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Neutrophils – a key component of ischemia reperfusion injury  
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Abstract 

Ischemia reperfusion injury (IRI) is a common occurrence following myocardial infarction, transplantation, 

stroke and trauma that can lead to multiple organ failure, which remains the foremost cause of death in 

critically ill patients. Current therapeutic strategies for IRI are mainly palliative, and there is an urgent 

requirement for a therapeutic that could prevent or reverse tissue damage caused by IRI. Neutrophils are 

the primary responders following ischemia and reperfusion and represent important components in the 

protracted inflammatory response and severity associated with IRI. Experimental studies demonstrate 
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neutrophil infiltration at the site of ischemia and show that inducing neutropenia can protect organs from 

ischemia reperfusion injury.  In this review, we highlight the mechanisms involved in neutrophil 

recruitment, activation and adherence and how this contributes to disease severity in IRI. Inhibiting 

neutrophil mobilization, tissue recruitment, and ultimately neutrophil-associated activation of local and 

systemic inflammatory responses may have therapeutic potential in the amelioration of local and remote 

tissue damage following IRI. 

Keywords – Inflammation, MOF, Migration, Cytokines. 
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Ischemia Reperfusion 

Clinical Setting of Ischemia Reperfusion  

Ischemia reperfusion (IR) has been recognised as a cause of clinical sequelae for over half a century 

(1) and remains a comon occurrence in coronary bypass surgery, organ transplantation, gut hypo-

perfusion and stroke (2,3).  IR is recognised as a complex cascade of events including interactions 

between vascular endothelium, interstitial compartments, circulating cells and numerous 

biochemical entities that follow ischemia. Inflammation is a key mediator of IR and aspects of the 

involvement of the innate immune system has been reviewed by others (3–5). Despite our 

knowledge of the pathophysiology of IR, injury caused by IR precedes clinical observation, and once 

apparent, it is often too late for intervention. Therefore, there is still a need for a therapeutic that 

could prevent or reverse the effects of the injuries caused by IR (2). A number of failed clinical trials 

demonstrated that intervention during the first seconds of reperfusion is imperative, and thus the 

window of opportunity during reperfusion is limited. Therefore therapeutic options need to be fast 

acting, readily available by clinicians and not adversely damaging in their own right.  

Causes and Effects of Ischemia Reperfusion Injury 

IR is initiated by an ischemic episode, where blood supply is restricted to a portion of an organ or 

the whole organ, initiating cell death which is further exacerbated when blood flow is returned. 

Ischemia results in tissue hypoxia that causes a build-up of metabolic intermediates and reactive 

oxygen species (ROS) namely, superoxide, hydrogen peroxide, and hydroxyl radicals. ROS species 

increase intracellular calcium, cause pH changes, and concomitantly deplete ATP, resulting in 

damage to cell organelles and leading to necrotic cell death (2,6). ROS production during short 

bouts of ischemia can be resolved by free radicals and antioxidants such as nitric oxide (NO). 
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However, excessive periods of ischemia, ranging from a few minutes to half an hour or more (7–9), 

depending on the organ, cause irreversible effects which are amplified upon reperfusion.  

Reperfusion floods the ischemic tissue with oxygen. This activates metabolic intermediates and ROS 

resulting in  an overwhelming inflammatory response causing ischemia reperfusion injury (IRI). 

Increased ROS quenches the production of NO, damages endothelial cells resulting in loss of barrier 

integrity and release of ROS into the extracellular matrix (9,10). This increases expression of 

adhesion molecules (3); acts as a chemoattractant for neutrophils, initiating their recruitment (10); 

activates the complement cascade (11,12) and promotes apoptotic cell death (13,14). Resident 

macrophages and damaged endothelial cells release pro-inflammatroy cytokines further recruiting, 

activating and aiding in migration of neutrophils. This results in an overwhelming inflammatory 

response that if the body fails to regulate, can lead to acute respiratory distress syndrome (ARDS) 

and, or systemic inflammatory response syndrome (SIRS) which are central to the pathogenesis of 

multiple organ failure (MOF) (6,15–17), which has a 70% mortality rate (18). IRI physiology is 

complex, but indisputably the primary response cells to IRI are neutrophils, which can infiltrate the 

damaged tissue within minutes of activation. Several studies in the 1980’s and 1990’s investigated 

the role of neutrophils in IRI (19) but in the past two decades more emphasis has been given to 

molecular, rather than cellular, targets such as complement receptors (20), toll like receptors (21), 

reactive oxygen species (ROS) [20] and the pro inflammatory cytokines such as tumour necrosis 

factor-alpha TNF-α, which has subsequently been shown to not be involved in IRI (22). The role of 

cytokines, ROS, complement and toll like receptors cannot be ignored in IRI as they have a major 

role in the pathogenesis of IRI as they support, activate, recruit and amplify the destructive function 

of neutrophils. However, recent studies have returned focus to the role of neutrophils as a key 

player in the pathophysiology of IRI (12,23–25). Therefore we will highlight the interactions these 
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have with neutrophils and how this creates a feedback loop of neutrophil recruitment and 

excessive damage at the site of IR and how this can result in MOF.    

Neutrophils in Ischemia Reperfusion Injury 

At the site of IR activated neutrophils further exacerbate host tissue damage through release of 

ROS, proteinases and cationic peptides (26). Neutrophils produce a large quantity of ROS when 

nicotinamide adenine dinucleotide phosphate (NADPH)-oxidase is activated upon adhesion or by 

pro-inflammatory cytokines (41).  Neutrophils block capillaries preventing reperfusion of the tissue, 

which leads to tissue necrosis and an exacerbated immune response. Neutrophils secrete pro-

inflammatory cytokines and chemokines to create a positive feedback loop of neutrophil 

recruitment and activation (12,28), as illustrated in Figure 1. Furthermore, neutrophil migration 

causes loss of epithelial barrier integrity and down regulation of junctional adhesion molecule 

(JAMC). JAMC prevents reverse migration of neutrophils (29), which is associated with ARDS, SIRS 

and MOF (15,22,26). Ischemia reperfusion can affect every part of the body and is initiated by 

various mechanisms depending on the organ or area involved. Therefore the overactive state of 

neutrophils in response to excessive ROS, which is also present in normal tissues at lower levels, 

rather than activation induced via cytokine signalling , could be one reason why a therapeutic to 

treat or prevent IRI remains elusive. 

We will therefore explore the role of neutrophils in specific organs, the mechanisms involved in IRI 

in that organ and how neutrophils contribute to disease severity regardless of the mechanisms 

involved in recruiting and activating them.  
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Figure 1: Positive feedback loop of cytokine release and neutrophil recruitment. Ischemic tissue and resident 
macrophages at the site of ischemia release reactive oxygen species (ROS) and cytokines. ROS activates complement 
and drives chemotaxis of neutrophils into the ischemic tissue, along with IL-1 and C5a which initiate rapid 
neutrophilia. Complement proteins and cytokines bind to activated neutrophils at the site of ischemia. This promotes 
production of further pro-inflammatory cytokines and up-regulates expression of adhesion molecules. C5a binds to 
the C5a receptor (C5aR) on neutrophils and stimulates NFκB which initiates transcription of TNF-α, IL-8 and IL-6. TNF-
α promotes production of IL-1 and up-regulates expression of CD11/CD18 integrins, which are required for firm 
adhesion to the epithelial/endothelial cell, enabling migration across the endothelial/epithelial barrier. IL-8 
promotes neutrophilia and IL-6 stimulates granulopoiesis in the bone marrow. This overwhelming response of 
neutrophil infiltration and cytokine production overrides protective mechanisms leading to a positive feedback loop 
of neutrophil mobilization, production, recruitment, migration and subsequently excessive damage beyond that of 
the initial insult. 

Neutrophils in organ specific IR injuries 

Heart 

Cardiac IR is common after coronary bypass surgery with myocardial infarction being the leading 

cause of mortality and morbidity in adults in developed and developing nations (30). After 
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prolonged ischemia restoration of blood flow induces ROS and production of TNF-α, IL-1, IL-6, IL-8, 

peptide activating factor (PAF) and macrophage inflammatory factor 2 (MIP-2) by endothelial cells, 

mast cells and myocytes (31). It also activates complement initiating production of C5a (20). These 

events significantly increase neutrophil infiltration at the site of IRI which directly correlates to 

infarct size (31). Adhesion molecules, such as CD11, CD18, P-selectin and ICAM-1 on the 

endothelium are also upregulated which activate neutrophils and enable migration through the 

endothelium. Neutrophils have deleterious effects in three ways. Firstly they release a large 

amount of ROS which exacerbates tissue damage (10). This was verified in a dog model, by electron 

paramagnetic resonance spectroscopy which showed neutrophils as the major source of ROS during 

reperfusion (32). Secondly, they contribute to the no-reflow phenomenon. This can expand the 

ischemic insult to over 50% of the capillaries exacerbating tissue damage and necrosis and thus 

upregulating  pro-inflammatory signals, adhesion molecules and neutrophil infiltration (31,33), 

through the neutrophil feedback loop (Figure 1). Finally, enthusiastic migration of neutrophils 

across the endothelial barrier leads to tight junction loss (31,34) and potentially MOF.    

Various animal models inducing neutropenia in feline, canine, bovine and rodents have exhibited 

reduced tissue necrosis and myocardial injury (35,36), as well as demonstrating preservation of 

endothelial function (37). Chandrasekhar and colleagues investigated the role of the pro-

inflammatory cytokines IL-6, IL-1β and TNF-α demonstrating that neutrophil depletion in rats 

significantly inhibited expression of these cytokines independently of NF-κβ (38). Knockout models 

of P-selectin (39,40) and ICAM-1 (40,41) further corroborate the damaging role of neutrophils in IRI 

as myocardial necrosis in mice was attenuated in relation with reduced neutrophil infiltration. 
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Kidney 

IRI is a major cause of acute kidney injury (AKI) which has a mortality rate in critically ill patients 

around 50% and causes significant comorbidity (3,42,43). Neutrophil infiltration in kidney IRI is seen 

as early as thirty minutes after reperfusion and is evident in both animal models and patient 

biopsies (25). Awad and colleagues recently carried out an extensive study on the role of 

neutrophils in kidney IRI in a murine model that clamps the renal pedicles to induce IRI (43). They 

showed that neutrophil transmigration into the interstitial compartment is responsible for vascular 

permeability and damage in the kidney. 

IRI causes injury to tubular epithelial cells, endothelial cells and resident dendritic cells (DC). 

Resident DC’s  produce TNF-α, IL-6, MCP-1, RANTES (44), MIP-2 and keratinocytes-derived 

chemokine (the mouse analogue of human IL-8)(42), initiating a potent chemotactic gradient for 

neutrophil recruitment. Interestingly in the kidney IL-8 plays a crucial role in neutrophil recruitment 

and mediates tissue injury via cytokines, free radical intermediates and proteases (42,44). Increased 

expression of ICAM-1, P-selectin and IL-8 (45), enables increased adhesion which has been 

attributed to nephron destruction (46). Upon degranulation neutrophils release proteases, 

myeloperoxidase (MPO), cytokines and generation of ROS in the outer medulla (42) broadening 

tissue damage throughout the kidney. Furthermore neutrophils in conjunction with platelets and 

red blood cells cause blockage to the capillary resulting in the no-reflow phenomenon (25) which 

amplifies the inflammatory response and thus neutrophil infiltration. Activation of the complement 

system, specifically C3, C5a and membrane attack complex (MAC; C5b-9) are also seen in kidney IRI 

(42,47). MAC deposition stimulates TNF-α  and IL-6 and down regulates Crry, a complement 

inhibitor on the tubular epithelium (42).  
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Lung 

Lung IRI can be initiated by several conditions including lung transplantation, cardiopulmonary 

disease, trauma, resuscitation, atherosclerosis and pulmonary embolism and remains a significant 

cause of morbidity and mortality (48). Lung IRI can also be initiated from ischemic insult in other 

organs such as the intestine. Lung injury after intestinal IR is characterised by increased 

microvascular permeability, alveolar capillary endothelial cell injury, reduced lung tissue ATP levels 

and neutrophil infiltration (49). 

Production of ROS is immediately induced upon reperfusion, primarily from alveolar macrophages 

and endothelial cells. NFκB, NADPH-oxidase, iNOS and the pro-inflammatory cytokines IL-8, IL-12, 

IL-18, TNF-α and PAF are activated. These amplify the expression of ICAM-1, CD18 and P-selectin on 

the endothelial side of the lung (48). These events begin to impair lung function and recruit 

neutrophils, which generate additional ROS, IL-8, PAF, TNF-α and MPO. Neutrophils are particularly 

damaging during this phase as they increase lung permeability and facilitate tissue damage (50). 

Neutropenia induced in a rat model provides protection from tissue damage corroborating that 

neutrophils are key in the severity of tissue damage (51). Although IL-8 correlates directly to 

mortality rate after lung transplantation (48) it predominantly induces chemotaxis in neutrophils 

(52); indicating that higher mortality rates are most likely due to the damage caused by infiltrating 

neutrophils rather than IL-8 itself.  

Liver 

The role of neutrophils in liver IR was well defined by Jaeschke and colleague in the early 90’s and 

showed that neutrophils exacerbate liver damage (53). More recently reviews by Ramaiah and 

Jaeschke 2007 (24) and Kubes and Mehal 2012 (54), provide compelling evidence for the role of 

neutrophils in liver IR. MIP-2 and keratinocyte chemoattractant are the main chemoattractants in 
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the liver along with TNF-α , IL-1β and IL-8 promoting neutrophil accumulation and expression of the 

CD11/CD18 integrin (24). In the liver neutrophils adhere within sinusoids independently of selectins 

eliminating the requirement of rolling (54). However, activation and accumulation of neutrophils in 

the sinusoids do not cause tissue damage to the epithelium, as it does in other organs. Only after 

migrating across the endothelium and in close proximity to the hepatocytes can neutrophils cause 

damage by oxidative stress, triggered through interaction with CD11/CD18 integrins, NADPH 

oxidase and MPO (24,55). Transendothelial neutrophil migration therefore is an important step in 

liver IR which is controlled by expression of CD11/CD18 and the subsequent binding to ICAM-1 

(56,57). This was further corroborated by Jasechke and colleagues in 2012(55), when they identified 

the role of complement in directly priming neutrophils for ROS formation and activation of CD11b 

expression. They also showed that complement promotes Kupffer cell induced oxidant stress and 

injury which indirectly enhances neutrophil responses (55). The role of neutrophils in liver IR is 

further supported through the protective effects seen in animal models of neutropenia (58,59). 

Although neutropenia is protective, inducing neutropenia in clinical patients would severely 

immunocompromise them making them susceptible to many pathogenic diseases. This is why we 

need to focus on modulating neutrophil behaviour rather than preventing it completely. 

Gut 

Intestinal ischemia reperfusion has a relatively small incidence rate with only 30,000 cases reported 

per annum in the USA and has therefore not been given as much attention as other organs. 

However, intestinal IR is often a secondary event to most critical conditions (60), with severe 

secondary events being associated with atherosclerosis, obesity, diabetes (12,61) and α-adrenergic 

agents or digitalics (16).  
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Recent evidence reveals neutrophils are a key player in the pathophysiology of intestinal IRI 

(12,23,62), and our histological staining of mouse ileum illustrates neutrophil infiltration and villi 

destruction (Figure 2). Importantly, neutrophil depletion has shown to protect the intestine from 

late stage mucosal damage and afford protection to remote organs (63–66).   

 

Figure 2: Mouse epithelium showing neutrophil infiltration. Intestinal ischemia reperfusion (IR) increases granulocytic 
neutrophil infiltration in the intestine, accompanied with destruction of villi (loss of epithelial integrity). Representative 
sections of ileum from (A) Sham-operated wild-type mice (WT – SHAM) mice and (B) Intestinal IR wild-type mice (WT - 
IR) showing infiltrating neutrophils (stained red/pink) in the villi of small intestine as indicated by arrows. Granulocytic 
neutrophils were identified by staining specific leukocyte esterase present predominantly in granulocytic neutrophils. 
WT-IR mice were subjected to IR surgery in which the superior mesenteric artery was ligated for 30 min and released 
(reperfused) for 150 min. WT-SHAM mice underwent the same surgery procedures without the artery being ligated. 
Tissues were collected, PFA fixed and post-processed for the esterase stain (Unpublished data 2013).  

 

The initial insult, as is characteristic with IR in all organs, is from ROS.  ROS themselves are key 

mediators in intestinal IRI; they are a primary source of damage initially compromising the integrity 

of the endothelial barrier (7,9,67); promote activation of complement; attract neutrophils and 

enhance expression of cell adhesion markers increasing extravascular migration to the sites of 

inflammation resulting in vascular injury (12,28,68).  

Complement is activated independently through ROS and neutrophil activation and leads to the 

production of C5a and IL-1β, potent chemoattractants for neutrophils. C5a further stimulates NFκB 

upregulating transcription of pro-inflammatory cytokines recruiting more neutrophils (7,69). C5aR 
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knockout models show reduced intestinal mucosal damage, decreased neutrophil infiltration, 

attenuate neutrophil apoptosis and prevent cytokine release into the plasma (70). TLR2 and TLR4 

contribute to the initiation of an inflammatory response (4) as they signal macrophages, monocytes 

and dendritic cells to further recruit neutrophils through production of cytokines. TNF-α up-

regulates expression of CD11/CD18 which forms firm adhesion with ICAM-1 and P-selectin (71,72). 

In intestinal IRI IL-8, which is secreted from the basolateral surface of the intestinal epithelium, is 

important for initialising neutrophil migration across the epithelium (73) and neutrophil 

degranulation (74). Blocking IL-8 in a transgenic mouse model has shown to mitigate intestinal IRI 

[83]. Platelet levels are increased in parallel to leukocytes in intestinal IRI and bind to neutrophils 

increasing their adhesive capabilities to the endothelium independently of IL-8. Production of  ROS 

and PAF (76) amplifies neutrophil numbers, pro-inflammatory cytokines and ROS which, fuel tissue 

damage  increase vascular permeability (12).  

We recently showed that neutrophil mobilization from bone-marrow, or peripheral pools, following 

ischemia, plays a key role in inducing intestinal IR injury (23). Importantly, intestinal complement 

activation was observed after IR, and corresponds with increased circulating neutrophils. Blocking 

the major complement activation fragment receptor C3aR worsened injury, by increasing the 

number of mobilized neutrophils in both the circulation and intestine. This intestinal neutrophil 

infiltration could in turn be blocked by inhibiting the C5a receptor (C5aR), thereby ameliorating 

intestinal IR pathology. This recent study highlights the importance of the neutrophil and its entry 

into the blood and subsequently the intestine, in the establishment of intestinal IR injury.  

Neutrophils and Multiple Organ Failure (MOF) 

IRI in any organ can result in SIRS, ARDS and MOF. In intensive care units 50% of deaths are 

attributed to MOF (77) and ARDS is fatal in over 40% of patients (26). Neutrophil migration in IRI is 
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an important part of excessive damage in all organs as highlighted in previous sections and reverse 

migration has been related to systemic inflammation after remote IR events. Woodfin and 

colleagues demonstrated this event in a mouse model that initiates IRI in the cremaster muscle or 

lower limb. Using 3D and 4D imaging technology they observed down regulation of JAMC, which 

usually prevents reverse migration, and transendothelial neutrophil migration (78) which has been 

depicted in Figure 3. Neutrophils that undergo reverse migration exhibit enhanced ROS generation 

and more resistance to apoptosis contributing to systemic inflammation and secondary organ 

damage (78). Further support for the role of these neutrophils in MOF is a clinical trial analysing the 

role of neutrophils in the circulatory and lymphatic system of mesenteric IRI. Disruption of the tight 

junctions increased vascular permeability. This enabled neutrophils and enteric bacteria to 

translocate into the circulatory and lymphatic system, Neutrophils now primed for enhanced ROS 

production damage in remote organs, which is highly attributed to ARDS and MOF (15). These 

findings further substantiate the need for a therapeutic that can reduce the excessive inflammatory 

response caused by IRI and show how critical neutrophils are in IRI. 

 

Figure 3: Neutrophil migration is initiated by various chemotactic agents produced at the site of IR. Neutrophils produce ROS and 
inadvertently destroy local endothelial or epithelial cells that were unaffected by the initial IR insult. Neutrophils become more 
resilient to apotosis and gain enhanced ROS production. JAMC is disrupted by neutrophil proteases and cell disruption enabling 
neutrophils to migrate out of the tissue, essentially reverse migration. It can now migrate to other organs and destroy tissues 
through ROS production leading to ARDS, SIRS or MOF. 
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Neutrophil targeting therapeutics to treat IRI 

To date most therapeutics have targeted cytokines, complement, free radicals, platelet aggregating 

factor and adhesion molecules in an attempt to resolve the adverse effects of IRI. So far, such 

agents have been relatively ineffective clinically (7,60,69). Current therapeutic options for IR are 

merely palliative, offering some relief to the patients discomfort, but failing to improve the 

underlying condition (79). 

One trialled treatment for IRI has been to increase the levels of NO prior to surgery, as many animal 

studies supplemented with antioxidants demonstrated reduced IRI. During an ischemic state, 

production of NO is shut down. Upon reperfusion, the ischemic tissue is overloaded with 

superoxides that quench any remaining NO and produce highly toxic peroxynitrite. Production of 

superoxides in IRI eventually lead to inactivation of NO altogether (12). Unfortunately, increasing 

levels of NO in tissue prior to ischemia exacerbated IRI (2). Alternate antioxidant treatments such as 

Allopurinol, Superoxide dismutase (SOD), iron chelators, N-acetyl cysteine, ethanol, Captopril and 

Verapamil have also failed to provide conclusive evidence for clinical end point success in animal 

and clinical trials (80,81). Edaravone (3-methyl-1-phenyl-2-pyrazolin-5-one), a potent free radical 

scavenger, improved survival and renal function in rats subjected to renal IRI (82) and has had 

success in a clinical pilot study of acute myocardial infarction (83). Recently, stobadine, a novel 

synthetic pyridoindole antioxidant, which diminishes lipid peroxidation and protein impairment by 

free radical scavenging and anti-oxidant activity, has been shown to provide significant protection 

from IRI in rat kidneys (44). Based on evidence showing Hydrogen Sulphide (H2S) as a modulator of 

inflammatory events through interaction with leukocytes (84), Sivarajah and colleagues 

investigated its role in myocardial IR. They demonstrated that H2S decreases myocardiocyte 

apoptosis and ICAM-1 expression and neutrophil infiltration (13). 
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Initial success has been established in pre-clinical models of IRI for a handful of therapeutics that 

target neutrophils. A monoclonal antibody targeted against the CD11/CD18 integrin showed 

promising results in animal models (85–87), but clinical trials failed to show a significant reduction 

in infarct size (88,89). G protein-coupled receptors (GPCR’s) have been very successful for a range 

of disorders and, account for almost a third of all prescription drugs in current use (90). Evidence to 

date indicates they may also be successful targets for IRI. G protein-coupled receptor 43 (GPR43), 

which is highly expressed on neutrophils (91), is a receptor for short chain fatty acids (SCFA’s). 

These have shown to reduce the degree of IRI in rat gut using a model of mesenteric ischemia 

reperfusion (92). Therefore modulation of neutrophils through GPR43 could be a possible future 

avenue to modulate neutrophil recruitment to organs following IRI. Another GPCR, adenosine 2A 

(A2A) receptor, also has protective effects. It reduced infarct size  in a pig model of myocardial IR 

(93) and, inhibited adhesion molecules on endothelial cells and reduced neutrophil numbers in a 

mouse model of kidney IR (94) 

Complement inhibition is another attractive target. Gut, liver, kidney, limb and brain models have 

revealed the role of complement as a key mediator of post ischemic damage (95,96). Further 

studies supplement these findings, showing that complement inhibitors such as recombinant sCR1 

do reduce IRI in various organs (6,72,97–100). However, complement inhibitors have the drawback 

that they have to block tissue injury whilst preserving its function to prevent infection and eliminate 

immune complexes; failure to do this leaves the patient severely immunocompromised and 

susceptible to infection (101). To date, eculizumab is the only clinically available therapeutic that 

specifically targets the complement system, and is approved for use in Paroxysmal nocturnal 

hemoglobinuria (PNH) and atypical haemolytic-uremic syndrome (aHUS) (102). It specifically targets 

C5, preventing its cleavage into C5a; a potent chemoattractant and C5b which forms MAC. C5a is an 
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important chemoattractant for neutrophils and therefore blocking C5 could reduce neutrophil 

infiltration in IRI. Unfortunately pexelizumab, a close analogue to eculizumab that also inhibits 

cleavage of C5, failed to reduce infarct size in a human myocardial infarction trial (103). In animal 

models of IR complement depletion significantly reduced neutrophil numbers and decreases lung 

permeability (104). Hence there is a strong possibility that reduction of IRI when inhibiting 

complement is actually due to a reduction in neutrophil infiltration, inferring that a therapeutic 

intervention that targets neutrophils specifically could be the key to preventing IRI. In support of 

this hypothesis, we recently demonstrated that infusion of C3a agonist peptide to mice reduced 

neutrophil mobilization after intestinal IR, which resulted in reduced tissue neutrophil infiltration 

and ameliorated disease pathology (23). 

Future trends 

Many failures have been observed in an attempt to prevent and treat ischemia reperfusion injury 

(IRI). These failings could be due to a number of reasons, from a lack of understanding of the 

pathophysiology to insufficiency of the disease models. A main hurdle in drug development is the 

translation of the efficacy in animal models to humans. Clinical trials for therapeutics that target 

inflammatory responses have been particularly fruitless in the treatment of IRI, with promising in 

vivo data in animal models failing to relate clinically. The success of therapeutics could be restricted 

by the availability of models that can truly reflect in vivo biology, which has been highlighted 

recently in a number of reviews (105–107). Furthermore, current studies generally use or target 

only one component that impedes activation or migration of neutrophils. Targeting several key 

factors at the same time could provide better protection from IRI without compromising any one 

area of the immune system and thus resulting in better patient outcomes.  
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In reality, the insult from ischemia reperfusion is multifactorial and a therapeutic that targets a 

single molecular aspect of pathology will most likely continue to be ineffective. As such, 

therapeutics should aim to target multiple pathways, or indeed whole cells such as the neutrophil, 

to maximise the impact of reducing the inflammatory response caused by IRI. Ischemia reperfusion 

can occur in just about every part of the body and has a plethora of aetiologies that are specific to 

the initial insult, area and organ in which it takes place. Regardless, it is apparent that all 

mechanisms lead to recruitment and activation of neutrophils, which have been shown to correlate 

with disease severity. Therefore the ultimate therapeutic or combination of therapeutics would 

ideally dampen the inflammatory signals that mobilize and recruit neutrophils or regulate 

neutrophils directly in order to prevent IR developing into IRI. 

Conclusion 

IRI is common during various traumatic and surgical events and responsible for ARDS and MOF, 

which causes death in over half of all patients affected. Various strategies have been employed to 

prevent the adverse effects of IR but the complex pathophysiology of IR continues to evade 

treatment. The inflammatory response is indubitably a key mediator of IRI. In addition, this review 

has emphasised the importance of neutrophils as a significant contributor to the progression of IRI. 

Neutrophils contribute to the severity of IRI by exacerbating ischemia through blockage of 

capillaries (no-reflow phenomenon); escalating the inflammatory response by releasing cytokines; 

damaging cells unaffected by ischemia through release of ROS and potentially most significantly, by 

disrupting the endothelial and epithelial barriers which leads to MOF. Therapeutics have targeted 

several pathways involved in the pathophysiology of IRI but so far have failed to provide an 

effective therapy to ameliorate outcomes. This review has highlighted the underlying and necessary 

role of neutrophils in IRI. Further understanding of the mechanisms involved in mobilization, 
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transmigration and activation of neutrophils in IRI, could lead to a potential therapeutic target that 

can prevent the onset of IRI. 
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