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Abstract 

In this thesis investigations were performed into digital signal processing (DSP) 

algorithms for coherent optical fibre transmission systems, which provide improved 

performance with respect to conventional systems and algorithms. Firstly, an 

overview of coherent detection and coherent transmission systems is given.  

Experimental investigations were then performed into the performance of digital 

backpropagation for mitigating fibre nonlinearities in a dual-polarization quadrature 

phase shift keying (DP-QPSK) system over 7780 km and a dual-polarization 16-

level quadrature amplitude modulation (DP-QAM16) system over 1600 km. It is 

noted that significant improvements in performance may be achieved for a nonlinear 

step-size greater than one span. An approximately exponential relationship was 

found between performance improvement in Q-factor and the number for required 

complex multipliers.  

DSP algorithms for polarization-switched quadrature phase shift keying (PS-QPSK) 

are then investigated. A novel two-part equalisation algorithm is proposed which 

provides singularity-free convergence and blind equalisation of PS-QPSK. This 

algorithm is characterised and its application to wavelength division multiplexed 

(WDM) transmission systems is discussed. 

The thesis concludes with an experimental comparison between a PS-QPSK 

transmission system and a conventional DP-QPSK system. For a 42.9 Gb/s WDM 

system, the use of PS-QPSK enabled an increase of reach of more than 30%. The 

resultant reach of 13,640 km was, at the time of publication, the longest transmission 

distance reported for 40 Gb/s transmission over an uncompensated link with standard 

fibre and optical amplification. 
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1 Introduction 

1.1 Introduction 
The birth of optical fibre communications systems in the early 1970s produced an 

explosive growth in telecommunications with the introduction of low loss, high 

bandwidth silica fibres [1]. Increases in line rates in these early systems were 

achieved simply by increasing the modulation rate of on-off keyed (OOK) signals 

[2]. As symbol rates increased, systems were limited by the loss that could be 

tolerated before electrical regeneration was required. 

At this stage, coherent detection was first investigated as a method of increasing the 

sensitivity of optical receivers [3]. While an improvement in sensitivity of up to 20 

dB was achieved, coherent detection was superseded with the invention of the 

optical fibre amplifier [4]. 

Erbium doped fibre amplifiers (EDFAs) provide amplification in the optical domain, 

providing THz of gain bandwidth, enabling amplification of several wavelength 

channels. Further increases in reach became available with the invention of inverse 

dispersion fibres, allowing optical domain compensation of chromatic dispersion 

(CD).  

While optical line rates continued to increase to tens of Gb/s, EDFAs enabled a large 

increase in total capacity per fibre. This increase was due to the use of several optical 

carriers of differing wavelengths on a single fibre, known as wavelength division 

multiplexing (WDM) [5]. The carriers are de-multiplexed at the receiver with a 

wavelength selective device such as an arrayed waveguide grating (AWG), and 

detected individually.  

Although the increase in capacity enabled by EDFAs and WDM has scaled well in 

the past, a hard limit on capacity exists while OOK modulation is used, given that 

the maximum achievable information spectral density (ISD) is 1 b/s/Hz. During the 

development of 40 Gb/s transmission systems, the need to maintain compatibility 

with the ITU frequency grid of 50 GHz for WDM systems and reduce the need for 
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extremely high bandwidth electronic components became apparent. Due to these 

pressures, advanced modulation formats which are capable of transmitting more than 

one bit per symbol (and therefore an ISD of more than 1 b/s/Hz) became a highly 

desirable technical advancement [6]. 

Several transmission systems were implemented for 40 Gb/s transmission, two of 

which relied on quadrature phase shift keying (QPSK). Differential detection of 

differentially coded QPSK (DQPSK) provides a low optical complexity solution at 

40 Gb/s, and relies on self-coherent detection using a delay line interferometer (DLI) 

and quadrature detection [7]. The delay line interferometer splits the incoming signal 

into two equal components, one of which is delayed by one symbol period. The two 

components are then recombined in a 2x2 coupler which has outputs in quadrature. 

These optical signals are then detected and sampled, giving the two bits of 

information which comprise the QPSK symbol. 

Although DQPSK provided a relatively cost efficient method of achieving 40 Gb/s 

transmission over a 50 GHz WDM grid, self-coherent detection has attributes which 

limit the scaling of this technology to higher line rates. Due to the fact that the signal 

is mixed with itself, the improvement in sensitivity is less than that of full coherent 

detection. Signals are also limited by linear distortions such as polarization mode 

dispersion (PMD) and CD which scale linearly and with the square of baud rate 

respectively. Additional modulation density may be achieved only with the addition 

of further phase levels and additional DLI structures in the receiver, adding cost and 

complexity while significantly increasing complexity. 

The second QPSK-based solution for 40 Gb/s transmission was fully coherent 

detection with digital post-processing of dual-polarization QPSK (DP-QPSK) [8]. 

Digital coherent detection involves splitting the incoming signal into two orthogonal 

linear polarizations, mixing the signal with a free-running local oscillator and 

performing detection of the in-phase and quadrature components for both 

polarizations. This scheme results in detection of all four dimensions of the optical 

field, thus preserving all information contained in the received signal [9]. After 

quantisation, distortions are removed from the signal with the use of DSP techniques, 

such that the channel is equalised, the polarization states are separated and the 

variation in phase and frequency between the local oscillator and source lasers is 
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removed. This scheme allows the use of polarization multiplexing without the need 

for adaptive optics, and also enables full compensation of arbitrary amounts of 

previously limiting effects such as PMD and CD [10]. The modulation format of 

choice for 40 Gb/s with coherent detection has become DP-QPSK, which carries 4 

bits per symbol (resulting in an ultimate limit of 4 b/s/Hz ISD). The higher 

modulation density results in a lower bandwidth requirement for electrical 

components, with just 5 GHz required for most components along with 10 GSa/s for 

the analogue to digital convertors (ADCs). 

While digital coherent detection requires additional optical components in 

comparison to other schemes (namely the optical hybrid, local oscillator and 

additional photo-detectors), and therefore incurs additional cost, both robustness to 

distortion and scaling to higher line-rates are greatly increased. This may be 

illustrated by the recent development in 100 Gb/s transmission systems. The 

commercial standard for 100 Gb/s transceivers [11] specifies the use of digital 

coherent detection in combination with DP-QPSK modulation. This increase in bit 

rate was enabled by simply increasing the bandwidth of electrical components and 

increasing the sampling rate of the ADCs to 56 GSa/s. The technical challenges 

involved in this scaling were almost entirely in the electrical domain. Previously 

limiting optical distortions such as PMD and CD may be fully compensated without 

penalty, leaving only nonlinearity as a limiting optical distortion. 

The aim of this thesis is the development and analysis of digital signal processing 

techniques for enhancing performance in coherent optical communication systems. 

While much of the current digital techniques are identical to those found in the 

digital wireless literature, we will investigate improvements in performance to be 

obtained by tailoring modulation and DSP post-processing algorithms to the optical 

channel. 
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1.2 Chapter Overview 
Chapter 1 gives a basic introduction to digital coherent detection and an overview of 

the aims, content and focus of this thesis. 

Chapter 2 provides an overview of the literature and theoretical background 

regarding coherent detection, modulation formats, fibre transmission effects and 

impairments, digital post-processing algorithms for digital coherent detection and 

digital backpropagation. 

Chapter 3 concerns an in-depth analysis of the performance of DP-QPSK and DP-

QAM16 with and without nonlinearity compensation by digital backpropagation. 

The parameter space of the digital backpropagation algorithm is explored for a single 

channel transmission system such that an upper bound on the performance benefits 

due to backpropagation may be obtained. 

Chapter 4 concerns the theoretical background and digital post-processing of 

polarization-switched QPSK modulation. This modulation format offers superior 

performance to conventional DP-QPSK modulation and may therefore be considered 

as an alternative to digital nonlinearity compensation in the low information spectral 

density regime. 

Chapter 5 describes experimental generation and transmission of PS-QPSK signals. 

This experiment was the first reported long-haul WDM transmission of PS-QPSK, 

and was at the time the longest transmission distance reported for a 40G WDM 

system over a conventional non dispersion managed link. 

Chapter 6 examines topics for future research which have been raised by the material 

in this thesis, and gives an overview of the research presented and conclusions drawn 

from the thesis. 
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1.4 Main Contributions 
The main contributions to the literature of this thesis are as follows: 

Chapter 3 describes the first experimental comparison of the efficacy of digital 

backpropagation for DP-QPSK and DP-QAM16, originally published in (6) [12]. 

This also provided the first thorough exploration of the parameter space for the 

backpropagation algorithm with experimental data. This work was performed in 

conjunction with S. Makovejs who assisted in performing measurements using the 

recirculating loop test-bed;  C. Behrens and S. Hellerbrand who assisted with 

simulations of the transmission system used. 

Chapter 4 describes a novel algorithm for the digital equalisation of PS-QPSK 

signals, first described in (2) [13]. This algorithm is used in conjunction with a filter 

initialization algorithm to achieve singularity-free convergence for up-to 5 dB of 

PDL. This was the second algorithm described for blind equalization of PS-QPSK 

(after [14], which was published while [13] was under review), and the first 

algorithm to achieve singularity-free blind equalization of this modulation format. 

Chapter 5 describes the generation and long-haul transmission of PS-QPSK signals, 

and comparison to DP-QPSK systems, originally published in (1) [15]. This was the 

first demonstration of WDM transmission of PS-QPSK, the first long-haul 

transmission of PS-QPSK, and the highest reported reach for a 40G WDM 

transmission system using standard fibre and amplifiers. This work was performed 

with D. Lavery who assisted with performing the transmission measurements; S. 

Makovejs, C. Behrens and B.C. Thomsen who helped with the transmitter and WDM 

comb setup. 
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2 Literature Review and Theory 

2.1 Abstract 
In this chapter, the basic concepts of coherent detection are discussed. The details of 

polarization and phase diverse coherent detection are described for both single ended 

and balanced photo-detection.  Local oscillator phase and frequency locking is 

studied, as are the constraints on analogue to digital conversion. Common 

modulation formats used for coherent detection are assessed and compared by noise 

sensitivity. Fibre transmission impairments are discussed, with different 

mathematical descriptions for fibre with and without chromatic dispersion, 

polarization mode dispersion, and Kerr nonlinearity. Noise resulting from amplified 

spontaneous emission in optical amplifiers is also described. Digital post-processing 

algorithms are then examined. These include: filters for the compensation of 

chromatic dispersion; adaptive equalization of PMD, polarization rotations and 

residual filtering; intradyne frequency offset estimation and compensation; and 

carrier phase estimation. The theoretical basis of nonlinearity compensation with 

digital backpropagation is then reviewed. Backpropagation is analysed using two and 

three block nonlinear models, and step sizes of more than and less than one span. 

Recent experimental results using digital backpropagation are noted, and alternatives 

to backpropagation discussed. 
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2.2 Introduction 
From the inception of low-loss optical fibre in 1966 [1] until now, transmission 

systems have predominantly utilised intensity-modulation and direct-detection (IM-

DD). These systems can be constructed with relatively simple optical components. 

For instance, the transmitter typically uses either a directly modulated laser [2], or a 

co-packaged laser and a single intensity modulator [16]. The receiver (neglecting any 

forward error correction (FEC) hardware) requires only a photodetector, a decision 

circuit and a clock recovery circuit. In these directly detected systems, only the 

intensity of the received field is recovered, and three of the four dimensions of the 

optical field are therefore discarded. 

In the last few years, interest has been directed to coherent detection as an enabling 

technology for improving spectral efficiency [17] and mitigating fibre transmission 

impairments. Since all four dimensions of the optical field (amplitude and phase in 

two orthogonal polarizations) may be detected with a coherent receiver, digital signal 

processing may be utilised to mitigate optical impairments in the digital domain [18]. 

Coherent receivers may therefore leverage the rapid improvements in CMOS 

technology to provide highly robust and cost-effective transceivers.  

Coherent optical receivers were initially investigated in the late 1980s as a serious 

commercial prospect [19]. Coherent detection offered a significant improvement in 

receiver sensitivity over direct detection systems of the time [20], in addition to 

frequency selectivity which enabled demultiplexing of WDM channels without the 

need for optical filters [21]. 

At approximately the same time, erbium doped fibre amplifiers (EDFAs) were 

developed [4]. EDFAs provide amplification in the optical domain, providing THz of 

gain bandwidth, therefore amplifying several wavelength channels [5]. These 

devices ameliorated the need for high sensitivity receivers and enabled long 

transmission distances without electronic regeneration. Further increases in reach 

became available with the invention of inverse dispersion fibres, allowing optical 

domain compensation of chromatic dispersion (CD).  

While research into coherent detection continued, the scalability of IM-DD and 

WDM ensured that coherent systems were not commercially viable until recently. 
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The driving forces behind the resurgence of coherent detection may be considered as 

follows: system design constraints are such that significant amounts of existing fibre 

plant could not support 40 Gb/s direct-detection or DQPSK [22]; additionally, 

advances in CMOS technology have ensured that sampling rates in the region of 50 

GSa/s and ASIC complexity in the region of 108 gates are commercially viable. 

Therefore we may consider that at 40 Gb/s coherent detection is feasible and 

desirable: at 100 Gb/s coherent detection is feasible and necessary. 

2.3 Coherent Detection 
Although differential detection enables greater receiver sensitivity than direct 

detection, it is still limited by linear distortions such as CD and PMD, and may not 

be used easily with polarization multiplexing. This form of coherent detection is also 

known as self-coherent or pseudo-coherent detection, and is generally used with 

simple receiver signal processing. A further problem with differential detection is 

that the signal is itself noisy, so the receiver sensitivity is reduced considerably. 

 

Figure 2.1 - Quadrature coherent detection 

By employing full coherent detection (shown in Figure 2.1, with both quadratures 

detected), it is possible to gain 3 dB in receiver sensitivity [9], the additional spectral 

efficiency made available by polarization multiplexing and the ability to compensate 

for linear impairments to an arbitrarily high degree. As a result of these properties, 

for 100 Gb/s and above full coherent detection is the most attractive possibility. 
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2.3.1 Phase and Polarization Diverse Coherent Receiver 
The phase and polarization diverse coherent receiver (shown in Figure 2.2) consists 

of three main stages: polarization splitting; phase diverse coupling and detection. In 

the first stage, the input signal and local oscillator are split into orthogonal 

polarizations by a pair of polarization beam splitters. A pair of polarization 

controllers are used to align the local oscillator polarizations with those from the 

input signal. This will ensure the maximum possible interference in the mixing stage. 

Signal – LO coupling is performed by a pair of 90° optical hybrids, which couple 

together local oscillator and signal for each polarization, and have a pair of outputs 

in quadrature. The four optical fields are then detected individually. Detection is 

normally performed with P-I-N photodiodes, either in single ended [23] or balanced 

configurations [24]. Photodiodes have an amplitude response of the form 𝐼 ∝ 𝐸 !, 

where I is the photocurrent and E is the incident electrical field [25]. It is the square-

law response of the photodiodes which mixes the signal and LO fields together and 

enables coherent detection. When using single-ended detection, the local oscillator 

must be in the region of 20 dB higher than the signal input [26]. This effectively 

linearises the response of the photodiode by reducing the relative contribution of the 

direct-detection of the signal to the overall photocurrent. While this approach 

simplifies the receiver somewhat and reduces the component cost, the ratio of signal 

to LO power is a balance of penalties due to direct-detection of the signal and 

penalties due to the relative intensity noise (RIN) of the local oscillator.  
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Figure 2.2 - Phase and polarization diverse coherent receiver. Dashed lines show 

signals required only when balanced detection is used. 

The response of the phase and polarization diverse coherent receiver can be 

described as in (2.1) when used with single-ended detection [24] and symmetric 2x2 

couplers for the optical hybrids. 
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 (2.1) 

The first vector on the right hand side of the equation represents the part of the four 

photocurrents which are due to coherent detection. The second vector on the right 

hand side of the equation represents the current due to direct-detection. By making 

the local oscillator in the region of 20 dB more powerful than the signal, we can 

minimise the relative magnitude of the directly-detected signal terms (which are not 

constant power).  

To overcome the constraints imposed on signal-LO power ratios, balanced photo-

detection is often employed for coherent optical receivers. In this scenario, an 8 port 

optical hybrid is used, with a 180° phase shift between each quadrature pair. The 

pairs of outputs are then differentially amplified to eliminate the direct-detection 

components in the signal. The 8 output ports of the hybrid are given by (2.2): 
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After differential amplification, this becomes the 4-dimensional signal given by 

(2.3). 
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 (2.3) 

The received signal defined by (2.3) represents the ideal coherently received optical 

field, that is: no direct-detection terms, infinite common-mode rejection between 

differential pairs and perfectly matched optical path lengths in the hybrid resulting in 

an exact 90° difference between quadratures. Since this is the ideal case, in the 

simulations presented in this thesis, we will assume this model of the optical 

coherent receiver unless otherwise stated. 

2.3.2 Local Oscillator Phase and Frequency Locking 
During the mixing process, we are effectively downconverting the modulated carrier 

to a baseband equivalent, albeit one which is still modulated onto the intensity of an 

optical carrier (before photodetection). In a homodyne system, we would mix the 

signal with an LO with the same frequency and phase. This process requires locking 

the LO phase to the optical carrier, requiring some form of feedback loop and phase 

control. While some optical homodyne methods provide a relatively accurate and 

robust solution, all solutions of this type require a high degree of optical complexity, 

involving expensive and sensitive components. A more favourable method of 
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downconversion is to have a free-running local oscillator and recover the carrier 

frequency and phase digitally. When the intermediate frequency is less than the 

symbol rate, this is known as intradyning [27]. This allows lower optical complexity 

and the use of cheaper components, and can be combined with some form of coarse 

frequency control of the local oscillator to ensure that the system is able to lock 

continuously for many hours. 

2.3.3 Analogue to Digital Conversion 
After amplification, the four analogue electrical signals are digitised. For simplicity 

and performance in signal processing, it is convenient to have 2 samples per symbol. 

This rate of oversampling is not strictly necessary, but reduces the constraints on the 

required anti-aliasing filters [28] and enables compensation of a larger range of 

intradyne frequency offset. As these ADCs must operate in the region of 50 GSa/s, 

performance of these components is critical. Both the number of bits of resolution 

and timing jitter introduce uncertainty into the digitised signal. The jitter (or clock 

phase noise) reduces the accuracy of each sample, while the number of bits per 

sample determines the maximum accuracy of each sample. A metric of performance 

for ADCs is therefore the effective number of bits (ENOB), which accounts for both 

jitter and quantisation noise and models the effect of both as AWGN resulting in a 

noise floor of 6dB SNR per effective bit of resolution [29]. 

2.4 Modulation 

2.4.1 Modulation Formats and Coding 
A given modulation format proscribes an alphabet of possible ideal signal states to 

be transmitted through a communications channel. This signal alphabet can be 

considered as an N dimensional vector, where N is the order of the signal space. The 

N dimensional carrier is then modulated by the symbol vector. In the early days of 

optical communications, the only dimension modulated was intensity. While 

wireless digital communication has used multidimensional signalling for many years 

[30] the difficulties associated with detecting optical phase caused optical phase 

modulation to remain unexplored. Intensity modulation utilises a 1D symbol vector 

with M possible states representing log2(M) bits of information per symbol. While 

early optical systems offered huge improvements in bandwidth and loss compared to 
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contemporaneous wireline and microwave systems, as only a single dimension of the 

signal was being modulated, the spectral efficiency of such systems was inherently 

low. With the invention of the erbium doped fibre amplifier (EDFA), it was no 

longer necessary to convert optical signals back into the electrical domain for 

amplification to achieve long distance transmission. This enabled a second 

dimension of the optical channel to be modulated: wavelength. While wavelength 

division multiplexing (WDM) enabled a vast increase in available transmission 

bandwidth, the manufacture of suitable optical components remained a constraint in 

using this dimension of the signal space freely. This large amount of bandwidth was 

revolutionary, but still had many constraints: linear distortions such as GVD and 

PMD were problematic and could be compensated only approximately in the optical 

domain, while envelope detection introduced nonlinearity while discarding most of 

the information about the incoming optical field. In this situation, designers began to 

explore ways of exploiting two further dimensions of the signal space: polarization 

and phase. Using polarization modulation with direct detection is somewhat difficult 

to implement, as stochastic polarization rotations within the channel must be tracked 

on a kHz time scale [31]. More success was had with self coherent detection using 

differential phase shift keying (DPSK) [32]. This uses a one symbol optical ‘delay 

and add’ line combined with mixing in the photodetectors to determine the 

difference in optical phase between successive symbols. While this proved a viable 

technology to implement 40 Gb/s links, a lack of flexibility and limitations by linear 

and nonlinear distortions makes this type of system undesirable for 100 Gb/s and 

beyond. 

By moving to phase and polarization diverse coherent detection, the full optical field 

at the receiver can be detected. This enables compensation of linear effects such as 

chromatic dispersion (CD) and polarization mode dispersion (PMD) to be performed 

fully in the digital domain. While it is also possible to manipulate capacity in the 

frequency domain more fully using techniques such as orthogonal frequency division 

multiplexing (OFDM) [33], these systems introduce complexities and difficulties of 

their own. Here, as in the remainder of this thesis, we will concentrate on single 

carrier communication, where frequency domain multiplexing is performed on 

multiple separately modulated carriers, and we perform signal processing functions 

on each four dimensional carrier individually.   
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The question of how to best modulate in a four dimensional signal space remains an 

open one: although work has been done to determine the best formats in the noise 

and power limited case [34], this work is recent and the modulation formats 

proposed are largely untested. Despite this, the benefits of using four dimensionally 

optimised modulation formats may be significant, and this topic is discussed in detail 

in later chapters. Coherent optical systems generally use identical two dimensional 

modulation formats on each of the polarizations (a technique known as polarization 

multiplexing). The more common of these two dimensional formats are described 

below. 

2.4.2 Phase Shift Keying  
Phase shift keying (PSK) encodes information onto the phase of the carrier. This can 

provide high spectral density for low symbol rates. The disadvantage of modulation 

formats of this kind is that the tolerance to both phase noise and AWGN is greatly 

reduced for high orders. Due to these limitations, M-PSK is widely used for only M 

of 2 and 4 (Figure 2.3).  

   
Figure 2.3 - Constellation diagrams for BPSK (left), QPSK (centre) and 8PSK 

(right). Noise loaded to Es/N0 of 24.5 dB. 

2.4.3 Quadrature Amplitude Modulation 
Quadrature amplitude modulation (QAM) refers to simultaneous amplitude 

modulation of two carriers of the same frequency which are in quadrature (often 

denoted in-phase (I) and quadrature (Q)). These modulation formats are often 

represented as phasors, with the real and imaginary parts of the phasor representing I 

and Q respectively. The most common of these types of formats results when the I 

and Q components are both modulated with several equally spaced amplitudes with 

zero mean (Figure 2.4). The resulting format is often called square QAM for obvious 
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reasons. For equal spectral density to PSK, QAM has better tolerance to AWGN 

[35]. Although phase recovery becomes more complex, phase margin for QAM is 

also better than PSK of equivalent order. Another form of QAM is formed by 

multiple rings of PSK with different amplitudes. This can be implemented with 

aligned rings (star QAM, see Figure 2.5, left), which has somewhat reduced SNR 

tolerance, or with adjacent rings offset (star QAM, see Figure 2.5, right), which 

provides better SNR tolerance but has no Gray code [36]. This modulation format 

has become relatively popular in coherent optical communication and is often 

referred to simply as 8-QAM [37]. 

  

Figure 2.4 - Square QAM16 (left), and QAM64 (right). Noise loaded to  

Es/N0 of 24.5 dB. 

  

Figure 2.5 - Star QAM8 (left), and offset star QAM8 (right). Noise loaded to  

Es/N0 of 24.5 dB. 

2.4.4 Bit-to-Symbol Mapping 

Once a modulation format has been selected, it is necessary to decide how to map 

bits of information onto the signal space. By ensuring that adjacent constellation 

points in the signal space also have minimum binary Hamming distance, it can be 

shown that BER is minimised for a given SNR. The most well known code for this 
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application is binary Gray code [35] (see Table 1). This is a cyclic code with 

minimum Hamming distance and can be used for any square QAM and PSK. 

 Decimal 00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 

Hexadecimal 0 1 2 3 4 5 6 7 8 9 A B C D E F 

Binary 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111 

Gray Coded 

Binary 
0000 0001 0011 0010 0110 0111 0101 0100 1100 1101 1111 1110 1010 1011 1001 1000 

Table 1 - Gray coding and its relation to other numbering systems 

The advantage of Gray coding is illustrated below in Figure 2.6. While the Gray 

coded constellation always has a single bit difference between adjacent points, the 

standard binary code has some adjacent points which have 2 bits different. This will 

lead to a penalty in error rate, compared with Gray coding.  

 

Figure 2.6 - QPSK constellations with standard binary coding (left),  

and Gray coding (right). 

While this coding scheme is known to be optimal when it exists, there are some 

constellations for which it is impossible to construct, such as offset star QAM. 

In addition to Gray coding, for applications where phase noise is a significant 

impairment, it may be desirable to sacrifice some of the error rate performance 

relating to noise, by differentially encoding the signal with respect to phase. In the 

noise limited case, differential coding will approximately double the bit error rate, 

but will also mitigate the effects of errors in phase recovery known as cycle slips. As 
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the phase estimation algorithms used in digital communications systems are typically 

bounded on some phase interval (for instance, the interval {-π, π}), this bounded 

phase estimate must be unwrapped such that the unbounded phase estimate may be 

applied to the recovered signal. Errors in this unwrapping process may result in some 

phase ambiguity, as the constellation becomes rotated relative to its position before 

the cycle slip occurred. These errors may result in long bursts of errors, which could 

be a source of system outage. Since for deployed systems reliability is of paramount 

importance, this method of coding is of great interest.  

Differential coding may be described with extremely simple mathematics, described 

below in (2.4). These equations describe the relation between coded bits y and 

uncoded bits x at time index i, for each bit p in the symbol [38]. 

𝑦!,! = 𝑦!!!,!⨁𝑥!,! for encoding 

𝑥!,! = 𝑦!!!,!⨁𝑦!,! for decoding 
(2.4) 

However, differential phase coding is not fully compatible with Gray coding for all 

modulation formats. For instance, since square QAM is rotationally invariant for 

phase rotations which are multiples of π/2, we desire differential encoding for the 

two bits which represent the quadrant. This differential encoding will remove the 

possibility of burst errors due to cycle slips. The bits which encode the position 

within the quadrant must be rotationally invariant however, and this makes perfect 

Gray coding impossible. 

2.4.5 Comparison of the Performance of Modulation Formats 
It is possible to derive theoretical limits on the performance of different modulation 

formats based upon the use of optimal transmitters and receivers, and performance 

being purely impaired by additive white Gaussian noise [35]. Modulation formats 

which are currently considered feasible are shown below in Figure 2.7 and Table 2 

whether considered desirable or not.  

These asymptotes for optimal receiver performance assume a two dimensional 

channel and additive White Gaussian noise as the only impairment. The transmitter 

and receiver are assumed to have ideal matched filters, providing a signal that is 

band-limited at the Nyquist frequency and is ISI free. 
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The noise level is described here using the signal processing convention of Eb/N0, 

where Eb is the mean energy per transmitted bit and N0 is the mean noise energy per 

symbol. This metric enables comparison between modulation formats with differing 

cardinality at identical bit rates, as the SNR is normalised to the number of bits per 

symbol of the modulation format (unlike, for example, Es/N0). If we convert this to 

the optical convention of optical signal to noise ratio over a bandwidth of 12.5 GHz, 

we may get an indication of how they might perform in, for example, a 112 Gb/s 

system of the kind required for the 100 GbE standard. 

 

Figure 2.7  - Noise limited receiver performance for various modulation formats. 

While the optimal performance asymptotes are derived for a two-dimensional 

channel, generalisation to the case of dual-polarization modulation formats is quite 

simple. 
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Modulation Format Symbol Rate (GBd) 
Possible Spectral 

Efficiency (b/s/Hz) 

Required OSNR 
@BER=10-3 
(dB/0.1nm) 

DP-BPSK 56 2 13.3 
DP-QPSK 28 4 13.3 
DP-8PSK 18.7 6 16.5 

DP-16PSK 14 8 20.8 
DP-QAM8 18.7 6 15.5 

DP-QAM16 14 8 17.0 
DP-QAM64 7 10 21.2 

Table 2 - Required OSNR for different modulation formats at a bit rate  

of 112 Gb/s and BER of 10-3 

We can clearly see from Table 2 that the required OSNR becomes larger with 

increased spectral density. It is also clear from these figures that the preferred 

formats for 6 and 8 bits per symbol are respectively DP-QAM8 and DP-QAM16. 

2.4.6 Optical Modulators 
An important component in any optical transmitter is the optical modulator which 

converts the analogue electrical baseband signal into the carrier band of hundreds of 

THz. While there are many ways to modulate an optical carrier, many devices are 

unsuitable for advanced modulation formats. The most common and important 

modulator for coherent systems is the triple Mach-Zehnder modulator. 

2.4.6.1  Mach-Zehnder Modulators 
The Mach-Zehnder interferometer is a structure which simply splits a beam into two 

parts, shifts the phase of one with respect to the other and then recombines them 

[39]. 
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Figure 2.8 - Push-pull MZM operation. 

By inserting an electro-optic modulator (EOM) into each of the arms of an MZI, it is 

possible to control the relative phase of the two arms, and therefore the intensity of 

the interference products at the output. This device is known as a Mach-Zehnder 

modulator (MZM) (Figure 2.8).  

 

Figure 2.9 - MZM transfer function. 

The transfer function of the MZM therefore has the form of a sinusoid (Figure 2.9). 

As the transfer characteristic of the modulator is inherently nonlinear, the output 

optical signal to noise ratio (OSNR) is a function of both the input electrical SNR 

and the range over which the modulator is driven. For modulation formats such as 

BPSK and QPSK, only the most extreme swing of the modulator is needed. By 

biasing the modulator to its null point and driving it over 2Vpi, it is possible to 

suppress the electrical noise on the driving signal. This is due to the fact that the 

modulator is at its most nonlinear around Vpi, small changes in the driving voltage 
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have relatively little influence on the output field. Conversely, around the null point 

the transfer function of the MZM is approximately linear. This results in the noise on 

the electrical driving signal being transferred into the optical domain. While this 

effect may be suppressed when using a format such as BPSK or QPSK, when using 

higher order QAM or PSK it is desirable to use only the approximately linear part of 

the transfer function. While this is a method makes the implementation of highly 

complex modulation formats a good deal simpler, there is inevitably a reduction in 

transmitted SNR. 

While this device gives good control of the output field, it will only modulate a 

single axis of the complex plane. To gain full control of the output field, a second 

MZM in quadrature is used, and combined with the first by way of a third MZI. This 

device will modulate the carrier over the full complex plane, with the two nested 

MZMs modulating I and Q separately. This modulator is known by many names, 

including: triple Mach-Zehnder modulator, I-Q modulator, Cartesian modulator or 

nested Mach-Zehnder modulator.  

 

Figure 2.10 - Dual-polarization triple Mach-Zehnder modulator. 

For generating dual-polarization modulation formats, typically two triple Mach-

Zehnder modulators are used in parallel, each modulating an orthogonal polarization 

(Figure 2.10). The two unmodulated carriers come from the same laser and are split 

into orthogonal linear polarizations with a polarization beam splitter (PBS), before 

the two single polarization modulated signals are multiplexed together with a second 

PBS. 
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2.5 Fibre Transmission Impairments 
The three most important fibre transmission impairments in communications systems 

are chromatic dispersion (CD), polarization mode dispersion (PMD) and the Kerr 

nonlinearity. The first two of these are linear, and may be compensated to arbitrary 

levels with the use of linear DSP.  

2.5.1 Chromatic Dispersion 
Chromatic dispersion occurs due to the differing group velocities of wavelengths in 

optical fibre. There are two sources of this dispersion: waveguide geometry 

(resulting in waveguide dispersion) and the properties of Silica (resulting in material 

dispersion). Here, we will consider the net dispersion in the fibre (the combination of 

waveguide and material dispersion). 

The response of a purely dispersive optical fibre in the retarded time frame is 

described by (2.5) [40]: 

𝜕𝐄
𝜕𝑧 =

𝑗𝛽!
2

𝜕!

𝜕𝑡! 𝐄; 

𝛽! =
𝜕!𝛽
𝜕𝜔! 

(2.5) 

where E is the electrical field which varies in time t along a spatial dimension z. The 

fibre propagation constant β determines the group velocity and therefore dispersion 

of the fibre. Chromatic dispersion is normally defined in terms of the dispersion 

parameter D, which is given by (2.6): 

𝐷 = −
2𝜋𝑐𝛽!
𝜆

 (2.6) 

The dispersion parameter D has units of ps/nm/km, and is approximately 17 

ps/nm/km for standard single mode fibre at 1550 nm.  

2.5.2 Polarization Mode Dispersion 
Single mode fibre has a single propagational mode, which consists of two spatial 

modes, which may be considered to represent two orthogonal polarization states. In a 

perfectly symmetric fibre, these modes are identical and have indistinguishable 
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propagation characteristics. However, imperfections in the waveguide geometry 

combined with mechanical stress introduced by vibrations and variations in 

temperature along the fibre result in birefringence. In a birefringent material, 

refractive index (and therefore group velocity) is determined by the axis along which 

the light is polarized. The difference between these fast and slow axes will determine 

the polarization mode dispersion over a short length of fibre. This model is 

complicated somewhat over a significant distance of fibre, since the fibre may be 

considered to be composed of many birefringent sections (commonly ~0.1 km for 

SSMF), which all have arbitrary alignments of their fast and slow axes. Since these 

axes have arbitrary alignment, PMD scales with the square root of distance [41] and 

has a Maxwellian distribution, leading to units of ps/√km. 

2.5.3 The Kerr Nonlinearity 
The Kerr nonlinearity is the dominant nonlinear effect for telecommunication 

systems over silica fibre. The effect results in the refractive index of the fibre 

varying with the square of the instantaneous electrical field intensity [40]. This effect 

results in nonlinear phase modulation, which is converted by chromatic dispersion to 

amplitude modulation resulting in distortion in both phase and amplitude. The exact 

and numerical solutions of the nonlinear Schrödinger equation are discussed in detail 

in section 2.7. Other nonlinear effects occur in optical fibre, such as Raman and 

Brillouin scattering. These effects are due to the nonlinear interaction of photons and 

vibrational quasi-particles known as phonons. While Raman and Brillouin scattering 

are important in some optical fibre applications (such as Raman amplification), they 

are generally insignificant for conventional coherent systems in the 1.5 µm band, and 

are normally neglected in nonlinear fibre simulations. 

2.5.4 Additive Noise 
The dominant source of additive noise in coherent transmission systems is amplified 

spontaneous emission (ASE). This noise results from spontaneous emission within 

EDFAs, which is then subsequently amplified. As the noise is approximately white 

and Gaussian over the signal bandwidth, it is often described as additive White 

Gaussian noise (AWGN). 

  



 
 

39 

2.5.5 Laser Phase Noise 
Laser phase varies largely according to the fundamental mode of the laser cavity. 

While lasers are amongst the highest quality resonators which can be made, 

imperfections in the evolution of phase are important when the phase is used for 

carrying information. The phase of a laser may be described as a ‘random walk’, 

where phase change between two points in time has a Gaussian distribution where 

the variance is proportional to the time between observations. Laser phase noise is 

therefore modelled as a Wiener process with a variance given by (2.7) [9]: 

𝜎! = 2𝜋Δ𝜈𝑇 (2.7) 

where T is the time between observations and Δν is the 3 dB optical linewidth. As 

high-level modulation formats with little phase margin have become more common, 

phase noise has become a critical parameter with typical values of laser linewidth 

being between 100 kHz and 1 MHz. 

2.6 Digital Signal Processing Algorithms for Coherent 
Detection 

After detection, the received signals are digitised, and then processed to compensate 

for distortion and impairments. While none of the functionalities provided by DSP 

are strictly necessary for some kind of transmission to be achieved (although not 

used when coherent detection was proposed in the 1980s [3], [42], sophisticated DSP 

was considered an important advantage in the resurgence of coherent optical 

communications in the 2000s [43], [44]), the increase in performance and the 

reduction in constraints for the design of systems provided by DSP ensure that they 

are an extremely attractive proposition. The signal flow model of the DSP used in 

the coherent communication systems in this thesis is provided in Figure 2.11. It 

should be noted however, that as all of these functional blocks other than the 

decision circuit are linear, the order of the blocks may be interchanged, and this 

ordering is simply one possible implementation. 
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Figure 2.11 - DSP Signal Flow Model 

2.6.1 Resampling 
When asynchronous sampling is used, the digitised data is first resampled to a rate of 

two samples per symbol. When offline processing is used, this may be performed 

with a relatively simple upsample-filter-decimate algorithm. As this requires a-priori 

knowledge of the symbol rate, this is not an approach that is possible to implement in 

hardware. The most commonly used method of digital clock recovery is the use of an 

interpolating filter which is sampled at a rate determined by a nonlinear timing error 

detector such as the Gardner loop [45]. 

2.6.2 Signal Preparation 
The signal is then prepared for processing in a number of ways. The four signals 

must be de-skewed to compensate for the relative differences in optical path lengths 

inside the receiver. Any DC component of the signals must be removed to 

compensate for signal components which are artefacts of the receiver structure and 

not present in the optical spectrum. The signals are then normalised individually, 

such that each polarization has unit mean power. This simplifies much of the signal 

processing performed later and ensures that different electrical powers (due to 

differences in the gain of the photodetectors and amplifiers used for each of the four 

signals) are compensated for. 

2.6.3 Stationary Inverse Channel 
Due to the ability of coherent receivers to capture the full optical field, impairments 

due to the nature of the channel may be compensated. A major linear impairment due 

to the nature of optical fibre is chromatic dispersion (CD), whereby different 
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wavelengths of light have different group velocities in the fibre. This effect may be 

considered as the combination of bulk material dispersion which is due to the 

properties of the silica which is used to make fibres, and waveguide dispersion which 

is due to the geometry of the fibre waveguide. As this effect is stationary, we can 

simply perform linear filtering with the inverse transfer function of that of the fibre. 

This filtering may be performed either in the frequency domain, or the time domain.  

2.6.3.1 Frequency Domain Dispersion Compensation 
In order to compensate for chromatic dispersion (CD), the linear part of the nonlinear 

Schrödinger equation may be solved, yielding a frequency domain response given by 

(2.8) [40]: 

𝐻 𝑧,𝜔 = exp −𝑗
𝐷𝜆!

!𝑧
4𝜋𝑐

Δ𝜔!  (2.8) 

where λ0 is the reference wavelength where D is known, and Δω is the difference in 

natural frequency between the wavelength of interest and λ0. By calculating the FFT 

of the signal and multiplying the signal spectrum (per polarization) with the 

conjugate of this response, CD may be fully compensated. 

2.6.3.2 Time Domain Dispersion Compensation 
While the method described above provides an accurate method for the 

compensation of CD, it may not be desirable to have to calculate the FFT of the 

signal (which is computationally intensive) in order to compensate for the effects of 

CD. A filter design which may be implemented in the time domain may therefore be 

useful, particularly as an FIR filter which can be made inherently stable. The inverse 

Fourier transform of (2.8) gives the impulse response of the linearised filter, which is 

a rotating vector with linearly increasing frequency. By truncating this response at 

the Nyquist frequency (half of the sampling frequency), both aliasing and non-

causality may be avoided [10]. The design of the FIR filter is then as follows in 

(2.9): 
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𝑁 = 2 ∙
𝐷 𝜆!

!𝑧
2𝑐𝑇!

+ 1 

(2.9) −
𝑁
2

≤ 𝑘 ≤
𝑁
2

 

𝑎! =
𝑗𝑐𝑇!

𝐷𝜆!
!𝑧
exp −𝑗

𝜋𝑐𝑇!

𝐷𝜆!
!𝑧
𝑘!  

here, N is the number of taps in the filter; k is the tap index; ak the tap coefficients; D 

is the dispersion coefficient of the fibre; λ0	
   is	
   the	
   reference	
  wavelength;	
   z is the 

distance of transmission; T is the sampling period; c is the speed of light. This filter 

design enables the compensation of arbitrarily large amounts of dispersion, although 

with small amounts of dispersion, pass-band ripple due to the small number of taps 

may be a significant impairment. 

2.6.4 Adaptive Equalization Algorithms 
Adaptive equalisation in coherent communications is most often performed with 

adaptive FIR filtering. These filters have been developed from the pioneering work 

of Bussgang [46] and Sato [47]. These equalisers are desirable as they are relatively 

simple to design, robust, and may be used with complex baseband signals by making 

the filter coefficients and signals complex. The most commonly used class of 

equaliser – the Bussgang equaliser - has an essential structure as described in Figure 

2.12. It consists of three major parts: an FIR filter to implement the inverse channel, 

a memoryless non-linearity which estimates how far the filter is from the desired 

response, and an update algorithm which determines new filter coefficients based 

upon the old coefficients, the estimated position on the error surface, and the input 

signal to the filter [46]. 
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Figure 2.12 - Block diagram of a Bussgang equaliser. 

2.6.4.1 MIMO Processing with Bussgang Equalisers 
With coherent polarization multiplexed communication, the equaliser structure used 

to separate the two incoming polarizations (which are constantly rotating 

stochastically on the Poincaré sphere) is very similar to that used in MIMO wireless 

systems. The filter structure used is known as a four-filter butterfly structure (Figure 

2.13). Each output is an arbitrary combination of the input signals, thus enabling 

both deconvolution of the signal from the channel, and separation of the two source 

signals. 

 

Figure 2.13 - The 2x2 MIMO Bussgang Equaliser, figure taken from [46]. 
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2.6.5 Least Mean Squares Algorithm 
The least mean squares (LMS) algorithm is an algorithm which trains the filter 

coefficients. There are many of these adaptation algorithms, such as: least squares, 

least mean squares, recursive least squares and the Kalman filter [46]. While all of 

these learning algorithms could be used with coherent optical systems, the LMS 

algorithm [48] has been adopted near universally. The LMS algorithm has attractive 

properties for high speed communications, it is highly stable, may converge rapidly, 

and most importantly requires relatively little computational effort when compared 

to algorithms such as the RLS algorithm or the Kalman filter. 

The algorithm adapts the filter coefficients based upon the derivative of the cost 

function with respect to the filter coefficients. The cost function describes the 

deviation of the filter output from the desired response.  

For a single-input, single-output (SISO) complex baseband channel, the filter is 

adapted according to (2.10): 

𝝎!!! = 𝝎! − 𝜇𝛁𝑱! (2.10) 

where 𝝎𝑛 is the tap vector at instant n, and 𝛁𝑱𝑛 is the estimated gradient of the cost surface 

with respect to 𝝎𝑛. 

The adaptation of the filter is often described by an error term en given by (2.11): 

𝑒! = −
𝒖!𝑣!∗

𝛁𝑱!
; 

𝝎!!! = 𝝎! + 𝜇𝑒!𝒖!𝑣!∗; 

where:                 𝑣! = 𝝎!
!𝒖! 

(2.11) 

Here, un is the input vector at instant n; vn is the instantaneous output of the 

equaliser; * is the complex conjugate; and H represents the Hermitian conjugate. 

The adaptation of a 2x2 MIMO filter using the least mean squares algorithm given 

by (2.12): 
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𝒉!! = 𝒉!! + 𝜇𝑒!𝒙!"𝑥!"#∗;   𝒉!" = 𝒉!" + 𝜇𝑒!𝒚!"𝑥!"#∗; 
(2.12) 

𝒉!" = 𝒉!" + 𝜇𝑒!𝒙!"𝑦!"#∗; 𝒉!! = 𝒉!! + 𝜇𝑒!𝒚!"𝑦!"#∗ 

where 𝒙!" and 𝒚!" are the input vectors to the equaliser on the x and y polarizations 

respectively; and the output of the equaliser is given by (2.13):   

𝑥!"# = 𝒉!!
!𝒙!" + 𝒉!"

!𝒚!";   𝑦!"# = 𝒉!"
!𝒙!" + 𝒉!!

!𝒚!" (2.13) 

2.6.5.1 Decision-Directed Equalization 
The decision-directed error function makes a symbol estimation decision on the 

received signal (which in the case of QPSK is the complex signum function), and 

subtracts the received symbol from the decision. The cost surface is given by (2.14): 

𝑱 = 𝐷 𝑥!"# − 𝑥!"# ! ; (2.14) 

This may be differentiated with respect to the tap vector, leading to the decision-

directed error-function, which is given by (2.15):  

𝑒! = 𝐷 𝑥!"# − 𝑥!"#; (2.15) 

where ex is the error term; xout is the filter output; ∙  represents the expectation 

operator; and D is the hard decision function. This decision function for DP-QPSK 

modulation is given by (2.16): 

𝐷 𝑥!"# = 1
2
sgn Re 𝑥!"# + 𝑗sgn Im 𝑥!"# ; (2.16) 

where sgn(.) is the signum function. While this is a simple error function to 

implement, its efficiency depends on making a series of successive correct decisions. 

For this reason decision-directed equalisers are often started with another algorithm 

to converge to the vicinity of a minimum before being switched to decision-directed 

mode [49].  

2.6.5.2 The Godard Algorithm 
The Godard algorithm attempts to filter the incoming signal to one of constant 

power, other than the influence of noise [50]. This makes the algorithm ideal for 

modulation formats such as PSK, which does have constant power. It can also be 
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used for formats such as QAM, although for higher orders the variation in power 

between different symbols can be so great that the high steady state value of the error 

function makes accurate convergence impossible. The Godard algorithm cost 

function is given by (2.17): 

𝑱 = 𝑅𝑝 − 𝑥𝑜𝑢𝑡 𝑝
! ; (2.17) 

This may be differentiated, leading to the error function given by (2.18): 

𝑒! = 𝑥!"# 𝑥!"# !!! 𝑅! − 𝑥!"# ! ; (2.18) 

where p is the order of the algorithm and Rp is the modulus which the equaliser 

attempts to approach. The most popular implementation of the Godard algorithm is 

known as the constant modulus algorithm (CMA). This is a Godard equaliser with 

p=2, and is normally used with a radius of 1 for simplicity of calculation (2.19): 

𝑒! = 𝑥!"# 1− 𝑥!"# ! ; (2.19) 

While the Godard algorithm is somewhat limited by the modulation formats for 

which it has good performance, it is extraordinarily robust. This robustness means 

that it can be used for pre-convergence of an equaliser before switching to decision-

directed mode, which displays better SNR tolerance. The ability to separate the 

functions of equalisation and phase and frequency recovery in this family of 

equalisers has proven very attractive to those working in coherent optical 

communication, and adaptations of this algorithm have been made to provide this 

functionality for modulation formats such as QAM where the ‘multi-modulus’ nature 

of the modulation format impacts upon the efficacy of the equaliser [37], [51], [52]. 

The most popular adaptation is the radially directed equaliser (RDE), which 

performs an initial decision as to which is the modulus of the incoming signal, and 

then uses the CMA error function as described in (2.19) with the appropriate value of 

R to determine the updated filter coefficients. 

2.6.6 Frequency Offset Compensation Algorithms 
When using an intradyne coherent receiver with a free running local oscillator, the 

transmitter and receiver lasers are not frequency locked. This results in some residual 

frequency offset in the received signal. For this offset to be compensated, the 
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intradyne frequency must be estimated and compensated to translate the received 

signal into the baseband. There are two main classes of algorithms suitable for this 

application: stochastic accumulators which perform some manner of time domain 

averaging of the differential carrier phase per symbol, and spectral methods which 

calculate the frequency offset using a Fourier transform of the signal over some time 

period. In order to estimate the frequency offset, it is necessary to remove variations 

in phase due to modulation. A simple method for removing the effects of modulation 

is to look at the difference between the complex decision of a received symbol and 

the symbol itself. A more elegant method for removing the effects of modulation is 

to use an Mth power nonlinearity [53] for a modulation format with M degrees of 

rotational symmetry.  

Two methods for generating an estimate of frequency offset in the time domain are 

described here (for the sake of simplicity using QPSK). They are the block window 

accumulator (BWA), and the gliding window accumulator (GWA). 

2.6.6.1  Block and Gliding Window Accumulators 
These algorithms calculate an estimate of phase per symbol and average over many 

symbols to remove the influence of noise [54]. For the example of QPSK with a 4th 

power nonlinearity to remove the phase modulation, the block window estimation 

algorithm is described by (2.20): 

∆𝜙! = arg 𝑥!𝑥!!!∗ !
!

!!!
4 ; 

𝑦! = 𝑥!exp −𝑗𝑘∆𝜙!  

(2.20) 

where * represents the complex conjugate; x is the sequence of input symbols; y is 

the sequence of output symbols; k is the time index; and Δϕk is the phase offset per 

symbol estimated at time k. This algorithm provides a sufficient quality of estimate 

while the frequency offset remains constant. Unfortunately, this algorithm does not 

track variations in frequency offset well, as it estimates the IF over all previous 

received symbols. In order that frequency offset may be tracked, a gliding window is 

often used. This is described by (2.21) 
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∆𝜙! = arg 𝑥!𝑥!!!∗ !
!!!

!!!!!
4 ; 

𝑦! = 𝑥!exp −𝑗𝑘∆𝜙!  

(2.21) 

where L is the feedforward delay of the estimator.  

2.6.6.2 Frequency Domain Estimation 
Frequency offset may be estimated in the frequency domain by using an Mth power 

nonlinearity to remove modulation, and then finding the maximum power in the 

Fourier transform of the resultant signal. This peak will be located at the offset 

frequency, as shown in (2.22) where Ts is the symbol period and FFT denotes the 

discrete Fourier transform. 

𝐶 𝑓 = FFT 𝒙! ; 

𝐶 𝑓! = max 𝐶 𝑓 ; 

∆𝜙 =
2𝜋𝑓!
𝑇!

; 

𝑦! = 𝑥!exp −𝑗𝑘∆𝜙  

(2.22) 

While computationally intensive, this method is accurate without requiring training 

or convergence, and may be used for short signals such as those captured in 

experiments where the sequence length may be on the order of 105 symbols [53]. 

2.6.7 Carrier Phase Estimation Algorithms 
Carrier phase estimation is necessary due to the varying relative phase of the Tx and 

LO lasers, due to their non-zero laser linewidth. As with frequency estimation, 

modulation must be removed from the signal, and noise must be averaged out. A 

somewhat unique aspect of coherent optical systems is that the relative linewidth is 

much higher than wireless systems. This means that phase estimation is much more 

of a limiting problem for optical systems, and these algorithms are consequently 

much more important to system performance than in wireless. We will discuss the 

Viterbi and Viterbi algorithm and digital phase-locked loop which is often used for 

higher order QAM modulation. 
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2.6.7.1 Viterbi and Viterbi algorithm 
By far the most commonly used algorithm for PSK based systems is the Viterbi and 

Viterbi algorithm [55]. The algorithm uses an Mth power nonlinearity to remove the 

modulation from the signal. The instantaneous phase estimate is given by (2.23): 

𝜙! = arg 𝐹 𝜌! 𝑥!
!

!!!

!!!!!
𝑀 ; (2.23) 

where F is an arbitrary nonlinear function, M is the degree of rotational symmetry in 

the constellation, and ρi is the magnitude of xi. Most often, F is simply unity, and the 

only weighting of symbols by magnitude is done by the Mth power. This phase 

estimate is bounded between –π/M and π/M, while the phase difference between the 

two lasers is bounded on –π, π. This initial estimate of carrier phase must therefore 

be unwrapped in order that ‘cycle-slips’ may be avoided. The unwrapping and phase 

correction algorithm is given by (2.24). 

𝑎! = 𝑎!!! + 1
2 −

𝑀
2𝜋

𝜙! − 𝜙!!! ; 

𝜙! = 𝜙! + 𝑎
2𝜋
𝑀
; 

𝑦! = 𝑥!𝑒!!!! 

(2.24) 

‘Cycle-slipping’ occurs when the true phase crosses a boundary while the phase 

estimate is not unwrapped, or conversely when the true phase does not cross a 

boundary while the phase estimate is unwrapped. This results in a rotation of the 

signal constellation and subsequent mis-detection of the signal phase, resulting in 

burst errors. Differential coding can mitigate the worst burst errors which could 

cause signal failure, however, unwrapping is still highly desirable to improve 

performance.  

2.6.7.2 Decision-Directed Phase-Locked Loop 
While the Viterbi and Viterbi algorithm provides good performance for MPSK and 

DP-MPSK modulation, it is challenging to adapt for other modulation formats. One 

such modulation format which has garnered significant interest recently is DP-

QAM16. Although the Viterbi and Viterbi algorithm may be used [56], [57] some 

constellation points must be discarded so that all points have one of four phases. To 

counteract this, a generic algorithm which uses all points in the signal constellation is 
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desirable. An algorithm of this description which has been often employed in the 

literature [12], [58-60] is the decision-directed digital phase-locked loop (DD-PLL). 

The DD-PLL uses a per-symbol decision-directed differential phase estimate and an 

exponentially weighted integration to provide an unwrapped phase estimate [49] 

(2.25): 

𝑦! = 𝑥!𝑒!!!!; 

𝑒! = 𝑦! − 𝐷 𝑦! ; 

𝜙!!! = 𝜙! − 𝜇Im 𝑦! − 𝑒!∗  

(2.25) 

where µ is the constant of integration. This algorithm is very useful in offline 

experiments, as it may be used for any modulation format and is well described in 

the literature. However, the algorithm is biased toward previous estimates of phase 

(and is therefore not an ML estimator) and also requires feedback at the symbol rate 

which is not practical in a highly parallelised DSP ASIC. To solve the problem of the 

estimator bias, an alternative algorithm was developed in [61]. This algorithm was 

not used for the results discussed in this thesis, and will therefore not be discussed 

further. 

2.7 Digital Backpropagation 

2.7.1 Nonlinear Channel Models 
Digital backpropagation is a method of nonlinearity compensation which has 

generated much interest recently [62-65]. It exploits the knowledge of the physical 

behaviour of the optical fibre as a nonlinear channel, by approximating the inverse 

nonlinear channel, most commonly described by the nonlinear Schrödinger equation 

(NLSE). The solution of the NLSE is approximated by the split-step Fourier method 

(SSFM), commonly used to simulate nonlinear transmission in optical fibres. While 

this algorithm may be used to approximate an inverse channel, the channel is 

inherently limited by additive White Gaussian noise (AWGN) which stems from 

amplified spontaneous emission (ASE) due to inline optical amplification. This noise 

cannot be removed by any filter due to its random nature, and will additionally result 

in nonlinear phase noise (due to the Gordon-Mollenauer effect) which occurs due to 

the nonlinear interaction of the signal and noise.  
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When performing simulations of fibre transmission systems, it is conventional to use 

the coupled polarization nonlinear Schrödinger equation (CP-NLSE) [40] (2.26). 

𝜕
𝜕𝑧𝐸! = −

𝛼
2 𝐸! +

𝑗𝛽!
2

𝜕!

𝜕𝑡! 𝐸! − 𝑗𝛾 𝐸! ! +
2
3 𝐸! ! 𝐸! −

𝑗𝛾
3 𝐸!

∗𝐸!! 

𝜕
𝜕𝑧𝐸! = −

𝛼
2 𝐸! +

𝑗𝛽!
2

𝜕!

𝜕𝑡! 𝐸! − 𝑗𝛾 𝐸! ! +
2
3 𝐸! ! 𝐸! −

𝑗𝛾
3 𝐸!

∗𝐸!! 

 

(2.26) 

For digital backpropagation, it is common to use the Manakov equation (2.27) [66] 

without PMD for the inverse channel model.  

𝜕
𝜕𝑧𝐸! = −

𝛼
2 𝐸! +

𝑗𝛽!
2

𝜕!

𝜕𝑡! 𝐸! − 𝑗𝛾
8
9 𝐸! ! + 𝐸! ! 𝐸! 

𝜕
𝜕𝑧𝐸! = −

𝛼
2 𝐸! +

𝑗𝛽!
2

𝜕!

𝜕𝑡! 𝐸! − 𝑗𝛾
8
9 𝐸! ! + 𝐸! ! 𝐸! 

 

(2.27) 

PMD is neglected for the inverse channel model due to its random, stochastic nature. 

The Manakov equation is more computationally efficient than the CP-NLSE for long 

distance simulations, where total transmission distance is greater than 1000 km [67]. 

This model accounts for the residual birefringence of the fibre, and the effect that 

this has on the state of polarization and nonlinearity within the fibre. Since the 

residual birefringence scatters the signal state of polarization on a significantly 

smaller scale than the fibre nonlinear length, fibre nonlinearity acts on both 

polarizations equally as described by the right-most term in (2.27). Here, E=[EX,EY] 

is the optical field in delayed time, subscripts x and y denote orthogonal linear 

polarization states, α is the fibre loss parameter, β2 the group velocity dispersion 

parameter and γ the nonlinearity parameter. Though the Manakov equation is widely 

used for simulation of fibres with residual birefringence, application of this equation 

for digital backpropagation algorithms has only recently been made in [68] and 

formalised in [69]. 

Equation  (2.27) may be split into its constituent linear and nonlinear parts, resulting 

in: 
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𝜕𝐄
𝜕𝑧 = 𝐷 + 𝑁 𝐄,        where 

𝐷 =
𝑗𝛽!
2

𝜕!

𝜕𝑡!, 

𝑁 = −𝑗𝛾
8
9𝐄

𝐇𝐄−
α
2 , and 

𝐄 = 𝐸! 𝐸! ! 

(2.28) 

From (2.28), we may derive an exact solution of the Manakov equation, which forms 

the basis of the split-step type solutions (2.29): 

𝐄 𝑧 + ℎ,𝑇 = exp ℎ 𝐷 + 𝑁 𝐄 𝑧,𝑇  (2.29) 

where h is the nonlinear step-size. 

2.7.2 Split-Step Methods 
The following approximation is central to all split-step Fourier method numerical 

solutions to both the CP-NLSE (2.26), and the Manakov equation (2.27) which we 

will investigate here. We may say that for sufficiently small step h: 

exp ℎ 𝐷 + 𝑁 𝐄 𝑧,𝑇 ≈ exp ℎ𝐷 exp ℎ𝑁 𝐄 𝑧,𝑇  (2.30) 

By approximating the non-commutable operators 𝐷 and 𝑁 as commutable [70], we 

form an approximate solution to the NLSE which may be evaluated analytically. 

While the approximation in (2.30) is very basic, this approximation of the exact 

solution in (2.29) forms the basis of all split-step type solutions, and is a good 

approximation over a sufficiently small step-size. A common refinement to (2.30) is 

to evaluate the nonlinear part of the solution with a constant envelope profile and 

varying intensity. This modification allows larger step sizes to be used as the 

solution does not imply constant power throughout the step as (2.30) does.  

By assuming that the only change in the electric field over the nonlinear step is loss 

(and consequently that dispersion may be considered to act separately), we may 

normalise the solution of the nonlinear part of the Manakov equation to the varying 

power profile within the step and remove the loss term. 
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𝑁! 𝐄!, 𝑧! = 𝑁
!!!

!
𝐄!, 𝑧! 𝑑𝑧! 

                       = 𝐿!""𝑁 𝐄, 𝑧! ,  where 

𝐄! 𝑧 + ℎ,𝑇 = exp −𝛼ℎ/2 𝐄 𝑧,𝑇  

(2.31) 

The approximation in (2.31) gives us a nonlinear step which includes loss and the 

total nonlinear phase shift over the spatial step. This is effectively a multiplication by 

the effective nonlinear length LEff, given by (2.32) [40]: 

𝐿!"" =
1− exp −𝛼ℎ

𝛼  (2.32) 

The accuracy of this solution to the Manakov equation can be improved by applying 

the dispersion operator in two equal parts, before and after the nonlinear operator. 

This leads to the symmetric split-step Fourier method [40] defined by (2.33). 

exp ℎ 𝐷 + 𝑁 𝐄 𝑧,𝑇 ≈ 

exp ℎ
2𝐷 exp 𝐿!""𝑁 exp ℎ

2𝐷 𝐄 𝑧,𝑇  
(2.33) 

2.7.3 Two- and Three- Block Nonlinear Models 
The two variations of the split-step method may be described in terms of two and 

three block nonlinear models from nonlinear systems theory [71], for each short 

length of fibre over which a split-step is taken. Nonlinear models of particular 

interest are:  the Wiener model which consists of a linear block followed by a 

memoryless nonlinear block (Figure 2.14); the Hammerstein model, consisting of a 

memoryless nonlinear block followed by a linear block (Figure 2.15); and the 

Wiener-Hammerstein model, which represents the concatenation of the Wiener and 

Hammerstein models, that is, a linear block followed by a memoryless nonlinear 

block, followed by a second linear block (Figure 2.16). 
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Figure 2.14 - The Wiener model 

 

Figure 2.15 - The Hammerstein model 

 

Figure 2.16 - The Wiener-Hammerstein model 

It is immediately apparent that the Wiener-Hammerstein model (Figure 2.16) is used 

to represent the behaviour of an incremental section of fibre in the symmetric split-

step method. These three block systems are then cascaded to form an approximation 

of the entire channel. Similarly, the bulk-step approach refers to a cascaded two 

block (Hammerstein model) approximation of the channel. The difference between 

the two and three block nonlinear models stems largely from their relative accuracy, 

which is analysed in the next subsection. It should be noted that while the bulk-step 

approximation of the forward channel corresponds to a cascade of Hammerstein 

systems, when this model is used for compensation (that is, approximation of the 

inverse channel) the order of the blocks is reversed, and the bulk-step model 

therefore refers to a cascade of Wiener systems. 

2.7.4 Channel Models and Accuracy Considerations 
The improvement in accuracy that the symmetric split-step method offers over the 

‘bulk’ step method given in (2.30) may be quantified by examining the error term 

generated by the approximations in (2.30) and (2.33), by use of the Baker-Campbell-

Hausdorff formula [70] for the commutability of operators (2.34). This formula gives 

us an analytical insight into both the relative accuracy of the symmetric-step and 
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bulk-step variants of the nonlinear channel model, and the effects of step size and 

channel model on the accuracy of the digital backpropagation algorithm. 

exp ℎ𝐷 exp ℎ𝑁 = exp ℎ𝐷 + ℎ𝑁 + ℎ
!
2 𝐷𝑁 − 𝑁𝐷 +⋯  (2.34) 

In the Baker-Campbell-Hausdorff formula (2.34), for convenience we have included 

the dominant (first) term only of the error series. This is equivalent to the error in the 

bulk-step approximation given in (2.30). The error term resulting from the 

symmetric split-step method may be described as follows (2.35): 

exp ℎ
2𝐷 exp ℎ𝑁 exp ℎ

2𝐷 = exp ℎ
2𝐷 exp Θ  

where:  

Θ = ℎ𝑁 + ℎ 2𝐷 +
ℎ!

2 𝑁,
𝐷
2 + exp ℎ

2𝐷 exp Θ   

= exp ℎ𝐷 + ℎ𝑁 + ℎ
!
6 𝑁 +

𝐷
2 , 𝑁,

𝐷
2 +⋯   

(2.35) 

We note from (2.34) that the dominant error term is proportional to h2, while in 

(2.35) the dominant term is proportional to h3. This indicates (a fact well known by 

those familiar with optical fibre simulations using the split-step Fourier method) that 

the symmetric split step method will give greater accuracy with an identical spatial 

step size. 

An essential factor in the application of this solution, however, is that the solution of 

the Manakov equation is to be performed at the receiver with a noisy signal and 

DSP. It is therefore in our interest to perform not the most accurate reverse 

propagation, but the least complex with sufficient accuracy. Much recent research 

[26], [68], [72] has demonstrated that for receiver based digital backpropagation, a 

single nonlinear step per span with the bulk-step method may be considered a 

sufficiently accurate solution of the Manakov equation. 

2.7.5 Digital Backpropagation Algorithms 
The coherent receiver-based nonlinearity-compensation algorithms used in this 

investigation may be categorised as two variations of digital backpropagation.  These 
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are the Wiener and Wiener-Hammerstein inverse-channel approximations 

(corresponding to the bulk-step and symmetric-step methods); each of which may be 

applied to step sizes of less than one span, or one span or more. 

Dispersive steps may be performed in the frequency domain, using the dispersion 

operator defined in (2.28). This method describes a circular convolution of the 

dispersion operator (2.28) and the time domain signal, and is given in (2.36), where 

ℱ represents the Fourier transform. 

exp ℎ𝐷 𝐄 = ℱ!! exp ℎℱ 𝐷 ℱ 𝐄    (2.36) 

Nonlinear operations are performed in the time domain with the nonlinear operator 

normalised to both nonlinear step-size and launch power. For nonlinear step sizes of 

a single span or greater, the nonlinear operator is that defined in (2.37). 

𝑁 𝑡, 𝑧!" = 𝑗𝜑𝑧!" 𝐸! 𝑡 ! + 𝐸! 𝑡 ! 𝑃!   (2.37) 

Here PL represents launch power in mW, zNL is the nonlinear step size, t represents 

the retarded time frame and φ is the nonlinear phase shifting coefficient, which is a 

constant to be optimised. All other symbols retain their conventional meaning or 

those defined previously. 

In the case of more than one nonlinear step per span, the nonlinear operator is 

modified to account for the exponentially varying power profile within the span. 

This leads to a nonlinear operator as defined in (2.38): 

𝑁 𝑡, 𝑧!" = 𝑗𝜑10
!"
!"! 𝑧!" 𝐸! 𝑡 ! + 𝐸! 𝑡 ! 𝑃!   (2.38) 

where n is the number of steps per span, s is the index of the step within the span and 

L is the fibre loss per span in dB. 
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2.7.6 Recent Experimental Results in Nonlinear Backpropagation 
Since coherent detection has re-emerged a critical field of research, a significant 

amount of research effort has been directed at experimental demonstration of digital 

nonlinearity compensation. The most important of these results are presented in 

Table 3: 

Year Modulation 
Format 

Bit Rate 
per 

Channel 

Number of 
Channels 

Channel 
Spacing 

Performance 
Improvement 

2009 [68] DP-QPSK 112Gb/s 20 100GHz 2 dBQ 
2009 [64] DP-QPSK 112Gb/s 72 50GHz 0.25 dBQ 
2009 [69]* DP-BPSK 12Gb/s 3 7GHz 16 dBQ 

2009 [26] DP-QPSK 42.7Gb/s, 
85.4Gb/s 1 - 33-50% reach 

2009 [71] DP-QPSK 112Gb/s 40 100GHz 1.7 dBQ 

2009 [73] DP-Co-
OFDM 111Gb/s 1 - 13% reach 

2010 [74] DP-Co-
OFDM 61.7Gb/s 1 - 2.2 dBQ 

2010 [12] DP-QAM16 112Gb/s 1 - 67% reach 

2010 [75] DP-QPSK 112Gb/s 1,10 
-, 

50GHz, 
100GHz 

3.2-46% reach 

2010 [12] DP-QPSK, 
DP-QAM16 

42.7Gb/s, 
85.4Gb/s 1 - 1 dBQ 

2010 [76] DP-Co-
OFDM 224Gb/s 7 50GHz 0.5 dBQ 

2011 [77] DP-Co-
OFDM 448Gb/s 3 80GHz 0.5 dBQ 

2011 [78] DP-QAM16 224Gb/s 1,3 -, 
50GHz 12-19% reach 

2011 [79] DP-QPSK 112Gb/s 1,40 -, 
100GHz 1.5-2.5 dBQ 

2011 [80]** DP-QPSK 112Gb/s 80 50GHz 1 dBQ 

2011 [81] DP-Co-
OFDM 112Gb/s 1,10 -, 50GHz 0.5-1.4 dBQ 

Table 3 - Recent experimental results from nonlinear digital backpropagation (* all 

three channels backpropagated; ** hybrid system with 79 10.7 Gb/s NRZ 

neighbours). Publications resulting from work in this thesis are in bold. 

As can be seen from Table 3, when a single channel nonlinear backpropagation 

technique is employed (i.e. excluding the low baud rate WDM experiment presented 

in [69]), the increase in performance is limited to approximately 2.5 dBQ (where 

dBQ indicates decibels of Q-factor), or a 67% increase in reach. In a comparative 
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study between DP-QPSK and DP-QAM16 operating over the same system [12] it 

was found that when systems are operated near their linear limit, the potential benefit 

from mitigating intra-channel nonlinearities is marginally greater for DP-QAM16 

than DP-QPSK. This study also revealed, while the maximum benefit in Q-factor 

was similar, the increase in optimum launch power was significantly higher (2.5 dB 

versus 1.8 dB) reflecting the more significant increase in launch power dynamic 

range. To date, much of the work in nonlinear digital backpropagation has focused 

on using a single nonlinear step per span. This approach has been demonstrated to 

achieve significant improvements in performance for single channel [26], [61], [72], 

[74] and widely spaced WDM systems [68], [73]. However, improvement in 

performance for WDM systems operating on a dense grid with high spectral 

efficiency (2 b/s/Hz or higher) has so far been small [64], [75-78], [80], [81]. In 

order to recover some of this benefit, one approach is to reduce the step size in order 

to determine if this affords any improvement. While some work has shown that this 

approach is unnecessary for reverse propagation of a single channel [12], significant 

benefits have been demonstrated when performing reverse propagation of several 

received WDM channels as a single signal [69], [82]. 

2.7.7 Alternative Approaches to Nonlinearity Compensation 
Although digital backpropagation has become the dominant method used in research 

into fibre nonlinearity compensation, many other methods have been discussed in the 

literature. While the optimal nonlinear decoder (known as the Viterbi decoder or 

maximum likelihood sequence estimator (MLSE)) is well known and widely used in 

wireless communications [83], it results in unacceptable levels of computational 

complexity for coherent optical systems. Complexity is proportional to Mm, where M 

is the symbol alphabet and m is the channel memory [84]. While the Viterbi 

algorithm was utilised for IM-DD systems where modulation was binary and channel 

memory was low [85], it is prohibitively complex for coherent systems with no 

optical dispersion management and high-level modulation, and has so far only been 

used in a sparing manner [84].  

Other statistically based nonlinear algorithms such as maximum-a-posteriori (MAP) 

detection have been used successfully in simulation and lab-based transmission 

experiments [86], [87]. While performance improvements obtained are notable, these 
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algorithms also have the problem of extremely high complexity which scales 

exponentially with channel memory and signal alphabet.  

Volterra models of fibre nonlinearity have been utilised for some time [88], [89], and 

have recently been utilised in the design of nonlinear equalisers [90-92]. The 

popularity of these equalisers has again been limited by their computational 

complexity. 

A further widely investigated technique is digital pre-compensation of nonlinearity 

using transmitter based DSP and a digital-to-optical transmitter [93-95]. 

Compensating nonlinearity at the transmitter is attractive due to the potential to 

simplify processing by the use of nonlinear look-up tables to implement processing 

of the undistorted data [96]. Despite this, the requirements of a-priori knowledge of 

the optical channel and a high-speed DAC at the transmitter have restricted interest 

in this technology for line rates beyond 10G. 

2.8 Summary 
In this chapter, the concepts of coherent detection were discussed. Polarization and 

phase diverse coherent detection was described with both single ended and balanced 

photo-detection.  Local oscillator phase and frequency locking was examined, along 

with constraints on analogue to digital conversion. Modulation formats commonly 

used for coherent detection were introduced and compared by noise sensitivity. Fibre 

transmission impairments were then discussed, with different mathematical 

descriptions for fibre with and without chromatic dispersion, polarization mode 

dispersion, and Kerr nonlinearity. Noise resulting from amplified spontaneous 

emission in optical amplifiers was also detailed. Digital post-processing algorithms 

discussed include: filters for the compensation of chromatic dispersion; adaptive 

equalization of PMD, polarization rotations and residual filtering; intradyne 

frequency offset estimation and compensation; and carrier phase estimation. The 

theoretical basis of nonlinearity compensation with digital backpropagation was then 

elaborated, with models for backpropagation using two or three block nonlinear 

models, for step sizes of more than and less than one span. Previous progress in 

digital backpropagation was noted, and other techniques for digital nonlinearity 

compensation were described. 
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In the next chapter, we examine the benefits in performance available with 

nonlinearity compensation when the digital backpropagation algorithm is used. 

When digital backpropagation is applied to a single channel transmission system we 

are able to improve performance in the high-power nonlinear regime. The impact of 

step-size in the backpropagation algorithm is investigated in detail and the 

relationship between performance improvement and computational complexity is 

investigated. 
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3 Experimental Analysis of Digital 

Backpropagation 

3.1 Abstract 
Coherent detection with receiver based digital signal processing (DSP) has recently 

enabled the mitigation of fibre nonlinear effects. We investigate the performance 

benefits available from the backpropagation algorithm for dual-polarization 

quadrature phase shift keying (DP-QPSK) and 16-state quadrature amplitude 

modulation (DP-QAM16). The performance of the receiver using a digital 

backpropagation algorithm with varying nonlinear step size is characterized to 

determine an upper bound on the suppression of intra-channel nonlinearities in a 

single-channel system. The results show that for the system under investigation DP-

QPSK and DP-QAM16 have maximum step sizes for optimal performance of 160 

km and 80 km respectively. Whilst the optimal launch power is increased by 2 dB 

and 2.5 dB for DP-QPSK and DP-QAM16 respectively, the Q-factor is 

correspondingly increased by 1.6 dB and 1 dB, highlighting the importance of 

studying nonlinear compensation for higher level modulation formats. 
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3.2 Introduction 
Exponential growth in capacity requirements in recent years has led to rapid 

improvements in the spectral efficiency of optical communications systems [97]. 

While this growth was previously sustained by the introduction of wavelength 

division multiplexing (WDM), with on-off keying (OOK) systems, this approach 

yields a theoretical maximum of 1bit/s/Hz over the bandwidth of the optical channel 

[98]. By utilizing coherent detection with phase and polarization diversity, it 

becomes possible to detect the full four dimensional signal space of amplitude and 

phase on two orthogonal polarizations rather than the single dimension of total 

power used with direct-detection (DD). As all four dimensions of the optical field are 

detected by a phase and polarization diverse coherent receiver, they may all be used 

for modulation, improving the achievable spectral efficiency. The detection of all 

four dimensions of the optical field also enables the equalization of previously 

limiting linear transmission impairments such as chromatic dispersion (CD) and 

polarization mode dispersion (PMD). With the elimination of linear transmission 

impairments, attention has turned to the mitigation of nonlinear impairments, which 

digital coherent receivers cannot completely compensate, stimulating research into 

nonlinearity mitigating receiver subsystems. 

Recently, theoretical research has been undertaken to assess the ultimate nonlinear 

capacity of optical fibres [99], where both high level modulation formats and intra-

channel nonlinearity compensating DSP has been assumed. High-level modulation 

formats have been a topic of much research, resulting in spectral efficiency for DP-

QAM16 in excess of 7 bit/s/Hz [100]. As higher level modulation formats have 

relatively lower OSNR tolerance, higher launch powers are required, resulting in 

greater nonlinear penalties. Although research has focused on the study into both the 

techniques for high-order modulation and nonlinearity compensating DSP, little 

work has been done into the intersection of these two areas: the comparative benefits 

achievable with nonlinearity compensation when the order of modulation is 

increased.  

For practical transmission systems, the dominant nonlinear impairment is due to the 

Kerr effect [40], which may be further subdivided into inter- and intra-channel 

nonlinear effects. While the mitigation of inter-channel fibre nonlinearities remains 
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an active research topic [101], this chapter describes the study of a digital coherent 

receiver and associated algorithms for the intra-channel nonlinearity compensation. 

Although inter-channel nonlinearities are often dominant in WDM transmission 

systems, the principles of mitigating them remains the same [102], and the results of 

this study may be applied to such systems assuming that inter-channel information 

sharing in the receiver is possible. To maximize the efficacy of the nonlinear DSP, a 

phase and polarization diverse digital coherent receiver is employed, allowing the 

full optical field within the receiver bandwidth to be reconstructed in the digital 

domain. This allows us to exploit our knowledge of the physical nature of the optical 

channel, and design our DSP accordingly.  

This investigation is performed by a series of single-channel experiments and 

simulations to determine both the possible benefits and the necessary spatial 

resolution when using the digital backpropagation algorithm to mitigate intra-

channel fibre nonlinearity. We compare the effects of nonlinearity compensation on 

two widely investigated high-level modulation formats: dual-polarization quadrature 

phase shift keying (DP-QPSK), which yields 4 bit/symbol; and dual-polarization 16-

state quadrature amplitude modulation (DP-QAM16), which yields 8 bit/symbol. 

Both modulation formats are investigated at 10.7 GBd, such that the benefits of 

nonlinearity compensation may be compared with a doubling of modulation density, 

while the mitigating effects of dispersion and the signal bandwidth remain the same. 
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3.3 Experimental Transmission Setup 
To characterise the functionality of our digital coherent receiver with nonlinearity 

compensation, we performed a set of transmission experiments to examine the 

effects of linear and nonlinear impairments. A particular focus was to investigate the 

effectiveness of nonlinear compensation techniques for DP-QPSK and DP-QAM16 

modulation formats and the impact of varying DSP complexity on the transmission 

performance. The optical signals were transmitted multiple times through a single-

span recirculating fibre loop, followed by coherent detection, digitization and offline 

digital signal processing, as shown in Figure 3.1. The loop consisted of 80.2 km 

SMF fibre with an overall chromatic dispersion of 1347 ps/nm and loss of 15.4 dB. 

The experimental procedure was similar to that described in [26], [103]. 

 

Figure 3.1 - Recirculating loop setup used for transmission experiments, with 

optical front end of the phase and polarization diverse digital coherent receiver. 

The polarization-multiplexed QPSK signal was generated using an I-Q modulator, 

which was driven over 2Vπ with respect to the minimum bias point of its transfer 

function. For the data two decorrelated 212 PRBS sequences were used from the 

output of the pulse pattern generator (PPG), which were subsequently amplified to 7 

Vp-p (2Vπ) to separately drive the I and Q arms of the modulator. The transmitter 

DFB laser linewidth, wavelength and output optical power were 1 MHz, 1554 nm 

and 8 dBm, respectively. To emulate polarization multiplexing we used a passive 

delay-line fibre interferometer, where two single polarization QPSK signals were 

again decorrelated, time and amplitude aligned and finally recombined via a 

polarization beam splitter (PBS) as shown in Figure 3.2. 
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Figure 3.2 - Transmitter structure for DP-QPSK, with optional QAM16 stage 

highlighted. Inset: optical eye-diagrams at the output of the transmitter for DP-QPSK 

(top), and DP-QAM16 (bottom). 

To synthesise a DP-QAM16 signal, we employed a recently developed method based 

on the interferometric optical processing of a QPSK signal, developed by  

S. Makovejs [60]. To aid carrier phase estimation, an external cavity laser (ECL) 

with a linewidth of 100 kHz was used in the QAM16 transmitter. The initial QPSK 

signal was launched into a phase-stabilised fibre interferometer, where the two 

signals are decorrelated, time-aligned and attenuated with respect to each other by 6 

dB (highlighted, Figure 3.2). The phase between two arms was set to 90º and 

maintained utilizing a feedback circuit. For the feedback circuit we used a ditherless 

bias control circuit; alternatively, a circuit design described in [105] may be used. 

Even though this method cannot be used to independently modulate different streams 

of data, this can be used to investigate transmission performance of DP-QAM16 

signals. In addition, this generation method allows suppression of the transfer of 

noise between the electrical and optical domains in the transmitter, owing to the 

nonlinear transfer function of the modulator. Polarization multiplexing emulation 

was performed as in the DP-QPSK case. 
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3.4 Simulation of Nonlinear Equaliser Performance 
To verify experimental results, a 215 long symbol sequence was simulated for 10.7 

GBd DP-QPSK and DP-QAM16 transmission by C. Behrens. The results of these 

simulations were originally published with the experimental results in [12], and are 

therefore replicated in this chapter for the sake of completeness. Laser phase noise 

was modelled as a Wiener process, leading to a transmitter laser linewidth of 1 MHz 

for DP-QPSK and 100 kHz for DP-QAM16, while the influence of relative intensity 

noise (RIN) was neglected throughout the simulations. An electrical 5th order Bessel-

filter with a 3 dB bandwidth of 26 GHz was used to emulate the limited transmitter 

bandwidth. 

α [dB/km] 0.19 

D [ps/km/nm] 16.87 

γ [1/W/km] 1.2 

PMD coefficient [ps/km0.5] 0.1 

Span length [km] 80.2 

Number of spans 97/20 

Optical filter BW [GHz] 100 

EDFA noise figure [dB] 4.5 

Table 4 - Fibre and Link Parameters 

To ensure accurate simulation of the experimental setup, the transmission-link in 

Figure 3.1 has been modelled in as much detail as possible, while making the 

following assumptions. Each AOM is assumed to introduce a loss of 3 dB, while 

EDFAs are operated in saturation to give a fixed output power of 17 dBm, and add 

noise power to the signal corresponding to a noise figure of 4.5 dB. Further 

attenuation is then applied to attain the desired launch power into the fibre. We 

simulated a span length of 80.2 km, modelling propagation inside the transmission 

fibre with a symmetrical split-step Fourier method covering linear effects, the Kerr 

effect, polarization mode dispersion and nonlinear polarization scattering using a 

nonlinear step-size of 0.1 km. The fibre parameters that were used are detailed in 
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Table 4 The optical loop filter was modelled as a 2nd order Gaussian filter with a 3 

dB bandwidth of 100 GHz. 

After transmission, the signal was detected with a single-ended coherent receiver 

assuming a local oscillator (LO) to signal ratio of 24 dB and an LO linewidth of 100 

kHz. Limited receiver bandwidth was largely determined by the P-I-N photodiodes, 

which are modelled with 5th order Bessel filters using a 3 dB bandwidth of 7 GHz. 

Receiver-side ADCs introduce additional quantization noise and are modelled as 

having an effective resolution of 4 bits. 

The residual implementation penalty was assumed to stem mainly from electrical 

noise in transmitter and receiver and was modelled by adding additional electrical 

noise at the receiver to give back-to-back performance similar to the measured 

receiver sensitivity.  

3.5 DP-QPSK Transmission Results 
To examine the variation of system performance with various implementations of 

digital backpropagation, we performed experiments with DP-QPSK near to the 

maximum reach without nonlinearity compensating DSP. Algorithm performance 

was examined over 97 spans (7780 km). As this distance is close to maximum reach, 

both nonlinear effects and the possible benefits of nonlinearity compensation are 

more significant than for shorter distances. A symbol rate of 10.7 GBd was chosen to 

exploit the full receiver bandwidth when using T/2 sampling for processing. The 

digital backpropagation algorithm was then investigated in terms of both the 

nonlinear step size and the use of both Wiener and Wiener-Hammerstein models. 
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Figure 3.3 - Contour plot of experimentally determined Q-factor in dB against 

launch power and nonlinear step-size for Wiener cascade compensation of 97 spans 

transmission DP-QPSK at 10.7 GBd. Nonlinear step-size of a  

single span lies at 80.2 km. 

The performance of the Wiener cascade model backpropagation was experimentally 

characterised for DP-QPSK and the results shown in Figure 3.3. Q-factor in dB is 

plotted as a contour graph against nonlinear step size in km on the horizontal axis 

and launch power in dBm on the vertical axis. 

In Figure 3.3 we observe that for lower powers, performance is limited by the 

accumulated optical noise. For launch powers of below -5 dBm there is an 

insignificant improvement in performance for either modulation format with any step 

size. As launch power is increased, we note that an improvement in performance is 

available for reduced step sizes up to 160 km. The optimum launch power is 

improved by some 2 dB, from approximately -4.5 dBm to approximately -2.5 dBm. 

The benefits available with decreasing nonlinear step-size become saturated at 160 

km. It is noted that while the improvement in maximum Q-factor may be modest (in 

the region of 1.5 dB), the increase in input dynamic range (that is, the range of 

launch powers for which the BER is less than the FEC limit) is more dramatic: 

approximately 4 dB.  
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Figure 3.4 - Q-factor in dB for transmission of 10.7 GBd DP-QPSK over 97 spans. 

Unfilled markers denote experimental data, while solid markers correspond to 

simulated results, and lines denote polynomial fits. CD only and 1 step per span are 

demonstrated. 

Figure 3.4 shows the variation of the Q-factor against launch power with and without 

backpropagation for a single nonlinear step per span. Experimental data is denoted 

by unfilled markers, while Monte-Carlo simulations (as described in the previous 

section) are denoted by filled markers.  Simulation parameters were determined as 

follows: fibre chromatic dispersion, length and attenuation were measured while 

optical filter bandwidths and fibre PMD were taken from manufacturers 

specifications. The fibre nonlinear coefficient and optical amplifier noise figures 

were used as fitting parameters to ensure good agreement between simulated and 

experimental results. While the simulated results provide a good fit to the 

experimental results for dispersion compensation only, for short step-sizes and long 

transmission distances this quality of fit is much harder to attain. We believe that this 

is due to the unmodelled distortions in the transmitter and receiver and their 

interaction with the signal during backpropagation. It is noted that there is a very 

good agreement between the experimental and simulated results. Linear 
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compensation denotes compensation for chromatic dispersion only, while 1 step per 

span correspond to a nonlinear step-size of 80.2 km.  

 

Figure 3.5 - Variation of experimental Q-factor in dB with distribution of dispersion 

in Wiener-Hammerstein cascade compensation of 97 spans transmission DP-QPSK 

at 10.7 GBd. Shown for 0.5 dBm launch power and an 80.2 km step-size. 

The influence of the distribution of dispersion between the two linear blocks in the 

Wiener-Hammerstein cascade was then investigated. This corresponds to varying the 

position of the nonlinear block within the section of fibre which is approximated by 

each 3 block system. The optimum was found to be 85% of the dispersion in the first 

block and 15% in the second block. This corresponds to applying the nonlinearity at 

half of the effective nonlinear length of the fibre section. A graph illustrating this is 

shown in Figure 3.5, which shows the variation of Q-factor with the length of the 

first dispersive step. The figure shows an 80 km nonlinear step size for 0.5 dBm 

launch power. Other launch powers and nonlinear step sizes also exhibit a maximum 

when the split of dispersion is 85% - 15%, although the maximum improvement in 

Q-factor is smaller for lower launch powers and smaller nonlinear step sizes. This 

dispersive split was used for all subsequent uses of Wiener-Hammerstein model 

backpropagation. While the demonstrated maximum improvement in the optimal 
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case is small in Figure 3.5, this improvement becomes greater as the nonlinear step-

size increases. 

To effectively represent and compare the results between the different 

backpropagation models, we used fitted curves to quantify improvements in launch 

power and Q-factor with reduction in step size. A least squares fit was used to 

produce the polynomial approximation of Q-factor as a function of launch power 

given in (3.1) [106].  

1
𝑄!

=
1
𝑎𝑃

+
𝑃!

𝑏
 (3.1) 

Using this fitting process, we were able to extrapolate the optimum launch power for 

different models and spatial resolutions of nonlinearity compensation. This inferred 

optimum launch power is useful as the experimental measurements have a 

granularity of 1 dB in launch power, and the change in optimum launch power may 

be less than this between different nonlinear step sizes. From the polynomial 

approximation of variation in Q-factor with launch power we are also able to infer 

Q-factor at the optimum launch power. 

To account for the difference in complexity between the two nonlinear models and 

allow a more direct comparison, performance is characterised for the mean 

dispersive block length, which we define as (3.2): 

Blocks Dispersive ofNumber 
LengthLink  Total

 =Length Block  DispersiveMean  (3.2) 

Where there are two adjacent dispersive blocks in the Wiener-Hammerstein system, 

we assume that they may be incorporated into a single block. Therefore, for a very 

high order cascade, the mean dispersive block length of the Wiener-Hammerstein 

system will approach that of the Wiener system. Conversely, for a first order 

nonlinear model, the Wiener model will have a mean dispersive block length which 

is twice that of the Wiener-Hammerstein model.  

The characterization of DP-QPSK with varying mean dispersive block length is 

given below in Figure 3.6 and Figure 3.7 for both Wiener model and Wiener-
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Hammerstein model backpropagation. Here we plot improvement in Q-factor at the 

optimum launch power (Figure 3.6) and optimum launch power improvement 

(Figure 3.7) using the polynomial fitting process with the experimental 

measurements previously described. 

 

Figure 3.6 - Plot of improvement in inferred maximum Q-factor against mean 

dispersive block length for DP-QPSK at 10.7 GBd using Wiener and Wiener-

Hammerstein model nonlinearity compensation. 

It is noted that in both Figure 3.6 and Figure 3.7 both nonlinear compensation 

models offer similar potential benefits for a given mean dispersive block length. 

Maximum Q-factor is improved by approximately 1.6 dB, and optimum launch 

power is increased by approximately 1.9 dB for both compensation models. The 

improvement in both Q-factor and launch power saturates for a mean dispersive 

block length of approximately 160 km, or two spans. The similarity between the 

models when characterised in terms of mean dispersive block length may be 

considered with reference to the discussion of the accuracy of the models presented 

in the literature review. When the step size is small, the accuracy of both models is 

good and there is agreement in accuracy between the two models as the error due to 

the commutability of the linear and nonlinear blocks is insignificant. As the 
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nonlinear step-size increases, the benefit in accuracy of the Wiener-Hammerstein 

model becomes more significant. This difference is offset, however, due to the 

difference in mean dispersive block length between the two models. This becomes 

most noticeable for a nonlinear step-size corresponding to the link length L: for this 

case the mean dispersive block length is L for the Wiener cascade, but L/2 for the 

Wiener-Hammerstein cascade. 

 

Figure 3.7 - Plot of improvement in inferred optimum launch power against mean 

dispersive block length for DP-QPSK at 10.7 GBd using Wiener and Wiener-

Hammerstein model nonlinearity compensation. 

3.6 DP-QAM16 Transmission Results 
We then investigated the performance benefits available when using the digital 

backpropagation algorithm for the compensation of fibre nonlinearity in a DP-

QAM16 system over 20 spans (1600 km). Again, this transmission distance was 

chosen to be close to maximum reach with linear DSP, in order that the benefits 

available from nonlinear equalisation are more noticeable. To enable comparison of 

the modulation formats, we performed the comparison at the same symbol rate  
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(10.7 GBd), thus ensuring that the nonlinearity-mitigating effect of chromatic 

dispersion is identical for both formats. 

 

Figure 3.8 - Contour plot of experimentally determined Q-factor in dB against 

launch power and nonlinear step-size for Wiener cascade compensation of 20 spans 

transmission DP-QAM16 at 10.7 GBd. Nonlinear step-size of a  

single span lies at 80 km. 

As in the previous section, we applied Wiener model backpropagation applied to 

DP-QAM16 transmission varying nonlinear step-size and launch power. These 

results are presented in a contour plot in Figure 3.8. Again we see that a significant 

improvement in performance is available with nonlinear backpropagation. In this 

case, the improvement in performance which is obtained by reducing the nonlinear 

step-size is saturated for a step-size of approximately 80 km, compared to 160 km 

for DP-QPSK. Similarly in the large step-size region, a smaller step-size than DP-

QPSK is required for DP-QAM16. 
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Figure 3.9 - Q-factor in dB for transmission of 10.7 GBd DP-QAM16 over 20 

spans. Unfilled markers denote experimental data, while solid markers correspond to 

simulated results, and lines denote polynomial fits. CD only and 80 km nonlinear 

step-size are demonstrated. 

Again, simulations were performed in Matlab to determine the agreement of the 

experimental data with theoretical models. Figure 3.9 shows the variation of the Q-

factor against launch power with and without nonlinear backpropagation. 

Experimental data is denoted by unfilled markers, while Monte-Carlo simulations (as 

described in the previous section) are denoted by filled markers.  It is noted that there 

is a very good agreement between the experimental and simulated results. CD only 

denotes compensation for chromatic dispersion only, while 1 step per span 

corresponds to a nonlinear step size of 80 km. 

Again, we employed the polynomial fit described in equation (3.2) to the 

experimentally obtained data to ascertain the optimum launch power and Q-factor 

for each nonlinear step-size. These results were then plotted for both Wiener model 

backpropagation and Wiener-Hammerstein model backpropagation. These results are 

presented in Figure 3.10 and Figure 3.11. 
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Figure 3.10 - Plot of improvement in inferred maximum Q-factor against mean 

dispersive block length for DP-QAM16 at 10.7 GBd using Wiener and Wiener-

Hammerstein model nonlinearity compensation. 

We note from Figure 3.10 and Figure 3.11 that similarly to DP-QPSK, both 

nonlinear compensation models offer similar potential benefits for a given mean 

dispersive block length. The maximum available benefit in Q-factor is approximately 

1 dB, and optimum launch power is increased by approximately 2.5 dB for both 

compensation models. The improvement in both Q-factor and launch power saturates 

for a mean dispersive block length of approximately 80 km, or one span.  
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Figure 3.11 - Plot of improvement in inferred optimum launch power against mean 

dispersive block length for DP-QAM16 at 10.7GBd using Wiener and Wiener-

Hammerstein model nonlinearity compensation. 

3.7 Comparison of Performance for DP-QPSK and  
DP-QAM16 

By noting that the available benefit from Wiener-Hammerstein model 

backpropagation is almost identical to Wiener model backpropagation for both DP-

QPSK and DP-QAM16 systems, we may justify comparing between modulation 

formats using only one model. For this reason we will compare performance of 

backpropagation using the most prevalent model in the literature, the Wiener model. 

As a metric for performance improvement, we will discuss the increase in optimum 

launch power, which is approximately proportional to the launch power margin. 

The comparison between DP-QPSK and DP-QAM16 is in terms of the number of 

nonlinear block required is presented in Figure 3.12, while a comparison by mean 

dispersive block length is presented in Figure 3.13.  
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Figure 3.12 - Plot of improvement in inferred optimum launch power against 

number of nonlinear blocks for Wiener model nonlinearity compensation of DP-

QPSK and DP-QAM16. 

 

Figure 3.13 - Plot of improvement in inferred optimum launch power against 

nonlinear step size for Wiener model nonlinearity compensation of DP-QPSK and 

DP-QAM16. 
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We note from Figure 3.12 that for a 1.5 dB increase in optimum launch power, that 

DP-QPSK over 97 spans (7780 km) requires approximately 25 nonlinear blocks, 

while DP-QAM16 requires approximately 7 over 20 spans (1600 km). This 

corresponds to a slightly smaller nonlinear step-size for DP-QAM16 (230 km 

compared to 310 km) as may be seen in Figure 3.13, though this difference is 

dwarfed by the reduction of nonlinear blocks due to the reduced transmission 

distance. This is also in agreement with our earlier observation that DP-QAM16 

requires a smaller nonlinear step size than DP-QPSK to gain the maximum available 

benefits from backpropagation. We note that in future coherent systems which 

employ highly dense modulation and relatively short transmission distances, 

nonlinearity compensating DSP is likely to be more attractive than for current 

systems, which are largely DP-QPSK.  
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3.8 Estimated Implementation Complexity for Nonlinear 
Backpropagation 

The computational complexity of digital backpropagation may be approximated in 

the following manner: the number of complex multipliers in the dispersion 

compensating (linear) elements will dominate the implementation complexity of 

backpropagation. Therefore, the majority of the increase in complexity when 

reducing the nonlinear step-size is due to the increased number of operations 

resulting from the number of FFTs required (if we assume dispersion compensation 

is to be performed in the frequency domain). We may therefore use the 

approximation given by (3.3), which describes the number of complex 

multiplications per output sample when the radix 2 FFT is used [107]: 

𝑁!"#! ∝
𝑛log! n

𝑠
 (3.3) 

Where NCMAC is the number of complex multiplications per output sample, n is the 

FFT length, and s is the overlap length used in the filtering operation. When applied 

to the step-size analysis in the results in the previous sections (initially published in 

[12]), and filtering at two samples per symbol, we note that in single channel 

systems, the benefit in launch power is approximately linearly related to the relative 

complexity increase in the region prior to improvement saturation. This effect is 

illustrated by Figure 3.14, where we assumed an FFT size of 212 and an overlap of 

25%. 
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Figure 3.14 - Relative increase in complexity for backpropagation of 10.7 GBd  

DP-QPSK and DP-QAM16 

We note from Figure 3.14 that that in the case of 10.7 GBd DP-QAM16, an increase 

of a factor of 15 in the number of complex multiplications is required for a 1 dB 

increase in optimum launch power. Similarly, in the case of 10.7 GBd DP-QPSK, an 

increase of a factor of 20 in the number of complex multiplications is required for a 1 

dB increase in optimum launch power. It is also noted that for a single nonlinear 

step, there is a small improvement in performance over CD compensation only for a 

negligible increase in complexity. Since the static CD compensating filter is known 

to contribute a significant complexity to the receiver ASIC, even at 10.7 GBd [108], 

this increase in complexity is highly significant to the feasibility of backpropagation 

for implementation in commercial products. Since we may consider that single 

channel operation is an upper bound to the improvement in performance which may 

be achieved with a WDM system, we note that the improvement in performance is 

likely to be minimal while highly costly in terms of computational complexity (and 

therefore ASIC design cost and power consumption). 
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3.9 Summary 
In this chapter, we have investigated the performance of a coherent receiver with 

nonlinearity-compensating DSP and have shown that it can be successfully used to 

mitigate intra-channel nonlinearities in both DP-QPSK and DP-QAM16 over 

distances of 7780 km and 1600 km respectively. The impact of the key receiver DSP 

parameter, namely the nonlinear step size was investigated. It was shown that 

significant improvements in performance may be achieved with resolution 

significantly coarser than a single span. While performance in this long-step region 

may be improved with the use of a three block Wiener-Hammerstein model rather 

than the more commonly used Wiener model, the increased computational effort this 

model requires offsets any benefit when performance is examined in terms of the 

mean dispersive block length. For the examined receiver bandwidth and symbol rate, 

the benefit of nonlinearity compensation saturated for a nonlinear step size of 160 

km for DP-QPSK and 80 km for DP-QAM16. Additionally, nonlinear 

backpropagation appears to offer a greater benefit for DP-QAM16, which may be 

attributed to this format’s higher susceptibility to fiber nonlinear effects. This leads 

us to infer that nonlinearity compensation of this kind is considerably more attractive 

for modulation formats which are highly spectrally efficient, and transmitted over 

short links, where the reduced memory due to dispersion and the increased benefit 

available combine to produce greater benefits from fewer nonlinear steps. We then 

compared the computational complexity of nonlinear backpropagation to that of 

chromatic dispersion compensation only. An approximately exponential relationship 

was found between complexity in terms of the required number of complex 

multipliers and performance in Q-factor for both modulation formats. A 1 dBQ 

improvement in performance requires an increase in complexity of approximately a 

factor of 10 for DP-QAM16 and a factor of approximately 15 for DP-QPSK. This 

result indicates that even in the single channel case, the available improvement in 

performance when using nonlinear backpropagation is limited, while the 

computational cost is high. 

While the benefits of nonlinearity compensation may be considerable in some cases, 

the computational cost of implementation makes these algorithms prohibitive at the 

present time. While digital nonlinearity compensation is at best a distant possibility, 

other possibilities exist to provide better performance than conventional coherent 
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DP-QPSK systems at 40G and 100G line rates. In the following sections, we will 

investigate the processing and performance of a modulation format which has 

optimal power constrained performance in four dimensions: polarization-switched 

QPSK.  

In the next chapter we will examine the digital post-processing of a modulation 

format known as polarization-switched QPSK (PS-QPSK). This modulation format 

has superior noise tolerance to DP-QPSK, and will therefore offer performance 

benefits in both the linear and nonlinear regions without the need for the 

computationally intensive algorithms required for digital backpropagation. 
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4 Polarization Switched QPSK: Theory and 

Digital Equalisation 

4.1 Abstract 
Coherent detection in combination with digital signal processing has recently 

enabled significant progress in the capacity of optical communications systems. This 

improvement has enabled detection of optimum power-constrained modulation 

formats for optical signals in four dimensions. The increased noise tolerance of these 

modulation formats results in superior transmission performance which may be 

considered as preferable alternative to digital nonlinearity compensation, as the 

complexity of implementation is much lower.  In this chapter, we investigate digital 

post-processing of one such modulation format: polarization-switched quadrature 

phase shift keying (PS-QPSK). Coding schemes, equalisation and WDM sensitivity 

are analysed, and a novel equalisation algorithm investigated. The proposed 

algorithm, which includes both blind initialisation and adaptation of the equaliser, is 

found to be insensitive to the input polarization state and demonstrates highly robust 

convergence in the presence of PDL, DGD and polarization rotation. 
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4.2 Introduction 
Polarization and phase diverse coherent detection with digital signal processing has 

become an essential technique for mitigating fibre transmission impairments and 

therefore increasing capacity [109]. The basis of polarization and phase diverse 

coherent detection is that the in-phase and quadrature components of the two 

orthogonal polarizations are detected, corresponding to all four dimensions of the 

incoming optical field [104]. As all four dimensions of the field are detected, 

transmission impairments such as chromatic dispersion (CD) and polarization mode 

dispersion (PMD) may be compensated [10]. Recently, much research has been 

performed into the compensation of self phase modulation (SPM) in order to gain 

improvements in performance of 1 or 2 dB at great computational cost [12], [63], 

[110]. 

While the detection of all four dimensions of the incoming optical field has enabled 

mitigation of transmission impairments, it has also enabled the use of high-level 

modulation formats such as quadrature phase shift keying (QPSK) [18] and 16-state 

quadrature amplitude modulation (QAM16) [100]. These modulation formats are 

most commonly transmitted on two orthogonal linear polarizations, doubling the 

achievable spectral efficiency. This set of modulation formats are often denoted as 

dual-polarization (DP-) or polarization (division) multiplexed (PDM-; PM-; or 

PolMux-). 

Recently, research has been performed into determining the optimum modulation 

format in four dimensions, given that we have the ability to detect and digitally 

process all four dimensions of the transmitted optical field [111]. Previous proposals 

have focused on optimal constellations for the power constrained case [34], with 

some research being performed into using the extra capacity afforded by using an 

optimal 24-state constellation as coding overhead [112]. More recently, research into 

the performance of PS-QPSK in transmission has entered the literature. While this 

may seem to run against the trend for higher levels of modulation and more dense 

constellations, it may be noted that in industry there is still a demand for highly 

robust transmission at the expense of spectral efficiency for ultra long-haul 

applications [113], [114]. Despite the recent interest in PS-QPSK modulation, DSP 

algorithms specifically designed for PS-QPSK were published only while the 
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algorithm presented in this chapter [13] was in peer review [14] and shortly after 

publication [115]. Research prior to this focusing on transmission performance of 

PS-QPSK over uncompensated links [116] used an equaliser utilising a training 

sequence. The work presented in [117] examined the performance of PS-QPSK over 

dispersion managed links, did not discuss equalisation. The work presented in these 

papers [116], [117] indicates that PS-QPSK modulation offers a significant 

advantage over DP-QPSK in transmission at 112 Gb/s. 

 

Figure 4.1 - Constellation diagrams for DP-QPSK and PS-QPSK in the phase space. 

Phase on the x polarization (ϕx) is plotted against phase on the y polarization (ϕy) 

(both in radians). Solid markers belong to both formats while hollow markers belong 

to PS-QPSK only. 

PS-QPSK may be visualised as a subset of DP-QPSK under a polarization rotation. 

This is illustrated in Figure 4.1 where the phase of each polarization of both formats 

is plotted (PS-QPSK is rotated relative to the representation given elsewhere in this 

thesis for clarity). 

In this chapter we will examine the coding and digital post-processing of PS-QPSK, 

which is the optimal 8-state constellation. PS-QPSK offers the greatest benefit in 
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performance of any of the novel four-dimensional modulation formats proposed thus 

far, and also offers unique challenges and benefits in the design of digital 

subsystems. 

4.3 PS-QPSK Modulation and Coding Performance 
The PS-QPSK constellation may be considered as the 4-dimensional regular 

polytope (polychoron) known as the tesseract, or 8-cell. This may be more easily 

visualised as a QPSK constellation which is transmitted on one of two orthogonal 

polarizations [111]. We may also consider the constellation as the following set of 

vectors in ℂ! space (4.1):  

𝑆!"!!"#$ ∈
±1
0    ±𝑗0    0

±1    0
±𝑗  (4.1) 

It has been demonstrated that this modulation format has superior symbol error rate 

(SER) performance compared with conventional modulation formats used in current 

communication systems. This previous analysis bears repetition, as it relates the 

fundamental advantage of using a modulation format which is optimal under 

constrained power in four dimensions. An informative metric with which to compare 

performance of commonly used modulation formats with PS-QPSK is the variation 

of SER with SNR per transmitted bit. This will relate achievable performance (SER) 

to the achievable SNR given a desired gross bit rate (Eb/N0). SER for PS-QPSK may 

be given by (4.2), while SER for DP-QPSK is given by (4.3).  

𝑆𝐸𝑅!"!!"#$ = 1−
1
𝜋

1− erfc 𝑥 !
∞

!

𝑒
! !! !!!

!!

!

𝑑𝑥 (4.2) 

𝑆𝐸𝑅!"!!"#$ = 1− 1−
1
2 erfc

𝐸!
𝑁!

!

 (4.1) 
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Figure 4.2 - Ideal receiver sensitivity in symbol error rate against Eb/N0 for DP-

QPSK and PS-QPSK. For equivalent information carrying capacity, error rate of 

triplets of DP-QPSK is compared with error rate of quadruplets of PS-QPSK. 

We note immediately from Figure 4.2 that for identical modulation rates, PS-QPSK 

has receiver sensitivity significantly better than DP-QPSK at high symbol error rates, 

increasing to an asymptotic improvement of 1.76 dB. This is despite the fact that PS-

QPSK carries 3 bits of information per symbol while DP-QPSK carries 4 bits of 

information per symbol, necessitating an increase in symbol rate by a factor of 4/3 

for an equal bit rate. To compare symbol error rates with equivalent information, we 

have also compared symbol triplet errors in DP-QPSK to symbol quadruplet errors in 

PS-QPSK, yielding in each case a ‘super-symbol’ which contains 12 bits, transmitted 

at an equal rate. We found that PS-QPSK is superior over the domain examined, 

giving an improvement of 1.3 dB at a ‘super-symbol’ error rate of 10-2.  Comparing 

modulation formats in this manner indicates that PS-QPSK is worthy of further 

investigation. The ultimate performance metric of any digital communications 

system is bit error rate (BER), and to examine this facet of PS-QPSK performance, 

we must first provide a map of bits to symbols. 

Gray codes are a class of codes for which the Hamming distance between two points 
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which are adjacent in the signal space is 1. These codes are extensively used in 

digital communications in order to minimise the number of bit errors per symbol 

error. An interesting feature of PS-QPSK is that there exists no Gray code, as 

previously discussed in [34]. The Euclidean distance between any two points as 

described in (4.1) may be zero (the points are the same); 2 (polarization remains the 

same, while phase changes by π); or √2 (any other pair of points).  

Karlsson and Agrell proposed the following intuitive scheme, illustrated in Figure 

4.3 [34]. As each point in the PS-QPSK constellation has 6 nearest neighbours, the 

least-bad coding scheme is therefore to assign the 3 bit complement (which has 

maximum Hamming distance) to the 1 non-nearest neighbour (maximum Euclidean 

distance). As this mapping scheme has previously been proposed, we will refer to 

this scheme hereafter as ‘conventional’ mapping. Note that in addition to the 

expected four QPSK constellation points on each polarization, there is a fifth point at 

the origin. This point corresponds to the set of symbols for which the QPSK symbol 

exists on the orthogonal polarization.  

  

Figure 4.3 - 'Conventional' bit mapping for PS-QPSK after Karlsson & Agrell. 

While the mapping scheme presented in Figure 4.3 provides an intuitive basis for 

coding a 4-dimensional modulation format based on an information-theoretical 

approach, we will briefly consider a sub-optimal bit mapping in passing. The three 

bits in each PS-QPSK symbol may be considered as 1 bit coding for polarization (a 

binary state) and two bits coding for phase (a quaternary state). We may therefore 
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construct a mapping which uses two Gray coded bits for the phase of the QPSK 

constellation and 1 bit for polarization. This scheme is shown in Figure 4.4, and will 

be referred to as ‘alternative’ mapping. Although this bit mapping is inferior to 

conventional coding in terms of sensitivity, it provides both a convenient 

intermediate step to forming a scheme for differential coding, and a simplified 

coding scheme for which a small performance penalty must be paid.  

  

Figure 4.4 - 'Alternative' bit mapping scheme for PS-QPSK. 

Differential coding is a highly effective tool, both for resolving the phase-space 

ambiguity present with modulation formats which possess rotational symmetries, and 

for reducing the effect of burst errors induced by cycle slips in the carrier phase 

estimation process. This scheme is widely used for M-ary PSK, and has also been 

proposed for more spectrally efficient QAM16 and QAM64 in the optical domain 

[119]. We propose a coding scheme which provides differential coding in both phase 

and polarization for PS-QPSK. In this coding scheme, we code two bits onto the 

change in phase, and one bit onto the change in polarization, providing functionality 

similar to that proposed in [118]. While this code is suboptimal in the same sense as 

the alternate bit mapping scheme described in Figure 4.4 (and also suffers from a 

doubling of errors seen with differentially coded M-PSK) differential coding ensures 

a greater robustness to the effects of phase noise and subsequent errors during carrier 

phase estimation. As with differentially coded DP-QPSK, the bits comprising each 

symbol may be differentially coded and decoded independently, though in this case, 

the polarization ambiguity problem is also solved. An example of the transitions 
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described by uncoded bits for the differential code is given in Figure 4.5. It is also 

worth noting that after differential coding, the map of coded bits to symbols is the 

same as that provided by the alternative mapping described in Figure 4.4. 

 

Figure 4.5 - Example of differential coding for PS-QPSK, based on 'alternate' bit 

mapping scheme. 

To illustrate the relative performance of these coding schemes for PS-QPSK, in 

Figure 4.6, a BER is plotted against SNR per uncoded bit for an ideal transmitter and 

receiver. A benefit in required SNR of 1 dB is found between DP-QPSK and 

conventional PS-QPSK (assuming a target BER of 10-3), while the alternate 

mapping yields a penalty of less than 0.05 dB. The benefit of differentially coded 

PS-QPSK is similarly approximately 1 dB in sensitivity over differentially coded 

DP-QPSK. The bit error rates for DP-QPSK were obtained from the analytical 

formulas provided in [35], while for PS-QPSK in each case we assumed that in the 

high SNR region of interest, the bit error rate is dominated by the mean Hamming 

distance of each of the 6 nearest neighbours [34]. In the case of the conventionally 

coded constellation, three of the nearest neighbours have a Hamming distance of 

one, while three have a Hamming distance of two. By assuming that the possibility 

of a non-nearest neighbour symbol error is negligible (which is a valid assumption in 

the high SNR regime), for a single symbol error there is a 50% chance of a 1 bit 

error and a 50% chance of a 2 bit error. This results in an average of 1.5 bit error per 

symbol error. By scaling this to the modulation density of 3 bits per symbol we find 

that the BER is approximately 0.5 of the SER. The same logic may be applied to the 
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other bit-mapping schemes, leading to the approximations given in (4.4): 

𝐵𝐸𝑅!"#$ ≈ 1
2 𝑆𝐸𝑅!"!!"#$ 

𝐵𝐸𝑅!"# ≈ 5
9 𝑆𝐸𝑅!"!!"#$ 

𝐵𝐸𝑅!"## ≈ 10
9 𝑆𝐸𝑅!"!!"#$ 

(4.4) 

These approximations may be compared to that for DP-QPSK (4.5): 

𝐵𝐸𝑅!"!!"#$ ≈ 1
4 𝑆𝐸𝑅!"!!"#$ (4.5) 

While we note a benefit for PS-QPSK over DP-QPSK in the region of 1.5 dB when 

comparing SER at equal bit rates in Figure 4.2, this improvement is only 

approximately 1 dB when comparing BER. 

 

Figure 4.6 - Ideal receiver sensitivity in bit error rate (BER) against Eb/N0 for DP-

QPSK and PS-QPSK with various coding schemes and bit mappings. 

Due to the slight advantage in receiver sensitivity afforded by the mapping proposed 

by Karlsson & Agrell (described as conventional mapping), we will use this map of 

bits-to-symbols in the following analysis of the polarization-switched CMA 

equaliser. During subsequent analysis of polarization tracking, we will also consider 

the impact on performance of differential coding. 
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4.4 The Polarization Switched CMA Equaliser 
The most common equaliser in use for digital coherent communication is the 

constant modulus algorithm (CMA) equaliser with least mean squares (LMS) 

adaptation [46]. Due to the predominance of DP-QPSK as a modulation format, this 

algorithm is used in MIMO configuration, to separate the polarization sources and 

deconvolve each of these with the channel. The CMA has gained such high 

popularity by being robust, relatively computationally efficient and enabling the 

separation of the functionality of the equaliser from that of carrier phase and 

frequency estimation. Due to the large body of research based around the CMA and 

the familiarity of engineers with this algorithm, it is desirable to use this algorithm as 

the basis of an equaliser used for PS-QPSK.  

The standard dual-polarization CMA (DP-CMA) attempts to minimise the error 

terms on the output of each polarization given in (4.6). 

𝑒! = 1− 𝑥!"# ! 

𝑒! = 1− 𝑦!"# ! 
(4.6) 

While this optimisation criterion is known to function well in DP-QPSK, where both 

polarizations have constant power under noise free conditions, this approach is 

suboptimal for other constellations where the constant modulus condition is not met. 

For example, in the case of QAM16 modulation, some form of radially-directed 

algorithm is most commonly used to reduce the minimum CMA error term and 

therefore enhance convergence [100]. We therefore introduce a decision on the 

power in each input polarization to the equaliser such that a lower error term may be 

achieved. We also annotate this new algorithm as the polarization switched CMA or 

PS-CMA. This new error is described in (4.7): 

𝑅! 𝑅!   =    1 0 , 𝑖𝑓     𝑥!"# > 𝑦!"#
0 1 , 𝑖𝑓     𝑥!"# ≤ 𝑦!"#

 

𝑒! = 𝑅! − 𝑥!"# ! 

𝑒! = 𝑅! − 𝑦!"# ! 

(4.7) 

The taps of the four filters are then adapted as previously using the least mean 

squares algorithm given by (4.8): 
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𝒉!! = 𝒉!! + 𝜇𝑒!𝒙!"𝑥!"#∗ 

𝒉!" = 𝒉!" + 𝜇𝑒!𝒚!"𝑥!"#∗ 

𝒉!" = 𝒉!" + 𝜇𝑒!𝒙!"𝑦!"#∗ 

𝒉!! = 𝒉!! + 𝜇𝑒!𝒚!"𝑦!"#∗ 

(4.8) 

Where 𝒙!" and 𝒚!" are the input vectors to the equaliser on the x and y polarizations 

respectively, and the outputs of the equaliser 𝑥!"# and 𝑦!"# are given by (4.9): 

𝑥!"# = 𝒉!!
!𝒙!" + 𝒉!"

!𝒚!" 

𝑦!"# = 𝒉!"
!𝒙!" + 𝒉!!

!𝒚!" 
(4.9) 

In order to ensure non-singular convergence the filter coefficients must be initialised 

in an optimal manner such that the central taps of the equaliser are aligned with the 

signal input polarization state. This is done by calculating the expected correlation 

between output powers for a series of test rotations of the initial tap weights, and 

select the angle of rotation for which the output powers are least correlated. We 

therefore initialise the four central taps to be of the form given by (4.2): 

ℎ!! ℎ!"
ℎ!" ℎ!!

=    cos 𝜃 sin 𝜃
−sin 𝜃 cos 𝜃  (4.2) 

Our instantaneous equaliser outputs will therefore be given by (4.3): 

𝑥!"#
𝑦!"# =    cos 𝜃 sin 𝜃

−sin 𝜃 cos 𝜃
𝑥!"
𝑦!"  (4.3) 

Our optimal filter coefficients are given by the state which has minimal correlation 

in output powers. This is equivalent to the condition in (4.4): 

𝜃 = argmin
!
𝜀! ; where: 

(4.4) 
𝜀! = 𝑥!"# ! 𝑦!"# !  

where ∙  and ∙  denote the expectation and modulus operators respectively. After 

some algebra, it may be shown that (4.4) is equivalent to (4.5): 

𝜀! = 𝑎 1− cos 4𝜃 + 𝑏sin 4𝜃 + c 3+ cos 4𝜃  (4.5) 
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where: 

𝑎 =
1
8 𝑥!" ! + 𝑦!" ! − 4 Re 𝑥!"𝑦!"∗ ! ; 

𝑏 =
1
2 𝑦!" ! − 𝑥!" ! Re 𝑥!"𝑦!"∗ ; 𝑐 =

1
4 𝑥!" ! 𝑦!" ! ; 

This one dimensional optimisation is straightforward to solve analytically for the 

optimal value of  𝜃, or using a direct search from a set of test values of 𝜃.  

By finding the angle of polarization which satisfies the first derivative of correlation 

being zero and the second derivative being maximum, we may find the optimum 

angle analytically. A brief derivation is given in (4.6), with the analytical solution 

given in (4.7). 

𝑑𝜀!

𝑑𝜃 = 4 𝑎 − 𝑐 sin 4𝜃 + 𝑏cos 4𝜃 = 0 

tan 4𝜃 =
𝑏

𝑐 − 𝑎 

𝜃 =
1
4 tan

!! 𝑏
𝑐 − 𝑎 ;       or          𝜃 =   𝜋 −

1
4 tan

!! 𝑏
𝑐 − 𝑎  

d!ε!

d𝜃! = 16 𝑎 − 𝑐 cos 4𝜃 − 𝑏sin 4𝜃 > 0 

 

(4.6) 

𝜃 = −
𝜑
4 = −

1
4 sin

−1 𝑏

𝑎− 𝑐 2 + 𝑏2
 (4.7) 

While this method gives an exact solution to (4.4), it may be preferable to find an 

approximate solution with a parameter sweep to avoid the complex arithmetic which 

is required to calculate (4.7). 

4.5 Comparison of the PS-CMA with Generic Equalisers 
Another commonly used equaliser algorithm is the decision directed algorithm, 

which has the advantage of being a generic equaliser which may be applied to any 

modulation format [46]. While a decision directed LMS (DD-LMS) algorithm may 

be applied to any modulation format in any number of dimensions, some pre-

conditioning of the filter coefficients with another algorithm is normally required 
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such that convergence may be reliably attained [10]. This may be demonstrated with 

a comparison of the abilities of various algorithms to recover an arbitrary 

polarization rotation. We therefore compared the performance of the PS-CMA with 

and without the initialisation algorithm to the DD-LMS algorithm.  

The decision-directed algorithm uses an error term given by (4.16): 

𝑒! = 𝐷! 𝑥!"# − 𝑥!"# 

𝑒! = 𝐷! 𝑦!"# − 𝑦!"# 

𝐷 𝑢 =
𝐷! 𝑢
𝐷! 𝑢

= argmin
!

𝑢 − 𝑠 ,where  𝑠 ∈ 𝑆!"!!"#$ 

(4.16) 

where D is a four dimensional minimum Euclidean distance hard decision, as 

defined above.  

The input signal was noise loaded to 5.8 dB Eb/N0. This may be found to be 

commensurate with a BER of 10-3, according to the combination of equations (4.2) 

and (4.3) when ‘conventional’ mapping is applied. The signal was then rotated to a 

variety of polarization using a Jones matrix such that −𝜋 2 ≤ 𝜙 < 𝜋
2  and 

−𝜋 ≤ 𝜃 < 𝜋, thus ensuring that the Poincare sphere is evenly covered. The Jones 

matrix used is described in (4.17). 

𝑱 = cos 𝜃 sin   𝜃 𝑒!"

−sin   𝜃 𝑒!!" cos 𝜃
 (4.17) 

The signal was then equalised before bit error counting and BER calculation. Q-

factor was then calculated according to [120] from the observed BER, and this was 

compared to the ideal Q-factor corresponding to a BER of 10-3 to give the Q Penalty. 

For both the PS-CMA and DD-LMS with PS-CMA conditioning, equaliser 

performance was found to be ambivalent to the input state of polarization, with Q-

factor penalty being uniformly low. Figure 4.7 shows the sensitivity of the 

considered equalisers to the input state of polarization for the DD-LMS equaliser 

with no conditioning. 
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Figure 4.7 - Input polarization sensitivity of the DD-LMS with PS-QPSK 

modulation. Q-factor penalty in dB is plotted against the two angular parameters in 

the Jones matrix, with dark colour representing a low penalty and light colour 

representing a high penalty. 

We note from Figure 4.7 that the DD-LMS equaliser is highly sensitive to the input 

polarization state, and converges well for relatively few states. The PS-CMA is 

therefore a useful algorithm, both in its own right and for conditioning filter 

coefficients such that the DD-LMS may be used.  

The input polarization sensitivity of the PS-CMA was characterised with and without 

the initialisation procedure described above. The mean Q-factor penalty was 

calculated over the dimension ϕ in each case and the results presented in Figure 4.8. 

These results demonstrate the effectiveness of the initialisation procedure in 

eliminating the problem of singular mal-convergence, which results in a large Q-

factor penalty. A high penalty is seen for values of θ of ±π/4 and  ±3π/4, which 

correspond to angles whereby the energy of each signal polarization is evenly 

distributed onto the two receiver polarizations. This behaviour is similar to that noted 

for the DD-LMS equaliser shown in Figure 4.7. 
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Figure 4.8 - Polarization sensitivity of the PS-CMA with and without initialisation 

algorithm. Mean Q-factor penalty is plotted against polarization angle. 

The DP-CMA with PS-QPSK modulation was found to provide only a degenerate 

solution with 1 of 3 transmitted bits being discarded. As the DP-CMA equaliser 

attempt to form a constant modulus with both polarization input signals, the lowest 

error will be reached when both input polarizations are summed and the output 

polarizations are equal. Here we noted that regardless of the input state of 

polarization, in all cases all information contained in the bit which encodes 

polarization is lost. 

The inherent mal-convergence problem with the DP-CMA is illustrated by Figure 

4.9. When the PS-CMA equaliser is used, the constellation is fully recovered, and we 

clearly see the four constellation points belonging to the QPSK constellation on the 

polarization plotted, and the point at the origin which occurs when the QPSK signal 

is being transmitted on the other polarization. When the DP-CMA is used, both 

polarization outputs give the same constellation, which contains only the points 

which belong to the QPSK subset, and all information encoded on polarization is 

lost. 
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Figure 4.9 - Constellation diagrams showing a single output polarization of PS-

QPSK modulation when equalised with the PS-CMA equaliser (a); and PS-QPSK 

modulation when equalised with the DP-CMA equaliser (b).  

Noise loaded to 5.8 dB Eb/N0, for illustrative purposes. 

4.6 Characterisation of PS-CMA Performance 

An essential capability of any practical equaliser is the ability to operate effectively 

in the presence of polarization dependant loss (PDL). To characterise the 

performance of the equaliser in the presence of PDL we took the transmitted optical 

signal, applied loss at a particular polarization orientation and then noise loaded to 

5.8 dB Eb/N0. We considered the orientation of the loss as a polarization which is 

circularly rotated with respect to the signal, that is, θ was varied between –π and π, 

while ϕ remained zero. The signal is then rotated again with respect to the 

polarization axes of the receiver such that the input state of polarization to the 

receiver is randomised. The mean Q-factor penalty with respect to the SNR limited 

optimum was then calculated over the entire polarization space. The results of this 

analysis are presented below in Figure 4.10. 

  

(a) (b) 
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Figure 4.10 - Performance of the PS-CMA with PS-QPSK modulation in the 

presence of PDL. Q-factor penalty in dB is plotted against the applied PDL in dB. 

From Figure 4.10 we note that 3 dB of PDL results in a Q-factor penalty of 

approximately 1 dB. It is noted that while the Q penalty of the received signal varies 

with the amount of PDL, this does not increase the likelihood of the singularity 

problem which we described earlier for levels of PDL up to 5 dB, unlike when DP-

QPSK modulation is used with the DP-CMA equaliser. While some improvements 

in performance are possible when using the DP-CMA with DP-QPSK modulation by 

constraining the filters [121], [122] mal-convergence probability due to PDL is 

always non-zero, whilst the PS-CMA with PS-QPSK always converges correctly. 

Practical transmission links will always suffer from polarization mode dispersion 

(PMD), which in the past was a performance limiting distortion. It has been 

previously demonstrated that the DP-CMA may compensate for arbitrarily large 

amounts of PMD with DP-QPSK modulation given a sufficiently large number of 

taps. We analysed the tolerance to differential group delay (DGD) of a 25 tap PS-

CMA with PS-QPSK modulation, with the number of taps chosen to enable up to 6 

symbol periods of DGD to be equalised. Simulations were performed by circularly 

rotating the polarization of the transmitted optical signal, applying a delay in the 
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frequency domain to attain the desired level of DGD, and then rotating the signal 

polarization back to its original state. The signal was then noise loaded as before to 

5.8 dB Eb/N0, before equalisation and error counting. 

The equaliser was found to be ambivalent to the orientation of the applied DGD, 

being able to recover the input signal without penalty for DGD of up to 6 symbols. 

This is in contrast to DP-QPSK with the DP-CMA which is known to suffer mal-

convergence when the energy is split equally between the two principal states of 

polarization.  

 

Figure 4.11 - Performance of the PS-CMA with conventionally coded PS-QPSK 

modulation in the presence of time varying polarization rotation. 

Due to the time-varying birefringence of optical fibre, another important 

characteristic of a digital equaliser for coherent optical communication is the ability 

to track the time varying state of polarization at the input of the receiver. To measure 

the performance of the receiver in this respect, we rotated the transmitted signal by a 

Jones matrix with a time varying circular rotation, such that ϕ remains zero and θ is 

increased at a constant rate to produce a rotation with constant angular frequency. 
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The signal was then noise loaded to 5.8 dB Eb/N0 and equalised with the PS-CMA 

prior to error counting. Performance was measured by Q-factor against both the 

angular frequency of polarization rotation and the PS-CMA convergence parameter 

µ. The results of this simulation are presented in Figure 4.11. The same simulation 

was also performed utilising differential coding as described previously, with the 

results presented in Figure 4.12. 

 

Figure 4.12 - Performance of the PS-CMA with differentially coded PS-QPSK 

modulation in the presence of time varying polarization rotation. 

It is noted from Figure 4.11 and Figure 4.12 that an increased convergence parameter 

µ enables a faster polarization rotation to be tracked, at the expense of a reduction in 

receiver sensitivity. It is also noted that for both coding schemes, a polarization 

rotation frequency of approximately 0.1 mrad per symbol period may be tracked for 

a penalty in performance of approximately 0.5 dBQ. Despite the fact that the 

differential coding scheme presented in Figure 4.12 has differential coding on 

polarization as well as phase, we note that there is no appreciable improvement in 

polarization tracking ability in comparison with conventional coding. This indicates 

that the polarization tracking capability of this system is limited by the convergence 
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speed of the equaliser rather than burst errors caused by polarization slips. This also 

indicates that in a real system, polarization tracking will be significantly worse than 

is described here, as the equaliser will be updated at the ASIC clock rate (normally in 

the region of 500 MHz) rather than the symbol rate as is assumed here. 

4.7 Comparison with Other Published PS-QPSK Algorithms 
To-date, only two papers have directly addressed the issue of fully blind equalisation 

of PS-QPSK. The algorithm used by Nelson et al in [115] is a normalised version of 

the PS-CMA derived above, although the initialisation algorithm was not used, and 

so the singularity issue will still be present. This work was done in parallel to and 

was published shortly after our research, presented in [13] and [15]. An alternative 

equaliser algorithm was presented in [14] while our work was under review. While 

the algorithm presented in [14] uses a different control surface to the PS-CMA 

described above, the operation is remarkably similar. The only significant difference 

between the two algorithms is the initialisation procedure described in section 4.4, 

which mitigates the possibility of singular mal-convergence. To compare the 

performance of the two algorithms, we have simulated the back-to-back performance 

of both algorithms after a polarization rotation. The simulation was identical to that 

previously described for Figure 4.8.  
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Figure 4.13 - Q-factor penalty as a function of input polarization state for the 

equaliser algorithm as described in [14] (Johannisson et al.) compared with that 

described in section 4.4 (Millar et al.). 

We note from Figure 4.13 that while the minimum Q-factor penalty of the equalisers 

is broadly similar in the optimum case, the algorithm described in [14] (Johannisson 

et al.) suffers from singular mal-convergence resulting in a high Q-factor penalty. A 

high penalty is seen for values of θ of ±π/2 and ±3π/2, which correspond to angles 

whereby the energy of each signal polarization is evenly distributed onto the two 

receiver polarizations. This result is in agreement with the previous analysis of the 

performance of the PS-CMA with and without the initialisation algorithm presented 

in Figure 4.8 and demonstrates the improvement in robustness which may be 

achieved with the initialisation algorithm.  

  

−π −π/2 0 π/2 π
0

2

4

6

8

10

12

14

16

18

20

θ

Q
−f

ac
to

r p
en

al
ty

 (d
B)

 

 

Johannisson et al.

Millar et al.



 
 

105 

4.8 Application of PS-QPSK to 100 GbE WDM Systems 
High-speed optical transmission systems such as the proposed PS-QPSK system are 

almost universally utilised in combination with wavelength division multiplexing 

(WDM). The current standards for first generation deployment of 100 GbE systems 

are for 112 Gb/s per wavelength DP-QPSK modulation over a 50 GHz WDM grid, 

yielding a spectral efficiency of 2 b/s/Hz after overheads [11]. An interesting 

comparison is therefore to examine the receiver sensitivity of both PS-QPSK and 

DP-QPSK WDM systems at 112 Gb/s with a spectral efficiency of 2 b/s/Hz, 

corresponding to symbol rates of 37.3 GBd and 28 GBd respectively. For 

completeness we compare conventional (which corresponds to non-differential Gray 

coding for DP-QPSK) and differential coding for both modulation formats. Although 

the use of PS-QPSK will require use of a broader spectrum than that used for DP-

QPSK, we may use electrical filtering to reduce the effects of linear cross-talk 

introduced by WDM. In Figure 4.14 we have compared the penalty in required 

OSNR to achieve a BER of 10-3 for differing analogue electrical bandwidths at the 

transmitter and receiver. The transmitted signal was a modulated impulse train, 

filtered using a 5th order low-pass Bessel filter, and then combined with two 

additional channels spaced at 50GHz using an ideal colourless power combiner. The 

signal was then noise loaded and detected with an ideal coherent receiver. The signal 

was then filtered again with a second identical 5th order low-pass Bessel filter, 

resampled to 2 samples per symbol and then equalised with the PS-CMA for PS-

QPSK or the DP-CMA for DP-QPSK to remove the response of the analogue 

electrical filtering. After symbol estimation and BER calculation, the required OSNR 

was calculated. By varying the bandwidth of the two electrical filters, we determine 

the minimum required OSNR. The results of this simulation are presented in  

Figure 4.14. 
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Figure 4.14 - Back-to-back comparison of required OSNR to achieve a BER of 10-3 

for PS-QPSK and DOP-QPSK. Both systems are three channels at 112 Gb/s (7% 

FEC overhead) over 50 GHz WDM grid. 

From Figure 4.14, we note that the required OSNR for PS-QPSK is slightly more 

than 1 dB lower than that required for DP-QPSK. This relative penalty is maintained 

when differential coding is introduced. For lower electrical bandwidths in all cases, a 

penalty results from the signal filtering, while for higher electrical bandwidths, a 

penalty results from linear cross-talk between adjacent WDM channels. 

The simulation was then repeated for a 3 channel WDM system of 124.8 Gb/s over a 

50 GHz grid. The increase in FEC overhead results in an increase in baud rate to 

41.6 GBd for PS-QPSK and 31.2 GBd for DP-QPSK. In this case the FEC overhead 

was 20%, with a BER limit of 2x10-2. The results are presented in Figure 4.15. 
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Figure 4.15 - Back-to-back comparison of required OSNR to achieve a BER of 

2x10-2 for PS-QPSK and DP-QPSK. Both systems are three channels at 124.8 Gb/s 

(20% FEC overhead) over a 50 GHz WDM grid. 

From Figure 4.15, we notice that the improvement in required OSNR is reduced to 

less than 0.1dB when a higher FEC overhead of 20% is used, due to the broader 

spectrum of the signals. Again, we note that in the low electrical bandwidth regime 

there is a significant penalty from filtering, while in the high bandwidth regime there 

is significant penalty from cross-talk. However, the benefit from using PS-QPSK is 

reduced from 0.5 dB (at a BER of 2x10-2) to less than 0.1 dB by cross-talk. While 

this negates much of the benefit of PS-QPSK, this may be outweighed in some 

circumstances by the practical benefit due to the increased robustness of the PS-

CMA equaliser. 
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4.9 Summary 
In this chapter, we have examined the efficiency of several bit mapping schemes for 

PS-QPSK and used them to characterise the performance of novel DSP algorithms 

for this modulation format.  

A novel polarization-switched CMA equaliser was proposed and was found to have 

comparable performance to the DP-CMA equaliser, but does not suffer from 

degenerate mal-convergence with certain input polarizations states or PDL up to 5 

dB. The PS-CMA may therefore be said to be more robust than the DP-CMA 

without the use of training sequences or significant additional algorithmic 

complexity.  

A comparison was performed between PS-QPSK and DP-QPSK for 100 GbE WDM 

systems over a 50 GHz frequency grid. PS-QPSK was found to enable a gain in 

receiver sensitivity of 1 dB in required OSNR when compared with standard DP-

QPSK and a 7% FEC overhead. 

In the next chapter, we will examine the nonlinear transmission performance of PS-

QPSK. Generation of signals is discussed, and long-haul transmission of 40 Gb/s 

WDM PS-QPSK is compared to DP-QPSK at equal spectral efficiencies. We will 

determine if the theoretical benefit of PS-QPSK which is apparent in the simulated 

systems presented in this chapter can be maintained in experimental systems. 
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5 Generation and Long-Haul Transmission of 

Polarization-Switched QPSK at 42.9 Gb/s 

5.1 Abstract 
In this chapter, we demonstrate for the first time generation and transmission of 

polarization-switched QPSK (PS-QPSK) signals at 42.9 Gb/s. Long-haul 

transmission of PS-QPSK is experimentally investigated in a recirculating loop and 

compared with transmission of dual-polarization QPSK (DP-QPSK) at 42.9 Gb/s per 

channel. A reduction in the required OSNR of 0.7 dB was found at a BER of  

3.8x10-3, resulting in an increase in maximum reach of more than 30% for a WDM 

system operating on a 50 GHz frequency grid. The maximum reach of 13640 km for 

WDM PS-QPSK is, to the best of our knowledge, the longest distance reported for 

40 Gb/s WDM transmission, over an uncompensated link, with standard fibre and 

amplification. 
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5.2 Introduction  
Coherent detection, combined with digital signal processing (DSP), has led to recent 

increases in capacity [109], reach [123], and spectral efficiency [124]. While much 

research has been devoted to generating, processing and transmitting spectrally-

efficient modulation formats such as high-level quadrature amplitude modulation 

(QAM) [100], these modulation formats rely on a regular 4-dimensional lattice 

constellation design. However, it has been recently shown that these modulation 

formats are not optimal for the optical channel in terms of the asymptotic power 

efficiency [111], and some work has been undertaken to determine the optimal 

modulation format for a 4-dimensional additive White Gaussian noise channel [34], 

[111]. 

This research has led to a variety of new modulation formats being proposed, with 

various degrees of complexity and difficulty of realisation. A format which has 

attracted interest is polarization-switched quadrature phase shift keying (PS-QPSK) 

[14], [34], [111], [116], [117], [125]. This format transmits a symbol, on one of two 

orthogonal polarizations, with one of four equally spaced phase levels from a QPSK 

constellation, such that the resulting symbol carries 3 bits of information.  

 

Figure 5.1 - Constellation diagrams showing two orthogonal linear polarizations of 

an experimentally generated PS-QPSK signal. 

This is illustrated with a pair of experimental constellations in Figure 5.1, where blue 

points denote a QPSK symbol which has been transmitted on the x-polarization, 

while red dots denote a QPSK symbol transmitted on the y-polarization. Whilst this 
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modulation format has a lower available spectral efficiency than DP-QPSK, the gain 

in noise tolerance is as much as 1.76 dB [111] at equal bit rates and asymptotically 

high optical signal to noise ratio (OSNR). For the bit-error-rate (BER) values 

combined with modern forward error correction (FEC) codes, an improvement of 1 

dB at a BER of 10-3 and of 0.55 dB at a BER of 10-2 is theoretically achievable. Due 

to the significant benefit in noise tolerance over DP-QPSK which has become the 

standard modulation format for 100 GbE technology [11], there has been some 

interest recently in the transmission properties of PS-QPSK [116], [117], [125]. For 

this research we used an easily realisable technique to experimentally generate PS-

QPSK, without the use of either a four-dimensional modulator or custom-made 

photonic integrated circuits. PS-QPSK was then characterised for long-haul WDM 

transmission and compared to DP-QPSK. 

5.3 PS-QPSK Generation and Experimental Setup 
To evaluate the achievable benefits of employing the PS-QPSK modulation format 

over DP-QPSK, we first measured the OSNR tolerance and maximum reach of both 

modulation formats.  The experiments were conducted at the constant bit rate of 42.9 

Gb/s, corresponding to 14.3 Gbaud for PS-QPSK and 10.725 Gbaud for DP-QPSK. 

In WDM transmission, both formats were transmitted over a 50 GHz frequency grid, 

with spectral efficiency of 0.8 b/s/Hz in both cases. 

The PS-QPSK format was generated as follows (Figure 5.2(b)).  First a triple Mach-

Zehnder modulator (MZM) was used to modulate CW light from an external cavity 

laser (ECL) to generate a single polarization QPSK sequence. The applied data 

pattern was a pseudo-random bit sequence (PRBS) of length 215-1, where the PRBS 

was decorrelated by half of the pattern length between the in-phase and quadrature 

signal components. Polarization switching was then applied to the signal by 

passively 50:50 splitting the QPSK signal and intensity modulating each arm, 

symbol-synchronously, with two MZMs.  The two intensity modulators were driven 

by DATA and DATA respectively from the pattern generator. The effect of this 

configuration being that only one intensity modulator was transmitting during each 

symbol period. The two arms were then tuned to be orthogonally polarized using 

polarization controllers, before entering a polarization beam combiner.  Any residual 
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symbol timing difference, due to different path lengths in the polarization switching 

stage, was compensated with a variable optical delay line in one arm. 

DP-QPSK was generated using a similar method except that, after the 50:50 splitter, 

the QPSK signal was polarization-multiplexed by decorrelating the signal 

polarizations in each arm of a passive delay-line stage (Figure 5.2(a)).  The effective 

delay between the QPSK signals in each polarization was 24 symbols. 

 

Figure 5.2 - Experimental set-up to generate and transmit 42.9 Gb/s  

PS-QPSK (14.3 Gbaud) and DP-QPSK (10.725 Gbaud). 

In order to generate a 7-channel WDM comb, two alterations to the above 

configuration were introduced.  Firstly, a 50 GHz WDM comb was created by 

combining CW light from six temperature- and current-controlled DFB lasers. An 

ECL with a linewidth of 100 kHz was used for the central channel. The comb was 

bulk modulated, and an interleaver with a channel spacing of 50 GHz was used to 

separate alternate channels, which were then decorrelated by 10 ns before being 

recombined with a 3-dB fibre coupler, as described in (A H Gnauck et al. 2011). 

To investigate the transmission performance, a single-span recirculating fibre loop 

was used. An EDFA followed by a variable optical attenuator (VOA) was used to set 

the launch power to an acousto-optic modulator controlled recirculating fibre loop 

(Figure 5.2(c)), as described in [126].  The loop span consisted of 80.24 km of 

standard single-mode fibre (SMF), with a loss of 15.4 dB and total chromatic 
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dispersion of 1347 ps/nm at 1554 nm. Wavelength-dependant gain of the loop 

EDFAs was equalised using gain flattening filters. 

After the desired number of recirculations, the signal was detected with a phase and 

polarization diverse coherent receiver. The frequency offset between the signal and 

LO lasers typically measured as being less than 1 GHz. Digitisation was then 

performed using a real-time digital sampling oscilloscope (DSO) with 8 physical bits 

of resolution and 50 GSa/s.  The captured waveforms were subsequently processed 

offline using Matlab. When processing DP-QPSK, we used the linear processing 

methods, described in detail in [12]. 

5.4 Digital Signal Processing for Experimentally Generated 
PS-QPSK Signals 

The captured digital signal was first de-skewed, normalised to unit power per 

polarization and re-sampled to 2 Samples/symbol. Equalisation was then performed 

using a polarization-switched constant modulus algorithm (PS-CMA) equaliser with 

least-mean squares (LMS) updating, described in detail in the previous chapter, and 

originally in [13]. This equaliser utilises a decision on the relative power in each 

output polarization from the equaliser. The error term may be described by the 

following pseudo-code (5.1): 

𝑅! 𝑅!   =    1 0 , 𝑖𝑓     𝑥!"# > 𝑦!"#
0 1 , 𝑖𝑓     𝑥!"# ≤ 𝑦!"#

 

𝑒! = 𝑅! − 𝑥!"# ! 

𝑒! = 𝑅! − 𝑦!"# ! 

(5.1) 

The taps of the four filters are then adapted as previously described using the least 

mean squares algorithm given by (5.2): 

𝒉!! = 𝒉!! + 𝜇𝑒!𝒙!"𝑥!"#∗ 

𝒉!" = 𝒉!" + 𝜇𝑒!𝒚!"𝑥!"#∗ 

𝒉!" = 𝒉!" + 𝜇𝑒!𝒙!"𝑦!"#∗ 

𝒉!! = 𝒉!! + 𝜇𝑒!𝒚!"𝑦!"#∗ 

(5.2) 

Where 𝒙!" and 𝒚!" are the input vectors to the equaliser on the x and y polarizations 
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respectively, and the outputs of the equaliser 𝑥!"# and 𝑦!"# are given by (5.3): 

𝑥!"# = 𝒉!!
!𝒙!" + 𝒉!"

!𝒚!" 

𝑦!"# = 𝒉!"
!𝒙!" + 𝒉!!

!𝒚!" 
(5.1) 

This equaliser has an attractive practical advantage over that which is used for dual-

polarization QPSK. The PS-CMA equaliser when initialised with the algorithm 

described in [13] (and in detail in the previous chapter) does not suffer from 

degenerate mal-convergence (whereby both output polarizations of the equaliser 

converge to the same input polarization), regardless of the input polarization. This is 

due to the fact that the two switched QPSK tributaries are orthogonal and the 

equaliser may be initialised to avoid singularity.  

To estimate the intradyne frequency offset, the PS-QPSK symbol sequence was 

reduced to a QPSK symbol sequence at the output of the receiver. This was done by 

making relative decisions on the energy in each symbol, the polarization with higher 

energy in each symbol was determined to contain the QPSK phase information, and 

was extracted. The resultant QPSK sequence was raised to the 4th power to remove 

the modulation. The offset was then determined by finding the peak power in the 

FFT of the signal [53].  

Carrier phase estimation was performed after removing the polarization modulation. 

This was done by selecting one sample per symbol based on which polarization has 

more energy. Carrier phase was then recovered for our reduced QPSK sequence 

using the Viterbi & Viterbi algorithm [55].   

The transmitted symbol sequence was determined by correlating the received symbol 

sequence with the PRBS data, and calculating the delays and phase rotations in the 

transmitter and channel. The transmitted and received symbol sequences were then 

transformed into three bit sequences each using the bit-mapping described in [111], 

which were then compared to calculate the BER.  
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5.5 Back-to-Back and WDM Transmission Results at 42.9 
Gb/s 

First, the receiver noise sensitivity was measured for DP- and PS-QPSK using 

additional noise loading at the receiver. The results of this back-to-back 

measurement are shown in Figure 5.3, together with the theoretical SNR limit as 

derived in [34]. 

From Figure 5.3(a) we note an implementation penalty of 0.8 dB for single channel 

PS-QPSK, with an excess WDM implementation penalty of 0.2 dB at a BER of 

3.8x10-3. This is compared to the DP-QPSK measurements shown in Figure 5.3(b), 

where we see an implementation penalty of 0.9 dB for single channel with negligible 

excess WDM implementation penalty. We note that in absolute terms, the required 

OSNR of WDM PS-QPSK is 8.1 dB, compared to 8.8 dB for DP-QPSK.  

 

Figure 5.3 - Back-to-back measurements. Single-channel and WDM receiver OSNR 

sensitivity for (a) PS-QPSK and (b) DP-QPSK. 

The transmission performance was then experimentally measured for a 7-channel 

WDM system using the recirculating loop. The launch power per channel was varied 

between -13 and 3 dBm, to determine the variation in maximum reach with launch 

power at the BER limit of 3.8x10-3. The resulting comparison between PS-QPSK and 

DP-QPSK at 42.9 Gb/s is presented in Figure 5.4, with a polynomial fit for each 

curve as described in [75].  
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It can be seen from Figure 5.4 that in the low power, linear transmission regime (less 

than -7 dBm per channel), for a given reach a reduction in launch power of 

approximately 1dB per channel is possible for PS-QPSK, agreeing with the back-to-

back receiver sensitivity results in Figure 5.3. For both modulation formats, the 

optimum launch power was found to be approximately -3.5 dBm per channel. The 

maximum reach of PS-QPSK was found to be 170 recirculations corresponding to 

13,640 km; this may be compared to a maximum reach of 129 recirculations for DP-

QPSK, corresponding to 10,350 km. 

 

Figure 5.4 - Transmission performance of 42.9 Gb/s PS-QPSK and DP-QPSK 

compared for a 7 channel WDM system on a 50 GHz frequency grid. Maximum 

reach is compared for a BER of 3.8x10-3. 

The use of PS-QPSK rather than DP-QPSK modulation therefore enabled an 

increase in maximum reach of more than 30%. In the high power, highly nonlinear 

transmission region (launch power greater than 0 dBm per channel), we note that the 

improvement in performance available from PS-QPSK is reduced in comparison to 

the linear regime. This reduction in improvement was due to the high levels of 

nonlinear phase noise present.   
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5.6 Summary 
In this chapter, we have presented the first experimental measurements of the 

transmission performance of PS-QPSK at 42.9 Gb/s using a simple and easily 

realisable generation technique. The implementation penalty for PS-QPSK 

modulation was found be less than 1 dB at a BER of 3.8x10-3. This transmitter was 

then used to perform a characterisation of transmission performance for PS-QPSK, 

comparing PS-QPSK and DP-QPSK at 42.9 Gb/s over a 50 GHz frequency grid. An 

improvement in launch power margin (the range of launch powers for which the 

FEC limit may be maintained) of greater than 1 dB was found in all cases. The 

optimum launch power for both modulation formats was found to be -3.5 dBm per 

channel, while maximum reach was increased by more than 30% from 10350 km to 

13640 km. At the time of publication [15], these results represented the longest 

distance 40 Gb/s WDM transmission achieved over an uncompensated link, with 

standard fibre and amplification. 
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6 Conclusions and Topics for Further 

Research 

6.1 Abstract 
In this chapter, we describe proposed future research topics in the field of DSP 

algorithms for coherent detection. First, we discuss performance bounds on the 

capability of digital backpropagation for coherent systems. We then discuss DSP 

algorithms for modulation formats which are optimal in four dimensions. Extending 

the filter initialisation algorithm presented in chapter 4 to conventional modulation 

formats such as DP-QPSK and DP-QAM16 is then proposed. Finally we draw 

conclusions on each part of the research, and on the larger conclusions to be drawn 

from this research project as a whole.  

6.1.1 Boundaries on Performance Benefits resulting from 
Nonlinearity Compensation  

While we have performed a detailed investigation into the potential performance 

benefits of digital backpropagation in chapter 3, the backpropagation algorithm is not 

known to be optimal in the presence of random distortions resulting from noise and 

other stochastic processes such as PMD. However, the optimal nonlinear equaliser 

for an arbitrary nonlinear channel is known in the soft-decision Viterbi decoder. 

Although the Viterbi algorithm is too complex to be implemented in hardware for 

high-level modulation formats in the near-future, its optimality may give a useful 

upper bound on the potential of nonlinearity compensation and a performance 

benchmark for current algorithms. This will indicate the usefulness of recent 

research in both backpropagation algorithm development and nonlinear information-

theoretic capacity, which is also a field reliant on backpropagation. 

6.1.2 DSP Algorithms for Optimal 4D Modulation Formats 
Although our research into DSP algorithms for PS-QPSK have demonstrated that a 

useful improvement in performance may be obtained by applying information-

theoretic results regarding the optical channel, these results are limited to the low 

spectral-efficiency regime. The pioneering work presented in [34], however 
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presented many optimal constellations of different orders, only two of which have 

been investigated to date. Higher order modulation formats which are optimal in the 

power-constrained case should be investigated to determine if it is possible to obtain 

significant benefits over the current candidates for high spectral-efficiency regime 

such as DP-QAM16 and DP-QAM64. This research should encompass bit-mapping, 

coding schemes and post-processing for equalisation and phase and polarization 

recovery. 

6.1.3 Equaliser Initialisation Algorithms 
 The equaliser initialisation algorithm presented in chapter 4 represents a novel 

approach to the mitigation of equaliser singular mal-convergence. Algorithms of this 

kind offer a great potential to improve robustness and convergence times of current 

systems, without significant increases in complexity. However, the algorithm 

presented in chapter 4 has an inherent limitation in that it works only for PS-QPSK 

modulation. We propose that by extending the general principle of this algorithm it 

should be possible to mitigate the possibility of singular mal-convergence without 

the need for independent component analysis (ICA) or other such bulky algorithms. 

6.2 Conclusions 
In this thesis, we have examined DSP algorithms for coherent optical communication 

systems. We have focussed on algorithms which offer performance benefits through 

the compensation of fibre nonlinearity, and algorithms which enable the use of PS-

QPSK modulation, which offers an improvement in noise tolerance over 

conventional dual-polarization formats.  

We have investigated the performance of a coherent receiver with nonlinearity-

compensating DSP and have shown that it can be successfully used to mitigate intra-

channel nonlinearities in both DP-QPSK and DP-QAM16 over distances of 7780 km 

and 1600 km respectively. The impact of the key receiver DSP parameter, namely 

the nonlinear step size was investigated. It was shown that significant improvements 

in performance may be achieved with resolution significantly coarser than a single 

span. While performance in this long-step region may be improved with the use of a 

three block Wiener-Hammerstein model rather than the more commonly used 

Wiener model, the increased computational effort this model requires offsets any 
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benefit when performance is examined in terms of the mean dispersive block length. 

For the examined receiver bandwidth and symbol rate, the benefit of nonlinearity 

compensation saturated for a nonlinear step size of 160 km for DP-QPSK and 80 km 

for DP-QAM16. Additionally, nonlinear backpropagation appears to offer a greater 

benefit for DP-QAM16, which may be attributed to this format’s higher 

susceptibility to fibre nonlinear effects. This leads us to infer that nonlinearity 

compensation of this kind is considerably more attractive for modulation formats 

which are highly spectrally efficient, and transmitted over short links, where the 

reduced memory due to dispersion and the increased benefit available combine to 

produce greater benefits from fewer blocks.  

We then compared the complexity of nonlinear backpropagation with that of 

chromatic dispersion compensation only. An approximately exponential relationship 

was found between complexity in terms of the required number of complex 

multipliers and performance in Q-factor for both modulation formats. A 1 dBQ 

improvement in performance requires an increase in complexity of approximately a 

factor of 10 for DP-QAM16 and a factor of approximately 15 for DP-QPSK. This 

result indicates that even in the single channel case, the available improvement in 

performance when using nonlinear backpropagation is limited, while the 

computational cost is high. 

While the benefits of nonlinearity compensation may be considerable in some cases, 

the computational cost of implementation makes these algorithms prohibitive at the 

present time. Additionally, the difficulties of performing inter-channel nonlinearity 

compensation require that information is shared between adjacent WDM channels 

requires that bussing data to each receiver at a rate in the hundreds of Gb/s is 

required. Perhaps the most damning of all is that in a ROADM network, not all 

signals that generate inter-channel nonlinearities may be at every node, as some 

signals may have already been dropped. While digital nonlinearity compensation is 

at best a distant possibility, better choice of modulation format may provide better 

performance than conventional coherent DP-QPSK systems at 40G and 100G line 

rates.  

Power efficient polarization-switched QPSK (PS-QPSK) modulation was then 

examined as a low-complexity means of achieving performance superior to 
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conventional systems in the low spectral efficiency regime. We examined the 

efficiency of several bit mapping schemes for PS-QPSK and used them to 

characterise the performance of novel DSP algorithms for this modulation format.  

A novel polarization-switched CMA equaliser was proposed and was found to have 

comparable performance to the DP-CMA equaliser, without suffering from 

degenerate mal-convergence with certain input polarizations states or high levels of 

PDL. The PS-CMA may therefore be said to be more robust than the DP-CMA 

without the use of training sequences or significant additional algorithmic 

complexity.  

A comparison was performed between PS-QPSK and DP-QPSK for 100 GbE WDM 

systems over a 50 GHz frequency grid. PS-QPSK was found to enable a gain in 

receiver sensitivity of 1 dB in required OSNR when compared with standard DP-

QPSK and a 7% FEC overhead. 

We then presented the first experimental measurements of the transmission 

performance of PS-QPSK at 42.9 Gb/s using a simple and easily realisable 

generation technique. The implementation penalty for PS-QPSK modulation was 

found be less than 1 dB at a BER of 3.8x10-3. This transmitter was then used to 

perform a characterisation of transmission performance for PS-QPSK, comparing 

PS-QPSK and DP-QPSK at 42.9 Gb/s over a 50 GHz frequency grid. An 

improvement in launch power margin (the range of launch powers for which the 

FEC limit may be maintained) of greater than 1 dB was found in all cases. The 

optimum launch power for both modulation formats was found to be -3.5 dBm per 

channel, while maximum reach was increased by more than 30% from 10350 km to 

13640 km. At the time of publication, these results represented the longest distance 

40 Gb/s WDM transmission achieved over an uncompensated link, with standard 

fibre and amplification. While standards have been set for 40G and 100G coherent 

optical systems, it is conceivable that his increased margin from PS-QPSK may be of 

some practical use in some future systems, for example: access networks; submarine 

systems or as a fall-back modulation format for software defined optical transceivers. 

It is clear that by tailoring modulation and digital algorithms to the optical channel, 

improvements in performance may be obtained over standard algorithms and 



 
 

122 

systems. While the computational complexity of digital nonlinearity compensation is 

currently prohibitive, with the scaling of CMOS technology, it is conceivable that 

some form of digital nonlinearity compensation will be implemented in future 

systems. As we look to future systems, it also seems likely that modulation formats 

such as PS-QPSK which are better suited to the optical channel will be used, as 

coherent detection becomes ubiquitous and better developed. 
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