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[1] Parlange and Brutsaert (1987) derived a modified Boussinesq equation to account for
the capillary effect on water table dynamics in unconfined aquifers. Barry et al. (1996)
solved this equation subject to a periodic boundary condition. Their solution shows
significant influence of capillarity on water table fluctuations, which evolve to finite-
amplitude standing waves at the high frequency limit. Here we propose a new governing
equation for the water table, which considers both horizontal and vertical flows in an
unsaturated zone of finite thickness. An approximate analytical solution for periodic water
table fluctuations based on the new equation was derived. In agreement with previous
results, the analytical solution shows that the unsaturated zone’s storage capacity permits
water table fluctuations to propagate more readily than predicted by the Boussinesq
equation. Furthermore, the new solution reveals a capping effect of the unsaturated zone on
both the amplitude and phase of the water table fluctuations as well as the water table
overheight. Due to the finite thickness of the unsaturated zone, the capillary effect on water
table fluctuations is modified mainly with reduced amplitude damping and phase shift.
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1. Introduction

[2] Oceanic oscillations produce water table fluctuations
in coastal unconfined aquifers. As they propagate inland, the
water table fluctuations are attenuated with increasing time
lags. These fluctuations, representing basic characteristics of
coastal groundwater, provide important information for
understanding the properties and behavior of coastal aquifers,
and have been subjected to numerous investigations [e.g.,
Parlange et al., 1984; Nielsen et al., 1997; Jiao and Tang,
1999; Li et al., 2000a; Li and Jiao, 2003; Jeng et al., 2005].

Although most previous research has been focused on tide-
induced low-frequency water table dynamics [e.g., Nielsen,
1990; Li et al., 2000b, 2000c; Jeng et al., 2002], high-fre-
quency water table fluctuations due to waves have also been
studied [Li et al., 1997].

[3] Traditionally, models of water table fluctuations are
based on the Boussinesq equation, which predicts increas-
ing rates of amplitude damping with the frequency of the
oceanic oscillations [e.g., Parlange et al., 1984; Nielsen,
1990]. According to these models, high-frequency waves
would not induce water table fluctuations in coastal uncon-
fined aquifers to any considerable distance inland, a result
inconsistent with field observations. Li et al. [1997] found
that consideration of capillarity explains the transmission
of high-frequency water table fluctuations in coastal
aquifers.

[4] Parlange and Brutsaert [1987] examined the capil-
lary effect on water table dynamics. As the water table fluc-
tuates, the pressure distribution above the water table
varies, resulting in local water exchange across the water
table. Parlange and Brutsaert [1987] modified the Boussi-
nesq equation with an additional term to account for this
mass transfer process. Barry et al. [1996] combined the
approaches of Parlange et al. [1984] and Parlange and
Brutsaert [1987]. They obtained and applied a depth-inte-
grated model with capillarity incorporated to study the
propagation of small-amplitude oscillations in an uncon-
fined aquifer and derived an approximate analytical solu-
tion. Their results showed that the damping rate of the
water table fluctuations reaches an asymptotic finite value
as the forcing frequency on the boundary increases. In other
words, damping effects on high-frequency water table fluc-
tuations are bounded. Under the influence of capillarity,
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high-frequency waves can be transmitted into the aquifer
over a considerable distance, as observed in the field.
Moreover, the analytical solution of Barry et al. [1996] pre-
dicts that at the high-frequency limit, water table fluctua-
tions become standing waves, also consistent with field
observations [Li et al., 1997]. This solution was further
extended to a higher order by Jeng et al. [2005]. It should
be noted that the capillary effect on water table dynamics
has implications for a range of processes and phenomena in
unconfined aquifers, for example, pumping tests [e.g.,
Moench, 2008]

[5] Despite the progress in the theoretical development,
laboratory experiments have shown that the modified Bous-
sinesq equation with the capillarity correction and other
approximations for vertical flow effects still cannot describe
fully the water table behavior under the influence of bound-
ary oscillations [e.g., Cartwright et al., 2003]. Our goal here
is to extend the previous work to improve the water table
dynamics model. The modified Boussinesq equation of
Parlange and Brutsaert [1987] considered local water
exchange across the water table assuming only vertical flow
in the unsaturated zone. This same assumption was used by
Barry et al. [1996]. In this work, both horizontal and verti-
cal flows are incorporated. The new approach also takes
into account the (finite) thickness of the unsaturated zone.

2. Theory

[6] As shown in Figure 1, we consider the water table
fluctuations in a rectangular unconfined aquifer subjected
to the influence of head oscillation at a side boundary
(x¼ 0). The coordinate system and various physical quanti-
ties (parameters) are defined in the figure. The flow in the
saturated and unsaturated zones underlying the water table
behavior is described by Richards’ equation [Richards,
1931],

@�

@t
¼ @

@x
K  ð Þ @�

@x

� �
þ @

@z
K  ð Þ @�

@z

� �
; (1)

where � [L] is the soil water content, � ¼  þ z [L] is the
hydraulic head,  is the pressure head, z [L] is the elevation
and K  ð Þ [LT�1] is the hydraulic conductivity. The model
of Gardner [1958] is used to describe � and K as functions
of  , i.e.,

� ¼ �s � �rð Þ exp � ð Þ þ �r for  < 0; (2a)

� ¼ �s for  � 0; (2b)

and

K  ð Þ ¼ Ks exp � ð Þ for  < 0; (3a)

K  ð Þ ¼ Ks for  � 0; (3b)

where Ks [LT�1] is the saturated hydraulic conductivity
(assumed to be uniform and isotropic) ; � [L�1] is related
to the capillary rise length scale inversely; �s and �r [�]
are the saturated and residual water content, respectively;
and ne ¼ �s � �r is the effective porosity [�].

2.1. Approximation Under the Hydrostatic Pressure
Assumption

[7] Under the assumption of hydrostatic pressure, the hy-
draulic head (�) is constant in the vertical direction and

� ¼ h; (4)

where h is the water table elevation [L]. The pressure head
in the unsaturated zone is given by

 ¼ h� z: (5)

[8] Integrating equation (1) with respect to z from the
impermeable base (z ¼ 0) to the surface (z ¼ Z0) gives,

Z Z0

0

@�

@t
dz ¼

Z Z0

0

@

@x
K  ð Þ @�

@x

� �
dz; (6)

where the no (vertical) flow boundary condition has been
applied at both the base and surface. The left-hand side of
equation (6) can be evaluated as follows,

Z Z0

0

@�

@t
dz ¼� neexp � h� Z0ð Þ½ � @ h� Z0ð Þ

@t
þ ne

@h

@t

� neexp � h� Z0ð Þ½ � @Z0

@t

¼ ne 1� exp � h� Z0ð Þ½ �f g @h

@t
:

(7)

Figure 1. Schematic diagram of water table fluctuations in a rectangular unconfined aquifer under the
influence of a periodic boundary condition.
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[9] Upon evaluation, the right hand side of equation (6)
becomes,

Z Z0

0

@
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K  ð Þ@�

@x

� �
dz¼Ks

@

@x
h
@h

@x
þ 1

�

@h

@x
� 1

�
exp � h�Z0ð Þ½ �@h

@x

� �
:

(8)

[10] Substituting equations (7) and (8) into equation (6)
yields a new governing equation for the water table
dynamics,

ne 1� exp � h� Z0ð Þ½ �f g @h

@t

¼ Ks
@

@x
h
@h

@x
þ 1

�

@h

@x
� 1

�
exp � h� Z0ð Þ½ � @h

@x

� �
:

(9)

[11] Further details of the derivation can be found in the
supplementary material. It can be shown that equation (9)
reduces to the standard Boussinesq model [e.g., Bear,
1972] as �!1 (the case where the unsaturated zone is
neglected).

2.2 Nonhydrostatic Pressure Correction

[12] A nonhydrostatic pressure correction can be made
to equation (5), i.e.,

 ¼ h� zþ P; (10)

where P is the dynamic pressure head [L] and depends on
the vertical (Darcy) flow velocity (w) in the unsaturated
zone, i.e.,

@P

@z
¼ � w

K
: (11)

[13] Mass conservation requires (assuming no recharge)

@�

@t
þ @u

@x
þ @w

@z
¼ 0; (12)

where u is the horizontal (Darcy) flow velocity [L/T].
[14] Integrating equation (12) in the vertical direction

from a location (z) within the unsaturated zone to the sur-
face (Z0) givesZ Z0

z

@�

@t
dzþ

Z Z0

z

@u

@x
dzþ

Z Z0

z

@w

@z
dz ¼ 0: (13)

[15] With no (vertical) flow at Z0, equation (13) leads to

w ¼
Z Z0

z

@�

@t
dzþ
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z

@u

@x
dz; (14a)

withZ Z0

z
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@t
dz ¼ ne
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exp � h� zð Þ½ � � exp � h� Z0ð Þ½ �f g; (14b)
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[16] Thus,
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(15)

where it has been assumed that K � Ksexp � h� zð Þ½ � since
the magnitude of P is generally small compared with that
of (h�z) and hence exp � h� zþPð Þ½ � � exp � h� zð Þ½ �
(i.e., negligible effect of P on K) ; and

P ¼ �
Z Z0

z

@P

@z
dz

¼ 1

�

@2h

@x2
� ne

Ks

@h

@t
þ @h

@x

� �2
" #

1

�
� 1

�
exp � z� Z0ð Þ½ � � Z0 þ z

� �
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(16)

[17] P also varies with x, which leads to an additional
term in equation (8):Z Z0

h
Ksexp � h� zð Þ½ � @P

@x
dz � ne

�2
2exp � h� Z0ð Þ½ � � 2f

þ� Z0 � hð Þexp � h� Z0ð Þ½ �

þ� Z0 � hð Þg @
2h

@x@t
:

(17)

[18] With this term added to the right hand side of equa-
tion (9), the new governing equation for the water table
with a nonhydrostatic pressure correction is derived,

Fne
@h

@t
¼ Ks

@

@x
Mh

@h

@x

� �
þ @

@x
N
@2h

@x@t

� �
; (18a)

with

F ¼ 1� exp � h� Z0ð Þ½ �; (18b)

M ¼ 1þ 1

�h
1� exp � h� Z0ð Þ½ �f g; (18c)

N ¼ ne

�2
2exp � h� Z0ð Þ½ � � 2þ � Z0 � hð Þexp � h� Z0ð Þ½ �f

þ� Z0 � hð Þg:
(18d)

[19] F is positive and smaller than unity, reflecting a
reduction in the effective void space for local water storage
and leading to enhancement of water table fluctuations. M
is larger than unity due to the horizontal flux in the unsatu-
rated zone. N is the nonhydrostatic pressure correction
term, which accounts for the effect of vertical flow in the
unsaturated zone. To make a nonhydrostatic pressure cor-
rection for the saturated zone, the work of Parlange et al.
[1984] and Liu and Wen [1997] can be adopted to include
an additional term in N, i.e.,

N ¼ ne

�2
2exp � h� Z0ð Þ½ � � 2þ � Z0 � hð Þexp � h� Z0ð Þ½ �f

þ� Z0 � hð Þg þ D2ne

3
;

(19)

where D is the average aquifer thickness.
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3. Analytical Solution

[20] Using perturbation, we solved equation (18) subject
to a periodic boundary condition for a semi-infinite aquifer
domain (details in the supplementary material). The first-
order approximation gives the following solution for the
primary frequency (!),

h ¼ Dþ Aexp �xkUS F1ð Þcos !t � xkUS F2ð Þ; (20a)

with

kUS ¼
ffiffiffiffiffiffiffiffi
R1!

2R2

r
; (20b)

NUS ¼
R2

R3!
; (20c)

F1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

NUSffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ NUS

2
p þ NUS

1þ NUS
2

s
; (20d)

F2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

NUSffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ NUS

2
p � NUS

1þ NUS
2

s
; (20e)

R1 ¼ ne 1� exp � D� Z0ð Þ½ �f g; (20f)

R2 ¼ KsDþ Ks
1

�
1� exp � D� Z0ð Þ½ �f g; (20g)

R3 ¼
ne

�2
2exp � D� Z0ð Þ½ � � 2þ � Z0 � Dð Þexp � D� Z0ð Þ½ �f

þ� Z0 � Dð Þ þ D2�2

3

�
;

(20h)

where A is the amplitude of the hydraulic head oscillations
at the boundary. When ! approaches infinity, F1 ¼ 1 and
F2 ¼ 0, and water table fluctuations become standing
waves. The second-order solution was also derived (supple-
mentary material).

[21] To validate the approximate analytical solution,
equation (18) was solved numerically. A harmonic analysis
on the predicted water table fluctuations given by the nu-
merical solution was conducted to determine the damping
rate and wave number (phase shift) associated with the
oscillations at the primary frequency (!). Comparison of
these results with the analytical predictions shows reason-
ably good agreement between the two (Figure 2). The
results also display considerable variations in the damping
rate and wave number with the thickness of the unsaturated
zone (with Z0 varying for fixed D). The variations are
not monotonic – both parameters increase with Z0 to a max-
imum followed by a gradual decline as described by equa-
tion (20).

3.1. Dispersion Relation

[22] The dispersion relation given by the new analytical
solution was compared with those of previous solutions,
based on the experimental case by Cartwright et al. [2003].
This relation characterizes the water table fluctuations and

can be expressed by a complex number (k) combining the
damping rate (kr) and wave number (ki), i.e., k ¼ kr þ iki.

[23] The solution for the water table fluctuations based
on the traditional Boussinesq equation gives the following
dispersion relation [Parlange et al., 1984],

k ¼ 1þ ið Þ
ffiffiffiffiffiffiffiffiffiffiffi
ne!

2KsD

r
; (21)

where kr ¼ ki. Cartwright et al. [2003] found kr=ki � 2:3
based on the results from their sand flume experiment. The
condition kr=ki > 1 can be explained by the capillary effect
and/or the vertical flow effect. For the former effect, Barry
et al.’s [1996] solution gives,

k ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ne!

2DKs

NCARffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ NCAR

2
p þ NCAR

1þ NCAR
2

" #vuut

þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ne!

2DKs

NCARffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ NCAR

2
p � NCAR

1þ NCAR
2

" #vuut i; (22a)

with

NCAR ¼
Ks

B!
; (22b)

where B is an equivalent capillary fringe thickness [Par-
lange and Brutsaert, 1987]. For the latter effect, Nielsen
et al. [1997] suggested the following dispersion relation for
medium-depth aquifers,

kD tan kD ¼ i
ne!D

Ks
: (23)

Figure 2. Comparison between the damping rate and
wave number of the primary (!) water table fluctuations
given by the analytical and numerical solutions. Stars and
circles are the numerical results of the damping rate and
wave number, respectively. Dashed and dash-dotted lines
are the analytical predictions of the damping rate and wave
number (equation (20a)), respectively. Parameters values
used were A¼ 1 m, D¼ 5 m, �¼ 1 m�1, Ks¼ 0.00047 m/s
and ne¼ 0.3.
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[24] A complex porosity (nc) instead of ne can be used in
equation (23) to further incorporate the capillary effect
[Cartwright et al., 2003],

nc ¼
ne

1þ 2:5 i ne!H 

Ks

	 
2=3
: (24)

[25] Cartwright et al. [2003] found that neither equation
(22) nor equation (23) described well the dispersion rela-
tion observed in data from their laboratory experiment
(Figure 3). Direct application of the present solution with
measured parameter values also failed to predict the obser-
vation; however, the data fell on the dispersion relation
curve. With the saturated hydraulic conductivity adjusted
from the measured value (0.00047 m/s) to 0.0008 m/s, the
present solution predicted the experimental results. Consid-
ering the possible uncertainty associated with the Ks mea-
surement, this adjustment by a factor less than two was
relatively small, indicating the applicability of the disper-
sion relation given by the present solution.

3.2. Mean Water Table Elevation (Overheight)

[26] Oceanic oscillations induce not only water table
fluctuations but also an overheight–i.e., the mean water ta-
ble elevation far inland is higher than the mean water
(head) level at the boundary [Knight, 1981]. The overheight
increment (�), due to nonlinearity, is given by [e.g.,
Parlange et al., 1984],

� ¼ D

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1

2

A

D

� �2
s2
4

3
5 � D 1þ 1

4

A

D

� �2
" #

: (25)

[27] Barry et al. [1996] found that the capillarity affects
the time-averaged mean-square height of the water table.
However, as the landward distance approaches infinity,
their result reduces to equation (25). The present solution
to second order as shown in the supplementary material
also predicts the mean water table with an overheight,

HOVER ¼ D 1þ 1

4
NOVER

A

D

� �2
" #

; (26a)

with

NOVER ¼
R4F1 � R5F2!

R2F1
; (26b)

R4 ¼ KsD 1� exp � D� Z0ð Þ½ �f g; (26c)

R5¼
ne

�2
exp � D�Z0ð Þ½ ��Dþ�2D Z0�Dð Þexp � D�Z0ð Þ½ ���D
� �

;

(26d)

where the dimensionless number NOVER is positive and
mostly less than unity for the physical conditions considered,
indicating the existence of a water table overheight but less
than that predicted by equation (25). As ! increases, F2

decreases and approaches zero and the overheight

approaches D 1þ 1
4 A=Dð Þ2R4=R2

h i
, which is still lower

than the traditional overheight value for 0 < R4=R2 < 1. As
shown in Figure 4, NOVER is affected by and increases with
Z0 until an asymptotic value is reached. This effect of finite
unsaturated zone thickness is particularly strong for small �
(strong capillarity).

4. Concluding Remarks

[28] Parlange and Brutsaert’s [1987] work enabled
investigation into the capillary effect on water table fluctua-
tions in coastal unconfined aquifers induced by oceanic
oscillations and has stimulated further studies in the area.
In particular, their work provided an explanation for high-
frequency water table fluctuations caused by waves.

Figure 3. Comparison of amplitude damping rates krD
(real part of kD) and wave numbers kiD (for the primary
frequency !) given by different dispersion relation equa-
tions. The triangle denotes the measured value based on the
experimental result. The circle on each curve indicates the
calculated values based on measured parameter values and
using the corresponding dispersion relation equation. The
parameter values used were T ¼ 772 s, D¼ 1.094 m,
ne¼ 0.32, Ks¼ 0.00047 m/s, H ¼ 0.55 m and �¼ 1 m�1.

Figure 4. Variation of overheight index (NOVER ) with Z0

for different � values (KS ¼ 0.0005 m/s, D¼ 5 m,ne¼ 0.3
and T ¼ 12 h).
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[29] Here we have extended their approach to derive a
new governing equation and analytical solution that
incorporate both horizontal and vertical flows in govern-
ing the water table dynamics as well as the effect of the
finite size of the unsaturated zone. These effects are
shown to influence the dispersion relation of the water
table fluctuations and the mean water table height.
While the comparison with experimental data indicates
improved predictions by the present solution compared
with those given previously, further validation is
required, particularly in relation to the effect of the fi-
nite unsaturated zone thickness. New experiments must
be carried out under controlled conditions to provide
comprehensive data sets for the validation. These experi-
ments should include measurements of hydraulic heads
(capillary pressure) in the unsaturated zone and tracer
tests to track the water table dynamics and unsaturated
flow near the water table.
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