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Optimizing Trading Decisions for Hydro Storage
Systems using Approximate Dual Dynamic
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2Technische Universität München, Munich, Germany
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We propose a new approach to optimize operations of hydro storage systems with multiple connected reser-

voirs whose operators participate in wholesale electricity markets. Our formulation integrates short-term

intraday with long-term interday decisions. The intraday problem considers bidding decisions as well as stor-

age operation during the day and is formulated as a stochastic program. The interday problem is modeled

as a Markov decision process of managing storage operation over time, for which we propose integrating

stochastic dual dynamic programming with approximate dynamic programming. We show that the approx-

imate solution converges towards an upper bound of the optimal solution. To demonstrate the efficiency of

the solution approach, we fit an econometric model to actual price and inflow data and apply the approach

to a case study of an existing hydro storage system. Our results indicate that the approach is tractable for

a real-world application and that the gap between theoretical upper and a simulated lower bound decreases

sufficiently fast.

Key words : OR in Energy, Stochastic Programming, Markov Decision Processes, Approximate Dynamic

Programming

History :

1. Introduction

The steady increase of electricity from intermittent sources of renewable energy poses challenges

for the electrical grid. A key component of a more flexible, smarter grid is the ability to store

electricity and thereby to decouple electricity generation from electricity consumption. The most

common large-scale storage technology for electricity is hydro storage. A hydro storage power plant

either stores the natural flow of water or pumps water into an elevated reservoir to be able to

release the water and produce electricity when it is needed. Hydro storage systems thereby offer the
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ability to buffer the intermittent supply of electricity from renewable power sources such as wind,

solar, or run-of-river. The European electricity mix, for example, consists of 15 percent hydropower

with a total capacity of 260 gigawatts of which 45 gigawatts are pumped-hydro storage (Auer

2011, Zuber 2011). The growing share of renewable energies increases Europe’s demand for storage,

and generating companies are currently investing about 26 billion Euros into new pumped-hydro

storage plants with a total capacity of 27 gigawatts (Zuber 2011).

Today, a large share of electricity is sold in wholesale electricity markets. Most generating com-

panies in Austria, Germany, and Switzerland, for example, sell electricity at the European Power

Exchange (EPEX SPOT), which is one of the largest European electricity markets. Since supply

and demand have to be synchronized in advance, EPEX SPOT provides different types of forward

markets, of which the day-ahead market and the intraday market are the most important markets

for owners of storage plants. At the day-ahead market, producers place supply bids and consumers

place demand bids for each hour of the following day, i.e., one day ahead of delivery. After the

day-ahead market is closed, the intraday market allows market participants to clear imbalances

that arise during the day up to 45 minutes before delivery. In case actual volumes deviate from

day-ahead or intraday bids, all remaining imbalances are automatically cleared at the balancing

market with a high risk of additional cost. A generating company with pumped hydro storage

capacities tries to buy electricity at the market when the price is low and sell electricity when the

price is high, while trying to mitigate the risk of positive and negative imbalances.

Trading with a system of hydro storage plants in a wholesale electricity market involves many

decisions as well as a great deal of uncertainty. In particular, there exist two major challenges to

solve the problem efficiently. First, not only are day-ahead and intraday prices uncertain, but also

the development of electricity prices over time as well as the inflow of water into the reservoirs.

Second, a system of hydro storage plants with multiple reservoirs requires a coordinated water

release policy, since upstream releases influence downstream reservoir levels. In addition to day-

ahead and intraday bidding decisions, a generating company has to decide about water releases

from multiple reservoirs over time. Future decisions and states of the system as well as their
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probabilities therefore have to be considered in the decision-making process, which turns storage

operation into a complex stochastic-dynamic decision problem.

In the literature, the day-ahead bidding problem is typically modeled as a two-stage stochastic

program, with bidding decisions at the first stage and price realizations as well as operational

decisions at the second stage (Báıllo et al. 2004, Fleten and Kristoffersen 2007, Garćıa-González

et al. 2007). A two-stage approach is well-suited for optimizing bidding decisions in the short-term,

but does not anticipate future storage states and decisions. To optimize bidding decisions over a

longer planning horizon, we have to solve a multi-stage stochastic programming problem. For this

class of problems, two basic solution strategies have emerged in the literature. One strategy is to

construct a scenario tree to represent uncertainty and solve the problem as one large mathematical

program (Heitsch and Römisch 2003, Eichhorn et al. 2009, Hochreiter and Wozabal 2010). This

strategy can handle discrete decisions as well as any type of exogenous stochastic process, but is

limited to problems with a small number of stages. Fleten and Kristoffersen (2008) and Matevosyan

et al. (2009) propose mixed-integer programs of hydro storage operation where a scenario tree is

used to model uncertainty over a weekly planning horizon. A comparison of solution methods for

a tree-based stochastic unit commitment problem is given in Cerisola et al. (2009).

Another strategy is based on formulating the problem as a dynamic program and then applying

Benders’ decomposition to recursively construct the value function at each stage around a set of

sample decisions (Pereira and Pinto 1991). This strategy, also known as stochastic dual dynamic

programming (SDDP), can handle problems with a large number of stages as long as the opti-

mization problem at each stage is convex and the stochastic process stagewise independent. Most

SDDP formulations of hydro storage operation only consider inflow or demand uncertainty, e.g.,

Flach et al. (2010), Philpott and de Matos (2012). To the best of our knowledge, the only SDDP

formulation that also considers price uncertainty is given in Gjelsvik et al. (2010). However, the

authors only model weekly price averages, which keeps the problem tractable but also underrates

the short-term value of storage.
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In contrast to most previous approaches, the model proposed in this work decomposes the multi-

stage problem into an intrastage and an interstage problem (Pritchard et al. 2005). Day-ahead

bidding decisions as well as hourly reservoir operations are modeled as part of the intrastage

problem which is formulated as a stochastic mixed-integer quadratic program with randomness

in the objective function. Decisions about reservoir contents at the end of the day, on the other

hand, are modeled as part of the interstage problem which is formulated as a Markov decision

process (MDP). The proposed decomposition severely reduces the complexity of the problem.

Since day-ahead prices realize simultaneously, we can view day-ahead price vectors as realizations

of intraday randomness. Day-ahead price distributions can thus be modeled as separate random

variables conditioned on a small number of explanatory variables which are defined as the state

of an exogenous Markov process. This allows us to describe the dynamics of the hourly electricity

prices by a discrete state transition process which is represented by a probability lattice.

To solve the problem efficiently, we integrate SDDP with ideas from approximate dynamic pro-

gramming (ADP). ADP algorithms simulate the state transition process of an MDP and use the

sampled information to approximate the high-dimensional value function by a function of much

lower complexity (Powell 2011). An ADP algorithm to optimize day-ahead bidding and storage

decisions is also proposed in Löhndorf and Minner (2010), but only for a single storage unit and

a single bidding decision per stage. By contrast, the present approach allows us to model storage

systems with multiple units as well as hundreds of decision variables per stage.

In the same way as SDDP, the proposed solution method iteratively solves the decision problem

using forward simulation to sample candidate decisions and backward recursion to construct an

approximation of the value function. Unlike SDDP, however, the method does not require stagewise

independence of the stochastic process, but rather assumes that randomness follows a Markov

process.

To solve the problem numerically, the solution approach pursues a three-fold strategy to approx-

imate the value function of the MDP. First, the continuous-state Markov process that describes
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the evolution of environmental variables over time is reduced to a probability lattice. Second, can-

didate decisions that do not improve the approximation quality by more than a given epsilon are

discarded. Third, the approach uses a relaxed version of the problem to approximate the value

function, but evaluates the decision policy based on the original problem formulation. To empha-

size the focus on approximation, we refer to the solution method as approximate dual dynamic

programming (ADDP).

For the problem at hand, the approximated value function is more optimistic than the true value

function with respect to the future value of water that remains in the reservoirs at the end of the

day. However, if the resulting gap is negligible, the relaxation provides an efficient solution to a

complex optimization problem.

The paper is organized as follows. In Section 2, we present the model formulation of the multi-

stage decision problem. In Section 3, we introduce a relaxed version of the problem, describe the

solution algorithm, prove its convergence, and derive an error bound of the approximation. In

Section 4, we propose an econometric electricity price model for the EPEX SPOT market. In

Section 5, we apply the model and the solution algorithm to a case study of an existing hydro

storage system in Austria. Finally, in Section 6, we summarize the results and discuss possible

directions for future research.

2. Model Formulation

2.1. Assumptions

We consider the stochastic unit commitment problem of a power generating company that operates

a network of hydro storage plants and participates in a wholesale electricity market. The objective

of the company is to maximize expected profits from buying and selling electricity while operating

its hydro resources efficiently.

We assume that the company is planning storage operation over an entire year, but schedules

its resources on an hourly basis. Uncertainty enters the planning problem through stochastic nat-

ural inflows into the reservoirs as well as through stochastic electricity prices. We assume that the
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dynamics of the random variables can be separated into an interday and an intraday process. The

interday process is characterized by a state transition model of environmental variables, e.g., tem-

perature, renewable power production, fuel prices, natural inflows, as well as calendar information,

i.e., day of the year, day of the week. This process is assumed to be a Markov chain, possibly

non-homogeneous, which is represented by a probability lattice. The intraday process describes

random hourly electricity prices which depend on the realization of interday randomness.

In line with the case study presented in Sections 4 and 5, all assumptions regarding the electricity

market are made with the EPEX SPOT market in mind. We assume that the electricity market

implements a multi-settlement system with a day-ahead, an intraday (hour-ahead) and a balancing

(real-time) market. The company makes the majority of its trades in the day-ahead market where

it places price-dependent supply and demand bids by submitting piecewise-linear bidding curves

for each hour of the following day. After the day-ahead market is closed, the system operator

announces a clearing price for each hour using a uniform auction mechanism. Day-ahead bidding

therefore takes place under price and volume uncertainty.

In case produced volumes deviate from day-ahead bids, the company clears all foreseeable imbal-

ances at the intraday market and does not deliberately use the balancing market. We do not

explicitly model the cost of balancing in case of unplanned outages.

We assume that the generating company is a price-taker in the day-ahead market, but a price-

setter in the intraday market. Actual EPEX SPOT sales volumes in 2012 support this assumption

(mean day-ahead: 28 gigawatts, mean intraday: 1.3 gigawatts).

Moreover, we assume that expected day-ahead prices equal expected intraday prices. Price data

from 2011 and 2012 also supports this assumption, with the mean day-ahead price being e46.90,

and the volume weighted mean intraday price being e47.21 with mean low and high prices of

e37.39 and e57.52, respectively. This implies that, although the storage operator is aware of the

price effect on the intraday market, she cannot exert market power, since the price always turns

against the operator in expectation, i.e., the expected intraday price is higher than the realized

day-ahead price when electricity is being bought and lower when it is being sold. Introducing a price



ADDP for Hydro Storage Systems 7

response moreover reflects the propensity of the company to trade day-ahead without introducing

additional bias. In this setup, the company has little incentive to trade in the intraday market, so

that we assume that the company makes all intraday trading decisions at once when day-ahead

prices are known.

The topology of the network of hydro storage plants is convergent, so that each reservoir may

have multiple inflows but only a single outflow and is associated with a single turbine and possibly

a pump. These assumptions could easily be relaxed and are made to keep the notation simple.

Moreover, connected reservoirs are close, so that there are no significant delays regarding the flow

of water from one reservoir to another. We assume that head effects can be ignored so that the

power conversion function only depends on water release per time unit but not on reservoir levels.

The natural inflow of water into a reservoir is state-dependent and remains constant throughout

the day.

2.2. Markov Decision Process

We model the interday decision process of storage operation as a finite-horizon Markov decision

process (MDP) with decision epoch of one day. Denote t as the time index for a day of the year.

Randomness is separated into a process of environmental variables (St)
T
t=1 and a process of hourly

intraday electricity prices (Pt)
T
t=1. We assume that the state of the MDP (St)

T
t=1 influences the

electricity prices and that the distributions Pt|St are known and such that St+1|St is independent

of Pt|St.

The objective of the generating company is to maximize its discounted expected profits for a

given environmental state St ∈ St and initial storage states Rt−1 ∈R in stage t ∈ {1, . . . , T}, with

St being the set of environmental states in t and R being the set of all possible reservoir states.

Denote P(St+1|St) as the state transition probability of the Markov process. Let π= {π1, . . . , πT} be

a decision policy that encompasses all operational decision variables, i.e., all bidding and dispatch

decisions, subject to the state-dependent feasible set Πt(St,Rt−1) (see Section 2.3), and define

C(St,Rt−1, πt) as the random intraday profit (contribution) and γ as discount factor. Note that,
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given the state of the MDP, the intraday profit is a random variable, since it depends on the

random prices Pt|St. For R0 and VT+1 fixed, the value of being in state St with initial reservoir

states Rt−1 is given by the optimality equations

Vt(St,Rt−1) = max
πt∈Πt(St,Rt−1)

{
E
[
C(St,Rt−1, πt)

+ γ
∑

St+1∈St+1

P(St+1|St) Vt+1

(
St+1,Rt(πt)

)]}
, (1)

for St ∈ St, Rt−1 ∈R and t= 1, . . . , T . Since πt assigns a decision to every realization of intraday

randomness, it results in random reservoir states Rt(πt). An optimal decision policy maximizes the

sum of expected intraday profits and expected future profits. Future profits depend on the random

state transition from St to St+1 as well as the (random) final reservoir state Rt =Rt(πt) in t which

is the initial reservoir state in t+ 1. For notational convenience, we suppress the dependence of Rt

on πt and Πt on St, Rt−1 where no confusion can arise.

In line with Powell (2011), let us reformulate (1) using the post-decision state. Denote V̄t as

value function around the post-decision state, which gives us the value of being in state St at the

end of the day after realization of Rt but before a random transition to the next state. For a fixed

function V̄T , the post-decision value function is

V̄t(St,Rt) =
∑

St+1∈St+1

P(St+1|St) Vt+1(St+1,Rt)

=
∑

St+1∈St+1

P(St+1|St) max
πt+1∈Πt+1

{
E
[
C(St+1,Rt, πt+1) + γV̄t+1(St+1,Rt+1)

]}
, (2)

for St ∈ St, Rt ∈R and t= 1, . . . , T −1. This formulation of the optimality equations is equivalent to

(1) but provides us with a computational advantage, because the expectation operator associated

with the state transition is now outside of the maximization problem. For now, let us assume that

V̄t(St,Rt) is known. In Section 3, we are going to show how to recursively build an approximation

of the post-decision value function.

2.3. Stochastic Programming Formulation

For a given post-decision value function, the intraday problem can be formulated as a stochastic

program with recourse, with the objective to maximize the expected profit for a given state St
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Figure 1 Bidding curve with four breakpoints and four price scenarios per segment

and initial reservoir state Rt−1. Although all variables and random parameters of the intraday

problem depend on St, we suppress this dependence to streamline the presentation. Furthermore,

most parameters and decision variables depend on an hour h and a scenario s. We indicate this by

adding the corresponding subscripts.

2.3.1. First-Stage Decision: Day-Ahead Bidding The first stage of the stochastic pro-

gram involves fixing price-dependent bidding curves (see Figure 1). For each hour h ∈ H =

{1, . . . ,24} of the following day, the generating company submits I price-volume pairs (ρhi,Xhi),

with ρhi < ρh,i+1 and Xhi ≤Xh,i+1 for i < I. A linear interpolation of these pairs yields a mono-

tone increasing, piecewise-linear function that maps price realizations to day-ahead sales volumes.

However, choosing prices and volumes simultaneously yields a non-convex decision problem. In line

with Fleten and Kristoffersen (2007), we therefore fix the price points in advance and only decide

the day ahead volumes for each price (in megawatt hours).

Denote ps ∈ R24, s ∈S = {1, . . . ,K} as the finite set of realizations of the price process Pt|St

and psh as a day-ahead price realization in hour h. We assume P(Pt = ps|St) = 1/K, so that each

price scenario has equal probability. The realized day-ahead sales volume xdsh in scenario s depends

on the bidding curve as well as the realized day-ahead prices,

xdsh =


Xh1 if psh <ρh1, ∀ s∈S , h∈H ,

Xh,i−1 +
Xhi−Xh,i−1

ρhi−ρh,i−1
(psh− ρh,i−1) if ρh,i−1 ≤ psh <ρhi, 1< i≤ I, ∀ s∈S , h∈H ,

XhI if psh ≥ ρhI , ∀ s∈S , h∈H .

(3)
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Depending on the sign of the bid, each sales volume either represents an offer (Xhi ≥ 0) or a

purchase (Xhi < 0) of electricity (in megawatt hours). To additionally enforce monotonicity, we

include the following constraint,

Xh,i−1 ≤Xhi ∀ h∈H , i∈ {2, . . . , I}. (4)

Instead of spreading the price breakpoints ρhi evenly over the price domain, we assign each line

segment approximately the same number of price scenarios. More specifically, we compute the

breakpoints by first partitioning the set of sorted prices into I + 1 subsets and then calculate ρhi

as the mean of the adjacent prices that are not of the same subset, i.e.,

ρhi =
p′g(i)−1,h + p′g(i)h

2
, g(i) =

⌊
iK

I + 1
+ 1

⌋
∀ h∈H , i∈I , (5)

with p′g(i)h as the day-ahead prices sorted in ascending order. The resulting bidding curve is

smoother in areas where the probability mass is high and coarser where the probability mass is

low. Note that the number of scenarios K has to satisfy K ≥ 2I+ 2 to ensure non-anticipativity of

the bids.

2.3.2. Second-Stage Decision: Short-Term Unit Commitment Short-term operational

decisions are modeled at the second stage of the stochastic program. At this stage, day-ahead sales

volumes have realized and the generating company uses either storage capacities or the intraday

market to close its positions. In line with other authors (e.g., Fleten and Kristoffersen 2007, Garćıa-

González et al. 2007), we model the unit commitment problem as a mixed-integer program.

Denote J = {1, . . . , J} as the set of reservoirs, csjh as charge into reservoir j, and dsjh as

discharge from reservoir j (in metric tons). The topology of the reservoir network is defined by

matrix A= (Ajk)∈ {−1,0,1}J×J , with Ajk = 1 if water can be released from j into k and Akj =−1

if water can be pumped from k into j. The hourly natural inflow of water into reservoir j is given

by INtj on day t. In contrast to electricity prices, natural inflows are assumed to be deterministic

given the state of the MDP and constant in all hours of a day. Denote rsjh as the reservoir state
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with rsj0 =Rt−1,j and osjh as the overflow (or spill). Then, the storage state at the end of hour h

is given by the following balance equation

rsjh = rsj,h−1− dsjh + csjh− osjh

+
∑

k∈J :Akj=1

(dskh + oskh)−
∑

k∈J :Ajk=−1

cskh + INtj ∀ s∈S , j ∈J , h∈H . (6)

The generating company must balance realized day-ahead and intraday bids with power generation

and consumption. Denote xbsh as the amount of power (in megawatt hours) sold or purchased at

the intraday market in hour h and scenario s. All open positions are closed if

xdsh +xbsh =
∑
j∈J

(η+
j dsjh− η−j csjh) ∀ s∈S , h∈H , (7)

with η+
j and η−j as constant power conversion factors (in megawatts per metric ton of water) which

relate flow volume to power quantity.

Charge and discharge decisions are constrained by minimum and maximum capacities of pumps

and turbines. Denote [LBR
j ,UBR

j ] as the allowed reservoir content range j (in metric tons),

[LB+
j ,UB+

j ] as power limits of the j-th turbine, and [LB−j ,UB−j ] as power limits of the j-th pump

(in megawatts). Then,

LBR
j ≤ rsjh ≤UBR

j ∀ s∈S , j ∈J , h∈H , (8)

z+
sjhLB+

j ≤ η+
j dsjh ≤ z+

sjhUB+
j ∀ s∈S , j ∈J , h∈H , (9)

z−sjhLB−j ≤ η−j csjh ≤ z−sjhUB−j ∀ s∈S , j ∈J , h∈H , (10)

with binary variables, z+
sjh and z−sjh, to model the on/off status of turbines and pumps, respectively.

2.3.3. Objective Function The objective of the generating company is to maximize its

expected intraday profits through efficient bidding and storage operation while considering the

expected future value of storage as defined by the post-decision value function. Following Pereira

and Pinto (1991), we model the post-decision value vs as a concave, piecewise-linear function of

the final reservoir states rsj24 at the end of the day. Note that rsj24 is a realization of the j-th
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element of Rt in (1) and (2). For a given state St, the post-decision value function is defined as the

minimum of a set of hyperplanes N = {1, . . . ,N} with intercepts an(St) and slopes bnj(St) so that

the future value of storage is given by

vs = min
n∈N

an(St) +
∑
j∈J

bnj(St)rsj24

 ∀ s∈S . (11)

If we add vs to the objective function of a maximization problem, we can reformulate (11) by the

following set of linear constraints,

vs ≤ an(St) +
∑
j∈J

bnj(St)rsj24 ∀ n∈N , s∈S . (12)

Denote psh − βxbsh as the expected intraday price, with β ≥ 0 as the slope of the price-response

function. For a given state St and an initial reservoir state Rt−1, we formulate the optimization

problem as the following stochastic mixed-integer quadratic program

Vt(St,Rt−1) = max
1

K

K∑
s=1

24∑
h=1

((
pshx

d
sh + (psh−βxbsh)xbsh

)
+ γvs

)
(13)

s.t. (3), (4), (6), (7), (8), (9), (10), (12);

Xhi ∈R ∀ h∈H , i∈ {1, . . . , I}; xdsh, xbsh ∈R ∀ s∈S , h∈H ;

rsjh, csjh, dsjh, osjh ≥ 0 ∀ s∈S , j ∈J , h∈H ;

z+
sjh, z

−
sjh ∈ {0,1} ∀ s∈S , j ∈J , h∈H ;

vs ∈R ∀ s∈S .

3. Solution Methods

To obtain the hyperplanes required in (11) or (12), we integrate stochastic dual dynamic program-

ming (SDDP) with ideas from approximate dynamic programming (ADP). The method referred to

as approximate dual dynamic programming (ADDP) constructs a polyhedral approximation of the

post-decision value function defined in Section 2.2 by sampling the state transitions of the Markov

decision process.
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3.1. Approximate Value Function

To be able to construct a polyhedral approximation of the post-decision value function, we relax

certain requirements of the original model formulation.

Definition 1. (Relaxed Problem) Define the relaxed problem as the linear relaxation of the

stochastic mixed-integer quadratic program in (13) with β = 0, and denote V ′t (St,Rt−1) as its

optimal objective value and V̄ ′t−1 as the corresponding post-decision value function.

By modeling the post-decision value function as the minimum of a set of linear functions (12), we

tacitly assume that the true function admits a tight concave approximation. While we cannot make

this assertion for the post-decision value function associated with the original model formulation,

we can show that concavity holds for the post-decision value function of the relaxed problem.

Proposition 1. The objective value V ′t (St,Rt−1) as well as the post-decision value V̄ ′t (St,Rt) are

both concave in the reservoir levels.

Proof. With the binary variables relaxed to z+
sjh, z

−
sjh ∈ [0,1] and β = 0, the maximization

problem in (13) is an ordinary linear program. From the theory of linear programming we know

that a problem of this type is jointly concave in the right-hand sides of its constraints, e.g., by

Proposition 2.22 in Rockafellar and Wets (1998). The vector Rt enters the right-hand side of

equation (6). Therefore, V ′t (St,Rt−1) is concave in Rt−1. Denote V ′T (ST ,RT−1) as the objective

value of the relaxed problem in the final stage and V̄ ′T as an arbitrary piecewise-linear function

which is assumed to be concave in RT . Since V ′T (ST ,RT−1) is concave in RT−1, the expected value∑
ST∈S

P(ST |ST−1) V ′T (ST ,RT−1) is concave in RT−1. Hence, V̄ ′T−1(ST−1,RT−1) is concave in RT−1.

Concavity of V̄ ′t (St,Rt) for t= 1, . . . , T − 2 follows by backward induction. �

With β = 0 in the relaxed problem, we assume that the generating company is price-taker in both

markets, day-ahead and intraday. Without an intraday price response, however, the risk-neutral

company has no incentive to trade in the day-ahead market as long as we assume that the mean

intraday price is identical to the realized day-ahead price. Instead, the company could move all of
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its trades to the intraday market. In that case, the relaxed version of the stochastic program can

be decomposed into K linear programs, which is supported by the following proposition.

Proposition 2. Without a price response, i.e., β = 0, the relaxed problem is the sample average

of K linear programs.

Proof. For each feasible decision (xbsh, x
d
sh) = (x̄b, x̄d), the decision (xbsh, x

d
sh) = (x̄b + x̄d,0) is

feasible with respect to (7), ∀ s ∈S , h ∈H . With β = 0, the marginal prices of xdsh and xbsh in

(13) are identical and the decisions (x̄b, x̄d) and (x̄b + x̄d,0) have the same objective values. Hence,

there exists an optimal decision, where Xhi = 0 ∀ h∈H , i∈I . The non-anticipativity constraints

(3) can then be dropped, and the relaxed problem can be decomposed, such that

V ′t (St,Rt−1) =
1

K

K∑
s=1

V ′ts(St,Rt−1),

where V ′ts(St,Rt−1) is defined as V ′t (St,Rt) for a single scenario s∈S . �

The objective value associated with the relaxed problem is an upper bound of the optimal objec-

tive value, i.e., V ′t (St,Rt−1)≥ Vt(St,Rt−1). An operational policy, where the generating company

does not bid in the day-ahead market, however, is of little practical use. Nevertheless, as long as

the difference between upper bound and optimum is reasonably small, we can use the optimal solu-

tion of the relaxed problem to construct an approximation of the post-decision value function. We

then use this function inside the original problem formulation to compute near-optimal intraday

decisions. As we will see in Section 5.2, the difference is small for the actual problem considered in

this work.

Let us briefly outline how a polyhedral approximation of the post-decision value function can be

constructed. Since V ′t (St, · ) is the optimal objective value of a linear program, the post-decision

value function of the relaxed problem can be described by a concave, piecewise-linear function, i.e.,

by a polyhedral function. We can construct an approximation ˆ̄V ′t−1(St−1,R) of the post-decision

value function by first defining a set of sample reservoir states, {R̂1, . . . , R̂N}, with R̂n ∈ R, and

then deriving the corresponding hyperplanes going through

(R̂11, . . . , R̂1J , V
′
t (St, R̂1)), . . . , (R̂N1, . . . , R̂NJ , V

′
t (St, R̂N)) ∀ St ∈ St.
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To obtain the hyperplanes, let ∂RVt(St,Rt) be the set of super-gradients of the function Rt 7→

V ′t (St,Rt). From this set, we select a super-gradient, b(St)∈ ∂RV ′t (St, R̂), which is the slope of the

supporting hyperplane of V ′t (St, · ) going through (R̂1, . . . , R̂J , V
′
t (St, R̂)). The hyperplane is given

by the linear function

H(St,R; R̂i) = a(St) + b(St)
>R, a(St) = V ′(St, R̂)−

∑
j∈J

bj(St)R̂ij, (14)

with a(St) ∈R as the intercept and b(St) ∈RJ as the vector of slopes. Since we are dealing with

linear programs, the slopes can be obtained from the dual variables λ associated with constraints

(6) for h= 1,

bj(St) =
∑
s∈S

λsj1. (15)

The resulting approximate post-decision value function is then given by

ˆ̄V ′t−1(St−1,R) = min

{∑
St∈St

P(St|St−1)
(
an(St) + bn(St)

>(R− R̂n)
)
, n= 1, ...,N

}
, (16)

where the hyperplane going through R̂n is the weighted sum of all hyperplanes H(St,R; R̂n) over all

successor states. For a given set of sample reservoir states at each stage, a polyhedral approximation

of the post-decision value function can be easily constructed by solving the dynamic program using

backward recursion.

3.2. Approximate Dual Dynamic Programming

Although the number of supporting hyperplanes of V ′t (St, · ) is finite, computing all hyperplanes

is prohibitive for larger problems. Like SDDP, the ADDP algorithm therefore uses Monte Carlo

simulation to define a set of sample reservoir states, thereby finding those hyperplanes that are

necessary to obtain an optimal decision policy.

The ADDP algorithm is outlined in Figure 2. The algorithm is initialized with an environmental

state S1, a reservoir state R0, initial value functions ˆ̄V ′t , and the setsMt = ∅, t= 1, . . . , T . Over N

iterations, ADDP alternates between a forward and a backward pass. During the forward pass, the

algorithm generates new states by sampling the state transition function, SM . For a sampled state,
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Input arguments: initial states S1 and R0, initial value function
( ˆ̄V ′t
)T
t=1

Do for n= 1,2, . . . ,N

Forward Pass

(1) Do for t= 1,2, . . . , T − 1

(1.1) Sample ps from Pt|St
(1.2) Solve R̂nt← arg maxπt

{
C(St,Rt−1, πt) + γ ˆ̄V ′t (St,Rt(πt))

}
for the single scenario ps

(1.3) Sample St+1← SM(St)

Backward Pass

(2) Do for t= T,T − 1, . . . ,2

(2.1) Do for all St ∈ St
(2.1.1) Do for m∈Mt ∪{n}

(2.1.1.1) Get hyperplane (am(St), bm(St))←Hmt(St,R; R̂mt−1)∈ ∂RV ′t (St, R̂mt−1)

(2.2) If ∃ St ∈ St : |V̂ ′t (St, R̂nt−1)−V ′t (St, R̂nt−1)|> ε then Mt←Mt ∪{n}
(2.3) Do for all St−1 ∈ St−1

(2.3.1) ˆ̄V ′t−1(St−1,R)←min

{ ∑
St∈St

P (St|St−1)
(
am(St) + bm(St)

>(R− R̂mt)
)
,m∈Mt

}
Return post-decision value functions ˆ̄V ′t (t= 1, . . . , T − 1)

Figure 2 Approximate dual dynamic programming for Markov decision processes

the algorithm solves the relaxed version of problem (13) for a single (random) price scenario using

the current approximation of the value function, i.e., maximizing C(St,Rt−1, πt) +γ ˆ̄V ′t (St,Rt(πt)),

and then stores the final reservoir state that is a subset of the solution to the linear program (Step

1.2). During the backward pass, in each stage, the algorithm loops over all environmental states

and previously stored reservoir states and computes the supporting hyperplanes (Step 2.1). For

each predecessor state, we compute the weighted sum of all hyperplanes over all successor states

and then update the approximation of the post-decision function (Step 2.3).

In conventional SDDP, the size of the set of sample reservoir states increases by one during each

iteration of the outer loop. Some hyperplanes around the set of reservoir states, however, may

be redundant or at least similar to existing hyperplanes. For ADDP, we therefore propose that

hyperplanes which do not improve the approximation quality by more than ε should be omitted

(Step 2.2). Denote V̂ ′ as the approximate (pre-decision) value function constructed from a set of

hyperplanes Hmt, with m∈Mt, such that
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V̂ ′t (St,R) = min

{∑
St∈St

(
am(St) + bm(St)

>(R− R̂mt)
)
,m∈Mt

}
. (17)

A new hyperplane Hnt is added to Mt if

∃ St ∈ St : V̂ ′t (St, R̂nt−1)−V ′t (St, R̂nt−1)> ε. (18)

In this way, ADDP converges to an upper bound of the solution to the relaxed problem, since

the approximate value function in general remains an approximation and never converges to the

true value function. Note that we also obtain an upper bound if we stop ADDP before an optimal

solution is found, as this is often done in the literature, e.g., Flach et al. (2010), Philpott and

de Matos (2012). A practical advantage of using ε > 0 instead of ε = 0 is that omitting new

hyperplanes accelerates computation of the outer loop, which allows a larger number of states to

be sampled in the same amount of time.

Existing convergence results for SDDP algorithms require that randomness is stagewise inde-

pendent and enters only the right-hand side of the constraints of the linear program at each stage

(Philpott and Guan 2008, Shapiro 2011). Both assumptions are necessary if the linear program is

only being solved for a subset of scenarios during the backward pass. Right-hand side randomness

guarantees that the optimal dual solutions for scenarios in the subset are also dual feasible for

all other scenarios, which significantly accelerates the generation of new hyperplanes. Stagewise

independence, in turn, enables sharing hyperplanes among different scenarios at the previous stage,

since the post-decision value function is identical for all scenarios. Algorithms that exploit these

properties can be found in Higle and Sen (1991) and Chen and Powell (1999). Although in our

model these assumptions are not fulfilled, the algorithm still converges almost surely. First, dual

solutions are always feasible because the linear program is being solved for the entire set of scenar-

ios during the backward pass. Second, hyperplanes are not shared among scenarios, since we can

construct a separate post-decision value function for each scenario by using the transition matrix

of the Markov process.
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Proposition 3. Denote πε as the policy obtained by ADDP for ε > 0 and π∗ as the optimal policy

of the relaxed problem. For a given initial reservoir level R0, the policies obtained by ADDP for

ε= 0 converge to the optimal policy in a finite number of steps. The values obtained from following

πε are at most ε(T − 1) worse than the optimal values.

Proof. We first consider the case ε= 0. It follows from Lemma 1 in Philpott and Guan (2008),

that for fixed St the functions

R 7→ Vt(St,R) (19)

are the pointwise maxima of finitely many linear functions, i.e., are piecewise linear for all 1≤ t≤ T .

Note that each possible sequence of states (S1, . . . , ST ) has positive probability and therefore by

the Borel-Cantelli Lemma occurs infinitely often in the forward pass. Since we add a hyperplane in

each iteration, the finiteness of the set of hyperplanes implies that there exists an n̄∈N such that

no further hyperplanes are added after iteration n̄ . We denote the approximate value function

after that state by V̂ ′t for 1≤ t≤ T .

Suppose that the policy π̂ found by using (V̂ ′t )1≤t≤T is suboptimal in period T − 1 and some

(S1, . . . , ST ), i.e., maxπC(ST ,RT−1, π) + V̄T (ST ,RT )< V̂ ′T (ST ,RT−1). Since (S1, . . . , ST ) is sampled

in iterations n > n̄, the value function approximation would be updated in these iterations – a

contradiction to the choice of n̄. Hence, V̂ ′T (ST ,RT−1) coincides with V ′T for all R that can be

reached by π̂ and for all ST ∈ ST . The same holds for the post-decision value function ˆ̄V ′T−1. Having

established the accuracy of V̄ ′T−1, we can inductively show the accuracy of all V̂ ′t and ˆ̄V ′t for all

St and t. Hence, the solutions obtained with V̂ ′t coincide with the optimal solutions of the relaxed

problem.

The finite convergence property carries over to the case ε > 0. To prove the second part of the

proposition, we begin with the last period T and note that by definition

V̂ ′T (ST ,RT−1)−V ′T (ST ,RT−1)≤ ε, ∀ ST ∈ ST , (20)

for all states of the system RT that can be reached from R0 by following πε. This inequality also

holds for the respective post-decision value functions.
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Let ∆≡C(ST−1,RT−2, π
∗)−C(ST−1,RT−2, π

ε). Since πε is optimal for V̂ ′T it follows that

ˆ̄V ′T−1(ST−1,RT−1, π
ε)≥ ˆ̄V ′T−1(ST−1,RT−1, π

∗) + ∆. (21)

Therefore for all ST−1 ∈ ST−1,

0 ≤ C(ST−1,RT−2, π
∗) + V̄ ′T−1(ST−1,RT−1(π∗))

− C(ST−1,RT−2, π
ε)− V̄ ′T−1(ST−1,RT−1(πε)) (22)

= ∆ + V̄ ′T−1(ST−1,RT−1(π∗))− V̄ ′T−1(ST−1,RT−1(πε)) (23)

≤ ∆ + V̄ ′T−1(ST−1,RT−1(π∗))− ˆ̄V ′T−1(ST−1,RT−1(πε)) + ε (24)

≤ ∆ + ˆ̄V ′T−1(ST−1,RT−1(π∗))− ˆ̄V ′T−1(ST−1,RT−1(πε)) + ε (25)

≤ ε, (26)

where (24) follows from (21) and (25) from V̄ ′T−1 ≤ ˆ̄V ′T−1. Since V̂ ′T−1 is an ε-approximation of the

function

R 7→max
πε

C(ST−1,R,π
ε) + ˆ̄V ′T−1(ST−1,RT−1(πε)), (27)

we have V̂ ′T−1(ST−1,RT−2) ≤ 2ε + V ′T−1(ST−1,RT−2). Since the above holds for all ST−1 ∈ ST−1,

the property carries over to the post-decision value function V̄ ′T−2 and the error bound follows by

induction. �

4. Econometric Model

Consistent with our model formulation, we propose an econometric model that separates random-

ness into a process of environmental variables with daily time increments and a process of electricity

prices with hourly time increments. The objective of the econometric model is to accurately describe

the dynamics of electricity prices and natural inflows by a small number of explanatory variables

that fit into this modeling framework.

As with every commodity, the price of electricity is determined by supply and demand. In the

short term, supply is primarily driven by seasonal variations of intermittent power sources, such

as wind, solar, and run-of-river, or by power plant outages. In particular, wind and solar power
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production drives down the electricity price, since more expensive technologies are forced out of

the market. In the medium and long term, it is mainly the prices for primary energy such as coal

and gas that influence the price for electricity. Electricity demand, on the other side, can be largely

explained by temperatures and deterministic seasonal factors. The temperature affects electricity

prices due to higher demand for heating and cooling. To verify this relationship, we ran a linear

regression of the mean demand for electricity per day in Austria and Germany on the mean day

temperature, the squared mean temperature, the day length (i.e., the time from sunrise to sunset),

as well as dummy variables for national holidays in Germany and Austria. Based on a sample of

730 observations from 2010 to 2011, the model explains 76% of the variance in electricity demand.

Accordingly, we model electricity prices dependent on those variables that influence supply and

demand.

To meet the requirements of a finite-horizon Markov decision process, we decompose the dynam-

ics of the environmental variables into a time-dependent trend and a state transition process which

has the Markov property. The state of the Markov process on day t is defined by the weekday

(DAY), the mean day temperature (TEMP), the total wind power generation during that day

(WP), the total solar power generation (SP), the natural inflow (IN), and the gas price (GAS)

St = (DAYt,TEMPt,WPt,SPt, INt,GASt). (28)

For a given realization of the state and a given day of the year, we can then model the hourly

conditional expectations of the electricity prices, E(p1, . . . , p24|St).

For model estimation, we used hourly day-ahead and intraday spot prices from 2009 to 2011 as

published by EPEX SPOT. Hourly data on wind and solar power forecasts are published by E.ON,

EnBW, RWE, and Vattenfall for the four major German transmission zones. We used forecasts

instead of realized generation because spot prices are fixed one day in advance so that forecasts

have a greater explanatory power than actual generation data. Since the price effect of temperature

is a function of population density and local temperatures, we define the mean day temperature

as a population weighted index over all Austrian and German cities with a population of more
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than 10,000. The index has been calculated using Mathematica 7 CityData and WeatherData.

Data on natural inflows have been provided by an Austrian generating company for a system of

seven interconnected hydro plants in the Alps (see Section 5 for further details). As the inflow

patterns exhibit pairwise correlations of around ρ= 0.8, we aggregate these inflows into a single

state variable by summing up the inflows for all reservoirs. To estimate the dynamics of the gas

price, we use daily closing prices from NetConnect Germany.

4.1. State Transition Model

To separate stationary from non-stationary state variables, we divide the state St into two separate

sub states: one state that only contains the gas price S1
t and another state that contains all other

state variables S2
t . The gas price is modeled as non-stationary geometric Brownian motion (GBM),

representing the long term market trends, while the other state variables follow a stationary Markov

process, capturing short term variations in the electricity price.

To describe the dynamics of the gas price S1
t , we fit a GBM to the data and discretize the resulting

log-normal price distributions for every day t of the planning horizon. Specifically, we choose

gas price states and probabilities such that the Kantorovich distances between the corresponding

discrete distributions and the log-normal distributions are minimal (Graf and Luschgy 2000). The

Kantorovich distance is suitable for the use in stochastic programming and, in a certain sense,

ensures an optimal discretization (Graf and Luschgy 2000, Pflug 2001). The number of gas price

states is chosen such that the Kantorovich distance does not exceed 0.5 with a cap of 30 gas

price states per day. The transition probabilities between nodes in consecutive stages can easily be

computed using the conditional distributions resulting from the specification of the GBM. In this

way we obtain a probability lattice, representing the stochastic evolution of the gas price.

The other state (S2
t )1≤t≤T is decomposed into a deterministic trend component (Dt)1≤t≤T and a

random error (Et)1≤t≤T which follows a time-homogeneous Markov chain,

S2
t =Dt +Et, t= 1, . . . , T (29)
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For the TEMP state variable, we used the temperature index for the years 2009 to 2011 and

estimated the parameters δ, α and u of the trigonometric regression model,

TEMPt = δ+α sin

(
365− t

2π
−u
)

+ εt1, (30)

which yields an R2=80.09%. The total wind power generation per day exhibits annual seasonality

because of higher wind speeds during winter as well as an upward trend over time due to the

ongoing installation of new wind power units. To capture these two trends, we include a quadratic

term as well as an interaction term in the trigonometric regression model of wind power production,

WPt = δ1 + δ2t+ δ3t
2 +α1 sin

(
365− t

2π
−u1

)
+α2 sin

(
365− t

2π
−u2

)
t+ εt2, (31)

with an R2=9.46%. Production of solar power exhibits a strong seasonal component as well as a

trend in time and is modeled in an analogous way with residuals εt3 (R2=71.67%). We do not model

inflows using trigonometric models, since the observed inflow peaks in spring as well as the long dry

period in winter cannot be captured by a sine function. Instead, based on 18 years of daily inflow

data, we estimated the trend wt in natural inflows for each day of the year by a Nadaraja-Watson

non-parametric regression (R2=73.65%). The inflow model is given by

INt =wtεt4. (32)

Residuals εt4 are obtained by dividing the inflow realizations by their respective estimated means.

To estimate a model of Et, we used the detrended state variables êt = (ε̂t1, ε̂t2, ε̂t3, ε̂t4), i.e., the

residuals from (30) to (32) for 2009 to 2011. All residuals show a strong autocorrelation supporting

the hypothesis of stagewise dependence. By modeling the transition from one state to another

as a Markov process, we capture autocorrelation up to the first lag. Note that modeling inflow

randomness through a Markov chain of geometric errors does not fully capture long-term variability,

so that the coefficient of variation of total inflows over one year is 5.2% in the model compared to

7.7% in the data. To ensure parsimony of the model, however, we do not include higher order lags.

We estimated the transition probabilities of the Markov chain for Et by first fixing a number

of states M and applying k-means clustering to organize the observations (êt)
T
t=1 into M clusters,
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Z1, . . . ,ZM . In a second step, we estimated the transition probabilities by counting the number of

transitions between clusters as they occur in the sample. Accordingly, the transition probability

matrix is given by

P(Et+1 =Zj|Et =Zi) =
| {t : êt+1 ∈Zj, êt ∈Zi} |

|êt ∈Zi|
, ∀ i, j. (33)

For our implementation, we chose M = 30 to obtain the cluster centers Z1, ...,Z30 and end up

with partitions where the smallest of the clusters contains 14 of the original data points, while the

largest cluster represents 143 observations.

To obtain a joint probability lattice, we formed the product of the gas price lattice S1
t and the

Markov chain S2
t , under the assumption that both processes are independent.

4.2. State-Dependent Price Models

Day-ahead prices are represented by linear models. We estimated one model for every hour and

distinguish between working days and weekends, i.e., a total of 48 models. The regressors consist

of all state variables, daily demand for electricity, and the day length in minutes. We included all

interactions of the regressors up to the second order. Note that, we do not transform the price

data, as is done for example in semilog models, since our sample contains negative prices, which

cannot be handled in these settings. Furthermore, the corresponding reverse transformations of

such models would have introduced instability in the simulation.

In order to ensure parsimony of the model, we performed stepwise combined forward-backward

elimination as described in Draper and Smith (1998), Section 15.2, and used the Bayesian infor-

mation criterion (BIC) for model selection. For the day-ahead price models, the selection routine

chooses 11.67 regressors on average, but at most 20 out of 45 regressors. The number of regressors

is reasonable, considering that we used around 312 observations for the weekend models and 782

observations for the working day models. The overall in-sample fit of the linear models for the day-

ahead prices is R2=65.81%, which is satisfactory, considering the varying economic conditions as

well as structural changes on the market for electricity. Although autocorrelation is still present in
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the residuals of the linear models, due to long term trends in the power prices not captured by our

model, we do not consider these influences to circumvent a further increase of the dimensionality

of the MDP.

To estimate the price response on the intraday market, we regressed the difference of intraday

and day-ahead price on the hourly demand for electricity. The linear regression yielded an intercept

of -20.3 (e) and a slope coefficient of 0.0011 (e per megawatt hour), with an in-sample fit of

R2=45.07%. The negative intercept reflects the fact that the true price response function is non-

linear. Based on the data, we set the slope of the price-response function in the objective function

of the stochastic program to β = 0.0011.

4.3. Simulation

To simulate price trajectories over one year, we began by sampling a state from the steady-state

distribution of the Markov chain. The state transition process is simulated using the probabilities

in (33). To obtain the inflow for a single reservoir, we multiply the sampled εt4 with the average

inflows of the respective reservoir on the chosen day. Based on the realization of the state variable,

and the day of the year, we first simulated a demand for electricity using the linear model for

demands described above and an error term sampled from a normal distribution fitted to the

residuals of that model. In a second step, using the demand and the state variables of the MDP,

we generated hourly day-ahead prices using the linear models for electricity prices. Random noise

was added by sampling the error term of location scale t-distributions fitted to the residuals of the

linear models. The approach is supported by the Kolomogorov-Smirnov goodness of fit test, which

does not reject the null hypothesis of a t-distribution in any of the linear models (α= 0.05). Using

the t-distribution yields heavy-tailed prices, as they are often observed in electricity markets.

To generate day-ahead price scenarios for the stochastic program, we resorted to Latin Hypercube

sampling (LHS) as a variance reduction technique (Shapiro 2003). Denote F−1
h (St,Ul) as the inverse

CDF (t-distribution) of the day-ahead price during hour h for a given St, and denote Ul as a

uniform random variable. Then, we can generate K day-ahead prices using
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Reservoir j 1 2 3 4 5 6 7

Max reservoir content 1000m3 UBR
j 84 941 83 000 30 10 2000 120 95

Initial reservoir content 1000m3 R0j 34 333 37 000 15 5 1000 60 47
Average hourly inflow 1000m3 w̄j 23.0 6.9 134.9 45.2 66.8
Max pumping capacity MW UB−j 600
Min pumping capacity MW LB−j 20
Max generating capacity MW UB+

j 592 220 0.5 120 9 16 16.4
Min generating capacity MW LB+

j 15 10
Pump efficiency MW/1000m3 η−j 4.23
Turbine efficiency MW/1000m3 η+j 3.17 7.51 0.006 1.32 0.06 0.27 0.10

Table 1 System specifications

psh = p′Θ(s)h, p′lh = F−1
h (St,Ul) with Ul ∼U [(l− 1)/K, l/K] ∀ l ∈ {1, . . . ,K}, (34)

where Θ is defined as a mapping from s to l such that ph is a random permutation of p′h, i.e., we

shuffled the price scenarios.

5. Results

To test the efficiency of the proposed algorithm, we conducted a numerical analysis based on data

from a generating company in Austria. The company operates a large hydro storage system in the

Austrian Alps, which consists of an upper (j = 1) and a lower reservoir (j = 2). Both reservoirs

are fed by natural inflows of two glacier rivers, and water can be pumped from the lower into the

upper reservoir. In 2011, the system received a capacity upgrade which increased the pumping

and generating capacities at the upper reservoir by a factor of five. Another capacity upgrade

by the same amount is planned for 2016. All releases from the lower reservoir flow into a hydro

cascade which consists of several small hydro plants that line up along downstream rivers. System

specifications of all plants are given in Table 1.

Based on a default model configuration, consisting of reservoirs J = {1,2} at their current

stage of expansion, we investigated the influence of changing selected parameters ceteris paribus

on the performance of the algorithm as well as the behavior of the optimal policy. As variations, we

considered a version of the model with its former capacity until the 2011 expansion (small capacity)

as well as a version of the model with its future capacity after a possible expansion in 2016 (large

capacity). To study the effect of a larger number of reservoirs, we also included five downstream
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Model J ε UB+
1 LB+

1 UB−1 LB−1

Default {1,2} 104 592 15 600 20
Small Capacity {1,2} 104 112 15 120 20
Large Capacity {1,2} 104 1072 15 1080 20
Reservoir Chain {1,2,3,4,5,6,7} 104 592 15 600 20
50% Min Capacity {1,2} 104 592 296 600 300
Epsilon Zero {1,2} 0 592 15 600 20

Table 2 Model configurations used for the numerical analyses

hydro plants (reservoir chain). Moreover, to study the effect of more difficult integer requirements

on approximation quality, we increased the minimum capacity of turbines and pumps to 50% of

maximum capacity (50% Min Capacity). Finally, since we used a default ε = 104 for all models,

we studied the effect of setting ε= 0 (Epsilon Zero). All model configurations are summarized in

Table 2.

5.1. Implementation

The algorithm and the electricity price model were implemented in Java. The linear relaxation

used with ADDP was modeled using the Java API of Google’s OR-Tools and solved using Sulum

Optimization’s linear programming solver. The stochastic quadratic mixed-integer program used

for the simulations was modeled and solved using the Java API of the Xpress Optimization Suite.

All computations were executed on Amazon EC2 ’m2.4xlarge’ instances which correspond to Intel

Xeons E5-2665 with 8 cores at 2.4Ghz with 68G memory. The implementation of the algorithm

makes heavy use of multithreading which led to a linear speed up in the number of cores.

For our numerical analyses, we generated states and electricity price scenarios using the econo-

metric model described in Section 4. The full problem formulation has T = 365 stages, |S|= 282,211

states, and 44,765,192 transition probabilities. Moreover, for each state, we generated K = 20

scenario paths, each containing |H |= 24 price realizations. An equivalent scenario tree that repro-

duces all possible price paths would require 4.3 · 101234 terminal nodes.

The discount factor was set to γ = 1.0 and all bidding curves had four segments with I = 3

breakpoints. Initial experiments showed that using a larger number of breakpoints or a larger

number of scenarios did not significantly change the objective value.



ADDP for Hydro Storage Systems 27

Model Iter Exp Profit Sim Mean (SE) RH (SE) Gap CV Time Hyp Count

Default 13 164.3 162.4 (2.1) 154.8 (1.7) 0.012 0.21 6.9 2006569
Small Capacity 11 134.0 132.2 (1.8) 131.3 (1.6) 0.013 0.22 4.6 1509970
Large Capacity 17 188.3 188.2 (3.1) 173.5 (2.0) 0.000 0.26 11.9 2512240
Reservoir Chain 17 229.2 229.2 (3.2) 219.3 (2.6) -0.002 0.22 38.8 2244477
50% Min Capacity 13 164.7 163.4 (2.6) 154.5 (1.9) 0.008 0.25 6.8 1892744
Zero Epsilon 13 164.3 162.6 (2.2) 154.2 (1.7) 0.012 0.21 7.8 3498359

RH = rolling horizon benchmark, SE = standard error of the mean, CV = coefficient of variation of the simulated profit,
Iter = iterations to convergence, Time = computing hours to convergence, Hyp Count = final number of hyperplanes

Table 3 Summary of the results for different problem configurations

5.2. Computational Performance

To test the convergence of the algorithm, we ran ADDP for 25 iterations with all six configurations

and compared expected first-stage profits with simulated profits. To avoid reservoirs ending up

being emptied at the end of the year, the value function of the final stage V̄T is such that it

sufficiently penalizes any reservoir content below the initial reservoir levels. To obtain the expected

profits, after each iteration, we computed the objective values of the stochastic program at T = 1

using the most recent approximate post-decision value function. To assess the actual value of the

current approximation, we simulated the decision process by solving the non-relaxed version of the

stochastic program 1000 times for different scenario paths over the whole planning horizon of one

year.

Furthermore, as a benchmark, we formulated the deterministic counterpart of the relaxed prob-

lem as one large linear program. We then simulated the planning process that results from using

this model on a rolling horizon. The model takes the current point estimate of future prices and

inflows to make decisions and then evaluates these decisions using the actual price and inflow

realizations.

Table 3 summarizes the results of the numerical study. We recorded the iteration in which the

upper bound of the 95% confidence interval of the simulated profit exceeds the expected profit

found by ADDP. Note that the true profit lies in between the expected profit and the lower bound

of the 95% confidence interval of the simulated profit with 97.5% probability (Shapiro 2011).

The figures in all other columns refer to the corresponding recorded iteration. The third and
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fourth columns show the expected and the simulated profits (in e1.0M). Column five summarizes

the rolling horizon solution. Column six shows the gap, i.e. one minus the ratio of expected to

simulated profit. Column seven shows the coefficient of variation of the simulated profit. Column

eight shows the computational time in hours until convergence. The last column shows the total

number of hyperplanes that were used to construct the post-decision value function.

The small gap between expected and simulated profits observed for all problem instances demon-

strates that the relaxed problem is sufficient to find a tight value function approximation for the

original two-stage mixed integer problem.

We find that the convergence behaviour is largely affected by the size of the system, both in

terms of storage power capacity, i.e., the capacity of turbines and pumps, as well as the number

of storage units. Increasing the number of reservoirs from 2 to 7 increases the computational time

due to the larger complexity of the optimization problem. However, the increase in the number

of iterations as well as the number of hyperplanes does not reflect the magnitude of the increase

in problem size. While a larger number of reservoirs has a direct effect on computational times,

it apparently has only a minor effect on the number of required hyperplanes and thereby on the

required number of iterations. Problems that require more hyperplanes seem to be those where

the optimal value function reaches a larger number of sufficiently different reservoir states, which

is the case when the power capacity of the storage plant is relatively large.

With respect to the rolling horizon benchmark, the value of following the optimal policy also

largely depends on the power capacity of the plant. While the gap between rolling horizon and

optimal policy is low for the small capacity system (+0.7%), it is much higher for the large capacity

system (+8.5%). This indicates that a flexible storage system that possesses the ability to quickly

change the reservoir content benefits more from a stochastic solution than less flexible systems.

The convergence of expected and simulated profits for ε = 0 and ε = 104 is shown in Figure 3

along with the final number of hyperplanes. Despite using the relaxed problem to approximate the

value function, the gap between expected and simulated profits is less or equal to 1.2% (even if the

minimum capacity is at 50% of the maximum capacity as seen in Table 3). We can see from the
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Figure 3 Convergence of ADDP for different approximation bounds for the case 50% Min Capacity.

plot that the gap closes after 25 iterations if ε= 0 but not if ε= 104. However, using a lower ε is

paid for by a higher computational burden, which is reflected in the number of hyperplanes needed

to approximate the value function. Setting ε = 104 requires solution of 3.7 · 108 linear programs

until convergence is reached (as opposed to 4.9 · 108 linear programs if ε= 0), which reduces the

computational time by about 12%. Note that we deliberately used a large default ε to illustrate

this aspect.

5.3. Structural Insights

So far, the analyses showed that the optimal policy as well as the added value of following it is

highly sensitive towards the power capacity of the storage system, i.e., the size of the turbines and

pumps relative to the size of the reservoir. For a constant reservoir size, a higher power capacity

decreases the time that the storage plant can run at full capacity. For example, if we ignore inflows,

it would take 134 days to empty the upper reservoir with 112 MW turbine capacity (small), but

only 14 days with 1,073 MW turbine capacity (large). This has a tremendous effect on which

reservoir states could possibly be reached by the optimal policy.

Figure 4 shows the reservoir contents of the upper reservoir over the course of the year for the

small and the large setup. While the variation in the reservoir content curves over the year is low

for the small capacity system, the variation is high for the high capacity system. Due to the large
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Figure 4 Reservoir content curves

amount of inflow arriving during the summer months, the small system pumps 5.0% of the time in

winter and 20.0% of the time in summer on average. The large system, on the other hand, pumps

30.0% of the time regardless of the season. This operational flexibility in addition to the lower

number of days at which the plant can run at full capacity leads to a higher variability in reservoir

contents and thereby increases the value of a stochastic solution.

An analysis of the simulated decisions revealed that the plants operate in three states 99% of the

time. The plants either turbinate at full capacity, or they pump at full capacity, or neither. Such

a decision policy seems to be sufficiently represented by bidding curves with only four segments,

which is also reflected by the small gap between expected and simulated profits.

6. Conclusion

We modeled the bidding problem of a generating company that operates a network of hydro

storage plants as a multi-stage stochastic program and proposed a solution strategy that integrates

stochastic dual dynamic programming with ideas from approximate dynamic programming. We

divided the annual planning horizon into daily stages with hourly bidding decisions as part of

the intrastage bidding problem. Accordingly, we separated intrastage from interstage randomness,

which enabled us to model price uncertainty at each stage dependent on a state variable that evolves

over time following a Markov process. To solve the multi-stage decision problem, we proposed a

solution strategy that computes an approximation of the value function of the interstage process.

The algorithm, referred to as approximate dual dynamic programming (ADDP), uses a probability
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lattice to represent the Markov process and iteratively constructs a polyhedral approximation of

the value function. This approximation can be used inside the original, more complicated intraday

bidding problem to derive near-optimal bidding decisions.

We showed that the algorithm converges and derived an error bound of the polyhedral approx-

imation. Tailored to the modeling framework, we developed an econometric model of electricity

prices and stochastic inflows fitted to data from the EPEX SPOT wholesale electricity market as

well as actual inflow data. We then carried out a case study based on different configurations of a

hydro storage system in Austria. We find that approximating the continuous Markov process by a

discrete probability lattice provides a good model fit. Numerical results indicate that the algorithm

converges to a near-optimal solution, despite using a relaxed version of the original problem to

approximate the value function of the interstage problem. Furthermore, we find that computational

complexity as well as the value of the stochastic solution depends on the ratio of reservoir size to

installed power capacity.

Future work should focus on models that additionally consider the market for reserve electricity

as well as the market for future contracts. It would also be interesting to test the approach on the

unit commitment problem of a thermal power system.
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