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A Semi-Automated Approach for Structuring Multi
Criteria Decision Problems

Konradin Maier∗,a, Volker Stixa

aWU - Vienna University of Economics and Business, Institute for Information Business,
Augasse 2-6, A 1090 Vienna, Austria

Abstract

This article seeks to enhance multi criteria decision making by providing a scien-

tific approach for decomposing and structuring decision problems. We propose

a process, based on concept mapping, which integrates group creativity tech-

niques, card sorting procedures, quantitative data analysis and algorithmic au-

tomatization to construct meaningful and complete hierarchies of criteria. The

algorithmic aspect is covered by a newly proposed recursive cluster algorithm,

which automatically generates hierarchies from card sorting data. Based on

comparison with another basic algorithm and empirical engineered and real-case

test data, we validate that our process efficiently produces reasonable hierarchies

of descriptive elements like goal- or problem-criteria.

Key words: Problem structuring, Multiple criteria analysis, Concept

Mapping, Hierarchical decomposition

1. Introduction

The first steps of multi criteria decision making (MCDM) are typically the

decomposition and structuring of the decision problem at hand. The disaggre-

gation enables the implementation of “divide-and-conquer” decision strategies,

similar to expert decision making (Shanteau, 1988). The basic idea underly-

ing problem decomposition is that smaller parts of the problem can be more
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easily handled by human information processing capabilities than the entire

problem at once. Furthermore, these smaller parts enable decision makers to

structure the decision problem (typically a hierarchy composed of objectives and

criteria) which increases their problem understanding and capacity to process

information (Aschenbrenner et al., 1980). The decomposition and structuring

of decision problems are of particular importance for the accuracy of the ap-

plied MCDM process (Von Winterfeldt, 1980; Saaty, 1990). If a decision maker

evaluates only a subset of all relevant objectives and criteria, he cannot be sure

that this evaluation identifies the most valuable alternative. That is also the

meta-decision which objectives and criteria are relevant for the decision at hand

may be biased which in turn leads to biased decisions (Pitz and Riedel, 1984).

The structure itself has also a significant effect on the outcome of the deci-

sion process (Borcherding and Von Winterfeldt, 1988; Brugha, 1998). Although

the initial activities of analytical decision making are usually considered as the

most important, valuable and also difficult steps (Von Winterfeldt and Fasolo,

2009) the questions how to derive a complete list of criteria and how to reveal

the latent structure of such a list does not receive much attention within the

MCDM literature. At the same time, most methods for decomposing and struc-

turing decision problems have been criticized for being “artistic” and for lacking

methodical accuracy (Von Winterfeldt, 1980). Although some researchers ex-

pressed their optimism that decision structuring will advance from art to science

quite a while ago (Borcherding and Von Winterfeldt, 1988), there has been only

little progress towards this goal.

In this paper we propose a new approach to support the conceptualization

and structuring of multi criteria decision problems to overcome this research

gap. The proposed process integrates several techniques to balance the require-

ments of science (validity, reliability and objectivity) on the one hand and the

demands of the practical field (efficiency, understandability and accuracy) on

the other hand. We apply brainstorming techniques and structuring methods

to cover the creative aspect of conceptualizing and structuring decision prob-

lems (Saaty, 2009), we utilize small group techniques to support group decisions
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and to mitigate biases resulting from the current perspective of a single decision

maker (Pitz and Riedel, 1984; Saaty and Shih, 2009) and we apply quantitative

data analysis and automatic data processing to ensure methodical accuracy and

efficiency.

The remainder of this article is structured as follows. In the next section we

shortly give an overview on current decision structuring processes and related

techniques, which form the basis for the design of our approach introduced in

Section 3. In Section 4 we present a new algorithm for the automatic construc-

tion of hierarchical representations of decision problems and compare it with

another simple one. Section 5 demonstrates the validity and efficiency of the

proposed algorithms using several test cases. Finally, we summarize the main

findings, discuss further research issues and close with a concluding remark in

Section 6.

2. State of the art

Conceptualization and structuring of decision problems are mainly creative

tasks. Consequently, to overcome the challenge of conceptualizing and struc-

turing decision problems, some researchers proposed applying “creativity tech-

niques” to decision problems (e.g. Mackenzie et al., 2006; Saaty, 2009). “Cre-

ativity techniques” are methods which seek to foster divergent, creative and

original thinking to solve a given problem. One of the most prominent methods

is brainstorming, which is a group process focused on maximizing the quantity

of ideas generated (Osborn, 1963). However, brainstorming has been criticized

for being ineffective due to group effects like free riding, evaluation apprehension

and production blocking. Electronic brainstorming, where the participants in-

teract only via an electronic meeting system, tries to overcome these limitations

by ensuring the anonymity of the participants and are therefore more productive

than the original brainstorming technique (Dennis and Valacich, 1993).

In the context of MCDM, brainstorming and similar techniques are espe-

cially useful for identifying criteria relevant for the decision at hand. But they

3



offer only little support for (hierarchically) structuring brainstormed criteria.

To reveal the structure of a list of criteria, card sorting procedures can be used.

Sorting procedures are typically based on a set of cards with related terms

and participants who are asked to form clusters of cards based on their “re-

latedness” or “similarity”. The sorting of a sample of participants serves as

a measure of psychological distance which can be used in multivariate analy-

sis like multi-dimensional scaling or clustering. While there are more accurate

ways to measure psychological distances, the main advantage of card sorting

is its economy, especially if the number of items is large (Rosenberg and Kim,

1975).

Recently, another method, interpretive structural modeling, gained popu-

larity for structuring decision problems in the context of MCDM (e.g. Feng

et al., 2010). Interpretive structural modeling builds on matrix representations

and graph-theoretic methods to model problem domains. The modeling process

starts with the identification of all problem elements followed by qualitative

judgments about the strength of the relationships between these elements. This

assessment is used to fill a reachability matrix which is then converted into a

graph or tree with the help of graph-theoretic methods (Warfield, 1974).

Beside such “general purpose” problem structuring techniques, there exists

some research on decomposing and structuring decision problems within the field

of MCDM. For example (Saaty, 1990) proposed a qualitative top-down approach

for the hierarchical structuring of decision problems. This process begins with

the specification of an overall-objective, which is then iteratively decomposed

until the level of criteria is reached. The disaggregation is guided by questions

like “Which subgoals must be satisfied to fulfill this objective?”. Several simi-

lar qualitative approaches have been suggested (e.g. Keeney and Raiffa, 1993),

which differ mainly in details like direction of analysis (bottom-up versus top-

down) or viewpoint (focus on objectives of the decision maker versus focus on

qualitative differences of the alternatives). However, most of these qualitative

approaches are rather vague and have been criticized for being “artistic” and for

lacking methodical accuracy (Von Winterfeldt, 1980). Another problem related
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to such structuring processes is that there is no straightforward way to adapt

them to yield a structure which reflects a group’s thinking about a given deci-

sion problem. To overcome the latter limitation, it has been suggested to build

distinct hierarchies for homogeneous subgroups of decision makers (Saaty and

Shih, 2009). However, we argue that even within homogeneous subgroups indi-

vidual decision makers can have different internal representations of a problem

domain.

A somewhat outstanding structuring technique is concept mapping (CM),

which combines brainstorming, card sorting procedures and multivariate data

analysis (Trochim, 1989a). W. Trochim’s CM is a structured conceptualization

process which aims to organize a group’s thinking about a domain of interest

and to represent it in the form of pictures (concept maps). From the perspec-

tive of MCDM, concept mapping offers two desirable features: (1) it produces

hierarchical clusters of similar concepts and therefore could be used to con-

struct hierarchical representations of a decision problem (2) it is based on small

groups of participants and thus supports group decisions and avoids biases due

to the current perspective of a single decision maker. Furthermore, as opposed

to many other conceptualization approaches, CM follows a rather quantitative

than a qualitative paradigm and thus provides quite better ways to assess its

methodical accuracy (Trochim, 1993, 1989b).

3. A process for semi-automated hierarchy generation

In this Section we introduce our process for creating goal-criteria hierarchies.

The aim of the process is to support decision makers in constructing valid rep-

resentations of a multi criteria decision problem at hand. Although we focus on

structuring objectives, the processes can easily be adapted to build any hierar-

chical structure. The process design of our approach is based on CM, which we

have adapted to meet the requirements of MCDM.

Step 1: Preparation. First of all, a qualified facilitator is selected who guides

the process of hierarchy construction by providing knowledge, organizing work-
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shops and resolving conflicts. Participants of the workshops are selected from

decision makers, stakeholders, domain specific experts and/or consultants. The

main activity is the development of a brainstorming focus, which will be used

as a stimulus for the brainstorming session. The brainstorming focus should be

a short statement, which describes the decision problem as well as the intended

contributions of the participants. For example, a simple statement for an ERP

software selection might be worded as: “Generate short statements which de-

scribe criteria relevant for the selection problem: Which ERP software should

your organization use in the future?”.

Step 2: Identification of criteria. The next process-step is the generation of a

list of criteria, which should include all criteria relevant for the decision at hand

along with short statements defining the meaning of each criterion. Typically,

this list of criteria is generated within a brainstorming session. To avoid the

aforementioned drawbacks of traditional brainstorming, we suggest the use of

electronic brainstorming. However, other techniques like document analysis or

interview procedures can be used as well. The resulting list of criteria has to be

reviewed and edited to ensure its completeness and to avoid redundancies (e.g.

from synonyms). Beside redundancy, other quality related aspects like under-

standability and measurability of the criteria can be assessed as well (Keeney

and Gregory, 2005). These quality assurance activities are usually done by

discussing the criteria one by one.

Step 3: Sorting of criteria. The finalized list from Step 2 forms the input for

structuring the decision problem via an open card sorting procedure. Each

criterion is written on a card together with a concise explanation. The partici-

pants are asked to sort these cards into piles according to a pre-defined sorting

dimension (e.g. importance or semantic relatedness of criteria). The explicit

specification of a sorting dimension is necessary to gain data of high quality (see

Section 5.1). The choice of an appropriate sorting dimension can be adapted to

the requirements of the respective MCDM problem. The sorting of criteria is

restricted by the following rules: 1) each card can only be placed in one pile; 2)
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there have to be at least two piles; and 3) at least one pile need to have more

than one card. Beside this “paper and pencil” approach, electronic card sorting

can be applied which eases the sorting task as well as data collection.

Step 4: Automatic construction of a preliminary hierarchy. In this process step

algorithmic data processing is used to efficiently construct a preliminary hier-

archy of the decision problem which serves as a “good starting point” for the

further refinement of the problem representation in step 5. A two-stage cluster

algorithm for this process-step is described in detail in the next Section. The

cluster analysis is performed on a distance matrix D which can be obtained

from the card sorting data by calculating dij = n− sij , where n is the number

of participants and sij is the count of participants sorting items i and j into the

same pile.

Step 5: Finalization of the hierarchy. This process-step finalizes the hierarchy

by refining the raw structure. The workshop participants are asked to inspect

and discuss the hierarchy to identify potential cluster names and inappropriate

assignments of criteria to clusters. Special emphasis is placed on examining un-

balanced subtrees of the hierarchy and “dummy nodes” since both are indicators

of possible inconsistencies like missing criteria, different levels of granularity or

similar issues (see Section 4.3 for more details on dummy nodes, unbalanced sub-

trees and their potential interpretations). The output of this process-step is the

final hierarchy, which can be utilized in the subsequent MCDM process-steps.

4. Algorithmic construction of hierarchies based on card sorting data

The algorithm we present in this section constructs a hierarchy considering

some constraints using the output of a hierarchical cluster analysis. The result

of such a cluster algorithm can be illustrated using a dendrogram. Figure 1 (a)

shows an example of a dendrogram with 8 objects. Whereas equation (1) for-

mulates the the very same clustering process. Let C(t) be the set of all clusters

with respect to the given threshold-distance t and let Ci denote the extraction
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Figure 1: (a) A simple dendrogram of eight objects (A-H); (b) the respective merge threshold-

values; (c) The clustering of the clusters (merge values).

of the i-th element from the set C. With increasing threshold t the algorithm

always joins exactly two clusters from previous sets. Starting with t = 0, there

are 8 clusters composed of all elements, with e.g. t = 1.5 there are 5 clusters,

and so on, ending with e.g. t = 15 in one cluster containing all objects. Clearly

this result is achieved always as t→∞. Let m be the vector of all these merge

threshold-values in descending order and let mi denote the i-th element. Thus

m = (13.3, 5.2, 3, 2.3, 1, 1, 1)T for this example as shown in Figure 1 (b). It can

be seen that there may exist multiple mergers having the same threshold-value

(e.g. here for t = 1).

C(0) = {E,F,G,H,D,C,A,B}

C(1.5) = {{E,F}, {G,H}, D,C, {A,B}}
... (1)

C(8) = {{{E,F}, {G,H}}, {D, {C, {A,B}}}}

C(15) = {{{{E,F}, {G,H}}, {D, {C, {A,B}}}}} = C(m1)

In many applications only the elements and not their history are important.

This can be achieved by flattening C(·) as shown exemplarily in (2).
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C(15) =̂ {{E,F,G,H,D,C,A,B}} (2)

The exact values of m, where two clusters are merged, depend on the clus-

tering method. We opted for Ward’s method (Ward, 1963) because it seems to

be the natural choice to build homogeneous hierarchies due to its strategy to

locally minimize in-group variance for each merge of two clusters (here variance

represents the threshold). Furthermore, Ward’s algorithm does not suffer from

the “chaining” problem of other hierarchical clustering methods. However, any

hierarchical clustering method can be used to determine the values of m.

In classical cluster analysis, one of the main problems is to determine an

adequate value for t namely to find the appropriate number of clusters. In the

case of hierarchy construction the problem is more complex: we need to deter-

mine (i) how many levels the final hierarchy should have and (ii) how many

siblings each level should have. Most researcher in MCDM suggest to keep the

cluster size (number of siblings) rather low. Usually, this is justified by referenc-

ing to the limitations of human information processing. The results of research

in human cognition indicate that human short term memory can store 7 ± 2

chunks (Miller, 1956), newer research suggests that our memory span is even

smaller (Cowan, 2001). Additionally, researchers who favor relative measure-

ment of criteria weights argue that only similar objects can be meaningfully

compared (Saaty, 1990). At the same time, a large number of small clusters is

not a major concern because the number of criteria, which can be arranged in

a hierarchy, increases by Ch
max, where Cmax is the cluster size and where h is

the height of the hierarchy. That is, even a hierarchy with small clusters needs

only a few levels to arrange dozens or even hundreds of criteria. For example,

a hierarchy with cluster size 7 and height 3 may contain up to 343 leaves. In

summary, these arguments support the notion to restrict cluster sizes to 6 (±2).

However, hierarchies with larger clusters are possible if necessary to adequately

represent the decision problem. In the following, we present two algorithms for

the construction of hierarchies from card sorting data which are based on the
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choice of a desired cluster size and on a clustering algorithm.

4.1. A structure based algorithm

This simple algorithm constructs a hierarchy purely based on the merging-

sequence of the clustering process, i.e. the merge of two clusters to a new cluster.

Let Ca and Cb be the two respective clusters, then the algorithm joins those

clusters as long as the size |Ca ∪Cb| does not exceed the maximum cluster size

Cmax. If |Ca ∪Cb| > Cmax, the algorithm inserts a level into the hierarchy and

makes Ca and Cb siblings, i.e. inserting {Ca, Cb}, forming a new cluster on the

next higher level. This leads to a hierarchical structure where no cluster exceeds

the specified cluster size Cmax. The placement of the hierarchy levels, however,

is only based on the sequencing information and on the desired cluster size, the

distances between clusters remain unconsidered.

Algorithm 1 StructureCollapse(C) – a recursive approach

1: if C = isElement then

2: return C

3: end if

4: Ca ← StructureCollapse(C1)

5: Cb ← StructureCollapse(C2)

6: if |Ca ∪ Cb| > Cmax then

7: return {Ca, Cb}

8: else

9: return Ca ∪ Cb

10: end if

Algorithm 1 shows this approach using the recursive function “Structure-

Collapse”. It recursively collapses set-structures to sets with the maximal size

of Cmax. We start the algorithm with the set of the last remaining two clusters:

StructureCollapse(C(m2)). Lines 1–3 represent the recursive escape condition.

If C is not a set but an element it clearly fulfills the size condition and is returned.

In all other cases a cluster is always constructed out of exactly two ancestors.
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Line 6 checks whether the union of the already collapsed ancestors (lines 4–5)

exceeds Cmax. If so, they build a new cluster (level), which is returned. If they

do not exceed the size, they are joined and returned as the result. We shall

discuss this simple algorithm together with our newly proposed one at the end

of this section.

4.2. A distance based algorithm

We propose the following algorithm to construct hierarchies from card sort-

ing data, which is based on the idea to place groups of similar distant items

within one level of the hierarchy. To achieve this, we perform a clustering of clus-

ters as follows. The ordinate in Figure 1 (b), represents the respective threshold-

values m at which clusters are merged. These values can be interpreted as simi-

larity between mergers. So our algorithm clusters these merge-values in order to

find levels which have a similar level of semantic abstraction. Let C ′(t) be the re-

cursive set representing this clustering result (see Figure 1 (c)). The objects are

now identified through numbers instead of letters since they correspond with

the merge-values of the original objects. The dendrogram illustrates all pos-

sible clusters. For example C ′(m′2)=̂{{13.3}, {5.2, 3.0, 2.3, 1.0, 1.0, 1.0}} equals

two clusters (of mergers) which correspond to the smallest hierarchy of two

levels (excluding the root-node level zero), flattening sets above the threshold

level 5.2 into hierarchy level one and sets up to 5.2 into level two. The result

C ′(m′3)=̂{{13.3}, {5.2, 3.0, 2.3} , {1.0, 1.0, 1.0}} equals three clusters (of merg-

ers) which correspond with three levels in the hierarchy: level one in (5.2,∞),

level two in (1.0, 5.2] and level three in (0, 1.0]. Let l(C) be the function, which

returns the level of the hierarchy into which the set C belongs, where l = 0 rep-

resents the top-level (root-level), l = 1 the next sub level, and so on. This level

is derived from the respective results C ′(m′2), . . . , C ′(m′i) (where i represents

the number of hierarchy-levels). Again, an optimal threshold-value needs to be

found. We decided to look at all possible clusters of clusters C ′(m′2), . . . , C ′(m′i).

From these alternatives of hierarchies, the algorithm chooses the hierarchy with

the minimal absolute deviation from the desired cluster size Cmax (considering
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all levels greater zero).

Algorithm 2 DistanceCollapse(C) – a recursive approach

1: if C = isElement then

2: return C

3: end if

4: Ca ← DistanceCollapse(C1)

5: Cb ← DistanceCollapse(C2)

6: for i = 2 to l(C1)− l(C) do

7: Ca ← {Ca}

8: end for

9: for i = 2 to l(C2)− l(C) do

10: Cb ← {Cb}

11: end for

12: if l(C) < max(l(C1), l(C2)) then

13: return {Ca, Cb}

14: else

15: return Ca ∪ Cb

16: end if

Algorithm 2 covers this approach. It looks similar to the structure based

algorithm (SBA), with some small differences. Again lines 1–3 represent the

recursive escape condition. One of the differences is the level assignment func-

tion l(·) introduced above which builds on the results of the second clustering.

The second difference concerns dummy nodes. In contrast to the SBA), our

distance based algorithm (DBA) knows (due to the second clustering) to which

level each cluster belongs. So it might happen that there are missing parents

on some levels. For example we merge two clusters A and B into AB, but that

l(A) = l(B) = 3 whereas l(AB) = 1, thus there is no explicit parent node on

level two. In such cases we insert dummy nodes to maintain the levels, which is

done in lines 6–11 (for illustration see also Figure 4 in the next section). When-

ever the merged set C belongs to a hierarchy level strict smaller than at least
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one of the mergers, then Ca and Cb represent siblings since the join of both

reaches into the next level (line 13) otherwise the two mergers Ca and Cb are

joined, since they belong to the same level (line 15).

4.3. Comparison of the algorithms

Our DBA considers more information than the SBA and thus acts more

“intelligent”. This allows our DBA to construct hierarchies with more homoge-

neous levels than the SBA. This is explicated in Figure 2, where the SBA fails

to form the most reasonable hierarchy. The upper part of the Figure shows the

behaviors of both algorithms and the respective hierarchies for Cmax = 4. The

SBA (thin boxes) is not able to form a common cluster for the elements E1

through E5 because this would exceed the specified cluster size. Thus, E5 is

placed as a singleton on the first level of the hierarchy which is therefore rather

inhomogeneous. As shown in the lower part of this figure, a cluster limit of

five would solve this problem. This size, however, leads to a similar problem in

another branch of the dendrogram. The elements E6 through E10 are placed

in one cluster although E10 does not fit well into this cluster which leads to a

inhomogeneous cluster on the second level of the hierarchy. The DBA does not

suffer from such problems. In both cases (cluster size four and five), the DBA

identifies the most reasonable cutting line and thus leads to homogeneous hier-

archies. Another advantage of our DBA is that it reacts less sensitive to changes

of the cluster size specified by the workshop facilitator since the placement of

the cutting lines is based on distance information only. The desired cluster size

effects solely the number of levels formed by the DBA. Thus, the analyst’s influ-

ence on the outcome of the algorithm is reduced. The latter advantage, however,

comes with the disadvantage that the DBA does not necessarily respond to the

specified cluster size. While the resulting clusters approach the specified clus-

ter size, some of the clusters will exceed Cmax (see Figure 2). We argue that

homogeneity is more important than strict upper limits of cluster sizes due to

three reasons: Firstly, inhomogeneity can render hierarchies completely useless

since, instead of being supportive, such hierarchies hamper human information
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processing and measurement of preferences (Brugha, 1998). Secondly, there are

ways to deal with disadvantages of larger clusters in MCDM settings (Bernroi-

der et al., 2010). Finally, homogeneity is a precondition to reasonably interpret

hierarchies. For instance, think of a well balanced tree, where each branch has

the same depth, with the exception of one leaf which is directly assigned to the

root (like E10 in Figure 2). If this hierarchy has been generated with our DBA,

there could be a meaningful reason for this unbalanced subtree:

• Granularity: There are two possible interpretations: Either the respective

criterion has not been broken up into the same level of granularity as

the other criteria or there are missing abstract concepts (parent-nodes),

depending whether this criterion is a semantic high- or low-level concept.

• Irrelevance: The respective criterion does not fit to any other criterion

because it is irrelevant for the decision at hand but has mistakenly passed

the review of the brainstormed criteria.

• Dissent: The workshop participants are either dissent in their interpreta-

tion of the respective criterion or in their judgments regarding its group

membership.

• Dissimilarity: None of the other reasons apply. The criterion is simply

not similar to any other criterion and not required in more detailed or

abstracted views. Thus the unbalanced subtree is justified.

Therefore, unbalanced subtrees as well as dummy nodes can serve as stimuli

in process step 5 to discuss the hierarchy, its validity and whether revisions are

necessary or not, which enhances the quality of the final hierarchy further. In

contrast, the SBA does not allow such interpretations since unbalanced subtrees

occur arbitrarily which makes the resulting hierarchies hard to interpret.

5. Testing of the proposed algorithm

In this Section we report on test cases to evaluate the main contribution of

this article, i.e. the (automatic) construction of preliminary hierarchies. We
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Figure 2: Comparison of the SBA and the DBA based on a hypothetical data set.

focus on algorithmic validity because processes similar to our overall-approach

(e.g. concept mapping) as well as single process steps (e.g. card sorting) have

already been extensively tested by other researchers (see Section 2).

5.1. Pre-test

To test whether card sorting procedures are useful for structuring decision

problems as well as for planing and parametrization we performed a pre-test with

16 students who were asked to complete a paper based card sorting task. We

selected an ordinary decision problem which did not require expert knowledge:

“Select a job offer from several alternatives”. Our research group identified 30

criteria for this decision problem using brainstorming. The set was reduced to

26 criteria by eliminating redundant statements. These criteria, together with

a short explanation of each, were written on cards. The students were briefed,

asked to read through the written instructions and to sort the statements into

piles “in a way which makes sense to them”. The sorting of the criteria was

followed by unstructured interviews to gather the students’ opinions on the card

sorting procedure as well as to identify the applied sorting strategies.

The interviews showed that the students used two sorting dimensions: im-

15



portance and semantic relatedness of the criteria. Three students reported that

they did not know how to decide on one of these two dimensions. Some of the

participants even mixed these dimensions by separating important from unim-

portant criteria and sorting each of them semantically. Some put the remaining

cards in a “not relevant”-group or into two groups of medium and low impor-

tance. Other participants piled semantic related criteria together, and labeled

cards which did not fit their categorization scheme as unimportant. Eleven par-

ticipants reported that semantic relatedness was their main sorting dimension,

while the others chose importance as their sorting criterion. As a consequence,

the resulting clusters were difficult to interpret. The general feedback on the

card sorting procedure was favorable. All students felt comfortable with the

sorting task and the card sorting procedure turned out to be time efficient,

since no student required more than ten minutes (seven in average). From these

primary results we found that a card sorting procedure is adequate for structur-

ing decision problems but that a sorting dimension needs to be explicitly and

precisely specified afore to yield meaningful clusters.

5.2. Settings of the test cases

To test our algorithms we implemented the process described in Section 3.

As our tests were focused on algorithmic validity, we decided to perform the

time consuming process steps one and two, i.e. preparation and identification

of criteria (brainstorming), within our research team. The resulting concepts

(cards) were given to volunteering students for sorting (step three: structuring).

To substitute real decision makers with students is adequate in this context be-

cause the data gathered was not used to make inferences about decision makers

but to evaluate whether the proposed algorithms are able to build meaningful

hierarchies out of card sorting data. Furthermore, the ability to recognize groups

of related items is not unique to real decision makers but a fundamental process

of human cognition. After the card sorting procedure, preliminary hierarchies

were constructed out of sorting data using our algorithm (step four). Finally,

the results were discussed again by our research team (step five: finalization).
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test case problem domain criteria generation #criteria #participants avg. time

1 Flat selection Brainstorming 33 26 9 min

2 Job offers Brainstorming 26 30 11 min

3 Transport infrastructure Document analysis 19 18 10 min

4 Fuel selection Document analysis 17 16 9 min

Table 1: Overview of empirical tests.

For the card sorting procedure we briefed the participants to form piles

of semantically related criteria. To ease data gathering, the card sorting was

computer-aided. Each test included a short (about five minutes) verbal and a

written instruction explaining the purpose of the test, the sorting procedure and

the web-based card sorting tool. Overall, four tests with different criteria-sets

were arranged. Table 1 gives an overview of these test cases. The first two cases

were based on brainstormed criteria-sets (a flat-selection problem and the job-set

from the pre-test). Again, neither of these two required expert knowledge. The

criteria-sets of the tests three and four were based on MCDM studies reported

in the literature (Dodgson et al., 2009; Winebrake and Creswick, 2003). The

rationale for this approach was to get a glimpse of the validity of our structuring

technique by comparing the criteria hierarchies reported in the literature with

the hierarchies build by our algorithms. Furthermore, this allowed us to test the

card sorting procedure in a “hostile” environment where the participants face

unfamiliar decision problems. From the vast amount of MCDM literature we

selected two decision problems (appraisal of transport projects and evaluation

of fueling systems for transportation) based on the following considerations: (1)

the MCDM problem should offer a reasonable number of criteria, (2) the criteria

itself should be comprehensible for non-experts and (3) the publication should

offer a hierarchical structuring of the criteria. The next section outlines the

major empirical results.
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algo S ∆ short level 1 level 2 level 3

depth branches inter inner inter inner inter inner

SBA 4 1.48 67% 45.63 65.00 73.33 88.00 61.67 88.00

DBA 4 0.48 3% 9.06 34.00 42.23 39.00 46.00 n.a.

SBA 5 1.83 55% n.a. 38.00 49.50 81.00 85.33 88.00

DBA 5 0.83 3% 9.06 34.00 42.23 39.00 46.00 n.a.

SBA 6 3.05 73% n.a. 38.00 77.45 96.00 65.76 96.00

DBA 6 1.05 3% 9.06 34.00 42.23 39.00 46.00 n.a.

SBA 7 2.20 73% n.a. 38.00 77.45 96.00 83.00 88.00

DBA 7 0.20 0% 9.06 34.00 88.00 n.a. n.a. n.a.

Table 2: Numerical results of test cases one (flat selection).

5.3. Results of the test cases

All four test cases were rendered using the structure based algorithm (SBA)

and the proposed distance based algorithm (DBA) described in Section 4. Ad-

ditionally, we built four sub cases for each case, targeting on different (maximal)

cluster sizes S = 4, . . . , 7. Figure 4 and Figure 5 show examples of such a hier-

archy for size=4. Table 2 gives some specific results of the respective algorithms

for test case one. The supplementary material provides an extended version of

Table 2, which includes more measures as well as the other test cases.

The first two columns of Table 2 reflect basic structural properties of the

hierarchies. Column ∆ depth shows the absolute difference between the hierar-

chy’s depth and the theoretical depth (logS n, where n is the number of criteria).

In 14 out of 16 cases, the DBA approaches the theoretical maximal depth closer

than the SBA. This indicates that the latter one constructs results with unnec-

essary many levels which eventually could hamper the use and interpretation

of the hierarchy. The column % short branches gives the percentage of criteria

which are not on the lowest level of the hierarchy. Such short branches have

missing intermediate level(s) (e.g. see Figure 5 (b)). Our DBA places nearly all

criteria on the lowest level, maintaining intermediate hierarchic levels, while the

SBA fails to build a common level for atomic elements, which suggests that it is
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Figure 3: Inner and inter cluster homogeneity. The former is calculated as the difference of

the largest (3) and the smallest (1) cluster diameter. The latter is calculated as the difference

of the largest (6) and the smallest (5) distance of cluster centers.

not able to identify levels of elements which are of similar semantical distance.

The last 6 columns of Table 2 report on two different measures of partial

homogeneity for the first 3 levels of the hierarchies. The first measure cap-

tures inter-cluster homogeneity as the difference of the largest and the smallest

distance of siblings (clusters assigned to the same parent node), where this inter-

cluster distance d(a, b) is measured as the average pairwise distance from any

element of cluster a to any element of cluster b. We interpret this measure as the

degree to which the children assigned to a parent node are semantically equi-

distant. Table 2 lists the largest inter-cluster homogeneity per hierarchical level.

The smaller this value the more homogeneous are the inter-clusters distances

for that respective level. The second indicator, inner-cluster homogeneity, is the

difference of the largest and the smallest cluster diameter within each level of

the hierarchy. We interpret this measure as the degree to which a level contains

clusters with the same level of semantic abstraction. Again, the smaller the dif-

ference, the more homogeneous is the respective level. Figure 3 illustrates inter

and inner homogeneity. Short branches, which can not be assigned distinctly

to levels, where resolved using a top-down assignment approach (starting from

the root=top). As can be seen from Table 2, the DBA results in levels with

higher inter- and inner-cluster homogeneity than the SBA. The only exception

is inter-cluster homogeneity of level 2 for cluster size 7, where the SBA performs

better than the DBA.
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5.4. Face validity

To assess the hierarchies on a semantic level, we follow a “face validity”

approach by visually examining the raw structures resulting from the proposed

algorithms. Furthermore, we compare the raw structures of test cases three and

four with hierarchies proposed in the literature. In the following, we present the

results of the two test cases with a cluster size S = 4, however, we want to note

that the other test cases and larger cluster sizes support the results reported

here.

Figure 4 shows the results of test case three for both algorithms, as well as

the corresponding hierarchy taken from the literature. A visual examination

shows that both algorithms form clusters of semantically related criteria. How-

ever, it could be difficult to find reasonable identifiers for some of the clusters

(e.g. for the cluster consisting of “heritage”, “landscape” and “regeneration”).

This demonstrates that a manual revision of raw structures is usually necessary

to derive a final hierarchy (see step 5 in Section 3). A comparison of the SBA’s

output with the original structure shows that the SBA reconstructs the cost-

benefit structure of the original hierarchy. However, as the desired cluster size

has been set to four, it requires an additional sub cluster to merge all cost-related

criteria into one cluster. With the criteria “water”, “noise”, “biodiversity” and

“air quality” within one cluster, also the “environment” cluster is reconstructed

quite well. Compared to the original hierarchy, the other clusters seem to be a

mixture of the remaining criteria, however, these clusters are semantically justi-

fiable. In comparison, the DBA does not reconstruct the cost-benefit structure

on the first level of the hierarchy. While there is a “cost” cluster, the benefits are

broken up into a cluster directly related to transportation issues and a cluster

related to economic and environmental issues. As the DBA does not strictly

adhere to the specified cluster size, it is able to perfectly reconstruct the “cost”

cluster of the original hierarchy, the other clusters are identical with the clusters

formed by the SBA. Test case three also demonstrates the DBA’s insertion of

dummy-clusters. The “cost” cluster is on a similar level of semantic abstraction

like the clusters on the second level of the hierarchy but the “cost” branch of
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(a) Hierarchy taken from literature

(b) Raw structure of the SBA (c) Raw structure of the DBA

Figure 4: Hierarchies of test case three for cluster size four.
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the hierarchy has not the same height as the other branches. To form levels of

similar abstract criteria a dummy cluster is inserted. Interestingly, this dummy

node flags the unbalanced subtree of the hierarchy taken from literature, which

could indicate that the cost-benefit structure on the first level of the original

hierarchy is not appropriate. This and other interpretations of the dummy node

would be discussed in process step 5 where dummy nodes serve as stimuli to

evaluate whether the resulting hierarchy is complete and valid or if a revision

of the hierarchy is necessary.

Figure 5 shows the results of test case four for both algorithms, as well as

the corresponding hierarchy taken from the literature. Again, the resulting hi-

erarchies are to a large extent semantically reasonable. Also the benchmark

hierarchy is partly reconstructed. The DBA exactly rebuilds the clusters “ve-

hicle operation” and “economics”, and there is also a cluster similar to the

‘environment’ goal of the original hierarchy. However, the DBA forms only four

instead of five clusters on the first level of the hierarchy and thus there are some

“mixed” clusters. The SBA forms identical clusters for vehicle operation and

for environmental issues but the cluster “vehicle operation” is split into two

clusters. The SBA builds a hierarchy with five levels, while the DBA requires

only three levels to arrange all criteria. Furthermore, the branches of the hier-

archy formed by the SBA have different heights, while all branches built by the

DBA have the same height. Additionally, the SBA forms some counter-intuitive

clusters. For example the parent node of “sustainability” also covers the criteria

related to vehicle operation. The semantics of this cluster is unclear and thus

it is difficult to find a meaningful name for this cluster. In sum, the hierarchy

of the SBA seems to be more complex and the criteria are less clearly arranged

while the hierarchy of the DBA is more balanced and more easily interpretable.

The reasons for this are that the SBA strictly adheres to the cluster limit and

considers fewer information than the DBA and therefore it is not able to identify

levels of criteria which are on the same level of semantic abstraction.

We did not expect that either of the two algorithms is able to perfectly recon-

struct the hierarchies taken from literature. However, we found that the DBA
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(a) Hierarchy taken from literature

(b) Raw structure of the SBA (c) Raw structure of the DBA

Figure 5: Hierarchies of test case four for cluster size four.
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rebuild the hierarchies well. Beside the large number of possible hierarchies we

identified three plausible explanations why the results did not exactly match the

original structures: (1) inaccuracies introduced by translating the criteria from

English to German (2) inconsistent interpretations of criteria due to participants

who ignored the descriptions of the criteria and (3) the participants who lacked

domain knowledge. However, in a practical setting, these potential problems

are of little relevance because the brainstorming session ensures that the par-

ticipants share a common interpretation of the criteria and the careful selection

of participants guarantees that they have an adequate domain expertise.

6. Conclusions and further research

The main contribution of this paper is the development of a new algorithm

for the automatic construction of hierarchies from card sorting data. The SBA

analyzes the structure of dendrograms, that is the sequence of mergers of hier-

archical clustering procedures, to derive hierarchies, while the DBA is based on

the distance information of dendrograms, that is the height of each merge, to

construct hierarchies. Since the DBA processes more relevant information, we

hypothesized that our DBA will construct more reasonable hierarchies compared

to the SBA. We conducted four test cases which confirmed this assumption. In

the test cases our DBA formed hierarchies which are more balanced and more

easily interpretable than the SBA. Furthermore, the DBA flags areas which re-

quire more discussion of the participants by inserting dummy nodes and thus

facilitates the construction of high-quality hierarchies. Since the SBA is a rather

näıve algorithm we should be careful when examining the results reported here.

Nevertheless, we think that the DBA proved to be a useful and valid instrument

to support the construction of hierarchies within the context of MCDM.

Regarding the efficiency of our overall-process, the preparation of the card

sorting procedure took us about two hours (step 2), the sorting lasted about

10 minutes (step 3) and the automated construction of a preliminary hierarchy

requires a few seconds (step 4). In a practical setting, we would also have to re-
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serve some time for step one, preparing the workshop, and step five, finalization

of the hierarchy. In sum, we expect that a workshop (step two through five)

takes at least four hours, which is a reasonable amount of time for preparing an

important decision. However, we also found that media discontinuities within

the process significantly increase these time requirements. Thus, to take full

advantage of the automatized procedure the use of computer-aided card sorting

and brainstorming is strongly recommended. Despite of such measures it might

be necessary to build the hierarchy in a more traditional way if the decision

maker is not able or not willing to invest some time in making his decision.

Besides efficiency, the effectiveness of the proposed process is also of inter-

est. A factor potentially limiting the effectiveness of our approach is the use

of clustering procedures. These are often considered as “soft techniques” be-

cause there is no agreed on procedure to determine the number of clusters and

because cluster analysis always generates clusters, whether they exist in reality

or represent noise only. Nevertheless, our test cases show that the proposed

clustering procedure is a useful technique for constructing meaningful and valid

representations of MCDM problems. Regardless of pro and cons of clustering,

our process offers two major advantages. Firstly, it is well structured and should

thereby guide the decision maker to an adequate representation of his decision

problem. Secondly, our process encourages extensive reflection and discussion

on the decision at hand and thus should increase the decision maker’s under-

standing about the given problem. In sum, we conclude that our approach for

structuring MCDM problems is effective.

Further research could address the question whether our process is more

valid than more traditional approaches for structuring MCDM problems. A

simple method to answer this question would be to generate several hierarchies

using different techniques and then to ask decision makers to identify the struc-

ture which reflects the decision problem at best. Another method, adapted

from Trochim (1989b), would be to generate hierarchies and then to randomly

permute or replace some of the criteria. Only if decision makers are able to

identify the original, non-randomized hierarchy then one could speak of a valid
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approach to structure MCDM problems. The percentage of decision makers able

to identify the non-randomized hierarchy could serve as a measure to compare

the validity of different structuring techniques. These and similar methods to

validate structuring techniques offer several interesting areas for research, which

might further advance the structuring of MCDM problems from art to science.
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