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We demonstrate the topological band-gap dependence of armchair honeycomb nanoribbons in a

staggered sublattice potential. A scaling law is presented to quantify the band gap variation with

potential strength. All armchair nanoribbons are described by one of three distinct classes

depending on their width, consistent with previous classifications, namely, the well known

massless Dirac condition, potentially gapless, and gapless-superlattice. The ability to tune and, in

all cases close, the band-gap via external probes makes our classification particularly relevant

experimentally. We propose several systems in which these results should shed considerable light,

which have all already been experimentally realized. VC 2013 AIP Publishing LLC.

[http://dx.doi.org/10.1063/1.4827339]

The search for states with topological origins is not a

new one. The domain wall states in polyacetylene, com-

monly referred to as the Su-Schieffer-Heeger or SSH

model,1 and their field theoretic counterparts2 as well as the

TKNN invariant and the quantum Hall effect,3 followed by

the fractional quantum Hall effect and Chern-Simons theo-

ries,4 are condensed matter examples which each span sev-

eral decades. Undoubtedly, this ubiquitous field has recently

enjoyed a renaissance due to the excitement surrounding top-

ological insulators: time reversal invariant bulk insulators

with a single gapless surface Dirac cone5 and topological

superconductors that may eventually support topological

quantum qubits.6

The community’s interest having been piqued; it is not

surprising that graphene, the canonical example material

with two-dimensional massless Dirac cones, not to mention

the first material to have been considered as a topological in-

sulator,7 has been cut, bent, layered, crumpled, adsorbed,

twisted, and stretched in order to demonstrate new and exotic

topologically non-trivial states.8–14 The overarching concept

is quite simple: due to its two-sublattice (spinor) structure,

winding numbers can be associated with the graphene

Hamiltonian over the Brillouin zone.14 By inducing a gap at

the Dirac points then, the winding number can be engineered

to be non-trivial, and thus edge states will arise. Even the flat

bands in a zig-zag graphene nano-ribbon can be understood

from this broad topological principle.15 This has been a

remarkably successful task, and graphene continues to pro-

duce new and unexpected physics.

It is well known that the low energy states in armchair

graphene nanoribbons are, in general, massive. The two K
points in bulk two dimensional graphene are projected onto

each other in momentum space when the system is reduced

to a quasi-one dimensional one, allowing the two massless

cones to mix, thus producing a gap.16 In the seminal paper

by Brey and Fertig, this is easily seen by noting that the

boundary conditions of the two sublattices must match in

this special geometry.17 In contrast, in the case of zig-zag

ribbons only one sublattice constitutes each edge, thus pre-

serving the gapless K point for all zig-zag edged ribbons. For

this single crucial reason, zig-zag edged ribbons, samples,

and interfaces are the usual candidate systems in which topo-

logically borne states are proposed to exist.18

Here, we show that armchair edged ribbons with a stag-

gered sublattice potential have a tuneable mass-gap which,

in the case of gapped ribbons can be decreased, or even

closed, by varying the potential strength and gradient. In

complete analogy with the occurrence of massless Dirac rib-

bons, we show that with increasing width, each effect is
observed in every third ribbon. We propose four realistic

systems where these results may be observable: twisted

bilayer graphene, chemically adsorbed single layer graphene,

and lattice or substrate mismatched graphene and irradiated

silicene. The geometric origin of the effects ensures their

robustness, independent of ribbon width. This makes them

particularly ideal for consistent practical applications. These

geometric results follow from topological considerations,

where the symmetry protected surface states19 are broken by

a symmetry-breaking mass gap, leading to a tuneable edge

state structure for the ribbons.

In Figure 1 we show a typical ribbon that we are consid-

ering with the domain wall placed at a typical site iW. The

corresponding Hamiltonian which is the focus of the current

work is H¼H0þV, where H0 is the tight-binding

Hamiltonian of a honeycomb lattice which is given by

H0 ¼
X2W

i

X3

j

tijc
†

iþd̂j
ci þ c:c:; (1)

where tij is the overlap integral of first nearest neighbouring

sites hi; ji, and is zero otherwise, and j denotes the three near-

est neighbor vectors. In this formalism, the width of a ribbon

or superlattice unit cell is W
ffiffiffi
3
p
jd̂j=2. To create a ribbon, we

construct the appropriate unit cell and set t¼ 0 when a firsta)Electronic address: a.wright7@uq.edu.au
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nearest neighboring site leaves the edge of the ribbon, and to

create a superlattice of ribbons with alternating sublattice

potential, we adopt periodic boundary conditions instead.

We also introduce a staggered sublattice potential across the

width of the ribbon given by

V ¼
XW=2

i

sgnði� iWÞmðc†
i ci � c†

iþd̂1

ciþd̂1
Þ; (2)

where m is the magnitude of the potential and iW marks the

site in the unit cell where the potential changes sign, amount-

ing to the location of a domain wall. Although this sharp

change in sign is a specific choice, we stress that none of our

results are qualitatively changed by a smooth change in sign

of the potential, as is shown in Fig. 2. This reflects the topo-

logical nature of these states, namely, that the low energy

states are solitonic solutions in analogy with the SSH model,

which, at particular, special points in paramater space do not

hybridize, but in general do. Therefore, a smoothly varying

potential merely increases the value of m at which the gap-

closing condition is reached.

Upon diagonalising these systems, we first ask the fol-

lowing question: Is it possible to completely collapse the

band gap of an armchair ribbon by applying a periodic poten-

tial? The answer to this question is yes, but only in one sixth
of all possible ribbons, namely, those where ðW � 4Þ=6 2 Z,

and only when the iW¼W/2. We stress here that these rib-

bons are not Dirac ribbons ððW � 2Þ=3 2 ZÞ. Ribbons where

ðW � 1Þ=6 2 Z almost possess this quality; however, as they

have an odd number of pairs in their unit cells, they cannot

strictly fulfill the requirements of equally sized domains (W
is odd, so iW ¼ W=2 6 0:5), even though the effect is identi-

cal. Therefore, these ribbons display extremely small minima

of �BG compared with their non-Dirac counterparts

ðW=3 2 ZÞ. We label this class of armchair ribbons poten-

tially gapless (PG), as a tuned staggered sublattice potential

has the ability to tune the band-gap to zero, or nearly zero.

We now move on to the armchair superlattice. The sys-

tem is now two-dimensional, and the lattice translation vec-

tors are orthogonal. In general, the transverse component of

the Hamiltonian is easily constructed as a two-site unit cell

with lattice vectors trivially determined by iW. The resulting

bandstructure behavior along the transverse direction is cos-

like. Due to the oscillating gap along the transverse direction,

the band-gap position deviates from the C point. In particu-

lar, the direct band gap position moves between kx

¼ 0; kx ¼ 2p=3 and kx ¼ p, where p is the dimensionless

edge of the Brillouin zone.

At the C point, Dirac and PG superlattices are gapped at

m¼ 0; however, PG superlattices can close the gap at m ¼ D
as in the ribbon case. However, the third, so-far uncatego-

rized, ribbon type here differs. This brings us to a definition

for the third class of ribbons: those for which W 2 Z are

always gapless at the C point when m¼ 0. Thus, these super-

lattices are likened to armchair Dirac ribbons. This is a par-

ticularly important class of ribbon, as they show that a very

weak modulation across a 2D sample can close the gap at the

gamma point, thus destroying the valley degeneracy of a 2D

sheet. (We should point out that this is strictly the low m
limit, rather than m¼ 0, as the latter simply corresponds to

an infinite honeycomb sheet with zone-folded energy bands.)

This third class of “ribbon” we call gapless superlattice (GS)

ribbons. The gap at the C point as a function of m is shown

in Figure 3 by the solid black line. We have thus established

that all honeycomb ribbons fall into one of the three classes

of Dirac ððW � 2Þ=3 2 ZÞ, potentially gapless

ððW � 1Þ=3 2 ZÞ, and gapless superlattice ðW=3 2 ZÞ.
It is well known that armchair edged graphene nanorib-

bons fall into two distinct geometric classes, metallic and

insulating.20 The existing classification of armchair edged

graphene nanoribbons with edge hydrogen passivation is

also well known.21 In this seminal work, the authors intro-

duce a band-gap scaling law for the three types of graphene

nanoribbon with edge hydrogen passivation. A tight-binding

implementation of that model is one where the hopping inte-

grals and on-site energies vary between the ribbon edges and

FIG. 1. A typical lattice structure (W/2¼ 18, iW¼ 7). At the domain wall,

the position of the alternating positive (red) and negative (blue) sublattice

potentials is changed from Aþ/B� to A�/Bþ, where A and B denote the

index of individual pairs. The AB pairs are chosen so as to be positioned

along the axis of the ribbon. The unit cell is shown by the dashed line.

FIG. 2. Band gap trends with increasing m for (top to bottom) gapless super-

lattice, potentially gapless (with even number of A–B pairs), and Dirac rib-

bons. Note the large dip with all ribbons when iW¼ 2, which is the smallest

possible Dirac domain. Insets are for the same width of ribbon, but with a si-

nusoidally varying potential; we see that this does not alter the gap-closing

condition, but instead decreases the integrated strength of the potential, and

thus moves the gap-closing condition to larger values of m/t.
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their bulk. The classification presented here shows that even

the insulating phases can be tuned to become gapless, and

differ markedly between themselves. Crucially, we suggest

that all three types can be explored experimentally via appro-

priately tuned external fields. The different classifications

are presented in Table. I.

The second important point in the superlattice Brillouin

zone is 2p=3, whose behavior with increasing m is shown in

Figure 3 by the red dashed line. At this point, there is a band

crossing between the top-most valence band and the lowest

conduction band, leading to two Dirac points at m¼ 0 for

Dirac and PG superlattices, directly corresponding to the two

K points of a 2D sheet. As the mass increases, these bands

can mix, and the Dirac points disappear. However, for some

Dirac ribbons, the Dirac points move toward the Brillouin

zone edge, and can fuse into one, before becoming massive,

as can be seen in Fig. 3(c) by the green dotted line.

For the sake of experimental exploration of the parame-

ter space in a controllable situation, we now briefly explore

the relationship between the gradient of the gap as a function

of m, i.e., @�BG=@m of Dirac ribbons, and the location of the

domain wall, iW. A quasi-linear scaling law is observed from

numerical results, but ribbons where iW¼ 3n þ 2 and ribbons

where iW¼ 3n þ 3 (with the same W) have the same gradient

(for a given n). We find three scaling relationships here, one

where the iW is placed such that the smaller domain itself

makes a PG ribbon, one where it makes a GS ribbon, and

one where it makes a Dirac ribbon. The three scaling laws

can be written compactly as

@�BG

@m

����
m¼0

¼ 1� 2iW þ iWModð3Þ
W þ 1

; (3)

which agrees within 0.05% to the computed values.

These results should prove useful in understanding the

physics of several experimentally realized materials, partic-

ularly as the ability to produce samples with well defined

edge termination becomes increasingly viable. The first is

adsorbed graphene. Graphene has been successfully hydro-

genated and fluorinated, which has produced some very

interesting results.22,23 However, a convincing physical

model for either has thus far proven elusive. The results

outlined in this work are particularly relevant to adsorbed

graphene. It has been shown that randomly adsorbed gra-

phene will tend toward uniform adsorption. In particular, in

the case of semi-hydrogenated graphene, it has been shown

that hydrogen atoms will tend to bond with just one of the

two sublattices. However, it is extremely unlikely that ran-

domly adsorbed graphene will become completely uni-

formly adsorbed, and instead should form domains.24

Although the domain wall configuration presented here is

ideal, the variation of the mass-gap as a function of domain

wall position should prove useful for identifying the behav-

iour of different adsorbed samples. Further, via controlled

substrate blocking, it is possible that the adsorption could

be tunable in different samples. If possible, a two-gap sys-

tem could be fabricated, even where the smaller gap could

be vanishingly small.

FIG. 3. The mass dependence of the band gap at the C point, kx ¼ 2p=3 and

kx ¼ p. The behavior at the C point establishes the third universal classifica-

tion of gapless superlattice “ribbons,” which are the only armchair superlat-

tices to become gapless as m! 0. The other two points define the

high-symmetry gapless points and band-inversion points, which are lifted

for sufficiently large m. For each system, iW¼ 8.

TABLE I. The different classifications of armchair honeycomb nanoribbon band gaps D according to their widths W. d is the variation in hopping near the

edge of a hydrogen passivated ribbon, such that t! ð1þ dÞt. The new classification, presented here, is appropriate in staggered sublattice potentials, an exper-

imentally relevant, and tuneable quantity, in particular, contexts.

W=3 ¼ p 2 Z ðW � 1Þ=3 ¼ p 2 Z ðW � 2Þ=3 ¼ p 2 Z Ref.

Insulating Insulating Metallic 20

dD � � 8dt

3pþ 1
sin2 pp

3pþ 1
dD � 8dt

3pþ 2
sin2 ðpþ 1Þp

3pþ 2
dD � 2jdjt

pþ 1

21

Gapless superlattice Potentially gapless Dirac This work
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Other systems of particular relevance to these results are

twisted bilayer graphene and substrate or lattice-mismatched

graphene.25 The idea behind these systems is that bilayer

graphene or graphene atop a substrate behaves as a single

layer of graphene with a gauge field.26 A twisted bilayer, for

example, can be described as a single layer of graphene with

an oscillating mass term (and gauge field which does not

contribute to the gap). As the mass term changes sign, it

forms a network of domain walls over the sample. It has

been suggested that these domain walls always lie along an

armchair edge.16 Therefore, this system forms precisely the

systems discussed above, where the magnitude of the mass

depends on the interlayer spacing. Other forms of lattice-

mismatched bilayer graphene as well as substrate mis-

matched graphene behave analogously.

Finally, silicene has recently emerged as an interesting

graphene-like system with a buckled out-of-plane structure.

Ezawa has pointed out that a simple Stark effect can be real-

ised with an incident electric field which, due to the buckled

lattice, realises a mass-gap precisely of the form considered

here.27 An inhomogeneous electric field, in this case, realises

the very domain walls we have introduced.

In conclusion, we identified two geometric classes of

armchair ribbon of period three in the width other than the

usual Dirac class, namely, the potentially gapless class and the

gapless-superlattice class. It is crucial for future experimental

investigations, to understand that ribbons of any width can be

made gapless and that bilayer systems, in particular, can be

shown to have effective single layer behaviour that necessar-
ily falls into one of these three classes. Finally, we proposed

several systems that have already been realized experimen-

tally to which these results are particularly relevant.
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