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Abstract 
Recently, kinetic Monte Carlo simulation (kMC) has been successfully applied to describe bulk fluid behaviour, 
vapour-liquid equilibrium and adsorption on a graphite surface [1]. Its advantage over Metropolis-Monte Carlo 
lies in the excellent sampling of the energy space for the direct determination of the chemical potential.  In this 
paper, we address the mechanics of the displacement of a particle, which is the only step in kMC.  By invoking 
the mean free path concept and the average travel distance, we establish the connection between the particle 
sampling of the volume space and the distance of travel of the particle related to the mean free path through the 
Beer-Lambert law.  We apply this procedure to vapour-liquid equilibrium in bulk fluid argon, and to adsorption 
of argon on a graphite surface, and demonstrate that the results are entirely consistent with previous simulations. 
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1. Introduction 

Monte Carlo (MC) simulations with the Metropolis algorithm (importance sampling) [2, 3] 

have been widely used in studying equilibrium properties of bulk fluids and adsorption 

systems [4-10].  A new scheme, which has its basis in a kinetic Monte Carlo (kMC) method, 

has recently been introduced to study bulk fluid behaviour and vapour-liquid equilibrium, and 

it has shown great promise as an alternative to Metropolis MC [1].  One distinct advantage of 

kMC is that no moves are rejected in any kMC step, and therefore the energy space is sampled 

with real particles; a consequence being that the chemical potential is calculated very 

efficiently.  The only basic move in the kMC method is the selection of a particle based on its 

mobility and its movement to a random position (uniform sampling) within the simulation 

box [1] which allows the system to evolve rapidly to an equilibrium state.  To provide a basis 

for this kMC step we introduce in this paper a concept of mean free path (MFP), which 

recognizes the density dependence of the mean distance between molecular collisions.  We 

explore a number of schemes that determine the move of a selected particle, and establish an 

algorithm for the so called MFP-kMC.  This is illustrated by three examples using argon as a 

model fluid: (1) bulk fluid behaviour, (2) vapour-liquid equilibrium and (3) adsorption on a 

flat graphite surface. 

 

2. Theory 

The kinetic Monte Carlo method is described in [1], and it has been shown to be very 

successful in the description of a number of systems: including gaseous and liquid bulk 

phases, vapour-liquid equilibria, vapour-solid equilibria, adsorption of argon, nitrogen and 

carbon dioxide on a graphite surface and in nanopores.  With the exception of bulk fluids of 

infinite extent, the distribution of fluid density is generally non-uniform, making the 

application of conventional MC less efficient because of (1) the small maximum 

displacement length (which is governed by the dense regions of the system) leading to poor 

sampling of the rarefied regions and (2) high rejection of attempted moves or insertion in the 

dense regions.  The kMC method does not suffer from these disadvantages.   
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2.1 Potential energies: 

Adsorbate-Adsorbate and Adsorbate-Solid potential energies 

We use the 12-6 LJ equation to describe the pairwise interaction energy between two 

molecules i and j: 
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The solid-fluid potential energy is calculated from Steele 10-4-3 potential energy equation 

[11, 12]: 
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where ∆ is the spacing between two adjacent graphene layers (0.335nm), and ρs is the carbon 

surface density of the graphene layer (38.2nm-2).  These potential energy equations are used 

to illustrate the method that we would like to present in this paper.  Any other forms of 

interaction energy equations could also be used. 

 

Particle energies: 

The interaction energy of each molecule i with surrounding molecules and the solid surfaces 

is: 

    , ,
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where ,i jϕ  is the pairwise interaction energy between molecules i and j, and ,i Sϕ  is the 

interaction energy of molecule i and the solid surfaces.   

        

 

2.2 Models: 

2.2.1.  Bulk Fluids 

The simulation box is a cubic box with periodic boundary conditions imposed on boundaries 

in all directions.   
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2.2.2.  Vapour-Liquid Equilibrium 

The simulation box is a rectangular box containing N particles; the dense phase is placed in 

the middle of the box and the bulk gaseous phase at the two ends, so that there are two 

interfaces in the system.  Periodic boundary conditions are applied in all directions.   

 

2.2.3.  Graphite surface: 

The simulation box has linear dimensions of Lx, Ly and Lz, where z is the direction normal to 

the graphite surface.  Periodic boundary conditions are applied in the x and y-directions.  The 

top and bottom of the simulation box are simulated as graphite surfaces. 

 

2.3 Particle mobilities and chemical potential energy 

The total mobility of all molecules in the system is expressed by: 
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   (4) 

where νi is the mobility of molecule i.  This is a measure of how fast the system evolves, and 

is inversely proportional to the time that the system spends in a given configuration.  The 

duration ∆t of a configuration is independent of any succeeding event, and is given by  

    
1 1lnt
R p

 
∆ =  

 
     (5) 

where p is the random number (0 < p < 1).   

 

The chemical potential of the system is calculated from: 

    3ln RkT
V

µ
 

= Λ 
 

     (6) 

where Λ is the thermal de Broglie wavelength and R  is a time average, calculated from: 
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where M is the number of kMC steps.  We can also calculate the chemical potential of a 

particular region by replacing the variables in eq. (6) by those corresponding to that region. 
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2.4 The Mean Free Path Concept in kMC 

The mean speed of a molecule of mass m at temperature T is given by  

8kTv
mπ

=     (8) 

 

The mean distance between collisions is given by 

     
2

1
2

λ
πσ ρ

=      (9) 

A particle is chosen according to the Rosenbluth scheme based on the mobility R [1] and 

given a random direction, which is obtained by the quarternion method [2].  The new position 

of the particle is selected in a random direction and the distance that it is allowed to travel is: 

     1lnd
p

λ  
=  

 
     (10) 

where p is a random number.  Eq. (10) is derived from the Beer-Lambert law which gives the 

probability that a particle will travel a distance d as ( )exp /d λ− . The mean distance travelled 

after many collisions is: 

     
0

exp xx dx λ
λ

∞
 − = 
 ∫     (11) 

 

3. Results and Discussion 

3.1. Homogeneous Bulk Phase 

To study the behaviour of a homogeneous bulk phase using the mean free path (MFP) 

concept in the kinetic Monte Carlo (kMC) simulation method, we have chosen argon at 87.3K 

as an illustrative example.  The dimensions of the simulation box are 10 times the collision 

diameter of argon for all directions, and 2×106 and 5×106 kMC steps are applied for the 

equilibration and sampling stages, respectively.  The results obtained by using conventional 

kMC and the new MFP-kMC method are shown in Figure 1 together with the results from the 

Equation of State (EOS) of Johnson et al. [13] which was derived from molecular simulation 

of LJ molecules.  The simulation results from these two schemes agree well with the EOS 

along the stable vapour and liquid branches.  However, in the unstable region there is 

substantial fluctuation in the MFP-kMC results and there is a significant difference between 

these and the results from the conventional kMC.  It should be noted that we have used the 
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same number of kMC steps in these two schemes.  We attribute these discrepancies to an 

insufficient number of kMC steps in the MFP scheme.  To test this we increased the number 

of kMC steps to 1×107 for both the equilibration and sampling stages.  The new simulation 

results are shown in Figure 2 by the points marked with the symbol ×, where it is clear that 

the agreement between MFP-kMC, conventional kMC and the EOS of Johnson et al. is much 

improved, even though there are some modest fluctuations in the unstable region.  

Simulations with a further increase in the number of kMC steps to 2×107 and 5×107 for 

equilibration and sampling stages, are shown as the square symbols in Figure 2, and show 

that the fluctuations in the unstable region are substantially reduced.  This example confirms 

that the MFP concept is valid and serves to show that the microscopic origin of the kMC 

method has a basis in the movement of molecules within the framework of the kinetic theory 

of gases.  The key parameter, the mean free path, is calculated from eq. (9) and is inversely 

proportional to the density of the system.   

 
(a) 

 
(b) 

Figure 1:  Argon pressure versus density at 87.3K over the whole pressure/density range: (a) linear scale and (b) semi-
logarithmic scale. 
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Figure 2:  Comparison of Argon pressure versus density at 87.3K obtained with conventional kMC and with MFP-kMC with 
longer cycles. 

For homogeneous fluids, the density used is the average density in the simulation box.  

However, for inhomogeneous systems, where density varies from one region to another, it is 

no longer obvious which density should be used in the calculation of the mean free path.  To 

examine this question we have chosen two examples of inhomogeneous systems; one is the 

two-phase system of vapour and liquid separated by a flat interface, and the other is 

adsorption on a graphite surface.  Once again, we have used the LJ argon model for these two 

examples. 

3.2. Vapour-Liquid Equilibria 

3.2.1 The effects of temperature 

The dimensions of the simulation box are 10σ×40σ×10σ (the longest dimension being in the 

y-direction perpendicular to the two interfaces separating a liquid region in the middle from 

the two gaseous regions).  The kMC simulation was started with 997 particles arranged at 

lattice points in the middle of the box such that the initial density equals to the liquid density 

of argon.  For both conventional kMC and the MFP-kMC, 1×107 kMC steps were used for 

both the equilibration and sampling stages.  The density distributions in the y-direction, in 

Figure 3, show that these simulation results agree fairly well with each other.  The 

thermodynamic properties derived from these simulations are given in Table 1, together with 

the experimental data.  Both MFP-kMC and conventional kMC reproduce the experimental 

data very well, with the exception of the surface tension, which is due to an insufficient 
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factor of ten to 1×108 kMC, which leads to excellent agreement with the experimental surface 

tension as shown in Table 1.  It should be noted that in the MFP-kMC method, the mean free 

path calculation was made using the average density of the whole simulation box, irrespective 

of the volume fraction occupied by the liquid phase in the simulation box.   

  

Figure 3:  The density profiles of Ar at 87.3K obtained with the MFP-kMC and with conventional kMC. 

 
Table 1: Thermal properties of argon at 87.3K from MFP-kMC, from conventional kMC and experimentally. . 

 Gas density 
(mol/m3) 

Liquid density 
(mol/m3) 

Pressure 
(Pa) 

Phase change heat 
(kJ/mol) 

Surface tension 
(mJ/m2) 

MFP-kMC 
(1×107) 

129 3.50×104 9.13×104 6.57 6.8 

MFP-kMC 
(1×108) 

129 3.47×104 9.09×104 6.53 12.6 

kMC (1×107) 134 3.47×104 9.41×104 6.50 9.6 
kMC (1×108) 132 3.45×104 9.28×104 6.48 14.2 
Experiment *146 *3.49×104 *1.01×105 *6.42 12.52 [14] 

* data from Perry et al. [15] 

 

Additional MFP-kMC simulations were made for Ar at 77K and 100K to further test the 

capability of the technique in describing the co-existence of bulk fluid argon at different 

temperatures.  The density distributions at 77K are shown in Figure 4 together with the 

results obtained with Bin-CMC developed in our earlier work [16], the two sets of results 

agree well with each other, except that the gas phase density obtained with MFP-kMC is 

slightly higher than that from Bin-CMC method.  The bin-CMC were previously shown to be 

in excellent agreement with Gibbs ensemble MC over the whole coexistence range, including 

the critical point.  Conventional kMC simulations were also carried out with the same number 

  

Distance (A)

0 20 40 60 80 100 120 140 160

D
en

si
ty

 (m
ol

/m
3 )

101

102

103

104

105

conventional kMC 1e7
MFP kMC 1e7



9 
 

of kMC steps for equilibration and sampling as MFP-kMC, and the resulting density profile is 

identical to that obtained with MFP-kMC.  The thermodynamic properties calculated by 

MFP-kMC are given in Table 2 and compared with the simulated data from conventional 

kMC and Bin-CMC.   

  

Figure 4: The density profiles of Ar at 77K obtained with the MFP-kMC and comparison with that obtained with the Bin-
CMC. 

 

Table 2: Thermodynamics properties of argon at 77K from MFP-kMC and comparison with conventional kMC and Bin-
CMC data. 

 Gas density 
(mol/m3) 

Liquid density 
(mol/m3) 

Pressure 
(Pa) 

Phase change heat 
(kJ/mol) 

Surface tension 
(mJ/m2) 

MFP-kMC 41 3.62×104 2.60×104 6.80 14.8 
Conventional 

kMC 
42 3.59×104 2.65×104 6.76 11.9 

Bin-CMC 37 3.65×104 2.35×104 6.87 15.3  
 

 

The results obtained at 100K show similar trends to those already discussed for lower 

temperatures.  They are plotted in Figure 5 and tabulated in Table 3, together with the 

experimental data. 
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Figure 5:  The density profiles of Ar at 100K obtained with the MFP-kMC and comparison with that obtained with the Bin-
CMC. 

 

Table 3: Thermal properties of argon at 100K from MFP-kMC and comparison with the conventional kMC, Bin-CMC and 
experimental data. 

 Gas density 
(mol/m3) 

Liquid density 
(mol/m3) 

Pressure 
(Pa) 

Phase change heat 
(kJ/mol) 

Surface tension 
(mJ/m2) 

MFP-kMC 378 3.27×104 2.94×105 6.14 10.5 
Conventional 

kMC 
379 3.27×104 2.95×105 6.14 10.4 

Bin-CMC 340 3.29×104 2.68×105 6.18 10.3 
Experiment *426 *3.28×104 *3.25×105 *6.00 9.4 [14] 

* data from Perry et al. [15] 

 

3.2.2 The effects of box size 

To test the effects of box size we extended the simulation box of Section 3.2.1 by adding 3nm 

to both gaseous regions in the y direction; keeping the same number of particles.  The density 

profiles in this new box are shown as green circles in Figure 6, and it can be seen that the gas 

phase and liquid phase densities are not affected by the box size.  The density profiles 

obtained when a further 3nm was added to both sides of the box along the y direction is 

shown as red circles in Figure 6 and confirms that both densities are unaffected.  The density 

profiles obtained with the largest simulation box for 77 and 100K are shown in Figures 7 and 

8, respectively; and once again confirm that the box size does not affect the results or the 

derived thermodynamic properties.  
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Figure 6:  The density profiles of Ar at 87.3K obtained with different sizes of the gas phase zone keeping the total number 
of particles in the box constant. 

  

Figure 7:  The density profiles of Ar at 77K obtained with different sizes of the gas phase zone, keeping the total number of 
particles in the box constant.  

  

Figure 8:  The density profiles of Ar at 100K obtained with different sizes of the gas phase zone keeping the total number of 
particles in the box constant. 
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conditions are applied in the x and y directions.  If the molecule moves out of the simulation 

box via the top or bottom graphite surface, that move is rejected and the old configuration is 

recounted for the time averaging in the sampling stage; this is then followed by giving the 

molecule a new random direction and a new distance to travel (according to eq. 10) until a 

new position in the box can be found.  The density profile collected in the sampling stage is 

shown in Figure 9.  The Boltzmann distribution calculated as ( )SF kTe ϕρ ρ −
∞=  (symbols ×) is 

also plotted on the same graph, where ρ∞ is the density far away from the surface and SFϕ  is 

the potential energy between the molecule and the graphite surface.  Figure 9 shows that the 

MFP-kMC density distribution profile exactly matches the Boltzmann distribution, and 

therefore the MFP-kMC procedure produces the correct distribution of particles at zero 

loading.  

  

Figure 9:  The density distribution profile for one argon particle on two graphite surfaces in a 10nm cubic box at 87.3K.  

 

3.4. Adsorption on Graphite Surface 
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to evaluate the relevant properties of the gas phase.   
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When a selected molecule crosses the boundary in the z-direction, the move is rejected and 

the old configuration is recounted in the time averaging; the molecule is then given a new 

random direction and a new distance to travel until its path remains within the box.  We used 

2×106 and 5×106 kMC steps for the equilibration and sampling stages, respectively.  The 

isotherms obtained with MFP-kMC and conventional kMC (using the same number of steps 

as MFP-kMC) are plotted in Figure 10; the experimental data are also shown in the same 

figure for comparison with the simulation results.  On the logarithmic scale of Figure 10a, it 

can be seen that the MFP-kMC simulation agrees well with conventional kMC in the 

monolayer region.  To show the results at higher coverage more clearly the data are plotted 

on a linear scale in Figure 10b, and it can be seen that the results from the MFP-kMC are in 

excellent agreement with conventional kMC in this coverage region.   

   
 (a)      (b) 

Figure 10: The adsorption isotherms for argon on a graphite surface at 87.3K obtained with MFP-kMC and conventional 
kMC, and the experimental data of Gardner et al. (a) logarithm scale, (b) linear scale.  

To investigate the effects of the box size, we doubled the box height to 20nm, and increased 

the number of kMC steps by a factor of ten (i.e. 2×107 for equilibration and 5×107 for 

sampling).  The results obtained with MFP-kMC using the larger box are shown in Figure 11.  

The isotherm agrees well with the conventional kMC results in the monolayer region, but it 

slightly shifts to higher pressures in the multilayer regions.  A further increase (by an order of 

magnitude) in number of kMC steps gave identical results  

     

Pressure (Pa)

101 102 103 104 105

S
ur

fa
ce

 E
xc

es
s 

(
m

ol
/m

2 )

0.1

1

10

100

Gardner's data 
Conventional kMC
MFP-kMC Lz=10nm

     

Pressure (Pa)

2x104 4x104 6x104 8x104 105

S
ur

fa
ce

 E
xc

es
s 

(
m

ol
/m

2 )

20

40

60

80

100

120

Gardner's data 
Conventional kMC
MFP-kMC Lz=10nm



14 
 

   

(a)      (b) 

Figure 11:  The adsorption isotherms for argon on graphite at 87.3K obtained using MFP-kMC in a simulation box with size 
of 34.05×34.05×20nm.  The experimental data of Gardner et al are shown for comparison, (a) logarithm scale, (b) linear 
scale.  
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4. Conclusions 

In this work, we have investigated the mechanics of the displacement of particle in the kMC 

method by introducing in the concept of mean free path (MFP), and sampled the travel 

distance of a particle calculated from the Beer-Lambert law.  The MFP-kMC scheme was 

tested with various systems, including the homogeneous bulk phase, vapour-liquid 

equilibrium and adsorption on graphite surfaces.  For all these systems, good agreement is 

achieved between the new scheme and conventional kMC, confirming that the particle 

displacement can be calculated as the distance travelled between two successive collisions, in 

accordance with the kinetic theory.  
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