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GH deficiency is thought to be involved in the pathogenesis of amyotrophic lateral sclerosis
(ALS). However, therapy with GH and/or IGF-I has not shown benefit. To gain a better under-
standing of the role of GH secretion in ALS pathogenesis, we assessed endogenous GH secretion
in wild-type and hSOD1G93A mice throughout the course of ALS disease. Male wild-type and
hSOD1G93A mice were studied at the presymptomatic, onset, and end stages of disease. To
assess the pathological features of disease, we measured motor neuron number and neuro-
muscular innervation. We report that GH secretion profile varies at different stages of disease
progression in hSOD1G93A mice; compared with age-matched controls, GH secretion is un-
changed prior to the onset of disease symptoms, elevated at the onset of disease symptoms,
and reduced at the end stage of disease. In hSOD1G93A mice at the onset of disease, GH secretion
is positively correlated with the percentage of neuromuscular innervation but not with motor
neuron number. Moreover, this occurs in parallel with an elevation in the expression of muscle
IGF-I relative to controls. Our data imply that increased GH secretion at symptom onset may be
an endogenous endocrine response to increase the local production of muscle IGF-I to stimulate
reinnervation of muscle, but that in the latter stages of disease this response no longer occurs.
(Endocrinology 154: 4695– 4706, 2013)

Amyotrophic lateral sclerosis (ALS) is a neurodegen-
erative disease characterized by the loss of upper and

lower motor neurons. Progression of the disease results in
paralysis and death (1, 2). Although disease etiology re-
mains to be wholly understood, studies suggest that ALS
is a multifactorial disease, whereby abnormal protein
function (3–8), excitotoxicity (1, 9), mitochondrial dys-
function (10–12), and defective metabolic homeostasis
(13–15) are thought to contribute to disease progression,

and whereby cells such as astrocytes contribute to motor
neuron death (16).

The GH/IGF-I axis plays an integral role in the regu-
lation of body metabolism while also stimulating muscle
growth (17, 18). Interestingly GH deficiency in human
ALS has been thought to play a pathogenic role in the
disease process (19–21). Our recent observations confirm
GH deficiency and impairment of the GH/IGF-I axis in the
hSOD1G93A mouse model of ALS (22). At the latter stage
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of disease, hSOD1G93A mice show significant reductions
in GHRH-stimulated GH release, decreased pulsatile GH
secretion, diminished levels of circulating IGF-I, and lower
expression of IGF-I receptor (IGF-IR) in skeletal muscle
and spinal cord (22). Collectively, observations in humans
and mice suggest that altered endocrine function, at least
at the level of the GH/IGF-I axis, coexist with pathological
changes in ALS. Although GH/IGF-I directed therapies
have been trialed in ALS, the outcomes of these studies
were far from promising (21, 23–26). Consequently, there
is a need to better understand how, or if, altered GH/IGF-I
function contributes to ALS pathogenesis.

To provide insight into the role of GH/IGF-I dysfunc-
tion on the onset and progression of ALS, we assessed
pulsatile GH secretion and muscle-specific GH receptor
(GH-R) expression in hSOD1G93A mice, relative to disease
progression. In addition, we measured circulating levels of
IGF-I, and muscle-specific IGF-I and IGF-IR expression.
When compared with age-matched wild-type (WT) con-
trols, hSOD1G93A mice have higher GH secretion at an age
that corresponds to the onset of disease symptoms, when
there is loss of motor neurons from the spinal cord. Loss
of motor neurons leads to loss of innervation of skeletal
muscle neuromuscular junctions (NMJs), which is com-
pensated by reinnervation from other surviving motor
neurons (27). GH secretion at this stage of disease was
positively correlated with the percentage of NMJs that
were innervated, whereas we observed no association be-
tween the pulsatile release of GH and crural flexor motor
neuron numbers. This suggests that GH plays a role in
reinervation of muscle fibers, as compensation for dener-
vation. We also observed higher levels of muscle-specific
IGF-I expression in hSOD1G93A mice at the onset of dis-
ease, which is indicative of muscle-specific anabolic ac-
tions of GH. Secretion of IGF-I by muscle fibers could
assist in stimulating sprouting of axon terminals to form
new NMJs. This study is the first to document changes in
the GH/IGF-I axis relative to disease severity. Our obser-
vations suggest that alterations to the GH/IGF-I axis in
hSOD1G93A mice may occur as a consequence of the dis-
ease process and represents an endogenous response to
counteract the muscle atrophy and weakness that is seen
in ALS.

Materials and Methods

Animals
WT and hSOD1G93A mice (B6.Cg-Tg[SOD1-G93A]1Gur/J)

(28) were bred at the University of Queensland. Founder lines
were obtained from The Jackson Laboratory. The SOD1-G93A
transgene was designed with a mutant human superoxide dis-

mutase-1 (SOD1) gene, harboring a single amino acid substitu-
tion of glycine to alanine (at codon 93). The transgene is driven
by the endogenous human SOD1 promoter, resulting in pheno-
typic changes matching ALS symptoms. Experiments were con-
ducted in male age-matched WT and male hSOD1G93A animals
at ages that correspond to well-defined stages of disease pro-
gression: prior to the onset of overt symptoms (Presymptomatic;
30–36 d), the onset of hind limb weakness (Onset; 63–75 d), and
a latter stage of disease characterized by hind-limb paralysis
(End-stage; 150–175 d) (22, 29). Mice were pair-housed (n � 2)
in a 12-hour light, 12-hour dark cycle (on at 0600 h and off at
1800 h) and had free access to food (20% protein, 4.8% fat;
Specialty Feeds) and water. Room temperature was maintained
at 22 � 2°C. Mice were anesthetized with sodium pentobarbital
(ip, 32 mg/kg) prior to the collection of tissue samples. All animal
procedures were approved by The University of Queensland An-
imal Ethics Committee and were performed in accordance with
national guidelines.

Experiment 1: Assessment of changes in the
GH/IGF-I axis in hSOD1G93A mice relative to
disease severity

Measures of pulsatile GH secretion from hSOD1G93A mice
were assessed at ages corresponding to presymptomatic, onset,
and the end stage of disease (n � 6/age). Observations were
compared with age-matched WT controls (n � 8/age). Two
weeks prior to the assessment of GH secretion, animals were
relocated to the procedure room. Pulsatile GH secretion was
assessed as previously described (22, 30). Starting at 0700 hours,
36 sequential tail-tip blood samples were collected from each
mouse at 10-minute intervals. All animals had ad libitum access
to food and water for the duration of the experiment. Blood loss
was restricted to less than 7.5% of total blood volume. Following
collection of blood samples, animals were returned to their home
cage and allowed 2 days to recover. A subset of animals (n �
5–6/age and genotype) was sacrificed for collection of spinal
cord, gastrocnemius, and plasma. Samples were processed for
histological verification of disease progression as detailed pre-
viously (29), and assessment of hypothalamic somatostatin (Srif)
and Ghrh mRNA expression, circulating IGF-I, muscle-specific
IGF-I expression, and muscle-specific Gh-r mRNA, and GH-R
and IGF-IR protein expression.

Experiment 2: Correlation analysis of pulsatile GH
secretion in hSODG93A mice at disease onset
relative to histopathological hallmarks of disease

Pulsatile GH secretion from a second cohort of hSOD1G93A

mice at disease onset (n � 16) was measured for correlation
between parameters of GH secretion and the histological hall-
marks of disease. Given the absence of histological pathology in
WT mice, controls (n � 6) were included to confirm altered GH
secretion as observed in experiment 1. Assessment of pulsatile
GH secretion was performed as described in experiment 1. Fol-
lowing the collection of blood samples, animals were returned to
their home cage. After 2 days of recovery, hSOD1G93A mice were
sacrificed for collection of the gastrocnemius muscle and spinal
cord. Measures of pulsatile GH secretion were compared with
the percentage of innervated NMJs of the gastrocnemius mus-
cle (as assessed by percentage acetylcholine receptor [AChR]
plaques colocalized with neurofilament and synaptophysin,
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n � 16), and the number of neurons in the crural flexor motor
neuron pool (L4–L5, n � 12).

Hormone analysis
Circulating IGF-I and IGF-I expression within gastrocnemii

were determined using a commercial ELISA (R&D Systems).
Analysis of whole blood GH and pituitary GH content was per-
formed using an in-house GH ELISA (30). Muscle tissue and
pituitary glands were lysed in buffer: 50 mM Tris-HCl, 150 mM
NaCl, 10 mM NaF, 10 mM Na4P2O4, 1 mM Na3VO4, 1%
NP-40, and Protease Inhibitor (Roche). Expression levels of
IGF-I in muscle and GH content in pituitary glands were nor-
malized to total protein. The intra- and interassay coefficients of
variation for all assays were below 4.50%.

Real-time quantitative PCR
Isolated whole hypothalamic tissue from WT and

hSOD1G93A mice at disease onset and gastrocnemius muscles of
WT and hSOD1G93A mice at the presymptomatic, onset, and
end-stage age were processed for gene expression. Samples were
suspended in 1 mL TRIzol (Life Technologies) and stored at
�80°C for subsequent analysis. Real-time PCR was conducted
as previously described (22). Results were normalized to glyc-
eraldehyde-3-phosphate dehydrogenase (GAPDH). Final mea-
sures are presented as relative levels of corrected gene expression
compared with expression in controls. For the hypothalamus,
mRNA expression was limited to Srif (No. 4331182; Life Tech-
nologies) and Ghrh (No. 4331182; Life Technologies) mRNA
using commercial TaqMan primers. For gastrocnemius muscles,
gene expression was limited to Gh-r mRNA (Catalog No.
4331182; Life Technologies).

Western blotting
Gastrocnemius muscles of WT and hSOD1G93A mice were

lysed in buffer (as above). Samples were resolved by SDS-PAGE
and transferred to nitrocellulose membranes. Membranes for
IGF-I receptor � (IGF-IR�) and IGF-I receptor � (IGF-IR�) were
blocked in 5% skim milk-0.1% Tris-buffered saline-Tween 20
(TBS-T). Membranes for GH-R were blocked in 2.5% BSA-
TBS-T. Membranes were incubated overnight with anti-IGF-IR�

(1:150 in 2.5% skim milk-TBS-T; sc-712; Santa-Cruz), anti-IGF-
IR� (1:100 in 2.5% skim milk-TBS-T; sc-713; Santa-Cruz), or
anti-GH-R (1:1 000 in 1.25% BSA-TBS-T; G8919; Sigma) and
detected with donkey antirabbit IgG HRP (1:10 000 in 2.5%
skim-milk-TBS-T; NA934; Amersham) or rabbit antigoat IgG
HRP (1:20 000 in 1.25% BSA-TBS-T; 81-1620; Invitrogen).
Blotswere strippedandreprobedwithanti-GAPDH(1:15 000 in
2.5% skim-milk-TBS-T; MAB374; Millipore) and detected with
sheep antimouse IgG HRP (1:10 000 in 2.5% skim-milk-TBS-T;
NA931; Amersham) to verify equal loading of protein. Densi-
tometric analyses of immunoreactive bands were carried out as
described previously (22, 31).

Histology for motor neuron counts
Processing and quantification of motor neuron numbers in

WT and hSOD1G93A mice were conducted as described previ-
ously (22, 29). Serial transverse cryosections (16 �m) were
stained with 0.1% thionin in acetate buffer (pH 3.9) to identify
crural flexor motor neurons in the mouse lumbar spinal cord

(L4-L5). Spinal cords were imaged using an Aperio ScanScope
XT (Aperio) at �20 magnification.

Skeletal muscle whole-mount immunofluorescence
Whole-mount immunofluorescence and analysis of NMJ in-

nervation were conducted in the gastrocnemius of WT and
hSOD1G93A mice (22, 29). Alexa 555-�-bungarotoxin was used
to localize AChRs (B35451; Invitrogen). A cocktail of antisyn-
aptophysin (18-0130; Invitrogen) and antineurofilament (N4142;
Sigma) was used to detect the presynaptic nerve terminal and
axonal branches. Antisynaptophysin and antineurofilament
were detected with an Alexa 488 goat antirabbit secondary
antibody (A-11034; Invitrogen). Whole-mount muscles were
imaged with a Zeiss LSM Meta 510 upright confocal micro-
scope using a Plan-Apochromat �40 oil objective (NA � 1.3;
Carl Zeiss Inc).

Data and statistical analysis
The kinetics and secretory patterns of pulsatile GH secretion

were determined by deconvolution analysis following parame-
ters established previously (22, 32, 33). Approximate entropy of
pulsatile GH secretion is considered to be regular when the P
value is at .35 or below, and progressively less regular as the P
value approaches 1. Correlation analyses were determined by
linear regression and a Spearman correlation coefficient using
GraphPad Prism 6.0c (GraphPad Inc). Differences between
groups were limited to age-matched controls, and significant
differences were identified by unpaired two-tailed Student’s t test
using GraphPad Prism 6.0c (GraphPad Inc). Data are presented
as mean � SEM. The threshold level for statistical significance
was set at P � .05.

Results

Experiment 1: Disease progression specific changes
in the GH/IGF-I axis in ALS in hSOD1G93A mice

Motor neuron numbers and neuromuscular
innervation are reduced in hSOD1G93A mice at the
onset stage of disease

ALS is characterized by the irreversible loss of upper
(cortical) and lower motor neurons (2, 34, 35). The loss
of motor neurons is reflected by a loss in motor unit
number throughout the course of disease (29, 36, 37).
This is accompanied by the progressive loss of innerva-
tion of NMJs in skeletal muscle (29), and compensatory
axonal sprouting leading to reinnervation (27). We pre-
viously described a significant loss of crural flexor mo-
tor neurons and NMJ innervation in hSOD1G93A mice at
the latter stages of disease (22). To confirm histopatho-
logical changes in hSOD1G93A mice, we quantified crural
flexor motor neurons and NMJ innervation in pre-
symptomatic hSOD1G93A mice that had no signs of dis-
ease, and in hSOD1G93A mice that had just developed hind
limb weakness (Onset). These distinct disease stages have
been characterized previously (29) and provide histolog-
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ical criteria for accurate assessment of disease progression.
When compared with age-matched WT controls, pres-
ymptomatic hSOD1G93A mice had a modest yet significant
reduction in the number of crural flexor motor neurons

(Figure 1, A–C), whereas neuromus-
cular innervation was unchanged
(Figure 1, D–F), indicative of com-
pensatory reinnervation. At the on-
set stage of disease, hSOD1G93A mice
displayed a significant decrease in
crural flexor motor neuron number
(Figure 1, G–I) and NMJ innervation
of the muscle (Figure 1, J–L). Our
data are congruent with previous ob-
servations of the progressive loss of
motor neurons and loss of NMJ in-
nervation in hSOD1G93A mice (28,
29) and in ALS patients (38–40).

Pulsatile GH secretion is altered
throughout disease progression
in hSOD1G93A mice

Having established that GH defi-
ciency in human ALS (19, 20) is sim-
ilar to that in end-stage hSOD1G93A

mice (22), we aimed to investigate
the possible role of altered GH secre-
tion in disease pathogenesis. We as-
sessed pulsatile GH secretion in
hSOD1G93A mice at ages that reflect
the presymptomatic, onset, and end
stage of disease. Measures of pulsa-
tile GH secretion in hSOD1G93A

mice were compared with that of
age-matched WT controls. At all
ages, pulsatile GH secretion was
characterized by peak periods of GH
secretion, flanked by periods of low
basal secretion (Figure 2). Deconvo-
lution analysis of GH secretion
profiles between presymptomatic
hSOD1G93A animals and WT age-
matched controls confirmed no
differences in any parameters of pul-
satile GH secretion (Table 1, Pre-
symptomatic age). We observed sig-
nificantly elevated total, pulsatile,
and the mass per pulse (MPP) of GH
secretion in hSOD1G93A mice at dis-
ease onset when compared with WT
age-matched controls (Table 1, On-
set age). As demonstrated previously
(22), we observed a significant re-

duction in total and pulsatile GH secretion, and the MPP
of GH secretion in end-stage hSOD1G93A mice when com-
pared with WT age-matched controls (Table 1, End-stage

Figure 1. Histopathological assessment of disease progression in hSOD1G93A mice by
quantification of crural flexor motor neuron number (A–C and G–I) and NMJ innervation of the
gastrocnemii (D–F and J–L) of hSOD1G93A mice at an age prior to the development of overt
symptoms (Presymptomatic age, 30–36 d old; A–F), and at an age associated with the onset of
hind limb weakness (Onset age, 63 to 75 d old; G–L). Compared with age-matched WT controls,
presymptomatic hSOD1G93A mice had a modest yet significant reduction in the number of crural
flexor motor neurons (A–C, black arrows), whereas NMJ innervation remained unchanged (D–F).
At the onset stage of disease, hSOD1G93A mice displayed a significant decrease in crural flexor
motor neuron number (G–I, black arrows) and NMJ innervation (J–L, white arrows). NMJ
innervation was assessed by the proportion of coexpression of AChR plaques (red signal) with
neurofilament (NF) and synaptophysin (SNP) -positive nerve axons and terminals (green signal).
Insets of A, B, G, and H illustrate a magnified view of the spinal cord region of interest (area
containing the crural flexor motor neuron pool). Scale bar (A, B, G, and H), 250 �m and 100 �m
for insets. Scale bar (D, E, J, and K), 100 �m. Values are expressed as mean � SEM. P � .05 was
accepted as significant; n � 5–6/group.
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age). Our observations thus reveal normal endogenous
release of GH in presymptomatic hSOD1G93A mice (re-
gardless of the initial loss of motor neurons, Figure 1),
elevated endogenous pulsatile GH secretion at the time of
disease symptom onset when there is a significant loss of
NMJ innervation of skeletal muscle (Figure 1), and the
reduction in endogenous pulsatile GH secretion at the lat-
ter stage of disease progression.

Altered pulsatile GH secretion at
disease onset in hSOD1G93A mice
coincides with altered Ghrh mRNA
expression

In response to GH feedback, SRIF
and GHRH inhibit and stimulate
GH release, respectively (41). As-
sessment of Srif and Ghrh mRNA ex-
pression within the hypothalamus of
hSOD1G93A and WT animals at an
age reflecting the onset of disease
demonstrates no significant altera-
tions in hypothalamic feedback that
may account for increased GH re-
lease at this time. Rather, we ob-
served a significant decline in Ghrh
mRNA expression, whereas Srif
mRNA expression remained un-
changed (Figure 3, A and B). The
decline in Ghrh mRNA, and presum-
ably the eventual reduction in
GHRH-induced GH production,
may contribute to the observed re-
duction in pituitary GH content at
the latter stage of disease progression
(Figure 3C). Although speculative,
data suggest that the factors ac-
counting for enhanced GH release at
disease onset do not act at the level of
the hypothalamus.

Altered pulsatile GH secretion is
not associated with changes in
expression of skeletal muscle
GH-R

GH exerts its anabolic effects di-
rectly at the level of skeletal muscle
by signaling through the GH-R (42,
43). The irreversible loss of motor
neurons in hSOD1G93A mice through-
out disease (28) occurs in parallel
with pathological changes in skeletal
muscle, including muscle atrophy
(44, 45) and loss of NMJ innervation
(29, 45). Thus, we asked whether al-

tered GH secretion at the time of skeletal muscle dener-
vation might result in altered GH-R expression in skeletal
muscle as a means to compensate for muscle pathology.
We determined the expression of Gh-r mRNA and GH-R
protein in skeletal muscle of WT and hSOD1G93A mice at
ages that corresponded to presymptomatic, onset, and end
stage of disease. Compared with age-matched WT con-

Figure 2. Pulsatile GH secretion in age-matched WT (open circles) mice, and in hSOD1G93A

mice (SOD, shaded circles) at ages corresponding to the presymptomatic (A; Presymptomatic
age, 30 –36 d old), onset (B; Onset age, 63 to 75 d old), and end stage (C; End-stage age;
150 –175 d) of disease progression. Graphs illustrate representative examples from a single
animal (left column) and resulting output figures demonstrating GH secretion rate (right
column). Samples were collected for 6 hours at 10-minute intervals starting at 0700 hours. A
regular periodicity of pulsatile GH secretion was characterized by peak secretion periods
dispersed between stable low baseline secretion periods. Pulsatile GH secretion in SOD mice
remained unchanged prior to disease onset (A), was elevated at disease onset (B), and was
reduced at disease end stage (C) (data summarized in Table 1). The onset of pulses, as
identified by deconvolution analysis, is illustrated along the x-axis of the output figures
(black arrows).
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trols, we observed no significant changes in protein (Fig-
ure 4, A and B) or gene (Figure 4C) expression of GH-R in
hSOD1G93A mice throughout disease. Observations sug-
gest that, despite altered pulsatile GH secretion profiles,

the capacity for GH to act on skeletal muscle in
hSOD1G93A mice is not altered.

Disease progression–specific changes in GH secretion
in hSOD1G93A mice occur alongside an alteration in
muscle specific but not circulating levels of IGF-I

The consequences of altered GH secretion throughout
disease may be reflected by changes in IGF-I or IGF-IR
expression. Although the actions of IGF-I are widespread
(46–50), circulating IGF-I may inhibit GH production by
negative feedback to the hypothalamus and anterior pi-
tuitary gland (48). Moreover, peak levels of GH are pos-
itively correlated to the production and release of IGF-I
(51, 52). We have previously shown that diminished pul-
satile GH secretion in hSOD1G93A mice at the latter stages
of disease occurs alongside a reduction in circulating levels
of IGF-I, normal skeletal muscle IGF-I, and a decrease in
the expression of muscle-specific IGF-IR� (22). Thus, we
sought to determine circulating levels of IGF-I, and skel-
etal muscle expression of IGF-I, IGF-IR�, and IGF-IR�

protein in hSOD1G93A mice at the presymptomatic and
onset stages of disease. We found no difference in the ex-
pression of circulating IGF-I (Figure 5A), and skeletal
muscle IGF-I (Figure 5B), IGF-IR� (Figure 5, C and D),
and IGF-IR� (Figure 5, E and F) protein in presymptom-
atic hSOD1G93A mice when compared with WT age-
matched controls. Similarly, we observed no significant
change in the expression of circulating levels of IGF-I (Fig-
ure 5A), IGF-IR� (Figure 5, C and D), or IGF-IR� (Figure
5, E and F) protein in skeletal muscle of hSOD1G93A mice

Table 1. Deconvolution Analysis Parameters of Pulsatile GH Secretion From Age-Matched Wild Type Controls and
hSOD1G93A Mice at an Age Prior to the Development of Disease Symptoms (Presymptomatic), at an Age Corresponding to the
Appearance of Disease Symptoms (Onset), and at an Age Corresponding to Severe Disease Symptoms (End Stage)

WT (n � 8) SOD (n � 6) P Value

Presymptomatic (30–36 d old)
Total GH secretion, ng/mL/6 h 895 � 116 1192 � 324 .35
Pulsatile GH secretion rate, ng/mL/6 h 802 � 92.0 1091 � 292 .31
Mass of GH secreted/pulse (MPP), ng/mL 184 � 42.8 231 � 84.2 .60
Basal GH secretion rate, ng/mL/6 h 93.0 � 32.8 99.4 � 48.0 .91
Number of pulses/6 h 5.13 � 0.58 5.88 � 0.60 .42

Onset (63–75 d old)
Total GH secretion, ng/mL/6 h 494 � 52.0 1308 � 301 .01a

Pulsatile GH secretion rate, ng/mL/6 h 451 � 50.6 1214 � 300 .01a

Mass of GH secreted/pulse (MPP), ng/mL 121 � 18.1 424 � 146 .04a

Basal GH secretion rate, ng/mL/6 h 43.1 � 10.7 94.3 � 41.3 .20
Number of pulses/6 h 3.88 � 0.30 3.50 � 0.56 .54

End stage (150–175 d old)
Total GH secretion, ng/mL/6 h 583 � 78.5 313 � 32.8 .02a

Pulsatile GH secretion rate, ng/mL/6 h 526 � 62.4 248 � 44.6 �.01a

Mass of GH secreted/pulse (MPP), ng/mL 189 � 32.1 70.4 � 16.0 �.01a

Basal GH secretion rate, ng/mL/6 h 56.3 � 19.5 65.4 � 22.6 .77
Number of pulses/6 h 3.38 � 0.38 3.83 � 0.54 .49

Samples were collected at 10-minute intervals between 0700 h and 1300 h. Data are presented as mean � SEM.
a P � .05 was considered significant.

Figure 3. Hypothalamic Srif (A) and Ghrh (B) mRNA expression in age-
matched WT and hSOD1G93A (SOD) mice at disease onset (63 to 75 d old),
and pituitary GH content (C) in WT and SOD mice at ages corresponding to
the presymptomatic (PS, 30–36 d old), onset (OS, 63 to 75 d old), and end
stage (ES; 150–175 d) ages of disease progression. No change in the
expression of hypothalamic Srif mRNA was observed, whereas Ghrh mRNA
expression declined significantly relative to age-matched WT controls. Pituitary
GH content remained unchanged at disease onset; however, it declined
significantly toward the latter stage of disease progression. Values are
expressed as mean � SEM. A value of P � .05 was accepted as significant;
n � 6/group.
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at the onset of disease. By contrast, the expression of mus-
cle IGF-I protein in hSOD1G93A mice was significantly
higher at the onset stage of disease when compared with
WT age-matched controls (Figure 5B).

Experiment 2: GH secretion in hSOD1G93A mice at
the onset of disease correlates with reduced NMJ
denervation but not motor neuron survival

When compared with age-matched controls, an ele-
vation in GH secretion was observed in hSOD1G93A

mice at the disease stage corresponding to the loss of
motor neurons and reduced NMJ innervation (On-
set; experiment 1). Thus, using a second cohort of
hSOD1G93A mice at the onset of disease symptoms, we
next assessed the relationship between GH secretion
and these histological hallmarks of disease. For each
individual hSOD1G93A animal, GH secretion profiles
were correlated with the percentage of NMJ innervation

and crural flexor motor neuron number from their gas-
trocnemius muscle and spinal cord.

In accordance with experiment 1, total, pulsatile, and
MPP of GH secretion in hSOD1G93A mice were elevated
at the onset stage of disease when compared with age-
matched WT mice (Table 2). Similarly, when compared
with age-matched WT controls, we observed a decrease
in the percentage of neuromuscular innervation and
crural flexor motor neuron number. In hSOD1G93A

mice, Spearman correlation coefficient revealed that to-
tal and pulsatile GH secretion, and the MPP of GH
secretion were positively correlated with the percentage
of innervated NMJs; animals with higher levels of GH
had less denervation. Crural flexor motor neuron num-
ber did not correlate with any of the parameters of pul-
satile GH secretion. Representative examples of com-
parisons between total and pulsatile GH secretion, and
the MPP of GH secretion relative to percentage NMJ
innervation (Figure 6, A–C) and motor neuron count
(Figure 6, D–F) are illustrated in Figure 6. All correla-
tions are presented in Table 3.

Figure 4. GH-R protein (A and B) and gene (C) expression in age-
matched WT and hSOD1G93A (SOD) mice at ages corresponding to the
presymptomatic (PS, 30–36 d old), onset (OS, 63 to 75 d old), and end
stage (ES; 150–175 d) ages of disease progression. No change in the
expression of muscle GH-R was observed in SOD mice throughout
disease. For protein expression, assessment was limited to the band
corresponding to 71 kDa (A). The GH-R band was normalized to the
GAPDH band. Given appearance of multiple protein bands, the lack of
change in GH-R expression was confirmed by quantitative PCR for Gh-r
mRNA (C). Values are expressed as mean � SEM. A value of P � .05
was accepted as significant; n � 6/group.

Figure 5. Circulating IGF-I (A), muscle-specific IGF-I (B), and muscle-
specific IGF-IR� (C and D) and IGF-IR� (E and F) expression in age-
matched WT and hSOD1G93A (SOD) mice at ages corresponding to the
presymptomatic (PS, 30–36 d old) and onset (OS, 63 to 75 d old) stage
of disease progression. No change in circulating IGF-I (A) or muscle-
specific IGF-IR� and IGF-IR� (C to F) expression was observed in PS or
OS SOD mice. We observed a significant increase in muscle-specific
IGF-I in SOD mice at an age corresponding to the OS of disease (B). For
IGF-IR� (C) and IGF-IR� (E), the IGF-IR band was normalized to the
GAPDH band. Values are expressed as mean � SEM. A value of P �
.05 was accepted as significant; n � 6/group.
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Discussion

ALS is a neurodegenerative disease, characterized by the
irreversible death of upper (cortical) and lower motor neu-
rons (1, 2). Although predominantly considered a neuro-
logical disorder, the dysregulation of multiple metabolic
processes is thought to contribute to the rate of disease
progression (14, 53). GH deficiency is observed in human
ALS patients and mouse models of ALS (19, 22). However,
the contribution of altered GH secretion to disease patho-
genesis remains unknown. This is of particular interest,
given that IGF-I-directed interventions prolong survival in
a mouse model of ALS (54–56), whereas GH/IGF-I ther-
apies were of no benefit in slowing disease progression in
human ALS (21, 23–26). The discrepancy between these
studies may occur as a consequence of species-specific dif-
ferences in disease progression. Alternatively, disease
stage-specific or tissue-specific interventions may have ac-
counted for improved outcome in ALS mice. For example,
effective IGF-I intervention in hSOD1G93A mice occurred

prior to the onset of disease pathology (55), or via admin-
istration of IGF-I to the central nervous system (57). To
explain the striking differences in treatment outcomes be-
tween human trials and animal studies, it is essential that
we understand the physiological changes in the GH/IGF-I
axis throughout disease progression. Moreover, given that
the existing treatment for ALS is largely ineffective, and
that no cure currently exists for ALS, identification of key
factors that modify the course of disease is of critical
importance.

In this study, we first investigated the GH/IGF-I system
in the hSOD1G93A mouse at various stages of ALS disease
progression. hSOD1G93A mice showed alterations in GH
secretion as disease symptoms and severity progressed.
Relative to age-matched WT controls, we observed equiv-
alent levels of GH secretion at an age reflecting the pre-
symptomatic stage of disease, elevated GH secretion at the
onset of disease symptoms, and GH deficiency at the latter
stage of disease. When compared with age-matched con-

Table 2. Histopathological Data (Crural Flexor Motor Neuron Number and Percentage NMJ Innervation),
Deconvolution Analysis Parameters and Approximate Entropy Analysis Parameters of Pulsatile GH Secretion From
C57BI/6J and/or hSOD1G93A Mice at an Age Corresponding to the Appearance of Disease Symptoms (Onset, 63 to
75 days of age)

WT SOD P Value

Histopathological Data
Motor neuron count 75.0 � 5.18 (n � 6) 46.4 � 5.19 (n � 12–16) �.01a

% NMJ innervation 96.9 � 1.14 (n � 6) 88.5 � 3.21 (n � 12–16) .03a

Measures of pulsatile GH release
Total GH secretion, ng/mL/6 h 514 � 73.8 (n � 6) 925 � 146 (n � 16) .01a

Pulsatile GH secretion rate, ng/mL/6 h 461 � 64.7 (n � 6) 803 � 144 (n � 16) .04a

Mass of GH secreted/pulse (MPP), ng/mL 107 � 12.2 (n � 6) 184 � 29.2 (n � 16) .04a

Basal GH secretion rate, ng/mL/6 h 52.6 � 14.0 (n � 6) 105 � 19.4 (n � 16) .03a

Number of pulses/6 h 4.38 � 0.32 (n � 6) 4.67 � 0.38 (n � 16) .57
Approximate entropy (1,0.35) 0.51 � 0.05 (n � 6) 0.45 � 0.04 (n � 16) .34

For GH, samples were collected at 10-minute intervals between 0700 h and 1300 h. Data are presented as mean � SEM.
a P � .05 was considered significant.

Table 3. Spearman Correlation Analysis of Deconvolution Parameters of Pulsatile GH Secretion With Percentage
NMJ Innervation of the Gastrocnemius, and Crural Flexor Motor Neuron Number From C57BI/6J and/or hSOD1G93A

Mice at an Age Corresponding to the Appearance of Disease Symptoms (Onset, 63 to 75 days of age).

% NMJ Innervation
(n � 16)

Motor Neuron
Number (n � 12)

r P Value r P Value

Spearman Correlation Analysis
Total GH secretion, ng/mL/6 h 0.64 �.01a �0.05 .44
Pulsatile GH secretion rate, ng/mL/6 h 0.69 �.01a �0.06 .42
Mass of GH secreted/burst (MPP), ng/mL 0.82 �.01a �0.23 .23
Basal GH secretion rate, ng/mL/6 h 0.09 .38 �0.20 .26
Number of pulses/6 h �0.39 .06 �0.47 .06
Approximate entropy (1,0.35) �0.31 .12 �0.25 .21

For GH, samples were collected at 10-minute intervals between 0700 h and 1300 h. Data are presented as mean � SEM.
a P � .05 was considered significant.
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trols, normal levels of circulating and muscle IGF-I, and
muscle GH-R and IGF-IR (� and � subunit) protein, ac-
companied normal pulsatile GH secretion in hSOD1G93A

mice at the presymptomatic stage of disease. When com-
pared with age-matched WT controls, hSOD1G93A mice at
disease onset had higher levels of pulsatile GH and muscle
IGF-I protein expression, but normal circulating levels of
IGF-I, and skeletal muscle GH-R and IGF-IR (� and �

subtype) protein expression. By the end stage of disease in
hSOD1G93A mice, and despite GH deficiency, there was no
change in skeletal muscle GH-R protein expression. We
have previously shown that GH-deficient hSOD1G93A

mice at the end stage of disease have decreased circulating
IGF-I, normal muscle IGF-I, and decreased skeletal muscle
IGF-IR� (22). After characterizing GH secretion relative
to disease progression, we assessed the relationship be-
tween GH secretion and histological hallmarks of disease
in individual hSOD1G93A mice at the onset of symptoms.
Parameters of pulsatile GH secretion were positively cor-

related with the percentage of NMJ innervation (suggest-
ing reinnervation has occurred to compensate for dener-
vation) in skeletal muscle, but not with crural flexor motor
neuron number. Taken together, our observations suggest
that altered GH secretion and muscle IGF-I expression
may reflect an endogenous endocrine response that serves
to counteract the denervation that occurs in ALS, as it is
known that IGF-I promotes axonal sprouting (58).

Although GH modulates the size and density of cortical
neurons during development (59), it does not regulate the
survival of motor neurons that innervate the hind limb
(60). Thus, it is unlikely that GH alone would attenuate
neuronal death in ALS. In line with this, GH therapy in
ALS patients does not slow disease progression (21, 25),
nor did we observe alterations in GH release relative to
motor neuron death. When compared with age-matched
WT controls, presymptomatic hSOD1G93A mice had re-
duced crural flexor motor neuron numbers, whereas the
secretion of GH did not change. Moreover, given that
parameters of pulsatile GH secretion did not correlate
with crural flexor motor neuron number in hSOD1G93A

mice at the onset of disease, we conclude that altered GH
release does not specifically occur as a consequence of
motor neuron loss. If not neuronal death, does muscle
pathology in ALS contribute to altered GH release?

If changes in GH/IGF-I were a consequence of muscle
pathology, it may be expected that the first observable
differences in GH/IGF-I would occur when the loss of
NMJs first manifest. In this instance, we demonstrate al-
tered GH release alongside NMJ denervation. As docu-
mented (29, 61), NMJ denervation in hSOD1G93A mice
occurs at symptom onset, or at a slightly earlier age (29,
61). The delay between motor neuron loss and the loss of
NMJ innervation is thought to occur in response to early
compensatory adaptive collateral sprouting of motor ax-
ons, which promotes the reinnervation of denervated mus-
cle (27). Once adaptive sprouting reaches a critical thresh-
old, maladaptive sprouting results in an inability to
compensate for further neuromuscular denervation (27),
resulting in the loss of innervation. Not surprisingly, mus-
cle weakness and atrophy in ALS are attributed to this
significant loss of neuromuscular innervation (39). Thus,
it is plausible that on the loss of a critical number of NMJs
(29), the GH/IGF-I axis may compensate by promoting
muscle mass and hypertrophy (17, 62), and by attempting
to drive axonal sprouting further to preserve remaining
muscle function (46, 47). Alternatively, activation of the
GH/IGF-I axis may occur much earlier and may precede
sprouting. Of interest, GH secretion in WT animals de-
clined between 5 to 10 weeks of age, whereas this age-
associated decline in GH secretion was not observed in
hSOD1G93A mice between the presymptomatic and onset

Figure 6. Representative examples of total (A and D), pulsatile (B and
E), and mean mass per GH pulse (MPP; C and F) of GH secretion
correlated to the percentage of innervated neuromuscular junctions
(% NMJ Innervation) in gastrocnemii (A–C) and crural flexor motor
neuron number (Motor Neuron Count) in L4–L5 of the lateral motor
column (D–F) of respective hSOD1G93A mice. Spearman correlation
analysis was performed to assess the relationship between measures of
pulsatile GH secretion following deconvolution analysis and percentage
NMJ innervation and motor neuron count. Data for all parameters are
summarized in Table 2 and 3. For %NMJ innervation, n � 16. For
motor neuron count, n � 12.
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stages of disease. This observation is reflected by the main-
tenance of muscle IGF-I expression in hSOD1G93A mice at
the onset stage of disease. Thus, whether the altered GH/
IGF-I profile in hSOD1G93A mice observed at the onset of
disease results from GH hypersecretion or is a reflection of
the prevention of the age-associated decline GH secretion
remains to be determined. Future studies that define the
parameters of GH secretion in hSOD1G93A mice between
the presymptomatic and onset stages of disease will pro-
vide insight into the mechanisms that underlie this unique
GH/IGF-I profile. More importantly, these observations
may provide key insights to couple GH release and com-
pensatory adaptive collateral sprouting of motor axons in
ALS.

We observe no difference in the expression of circulat-
ing IGF-I between hSOD1G93A mice and age-matched WT
controls at ages that corresponded to the presymptomatic
and onset stage of disease. This is consistent with reports
in human ALS, which describe equivalent levels of IGF-I
between ALS patients and controls in the absence of con-
firmedGHdeficiency (21).Theseobservations, takenwith
our previous reports of reduced circulating IGF-I in GH-
deficient hSOD1G93A mice at the end stage of disease (22),
and a trend toward lower IGF-I in GH-deficient ALS pa-
tients (19), suggest that circulating IGF-I may not act as a
neuroprotective factor in ALS. Conversely, GH drives tis-
sue-specific production of IGF-I (48), whereas muscle
IGF-I promotes axonal sprouting (46, 47). Thus, although
GH itself appears to have no neuroprotective role, the
protective capacity of the GH/IGF-I axis may lie in the
early overexpression of tissue-specific IGF-I. Indeed, de-
livery of IGF-I into the spinal cord of animal models of ALS
prolongs survival (57), improves motor function, and at-
tenuates motor neuron loss (63, 64). Similarly, early ret-
rograde delivery of IGF-I via im injection prolongs sur-
vival (56), and embryonic overexpression of IGF-I in
skeletal muscle prevents motor neuron loss in ALS mice
(55). In line with the argument that beneficial effects from
IGF-I specifically require early and tissue-specific treat-
ment, subcutaneous administration of IGF-I in ALS pa-
tients well after the onset of disease symptoms has resulted
in minimal benefit (23, 26).

The mechanisms underlying altered GH release in
symptomatic hSOD1G93A mice remain unknown. In this
regard, a feedback mechanism may exist in ALS, wherein
a muscle-derived factor (produced in response to early
denervation and/or maladaptive sprouting) may modulate
hypothalamic and/or pituitary-mediated GH release. We
observed a reduction in hypothalamic Ghrh mRNA ex-
pression in hSOD1G93A mice at an age reflecting disease
onset. Given established feedback mechanisms whereby
GH suppresses central GHRH-induced GH release (41),

the observed reduction in Ghrh mRNA expression is likely
a consequence of high levels of endogenous GH secretion.
Thus, one may speculate that the GH secretion profile,
specific to disease onset, occurs in response to circulating
factors acting specifically at the level of the anterior pitu-
itary gland. Moreover, prolonged suppression of GHRH
activity may eventuate in an overall reduction in GHRH-
induced GH production and may account for the eventual
depletion of pituitary GH content in hSOD1G93A mice at
the end stage of disease (22). This requires further inves-
tigation. Moreover, the secretion of a muscle-derived
factor that influences the amplitude of GH release in ALS,
through central or peripheral mechanisms, presents an in-
teresting avenue for further assessment.

This study is the first to investigate the GH/IGF-I axis
throughout disease progression in ALS mice. Alterations
in circulating and muscle IGF-I in hSOD1G93A mice are
reflective of the endogenous GH profile. The positive cor-
relation between circulating levels of GH and neuromus-
cular innervation (ie, reduced denervation) in hSOD1G93A

mice at the onset of disease imply that primary changes to
the GH/IGF-I axis are a physiological response to com-
pensate for, and potentially to minimize the morbidity of,
disease at the earlier stages of the disease process (when
muscle pathology is less severe). Subsequent GH defi-
ciency and decreased circulating IGF-I (22) may result
from the ongoing disease process, when severe histological
pathology inherent to ALS (inexorable motor neuron loss
and coincident muscle weakness and atrophy due to an
inability to maintain collateral sprouting of axons) are
prominent. Current measures provide insight into the role
of the endogenous GH/IGF-I response in disease progres-
sion in ALS. Despite the benefits of IGF-I treatment in ALS
mice (54–56), the inability for elevated and/or sustained
levels of endogenous GH and muscle IGF-I to attenuate
motor neuron loss and neuromuscular denervation in
hSOD1G93A mice throughout disease is not supportive of
a neuroprotective role of endogenous GH/IGF-I in ALS.
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