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Abstract: This paper presents a maximum likelihood method for estimating growth

parameters for an aquatic species that incorporates growth covariates, and takes into

consideration multiple tag-recapture data. Individual variability in asymptotic length,

age-at-tagging, and measurement error are also considered in the model structure. Using

distribution theory, the log-likelihood function is derived under a generalised framework for

the von Bertalanffy and Gompertz growth models. Due to the generality of the derivation,

covariate effects can be included for both models with seasonality and tagging effects

investigated. Method robustness is established via comparison with the Fabens, improved

Fabens, James and a non-linear mixed-effects growth models, with the maximum likelihood

method performing the best. The method is illustrated further with an application to

blacklip abalone (Haliotis rubra) for which a strong growth-retarding tagging effect that

persisted3 for several months was detected.

Key Words: Aquatic species growth; Von Bertalanffy model; Gompertz model; Maximum

likelihood method; Multiple tag-recapture data; Tagging effect
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1. Introduction

Knowledge of how an aquatic species grows is fundamental to the stock assessment pro-

cess. Growth, like other processes, is individual in nature and depends on many covariates

such as seasonality, food availability, sex and many others. Growth models such as von

Bertalanffy are often used to describe the mean growth of the population, however the

growth process can be better understood by incorporating individuality and covariates into

the model.

One of the difficulties with growth modelling is that the direct ageing of an aquatic

species is often not possible. To solve this problem, fisheries rely on tag-recapture data to

estimate the unknown parameters of a hypothesised representative model; for instance, the

von Bertalanffy model with parameters (k, µ∞). Determining adequate estimates of growth

parameters can be a complex problem when individual variability is considered (???). Many

methods have been developed to account for the complexity of individual variability. ?

provided a method for estimating the von Bertalanffy growth parameters via estimating

functions that are unbiased and asymptotic. ? developed a maximum likelihood method

(ML method) that accounted for individual variability in L∞ and the age at tagging using

distribution theory. ? extended this idea by developing a flexible ML method for general

growth curves with less restrictive assumptions, but again only for single-recapture data.

For many aquatic species multiple recapture data can be acquired. Solving for the growth

parameters of a particular growth model (such as the von Bertalanffy) using multiple-

recapture data has either not been explored or is not easy to generalise mathematically.

For instance, ? explored multiple recaptures and found that the method for constructing

the estimating functions for more than two recaptures, as well as unequal recaptures, was

not clear. The method of ? requires mathematically the use of a single recapture to derive

the likelihood function and thus is constrained to single-recapture analyses. ? used different

growth functions under a maximum likelihood routine, but only with a single recapture.

Given that many tagging studies often include multiple recaptures, it makes sense to take
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advantage of these extra data. The inclusion of multiple recaptures should in theory improve

growth estimates, because it allows for a better characterisation of each individuals growth

trajectory by giving a greater number of growth snapshots; which is particularly important

when individual variability is being modelled. More recaptures allow covariates such as

seasonal growth to be modelled better because we have information across more seasons.

This paper derives a ML method to estimate growth parameters for general curves from

simulated multiple recapture data; then applies it to a study of blacklip abalone (Haliotis

rubra). The method rests on the ideas of distribution theory and requires the numerical

integration of the joint distribution function for each individual. Individual variability in

L∞ and age at capture are taken into consideration, and given that the method is based

on distribution theory the method should be asymptotically unbiased. To introduce other

covariates into the growth model, a generalised von Bertalanffy growth model framework is

used (?). The Gompertz model is also used and covariates are introduced via a modification

of the model presented in ?. These frameworks allow for the incorporation of explanatory

variables such as seasonality into the growth model.

For abalone it has been conjectured that juvenile abalone do not follow a von Bertalanffy

growth model (???). There are many potential solutions to this problem; for instance, to

model the juvenile component with a separate (linear) model, exclude the data that do

not follow a von Bertalanffy curve, or use a different growth model. To keep the model

continuous the latter two approaches are investigated here, with the Gompertz model used

as an alternative. The Gompertz model has some precedence in the literature when modelling

growth of blacklip abalone, and data analysis also suggests it is a reasonable choice (??). For

Haliotis rubra both ?, and ? established that growth for juvenile abalone (those < 80 mm)

is best described by using a linear model. ? also established that once adulthood is reached

then the von Bertalanffy curve models growth well. The straight-line growth observed for the

smaller size classes of abalone has been observed or hypothesised for haliotids in a number

of other studies such as ?, ?, and ?. However, ? observed early growth of haliotids to be
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non-linear.

Covariates can be included into the growth model to account for their effects. ? concluded

that for long-lived fish the von Bertalanffy model adjusted for seasonal growth is preferable

to the logistic or Gompertz models. It has been shown that for juvenile blacklip abalone

there is a strong seasonal effect, and its inclusion improved the model fit for juvenile blacklip

abalone (?). It is also conjectured that blacklip abalone from the Tasmanian (Australia)

fishery could experience periods of no growth in the winter months. The generalised von

Bertalanffy growth model will be modified to account for the potential no-growth period of

blacklip abalone.

It is hypothesised that the tagging process has an effect on the growth of blacklip abalone.

? remarked that the most practical way to account for the effect of tagging is to quantify

tagging effects concurrently with growth parameters. ? used the generalised von Bertalanffy

model framework to quantify the time taken to recover from tagging using a link function.

The function represents a recuperation curve, and models a smooth transition to normal

growth rather than the step-like function of ?. If tagging leads to a period of suboptimal

growth for blacklip abalone then the growth estimates are likely to be biased if this is not

taken into consideration. We will investigate growth recovery after tagging of a population

of blacklip abalone using the ML method under both the von Bertalanffy and Gompertz

models. The principal aim of this paper is to present a ML method that uses multiple

recaptures to model the effects of covariates (such as tagging) on growth for general growth

curves.

2. Materials and methods

2.1. Data

To illustrate the method, multiple tag-recapture data from blacklip abalone were anal-

ysed. The tag-recapture data set for blacklip abalone, Haliotis rubra, was gathered from a

shallow study site at George III Rock, in southern Tasmania, Australia. The mark-recapture
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study included more than 1400 individuals with recapture frequency ranging from 1 to 5.

Letting L1 to L6 be the lengths of individuals at each recapture, and T be the time at lib-

erty, the data are summarised in Table ??. The data appeared to exhibit significant negative

growth; therefore, a cutoff of -10 mm was chosen to be reasonable to retain a sufficient error

structure; all those less than this cutoff were removed from the data. The method models

measurement error and thus the inclusion of significant negative growth will not lead to

biased results. Only 0.5% of the data exhibited negative growth less than -4 mm and thus

these data do not dominate. Capture times were also summarised to determine if seasonality

could be accurately modelled. Over the ten years that the data were gathered there appears

to be a sufficient distribution of times to attempt to model seasonality.

? established that for Tasmanian blacklip abalone the inverse logistic model best de-

scribed growth for all age classes (adult > 80 mm and juveniles < 80 mm). Between 60

mm and 80 mm the data suggest that abalone begin to follow a von Bertalanffy growth

curve (Fig. ??). From other studies (e.g., ?) it is hypothesised that blacklip abalone are

particularly susceptible to the process of tagging, and that there will be a retardative effect

of tagging on growth; and that the effect will be most present for those animals with short

times at liberty, expressed as smaller growth rates. Those that have been at liberty longer

will have had the chance to recover to normal growth. To investigate this, abalone with

recapture intervals less than 4 months were compared with those at liberty for greater than

1.5 years at liberty.

(Table ??, and Figure ?? NEAR HERE)

3. Multiple recapture ML method derivation

3.1. Derivation of the likelihood function

Methods used to estimate growth parameters for aquatic species from tag-recapture data

often only make use of a single recapture. The following derivation aims to develop a ML

method to incorporate multiple recaptures for each individual using distribution theory. For

6



each individual we would like to obtain the distribution

fL(l) = f(l1, l2, . . . , lp),(1)

where lj (j = 1, 2, . . . , p) represents the length at capture j of the i-th (i = 1, 2, . . . , n)

animal. The derivation of the model does not require a particular growth model to be used.

In this paper we will use the generalised von Bertalanffy and Gompertz growth models.

Assuming the general form from ? for the von Bertalanffy growth function, the expected

length at time tj conditional on the asymptote being l∞ is

µj = l0 + (l∞ − l0){1− exp[−z(t0, tj)]},(2)

where

z(t0, t) =

∫ t

t0

g(θ,xu) du.(3)

The function g(θ,xu) represents the link function, which accommodates the effects of ex-

planatory variables on the growth coefficient. The vector θ contains the parameters that

are related to the observed values xu. For example g(θ,xu) could just be the canonical von

Bertalanffy model component −k(t − t0), with k and t0 being the parameters. Suppose t0

is the hypothetical time when the length of the individual is 0, and A = t1 − t0 the relative

age at time t1 is a random variable with realised value a, then l(t0) = l0 = 0 and from (??),

µj = l∞{1− exp[−z(t1 − a, tj)]},(4)

and the associated measured length is

lj = µj + εj,(5)
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where εj represents measurement error and is a random variable with assumed distribution

N(0, σ2
ε). For the Gompertz model we use a length version of the model presented in ? with

an adaptation to fit the likelihood process (see ??). The mean length is

µj = log(l∞){1− exp[−z(t1 − a, tj)]},(6)

and the associated logged measured length is

log[lj(t)] = log(l∞){1− exp[−z(t1 − a, tj)]}+ log(εj).(7)

The Gompertz model here is essentially equivalent to modelling von Bertalanffy on a log

scale where log(ε) is still N(0, σ2
ε). Given these models the proposed likelihood function from

conditional probability and the independence of L∞ and A for all models with l = (l1, . . . , lp)

is

fL(l) =

∫ ∞
−∞

∫ ∞
−∞

hL∞(l∞)gA(a)fL|L∞,A(l|l∞, a) dl∞ da,(8)

where L|L∞, A ∼ multivariate N(µ,Σ) and represents measurement error. Here

Σ = diag[Var(ε1), . . . ,Var(εp)].(9)

The integral is performed for one individual and then the summed log represents the overall

log likelihood. Given the distribution assumptions for the random variables L∞ and A the

difficulty of solving the integral of equation (??) can vary, and rarely can an explicit form for

the integral be found. To evaluate (??) we first assess the distributions that we believe will

model the random variables well. We choose L∞ ∼ N(µ∞, σ
2
∞) and A ∼ Γ(α, β) with l∞ ∈ R

and a ∈ R+. It is noted that any distributions can be chosen for the random variables, but

naturally the choice of distributions must make sense with respect to the variables they
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model. Given the assumed distributions equation (??) is now defined. Eliminating variables

is of interest since we may be able to make use of other numerical techniques if the integral is

over just one variable. Given L∞ ∼ N(µ∞, σ
2
∞) (or log(L∞) ∼ N(µlg∞, σ

2
lg∞) for Gompertz)

the likelihood integral function can be written in terms of the random variable A

f(l) =

∫ ∞
0

g(a)f(l|a) da.(10)

The data L can be expressed under the von Bertalanffy and Gompertz models as an affine

transformation of the random vector (L∞, ε1, ε2, . . . , εp)
T or the logged equivalent for the

Gompertz model. Since each of the random variables in the random vector (L∞, ε1, ε2, . . . , εp)
T

is independent, the resultant covariance matrix is a diagonal matrix of the variance for each

random variable. Using the properties of the affine transformation we can find the distribu-

tion of the random variable L|A, which is independent of the variable L∞. Letting

L =



g1 1 0 0 . . . 0

g2 0 1 0 . . . 0

g3 0 0 1 . . . 0

...

gp 0 0 0 . . . 1





L∞

ε1

ε2
...

εp


, G =



f(t1;A,θ)

f(t1, t2;A,θ)

f(t1, t3;A,θ)

...

f(t1, tp;A,θ)


,

D =



g1 1 0 0 . . . 0

g2 0 1 0 . . . 0

g3 0 0 1 . . . 0

...

gp 0 0 0 . . . 1


, and Σz =



σ2
∞ 0 . . . 0

0 Var(ε1) . . .

0 0 . . . 0

...

0 0 . . . Var(εp)


.
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The resulting distribution does not depend on L∞ or log(L∞), and has the form

L|A ∼ multivariate N(µ∞G,DΣzD
T ),(11)

for the von Bertalanffy model. For the Gompertz model the mean and covariance matrix are

replaced with their log scale equivalents. The above is true because given a set of realised

values from A, the matrix D is a constant matrix for each individual. Now the integral (??)

is over just one variable and can be evaluated with any numerical integration technique for

each individual. This is repeated for all individuals and the sum of the logged integrals forms

the objective function.

3.2. Incorporation of growth effects

3.2.1. Seasonal effect

Using the general form of the above model, explanatory variables for the growth coefficient

can be added into the model. To model seasonal growth for blacklip abalone, an asymmetric

seasonal model as well as the canonical seasonal model is used. The asymmetric model is

hypothesised to be able to model a possible period of no growth better than the canonical

model. Modelling the potential no-growth period is achieved by restraining the growth link

function to a positive range during the integration step of the model derivation.

To account for asymmetry in the growth season, two more parameters for the growth

rate are added to the growth link function

g(θ, t) = k + θ3 cos(2πt) + θ4 sin(2πt) + θ5 cos(4πt) + θ6 sin(4πt).

The canonical seasonal-growth model (?) is the first two components of the above link

function. To ensure that negative growth is not modelled we let

z(t1 − A, tj) =

∫ tj

t1−A
max[g(θ,xu), 0] du.(12)
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The solution for one section of the recursive cycle of the canonical model can be seen in

??. To implement the integral in practice the other complete positive components of the

trigonometric function must be added to obtain the total integral.

3.2.2. Tagging effect

A tagging effect may be of interest if a species is suspected to have a growth rate that is

susceptible to the physical handling of the tagging process. Following ?, the link function to

investigate such an effect is

g(θ, t) = k0 + θ1{1− exp[−θ2(t− t1)]}, t > t1.

However, before t1 we have k = k0 + θ1 and as we are required to integrate from t1 − A we

define the link function to be

g(θ, t) =

 k0 + θ1, t < t1,

k0 + θ1{1− exp[−θ2(t− t1)]}, t > t1,

where t1 is the time at first capture relative to January 1. Here k0 represents the curvature

just after tagging with the true or recovered curvature being equal to k = k0 + θ1 as time

goes to infinity. To make use of this function in the method the integral of the time period

is calculated. Therefore,

z(t1 − A, tj) = z(t1 − A, t1) + z(t1, tj),

z(t1 − A, t1) = kA, and

z(t1, tj) =

∫ tj

t1

g(θ, t) dt

= kT − θ1
θ2
{1− exp[−θ2T ]},
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where T = tj − t1.

3.2.3. Combined model

To avoid possible bias we model the tagging and seasonal effect as a linear combination.

Bias may arise from the fact that if only one of the effects is modelled then there is the

potential for an effect to be found when there is none, arising from the other effect. For

example, if only tagging is modelled there is the potential for the model to find a tagging

effect when in fact the model has found the natural slowing of growth in the winter months.

The link function will therefore be a combination of the canonical seasonal model and the

tagging effect. The link function is

g(θ, t) =

 k0 + θ1 + θ3 cos(2πt) + θ4 sin(2πt), t < t1,

k0 + θ1{1− exp[−θ2(t− t1)]}+ θ3 cos(2πt) + θ4 sin(2πt), t > t1.
(13)

Again we integrate to make use of this function in the method. The integrals are

z(t1 − A, t1) =

∫ t1

t1−A
k + θ3 cos(2πt) + θ4 sin(2πt) dt

= kA+
θ3
2π
{sin(2πt1)− sin[2π(t1 − A)]} − θ4

2π
{cos(2πt1)− cos[2π(t1 − A)]}, and

z(t1, tj) =

∫ tj

t1

k − θ1 exp[−θ2(t− t1)] + θ3 cos(2πt) + θ4 sin(2πt) dt

= kT − θ1
θ2
{1− exp[−θ2(tj − t1)]}+

θ3
2π

[sin(2πtj)− sin(2πt1)]−
θ4
2π

[cos(2πtj)− cos(2πt1)].
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3.3. Computational implementation

Numerical integration is computationally intensive for large data sets. Prospective slow

points in the code, for example, matrix inverse calculation, unnecessary loops and deter-

minants are optimised to improve computational speed. The structure of (??) allows for

analytical representations of the inverse and determinant to be found for the multivariate

normal distribution evaluation. The variance of each of the measurement error terms is

assumed to be the same. Although all measurements in the tag-recapture study were made

by an experienced field team, the assertion that the measurement error terms have equal

variance across each recapture is dubious given the time period the study was made over.

Unequal variances for the measurement error terms is a potential point for further gener-

alisation. However, this assumption greatly improves the speed and implementation of the

code due to the ability to solve for an analytical inverse. To solve for the inverse we notice

that

ΣL|A = DΣzD
T = σ2

εI + σ2
∞GG

T ,

has known form. This is a classical matrix form and its inverse has known solution. The

classical form is

(D + uvT )−1 = D−1 − D−1uvTD−1

1 + vTD−1u
.

Therefore,

ΣL|A = σ2
ε [
σ2
∞
σ2
ε

GGT + I],

(ΣL|A)−1 = σ−2ε [I − σ2
∞GG

T

σ2
ε + σ2

∞G
TG

].
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The determinant of the covariance matrix also has a known form and contributes to compu-

tational efficiency. The known form is

|D + uvT | = |D|(1 +GTD−1G),

which implies that for our matrix

|ΣL|A| = σ2p
ε

(
1 +

σ2
∞
σ2
ε

GTG

)
.

These two mathematical representations simplify the code and increase the speed of compu-

tation greatly.

The incorporation of a non-negative growth seasonal curve adds computational complex-

ity to the method, as one must be able to solve for the roots of the function to perform

the analytical integral (as seen in section ??). This can be done for the yearly cycle, but is

unlikely for the 6 month cycle, as it requires the solving of the roots of a quartic polynomial.

This is very difficult especially with a function of this structure. Therefore, a numerical

integration technique (Simpson’s method) is used during the computation to evaluate the

truncated integral (??). This adds computational complexity, but has the added benefit of

being able to deal with any g(θ, t) link function.

To use numerical integration for the whole likelihood function we state explicitly the
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integral form. The function to integrate is

f(l) =

∫ ∞
0

g(a)f(l|a) da, where

g(a) =
βα

Γ(α)
aα−1 exp(−βa), and

L|A ∼MVN(µ∞G,DΣzD
T), resulting in

f(l|A = a) = (2π)
−k
2 |ΣL|A|−1/2 exp

[
−1

2
(l− µ∞G)TΣL|A

−1(l− µ∞G)

]
, and the final integral

f(l) =

∫ ∞
0

βα

Γ(α)
aα−1 exp(−βa)(2π)

−k
2 |Σl|A|−1/2 exp

[
−1

2
(l− µ∞G)TΣ−1L|A(l− µ∞G)

]
da.

Numerical integration is used to evaluate this integral for each individual and form the log

likelihood function. To integrate over the half infinite region we do the following change of

variable. Let

a =
1− u
u

, and

f(l) =

∫ 1

0

g

(
1− u
u

)
f

(
l|1− u

u

)
1

u2
du.

We can then use the integration method of our choice. Simpson’s method was used as we

found the difference in numerical speed between Gaussian quadrature and Simpson’s method

to be minimal. With these components a numerical integration routine for the multiple

recapture ML method was written in the R programming language (www.r-project.org/).

The integration results form the log likelihood function and then the Akaike Information

Criterion (AIC) (?) can be calculated for each model. Once the parameters for each model

are found one can also back-calculate for the realised relative ages for each individual and the

asymptotic length for each individual. The mathematical approach used is outlined in ??.

Once the realised values are calculated the error structure can be evaluated and the mean

squared error (MSE) and cumulative absolute percent error (CAPE) are used as goodness

of fit measures.
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4. Results

4.1. Simulated data

Simulated data were generated in various forms to test the effectiveness of the proposed

method. For the von Bertalanffy and Gompertz models the following were used: L∞ ∼

N(150, 152) for von Bertalanffy, L∞ ∼ logN(150, 152) for Gompertz, k = 0.5, and the times

at liberty were generated from a Γ(1, 1) distribution. The relative ages were generated from

a Γ(3, 5) distribution. Measurement error was also incorporated by setting σ2
ε equal to 1, 4

and 16, to model different levels of error for the von Bertalanffy model. For the Gompertz

model log(ε) ∼ N(0, σ2
ε) with σ2

ε set to 0.01, 0.02, and 0.04. The simulation was performed 50

times with each run including 100 animals with 3 recaptures per animal. One thousand time

points were generated for the numerical integration as this gave a satisfactory accuracy to

the integral. For the simulations of the single-recapture methods the first and last captures

were used.

Classic methods were used to provide a baseline comparison for the ML method. The

comparison methods included those of ?, ?, ?, and a non-linear mixed effect (NLME) model

(?). The non-linear mixed effects model assumes an unknown initial age that is log-normally

distributed. The NLME method takes into consideration all recaptures and therefore it is

a good comparative model for the ML method; it also provides estimates for the initial age

distribution and measurement error. Given this, the simulated data were generated with the

above values and A ∼ logN(0.5,0.5) for the NLME method.

The simulations showed that the parameter estimates from the NLME and MLE methods

are unbiased (Table ??). However for the NLME and MLE methods there is an decrease

in the precision as the measurement error increases. The Fabens’, improved Fabens and

James’ methods appear to be more accurate at higher levels of measurement error, but less

precise. It is noted that for the single recapture methods the first and last captures are

used. However, for all levels of error the single-recapture methods do not exhibit the same

accuracy and precision as the NLME and MLE methods. The simulation study has shown
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both the NLME and MLE methods to be very reliable, and capable of arriving at estimates

for all parameters with excellent accuracy and precision.

(Table ?? near here.)

4.2. Blacklip abalone tag-recapture data

Tag-recapture data from blacklip abalone (Haliotis rubra) were analysed to further demon-

strate the method. The von Bertalanffy model was run on all the data for comparison with

the Gompertz model, and for those abalone with length < 70 mm removed. To establish

the cutoff of 70 mm, a generalised additive model (GAM) was fitted to a plot of growth rate

versus length at tagging. This was done to determine the overall growth shape of the data

and to choose a cutoff for those abalone that do not follow the von Bertalanffy curve (Fig.

??). A cutoff of 70 mm was chosen since this was the point at which the plot visually turns

linear and the best tradeoff point between not misrepresenting the von Bertalanffy curve

and keeping as many data as possible. When the Gompertz curve is used all samples are

included. Given that the growth rate appears to increase and then decrease linearly, the use

of the Gompertz model for the whole population was a logical choice (Fig. ??).

As a first investigation, the method was used to fit the von Bertalanffy and Gompertz

models without effects (Table ??). This was done to provide a baseline for further inves-

tigation. With the basic model parameters estimated, the complexity was increased by

incorporating effects. Firstly, seasonal effects for a yearly cycle were estimated with no trun-

cation to 0. This provided both a computational and parameter baseline to compare the

more complex seasonal models. This model was then truncated to attempt to model the

effects of a potential no-growth period during the winter months. The AIC of the truncated

model did not improve when compared to the original model (no-truncation); when the extra

computational time required to fit this model is also taken into account, the no-truncation

model is preferred. In a further attempt to quantify the potential for a no-growth period,

an asymmetric form of the growth model was assumed. No improvement in the objective

function was found and both the resultant plot and parameters did not make sense. There-
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fore, seasonal growth is always positive according to this model and the chosen final model

was the canonical seasonal model. The results of the seasonal assessment show that growth

for blacklip abalone peaks in March and is at its lowest in September (Fig. ??) for the von

Bertalanffy model (< 70 mm removed), and peaks on the in February and is at its lowest

in August for the Gompertz model (Fig. ??). We refrain from specific dates as would be

misleadingling precise given the time period the data were collected over. The basic seasonal

model did not improve the AIC over the basic no-effect model for the von Bertalanffy but

did for the Gompertz model (Table ??). The AIC score is negative for the Gompertz model

due to the narrow nature of the log(L∞) distribution each likelihood value is greater than

1, which when logged leads to a positive value and thus a negative negative log-likelihood.

The MSE and CAPE showed for the von Bertalanffy model that goodness of fit does not

improve, but it did for the Gompertz model (Table ?? and Fig. ?? ).

The data were analysed to determine if a tagging effect was present. It was hypothesised

that those abalone that have been at liberty longer will have had the chance to recover to

normal growth. To investigate this, abalone with recapture intervals less than 4 months were

compared with those at liberty greater than 1.5 years. There was a substantial difference in

the average growth rate (Fig. ??). To investigate this further the recaptures were divided

into 4 length classes, as a proxy for age, and the differences in the growth rates were compared

quantitatively (Table ??). A one sided t-test (assumptions tested) was also run with the

null hypothesis being that the means (growth rate) for each length class are the same. The

alternative hypothesis was that the mean growth rate for those with shorter times at liberty

would be less than those with longer times at liberty. Interestingly this was the case for

all age classes. The larger length classes should be interpreted with caution because when

an individual nears its asymptotic length the likelihood of measurement error influencing

the growth rate for small time at liberty increases. Therefore, there may be a bias towards

extreme values in the higher length classes due to the nature of the error, and a biased

weighting towards negative growth may result. However, this is unlikely to be the case for
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smaller animals because their growth rate is high enough such that the growth increment

will be greater than measurement error. Therefore, the difference between the growth rates

for younger animals points towards the influence of a tagging effect. The tagging effect was

thus quantified using the MLE method.

The results from the MLE method show a strong tagging effect, with recuperation to

normal growth after approximately 22-24 months for both the von Bertalanffy and Gompertz

models (Fig. ??). It is noted that these recoveries are modelled without the effect of

seasonality. The tagging-effect model shows a substantial increase in k and a small decrease in

the asymptotic length (Table ??). This drastically changes the shape of the mean Gompertz

and von Bertalanffy curves (Fig. ?? ). The inclusion of the tagging effect also lowers the

AIC relative to both the no-effect and seasonal model. When the MSE is compared between

the normal and tagging models there is an improvement for both the Gompertz and von

Bertalanffy models. However, the seasonal model performs better under the MSE for the

Gompertz model.

The combined (tagging + season) model shows a concurrent influence from both the

seasonal and tagging effects. Recuperation to normal growth takes less time, with normality

resuming after 8 to 9 months for both the von Bertalanffy and Gompertz models (Fig. ??).

The recuperation curve represents a theoretical individual that has been tagged on January

1. Given that not all individuals are tagged on this date, the curves in Fig. ?? must be

interpreted with caution. Again there is an increase in k relative to the other models, and a

decrease in the asymptotic length (Table ??). Based on both the MSE and AIC the combined

model is either the second best or best model for both the von Bertalanffy and Gompertz

models.

Comparing the performance of the von Bertalanffy and the Gompertz models is difficult

when using only the AIC because they use different log-likelihoods. However, the MSE

results allow comparison between the two models. The von Bertalanffy model was run on

the whole data set so that comparison with the Gompertz model could be made. The
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von Bertalanffy model appears to perform better under the MSE criteria and also when

the cumulative absolute percent error is plotted (Table ?? and Fig. ??). The cumulative

absolute percent error shows that the von Bertalanffy models perform less well on smaller

animals; they accrue more error up to 130 mm but then the Gompertz model accrues error

after this length (Fig. ??). The combined von Bertalanffy model has the lowest cumulative

absolute percent sum and the best MSE when compared with the Gompertz model (on all

the data). The normal von Bertalanffy model has the lowest MSE when only the subset

of data is analysed, which may indicate that the juvenile data contribute significantly to

explaining the influence of the covariates.

(Tables ?? and ??, and Figures ??, ??, ??, ??, ??, ?? and ?? near here.)

5. Discussion

The results suggest that the proposed multiple-recapture ML method is a powerful tech-

nique for the investigation of growth in aquatic species. The most advantageous component

of this method is its generality. Generality is achieved through the ability to choose any ini-

tial distribution and growth link function, and to take advantage of extra data and the ML

method. The ability to use any link function is due to the optional numerical integration of

the link function; this option negates the need to present a link function that is analytically

integrable. There is also the possibility to use different growth curves such as Gompertz,

provided they fit the methodological framework. The method is also general in the sense that

it does not require a set number of recaptures: one can use a different number of recaptures

for each individual, as done in the abalone application. The problem of solving for multiple

and uneven recaptures has been a weakness of many other tag-recapture methods (?). This

method provides a solution that is statistically rigorous, incorporates individual variability,

models k as a time-dependent variable to incorporate effects, produces unbiased estimates,

and incorporates multiple-recapture data that have varying frequency of recaptures. The

method also allows one to back calculate for each individual the asymptotic lengths and
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relative ages.

The important assumptions are that k is a constant, A and L∞ are independent, the

random L∞ is adequately described by the normal distribution, and the random variable A

is adequately described by a gamma distribution. ? concluded that applying a model that

incorporates variability in just one of the growth parameters (µ∞, k), even if the variability

comes from the other parameter, still results in smaller biases than if one did not include

individual variability at all. Given this conclusion and the known high correlation between

µ∞ and k, which points to a potential model over-parameterisation if variability in both

µ∞ and k is modelled, we conclude that the choice to model variability solely in L∞ is a

sound one. As discussed by ? the assumption that L∞ and A are independent is valid if we

assume that the distribution of L∞ is identical over all age classes, and that the distribution

of L∞ is the same for the length or age range considered for the population. The choice

of the normal distribution to model L∞ makes reasonable intuitive sense, and as seen in

the methods section simplifies the mathematics and increases the speed of computation

considerably. The precedence of ? using the gamma distribution is the predominant reason

for the choice of this distribution to model A. Given this historical precedent and the positive

distribution property of the gamma distribution, we believe that the assumption of a gamma

distribution to model A is reasonable.

? used linear models to fit a dataset consisting of two cohorts of juvenile size classes

of blacklip abalone (Haliotis rubra). They found a persistent seasonal signal through the

juvenile size range, with slow growth in winter and fast growth during summer. They used

both statistical and biological model-selection criteria to judge the best model; the seasonal

growth model had the best fit. In the present study of mature blacklip abalone we did not

arrive at the same result as ?: for the von Bertalanffy we found no improvement in the

AIC when seasonality was included but we did for the Gompertz model. The same picture

was also seen for the MSE. Growth was found to be at its fastest in the summer months

and conversely at its slowest in winter. The lack of improvement may be attributed to the
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need to model a tagging effect concurrently. Although the AIC score did not improve for the

seasonal von Bertalanffy, the information gathered on the seasonal nature of blacklip abalone

growth must also be taken into consideration. This could also be said for the inclusion of

the tagging effect, which improves the AIC for the Gompertz and von Bertalanffy models.

Although the tagging effect lowers the AIC value, compared with that of the seasonal model,

the information gathered is different and explains a different biological process. Therefore,

it is important, as ? stated, that fit not be assessed solely from a quantitative perspective.

Xiao (1994) remarked that the introduction of a tagging effect into growth models is

essential to reduce or eliminate biases introduced by the tagging process. The investigation

of the tagging effect is particularly important for blacklip abalone growth, which have been

shown to be vulnerable to handling during the tagging process. ? and ? have shown that

New Zealand abalone, Haliotis iris, exhibited physiological stress in response to handling

that caused the heart to stop pumping for up to an hour, and stop feeding for up to three

weeks. Although a tagging effect for blacklip abalone growth was found here, ? found no

tagging effect for blacklip abalone. The results have shown that the tagging procedure leads

to a substantial time of suboptimal growth. This study demonstrates that adjusting for a

tagging effect leads to a marked increase in the estimate of k. This is important because

if the model concluded that there was a tagging effect but the estimate of k was not much

different from the base (Fabens, MLE) estimate of k, then the results would be of less

practical application to fisheries assessment. It is noted that k can only be compared within

model because k has a different meaning for the Gompertz model than it does for the von

Bertalanffy model.

It is interesting that both the von Bertalanffy and Gompertz models predicted a very

similar time and seasonal shape to recovery for the combined model. This concordance is

also encouraging. However, due to the shapes of the two curves the growth trajectories are

very different as seen in the growth curve plots. For both models the inclusion of seasonality

(combined model) resulted in a small period of negative growth in the tagging recovery curve
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(less so for the Gompertz model). Due to the shelled nature of abalone negative growth is

unlikely. The period of negative growth shown in the recovery curve figures may be an

accumulation of error in the code, or a reflection of the negative growth present in the data

due to measurement error. Although measurement error was modelled, the method may

not have been powerful enough to eliminate its effect. Nevertheless, the combined model

provides the best fit for all three models in one of the selections criteria and thus is concluded

to best explain the growth process for blacklip abalone.

From the results gathered the combined tagging and seasonal von Bertalanffy model is

the best. The Gompertz model explains the data better for smaller lengths, but due to the

nature of the Gompertz model the fit at larger lengths suffers. The von Bertalanffy model

was hypothesised to model the growth of small animals poorly and the CAPE shows this.

However, the von Bertalanffy appears to out perform the Gompertz model in terms of fit

for the longer lengths. This analysis is an exposition of the well known strengths of each

model. The ease of interpretation and precedence in the literature of the von Bertalanffy

model may also be desirable to many researchers and thus contributes to it being the best

model. Its ubiquity in the literature also allows for better comparison with other research.

Although the Gompertz model has not performed well on this data set the problem may be

the higher number of data at larger lengths, which leads to a large accruement of error. If

there were many more juvenile data than adult data perhaps the Gompertz model would be

more applicable. The process followed in this paper shows the level of consideration that

must be taken when choosing to use not only a methodology (MLM), but the underlying

growth model as well.

Blacklip abalone were recaptured between one and five times, therefore, it is possible that

a similar growth-retarding effect may be caused by recapture. Thus, each recapture event

may cause several months of slower growth. The effect of recapture on abalone growth will

be investigated in future studies. This weakness of mark-recapture methods to investigate

growth and ageing is avoided with direct-ageing techniques such as oxygen isotope analysis
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of shells post mortem (?). Although the isotope method avoids the bias associated with a

tagging effect, the ability to quantify the tagging effect, as described here, is another solution.

In a simulation study of error structures, ? noted that while covariates can be included

in the growth model to better represent other factors that may influence growth, the infor-

mation content in single-recapture tagging data will generally be insufficient to support such

complexity. This point establishes a further need to take advantage of the extra data that

multiple recaptures provide. Although in fisheries the primary role of growth estimates is

for stock assessment, modelling environmental effects on growth gives an interesting avenue

to investigate biological concerns unique to a species; for example, in the present study the

effect of tagging on the growth of an individual, or the change in growth due to migration

as in ?. Temperature is also an important biological factor affecting numerous biological

processes and their associate phenomena, including the distribution, growth and reproduc-

tion of plants and animals (?). In a growth-specific model ? estimated the effect of water

temperature on the growth coefficient k. Given the generality of the method described here,

a possible next step would be to incorporate such an effect into the current model framework.

The multiple-recapture ML method is an excellent tool for analysing growth of an aquatic

species. We have shown how it can be used to incorporate effects on growth while providing

unbiased estimates of key growth parameters. This allows for biological investigations into

the species, instead of solely focusing on growth parameters for stock assessment. The results

have shown that when tag-recapture data are being used to investigate growth one should

be mindful of the influence of both seasonality and tagging together.
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Appendix A. Derivation of Gompertz growth curve with covariates

For the inclusion of time-dependent growth covariates into the Gompertz growth model

we will use the model version from ?. Using a length interpretation

L(t) = L∞

(
L0

L∞

)exp[−z(b0,t)]

ε,

where L(b0) = L0, the other parameters are as usual and ε ∼ logN(µlgε, σ
2
lgε). Taking the

natural log of L(t) we have

log[L(t)] = log(L∞) + log(L0) exp[−z(b0, t)]− log(L∞) exp[−z(b0, t)] + log(ε).

If we assume that L0 is equal to 1 and assuming log(ε) ∼ N(0, σ2
ε) then the mean is

log[L(t)] = log(L∞){1− exp[−z(b0, t)]},

and the log of the measured length is

log[L(t)] = log(L∞){1− exp[−z(b0, t)]}+ log(ε).

This is a similar structure to the von Bertalanffy model but we are estimating the length

on a log scale. If we assume that L∞ ∼ logN(µ∞, σ
2
∞) is distributed log-normally then the

log(L∞) has a normal distribution log(L∞) ∼ N(µlg∞, σ
2
lg) thus we can use the affine trans-

formation seen in the derivation for the von Bertalanffy terms with the error term on the log

scale also being normally distributed. Therefore log(L)|A ∼MVN(µlg∞G,DΣlgzD
T ) where

L has multivariate log-normal distribution. The link functions used for the Gompertz model

remain the same and thus the parameter results have the same meaning as the von Berta-

lanffy. The conversions between the means and variances of the normal random variables
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and their log-normal counterparts are given. If

L∞ ∼ logN(µ∞, σ
2
∞), and log(L∞) ∼ N(µlg∞, σ

2
lg),

then estimating µlg∞ and σ2
lg we can calculate the lognormal means and variances

µ∞ = exp(µlg∞ +
σ2
lg

2
),

σ2
∞ = exp(2µlg∞ + σ2

lg)[exp(σ2
lg)− 1],

and vice versa

µlg∞ = 2 log(µ∞)− 1

2
log(σ2

∞ + µ2
∞),

σlg = −2 log(µ∞) + log(σ2
∞ + µ2

∞).

Assuming that log(ε) ∼ N(0, σ2
ε) then

µlgε = exp(
σ2
ε

2
), and

σ2
lgε = exp(σ2

ε)[exp(σ2
ε)− 1].

For the Gompertz model the result is σε = 0.0195. Therefore, the resultant multiplicative

error term has distribution logN(µlgε, σ
2
lgε) with

µlgε = 1.00019, and

σ2
lgε = 0.00038.
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Appendix B. Integration of the link function for the seasonal model

Depending on the choice of link function this integral has varying difficulty. The difficulty

rests on the ability to solve for the roots of the polynomial formed by the trigonometric

functions. Due to the inability to solve for the roots of the quartic polynomial for the

asymmetric model, only the analytical integral for the canonical seasonal model is derived.

We would like to find when g = g(θ,xt) = 0, which occurs only if θ23 + θ24 > k2 or the

magnitude of the wave is greater than the positive offset k. Let g = k+θ3 cos(2πt)+θ4 sin(2πt)

and G = max(g, 0) = (g + |g|)/2. To solve for the roots of g let

0 = k + θ3 cos(2πt) + θ4 sin(2πt).

Let R = 2πt

k + θ3 cos(R) + θ4
√

1− cos2(R) = 0,

and cos(R) = u

k + θ3u+ θ4
√

1− u2 = 0,

θ24(1− u2) = (k + θ4u)2,

θ24 − θ24u2 = k2 + θ23u
2 + 2kθ3u,

0 = u2(θ24 + θ23) + u2kθ3 − θ24 + k2.
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Letting a = θ24 + θ23, b = 2kθ3, and c = −θ24 + k2. The roots are,

u1 =
−b+

√
b2 − 4ac

2a
, u2 =

−b−
√
b2 − 4ac

2a
,

u = cos(2πt),

r1 =
arccos(u1)

2π
, r2 = 1− arccos(u2)

2π
.

Given these roots, for the ith individual we would like to find

∫ t2

t1

G dt.

We are only required to solve for

∫ t2

t1

|g| dt,

because we can easily calculate the analytical integral of the whole function ξ(t2, t1) =∫ t2
t1
g dt. The integral depends on the ordering of the time points relative to roots of the

function. If we analyse the case where one section of the integral of g is positive between r1

and r2, then we cover all orderings of the roots and time points by letting w1, w2, w3, w4 be

the ordered values of t1, t2, r1, r2 and

∫ t2

t1

|g| dt =

∣∣∣∣∫ w2

w1

g dt−
∫ w3

w2

g dt+

∫ w4

w3

g dt

∣∣∣∣ = |ξ(w2, w1)|+ |ξ(w3, w2)|+ |ξ(w4, w3)|,

conditioning on the fact that if t2 < r2 then
∫ r2
t2
g dt = 0, if r1 < t1 then

∫ t1
r1
g dt = 0, and if

t2 < r1 then
∫ r1
t2
g dt = 0 and

∫ r2
r1
g dt = 0.
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Appendix C. Estimation of the realised values of of A and L∞

We follow the ideas of ? to attempt to find the realised values of A and L∞ for each

individual. ? suggest calculating the estimated posterior distribution using Bayes’ theorem.

For an individual fish

g(A = a|l) =
f(l|a)g(a)

f(l)
,

and then the expected value corresponds to the integral

E(A|l) =

∫ ∞
0

a
f(l|a)g(a)

f(l)
da.

This back calculation was performed for each model using Simpson’s method over one vari-

able. A similar calculation was done for the expected asymptotic lengths for each individual

with the following formula:

E(L∞|l) =

∫∞
0

E(L∞|l, a)f(l|a)g(a)da

f(l)
, where

E(L∞|l, a) = µ∞ +
σ2
∞

σ2
ε + σ2

∞(
∑p

j=1 f
2
j )

[
p∑
j=1

fj(lj − µ∞fj)

]
,

with fj = 1− exp[zj(t)] and j = 1, . . . , p. Again the numerical integral is calculated for each

individual using Simpson’s method. These integrals are performed for each model structure

and with the ML estimates substituted in.
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Table C.1: Summary of tag-recapture data for blacklip abalone. The variable Lj represents length at
recapture j (mm), and Tj time at liberty between measurements Lj−1 and Lj (years). The abbreviation SD
represents standard deviation.

Mean SD Range Frequency

L1 129 23.9 (26, 169) 1400
L2 137 20.6 (34, 180) 1400
L3 138 19.9 (40, 177) 383
L4 142 17.1 (73, 165) 51
L5 146 4.68 (139, 151) 9
L6 140 (140, 140) 1
T1 1.28 1.22 (0.00274, 6.99) 1400
T2 1.91 1.41 (0.148, 7.45) 383
T3 2.62 1.53 (0.441, 6.25) 51
T4 3.73 1.81 (1.40, 6.31) 9
T5 6.53 (6.53, 6.53) 1
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Table C.2: Von Bertalanffy model parameter estimates from simulated data with various methods. The
simulated data consist of 100 individuals run 50 times. The distributions used are L∞ ∼ N(150, 225),
A ∼ Γ(3, 5) (Γ(α, β)) for MLE method and A ∼ log N(0.5, 0.5) for NLME, times at liberty are taken from
Γ(1, 1), and with p = 3 recaptures. For the ML method (MLM) 1000 integral steps are used. For the
Gompertz model the parameters stay the same but L∞ ∼ logN(150, 225) and ε ∼ N(0, σε) where σε takes
values 0.01, 0.02 and 0.04. The first and last measurements are used for the single-recapture methods.

Method µ∞ k βIF σ∞ α β σε

True value 150 0.500 15 0.5/3 0.5/5 1
Fabens 154.0 (4.7) 0.469 (0.031)

Improved Fabens 151.0 (5.5) 0.495 (0.038) 0.159 (0.11)
James 152.2 (7.8) 0.486 (0.072)

NLME 149.5 (1.5) 0.503 (0.007) 15.1 (1.14) 0.50 (0.05) 0.50 (0.03) 1.0 (0.1)
MLM 149.9 (1.4) 0.500 (0.004) 15.2 (0.80) 3.1 (0.5) 5.1 (0.8) 1.0 (0.1)

True value 150 0.500 15 0.5/3 0.5/5 2
Fabens 153.4 (4.6) 0.473 (0.029)

Improved Fabens 150.8 (5.1) 0.497 (0.039) 0.152 (0.12)
James 153.1 (8.7) 0.476 (0.064)

NLME 149.8 (1.8) 0.511 (0.011) 14.8 (0.87) 0.48 (0.05) 0.49 (0.04) 2.0 (0.1)
MLM 150.2 (1.8) 0.498 (0.008) 15.0 (1.0) 3.2 (0.5) 5.2 (0.9) 2.0 (0.1)

True value 150 0.500 15 0.5/3 0.5/5 4
Fabens 152.7 (6.0) 0.479 (0.041)

Improved Fabens 150.1 (6.4) 0.503 (0.047) 0.139 (0.09)
James 151.7 (8.4) 0.489 (0.073)

NLME 148.2 (2.3) 0.526 (0.024) 14.9 (1.1) 0.46 (0.06) 0.50 (0.04) 4.0 (0.2)
MLM 150.4 (2.3) 0.499 (0.015) 15.0 (1.1) 3.1 (0.5) 5.3 (0.9) 4.0 (0.2)

True value Gom 150 0.500 15 3 5 0.01/0.02/0.04
MLM Gom 150.6 (1.3) 0.500 (0.001) 15.3 (1.0) 3.2 (0.5) 5.6 (0.6) 0.01 (0.0006)
MLM Gom 150.0 (2.8) 0.500 (0.002) 14.6 (0.96) 3.2 (0.6) 5.4 (0.8) 0.02 (0.0009)
MLM Gom 149.7 (3.6) 0.501 (0.004) 14.7 (1.4) 3.1 (0.6) 5.2 (1.0) 0.04 (0.0020)
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Table C.3: Model parameter estimates for blacklip abalone from the von Bertalanffy and Gompertz models.
The Gompertz models used all recaptures and lengths. The von Bertalanffy models were run with animals
<70 mm length at first recapture removed and all the data (ALL) for comparison with the Gompertz model.
Gom=Gompertz; VB=von Bertalanffy; seas=seasonal effect; tag=tagging effect; seastag=combined seasonal
and tagging effect.

Method µ∞ k σ∞ α β σε θ1 θ2 θ3 θ4 -loglk AIC M̂SE

MLM (VB) 151.3 0.448 11 4.0 0.69 1.8 10917.9 21847.8 3.04
MLM (VBseas) 149.6 0.457 10 2.5 0.39 1.8 0.136 0.352 11005.4 22026.8 4.35
MLM (VBtag) 151.0 0.549 9.7 2.5 0.49 1.8 0.341 2.87 10875.6 21767.2 4.07

MLM (VBseastag) 150.5 0.613 10 3.0 0.65 1.7 0.722 4.35 0.0643 -0.0838 10818.5 21657.0 3.69

MLM (VBAll) 153.2 0.376 11.8 3.5 0.55 2.1 11490.5 22993.0 4.41
MLM (VBseasAll) 153.2 0.376 11.5 3.4 0.52 2.1 0.0309 0.0513 11487.3 22990.6 4.45
MLM (VBtagAll) 151.0 0.659 10.1 2.9 0.73 1.9 0.866 3.55 11295.6 22607.2 4.28

MLM (VBseastagAll) 148.1 1.80 12.7 4.1 2.9 1.8 1.98 0.948 0.151 -0.164 11344.0 22708.0 3.56

MLM (Gom) 153.1 0.414 12.0 4.6 0.45 0.0179 -4009.6 -8007.2 6.10
MLM (Gomseas) 154.1 0.388 12.9 5.7 0.53 0.0165 0.123 0.125 -4077.7 -8139.3 5.22
MLM (Gomtag) 148.9 0.769 9.8 3.1 0.52 0.0171 0.698 1.83 -4157.3 -8298.6 5.38

MLM (Gomseastag) 151.5 0.632 10.3 4.7 0.66 0.0161 0.660 3.04 0.128 -0.0390 -4273.1 -8526.4 4.43
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Table C.4: Summary of growth rates (mm/yr) for blacklip abalone. Data are separated into 4 length classes,
and differing times at liberty to analyse the possible influence of tagging. The p-value represents the one-
sided Welch t-test between the mean growth rates (mm/yr) of time at liberty T < 4 months and T > 1.5
years.

Previous Length (mm) T <4 mths T >1.5 yrs All P-value

25-90 mm
Mean 6.51 22.9 13.9 0.00160

Sd 11 6.8 8.6
Range (-7.8, 21.3) (10.1, 31.7) (-22.6, 31.7)

No. 8 8 96
90-120 mm

Mean 4.40 11.1 12.6 0.00030
Sd 7.6 3.7 5.8

Range (-5.82,19.4) (-3.41, 19.9) (-5.82, 36.5)
No. 21 189 453

120-150 mm
Mean 1.63 4.24 3.83 0.00002

Sd 7.5 2.8 4.9
Range (-26.1, 36.5) (-2.72, 13.7) (-26.1, 36.5)

No. 156 371 973
150-180 mm

Mean -1.16 0.951 -0.282 0.00700
Sd 6.5 1.7 4.8

Range (-23.9,11.1) (-2.01, 4.6) (-23.9, 26.2)
No. 65 50 258
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Figure C.1: Length at capture vs growth rate plot to investigate when blacklip abalone begin to follow a
von Bertalanffy growth curve. The solid line is the fitted GAM model.
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Figure C.2: Seasonal curves for blacklip abalone with canonical yearly seasonal model k + θ1 cos(2πt) +
θ2 sin(2πt) for the von Bertalanffy model (purple) and Gompertz (blue). Dotted lines indicate k for this
model.
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Figure C.3: Cumulative absolute percent error plots for each model. The solid lines represent the von
Bertalanffy model and the dashed lines the Gompertz model. Colours indicate each model with blue the
normal model, red seasonal, green tagging and purple combined.
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Figure C.4: Previous length vs growth rate plot to investigate difference between growth rates for those with
less than 4 months at liberty and those with greater than 1.5 years at liberty. Green line represents the
spline of all points, red points and spline those with < 4 months at liberty, and blue points and spline those
with > 1.5 years at liberty.
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Figure C.5: Tagging effect recuperation curves for blacklip abalone for the von Bertalanffy model (purple)
and Gompertz model (blue). Dotted lines indicate k for this model.
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Figure C.6: Varying mean von Bertalanffy curves (solid) Gompertz curves (dashed) for the four different
models: blue curve represents the no effect model, red seasonal, green tagging, and purple combined.
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Figure C.7: Theoretical combined tagging and seasonal recuperation curve for an individual tagged on
January 1 using the von Bertalanffy growth model (purple) and Gompertz model (blue). Dotted lines
indicate k for this model.
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