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[1] An earlier infiltration equation relied on curve fitting of infiltration data for the
determination of one of the parameters, which limits its usefulness in practice. This
handicap is removed here, and the parameter is now evaluated by linking it directly to soil-
water properties. The new predictions of infiltration using this evaluation are quite accurate.
Positions and shapes of soil-water profiles are also examined in detail and found to be
predicted analytically with great precision.
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1. Introduction and Theoretical Background

[2] The infiltration process of soil enters into most
hydrological problems, e.g., irrigation, erosion, and
weather forecasting, among many. Physically based infil-
tration equations go back at least to Green and Ampt
[1911] equation, with greater understanding being obtained
with Richards [1931] equation. Two very thorough reviews
of most of the existing infiltration equations based on Rich-
ards equation can be found in Basha [2011] and in Triadis
and Broadbridge [2010]. Those discussions will not be
repeated here except when they impact this paper directly.

[3] The present paper continues an approach which is
based on Green and Ampt [1911] and Richards [1931]
equations. Parlange et al. [1982] introduced a three-param-
eter infiltration equation valid for a saturated soil surface.
Those parameters are sorptivity, saturated conductivity,
and an interpolation parameter �, which goes from 0, when
the equation reduces to zero obtained by Green and Ampt
[1911], to 1 when the equation reduces to one obtained
earlier by Talsma and Parlange [1972; see also Smith and
Parlange, 1978]. This three-parameter equation is dis-
cussed in detail by Basha [2011] and Triadis and Broad-
bridge [2010] following new interpretations. A fourth
parameter was introduced by Haverkamp et al. [1990] to
represent ponding on the surface. Barry et al. [1995] used

this fourth parameter � as a curve fitting parameter but sim-
plified the equation by taking �¼ 1.

[4] As in Barry et al. [1995], we keep �¼ 1 even though
values of � less than one can be used to improve the agree-
ment with numerical results for infiltration [Parlange et al.,
1985; Basha, 2011]. As this paper concentrates on a dis-
cussion of �, we keep �¼ 1. In addition, for capillary rise
�¼ 1 [Kunze et al., 1985], and if � is a true physical param-
eter, then the same value should hold for infiltration. How-
ever, it is quite easy to reintroduce � in the equations if so
desired.

[5] In a recent paper on time compression approxima-
tions (TCAs) by Hogarth et al. [2011], relationships
between the cumulative infiltration I and the surface flux q
were examined in detail based on an expansion procedure
started by Parlange et al. [1997]. For the purpose of TCA,
it was sufficient to consider the cases when either the sur-
face flux or the surface water content is constant, even
though the method can be applied for arbitrary surface con-
ditions. In this paper, we are primarily concerned with infil-
tration and the profile determination following the same
basic procedure [Parlange et al., 1997]. The profiles are
given by equation (1) [see, e.g., Hogarth et al. [2011, equa-
tion (2)].

Z�s
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q�=�s � k �
� � ¼ zþMz2; (1)

where � is the water content at vertical position z; z ¼ 0
at the surface with �s being the water content at z ¼ 0 and
time t. D �ð Þ and k �ð Þ are the soil-water diffusivity and con-
ductivity, respectively. When �s ¼ �sat (the saturated
value), M is taken as

2
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¼
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0
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Z �sat

0
�Dd�
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[6] For constant q, the M-term is negligible [Hogarth et
al., 2011; see also Sivapalan and Milly, 1989]. For simplic-
ity, we assume that the initial water content �i can be taken
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as constant. As a result, � stands for the water content
minus �i. Similarly, k and q stand for the conductivity and
flux minus the conductivity at �i. Taking a nonuniform ini-
tial water content introduces complications in writing the
equations but with no theoretical difficulties, following the
approach of Boulier et al. [1984].

[7] It is important to note that neglecting M for constant q
is necessarily approximate as M ¼ 0 is exact only when q=�s

is independent of time [Fleming et al., 1984]. There have
been many papers exploring the accuracy of equation (1)
with M ¼ 0 for constant q and possible alternatives to the
use of q�=�s in the integral [see, e.g., Kutilek, 1980; Boulier
et al., 1984; Si and Kachanoski, 2000; Evanselides et al.,
2005]. The conclusion is that in practice, the use of q�=�s is
very accurate, in agreement with the suggestion originally
made in equation (8) of Parlange [1972], as long as the initial
water content is not too large [Boulier et al., 1984].

[8] Figure 1 summarizes the case considered by Boulier
et al. [1984] and Parlange et al. [1985] for constant q using
a Grenoble sand whose properties are given in those two
papers. The numerical and analytical results are essentially
undistinguishable in Figure 1. This was not the case with
Boulier et al. [1984] and Parlange et al. [1985], where nu-

merical results showed dispersion near the wetting front.
Here the numerical results were obtained using COMSOL
finite element numerical software (COMSOL Multiphysics,
version 3.5a, 2008, COMSOL. Inc., http://www.comsol.
com/). This software eliminated the numerical dispersion
and thus can be trusted to provide accurate solutions at the
wetting front. Note that using equation (1) with M ¼ 0
requires the knowledge of �s tð Þ which is obtained by con-
servation of mass, integrating equation (1) to obtain

Z�s

0

D�d�

q�=�s � k
¼ qt: (3)

[9] Note also that the measured profiles differ slightly
from the predicted profiles simply reflecting that the prop-
erties, obtained from many experiments, were not exactly
those of the particular soil sample used for the experiment
in Figure 1. Experimental scatter of this nature is not unex-
pected and is sometimes used, wrongly, to justify poor ap-
proximate analytical solutions. Rather, analytical
approximations should be as accurate as possible so that
differences with observations are unambiguously linked to
experimental uncertainties and not to inaccurate models.
The solution for constant q and M ¼ 0 will be used later
for comparison to the solution with M 6¼ 0:

2. Cumulative Infiltration and Flux With Surface
Saturation

[10] We are now using the profiles with M 6¼ 0, given by
equation (2) and �s ¼ �sat . The first step is to derive the
equivalent to equation (3) to obtain q(t). Several expres-
sions have been used in the past that related I and q: Equa-
tion (20) of Hogarth et al. [2011] gave

Z�sat

0

D�d�

q�=�sat � k
¼I þ

Z �sat

0
�sat � �ð ÞDd�=2q: (4)

[11] The last term is an approximation of M

Z �sat

0
z2d�

for short times, such that Iq ’ S2=2, where S is the sorptiv-

ity approximated by

S2 ’
Z�sat

0

D �sat þ �ð Þd�: (5)

[12] Equation (4) is identical, with minor notation differ-
ences, with equation (9) of Parlange et al. [1982]. If one
ignored the M-term altogether, then the first term in equa-
tion (4) would have to be corrected for the resulting equa-
tion to hold in the short time to obtain equation (18) of
Barry et al. [2007]:

S2

2�sat

Z�sat

0

Dd�

0
@

1
AZ

�sat

0

D�d�

q�=�sat � k
¼ I : (6)

[13] Finally, equation (6) can be modified to take into
account a small negative potential hstr , with the soil

Figure 1. Water profiles in a Grenoble sand for constant
flux at the surface. The solid lines represent experimental
observations [Boulier et al., 1984]. The numerical predictions,
dotted lines, and the analytical results from equations (1) and
(3) with M ¼ 0, dashed lines, are essentially identical.
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remaining saturated for h > �jhstr j. Conceptually, jhstr j
can be associated with the largest pores in the soil [Haver-
kamp et al., 1990]. In practice, the value of jhstr j cannot be
measured independently and instead was obtained by curve
fitting infiltration data [Barry et al., 1995]. Equation (6)
then becomes

S2

2�sat

Z�sat

0

Dd�

1� �ð Þ
Z�sat

0

D�d�

q�=�sat � k
¼ I � �S2=2

q� ksat
; (7)

where

� ¼ �2ksat hstr �sat

S2
: (8)

[14] Note that in equation (7) of Barry et al. [1995] and
equation (16) of Haverkamp et al. [1990], the equations
were further simplified by assuming

D

�sat

Z�sat

0

Dd� ¼ d k=�ð Þ=d�

ksat
: (9)

[15] Since k increases rapidly with �; k=� is hardly dif-
ferent from k=�s: Making that substitution in equation (9)
and combining it with D ¼ kdh=d�; where h is the poten-
tial, leads to an exponential dependence of k on h; i.e., the
standard Gardner relation. Thus, in our case, equation (9)
implies a soil hardly different from a Gardner soil. It is
clear that eliminating D from the integral of equation (7),
using equation (9), results in an integral, where k=� is the
variable, which can be integrated explicitly as done by
Barry et al. [1995] and Haverkamp et al. [1990]. This sim-
plification will be discussed further later on.

[16] In the present paper, the soil surface is taken at a
zero potential. There is no difficulty to include a ponding
term hsurf > 0 which is simply added to jhstr j as done by
Haverkamp et al. [1990] and Barry et al. [1995]. It is not
considered here as it corresponds only to changing the
value of �.

[17] Altogether, we consider two possible relations
between I and q, equations (4) and (7), which could be
simplified using equation (9). Equation (6) is, of course,
just equation (7) with �¼ 0. Obviously, for the Grenoble
sand used for our illustration, jhstr j and � are physically
equal to zero. However, Barry et al. [1995] took a nonzero,
and hence nonphysical value to improve infiltration predic-
tion, keeping � only as a curve-fitting parameter. In the fol-
lowing, we first discuss the results obtained from equation
(4). Then, we follow the same approach starting with equa-
tion (7) and compare the results.

[18] Since we paid special attention to short-time infiltra-
tion to obtain equation (4), we are first considering the Tay-
lor expansion of the equation for large q, keeping the first
two terms only. Equation (4) yields

Iq ’ S2=2þ �2
sat

Z �sat

0
k D=�ð Þd�=q: (10)

[19] Finally, we can simplify equation (4) using equation
(9) to obtain

I ¼
�sat

Z �sat

0
Dd�

ksat
1n

q

q� ksat
�
Z �sat

0
�sat � �ð ÞDd�

2q
: (11)

[20] To obtain the relationships between q and t; we
differentiate equation (4) with respect to time, replacing
dI=dt by q; to obtain a differential equation for q which is
easily integrated to obtain

t ¼
Z�sat

0

D�2

k2�sat
ln

q�=�sat � k

q�=�sat

� �
d�þ

Z�sat

0

D�2d�

k�sat q�=�sat � kð Þ

� 1

4q2

Z�sat

0

�sat � �ð ÞDd�; (12)

and using equation (9) in the two integrals so that only k=�
enters as variable, we obtain

t ¼
�sat

Z �sat

0
Dd�

k2
sat

1n
q

q� ksat
� ksat

q

� �
� 1

4q2

Z�sat

0

�sat � �ð ÞDd�:

(13)

[21] Starting now with equation (7), we proceed as
before; the Taylor expansion for large q; keeping the first
two terms only, or

Iq ’ S2=2þ
�

S2=2�sat

Z �sat

0
Dd�

� �
�2

sat

Z �sat

0
k D=�ð Þd� 1� �ð Þ

þ �S2ksat =2

�
=q: ð14Þ

[22] Note that for �¼ 0, equations (10) and (14) differ
by the term

1� S2

2�sat

Z �sat

0
Dd�

� �
’

Z �sat

0
�sat � �ð ÞDd�

2

Z �sat

0
�sat Dd�

; (15)

which is small. In all our estimates, we keep terms up to
that small order and ignore terms of higher order, i.e.,
square terms.

[23] If we use equation (9) to estimate the I=q terms in
equation (14), then equation (14) reduces to equation (10)
if we take

� ¼ �0 ¼
Z �sat

0
�sat � �ð ÞDd�=2�sat

Z �sat

0
Dd�: (16)

[24] Finally, we simplify equation (7) when equation (9)
holds and obtain
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I ¼ S2

2ksat
1� �ð Þ1n

q

q� ksat
þ �S2

2 q� ksatð Þ : (17)

[25] We now differentiate equation (7) with respect to
time and integrate the resulting differential equation to
obtain

t ¼ S2 1� �ð Þ

2�sat

Z �sat

0
Dd�

Z�sat

0

D�2

k2�sat
1n

q�=�sat � k

q�=�sat

� �
d�

2
4

þ
Z�sat

0

D�2d�

k�sat q�=�sat � kð Þ��
�S2

2k2
sat

1n
q

q� ksat
� ksat

q� ksat

� �
;

(18)

and with equation (9)

t ¼ S2

2k2
sat

1� 2�ð Þ1n
q

q� ksat
� 1� �ð Þ ksat

q

� �
þ �S2

2ksat q� ksatð Þ :

(19)

[26] Figure 2 compares q tð Þ given by equations (12),
(13), (18), and (19) with � from equation (16) equal to
0.05, with the numerical results.

[27] Several results are apparent. First, equation (12)
provides an excellent approximation for q tð Þ when com-
pared to the numerical results. The results predicted by
equation (18) are equally good if we take � ¼ �0 ¼ 0:05 as
given by equation (16). Interestingly, equations (13) and
(19) are still in basic agreement with each other, with
�¼ 0.05, but they differ significantly from the numerical
results. This discrepancy simply shows that the Gardner-
type relation of equation (9) is not exact for the Grenoble
sand, and not surprisingly, this assumption affects equa-
tions (18) and (19) in a similar manner.

[28] We know [Barry et al., 1995] that equation (19) can
be curve fitted accurately but only by using a � differently
from �0. Of course, equation (19) is easy to use in practice
once � is known as it relies only on the knowledge of

two additional parameters S and ksat (besides �), whereas
equation (12) requires the estimations of two integrals
(based on knowing D and k of �) for each value of the flux
q: Furthermore, equation (19) can be used easily in the case
of infiltration with ponding [Barry et al., 1995].

[29] The main inconvenience of using equation (19) as in
Barry et al. [1995] is that � in that paper had to be obtained
by curve fitting as the theoretical value of equation (16)
shows poor accuracy (see Figure 2). Instead, we are now
going to estimate a constant value of �, i.e., independent of
the flux, based on soil properties. For that purpose, we first
remember that as shown in Figure 2, equation (7) is in
good agreement with both the numeric and equation (4) for
� ¼ �0 ¼ 0:05: Then, the result for large q, i.e., equation
(11) with � ¼ �0 ¼ 0:05ð Þ; is taken as equal to the result for
� 6¼ �0 but obtained when equation (9) is used. This
straightforward calculation gives

� ¼ 2�sat

ksat

Z �sat

0
Dd�

Z�sat

0

kD

�
d� 1� �0ð Þ þ 2�0 � 1: (20)

[30] Of course, if equation (9) truly holds, equation (20)
yields � ¼ �0: For our particular example, this gives
instead � ¼ 0:39, and as shown in Figure 3, this value,
when used in equation (19), gives a very good estimate of
q tð Þ as expected.

[31] To estimate the sensitivity of the results to the value
of �, a slightly different value, � ¼ 0:33; is also considered.
This value was chosen by curve fitting equation (19) to the
numerical results for t�1000s; when � ¼ 0:39 is not quite
as good. However, � ¼ 0:39 is clearly better on average, if
we combine equations (17) and (19) to predict I tð Þ, then as
shown in Figure 4, the choice of � ¼ 0:39 is neatly superior
to that of � ¼ 0:33: Altogether, then, equation (20) gives
an adequate physical estimate of �, requiring no curve fit-
ting to predict either I tð Þ or q tð Þ with the very simple equa-
tions given in equations (17) and (19).

Figure 3. Fluxes obtained numerically (solid line) and
from equation (19): dashed line with � ¼ 0:39 from equa-
tion (20) and stars with � ¼ 0:33 obtained by curve fitting
for long times.

Figure 2. Fluxes for a saturated soil surface. Numerical
results (solid line) and analytical approximations: stars with
equation (12), squares with equation (13), triangles with
equation (18), and dashed line with equation (19). In both
equations (18) and (19), � ¼ �0 ¼ 0:05 from equation (16).
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3. Water Content Profiles

[32] We are primarily interested in assessing the impact
of the z2-term on the profile given by equation (1). The use
of equation (1) means that at the difference of our results for
I or q; we do not attempt to obtain � zð Þ in terms of a few
simple physical parameters. Instead, we require to integrate
the left-hand side of equation (1) for each value of q; i.e.,
time. Our estimates of I and q were based on equation (1);
hence, it is important to check the accuracy of equation (1)
in predicting � z; tð Þ: In this paper, we carried out the calcula-
tion of the I and q estimates first, since applying equation
(1) requires knowing q tð Þ: This section is more of theoretical
interest like equation (1), whereas I and q as given by equa-
tions (17) and (19), using equations (16) and (20) for �0 and
�, are simple and of greater practical interest.

[33] For the illustration, we consider a flux q¼ 50 cm/h
with either equation (12) or (19) giving t¼ 51.1 s. Note
that our illustration is for a short time, i.e., a large q: As
shown in equation (2), this enhances the M-value and hence
the impact of the z2-term on the profile, which we try to
assess. This means that without the z2-term, we can also
compare with the profile obtained at ponding with a con-
stant flux of q¼ 50 cm/h, since the chosen flux is larger
than ksat :

[34] Using equation (3) with �s¼ �sat gives the time at
ponding, tp ¼ 97:56 s, i.e., about twice the time, 51.1 s,
when q¼ 50 cm/h for �s ¼ �sat for all times. This, of course,
is because when �s ¼ �sat ;q is larger than q¼ 50 cm/h for
t< 51.1 s, and for infiltration with q¼ 50 cm/h, a longer
time is required to accumulate a similar amount of water. At
97.6 s, the amount of water is I¼ qtp¼ 1.355 cm, whereas
equation (4), for �s ¼ �sat ; gives I ¼ 1:297 cm ; which is
4.5% less than 1.355 cm due to the last small term in equa-
tion (4). The results are shown in Figure 5a and with more
details near the wetting front in Figure 5b. On Figure 5b, the
slight differences between the analytical results and the
numerics are visible (they are not in Figure 5a).

[35] If we now look at the profile, with the z2-term, but
for I ¼ 1:355 cm ; then the time is obviously longer, 55.3 s,

and the flux smaller, 48.52 cm/h. The two profiles for I ¼
1:355 cm ; one with z2 for �s ¼ �sat ; and one without z2 for
constant flux, q¼ 50 cm/h, are very close in shape. Hence,
the presence of the z2-term affects the position of the pro-
files significantly, by 4.5%, but not their shape. We note
that the z2-term reduces the estimate of z; and the more so
as z is larger making the profile more ‘‘square’’ as shown in
Figures 5a and 5b.

[36] As also shown in Figures 5a and 5b, there is an
excellent agreement between analytical and numerical
results. The analytical results are somewhat complex, and
to get some physical insight in the infiltration process, we
are going to use some simplifications which make the
results more transparent and are still quantitatively

Figure 4. Infiltration I as a function of time obtained
numerically (solid line) or analytically, combining equa-
tions (17) and (19) for � ¼ 0:33 (stars) and � ¼ 0:39
(dashed line).

Figure 5. Comparison of profiles z �ð Þ for saturated sur-
face and constant flux. (a) Profiles over the whole range of
�; showing little difference between the numerics (solid
lines) and analysis (dashed lines). (b) Details of the profiles
near the fronts. In descending order, from the top: (1) pro-
files for constant q, i.e., without the z2-term, when q¼ 50
cm/h and I ¼ 1:355 cm at ponding; (2) profiles when �s ¼
�sat at all times when I ¼ 1:355 cm ; with the z2-term; and
(3) profiles when �s ¼ �sat at all times when q¼ 50 cm/h,
with the z2-term.
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appropriate. The constant flux profile is given subscript 1,
the profiles for �s ¼ �sat are assigned 2 and � for q¼ 50
cm/h and for I ¼ 1:355 cm; respectively. To be specific,
we consider the front positions, denoted with subscript f,
and we see in Figure 5 that z1f ; z2f ; and z�f are close, and
z1f � z2f

� �
is an order of magnitude smaller and z1f � z�f

� �
is another order of magnitude smaller.

[37] To the lowest order, as long as q�=�s is not too close
to k, equation (1) shows that the front locations are in the
vicinity of

zf ’

Z �sat

0
Dd�

q� ks
; (21)

which for the present example, equals 6.2 cm, which is
roughly correct. Then,

z1 f � z2f ’ Mzf
2 (22)

[38] or from equations (2) and (21),

z1f � z2f ’
q=2

q� ksð Þ2
Z�sat

0

1� �
�sat

� �
Dd� (23)

which is basically smaller than zf by an order of
�0q= q� ksð Þ ’ 0:073 so that z1f � z2f ’ 0:45 cm ; which
is roughly correct (slightly too large).

[39] The value of z1f � z�f
� �

; as shown in Figure 5b, is
very small. Using order of magnitude estimates (calcula-
tions available upon request), we obtain

z1f � z�f
� �

’ z1f � z2f

� �
2�: (24)

[40] This shows that z1f � z�f
� �

is an order of magnitude
less than z1f � z2f

� �
as obtained numerically. For the case

of Figure 5b, equation (24) yields z1f � z�f
� �

’ 0:045 cm ,
which is basically correct and only very slightly too small.

4. Conclusion

[41] In practice, i.e., in the field, one is primarily inter-
ested in knowing I and q as a function of time, which is
why this paper is primarily devoted to finding an appropri-
ate � to be used in equations (17) and (19). Originally
[Barry et al., 1995], this third parameter was obtained by
curve fitting to infiltration data. Here we derived instead a
theoretical relation in equation (20) giving � in terms of
soil properties so that no empirical curve fitting is neces-
sary. Analytical and numerical results were found to be in
excellent agreement using a Grenoble sand for illustration.

[42] The method is based on equation (1) giving the
water content � as a two-term expansion in z and z2: For the
Grenoble sand illustration, we checked that the profiles, nu-
merical and analytical, are in excellent agreement using
q tð Þ as determined in equation (19). We found that the z2-

term affects primarily the position of the profile rather than
its shape. Finally, we derived some very simple expressions
showing the relative positions of the wetting fronts, which
provide a good physical insight in the infiltration process,
either under constant flux or constant water content at the
surface. An interesting result is that the shapes remain very
similar for both cases, but positions have to be assessed
carefully.
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