experimental set in parallel and acquired them with the 
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same settings on an LSM700 confocal microscope (Zeiss) using an EC Plan-Neofluar 

×40/1.3 oil-immersion objective (Zeiss). We used transverse hippocampal sections at 

different dorsoventral levels (dorsal, intermediate and ventral hippocampus) for the analysis 

of LMT morphology and filopodial contents in CA3b. We analyzed 80–100 LMTs per animal 

and region; this involved three to four confocal stacks per section along CA3b and an 

average of three to four sections. We analyzed all objects that were completely included in 

the three-dimensional stack blind to experimental conditions. We analyzed high-resolution 

three-dimensional confocal stacks using Imaris 7.0.0 (Bitplane AG) software 
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4.3.1 Summary 

 

The extent to which individual neurons are interconnected selectively within brain circuits is 

an unresolved problem in neuroscience. Neurons can be organized into preferentially 

interconnected microcircuits, but whether this reflects genetically defined subpopulations is 

unclear. We found that the principal neurons in the main subdivisions of the hippocampus 

consist of distinct subpopulations that are generated during distinct time windows and that 

interconnect selectively across subdivisions. 

In two mouse lines in which transgene expression was driven by the neuron-specific Thy1 

promoter, transgene expression allowed us to visualize distinct populations of principal 

neurons with unique and matched patterns of gene expression, shared distinct neurogenesis 

and synaptogenesis time windows, and selective connectivity at dentate gyrus-CA3 and 

CA3-CA1 synapses. Matched subpopulation marker genes and neuronal subtype markers 

mapped near clusters of olfactory receptor genes. 

The nonoverlapping matched timings of synaptogenesis accounted for the selective 

connectivities of these neurons in CA3. Therefore, the hippocampus contains parallel 

connectivity channels assembled from distinct principal neuron subpopulations through 

matched schedules of synaptogenesis. 

 

 

 

 

 

 

 

 

 

 



144 
 

4.3.2 Introduction 

 

Brain circuits show selective connectivities1–7 that might structure information processing, but 

the extent to which defined subpopulations of neurons are interconnected selectively and the 

underlying mechanisms of selective connectivity are unclear1. The investigation of 

microcircuits poses unique technical challenges owing to the vast numbers of neurons and 

synapses in the central neuropil1,2,6. However, transgenic mouse lines based on a modified 

mouse Thy1.2 promoter cassette produce stable transgene expression that is restricted to 

subgroups of neurons in the adult8. In ‘sparse’ Thy1 lines, high-level transgene expression in 

few neurons within several neuronal populations has been exploited to trace and image 

neuronal processes and their synaptic connections at high resolution9,10. Notably, although 

the lines show clear variegation (that is, unpredictable variations in the numbers of 

transgene-expressing neurons among individuals of the same mouse line), the distribution of 

labeled cells in these Thy1 lines is not entirely random. For example, in three different 

sparse lines, transgene expression among retinal amacrine cells is restricted to very few 

defined subtypes11. Sparse Thy1 lines may therefore provide suitable tools for investigating 

whether defined subpopulations of neurons establish selective synaptic connections. 

The hippocampus is a cortical structure that has a central role in producing relational 

episodic representations from ongoing sensory information, to support learning and 

memory12. How the intrinsic structure of hippocampal circuits shapes information processing 

is poorly understood. The main tri-neuronal feedforward circuit in the hippocampus, which 

relays information from granule cells in the dentate gyrus to pyramidal neurons in CA3 and 

then pyramidal neurons in CA1, provides an attractive system in which to investigate the 

idea that subpopulations of neurons are selectively interconnected12. There is a wealth of 

anatomical and functional information about hippocampal circuits12–15, and the principal 

neurons of the hippocampal subdivisions show prominent transgene expression in sparse 

Thy1 lines10,12. In the hippocampus, anatomically distinct gene expression domains have 

been detected within the principal neuron populations13,14, but no subpopulations or 

microcircuits of principal neurons have been described. 

A modified expression cassette based on the mouse Thy1.2 promoter drives transgene 

expression in neurons, and independent transgenic lines can show expression in different 

subpopulations of neurons, or even in very few neurons (sparse Thy1 lines)10,12. Here we 

used the two sparse Thy1 reporter lines (Lsi1 and Lsi2), which overexpress membrane-

targeted GFP (mGFP) in few neurons10,16, and whose granule cells show distinct structural 
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plasticity in the stratum lucidum17, to investigate the possible existence and connectivity of 

principal neuron subpopulations in the hippocampus. The two lines revealed two distinct 

subpopulations of principal neurons in each hippocampal subdivision. During hippocampal 

neurogenesis, the subpopulations were generated during distinct but partially overlapping 

early time windows. These temporal distinctions were even more pronounced during 

hippocampal circuit assembly, when Lsi1 neurons matured and established synapses ahead 

of Lsi2 neurons, and both preceded synaptogenesis by most principal neurons. The distinct 

schedules of synaptogenesis accounted for selective connectivity between Lsi1 (or Lsi2) 

dentate gyrus granule cells and Lsi1 (or Lsi2) pyramidal neurons in the stratum lucidum of 

CA3. Our results provide evidence that there are matched subpopulations of selectively 

interconnected principal neurons in the hippocampus, and suggest that temporal schemes of 

neuronal specification and synaptogenesis underlie the assembly of microcircuits in the 

hippocampus. 
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4.3.3 Results 

 

Molecularly distinct principal neuron subpopulations 

 

To investigate the possibility that mGFP-positive neurons in Lsi1 and Lsi2 reporter mice 

represent subpopulations of principal neurons in the hippocampus, we analyzed their 

transcriptomes in the adult and their appearance during hippocampal neurogenesis and 

development. We compared these properties of Lsi1 and Lsi2 neurons with those of a 

random population of principal neurons in dentate gyrus, CA3 and CA1 (Lmu1 mice; 

Supplementary Fig. 1). 

We first analyzed patterns of gene expression in transgene-positive hippocampal granule 

cells from adult Lsi1 and Lsi2 mice. We collected 40–50 mGFP-positive cells individually 

from three defined hippocampal positions using laser-dissection microscopy, and then 

analyzed them as pools on Affymetrix chips18 (Fig. 1a). We repeated the procedure for three 

Lsi1 and three Lsi2 mice at 2, 4, 8 and 16 weeks of age (Fig. 1a). For comparison, we 

collected similar sets of granule cells from three Lmu1 Thy1 mice, which express mGFP 

broadly in the dentate gyrus10 (Fig. 1a). When compared to average values, Lsi1 and Lsi2 

granule cells each contained 150–250 genes that were either upregulated or downregulated 

at least twofold at 16 weeks (P < 0.05; Fig. 1a,b and Supplementary Fig. 2). The ranges 

within which the fractions of transgene-expressing granule cells over total numbers of 

granule cells varied in individual transgenic mice were 3–20% (Lsi1) and 1–15% (Lsi2; n = 

50 mice each), but gene enrichment values over average granule cells were closely 

comparable in granule cells from mice with different frequencies of transgene-positive 

neurons (Fig. 1b), suggesting that the fractions of Lsi1 and Lsi2 granule cells in dentate 

gyrus might be at least 20% and 15%, respectively, and that the subpopulations may be 

homogeneous. 

Transgene-positive hippocampal CA3 and CA1 pyramidal neurons in Lsi1 and Lsi2 mice 

also showed unique gene expression patterns (Fig. 1c and Supplementary Fig. 3). As for 

granule cells, the subpopulation patterns of gene expression were independent of the 

frequencies of transgene-expressing cells in individual mice (Fig. 1c). To carry out a non-

biased subpopulation test based on gene expression profiles, we took a group of 492 genes, 

consisting of 100 genes with the highest deviations from average values at 16 weeks in 

either Lsi1 or Lsi2 granule cells, CA3 pyramidal neurons or CA1 pyramidal neurons (total of 
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600 genes, minus 108 overlaps), and used the genes to analyze the combined gene profiling 

databases including four different postnatal ages (2, 4, 8 and 16 weeks), thereby generating 

hierarchical trees of cell-type relatedness (that is, determining which cell type, genotype or 

age samples were most related to each other). With the exception of the 2-week samples, in 

which developmental aspects were predominant, this unbiased in silico test for relatedness 

consistently separated Lsi1 and Lsi2 principal neurons from average populations, 

irrespective of age (Fig. 1d). 
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Figure 1: Distinct transcriptomes of Lsi1 and Lsi2 hippocampal principal neurons. 

(a) Transcriptome analysis of Lsi1 and Lsi2 granule cells. Left, reproducibility of microarray analysis. Middle, numbers of genes 

up- or downregulated compared to average (16 weeks data). Right, heat map for 30 differentially regulated genes at 4 ages; 

note independent clustering in Lsi1 and Lsi2 granule cells (GCs). Error bars, s.e.m. (b) Differentially expressed genes in Lsi1 

and Lsi2 granule cells. Left, columns are average values from three mice. Right, comparable gene expression profiles in 

granule cells from mice with many (15–20% of total) or few (2–5% of total) GFP-positive neurons; columns are values in one 

mouse each. (c) Transcriptomes of Lsi1 and Lsi2 pyramidal neurons. Details as in a and b. (d) In silico cell grouping. The 

unbiased hierarchical tree algorithm grouped cells according to subpopulations of granule cells, and pyramidal neurons in CA3 

and CA1. 
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Early subpopulation emergence during neurogenesis 

 

To determine whether Lsi1 and Lsi2 neurons reflect developmentally distinct subpopulations, 

we investigated their emergence during hippocampal development. In Lsi1 mice, we 

detected pairs and small groups of mGFP-positive radial glia in the hippocampal 

neuroepithelium at embryonic day 10.5 (E10.5), before precursor neurogenesis19–21 (Fig. 2a). 

Groups of mGFP-positive radial glia were arranged symmetrically along the left and right 

hippocampus primordia (Fig. 2a), in patterns that were comparable among different 

individuals (data not shown). In Lsi2 embryos, we also detected Nestin- and mGFP-positive 

radial glia at E10.5, although in smaller groups of cells (data not shown). We found 

increasing numbers of transgene-positive postmitotic neuroblasts along the hippocampal 

neuroepithelium in the two lines of transgenic mice from E11.5 on, suggesting that Lsi1 and 

Lsi2 granule cells, CA3 pyramidal neurons and CA1 pyramidal neurons20 were already 

present at this early age (Fig. 2a and Supplementary Fig. 4). Systematic spatial mapping of 

labeled cells in several embryos at the same developmental time revealed that mGFP-

positive cells were distributed according to specific, reproducible and distinct patterns in the 

two lines of transgenic mice (Fig. 2b). We also found comparable and distinct distributions of 

Lsi1 and Lsi2 neurons in the adult hippocampus (Supplementary Fig. 4). Time-lapse imaging 

of hippocampal explant cultures from Lsi1 embryos provided evidence that mGFP-positive 

postmitotic neuroblasts migrated and developed into granule cells (Supplementary Fig. 5). 

These results provide evidence that commitment to Lsi1 and Lsi2 subpopulation fates occurs 

early during hippocampal neurogenesis. 

To investigate the possibility that Lsi1 neurons reflect early principal neuron subpopulations 

that might be generated according to specific patterns during hippocampal neurogenesis, we 

compared the spatial arrangements of mGFP-positive cells with those of cells that 

incorporated EdU (a BrdU analog that can be visualized under non-denaturing conditions22). 

Between E11.5 and E12.5, spatial patterns of precursor neurogenesis (Tbr2+)23 and of 

mGFP-positive Lsi neurons were closely comparable (Fig. 2c). Zones of early neurogenesis 

at E11.5 (refs. 20,21; EdU+) corresponded to reproducible discrete territories that were 

depleted of Nestin+ and Ki67+ neuronal precursors and enriched in mGFP+ neuroblasts 2 d 

later, suggesting that early hippocampal neurogenesis proceeded according to non-random 

spatial patterns (Fig. 2c). Neurons that were labeled with BrdU between E11.5 and E12.5 co-

distributed with transgene-positive Lsi1 neurons in adult CA3, suggesting that Lsi1 neurons 

might represent the earliest principal neurons in the hippocampus (Supplementary Fig. 4). 
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Distinct and matched neurogenesis time windows 

 

To investigate the possibility that Lsi1 and Lsi2 principal neurons might be generated during 

defined and distinct temporal windows, we analyzed the temporal patterns of hippocampal 

neurogenesis in Lsi1 and Lsi2 mice. We injected transgenic mice with BrdU at defined times 

during embryonic development or soon after birth and analyzed hippocampal sections from 

Figure 2: Detection of Lsi1 and Lsi2 

precursors and neurons during 

hippocampal development. 

(a) Transgene expression during hippocampal 

neurogenesis. Expression in radial glia cells (left) and 

neuroblast groups (right). Some of the GFP+ neuroblasts 

are Nestin+ (right, arrow). HN, hippocampal 

neuroepithelium. (b) Spatial distribution of GFP+ 

neuroblasts in hippocampal neuroepithelium of Lsi1 and 

Lsi2 embryos at E11.5. The heat map (top) visualizes 

specific differences between Lsi1 and Lsi2 embryos at the 

same developmental age (see also Supplementary Fig. 12); 

the quantitative analysis (bottom) represents average values 

for three embryos each. (c) Specification of Lsi1 neuroblasts 

during hippocampal neurogenesis. At E11.5, GFP+ 

neuroblasts (arrows) co-distribute with regions of 

proliferating precursors (Tbr2+; top, right). At E13.5, GFP+ 

neuroblasts (white arrows) accumulate in defined Ki67-

depleted non-proliferating regions (n = 6) that had been 

labeled with EdU at E11.5 (arrow) and are now depleted of 

Nestin precursors (arrow). Scale bar, 50 μm. 
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1-month-old mice for BrdU labeling and mGFP signals24. We included in the analysis only 

cells that were strongly labeled with BrdU, which did not undergo further rounds of DNA 

replication and cell division subsequent to BrdU incorporation. Consistent with previous 

reports, the overall population of granule cells was generated during two broad rounds of 

neurogenesis, one peaking between E12 and E15 and the second peaking between P3 and 

P7 (refs. 19,25,26; Fig. 3a). Lsi1 granule cells showed narrower windows of neurogenesis, 

with peaks in the first 25% of each wave of granule cell neurogenesis (Fig. 3a). Lsi2 granule 

cells were produced about 2 d later than their Lsi1 counterparts but still within the first half of 

the embryonic and postnatal waves of neurogenesis (Fig. 3a). We found no Lsi1 or Lsi2 

granule cells among adult-born granule cells (0/240 doublecortin-positive granule cells in 3 

mice each at 4 months). 

 

Figure 3: Temporal windows of Lsi1 and Lsi2 neurogenesis during hippocampal 

development. 

(a) Lsi1 and Lsi2 granule cells are generated during early phases of neurogenesis. Top, BrdU labeling experiment; arrows, 

BrdU+ GFP+ granule cell (yellow), BrdU+ GFP− granule cell (red) and weakly BrdU+ granule cell (white). Bottom left, fractions 

of total GFP+ granule cells labeled with BrdU at different time intervals (avg., fractions of all granule cells labeled with BrdU). 

Averages from three mice each; values normalized to troughs between two neurogenesis peaks; vertical line, trough between 

early and late neurogenesis wave for average granule cells. Statistical analysis: comparisons between Lsi1 and Lsi2 values at 

individual ages; Mann Whitney test; **P < 0.001; ***P < 0.0001. Error bars, s.e.m. Bottom right, fractions of BrdU+ GFP+ 

neurons labeled at E12.5 are not affected by total numbers of  GFP+ granule cells. (b) Neurogenesis of Lsi1 and Lsi2 

hippocampal pyramidal neurons. Details as in a. Scale bar, 20 μm. 

Lsi1 CA3 and CA1 pyramidal neurons were also produced during the earliest phase of their 

corresponding neurogenesis processes (Fig. 3b). Lsi2 CA3 pyramidal neurons were 

produced during a defined early window of developmental time, slightly later than Lsi1 

neurons, whereas production of CA1 Lsi2 and Lsi1 pyramidal neurons overlapped more 
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extensively (Fig. 3b). Consistent with the notion that the Lsi1 and Lsi2 subpopulations are 

generated during the first half of hippocampal neurogenesis, we found no Nestin and mGFP 

double-positive precursors in the hippocampal neuroepithelium in Lsi1 or Lsi2 embryos at 

E13.5, when Nestin-positive precursors were still abundant (data not shown). When we 

compared different individuals from the same mouse line, we found that the total number of 

Lsi1 or Lsi2 mGFP-positive granule cells (or pyramidal neurons) did not affect the fraction of 

transgene-positive cells that was produced during any neurogenesis interval (Fig. 3a,b), 

suggesting that variegation effects influenced only the probability of mGFP expression within 

defined subpopulations of granule cells. Therefore, Lsi1 and Lsi2 principal neurons are 

generated during partially overlapping but distinct early temporal windows of embryonic 

development, and the relative positions of these temporal windows are comparable for the 

dentate gyrus, CA3 and CA1. 

 

Shared subpopulation gene expression patterns 

 

To determine whether Lsi1 and Lsi2 principal neurons in the dentate gyrus, CA3 and CA1 

share gene expression signatures, we compared the transcripts that were specifically 

regulated in Lsi1 and Lsi2 principal neurons in the main hippocampal subdivisions. A small 

group of unique transcripts was shared among granule cells in the dentate gyrus and among 

pyramidal neurons in CA3 and CA1 of the same line (Fig. 4a). These included a 3′ UTR 

splicing variant of syntaxin 3 (STX3(3′), excluded from Lsi2 neurons, enriched in Lsi1 

neurons), and a 3′ UTR sequence of the gene for ribosomal protein S9 (RPS9(3′), excluded 

from Lsi1 neurons, enriched in Lsi2 neurons) (Fig. 4a). Double in situ hybridization of 

hippocampal sections confirmed these relationships at the level of individual neurons, 

suggesting that Lsi1 and Lsi2 subpopulations are homogeneous with respect to the 

expression of subsets of genes (Fig. 4b). In further support of the notion that the 

subpopulations show matched properties across hippocampal subdivisions, we found that 

shared genes were upregulated or downregulated to similar extents when compared with 

average expression in principal neurons in the dentate gyrus, CA3 and CA1 (Fig. 4c). For 

clarity, we will designate the entire subpopulation of potentially Lsi1- or Lsi2-positive 

hippocampal principal neurons as HP(Su1) and HP(Su2) neurons, respectively. HP(Su1) 

neurons are thus STX3(3′)+S9(3′)−, whereas HP(Su2) neurons are STX3(3′)−S9(3′)+. 

To investigate what might underlie the visualization of hippocampal principal neuron 

subpopulations in sparse Thy1-mGFP transgenic mice, we identified the insertion sites of the 
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transgenes in these mice. Thy1-mGFP transgene copies had inserted at a single locus, near 

the centromere on chromosome 16 in Lsi1 mice, and near the centromere on chromosome 

19 in Lsi2 mice (Supplementary Fig. 6). Those chromosomal insertion sites are close to 

olfactory receptor gene clusters27 (less than 15 million base pairs (MB) from centromeric 

edge; Supplementary Fig. 6). A further sparse Thy1 line (Lsi3; ref. 17) also showed 

transgene insertion near an olfactory receptor gene cluster (on chromosome 10; data not 

shown). By contrast, the single transgene insertion site in Lmu1 mice was located on 

chromosome 2, neither near a centromere nor near an olfactory receptor gene cluster 

(Supplementary Fig. 6). A survey of published neuronal subtype marker genes revealed that 

these have a high probability of mapping near olfactory receptor gene cluster sites28,29 

(about 50% probability to map within 1 MB of an olfactory receptor gene cluster; Fig. 4d and 

Supplementary Fig. 7). When we picked 400 genes randomly among those expressed in all 

granule cells, only 4.8% of the genes mapped within 1 MB of an olfactory receptor gene 

cluster (Fig. 4d). By contrast, when we considered only genes that were upregulated or 

downregulated in all HP(Su1) or HP(Su2) neurons (in the dentate gyrus, CA3 and CA1), 

52% of them mapped within 1 MB of an olfactory receptor gene cluster (Fig. 4d). Genes that 

were specifically regulated in HP(Su1) or HP(Su2) principal neurons therefore shared with 

neuronal subtype marker genes a high probability of mapping near olfactory receptor gene 

clusters. 
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Figure 4: Transcripts shared among Lsi1 or Lsi2 subpopulations in dentate gyrus, 

CA3 and CA1. 

(a) Examples of transcripts co-regulated in Lsi1 or Lsi2 principal neurons in dentate gyrus (DG), CA3 and CA1. Error bars, 

s.e.m. (b) Marker combinations identifying Lsi1 and Lsi2 principal neurons in the hippocampus. Combined GFP-in situ 

hybridization detection. Arrows, GFP+ marker+ (yellow) and GFP+ marker− (green). Quantitative analyses: data from eight 

sections each, covering all anterior-posterior levels of hippocampus; n = 3 mice each. (c) Genes that are up- or downregulated 

in all three types of Lsi1 hippocampal principal neurons are closely co-regulated in granule cells, and in pyramidal neurons in 

CA3 and CA1. Each line represents one gene and its deviation from average values. (d) High probability that subtype-specific 

genes map near olfactory receptor (OR) gene clusters. Left: relationship between subtype markers and olfactory receptor gene 

cluster vicinity. Random: 400 random genes in average granule cells; Maturation: genes enriched in Lsi1 (16 w) over Lsi1 (8 w) 

granule cells; HP(Su1), HP(Su2): genes selectively regulated in all Lsi1 or Lsi2 principal neurons. Right: optimization of OR 

vicinity for genes up- (4–5 fold) or downregulated (>5 fold) in Lsi1 or Lsi2 principal neurons. 

 

Matched distinct temporal patterns of synaptogenesis 

 

To investigate how the HP(Su1) and HP(Su2) subpopulations of principal neurons insert into 

hippocampal circuits, we analyzed the dendrites and axons of mGFP-expressing neurons 



155 
 

between postnatal days 5 and 10 (P5 and P10), during the early phases of adult 

hippocampal synaptogenesis30. A comparison of Lsi1 and Lsi2 CA3 pyramidal neurons 

suggested that the development of Lsi1 neurons anticipated that of Lsi2 neurons by 2–4 d 

(Fig. 5a). Lsi1 and Lsi2 pyramidal neurons were each locally homogeneous with respect to 

maturation in CA3 or CA1, and showed no overlap in maturation or spinogenesis between 

P5 and P10 (Fig. 5a). Consistent with these marked temporal differences in hippocampal 

circuit assembly, the developmental markers31 Doublecortin and Sema3C were 

downregulated in Lsi1 granule cells before Lsi2 granule cells, and both subpopulations 

matured before the average of all granule cells (Fig. 5b). Lsi1 mossy fibers established large 

mossy fiber terminals in stratum lucidum between P5 and P7, where these frequently 

contacted Lsi1 pyramidal neurons from P7 on (Fig. 5c). By contrast, we found no mossy fiber 

terminals along Lsi2 mossy fibers at P7; at P10, the terminals were rare and small, but they 

often contacted Lsi2 pyramidal neurons (Fig. 5c). In parallel to a delay in mossy fiber 

synaptogenesis, dendritic development in Lsi2 granule cells lagged by 3–4 d behind that in 

Lsi1 granule cells at all positions along the blades30 (Fig. 5c). We found comparable distinct 

timings, rates and patterns of presynaptic maturation between Lsi1 and Lsi2 mossy fibers in 

organotypic slice cultures (Supplementary Fig. 8). 

To provide independent evidence for the presence of hippocampal principal neuron 

subpopulations that differ in the timing of their synaptic maturation, we analyzed transgene-

positive CA3 pyramidal neurons and mossy fibers in Lmu1 mice, where mGFP is expressed 

in most granule cells and in about half of the pyramidal neurons (Supplementary Fig. 1). At 

P7, the analysis revealed the expected presence of subpopulations of mossy fibers and CA3 

pyramidal neurons maturing in patterns comparable to those of HP(Su1) and HP(Su2) 

neurons, and that of additional transgene-positive neurons maturing after these early 

subpopulations of principal neurons (Fig. 5d). Together, these results provided evidence that 

HP(Su1) and HP(Su2) neurons insert into hippocampal circuits during distinct and matched 

temporal windows, suggesting that this might result in the formation of synapses 

preferentially among neurons of the same subpopulation. 
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Figure 5: Distinct and matched synaptogenesis schedules by Lsi1 and Lsi2 

subpopulations. 

(a) Nonoverlapping dendritic maturation and synaptogenesis processes in Lsi1 and Lsi2 pyramidal neurons in CA3 and CA1. 

Left and center, representative panels and camera lucidas. Mann Whitney test; Error bars, s.e.m. (b) Immature granule cell 

transcript contents in Lsi1, Lsi2 and average granule cells. Dcx, doublecortin. (c) Nonoverlapping dendritic maturation and 

synaptogenesis processes by Lsi1 and Lsi2 granule cells. Arrows, presence (yellow) or absence (green) of specific contacts 

between mossy fibers and pyramidal neurons. Scatter plot, presynaptic maturation index values. (d) Synaptogenesis subgroups 

in Lmu1 pyramidal neurons and mossy fibers at P7. Panel and camera lucida: representative examples of labeled dendrites 

(panel, stratum radiatum) and mossy fibers (lucida). Scale bar, 10 μm. *P < 0.05, **P < 0.01, ***P < 0.001. 
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Selective connectivity between DG and CA3 

 

To determine whether matched HP(Su1) (or HP(Su2)) principal neurons within 

interconnected hippocampal subdivisions make synaptic contacts selectively with one 

another, we analyzed contacts between presynaptic mGFP-positive Lsi1 (or Lsi2) mossy 

fiber terminals and postsynaptic CA3 pyramidal neurons in adult mice. We considered as 

putative contact sites only events in which the distance between mossy fiber terminals (>3 

μm diameter) and pyramidal neuron dendrites was smaller than 0.2 μm. For more than 70% 

of these putative synaptic contacts, we determined whether mGFP-Bassoon accumulation 

sites (presynaptic) were apposed to mGFP-Pi-GluR1 puncta (postsynaptic; Fig. 6a) and 

validated the majority of those putative functional synapses (48/50) by this procedure16. 

Owing to the low connectivity between granule cells and pyramidal neurons in dorsal 

hippocampus12, the likelihood of finding such synaptic contacts by chance is extremely low. 

Nevertheless, a systematic analysis of 100 × 100 × 55-μm volumes yielded frequent contact 

sites between mGFP-positive cells (Fig. 6a). A statistical analysis based on binomial 

distributions (probability that contacts are chance events: f(k; n; p) = (n!/k!(n−k)!) pk(1−p)n−k, 

where k is the number of connections found, n is (number of mGFP+ mossy fibers) × 

(average number of mGFP+ pyramidal neurons) and p is the probability for each contact), 

revealed that the likelihood that these frequencies were chance events was 10−5 or less for 

both dorsal and ventral hippocampus (Fig. 6a). We found comparable selective contacts 

between mGFP-positive granule cells and CA3 pyramidal neurons for Lsi2 neurons (Fig. 6a). 

Additional experiments using BrdU labeling to visualize the birthdates of CA3 pyramidal 

neurons provided evidence that early born HP(Su1) mossy fibers had established synaptic 

connections with early born but not late-born pyramidal neurons in CA3 (Supplementary Fig. 

9). 

To verify the presence of synaptic contacts among HP(Su1) neurons in stratum lucidum, we 

also analyzed contacts between mGFP-positive pyramidal neurons in CA3 and mGFP-

positive mossy fibers by immuno-electron microscopy. The analysis confirmed the presence 

of synapses between immuno-labeled presynaptic mossy fiber terminals and postsynaptic 

thorny excrescences (Fig. 6b). In one set of experiments, 10 out of about 148 mossy fiber 

terminal profiles that contacted mGFP-positive pyramidal neuron dendrites in CA3b stratum 

lucidum (total of 30 mGFP-positive dendrites, from 3 mice) were mGFP-positive; given that 

about 2% of the granule cells were transgene-positive in these mice, this means that about 

65% of the mossy fiber terminals that contacted Lsi1 pyramidal neurons in CA3 belonged to 
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Lsi1 granule cells. For technical reasons, not all mGFP-expressing profiles could be labeled 

unambiguously in these experiments; the 65% figure is an underestimate. 

To provide independent evidence for selective connectivity between matched principal 

neuron subpopulations in stratum lucidum, we analyzed Lsi1 mice in which pyramidal 

neurons in CA3 were labeled randomly in adult animals using a rabies-mCherry virus (Fig. 

6c). We found that 20–22% of the randomly labeled CA3 pyramidal neurons closely 

resembled Lsi1 neurons (average distance of Lsi1 mossy fiber contacts 8.95 versus 8.18 

μm), whereas the remaining pyramidal neurons showed much less frequent contacts with 

Lsi1 mossy fiber terminals (average distance 49.23 μm; Fig. 6c). About 92% of the 40–42 

mossy fiber terminals on individual Lsi1 pyramidal neurons in CA3 were established by Lsi1 

granule cells, whereas 8% were not (Fig. 6c). Although the lower estimate from immuno-

electron microscopy (65%) probably reflected the presence of unlabeled axonal profiles in 

the electron microscopy samples, the two methods both strongly supported the notion that 

Lsi1-Lsi1 connectivity in stratum lucidum is much higher than chance. 

To further investigate the notion that selective connectivity between Lsi1 or Lsi2 principal 

neurons in dentate gyrus and CA3 is based on selective recognition processes between 

subpopulations of cells, we analyzed the connectivity of Lsi1 and Lsi2 neurons in a Reelin−/− 

background, where cell identities are preserved but cell layer organization in the 

hippocampal dentate gyrus and CA3 are strongly disrupted32. The positions of granule cells 

and CA3 pyramidal neurons and the trajectories of mGFP-positive mossy fibers were 

abnormal in the absence of Reelin, but the disruption of hippocampal layer organization did 

not affect the frequencies with which Lsi1 or Lsi2 mossy fibers and CA3 pyramidal neurons 

established synaptic connections with each other (Supplementary Fig. 10). 

 Figure 6: Selective connectivity between matched granule cells and CA3 pyramidal 

neuron subpopulations. 

(a) Light microscopic analysis of stratum lucidum mossy fiber synapses in Lsi1 mouse at 1 month. Left, overview, and higher 

magnification view with superimposed camera lucida; yellow arrows, verified contacts. Right, example of verified Lsi1 mossy 

fiber terminal-pyramidal neuron contact (yellow arrows). High-magnification panels, single confocal planes. Lower row, 

quantitative analysis of stratum lucidum synaptic contacts in Lsi1 and Lsi2 mice. Left, examples of synaptic contact analysis for 

six stratum lucidum volumes along CA3, including numbers of GFP+ mossy fibers, numbers of GFP+ pyramidal neurons, and 

numbers of contacts for each pyramidal neuron. Center, average numbers of Lsi1 (or Lsi2) mossy fiber terminals contacting 

Lsi1 (or Lsi2) CA3 pyramidal neurons. Normalized to 25 GFP-positive granule cells; 55 μm sections; n = 60 pyramidal neurons, 

from 3 mice each; random, expected values for random connectivity. Right, cumulative probability values that contacts are 

chance events for first 12 (100 × 100 × 55 μm) volumes in Lsi1 and Lsi2 mice (averages from 3 mice each). (b) Immuno-

electron microscopic analysis of Lsi1-Lsi1 synaptic contacts in CA3 stratum lucidum. Immunolabeled (yellow) and non-labeled 

(white) dendrites (dendr.) and large mossy fiber terminals (LMT) at increasing magnification (left to right); yellow arrows, labeled 

thorny excrescence profiles inside labeled LMTs. Right, example, with three-dimensional reconstruction of labeled pre- and 

postsynaptic elements.(c) Connectivity between randomly labeled CA3 pyramidal neurons and Lsi1 granule cells. Left, 
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examples of mCherry-labeled pyramidal neurons (red) and Lsi1 granule cells and pyramidal neurons in stratum lucidum. 

Center, average distance between Lsi1 mossy fiber synaptic contacts on Lsi1 or mCherry-labeled pyramidal neurons; 

percentages, fractions of Lsi1-like and non-Lsi1-like pyramidal neurons. Right, average numbers of contacts by Lsi1 mossy 

fiber terminals with Lsi1 or randomly labeled CA3 pyramidal neurons. Only low random: putative Lsi1 CA3 pyramidal neurons 

with high densities of Lsi1 contacts removed from the dataset. Average dendrite length in stratum lucidum, 184 μm. n = 60 

pyramidal neurons, from 3 mice each. Mann-Whitney test; **P < 0.01, ***P < 0.0001. Error bars, s.e.m. Scale bars, 1 (a,b), 10 

(c, left) and 2 (c, right) μm. 
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Selective connectivity between CA3 and CA1 

 

To determine whether HP(Su1) neurons were also interconnected selectively between CA3 

and CA1, we analyzed putative synaptic contacts between mGFP-positive Schaffer 

collaterals (the axons of CA3 pyramidal neurons) and mGFP-positive CA1 pyramidal 

neurons in stratum radiatum. We defined contact sites as distances of less than 0.2 μm 

(single confocal sections) and counted contacts as synaptic when they involved an axonal 

bouton (varicosity) of at least 1 μm diameter (Fig. 7a). 

In control experiments, more than 95% of the boutons accumulated the synaptic vesicle 

marker synaptophysin, and more than 85% were adjacent to Pi-GluR1 puncta (not shown). 

The analysis revealed that 89% of the contacts between Lsi1 Schaffer collaterals and Lsi1 

CA1 pyramidal neurons coincided with a bouton, whereas only 15% of the contacts between 

Lsi1 Schaffer collaterals and randomly labeled (rabies-mCherry virus) CA1 pyramidal 

neurons coincided with boutons (Fig. 7b). The difference between contacts with boutons 

among Lsi1-Lsi1 and Lsi1-random pairs was highly significant (P < 0.0001; Fig. 7b). By 

contrast, the distributions of all contact values (with and without bouton) were similar 

between Lsi1-Lsi1 and Lsi1-random pairs (Fig. 7b). Seven out of 62 randomly labeled CA1 

pyramidal neurons exhibited synaptic contact values well within the Lsi1/Lsi1 range, 

consistent with the notion that these reflected labeling of Lsi1 pyramidal neurons (Fig. 7b). 
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Figure 7: Selective connectivity between matched CA3 and CA1 pyramidal neuron 

subpopulations. 

(a) Examples of labeled CA3 axons (Schaffer collaterals; sc) and CA1 pyramidal neurons in stratum radiatum. Left, Lsi1 

Schaffer collateral contacting two Lsi1 CA1 pyramidal neurons. Right, examples of contacts with mCherry-labeled CA1 

pyramidal neuron (left) and Lsi1 CA1 pyramidal neuron. Arrows, contacts with (yellow) or without (green) boutons. (b) 

Quantitative analysis of Lsi1 connectivity in CA1 stratum radiatum. Left, schematic of how Lsi1 or randomly labeled CA1 

pyramidal neurons were analyzed in the same mice for contacts by Lsi1 Schaffer collaterals. Center, fraction of contacts with 

boutons for Lsi1-Lsi1 and for Lsi1-random CA3-CA1 pairs. n = 90 CA1 pyramidal neurons each, from 3 mice. Error bars, s.e.m. 

Right, contacts with boutons versus total numbers of contacts for individual Lsi1 and randomly labeled CA1 pyramidal neurons 

(individual green squares and red dots). Arrows, putative Lsi1 CA1 pyramidal neurons among randomly labeled sample. Gray 

line, values for 100% synaptic connectivity. CA3 Lsi1 axons contacted Lsi1 and randomly labeled pyramidal neurons with 

undistinguishable frequencies, but only Lsi1-Lsi1 pairs showed high frequencies of boutons. Scale bars, 25 μm (a, left), 2 μm 

(a, right). 

Temporal matching determines selective connectivity 

Finally, to determine whether it was synaptogenesis timing or subpopulation identity that 

influenced selective connectivity in stratum lucidum, we analyzed organotypic co-cultures of 

dentate gyrus and CA3 derived from mice of different genotypes and ages (Fig. 8a). These 

experiments allowed us to investigate how Lsi1 or Lsi2 subpopulations of granule cells 

established connections with matched or unmatched subpopulations of Lsi1 or Lsi2 CA3 

pyramidal neurons. 

We detected contacts between pyramidal neurons and mossy fibers with active zone 

markers and activated postsynaptic receptor markers in comparable numbers in Lsi1 (P2)-

Lsi1 (P2), and Lsi2 (P3)-Lsi2 (P3) co-cultures of matched ages and subpopulations, and in 

Lsi1 (P2)-Lsi2 (P7) co-cultures of matched maturation state but distinct subpopulations; by 

contrast, we found no putative synaptic contacts when identity was matched but maturation 

was not (for example, Lsi1 (P2)-Lsi1 (P7); Fig. 8b). Although mossy fiber terminals were 

smaller when identities were not matched (Supplementary Fig. 9), these results provided 

evidence that selective connectivity in the principal neuron subpopulations mainly reflected 

temporally matched schedules of synaptogenesis. 
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Figure 8: Influence of synaptogenesis timing and subpopulation identity on selective 

connectivity. 

(a) Schematic representation of heterochronic co-culture experiments. Boxed: age of dentate gyrus (DG) and CA3 fragment at 

beginning of culture. Mossy fiber synaptogenesis timing is indicated in color (Lsi1: red; Lsi2: blue), and with an arrow pointing 

from DG to CA3. (b) Heterochronic co-culture experiments. The panels show a low-magnification view of an heterochronic co-

culture (yellow line: DG/CA3 co-culture boundary), and high-magnification views of synaptic and non-synaptic contacts (single 

confocal planes). Bass: Bassoon. Quantitative analysis: fraction of synaptic (Bassoon+) versus total contacts on Lsi1 or Lsi2 

pyramidal neurons in CA3 (see Methods). N = 60, from 3 independent cultures each. Error bars, s.e.m. Scale bars, 50 (b, left), 

3 (b, right) μm. 
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4.3.4 Discussion 

 

We have provided evidence for the existence of matched principal neuron subpopulations in 

hippocampal dentate gyrus, CA3 and CA1 defined by their distinct neurogenesis time 

windows and distinct patterns of gene expression. We have also shown that the 

subpopulations have distinct schedules of synaptogenesis and selective connectivity at 

synapses between mossy fibers and pyramidal neurons in CA3 and between Schaffer 

collaterals and pyramidal neurons in CA1 (Supplementary Fig. 11). The subpopulations 

overlapped partially in time during neurogenesis, but there was homogeneity and no 

temporal overlap during synaptogenesis, supporting the notion that these neurons reflect 

separate subpopulations. A detailed analysis of the numbers of Lsi1 and Lsi2 principal 

neurons in the hippocampus provided further insights into how these subpopulations may be 

specified during development. Published figures of the total number of principal neurons in 

rat hippocampus, normalized to CA3, give values of 1 (CA3), 4.8 (granule cells) and 1.5 

(CA1)12, and corresponding values of total transgene-positive neurons were 1 (CA3), 4.4 ± 

0.2 (granule cells) and 1.5 ± 0.1 (CA1) for Lsi1, and 1 (CA3), 4.6 ± 0.1 (granule cells) and 

1.4 ± 0.1 (CA1) for Lsi2 (n = 5 mice each; absolute numbers within each mouse line varied 

by a factor of up to 2.7). The fractional prevalences of HP(Su1) (or HP(Su2)) neurons in the 

three main hippocampal subdivisions are therefore very similar, which suggests that the 

subpopulations are specified through a mechanism that allocates fixed proportions of 

neurons in the neurogenesis processes that lead to principal neurons in dentate gyrus, CA3 

and CA1. Because the sizes of the hippocampal subdivisions are different and the distinct 

subpopulations were generated during partially overlapping time windows early in neural 

development, the allocation might manifest for each subpopulation as a probability function 

of time during neurogenesis. Such temporal specification schemes are reminiscent of the 

roles of temporal genes in neurogenesis33–35. 

Our finding that HP(Su1) and HP(Su2) neurons reflected two early subpopulations of 

hippocampal principal neurons is consistent with previous reports that neurons generated 

early during neurogenesis also mature and insert into circuits at faster rates36,37. In 

vertebrates, timing schemes that relate specific neurogenesis windows and sub-windows to 

distinct neuronal identities have been described for retinal and cortical neurons, and for the 

interneurons that arise from the medial ganglionic eminence38–41. Our results suggest that 

similar temporal schemes underlie the specification of subpopulations of principal neurons 

within each main hippocampal subdivision. However, whether and how temporal genes 
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contribute to the specification of subpopulations in the hippocampus remains to be 

determined. Likewise, it will be interesting to determine how the subpopulations relate to 

previously reported differential patterns of gene expression in the hippocampus42. That 

distinct temporal windows of neurogenesis are coupled to specific patterns of 

synaptogenesis has been shown for Drosphila36,37,43. 

A recent study in zebrafish related sequential interneuron differentiation to distinct swimming 

functions44, and one study related the timing of neurogenesis to differentiation in cerebellar 

granule cells45. However, to our knowledge, there has been no evidence relating sequential 

neurogenesis or synaptogenesis to inter-areal connectivity in vertebrates. Our results 

provide evidence that temporal schemes underlie selective connectivity between matched 

principal neuron subpopulations belonging to the major hippocampal subdivisions in the 

mouse. It remains to be determined whether similar temporal schemes of neuronal 

specification and synaptic maturation underlie inter-areal connectivity in other neuronal 

circuits in vertebrates. 

To what extent is hippocampal connectivity influenced by subpopulation specificities? 

Selective connectivity for the HP(Su1) subpopulation was about 92% in CA3 (i.e., 8% non-

Lsi1 mossy fiber terminals onto Lsi1 CA3 pyramidal neurons) and 85–89% in CA1. 

Hippocampal representations might therefore form preferentially within subpopulations of 

principal neurons. Furthermore, as temporally coincident maturation determines synaptic 

specificity, overlaps between subpopulations might not be entirely random, and might be 

more frequent among subpopulations that mature in adjacent temporal windows. Our 

findings raise the issues of whether and how specificity may extend to new synapses 

established in the adult, most notably by the mossy fiber terminals of adult-born granule 

cells46. When we matched the maturities of the Lsi1 and Lsi2 subpopulations through 

appropriate heterochronic co-cultures, synapses between the different subpopulations did 

form, but the presynaptic terminals were substantially smaller, suggesting that additional 

factors, possibly related to the molecular identities of the subpopulations, might also 

influence synapse specificity. Accordingly, it will be interesting to determine whether the 

mossy fibers of adult-born granule cells also show some selectivity with respect to their 

postsynaptic pyramidal neuron partners in CA3. 

Our results have potential implications for information processing in the hippocampus, and 

raise the possibility that microcircuits of genetically predefined and selectively interconnected 

principal neurons might be recruited differentially during the establishment and retrieval of 

episodic representations. For example, differential recruitment of subpopulation networks 

may support the rapid remapping of related but distinct episodic representations in CA3 and 
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CA1 (ref. 47). Consistent with the notion that the subpopulations might show functional 

differences, Lsi1 and Lsi2 mossy fiber terminals show distinct and unique structural plasticity 

properties17. Future studies will therefore aim to determine whether and how the 

subpopulations and their microcrocircuits have specific roles in information processing. 
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4.3.5 Supplementary material 
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Supplementary Fig. 4:  

Distributions of Lsi1 and Lsi2 principal neurons in the hippocampus. 

(a) Representative patterns of GFP+ neuroblast distributions in hippocampal neuroepithelium of Lsi1 and Lsi2 embryos at 

E11.5 and E12.5 (Hem to the left). Note comparable positions of neuroblast groups (numbers) at these two developmental 

stages. The stars indicate comparable positions along HN in the 4 embryos. (b) Distributions of Lsi1 and Lsi2 pyramidal 

neurons in the adult hippocampus. Left: representative 3D-maps of GFP+ pyramidal neurons (white dots) throughout CA1 and 

CA3. Consecutive 20 μm coronal sections of the whole hippocampus were processed for in situ hybridization and images were 

aligned (AutoAligner, Bitplane). Positive cells were marked and the contour surface of the CA3 pyramidal cell layer was drawn 

manually using 3D/4D software (Imaris, Bitplane). Right: quantitative analysis of the distributions. Median values from 3 mice 

each; note resemblance to distributions in HN (Fig. 2b). (c) Comparable distributions of early (E11.5-12.5) BrdU-labeled and 

GFP+ Lsi1 pyramidal neurons (e.g. arrows). Heat map data from 1 mo mouse. Panel on the right: cluster of BrdU+/GFP+ 

pyramidal neurons in CA3 (arrow).  



170 
 

 



171 
 

 

 

  



172 
 

 



173 
 

 



174 
 

 



175 
 

 

 

  



176 
 

 

 

  



177 
 

 

 



178 
 

4.3.6 Material and methods 

 

Mice and materials. 

 

Thy1 reporter mice were as described10; Reelin−/− mice were from Jackson Laboratories. 

All experiments were carried out in adherence to the guidelines of the veterinarian office of 

Kanton Basel Stadt. Antibodies: rabbit anti-GFP (Invitrogen), mouse anti-MASH1 (BD 

Pharmingen), mouse anti-Nestin and rabbit anti-Prox1 (Chemicon International), goat anti-

NeuroD1 (Santa Cruz), rabbit anti-Tbr2/Eomes and rat anti-BrdU (Abcam). Rabies virus 

driving the expression of mCherry in postmitotic neurons was a gift from M. Tripodi and S. 

Arber (Friedrich Miescher Institut). Injections into CA3b of 5-month-old Lsi1 female mice 

were at bregma −2.18 (posterior), 2.7 (lateral), 1.75 (down). Mice were perfused 4 d after the 

injection, and mCherry was visualized with a specific antibody. The protocol for laser-

dissection microscopy collection and microarray analysis of the few mGFP-labeled neurons 

was as described18. Average present call values were 40–48%. 

 

In situ hybridization, immunocytochemistry and electron microscopy. 

 

The double in situ hybridization protocol was as described48; signals from DIG- or FITC-

labeled probes were amplified and detected using TSA plus Cyanine 3 or TSA plus Cyanine 

5 system (PerkinElmer). Immunocytochemistry was on PFA-fixed tissue (50-μm floating 

sections); detection was with Alexa 488-, 568- and 647-conjugated antibodies (Molecular 

Probes). For analysis in the lamellar plane, hippocampi were dissected from perfused brains 

after overnight post-fixation, embedded in 3% agarose gel and sliced transversally with a 

tissue chopper (McIlwain, 100-μm slices).  

The detection of mGFP-positive axons and dendrites in Lsi1 mice by immuno-electron 

microscopy was as described49. For the analysis, immunolabeled individual (Lsi1) CA3 

pyramidal neuron dendrites in stratum lucidum were first identified and then scored for 

labeled and nonlabeled mossy fiber terminals in synaptic contact with their thorny 

excrescences. The prevalence of Lsi1-Lsi1 synapses was estimated on the basis of the 

frequency of labeled contacts, the fraction of mGFP-positive granule cells (light microscopy) 
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within the blocks used for electron microscopy, and the assumption that the total fraction of 

Lsi1 granule cells within that part of dorsal hippocampus was 21%.  

The BrdU labeling method in vivo was carried out in 24-h intervals as described24. We 

injected mice with BrdU at defined times during embryonic development or early postnatally 

and analyzed hippocampal sections from 1-month-old mice for BrdU labeling and mGFP 

signals. Only strongly BrdU-labeled cells that did not undergo further rounds of DNA 

replication and cell division subsequent to BrdU incorporation were included in the analysis. 

EdU detection was as described22 (Invitrogen Click-it EdU). 

 

Heterochronic hippocampal co-cultures. 

 

Hippocampi of appropriate ages were dissected and sliced as described50. Sections (400 

μm) were incubated in dissecting medium at 4 °C for 30 min. Dentate gyrus and CA3 were 

then dissected on an ice-cooled chamber and incubated for an additional 15 min at 4 °C. 

Dentate gyrus and CA3 from corresponding positions along the dorsoventral axis were 

recomposed on millipore filters and cultured for 15 d48. 

 

Data analysis. 

 

For the analysis of Lsi1 and Lsi2 cells in transgenic embryos, consecutive sections of the 

whole archicortex primordium were acquired, and images belonging to the same coronal 

section were stitched in three dimensions using dedicated software. Stitched files (20 per 

embryo) were manually aligned and then imported into Imaris 6.3.1 for a complete three-

dimensional reconstruction of the tissue. Neuroepithelium with prospective CA3 and CA1 

cells was analyzed for every single cell (10-μm spot) included between the archicortex and 

neocortex (ventral border) or within the telencephalic vesicles between the two curves that 

separate the hippocampal neuroepithelium from the neocortical (dorsal) and amygdaloid 

(ventral) neuroepithelium (posterior). The three-dimensional dataset was then turned to 

project every spot onto the ventricular surface (projection plane). Spot densities were then 

determined, and values were normalized for mask numbers and color coded. This automatic 

process (Matlab) transformed discrete distributions into continuous ones (Supplementary 

Fig. 12). 
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Maturity scores were based on published immature and mature features30, using three-

dimensional Imaris software. Individual features were assigned a value between 0 (least 

mature) and 3 (most mature), and values were summed. Parameters for dendrites were: 

length, diameter, diameter change at branchpoint, swellings and spines; and for axons: 

swellings, collaterals, filopodia and volume of terminals. For spine densities, only protrusions 

shorter than 2 μm with an evident connection to the main shaft were included. Statistical 

differences were assessed by the Student's t-test. 

To investigate transgene-positive mossy fiber-CA3 pyramidal neuron connectivities, we 

processed lamellar sections for immunocytochemistry (Bassoon and Pi-GluR1) and 

analyzed non-overlapping CA3 stratum lucidum volumes containing mGFP+ pyramidal 

neurons. Lengths were 100 μm (expect one terminal per 100–140 μm along CA3; ref. 12) 

and depths were 55 μm. The average number of pyramidal neurons within these volumes 

was 173 (dorsal third of hippocampus). For each mGFP+ pyramidal neuron within the 

volume we determined the number of putative synaptic contacts with mGFP+ mossy fibers. 

We then computed probability mass functions (binomial distributions) as follows: Pr(K = k) = 

f(k; n; p) = (n!/k!(n−k)!) pk(1−p)n−k, where k is the number of connections found, n is 

(number of mGFP+ mossy fibers) × (average number of mGFP+ pyramidal neurons) and P 

is the probability of each contact (1/173; independent and identically distributed). 

 

We estimated the total number of synaptic contact sites in stratum lucidum using high-

expressing Lsi1 mice in which 18–21% of the granule cells were mGFP+ (85–99% of total 

HP(Su1) granule cells). By combining average distances between mGFP+ terminals on 

pyramidal neurons in CA3 (8.18 μm) and the average lengths of pyramidal neuron dendrites 

in CA3 (184 μm) we reached average figures of 38 HP(Su1) terminals. Together with the 

non-HP(Su1) terminals, this yielded average totals of 41.2 terminals per pyramidal neuron, 

with 3.2 of them unmatched. 
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4.4.1 Summary 

 

Synaptic processing reflects the interplay between cortical excitation and cortical inhibition, 

and the importance of this balance is evident in those conditions when genetic mutations or 

an excessive or misplaced response to experience produce a long-lasting alteration that 

leads to pathologies. Moreover, this is also testified by the great deal of regulation impinging 

on the development of inhibitory microcircuits, which during development constitute the first 

source and target of synapses upon excitatory cells due to the transitory excitatory action of 

GABA. 

In particular, the integration of microcircuits involving parvalbumin+ interneurons (PV+) seem 

to have a key role in regulating the occurrence of those periods of enhanced plasticity during 

development that are known as “critical periods”. PV maturation has long been studied in 

sensory areas, where it is clear that it requires sensory experience form the sensory organs 

that functions as a driving force for the process. 

Here, we investigate how FFI microcircuits mature in the hippocampal area CA3, and which 

might be the driving force for PV maturation in a structure that lies further away from sensory 

experience. Hence, we provide evidence that release form mossy fiber terminals drive PV 

maturation in CA3, defining windows during development in which interneurons acquire 

defined properties that will characterize the network in the adult. Moreover, by 

pharmacological manipulations during these windows, we are able to produce long-lasting 

network alterations that underlie a permanent cognitive enhancement or disruption in treated 

mice.  
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4.4.2 Introduction 

 

In cortical microcircuit, FFI microcircuits relaying PV interneurons to pyramidal cells are the 

last ones to integrate in the cortical architecture. Their maturation relies on sensory 

experience coming from sensory organs, which drive the maturation of PV interneurons via 

direct excitatory activity, release of growth factors (BDNF), formation of perineuronal nets 

(PNNs), and release of transcription factors (OTX2). These factors drive an extensive period 

of synaptogenesis onto and from PV IN, for which, in an area-specific time schedule, new 

excitatory and inhibitory synapses are formed onto these interneurons that likewise increase 

the extent of principal neurons innervation via basket formation on pyramidal cells. In 

different sensory cortices, the maturation of PV interneurons has been implicated in the 

opening and closure of windows of enhanced plasticity that are collectively known as “critical 

periods”. 

At the level of single parvalbumin interneurons, maturation produces changes in structural 

(expression of increasing amounts of the protein parvalbumin, increasing size of dendritic 

and axonic arborizations, formation of perineuronal nets), as well as functional (frequency of 

firing increases as maturation progresses) features, thereby defining the properties that 

characterize the network in the adult. Strikingly, the properties on which maturation impinge 

during development are the same on which experience impinge in adult microcircuits to 

regulate structural plasticity and learning. Indeed, we demonstrated that learning can act on 

the PV network to modulate properties like PV expression, GAD-67 content, and firing 

frequency in a way that is strictly dependent on the balance between excitation and inhibition 

upon these neurons: experience define a “plastic state” based on the prevalence of 

disinhibition and Low PV interneurons during learning, as opposed to a “crystallized state” 

based on the prevalence of FFI and High PV interneurons upon learning completion. 

Moreover, interventions in the adult that are supposed to reopen plasticity to “critical periods” 

levels impinge on perineuronal nets around these interneurons. Nevertheless, the extent to 

which a proper developmental maturation of PV Interneurons could define their intrinsic 

properties and connectivity in the adult, and set the baseline level for the network state is still 

and open question. 

In previous works, we showed how the maturation of cortical microcircuits can be divided in 

temporally defined windows which highlight the development of subpopulations of principal 

neurons (See previous part of the thesis). Nevertheless, if a sequential maturation highlights 
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intrinsic differences among subpopulations in the contribution that each one gives to the 

microcircuit development or is influenced by it, is not yet known. 

Here, we investigate the maturation of feed forward inhibitory microcircuitry based on 

parvalbumin expressing interneurons in CA3, due to the defined microcircuit governing state 

transitions in the adult; the accessibility of the microcircuit for manipulation in slice culture;, 

and the defined role that CA3 microcircuit exploits during learning. 
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4.4.3 Results 

 

Dynamics of FFI microcircuit maturation in hippocampal CA3 

 

We studied the maturation of PV interneurons by following the expression of Parvalbumin 

along CA3 during postnatal development. In CA3, PV expression started with low intensity 

and a clear nuclear localization pattern around P7 (Fig 1A, P7); it acquired dendritic and 

synaptic localization along further development, with a marked spatial gradient showing 

higher density of expression in CA3a at earlier time points, followed by CA3b and c later on. 

Each subdivision was characterized by a continuous increase in PV positive interneurons 

during the whole process (Time course of PV development: average number of neurons per 

300um2 of CA3 area P7: 1.25; P10: 4.25; P12: 9.75; P14: 14; P16: 21. P<0.05, One way 

ANOVA. Fig 1A). 

To test whether excitatory activity would drive PV maturation in a manner that is closely 

comparable to other cortical areas, we repeatedly (one injection per day over three 

consecutive days, P8-P10) injected mice with diazepam (GABAA agonist, 3 mg x Kg) to 

decrease excitatory activity in the developing brain. This treatment produced a decrease in 

the extent of parvalbumin expression both at the level of the soma intensity (Supplementary 

figure 1B), and in the extent of dendritic and synaptic site along the whole length of CA3, 

thereby suggesting a profound role of excitatory activity in driving PV maturation in the 

hippocampus. 

 

 

Figure 1: Maturation of the FFI microcircuit in Hippocampus CA3 

Maturation of PV interneurons in the CA3 area of the hippocampus was characterized by maturation in the pattern of staining 

for PV (first somatic, then also dendritic and synaptic) (A, left), and the increase in the number of PV positive neurons with age 

(A, right).  

Analysis of presynaptic inputs to PV IN focused on the number of filopodial synapses from MFT (B, left), in their quantitative (B, 

right) and spatial (B, centre) profile of formation. 

Analysis of perisomatic innervation upon CA3 pyramidal cells from PV (C, upper and centre) and CCK (C, lower and right) 

reveal a subpopulation-specific profile of development of PV+ synapses on Lsi1 and LSi2 pyramidal cells. 
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We next sought to determine which input might provide the source of excitatory activity 

required for PV IN maturation. In sensory areas, sensory experience is the main driver of FFI 

maturation; the hippocampus however lies further away from direct sensory experience, and 

moreover PV maturation starts in a developmental window in which activity in the CA3 
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microcircuit seem to be autonomously generated (Crepel et al., 2007). Therefore, we studied 

the role of intrahippocampal connectivity in driving the maturation of PV interneurons. The 

CA3 microcircuit connects mossy fiber terminals (LMTs) from Granule cells to CA3 

pyramidal cells via core and satellites LMT (feed forward excitation, FFE), and to 

Parvalbumin-expressing interneurons via filopodia (feed forward inhibition, FFI); moreover, 

CA3 pyramidal cells establish recurrent connectivity via ramification of the Schaffer collateral 

either onto pyramidal cells and PV expressing interneurons. Altogether, mossy fiber 

terminals and CA3 pyramidal cells constitute the main excitatory inputs on CA3 parvalbumin 

interneurons. Nevertheless, filopodia from mossy fiber terminals are sufficient to promote 

transition to the High PV state in the network upon learning completion (Donato and Caroni, 

in preparation). Therefore, we analyzed how connectivity from MFTs developed by analyzing 

the formation, characteristic and connectivity of LMTs filopodia.  

First, we confirmed that, also in this stage, filopodia form functional contacts to PV 

Interneurons (Fig 1B, white arrows). Since establishment of FFE proceeds according to 

consecutive and non-overlapping window of synaptogenesis and maturation, for which Lsi1 

granule cells restricts formation of mossy fiber terminals on Lsi1 CA3 Pyramidal cells 

between P5 and P7, while Lsi2 recapitulates the same event slightly later in time (P7 to 

P10), we decided to study independently the formation of filopodia in Lsi1 and Lsi2 MFTs. 

Thus, we observed an increase of the average number of filopodia per terminal in both Lsi1 

and Lsi2 (Fig 1B), with a transitory peak phase and a rapid decline toward the levels that 

characterize each subpopulation in the adult. Moreover, the temporal order of 

synaptogenesis that sees Lsi1 maturing before Lsi2 was maintained in this process, with 

peak in the average filopodia per LMT content that were again few days apart (Fig 1B).  

Surprisingly, filopodia sprouting did not proceed homogeneously along the length of the 

mossy fiber, but followed a gradient of maturation for which CA3a was the first to mature, 

followed by CA3b and c at later time points (Fig 1B, camera lucidas).  

Maturation of presynaptic connectivity onto parvalbumin expressing interneurons is 

accompanied by the formation of perisomatic basket of PV+ synapses around pyramidal 

cells. Since presynaptic connectivity matures in a subpopulation-specific manner, we studied 

if perisomatic inhibition would mature according to separate schedule on Lsi1 and Lsi2 CA3 

PC. Therefore, to study the timecourse of basket formation in CA3, we quantified the number 

of PV+ puncta around the soma of Lsi1 or Lsi2 pyramidal cells. Surprisingly, the two 

subpopulations exhibited different profiles of basket formation. Lsi1 was characterized by a 

linear increase in puncta density during development to reach the adult levels by P16, with 

no apparent gradient in maturation between CA3a, b or c (Fig 1C, red line). In stark contrast, 

Lsi2 basket formation showed a bell shaped curve in puncta density exhibiting a defined 

peak during development, which then decreased to reach the level in mature circuits (Fig 



193 
 

1C, blu line). Moreover, basket development around Lsi2 CA3 showed a marked topographic 

maturation ranging from CA3a to c over the course of maturation (data not shown). 

To test if this specific difference in baskets formation was a general feature of the overall 

maturation of inhibition on these two subpopulation, or if it had to be attributed specifically to 

the maturation of the PV IN network, we analyzed the development of the other component 

of the perisomatic inhibition, which is represented by CCK basket cells. These neurons are 

non-fast spiking, have a different developmental origin than PV expressing INs, and their 

maturation proceeds with a different time course respect the other class of basket cells. 

Therefore, we quantified the formation of CCK baskets around CA3 pyramidal cells by 

analyzing the density of vGlut3 (marker for CCK synapses, Fig 1C) puncta around PC 

somas. To our surprise, vGlut3 puncta density didn’t exhibit any peak in density during 

development and proceed in the same way between Lsi1 and 2, indicating that 

subpopulations-based differences in the maturation of perisomatic inhibition are specific for 

the PV expressing component (Fig 1C). 

 

Filopodia sprouting from MFTs drives PV maturation during development 

 

Therefore, filopodia sprouting from mossy fiber terminals and parvalbumin IN maturation 

proceed with a similar spatio-temporal pattern in CA3, and anticipate perisomatic inhibitory 

synaptogenesis upon CA3 PC. Moreover, the Lsi1 filopodia peak seemed to anticipate the 

increase in parvalbumin, with a similar mechanism observed during learning upon transition 

toward the Chrystallized state (see part one of results). We therefore sought to determine if 

filopodia sprouting might be the driving force underlying PV maturation during development. 

To determine whether filopodia sprouting and release could be responsible for Parvalbumin 

interneuron maturation, we studied early MFT maturation in hippocampal slice cultures, a 

model system that is more accessible for manipulation of activity. First, we confirmed that 

filopodia sprouting and PV maturation in vitro would resemble the counterpart in vivo: both 

spatiotemporal sprouting from MFT, PV IN maturation, and its dependence on activity were 

preserved in slices (Supplementary figure 1A and B). Then, we investigated whether the 

presence of PV IN would be necessary for filopodia sprouting by analyzing slice cultures 

produced at P2: at this age, PV IN have not yet terminated their migration toward CA3 from 

their source in the medial ganglionic eminence (Supplementary figure 1C and D); thereby 

hippocampal slices result depleted of PV IN during and after maturation. Here, we found that 

even in the absence of PV IN, sprouting of filopodia would proceed with the same temporal 

progression as in vivo or in P7 slices, suggesting that filopodia formation during development 

is a cell autonomous process in which PV interneurons are dispensable. Deprived of their 
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natural counterpart, filopodia in P2 slices engage synaptic contacts with CA3 pyramidal cells, 

thereby increasing the number of satellite (Supplementary figure 1C, grey arrows) and 

shifting the microcircuit toward prevalence of FFE. 

At last, to assess a critical role on the dependence of PV maturation of MFTs filopodia, we 

conducted an experiment in which we took advantage of the temporal difference between 

maturation of P2 and P7 slices. In P7 slice, PV maturation starts upon filopodia sprouting on 

Div6; on the other hand, filopodia sprouting is a cell autonomous process that in P2 slice 

starts around Div10 and does not require presence or maturation of PV IN to occur. 

Therefore, we produced heterochronic slice cultures in which the Dentate Gyrus of a P2 pup 

was co-cultured with the CA3 of an older, P7 animal. These cultures are viable and present 

no gross differences with control slices in the correct maturation of mossy fibers, formation of 

MFT and maturation of PV IN (Deguchi*, Donato*, Galimberti*, Cabuy and Caroni, 2011 and 

figure 2A). We reasoned that, if the MFT would be driving interneurons maturation, then PV 

expression profile should follow the DG P2 timeline of filopodia sprouting; on the contrary, if 

it were independent from filopodia sprouting, it should be insensitive to the mismatch in 

maturation of the two regions, and follow the P7 timeline. As a result of co-culturing, PV 

interneurons in the P7 CA3 showed a marked delay in maturation when compared to time-

matched cultures (Fig 2A), favoring a driving role for filopodia sprouting in driving the 

process. 

To further test the effect of MFT activity on PV maturation, we pharmacologically enhanced 

or reduced synaptic release from mossy fiber terminal and studied the effect on PV  

expression. Therefore, we treated slices with mGluR2 agonist (DCG-IV, 1um, Tocris, Ewell 

LA and Jones MV., 2010) or antagonist (LY341495, 0.1um, Rocris, Ewell LA and Jones MV., 

2010), due to the known role of mGluR2 in regulating MFT transmission. Hence, DCG-IV 

treated slices showed a decrease in PV expression in CA3, while LY 341495 treated slices 

showed a marked increase of immunoreactivity to PV antibody (Fig 2B). Thus, we conclude 

that modulation of MFT release during development is sufficient to regulate PV IN maturation 

in CA3. 
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Differential contributions from MFT subpopulations to PV maturation in CA3 

 

The previous experiments indicate the mossy fiber terminal as a driver synapse for PV IN 

maturation in CA3. The mechanism by which this would be achieved relies on a phase of 

filopodia sprouting that is reduced in later phases of development. Importantly, Lsi2 peak in 

filopodia is delayed respect that of Lsi1 of 2-4 days, consistent with delayed neurogenesis 

and synaptogenesis of this population. Moreover, maturation of PV IN is not a continuous 

process in which all interneurons proceed through the same process at once, but rather that 

subgroups of interneurons might insert in the microcircuit at different times (Fig1). These 

evidence might imply that the contribution of the two subpopulations to PV IN network 

maturation might be distinct. Therefore, to test whether MFTs from different subpopulations 

would react in the same way upon pharmacology during development, we quantified how 

Lsi1 and Lsi2 responded to modulation of MFT release upon DCG-IV and LY in vitro. 

Figure 2: MFTs release drive 

PV maturation in vitro 

Eterochronic experiments reveal that PV 

maturation follows the temporal profile of MFT 

filopodia sprouting (A). Moreover, 

pharmacological manipulation of MFT release 

is sufficient to regulate the extent of PV 

network maturation in CA3 (B). 

Subpopuletion-specifc response to 

pharmacological manipulations can be 

observed between Lsi1 and Lsi2 MFTs (C) 

 



196 
 

Surprisingly, subpopulations responded to the modulation of MFT release in opposite ways: 

Lsi1 increased the average number of filopodia per terminal upon DCG-IV (1.28 fold to 

controls, p<0.01. Fig 2C), while concomitantly decreasing the average number of filopodia 

upon LY (0.56 fold to controls, p<0.001. Fig 2C) ; in stark contrast, DCG-IV treatment 

decreased the number filopodia in Lsi2 MFTs (0.4 fold to controls, p<0.001. Fig 2C), while 

LY increase this number (1.31 fold to controls, p<0.01. Fig 2C). These data suggest that 

principal neurons subpopulation have a different potential in interacting with PV interneurons 

during development: Lsi1 would act as a pure driver onto PV maturation by counterbalancing 

external manipulations, while Lsi2 would respond homeostatically to modulation of MFT 

release to restore the proper balance of excitation and inhibition in the microcircuit. 

Three lines of evidences (delayed profile of filopodia sprouting, different profile of 

perisomatic PV innervation on CA3, differential response to modulation of MFTs release in 

vitro) suggest that during development Lsi1 and Lsi2 neurons might contribute differently to 

microcircuits maturation. Therefore, we next sought to determine if interfering with the 

network at different time during maturation (possibly in an Lsi1 or Lsi2 time window) would 

affect PV interneurons to the same extent. To this end, we defined different time windows 

based on the time course of filopodia sprouting from MFT subpopulations, as a measure of 

recruitment of subsets of PV interneurons into the CA3 microcircuit. 

Previous reports highlighted a period of enhanced plasticity during granule cells 

development which is correlated to the high expression of the NMDA receptor subunit NR2B 

(Ge, S et al., 2008). This particular subunit display a characteristic profile of expression for 

which its amount starts to be downregulated during maturation in favor of the expression of 

NR2A, which characterize mature cells NMDA complexes. Although its expression is present 

in all the classes of excitatory cells in the hippocampus, it is downregulated according to 

specific timelines: CA3 and CA1 downregulate NR2B immediately after birth, while Granule 

cells continue to express it during the first postnatal weeks. Hence, we hypothesized that 

NR2B antagonists would be a likely candidate to modulate selectively activity during 

sensitive periods during development, with a possible preferential effect on granule cells; 

moreover, since the profile of Lsi1 and Lsi2 subpopulations development proceed with a 

temporal delay, there could be time window in which treatment with NR2B antagonist should 

be able to influence Lsi1 or Lsi2 selectively. Therefore, we treated mice with ifenprodil (20 

mg x Kg of weight), a potent and selective NR2B agonist, in two different time windows 

during development in vivo that would cover the extent of pronounced parvalbumin 

maturation in CA3. The time windows coincided with the ascending phase of the peak of 

filopodia for each subpopulation, and extend from P8 to P10 (Lsi1 ascending phase) and 

from P11 to P13 (Lsi2 ascending phase). Treatment with ifenprodil in both time window 
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produced an overall decrease in the expression of parvalbumin, but the extent of the effect 

on the PV network was different for each  window: Ifenprodil treatment early during 

development (P8-P10) produced a decrease in PV expression in over 80 % of the 

interneurons (Fig 3A, p<0.0001 one way ANOVA), while ifenprodil treatment late during 

development (P11-P13) produced a decrease in PV expression in about 50% of the 

interneurons, while 20% of them (Fig 3A, black arrow) increased PV levels (p<0.0001 one 

way ANOVA) to values which were far exceeding the maximal experession levels observed 

in time-matched controls (but typical of adult “High PV” cells, see section 1 of results). 

Therefore, modulation of NR2B dependent NMDA transmission modulate the extent of PV 

Interneuron integration into CA3 microcircuit, in a partially opposite way depending on the 

time window of the treatment.  

Next, we sought to determine if the opposite profile of modulation observed upon ifenprodil 

treatment during early and late windows of development could be ascribed to differences in 

excitatory cells recruitment. Indeed, treatment during the early window produced an effect in 

MFT filopodia number only in Lsi1 but not Lsi2 (1.47 fold to controls in Lsi1, p<0.001, Fig 

3B), while treatment in the late window elicited a response only in Lsi2 MFTs, but not Lsi1 

(0.65 fold to controls, p<0.001 Fig 3B). Taken together, these results confirm that modulation 

of excitatory activity by ifenprodil has a preferential effect on granule cells, slows down the 

maturation of the Parvalbumin interneuron network, and identify time windows for specific 

modulation of Lsi1 or Lsi2 subpopulations. 
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Figure 3: pharmacological modulation of PV maturation in vivo 

NR2B signaling modulation via Ifenprodil treatment in vivo produce different effects on PV network maturation depending on 

the time of injection. Early treatment (P8-P10), targeting selectively Lsi1 terminals (B), decrease PV expression in the large 

majority of interneurons (A), while late treatment (P11-P13), targeting selectively Lsi2 MFTs (B), produce an increase of PV 

expression in about 20% of the neurons to levels comparable to adult High PV (A, arrows). No effects on MFt culd be observed 

upon NR1 manipulation (C). 

 

To verify whether the specific antagonism of NR2B would be responsible of the modulation 

of filopodia number at MFT observed upon ifenprodil treatment, or it would be rather an 

unspecific effect of activity modulation in hippocampal microcircuit activity, we treated mice 

with a NR1 antagonist in lsi1 and lsi2 specific windows. NR1 is the other main subunit of the 

NMDA receptor during development and in the adult, and is not associated to any 
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developmental regulation in the hippocampus. Treatments in both time windows did not 

affect significantly the average number of filopodia per terminal of either Lsi1 or Lsi2 (Fig 

3C). We therefore concluded that specific modulation of NR2B-mediated activity is 

responsible for the alterations in MFT morphology and PV IN maturation during 

development. 

Taken together, these results suggest that mossy fibers terminals from principal neurons 

subpopulations during development participate differently in driving the maturation of the 

parvalbumin network in vivo. Both subpopulations would explore an intrinsic sprouting and 

consequent reduction of FFI synapses from their mossy fiber terminals, but with different 

dynamics based on Parvalbumin interneurons: Lsi1 would exploit a proper driver function 

with a counter-homeostatic modulation of filopodia number from MFTs in relation to PV 

maturation; in stark contrast, Lsi2 would adjust its filopodia number in closer correlation to 

interneuron development to maintain a proper balance between excitatory and inhibitory 

microcircuits. 

 

Developmental interference modulates the balance between subpopulations in the 

adult and shifts baseline conditions toward Plastic or Crystallized state. 

 

Modulation of excitatory or inhibitory transmission during the maturation of parvalbumin 

expressing interneurons has been linked to long-lasting deficits that extend well into 

adulthood. (Belforte, JE et al., 2010). We then sought to determine if any long-lasting 

consequence might arise from the targeted modulation of the driving force inducing FFI 

integration into CA3 microcircuits. Therefore, we analyze the baseline state of the network of 

parvalbumin interneurons in adult mice that were previously treated with ifenprodil during 

development. Hence, early treatment (If P8-P10) produced a shift in the neuron distribution 

toward enhancement of Low PV (25% over total PV+ interneurons, p<0.001 to controls Fig 

4A, left panel), while late treatment (If P11-P13) modulated the network in the opposite 

direction toward enhancement of High PV (46% over total PV+ interneurons, p<0.001 to 

controls Fig 4A, right  panel). Strikingly, Ifenprodil-induced states were reminiscent of 

network configuration archived as a result of experience in the adult (Donato et al, in 

preparation, Fig 4A), which are sufficient to modulate structural plasticity and further 

learning. Therefore, we sought to study if developmental interventions impinging on NR2B 

signalling could produce shifts in the baseline configuration of the CA3  network toward the 

Plastic or Crystallized states. 

To this extent, we analyzed the baseline structural properties of Lsi1 and Lsi2 mossy fiber 

terminals in adult mice treated with ifenprodil during development. NR2B antagonism in an 
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lsi1 specific window produced a net increase in the number of satellites as compared to 

control condition, without any change in the average number of filopodia (2.75 fold to 

controls, p<0.001, Fig 4C Left panel). No change could on the contrary be observed in Lsi2 

MFTs, consistent with the specificity of the treatment for Lsi1 granule cells (Fig 4C, left 

panel). In stark contrast, NR2B antagonism in the Lsi2 specific window produced a decrease 

in the number of satellites in Lsi2 mossy fiber terminals (0.45 fold to controls, p<0.01 Fig 4C, 

right panel), with unaltered number of filopodia. Moreover, no change could be observed in 

Lsi1 MFTs, consistent with the specificity of the treatment for Lsi2 granule cells (Fig 4C, right 

panel). Therefore, ifenprodil treatments during specific developmental time window alter the 

baseline configurations of subpopulation specific microcircuits with the enhancement of the 

FFE (Lsi1 upon early treatment) or FFI (Lsi2 upon late treatment) component. 

Moreover, Lsi1 MFTs showed enhance active zone turnover on baseline condition as a 

consequent of early ifenprodil treatment, a feature physiologically associated with the 

“Plastic State” (6 and 24h: p<0.001 difference to controls Fig 4B); in stark contrast, late 

ifenprodil treatment reduced active zone turnover from Lsi2 mossy fiber terminal, a feature 

that is associated with “Crystallized state” upon learning (24h: p<0.001 difference to controls 

Fig 4B). 

Moreover, we analyzed how the CA3 pyramidal cell network would be affected by 

developmental manipulations. Mice treated early in development exhibited a higher fraction 

of pyramidal cells expressing cFOS at baseline when compared to controls (p<0.001, Fig 

4D), consistent with an enhanced disinhibition due to Low PV state during enrichment 

(Donato and Caroni, in preparation); in contrast, mice treated late during development 

exhibited a lower fraction of pyramidal cells expressing cFOS at baseline (p<0.05. Fig 4D), 

consistent with increase FFI. 
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Figure 4: permanent modification of baseline CA3 network configuration upon 

developmental NR2B interference 

The effects of the treatment with ifenprodil during development extend further into adulthood. This produces a shift in the 

baseline configuration of the CA3 network for which early treated mice present enhanced Low PV (A), structural plasticity (B), 

satellite contents (C) and cFOS + cells among CA3 pyramidal neurons (D); in strark contrast, mice treated later during 

development present enhanced High PV (A), and reduced structural plasticity (B), satellite contents (C), and cFOS+ cells 

among CA3 pyramidal neurons (D) 

 

 

Taken together, these results indicate that ifenprodil treatment in the Lsi1 specific time 

window produced an increase in the speed of active zone turnover, a shift in the network of 

PV expressing interneurons toward Low PV, and structural alterations in the MFT of Lsi1 

granule cells enhancing FFE upon FFI: all these features have been previously associated to 

the changes induced by 3 weeks of environmental enrichment in the CA3 microcircuit, 

characterizing a new state of enhanced structural plasticity and learning in the network 

(“Plastic state”). In stark contrast, ifenprodil treatment in the Lsi2 specific time window 

produced a decrease in the speed of active zone turnover, a shift in the network of PV 

expressing interneurons toward High PV, and structural alteration in the MFT of Lsi2 granule 

cells enhancing FFI upon FFE: all these features have been previously associated to the 
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changes induced by learning completion in the CA3 microcircuit, characterizing a new state 

of reduced structural plasticity and learning in the network (“Crystallized state”). 

 

A critical period for cognitive enhancement during hippocampal development. 

 

In previous work, we provided evidence that the CA3 network state is associated with 

enhanced or reduced performances in a further learning paradigm. Therefore, we tested if 

ifenprodil treatment during development, which is sufficient to confer features associated to 

the plastic or crystallized state to the CA3 microcircuit at baseline, is sufficient to modulate 

learning performances in adult mice. To this end, we tested mice that were treated with 

ifenprodil in the Lsi1 or Lsi2 specific windows in different learning paradigms, and scored 

their performances. 

When tested for their ability to perform NOR, mice treated early with ifenprodil showed 

enhanced performances in correlation to their plastic state in CA3, to the same extent as 

mice that had been enriched (Discrimination ratio upon ifenprodil P8-P10: 0.53, p<0.001. Fig 

5A). In comparison, mice treated late showed a severe impairment in discrimination, as 

correlated to their intrinsic crystallized state in CA3 microcircuit (Discrimination ratio upon 

ifenprodil P11-P13: 0.17, p<0.05. Fig 5A). As a control, we analyzed the impact of treating 

with ifenprodil in a developmental time window when both subpopulations are reducing their 

filopodia after the postnatal peak: when ifenprodil treatment was delivered to the mice during 

a P14-P16 window, no modulation of PV distribution in adult microcircuits could be observed 

(Fig 5B). Moreover, when mice were treated with ifenprodil for the whole interval of filopodia 

sporuting by Lsi1 or Lsi2 during development (P8 to P13), they exhibited a combination of 

both configurations at a structural level (increased High and Low PV IN, Fig 5B). While 

performance for the first control (ifenprodil P14-P16) exhibited no significant difference to 

saline treated controls (Fig 5A), the second instead performed the task with a significant 

impairment of performances (As if mice were treated in the P11-P13 window. Discrimination 

ratio upon ifenprodil P8-P13: 0.07, p<0.05 Fig 5A). 

We then tested mice for their ability to learn the Morris water maze. Consistent with the 

performances upon NOR, and the structural features of CA3 configuration, mice treated 

early showed enhanced learning during the initial phase of the training and a significant 

reference memory already on day 4, consistent with results of enriched mice (Fig 5C); late 

treatment in contrast produced impaired performances during maze learning (Fig 5C).  
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Taken together, these results demonstrate that ifenprodil-induce plastic and crystallized 

states structurally and functionally resemble those achieved physiologically as a result of 

experience. Moreover, they point toward the existence of a critical period during CA3 

development in which manipulation of NR2B activity produces cognitive enhancement in the 

adult.  

 

To investigate if early ifenprodil treatment would closely mimic enrichment and hence 

produce stable enhancement of plasticity, we tested if both states would rely on the same 

pathways to achieve enhanced performances. Therefore, we tested the effect of ifenprodil 

treatment in the Lsi1 specific window on mice that are deficient for the protein β-Adducin, 

which are unable to stabilize newly formed synapses in the adult (Bednarek and Caroni, 

2011; Pielage et al., 2011), and, as a consequence, the enhancement of structural plasticity 

produced by environmental enrichment produces a net loss of active zones in mossy fiber 

terminals (Bednarek and Caroni 2011), and a decrease in NOR performances. We reasoned 

that, if ifenprodil treatment during Lsi1 window would act on the same mechanisms to induce 

Figure 5: enhanced or reduced learning in the 

adult upon developmental manipulations 

Ifenprodil treated mice exhibit enhanced performance in NOR (A) 

and MWM (B) if treated early, and reduced if treated later during 

development. Moreover, treatment in the whole P8-P13 

developmental windowproduced features associated to both network 

states (enhanced High and Low PV, B), with a concomitant 

impairement in NOR performances (A). treatments outside of thei 

window (P14-P16) did not produce any significant difference to 

controls both structurally or behaviorally (A and B) 
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enhanced plasticity and learning, we should observe a worsening of the discrimination index 

upon NOR in these mice. Moreover, if enrichment and early ifenprodil treatment would 

impinge on the same pathways, the enrichment protocol should have no further effect in 

ifenprodil-treated mice. Indeed, when tested for NOR, β-Add KO mice treated with ifenprodil 

in the Lsi1 specific window performed poorly in discrimination as compared to control 

(Discrimination index: 0.06, p<0.01 Fig 6A), to levels comparable to enriched β-AddKO mice 

(Fig 6A). Moreover, mice treated with ifenprodil early during development were insensitive to 

the enrichment protocol (Fig 6B):  they did not present any shift in the configuration of the 

parvalbumin interneuon network (data not shown), norr show any further improvement of 

NOR performances. Moreover, enrichment could not rescue the deficit in performance 

induced by late ifenprodil treatment during development (Fig 6B). 

 

 

Figure 6: ifenprodil-induced plasticity resembles enrichment 

Infeprodil P8-P10 produces changes that resemble enrichmentin adult mice, and share with enrichment the same dependence 

on synapse stabilization (A, AddKO are impaired in the stabilization of new synapses, and hence Enrichment produces a 

decrease in NOR performances). Moreover, no further enhancement of performance can be achieved on ifenprodil P8-P10 with 

adult enrichment, meaning that the whole plastic potential has been exploited with the developmental intervention (B). 

Nevertheless, developmental manipulation greatly reduce the potential for adult plasticity (B): this implies that a further 

enrichment is not sufficient to overcome NOR impairment induced by late ifenprodil treatment during development (B) 

 

In order to investigate if the ifenprodil induced plastic state would indeed become the new 

stable baseline configuration, we produced perturbations to the microcircuit to analyze the 

extent of relapse to baseline. To this extent, we subjected mice treated with ifenprodil in Lsi1 

specific window to the fear conditioning, and analyzed PV distribution at defined time points 

after learning. When analyzed at 1 day after the conditioning, ifenprodil treated mice in the 

Lsi1 specific window showed a shift in PV distribution toward higher levels of expression that 

was consistent with the effect of conditioning learning on the system (High PV difference to 
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controls: p<0.01. Low PV difference to controls: p<0.01. Fig 7A). We then analyze to which 

configuration the system would revert back when the transitory changes induced by learning 

would wear off. Indeed, infeprodil treated mice would go back to their ifenprodil-induced 

configuration, suggesting that the enriched like configuration is indeed the new baseline 

condition for these mice (Fig 7B). 

At last, we analyzed the stability of the plastic state acquired by ifenprodil treatment during 

Lsi1 window over time. To this extent, we analyzed how NOR performance enhancement 

would decay with ageing. Enriched-like mice obtained with early ifenprodil treatment were 

still performing better than controls when tested at 6, 12 and 16 months, suggesting a 

permanent enhancement of cognitive performances that does not decay with ageing 

(Difference to controls: 2 months: p<0.001; 6 months: p<0.01; 12 months: p<0.001; 16 

months: p<0.001. Fig 7C). Moreover, ifenrpodil treated mice did not show any decay in 

enhanced performances at any age analyzed, despite the fact that ageing is accompanied 

by decline in performances in NOR (Fig 7C). The impact of such discovery will be discussed 

in the following part.  

 

Taken together, these results confirm that mice treated with ifenprodil in the early time 

window show a stable enhancement of cognitive performances as a result of treatment. 

Moreover, they hint toward the possibility that the PV network possess a sort of long term 

memory of its state, since both ageing or perturbation in microcircuit configuration do not 

shift the network form its plastic state. 
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Figure 7: permanent shifting to plastic state for ifenprodil P8-P10 treated mice 

Ifenprodil treatment produce a stable shift of the baseline CA3 network configuration toward a plastic state (A and B), which 

produce a protective effect against ageing in the adult (C, and see following part of results). 
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4.4.4 Discussion and future directions 

 

Microcircuit development is a complex and prolonged phenomenon that is based in a fine 

regulated interplay between excitation and inhibition. The prevalence of each one over the 

other produces pathological conditions that extend well into adulthood (Turrigiano, 2011). 

Moreover, due to the extreme variety of subpopulations of inhibitory neurons, the maturation 

of each might be a separated phenomenon recruiting different driving forces and principles. 

The development of perisomatic inhibition exerted by PV+ basket cells has received a lot of 

attentions due to some peculiar properties: its sensory-driven maturation seem to regulate 

the opening and closure of periods of enhanced plasticity during cortical development known 

as “critical periods” (For review, see Hensch 2005); moreover, modulation of PV maturation 

seem to be at the basis of important psychiatric pathologies, like Schizophrenia (Belforte et 

al., 2010). In addition, the PV network is implicated in the regulation of learning upon 

experience, by means of defining states of enhanced or reduced plasticity in the adult 

(Donato et al., in preparation). 

Therefore, we studied how PV maturation would proceed in a region which is far away from 

sensory experience, and in which development proceeds according to a defined schedule of 

principal neurons subpopulations maturation (Deguchi*, Donato*, Galimberti*, Cabuy and 

Caroni, 2011). Hence, we elucidated a mechanism by which a transitory sprout of filopodial 

synapses form Mossy fiber terminal would drive the maturation of PV interneurons in the 

CA3 area in the hippocampus in an activity-dependent manner. Moreover, we were able to 

show that principal neurons subpopulations go through the same process of filopodia 

sprouting and reduction with a slight delay in time (probably set by definied neuronegesis 

time windows in granule cells), and respond to MFT release modulation in an opposite way: 

Lsi1 tries to contrast the perturbation of PV maturation in the network (“driver response”), 

while Lsi2 adapts to MFT release (“homeostatic response”).  

Based on these premises, we hypothesized that perturbation of the maturation in vivo would 

result in opposite outcomes, maybe based on subpopulations properties. Therefore, we 

could target selectively Lsi1 or Lsi2 mossy fiber terminals via ifenprodil treatment during 

defined time windows along development, and observe the response in the PV network: 

while both largely reduced PV expression in the PV network in CA3 (as expected for 

reduction of granule cells activation), early treatment involved a larger fraction of PV 
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interneurons which all reduced their level of PV expression, while later treatment produced 

increase in PV expression in around 20% of interneurons, and reduction of it in another 50%. 

Then, we analyzed if this developmental intervention might produce any long-lasting 

alteration in the CA3 network in the adult. Hence, ifenprodil treated mice exhibited a 

permanently altered configuration of the CA3 network in the adult: early ifenprodil treatment 

produced a shift of the PV network toward prevalence of Low PV, enhancement of Feed 

forward excitation and cFOS expression at baseline, and active zone turnover in mossy fiber 

terminals; in contrast, late ifenprodil treatment produced a shift of the PV network toward 

prevalence of Low PV, reduced feedforward excitation and cFOS expression at baseline, 

and reduced active zone turnover in mossy fiber terminals.  

Since these features were previously associated to regulation of learning in the adult 

(Donato et al., in preparation), we tested if early or late ifenprodil treatment during 

development was able to produce alterations in cognitive performances. We therefore tested 

early or late ifenprodil treated mice in NOR and MWM, and consistently found an 

enhancement of cognitive performance in both tasks for early treated mice, and an 

impairment for late treatment. Moreover, treatment outside of this large window produced no 

effect on PV network or cognitive performances. Therefore, we provide evidence that hint to 

the existence of a sensitive period for cognitive enhancement during hippocampal 

development in CA3. 

These preliminary data offer different elements for discussion and further study. First of all, 

they provide a possible mechanism by which PV interneuron maturation might happen in 

cortical areas which lie further away from sensory experience: it would be interesting to 

determine if a mechanism based on the cascade maturation of principal neurons 

subpopulations might take place even in other brain areas, like the prefrontal cortices 

(although, unlike prefrontal, hippocampus matures before the sensory microcircuits 

underlying the sensory modality that will have a major role in its recruitment in the adult, 

which is the visual pathway). Moreover, which signal might orchestrates the cascade of 

excitatory cells subpopulations maturation? Preliminary data would suggest that the earliest 

born subpopulation (Lsi1 in the hippocampus) would respond to a graded molecular signal 

present in CA3 that induce filopodia sprouting (involving to a certain extent EphA4 signaling); 

Lsi1 would then modulate the maturation of the later subpopulation (Lsi2) which would in 

turn be driven solely by Lsi1 activity (Flavio Donato, data not shown). Additional experiments 

are definitely needed to confirm this mechanism. 

Another interesting concept arises from the fact that both the maturation of principal neurons 

subpopulations and the effect of the ifenprodil treatment at different ages might force us to 
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rethink how development proceeds. Indeed, it appears clear that, even when considering the 

same process (i.e. MFT-to-CA3 synaptogenesis, or CA PV interneuron maturation), more 

than a uniform process, we might look at a series of events which are carried on by specific 

players and involve (to a certain extent) specific pathways. Development therefore might be 

constituted by the sequence of determined “windows of opportunities”, in which defined 

manipulations might have opposite consequences which enhance or reduce brain functions 

(with the extreme scenario of pathology), while the same manipulation outside of these 

windows might not elicit any consequence at all (for example, P8-P10 Vs P11-P13 Vs P14-

P16 ifenprodil treatment and cognitive performances in the adult). 

Via the temporal parcellation of the PV development process, we have defined time windows 

in which modulation of NR2B activity might produce long-lasting consequences, ultimately 

leading to permanent cognitive enhancement and impairment. What might be the 

mechanism by which the same manipulation might exert opposite effects in two adjacent 

time windows? This will likely be one interesting concept that I am going to explore in the 

near future. And yet, it is tempting to speculate that the basis for these opposite effects might 

lie in the peculiar response of Lsi1 to activity manipulation during development. In this 

scenario, a decrease in Lsi1 activity (induced by ifenprodil between P8 and P10) might 

freeze the PV interneurons that rely on Lsi1 activity for maturation to an immature, “plastic” 

state for the rest of their life; in contrast, decreased maturation of PV network induced by a 

P11-P13 treatment might elicit a counterbalancing response in Lsi1, which would exert 

enhanced excitation onto a fraction of PV interneurons that might then be frozen into a FFI, 

“crystallized” state for the long term. Moreover, have the interneurons which express 

excessive levels of PV upon the P11-P14 ifenprodil treatment undergone a premature 

development, and therefore missed their proper window of maturation? Recent literature 

(Clemens JP et al, 2012) shows how accelerated maturation of excitatory cells produces 

long-lasting cognitive deficits that are characteristic of Autism Spectrum Disorder. It will be 

interesting to test if this is the case also for Parvalbumin interneurons. A fascinating 

hypothesis in this prospect would suggest that, upon Ifenprodil P8-P10, a fraction of 

interneurons would fail to conclude their maturation properly, and therefore be stuck forever 

in a “critical period” configuration that confers enhanced plasticity and learning to the whole 

CA3 network; in contrast, premature maturation of a fraction of interneurons upon ifenprodil 

P11-P13 could crystallize these neurons in FFI configuration that decreases plasticity and 

learning in the CA3 microcircuits.  

Both these hypotheses pose that a brief NR2B antagonism during development produce 

long lasting consequences in the adult, as my experiments seem to suggest. Moreover, they 

suggest that at least a fraction of PV interneurons establish some of their basic properties 



210 
 

(like PV expression) during a sensitive windows during development which defines their 

“identity” (a definition that includes structural and functional properties, which seem to 

correlate to PV expression), and that can be modified by pharmacological manipulation 

during these critical periods. Indeed, ifenprodil-induced configurations are not lost when the 

system receives a strong perturbation in the adult, as it is the case of learning induced by a 

conditioning protocol: when the network effects of learning wear off in P8-P10 infenprodil 

treated mice, the CA3 network relapses in the “plastic-like” state induced by developmental 

manipulation, and not to the regular baseline. This implies that the network is able to 

maintain a memory of its ifenprodil-induced state that goes beyond what is induced by 

experience. The molecular identity of this “memory” is likely to be extremely interesting in 

itself. If this memory is actually stored in the connectivity pattern on PV IN (i.e., if infeprodil 

induces a permanent enhancement of disinhibitory connectivity over FFI in the adult), or if it 

lies in individual interneurons via modification of its genetic profile (maybe even at the level 

of the epigenetic landscape of the genome), is something that we will determine in the 

future. 

Taken together the behavioral experiments performed in adult mice that were treated with 

ifenprodil during development, one of the probably most unexpected features that can be 

detected is the reduced magnitude experience-induced plasticity in CA3 upon treatment. 

Hence, mice that are constitutively in the crystallized state lose the beneficial effect that a 

protracted housing in an enriched environment can exert both at the microcircuit (data not 

shown) and behavioral level; moreover, mice that are constitutively in the plastic state seem 

to be completely insensitive to the decline in cognitive performance produced by ageing. 

While a partial explanation to this last phenomenon will be laid down in the next and last part 

of this thesis, further experiments will be needed to investigate it further, as it likely will have 

a major impact in our understanding of how microcircuits respond to ageing (and how to 

prevent cognitive decline). 

 

Taken together, we provide evidenced for a subpopulations-based mechanism for PV 

maturation in the hippocampus; we identify windows of opportunity in which we can 

modulate this phenomenon in opposite ways; we define treatments that are able to 

permanently modify the baseline configuration of the CA3 microcircuit and cognitive 

performances in CA3 dependent tasks; we define sensitive windows for cognitive 

enhancement during hippocampal development, which are able to rescue cognitive 

impairment caused by physiological phenomena (i.e. ageing, see the next section).  
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4.4.5 Supplementary material 

 

 

Hippocampal slice cultures produced from P7 pups preserve the lement of the microcircuit 

involved in PV maturation in CA3: filopodial sprouting is preserved and directed to CA3 

PV+IN, whose maturation is activity dependent (A and B). Nevertheless, slice produced at 

P2 are devoided of PV IN (C), probably because their proper migration has not terminated 

yet (D). Nevertheless, filopodial sprouting happens in a cell autonomous manner, although 

excessive filopodia end up contacting CA3 pyramidal cells when PV In are missing (C right, 

grey arrows) 
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4.5.1 Summary 

 

In the adult cortex, experience produces substantial structural modifications in microcircuit 

connectivity that underlies learning at the level of newly formed synapses. Moreover, cortical 

microcircuits can display different configurations supporting enhancement or reduction of 

further plasticity and learning based on the state of the network of interneurons expressing 

the calcium binding protein parvalbumin. Hence, enhanced learning is supported by 

prevalence of interneurons that express low levels of PV, while reduces performances is 

associated to prevalence of High-expressing PV interneurons. Nevertheless, the extent to 

which physiological processes enhancing or reducing plasticity and learning can impinge on 

the same network of PV interneurons is still an open question. 

Previous reports have described a significant reduction of cognitive performances in different 

hippocampal-dependent learning paradigms upon ageing. In particular, ageing has been 

related to a decline in performances in incidental learning tasks, like the novel object 

recognition.  

Here, we test if a microcircuit mechanism based on the state of the parvalbumin interneuron 

network might be involved in the age-related decline of episodic memory. By correlating 

performances of single mice to the state of their CA3 microcircuit, we highlight a strong 

correlation between the integrity of the PV network and NOR performances. Moreover, we 

start to investigate which principle might underlie the age related neuronal loss that we 

observe with ageing, and provide at least two possible treatments by which neuronal loss 

and cognitive impairement can be slowed down upon modulation of the PV network. 
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4.5.2 Introduction 

 

It has long been known that ageing is associated with a marked decline of cognitive function 

that relies upon the medial temporal lobe and prefrontal cortex, such as learning, memory 

and executive functions (for a review, see Burke and Barnes, 2006). These dysfunctions can 

be associated to different molecular pathways that range from functional plasticity to cell-cell 

interactions, from intrinsic biophysical properties to gene expression. However, it is still 

unknown if any structural rearrangement happening at a microcircuit level could be held 

accountable for any aspect of age-related cognitive decline. 

One of the brain areas mostly affected by ageing is the hippocampus. For example, ageing 

can affect place cell function: aged rats can show a certain degree of impairment in the 

stability of hippocampal maps, for which if allowed to explore an environment to which they 

had already been exposed to, they can fail to retrieve the proper hippocampal map 

established during the first exposure (Barnes et al., 1997).  Moreover, hippocampal circuitry 

shows a high degree of age-associated changes both in its structural plasticity and 

functionality in the CA3 area. Here, ageing is accompanied by a continuous growth that 

mainly involves the largest subpopulation of mossy fiber terminal, which expand along the 

longitudinal axis of CA3 pyramidal cells (thereby expanding the dendritic territory that each 

mossy fiber terminal covers along a single pyramidal cell) (Galimberti et al., 2006). 

Moreover, ageing is accompanied by a slow but steady decline in NOR performances, in 

which mice have to discriminate between a novel and a familiar object, which likely underlie 

a deficit in episodic memory formation.  

Previous work in the lab has demonstrated that NOR discrimination is critically dependent on 

the integrity of the mossy fiber-to-CA3 synapses; moreover, in the first part of these thesis I 

have demonstrated how the state of the PV network can regulate the performance in this 

task by underlying enhanced or reduced cognition, Therefore, I will investigate if any 

modification that occurs in the PV network in CA3 during ageing might underlie these 

cognitive deficits, and possibly modulate the extent of cognitive impairment with  targeted 

manipulations of the interneuron network. 
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4.5.3 Results 

 

Age-related decline of incidental learning performances correlates with 

rearrangements in parvalbumin interneuron network. 

 

Previous reports have described a significant reduction of cognitive performances in different 

hippocampal-dependent learning paradigms upon ageing. In particular, ageing has been 

related to a decline in performance in incidental learning tasks, like the novel object 

recognition. This task analyzes the function of the hippocampus in underlying episodic 

memory, by testing for the ability to discriminate between a familiar and a novel object. Many 

molecular aspects correlated with ageing have been involved in producing this decline; here, 

we test if a microcircuit mechanism based on the state of the parvalbumin interneuron 

network might be involved in the age-related decline of episodic memory. 

In agreement with previous reports, we could observe a significant decrease in NOR 

performance upon ageing in mice that were up to 24 months old. This decline would become 

evident after the first year of age, and progress linearly toward disrupted discrimination (12 

months difference to 2 months: p<0.05; 16 months difference to 2 months: p<0.01; 24 

months difference to 2 months: p<0.001. Fig 1A). 

 In order to study whether ageing would affect the properties of the PV IN network, and if any 

of these properties would correlate to cognitive decline, we analyzed the state of the PV 

network at different stages during ageing. In CA3, ageing correlated with the decrease of the 

overall number of parvalbumin immunoreactive interneurons per area CA3 (Normalization to 

6 months: 2 months: 0.8 fold, p<0.01; 12 months: 0.61 fold, p<0.001; 24 months: 0.26 fold, 

p<0.001 Figure 1B and C). Moreover, the number of PV interneurons was strongly 

correlated with NOR performances per single animal (Pearson correlation: 0.83. Fig 1D). 
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Figure 1: Cognitive decline upon ageing correlates to PV IN loss in CA3 

Ageing is accompanied by a marked decline in cognitive performance in incidental learning tasks like the NOR (A), qhich goes 

hand in hand with a marked decrease in the number of PV+ interneurons in CA3 (B and C), whose microcircuit state regulates 

performances (Donato et al., in preparation). Indeed, NOR performance correlates with the absolute number of PV+ 

interneurons in CA3 for individual mice (D) 

 

To study the nature of the decrease in PV immunoreactive neurons upon ageing, we tested 

if it could be attributed to the decrease in expression under the limit of detection of the 

protein parvalbumin, or to neuronal loss. To differentiate between the two scenarios, we 

studied the temporal evolution of the TOMATO+ neurons network in PV-cre/Rosa26-CAG-

Lox-STOP-Lox tdtomato mice. In this mouse line, the PV promoter drives cre expression 

with the same pattern of the endogenous protein, and therefore produces recombination 

upon the tdtomato locus in PV+ neurons. Nevertheless, since the tdtomato construct is 

under the control of a different promoter its expression becomes independent of PV after 

recombination (although is restricted to PV+ neurons). If age related decline in the number of 
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immunoreactive PV interneurons would be due to decrease expression of PV, then the 

overall number of TOMATO+ neurons in these mice should be stable with ageing. 

Nevertheless, if the decline should be attributed to neuronal loss, then the amount of 

TOMATO+ neurons should decline as well. When quantifying the number of TOMATO+ 

neurons per CA3 area, we could observe an age-related decline in the number of 

immunoreactive neurons that could closely resemble the one observed for PV 

immunoreactivity, thereby suggesting a significant neuronal loss of Parvalbumin 

interneurons upon ageing (Normalization to 6 months: 2 months: 0.93 fold, not signigficant; 

12 months: 0.63 fold, p<0.001; 24 months: 0.23 fold, p<0.001 Fig 1C). Moreover, the 

discrepancy between the two timecourse in the early life of the animal (2 to 6 months) would 

suggest the presence of potential PV+ interneurons, which are undetectable with PV 

immunostaining (probably due to the low level of expression of the protein), and that might 

underlie prolonged development of this component of CA3 microcircuit. 

Taken together, these data provide evidence that the number of parvalbumin interneurons 

decreases upon ageing, and this process strongly correlates with performances in incidental 

learning for single mice.  

 

Vulnerability to Age-realted neuronal loss correlating to PV expression 

 

The previous data indicate a strong link between the number of PV+ interneurons and the 

performance in the NOR task upon ageing. Besides the effect on the number of interneuron, 

ageing was also accompanied by a modulation in the proportions of High or Low PV cells 

(progressive increase in Low PV: 2m: 2%; 6m: 7%, 12m 19.5%; 24m: 30.2%. p<0.01, one 

way ANOVA, Fig 2A): this would suggest that neuron loss have to happen preferentially in 

some classes of PV interneurons, which in proportion should decrease their prevalence in 

the overall distribution. Therefore, we quantified how age-related neuronal loss would impact 

each class of PV expression by normalizing the overall number of neurons to the levels 

observed at 6 months (peak of PV immunoreactivity), and calculating the prevalence of each 

class over the normalized ensemble. Confirming the hypothesis of a preferential targeting, 

the decrease in the overall number of interneurons was directly correlated with the 

magnitude of expression of the protein parvalbumin, with High PV being the most affected 

class (5 fold decrease in prevalence, p<0.01,One way ANOVA. Fig 2B, C and D). The 

increased vulnerability toward age-related neuronal loss determined by PV levels was even 

more evident when comparing the integrity of the PV network at 6 Vs 24 months (Fig 2C and 
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D): in this time interval more that 50% of neurons are lost in the CA3 network (Fig 2C), with a 

loss that is targeting preferentially classes with higher expression of PV (Fig 2D). 

 

 

 

Figure 2: Increased vulnerability to age-related cell loss for higher expressing PV 

interneurons 

Age related neuronal loss does not impact to the same extent in all PV In classes, but rather produces a shift in the network 

toward prevalence of Low PV (A). This is produced by the prevalent loss of neurons that express higher levels of Parvalbumin 

(B), as can be inferred by a direct comparison between the number of neurons for each class between 6 months and 24 

months (whose absolute extent has been normalized to 6 the overall number on PV neurons at 6 months) (C). here we can see 

that neuronal loss is logarithmically related to PV expression (D) 
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Modulation of neuronal loss is able to modulate age-related cognitive decline. 

 

Therefore, we hypothesized that interventions that might decrease the expression of PV 

could be protective against age-releated cell loss, and conversely increasing PV expression 

might worsen this phenomenon.  

In previous studies, we showed that experience is able to modulate the composition of the 

PV network enhancing the fractions that express extreme levels of the protein. Hence, 

environmental enrichment is able to enhance Low PV neurons while contextual fear 

conditioning learning increase the High PV class. Therefore, we used these protocols to 

modulate PV expression and test if remote experience might promote survival among PV 

interneurons at later stages: to this end, adult mice (10 months) were trained in either the 

environmental enrichment or the contextual fear conditioning, and the effect on the PV 

network was assessed long after experience (16 months) (Fig 3A).  

First, we confirmed that environmental enrichment and fear conditioning would have the 

same impact on PV network at every age during the life of the animal, thereby allowing us to 

perform a targeted modulation of the PV network composition (Supplementary figure 1). 

Therefore, we subjected mice of different ages to the two paradigms, and studied the effect 

on PV network and NOR performances. Environmental enrichment was able to modulate PV 

network toward enhancement of Low Pv fractions both at 12 and 16 months of ages 

(Supplementary figure 1B and C); moreover, enriched mice performed better than age-

matched controls at both ages, indicating that the overall pathways underlying the effect of 

environmental enrichment at 2 months of age are conserved upon ageing (Supplementary 

figure 1 A, B and C). Besides, conditioned mice presented an enhancement of the fraction of 

High PV interneurons upon learning at each time point during ageing; nevertheless, this shift 

would not correlate with decreased performance in the NOR test, which were comparable to 

age-matched controls and probably due to a saturation effect present for low performances 

(Supplementary figure 1A, B and C).  

Thereby we tested if a prolonged permanence in the “plastic state” could prevent age-related 

cognitive decline by modulating PV network. To stably decrease the fraction of neurons 

expressing high levels of parvalbumin, we subjected 10 months old animals to 3 weeks of 

environmental enrichment, and analyzed PV network composition and behavioral 

performances after 6 months from the end of the enrichment (when enrichment-related 

effects have most likely wore off. Gogolla et al., 2008. Fig 3A). This showed us that remote 

enrichment experience produced deep rearrangements in the PV network: the number of 
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immunoreactive neurons were significantly higher than age matched controls, and 

comparable to the levels of a 12 months old animal (p<0.01. Fig 3B); likewise, performances 

in NOR were comparable to the extent of 2 months old animals, with a significant increase in 

respect to both age matched controls and enrichment upon age matched controls (p<0.01. 

Fig 3C). Moreover, we normalized the PV network to 6 months level in neuronal number, 

and compared each class of PV expression to age matched controls: this analysis confirmed 

that a remote enrichment experience was sufficient to modulate age-related PV loss by 

preserving High PV interneurons (p<0.01: One way ANOVA. Fig 3D), and this was sufficient 

to rescue incidental learning performances.  

Likewise, we tested if a prolonged permanence in the “crystallized state” might accelerate 

cognitive decline for its higher prevalence of High PV. To obtain a prolonged crystallized 

state, we performed three times the contextual fear conditioning protocol (with 2 months 

intervals between sessions) in 10 months old mice (fig 3A). When analyzed at 16 months, 

these subjects showed a significant decrease in the number of parvalbumin immunoreactive 

neurons in age matched controls  (p<0.05. Fig 3B Fig 3B), to levels comparable to 24 

months old animals; likewise, performances in NOR were robustly impaired to level 

comparable to 20 months old mice (p<0.05 Fig 3C). Note that this prolonged crystallized 

state was the only paradigm that was able to worsen performance in NOR, as 16 months old 

controls whom learned the fear conditioning at this age would not show any impairment. 

Likewise, a comparative normalized analysis revealed that the most extensive effect on 

neuronal loss was exerted on High PV neurons, consistently with the hypothesis that the 

prolonged crystallized state would critically expose this fraction to age related effects 

(p<0.01: One way ANOVA. Fig 3D). 
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Figure 3: remote experience modulates ageing via PV IN network 

Remote experiences (A), which highlight a long-term permanence in the Palstic or Crystallized state, modulates the extent of 

ageing on the CA3 network both at a structural (B) and behavioral (C) level. In particual, remote EE reduces the fraction of IN 

that are lost with ageing, with a greater effect for High expressing PV (B and D); in stark contrast, remote conditioning 

increases the fraction of IN that are lost with ageing, with a greater effect on High PV interneurons (B and D). 

 

To further strengthen this observation, which allows us to modify the cognitive decline upon 

ageing, we followed how ageing would impinge on CA3 networkws whose baseline has been 

permanently shifted toward High (ifenprodil P11-P13) or Low (ifenprodil P8-P10) PV network 

configuration (see previous parts of the thesis). Therefore, we monitored how 

developmentally treated mice would perform in the NOR task at 1 year of age, and analyzed 

how the microcircuit would evolve. Hypothetically, mice which have been frozen in a High PV 

configuration should be more sensitive to ageing, since the vulnerable interneurons would 

represent the majority of the network; in contrast, mice that have been frozen in the Low PV 

configuration should be protected, as it has been shown for remote enrichment. Mice treated 

with Ifenprodil P8-P10 showed indeed no decay in performances at 12 months 8p<0.001, 

Fig 4A), with a significant enhancement respect controls that was underlied by no significant 



222 
 

reduction of PV interneurons (p<0.001., Fig 5B); in contrast, mice treated with ifenprodil P11-

P13 showed a significant reduction in performances at 12 months (p<0.05., Fig 4B), 

accompanied by a reduction of PV+ interneurons (to levels comparable to 18 months. 

P<0.05. Fig 4B).  

Figure 4: Ageing upon permanently-altered CA3 network configuration 

Developmental ifenprodil treatments modulate ageing-related behavioral and neuronal changes due to the enhancement or 

reduction of PV expression in baseline lveles (A and B) 

 

 

Moreover, mice treated with ifenprodil P8-P10 showed no decrease in NOR performances or 

PV number up to 16 months of age (NOR difference to controls: 2 months: p<0.001; 6 

months: p<0.01; 12 months: p<0.001; 16 months: p<0.001. Number of PV difference to 

controls: 12; months p<0.001; 16 months: p<0.0001 Fig 5A and B). This result would 

suggest that not only this developmental treatment is sufficient to induce cognitive 

enhancement in the adult, but that it might abolish ageing in the CA3 microcircuit structure 

and performances. 
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Figure 5: Ageing is suppressed in ifenprodil P8-P10 treated mice 

The constitutive shift toward the plastic configuration mediated by ifenprodil P8-P10 is able to prevent completely age-related 

cognitive impairement (A) and PV IN loss (B). Moreover, performance are maintained at levels that carachterize enhanced 

performances in young adults (A) 
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4.5.4 Discussion and future directions 

 

By analyzing the maturation of the network of PV interneurons in hippocampal area CA3, we 

have shown that the age-related decline in cognitive performances for an incidental learning 

paradigm (which underlies defect in the production of episodic memory) can be largely 

correlated to the gradual loss of parvalbumin+ interneurons in the microcircuit which is 

critically involved in the task. As a matter of fact, performance in the NOR of mice of different 

age were proportional to the absolute number of PV+ interneuron per area CA3, which 

highlights the possibility that the integrity of the CA3 network might be essential for proper 

performance. Moreover, ageing impacted not only the absolute number, but also the 

proportion of PV interneurons belonging on each class of PV expression that we have 

previously described. This strongly suggested that age-related neuronal loss did not affect 

each class to the same extent, but interneurons might exhibit selective vulnerability based on 

intrinsic properties. We indeed showed that the proportion of cell loss was strongly 

correlating with PV expression, with High PV being more sensitive to ageing than Low PV 

interneurons (which were hardly affected by it). Therefore, we hypothesize that a prolonged 

modulation of PV expression might be able to impact on neuronal loss and hence on NOR 

performances upon ageing. Hence, prolonged  “Low PV” state (achieved via remote 

environmental enrichment or via developmental pharmacological treatment) showed to be 

protective against age related cognitive decline and PV loss, while a prolonged “High PV” 

state accelerated ageing at a behavioral and network level. Therefore we propose new 

strategies to mitigate the cognitive decline in episodic memory that is usually occurring with 

ageing, by promoting survival of PV+ interneurons in CA3 via targeted modulation of PV 

expression (and probably of the properties correlated to it). 

The selective vulnerability of High PV interneurons to ageing is confirmed also by those 

experiments that, by producing a prolonged plastic state with the prevalence of Low PV, 

rescue to a certain extent the loss of interneuron. A normalized analysis in fact reveals how 

High PV interneurons are those that most benefit from the effect of remote experience, or 

developmental pharmacological manipulation. Then why are those interneurons more 

vulnerable in the first place? In our previous work about network states, we have shown how 

PV expression would correlate with a series of properties ranging from GAD-67 expression 

to firing frequency. It is reasonable to hypothesize then that those interneurons are indeed 

the most active of their kind, also because they are the ones that bear the higher density of 

excitatory connections on their dendrites. Therefore the burden of activity that is impinging 
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on these neurons for a prolonged time, both for their intrinsic higher spiking phenotype and 

their higher metabolic demand, might be the cause of their selective vulnerability to ageing. 

Indeed, it has been described by many labs, including ours, that a higher cellular stress 

might be at the basis of selective susceptibility for neurodegeneration of specific cell types 

upon pathological conditions (Saxena, Cabuy and Caroni, 2009). We wonder to what extent 

higher expression of PV might signal an enhanced vulnerability to ageing based on the same 

principles.  

One striking feature showed by this study was the tight correlation between behavioral 

performances and the number of interneurons lost/maintained at each age, and how specific 

the loss seemed to be for neurons expressing higher levels of PV. Would behavioral 

performances decline to the same extent if all PV interneurons would show the same 

vulnerability to neuronal loss? The question boils down to understand if the impact of high 

PV interneurons in a cortical network is higher than the average PV interneuron. In graph 

theory, networks are defined as a series of nodes which are connected by links; the degree 

of connectivity of each node (that is, the number of links it possesses, k) define the network 

model (Albert-Lazlo Barabasi, 2002 and 20010). “Small world” networks are defined by 

power laws distributions of the number of nodes with k links, which highlight the presence of 

few nodes with a very high number of links, or “hubs”, whose impact in the network is higher 

than the remaining nodes: they reduce the number of passages to reach a specific node 

from every other node in the network. In this scenario, a random elimination of nodes in the 

network should not cause damage to its function due to the intrinsic resilience of the network 

itself (Albert-Lazlo Barabasi, 2002). However, a target elimination of hubs in the network has 

a greater impact due to their higher connectivity: an extreme scenario foresees the complete 

shutdown of the network when a critical number of hubs is eliminated. To better understand 

this, I will provide an example with a well known network, the Internet: a hacker attack which 

randomly takes down web pages will likely have no impact on the user experience and 

network function, since the most of the pages will be websites that receive a very few 

number of visits (which numerically represent the largest fraction of internet websites); on 

the contrary, a targeted attack aimed at the internet hubs (search engines like Google or 

Yahoo, or social networks like Facebook or Twitter) will increase the path to any of the other 

internet web pages, decreasing efficiency. In biology, one of the nost studied hubs existing in 

the cell in the protein p53, whose function is related to a multitude of signaling pathways, 

and whose deviations from physiological functions are a crucial step in the tumorigenic 

progression of a cell (again underlying how the loss of hubs in a network has a greater 

impact than the loss of low-connected nodes). In the CA3 PV network, High PV are indeed 

interneurons that receive a higher degree of connectivity from excitatory cells, and therefore 
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might possess feature that make them Hub-like (in a similar fashion than other interneuron 

classes during development, Bonifazi et al., 2009); moreover, their higher firing frequency 

and GAD-67 content (which is related to the amount of GABA synthesized and release in the 

synaptic clef) might increase their “fitness” in the network by means of higher inhibition 

exerted. If we should confirm the presence of Hub-features for High PV interneurons, we 

might understand why loosing that component with ageing has such a great effect on 

hippocampal computation: they would represent the interneurons that are recruit more 

frequently to exert FFI on pyramidal cells, and that exert inhibition with the highest efficiency: 

eliminating this resource would destroy the temporal precision of pyramidal cells spiking ( in 

the same line, ageing decreases the power of gamma oscillations in cortical microcircuits) . 

Perhaps the most striking evidence presented in this work refers to the possibility that 

ageing, considered as a cognitive decline process, can be slowed down or accelerated by 

remote experience. In an extreme scenario, upon a condition for which the CA3 microcircuit 

is crystallized in a plastic configuration (ifenprodil treatment during development, see 

previous part of the thesis) the CA3 microcircuit shows no sign of either network (no loss of 

PV neurons) or behavioral (no impairement of juvenile performances in NOR) ageing. If the 

age-related loss of PV interneurons in CA3 should be confirmed at the level of human 

subjects, the knowledge of such a powerful ways to interfere with the ageing process will 

likely be or relevant impact for therapeutic applications. 

Along with this open question, other future experiments will focus on causally linking PV loss 

to impaired performances, by targeted elimination in young individui; then, I will investigate if 

PV loss can be ascribed only to the CA3 area, or extended to other networks in the brain 

(with particular attention to computational areas like frontal cortices and Layer 2/3 in the 

cortex); finally, I will focus on possible network mechanisms aimed at decreasing 

vulnerability to neuronal loss by modulating the PV network composition (for example, 

prolonged activation of VIP+ neurons or inhibition of PV+ neuron themselves). 
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 4.5.5 Supplementary material 

 

Experience-induced modulation of PV network and NOR performances are age 

independent, and follow the same dynamics at 2 (A), 12 (B) or 16 (C) months. 
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5. General Discussion and 

Outlook 

  



229 
 

Microcircuit states regulating structural plasticity and learning in the adult 

 

The results presented in this thesis provide evidences that cortical microcircuits can display 

at least three “states”, which can be defined by connectivity, structural as well functional 

features of excitatory and inhibitory neurons, and modulate the extent of structural plasticity 

as well learning in the microcircuit. Moreover, the network of Parvalbumin expressing 

interneurons has a key role in defining these states, and structural rearrangement of the 

wiring diagram impinging on single interneurons can modulate the composition of the 

network to perform transitions among them. Hence, a state that enhances disinhibition 

connectivity on PV interneurons leaving FFI unaltered produces a higher fraction of Low PV 

interneurons, a higher degree of structural plasticity in excitatory microcircuits, and  

enhanced performances in further learning paradigms (“Plastic State”). In stark contrast, 

enhancement of FFI connectivity upon PV interneurons characterizes a state of higher 

fraction of High PV interneurons, low degree of structural plasticity in excitatory microcircuits, 

and reduced performances in further paradigms (Crystallized State”).  

Surprisingly, incremental forms of learning are able to implement a sequential transition 

between states that might favor exploration during learning, and exploitation upon learning 

completion. In fact, incremental learning is characterized by the recruitment of a dedicated 

VIP-PV microcircuit module for which VIP+ interneurons,  by means of an enhanced 

inhibitory drive on parvalbumin interneurons, mediate the transition toward the Plastic state 

(to revert back to baseline by the end of learning). In stark contrast, learning completion is 

marked by an increase in FFI connectivity from specific excitatory inputs impinging on PV 

interneurons, which mediates the transition toward the Crystallized state. The experiments 

presented in the first part of the thesis clearly show that the recruitment of the VIP-PV 

module to establish the plastic state is necessary for learning, and targeted modulation of 

disinhibitory release is sufficient to modulate performances.  

Taken together, these experiments provide the first evidence that support the existence of 

discrete states in microcircuit configuration regulating plasticity and learning in the adult; 

moreover, they show how experience acts on cortical neurons to achieve transitions among 

states. Therefore, a further effort to understand the interplay between excitatory and 

inhibitory microcircuits upon experience, and elucidating the role of each neuronal 

subpopulation in performing those transitions, is fundamental in understanding how the brain 

learns about the environment. 
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Implementing transitions between states 

 

Transitions between states exploit specific dynamics targeting directly excitatory or inhibitory 

microcircuits as a function of experience. In particular, excitatory microcircuits are driving the 

transition toward a reduced plasticity state upon learning completion (“Crystallized state”), 

while they respond to the Low PV configuration (“Plastic State”) upon environmental 

enrichment. Nevertheless, the extent to which the same subpopulation of randomly selected 

neurons could mediate both transition is unknown. Moreover, modeling a network in which 

both transitions would be performed by the same players would imply that the microcircuit 

would be allowed to implement only one configuration at the time, with no memory of 

previous states (“Common substrate model”); alternatively, a network in which 

subpopulations of neurons would be recruited specifically upon one transition, but selectively 

excluded by the other, would allow the microcircuit to exploit multiple configurations at the 

same time, and to retain a memory of previous states (“Specialized substrate model”). 

Indeed, when a mouse in the plastic state is subjected to a learning process (and hence to 

the transition to a crystallized state), it does so (both in the absolute extent of the transition 

as well as in the baseline it reverts back after learning) as if the Plastic would be the default 

state of the network (thereby exhibiting a lasting “memory” of previous states upon further 

experience) (Flavio Donato, data not shown). Moreover, preliminary results obtained in our 

lab support the hypothesis that genetically and developmentally defined subpopulations of 

principal neurons in the hippocampus, which we have shown to connect selectively across 

hippocampal subdivision by a mechanism that uses matched neurogenesis and 

synaptogenesis between synaptic partners belonging to the same subpopulations (See part 

three of the results), are differentially involved in mediating or responding to state transition 

(Dominique Spirig, unpublished results, and Flavio Donato, unpublished supplementary 

data). Specifically, Lsi1 mossy fiber terminals in the hippocampus would be recruited upon 

learning completion to mediate the increase in FFI connectivity necessary for transitions to 

the crystallized state. Moreover, they would be characterized by an intrinsically more stable 

synaptic turnover at MFT and would be able to induce FFI synapse sprouting upon learning 

even with a structurally compromised PV network. In stark contrast, Lsi2 mossy fiber 

terminals would not support FFI growth upon learning completion, but would be able to 

respond via increase in feed-forward Excitation upon CA3 pyramidal cells as a consequence 

of a prolonged plastic state. This might be a consequence of their intrinsic enhanced 

structural plasticity, which might explain their ability to respond with an increase of FFE also 

to enzymatic manipulations of the PV network toward the plastic state (in contrast to the 

Lsi1, which is unresponsive) (Flavio Donato, data not shown).  



231 
 

 

Modulating PV network to manipulate cognitive performances 

 

Understanding the principles underlying each network state, and governing the transitions 

between them, is fundamental not only for understanding what learning is, and how 

experience is coded at the level of single microcircuits, but also to obtain important entry 

points in the attempt to influence cognitive performances in health and disease. In the last 

part of the thesis, preliminary results show two interesting phenomena pointing toward this 

direction. The first is that the integrity of the PV network is necessary for proper cognitive 

abilities: I have indeed showed how ageing affects the number of PV interneurons in the 

network producing a high degree of neuronal loss which target preferentially interneurons 

with higher expression of parvalbumin. Strategies aimed at producing a long-lasting shift 

toward low PV in adult animals are indeed successful in rescuing (at least partially) the age 

related impairment both at the network (with enhanced survival of PV interneurons for 

comparable ages) and behavioral level (mice perform to levels comparable to younger 

counterparts). The second aspect regards the possibility that basic properties of cortical 

network (like the distribution of PV interneurons classified by intensity) might be acquired 

during sensitive periods during development. In the fourth part of my thesis I have indeed 

shown that pharmacological manipulation during specific windows along the maturation of 

the PV interneuron network (that molecularly correspond to the period when Lsi1 and Lsi2 

drive the integration of PV interneurons in the CA3 microcircuit), has a long lasting effect that 

extend well into adulthood: mice treated early during development (Lsi1-specific time 

window) display a baseline CA3 network configuration in the adult that is similar to the 

Plastic state achieved upon enrichment, with enhanced fraction of Low PV interneurons, 

enhanced active zone turnover, and enhanced performance in both incidental and 

incremental learning tasks. In stark contrast, mice treated late during development (Lsi2-

specifi time window) display a baseline CA3 network configuration similar to the Crystallized 

state achieved upon learning completion, with enhanced fraction of high PV interneurons, 

reduced active zone turnover, and reduce performance in both incidental and incremental 

learning.  
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What do Low and High PV INs do? 

 

A powerful concept arising from the experiments presented in this thesis is that a modulation 

of the network composition that favors classes of interneurons with defined structural (and 

likely functional) properties, is sufficient to regulate computation and behavioral performance 

of the animal. To my knowledge, this is the first time that such a principle is hypothesized as 

a regulating component of learning. And yet, a profound question arises as to how the 

aboundance of High or Low PV might impact on the whole CA3 network. A partial hypothesis 

that tries to answer to this question is provided during the discussion of the first part of the 

thesis. Moreover, a likely interesting subject to be developed further is how network 

distribution influence perisomatic inhibition per se. It is tempting to speculate that, since High 

PV should be responsible of higer power of Gamma in excitatory networks, their firing should 

be finely timely regulated so to synchronize discharge on pyramidal cells (which, as I have 

shown in the the part 4.1 supplementary figure 6, receive synapses form a large fraction of 

PV cells in the network, so to reproduce the distribution in intensity that is seen at the soma 

even at the level of single baskets). This would also partially explain the major effect that a 

loss of High PV has on the CA3 network (with ageing, see 4.5), which might be 

accompanied by decrease in power of gamma oscialltion (See Barbas lab). On the contrary, 

low PV would likely exhibit asynchronous release impinging lower temporal precision on the 

PC discharge. Nevertheless, it would be unrealistic to hypothesize that low PV would only 

produce a loss of function (in this case, synchronicity). More likely they are able to modulate 

the network computation in another way, for which an increase in Low keeping the High 

constant would be sufficient to produce an effect on the CA3 network properties (as it is the 

case after 1 week of enrichment). How would Low PV impact on the network? Do they 

change non-linearly the properties of High PV or impinge on the tonic inhibition exerted in 

CA3? This will likely by a future direction to pursue, since their property to enhance cognitive 

performances makes them attractive also from a therapeutic point of view. 

 

Outlook 

Therefore, the work exploited during my thesis can shed new light on the question posed in 

the preface (“If we could know all the connections and wiring patterns of the brain of an 

individual, could we understand how he/she thinks, feels, and gives rise to behavior?”). 

Studying emotions belongs to a different realm of research that has not been touched by this 

thesis (for an entertraining analysis, look at Ledoux J., 1998 and 2003). Nevertheless, 
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focusing on the cognitive aspects of brain functions, my work has shown that, by knowing 

how microcircuits assemble; how experience shapes connectivity and recruits dedicated 

microcircuit modules; which neuronal substrates are targeted by experience and learning 

paradigms; and how the network evolves upon ageing, we can predict the potential to which 

the system is going to perform in defined learning paradigms (specifically, episodic and 

spatial navigation tasks critically relying on the hippocampus). Moreover, we can interfere in 

vivo in behaving animals to modify their cognitive potential, inducing an enhancement of 

cognitive performances that, in some cases, can last bona fide for the whole life of the 

animal.  

Many unanswered questions arise from the evidence presented in this thesis. Understanding 

how the modulation of the PV network, with the prevalence of Low or High PV interneurons, 

might impact on the recruitment and activity of the pyramidal cells will almost certainly be 

crucial to understand how the states we described support learning. This will likely impact 

also on our understanding of the mechanisms that implement transitions among network 

configurations, and which pathways or cells subpopulations might be recruited upon them. 

Such a knowledge might open the way not only to new efforts in understanding how the 

brain learns about the environment, but also to trying to manipulate cortical microcircuits to 

achieve beneficial effects in physiological and pathological conditions. We have shown how 

these types of approaches will likely have an impact on the modulation of age-related 

cognitive decline, and their involvement in pathological conditions like schizophrenia or the 

autism spectrum disorders remains to be determined. 
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6. Materials and Methods 
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Mice and reagents. 

Add2−/− mice were from Jackson Laboratories, Bar Harbor, Maine; the reporter line Thy1-

mGFP(Lsi1) was as described. We analyzed structural traces of learning at GFP-positive 

LMTs of ventral and dorsal hippocampus (CA3b) using the 'sparse' transgenic reporter line 

Thy1-mGFP(Lsi1)  and Thy1-mGFP(Lsi2). Lhx6-GFP  mice were from Gensat at Rockfeller 

University, New York mouse strain: STOCK Tg(Lhx6-EGFP)BP221Gsat/Mmmh. PV neurons 

labelling was achieved via breeding of a PV-cre line with Rosa-CAG-STOP-tdTomato (both 

as a kind gift from Silvia Arber, Basel). Optogenetic experiments were performed on slice 

cultures from PV-cre and VIP-cre mice (kind gift from Anthony Dajer, Geneva). 

Channelrhodopsin-expressing AAV viruses was kindly provided from Santiago Romapani 

and Botond Roska as a mixture of serotypes 1 and 2 (AAV Ef1a::DIO Chr2d-EGFP (sero 

2/1)). 

Mice were kept in temperature-controlled rooms on a constant 12-h light-dark cycle, and all 

experiments were conducted at approximately the same time of the light cycle. Before the 

behavioral experiment, mice were housed individually for 3–4 d and provided with food and 

water ad libitum unless otherwise stated. All animal procedures were approved and 

performed in accordance with the Veterinary Department of the Canton Basel-Stadt. 

All behavioral experiments were carried out with male mice that were 55–65 d old at the 

onset of the experiment and were performed according to standard procedures. 

Fixations was carried on as transcardiac perfusion with 4% PFA as previously described 

(See 3.2.6). fixed tissue were stored at +4 degrees for one night in PFA, then ad libtum in 

PBS. 

 

Stainings and histological analysis. 

Staining procedures were carried on as previously described (3.2.6). Antibodies were as 

followed: Goat anti-PV (Swant biotechnologies, Bellinzona) 1:5000; mouse anti GAD-67 

(chemicon) 1:500; rabbit anti cFOS (Santa Cruz biotechnology) 1:10000; guinea-pig anti 

vGlut3 (kind gift from Silvia Arber): 1:1000; Rabbit anti RFP (Rockland) 1:1000: rabbit anti 

GFP (Invitrogen) 1:1000; mouse anti Bassoon (RY) 1:200; mouse anti Gephyrin (RS) 1:500,  

Secondary detection was carried out with animal-specific secondary antibodies conjugated 

to Alexa fluorophores (488, 568 and 647, Molecular Probes, Invitrogen). 

Dorsal hippocampus was located at -2.15 from bregma, and that position was maintained for 

any histological analysis. M1 was located at 1.58 from bregma. 
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Synapse density onto RFP positive dendrites and PV and vGlut3 density on pyramidal cells 

soma was quantified as the number on puncta detected on the dendritic surface. Dendritic 

surface was visualized using Imaris software (bitplane) with the construction of isosurfaces 

around individual dendritic segments (surface smoothness: 0.2 um; quality level: 5). 

Automatic spot detection algorithms were implemented for synapse detection (expected 

radius: 0.5um; quality: 2000). VIP colocalization to Gephyrin was quantified via commercial 

software (Imaris, Bitplane). 

MFTs structure was quantified as previously described (Galimberti et al, 2006). cFOS 

analysis was conducted as previously described (3.2.6). 

Number of PV or RFP positive neurons was normalized toward CA3 areas. 

PV interneurons somas were isolated and PV intensity was quantified automatically via 

commercially available softwares (imaris, bitplane). Therefore, absolute intensities were 

plotted as a distribution of single neurons in arbitrary units of intensity (Graphpad, prism) and 

categories were defined based on statistical distributions upon controls. Hence, Low PV 

presented the lowest 5 percentile of the whole distribution (0-800 arbitraty units of intensity). 

Categories were then defined based on Low PV: 800-1600: intermediate Low; 1600-2400 

intermediate High; > 2400: High). 

For high-resolution imaging of LMTs in fixed tissue, we imaged lamellar sections on an 

upright spinning-disk microscope using an alpha Plan-Apochromat ×100/1.45 oil-immersion 

objective (Zeiss) and Metamorph 7.7.2 acquisition software (Molecular Devices, Sunnyvale, 

CA, USA). Voxel size was 0.106 μm × 0.106 μm × 0.2 μm. For other staining analysis, we 

processed all samples belonging to the same experimental set in parallel and acquired them 

with the same settings on an LSM710 confocal microscope (Zeiss) using an EC Plan-

Neofluar ×40/1.3 oil-immersion or x63/1.4 oil immersion objective (Zeiss). We used 

transverse hippocampal sections or cortical coronal sections for imaging, and later analyzed 

high-resolution three-dimensional confocal stacks using Imaris 7.0.0 (Bitplane AG) software. 

 

Pharmacology experiments. 

 

Topic chronic treatments 

Topic treatment was performed via implantation of cannula guides in the target region, and 

repeated cannula injections over consecutive days. Mice underwent surgeries as previously 
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described (Galimberti, Bednarek, Donato and Caroni, 2010). Guides (33G, Bilaney 

Consultants) were topically implanted so that the cannula would be penetrating at the center 

of the hippocampus proper (coordinates: see following), and fixed in position via glue and 

dental cement. Mice were allowed to recover for 1 week prior to the first treatment. The 

amount of solution injected did not exceed 200 nL. 

Drugs topically applied were: BDNF (0.1µg x mL, peprotech), ChABC (0.08 units per 

injection, Sigma); VIP (1 nM, Tocris) and [Ac-Tyr1,D-Phe2]-GRF 1-29 (300 nM, Tocris).  

Coordinates:  

BDNF and ChABC: Bregma: -1.58; Lateral 1.55; Deep 1.4 

VIP and [Ac-Tyr1,D-Phe2]-GRF 1-29: Bregma: -2.7; Lateral: 2.3; Deep 2.0 

Acute pharmacological treatments: 

Mice were anesthetized and injected as previously described (Galimberti, Bednarek, Donato 

and Caroni, 2010). ChABC and BNDF were injectied in 6 different position in the brain, 3 per 

hippocampus, bilateral injections. The volume injected never exceeded 200 nL. 

Coordinates:  

Dorsal Hippocampus: Bregma: -1.58; Lateral 1.65; Deep 1.5 

Intermediate Hippocampus: Bregma: -2.06; Lateral 2.3; Deep 1.7 

Ventral Hippocampus: Bregma: -2.7; Lateral 3.25; Deep 2.25 

In vivo IP and subcutaneous injections: 

Adult mice and pups were injected IP upon brief anesthesia induction via isofluorane. 

Intraperitoneal injection route was chosen for Diazepam (3 mg x Kg, Roche Scientific),  

ifenprodil hermitrate (20 mg x Kg, Tocris) and APV (1 µM). 

Subcoutaneus injection of Anisomycin (50 mg x Gk, Applichem) was performed as 

previously described (Bednarek and Caroni, 2011). 

In vitro pharmacology: 

The designed drug was added to the culturing medium maintained at 37º C. Drugs were: VIP 

(1 nM, Tocris), [Ac-Tyr1,D-Phe2]-GRF 1-29 (300 nM, Tocris), DCG-IV (1 um, Tocris); LY 

341495 (100 nM, Tocris), Diazepam (1 mM) 
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Behavioral Experiments: 

Morris water maze, contextual fear conditioning, dark fear conditioning, rotarod and 

Environmental enrichment were performed as previously described (4.2.6, Ruediger et al., 

2011; Bednarek and Caroni 2011). 

Metaplasticity experiments were performed as follows: 

NOR upon experience: mice were tested via NOR after having been for 3 weeks in 

enrichment. For testing congitioned mice, fear conditionina (contextual or dark) was 

performed on mice on the same day as the acquisition of the NOR, after at least 1.5 hourse 

from exploration.  

MWM upon experience: mice were trained at the MWM starting either after 3 weeks of 

environmental enrichment, or the day after contextual fear conditioning acquisition. 

MWM upon chronic pharmacology: VIP, [Ac-Tyr1,D-Phe2]-GRF 1-29 or saline solutions were 

applied topically for 2 consecutive days prior to MWM day1, and applied 75 minutes before 

training on each day on day 1, 2 and 3. Reference memory was assessed on day 4, with no 

prior pharmacological application. 

 

 

Slice cultures and optogenetic experiments. 

Slice cultures were obtained from P2 or P7 pups as previously described (4.3.6). 

Heterochronic slice cultures were processed as previously described (4.3.6). For histological 

analysis, slice cultures were briefly fixed with 4% PFA warmed to 37º C for 15 minutes at 

room temperature, and then subjected for 3 hours to a blocking solution of PBS, 0.3% triton 

plus 3% BSA before staining. 

Optogenetics experiments were performed onto slice cultures obtained from P7 pups. AAV 

mediated infection of selected slices was performed on DIV 12 by applying a droplet (1uL) of 

viral solution on the top of the slice. Light stimulation was performed on DIV 30-35 using an 

Olympus microscope (Gogolla et al., 2006). Two regimen of optical stimulation have been 

tested (180 seconds of continuous light, or 180 repetitions of 500 ms light followed by 500 

ms darkness), with similar results. 
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Statistical analysis. 

All statistical analyses were performed using GraphPad Prism 6 (GraphPad Softwares, La 

Jolla, CA, USA). Unless otherwise stated, statistical groups were compared using unpaired, 

nonparametric student t Test (Mann-Whitney test). Average values in the text are expressed 

as means ± S.E.M. 
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7. Abbreviations 
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5HT Serotonin 

AAV Adeno-Associated Virus 

Ach Acetylcholine 

Add Adducin 

BDNF Brain Derived Neurotrofic Factor 

BSA Bovine Serum Albumin 

CA Cornu Ammonis 

CB Calbindin 

CCK Cholocistokinin 

cFC Contextual Fear Conditioning 

CR Calretinin 

DG Dentate gyrus 

dH Dorsal Hippocampus 

Dis Disinhibition 

DIV Day in vitro 

EC Enthorinal Cortex 

EE Environmental Enrichment 

FBI Feedback Inhibition 

FFE Feedforward Excitation 

FFI FeedForward Inhibition 

GABA γ-Amino Butirric Acid 

GC Granule Cell 

iH Intermediate Hippocampus 

IN Interneuron 

LEC Lateral Enthorinal Cortex 

LMT Large Mossy Fiber Terminal 

M1 Primary Motor Cortex 

MEC Medial Enthorinal Cortex 

MWM Morris Water Maze 

MF Mossy Fiber 

NMDA N-Methyl-D-Aspartate 

NOR Novel Object Recognition 

NPY Neuro Peptide Y 

P postnatal Day 

PC Pyramidal Cell 

PFA Paraphormaldehyde 
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PFC Prefrontal Cortex 

PNN PeriNeuronal Net 

PP Perforant Path 

PV Parvalbumin 

RR Rotarod 

SL Stratum Lucidum 

SLM Stratum Lacunosum-Moleculare 

SO Stratum Oriens 

SOM Somatostatin 

SR Stratum Radiatum 

TA Terminal Arborisation 

vH Ventral Hippocampus 

VIP Vasoactive Intestinal Peptide 
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