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Exploiting translational invariance in matrix product state simulations of spin chains
with periodic boundary conditions
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We present a matrix product state (MPS) algorithm to approximate ground states of translationally invariant
systems with periodic boundary conditions. For a fixed value of the bond dimension D of the MPS, we discuss
how to minimize the computational cost to obtain a seemingly optimal MPS approximation to the ground state.
In a chain with N sites and correlation length ξ , the computational cost formally scales as g(D,ξ/N )D3, where
g(D,ξ/N ) is a nontrivial function. For ξ � N , this scaling reduces to D3, independent of the system size N ,
making our method N times faster than previous proposals. We apply the algorithm to obtain MPS approximations
for the ground states of the critical quantum Ising and Heisenberg spin-1/2 models as well as for the noncritical
Heisenberg spin-1 model. In the critical case, for any chain length N , we find a model-dependent bond dimension
D(N ) above which the polynomial decay of correlations is faithfully reproduced throughout the entire system.
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I. INTRODUCTION

Concepts of entanglement for many-body quantum systems
have recently proven useful to devise new methods for the
numerical simulation of quantum spin chains. It has been
shown that the very successful density matrix renormalization
group (DMRG) method1 can be rephrased as a variational
method over the class of matrix product states (MPS);2–5 this
realization clarified the relatively poor performance of DMRG
for systems with periodic boundary conditions (PBC), as MPS
with open boundary conditions (OBC) do not have the right
entanglement structure. It was shown in Ref. 4 how this could
be cured by using a MPS with PBC. However, due to the cyclic
structure of the underlying MPS, the computational cost of the
simulation in terms of the MPS bond dimension D grew from
O(D3) to O(D5). This was subsequently lowered to O(D3) in
Refs. 6 and 7.

An important motivation to study finite chains is that one
can compute bulk properties of the system in the thermody-
namic limit by extrapolating results obtained for increasingly
large chains.8 In this context, it is relevant whether OBC
or PBC are considered. For a finite chain with OBC, local
expectation values differ from those in the thermodynamic
limit due both to finite-size effects and to boundary effects, and
larger chains need to be considered. In contrast, with PBC only
finite-size effects are present. This makes the extrapolation to
the thermodynamic limit more transparent and smaller systems
need to be simulated. Another important advantage of PBC
is that only in this case can a finite chain be translationally
invariant (TI).10 This is a crucial feature for the present work,
where translation invariance is exploited in order to reduce the
computational costs of simulating finite chains.

Pippan, White, and Evertz7 recently showed how to
simulate spin chains with PBC with an MPS algorithm whose
computational cost given in terms of D scales as O(D3). The
intuition behind this scaling can be understood if one first
considers systems with a correlation length ξ that is much
shorter than the system size N . Let us choose a block of
sites with size l such that ξ > l [see Fig. 1(a)]. In this case
correlations between the left and the right end of the block

are mediated only through the sites inside the block. It is
clear that the properties of this block are exactly the same as
those of a block of equal length embedded in the bulk of a
sufficiently large system with OBC. It is then not surprising
that the cost for computing observables that are contained
within such a block is proportional to D3, as in the case of
OBC. This is basically due to the fact that such calculations
involve contracting a tensor network that has, as uncorrelated
left and right boundary conditions, two boundary vectors with
D2 components each.5 Now imagine we are interested in the
description of properties contained in a larger block such that
ξ > l > N − ξ [see Fig. 1(b)]. This block is small enough
for its ends to have correlations that are mediated via its
own sites, yet large enough such that correlations are also
mediated via the sites outside the block, since now N − l < ξ .
If these externally mediated correlations are relatively small,
the situation is not very different from the previously described
case where l < N − ξ . All we have to do is to replace the
two uncorrelated boundary vectors with a low-rank boundary
matrix that contains the small amount of correlations. If the
rank of the matrix is n, then the cost of this algorithm will be
proportional to nD3.

We emphasize two important aspects of the computational
cost of the algorithm in Ref. 7. The first one is that the cost
is also proportional to the system size N , due to the usual
sweeping procedure that optimizes one site at each instant.
We will show below how, in the case of a TI chain, one can
basically get rid of this factor. It turns out that for chains where
ξ � N the cost will not depend on N at all. If ξ ≈ N , on the
other hand, the cost will contain a factor that is smaller than
N but is nevertheless an artifact thereof. The reduction of the
computational cost is achieved by using a TI MPS, where
the N tensors of the MPS are chosen to be identical. For all
D, the precision of our results is comparable to that reported
in Ref. 7. This indicates that restricting the MPS ansatz to
be TI does not lead to a loss of precision, while yielding a
substantial reduction of the computational cost. The second
important aspect is the multiplicative factor n corresponding
to the rank of the boundary matrix that transfers correlations
between the ends of a block. In the case where the correlation
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(a) Medium ξ, small l: equivalent to OBC
environment.

(b) Medium ξ, medium l: equivalent to
partially correlated OBC environment.

(c) Large ξ, any l: equivalent to fully
correlated OBC environment.

FIG. 1. (Color online) The properties of a block of size l within a PBC system can be equivalent to those of a block with the same size in
the bulk of an OBC system. Depending on l and the correlation length ξ , the left and right boundary conditions of the OBC system are more
or less correlated.

length ξ is of the order of the system size N [see Fig. 1(c)], this
factor may not be small. In a worst-case scenario, where strong
correlations between distant sites would force the boundary
matrix to be full rank, i.e., n = D2, the approach in Ref. 7
would not be better than the O(D5) algorithm of Ref. 4. Thus
for critical systems where ξ ≈ N it is a priori unclear what
the overall scaling of the computational cost in D will be.
However, in Ref. 7 it has been indicated that if D is not too
large, the ground-state energy of a critical spin chain obtained
using a small constant n is satisfactory, in that its accuracy
scales with D in a similar way as it would in an OBC chain of
the same size.

Here we shall show how to exploit TI to obtain a faster
algorithm that, for instance, does not scale with N when ξ �
N . Nevertheless, except for the case ξ � N , we still lack a
precise characterization of how the cost scales as a function of
D and N . We benchmark the present approach by addressing
both critical (i.e., ξ ≈ N ) and noncritical (i.e., ξ � N ) chains.
An important observation is that in the case of critical systems
the finite bond dimension D of the MPS introduces an effective
correlation length ξ̃D ≈ Dκ (Refs. 15–18) that depending on
D can be much smaller than the actual one. This implies that
as N grows, a larger bond dimension D ≈ N1/κ needs to be
considered if correlations between distant sites of the chain
with PBC are to be properly captured. Our numerical results
are consistent with a complex scenario where the cost of the
simulations is dominated by the crossover between finite-N
and finite-D corrections, as further discussed in Ref. 19.

The rest of the paper is structured as follows: We start by
sketching the main idea of the approach in Sec. II, followed
by an in-depth presentation of the algorithm in Sec. III. In
Sec. IV we present numerical results for the critical quantum
Ising and Heisenberg spin-1/2 models as well as for the
noncritical Heisenberg spin-1 model. Finally Sec. V contains
some conclusions.

II. OVERVIEW

This work is concerned with the approximation of ground
states (GSs) within the variational class of MPS with PBC
defined in Ref. 4. Since critical systems are arguably among
the most challenging ones from a computational perspective,
we will focus our attention on these; noncritical systems will
be treated as a simpler special case of these. An important
restriction is that we will only consider TI systems, which we

will simulate using a TI MPS ansatz, namely, an MPS where
the tensors corresponding to different sites are all equal. The
resulting variational class is a subclass of the one defined in
Ref. 4. The TI MPS with PBC reads

|ψ(Ai)〉 =
d∑

i1,...,iN=1

Tr
(
Ai1Ai2 · · · AiN

) |i1i2 · · · iN 〉 (1)

with identical matrices Ai at every site. The basis states are
tensor products of the one-site computational basis states, i.e.,
|i1i2 · · · iN 〉 = |i1〉 ⊗ |i2〉 ⊗ . . . ⊗ |iN 〉 where |i〉 ∈ {|↑〉 , |↓〉}
for a spin-1/2 chain. Note that for fixed i each Ai represents
a matrix; thus the MPS is completely characterized by the
three-dimensional tensor A α

i β =: A. The components of A
are then the variational parameters in our ansatz. Furthermore,
we would like to point out that we will mostly be interested
in Hamiltonians that are real and reflection invariant; these
symmetries can be implemented at the level of the MPS
by choosing the matrices Ai real and symmetric. This extra
constraint does not seem to deteriorate the accuracy of the
variational procedure.

Since our ansatz consists of N copies of the same tensor, the
energy is not a quadratic expression in the variables defined by
the tensors Ai ; this implies that we cannot use the sweeping
procedure described in Ref. 4 or any other procedure that
lowers the energy by minimizing it for one site at a time.
While this might seem a reason to be concerned at first, it will
actually be the key to reducing computational costs.

The advantages of a TI MPS ansatz (with periodicity 1
or 2) have already been exploited in the context of infinitely
long chains.1,9,11–14 References 1, 9, and 12 used a TI MPS
in the context of infinite-system DMRG. In Ref. 11 instead, a
(two-site periodic) MPS approximation to ground states was
obtained by imaginary-time evolution. References 13 and 14
discussed how to compute ground states with a one-site TI
MPS when the imaginary-time evolution operator can be well
enough approximated by layers of one-site TI matrix product
operators. An attempt to adapt that method to finite chains
with PBC yielded results that are not as accurate as one might
expect. This is basically due to the fact that the bond dimension
truncation method used in Refs. 13 and 14 can be shown
to be optimal only for infinitely long chains. We have used
a straightforward adaptation of that method for finite chains
with PBC and the results are between one and a few orders
of magnitude worse than the ones obtained by the gradient
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method described in the present work. Finally, we also point
out that a TI MPS with PBC was already used in Ref. 6 together
with Monte Carlo sampling techniques, with a formal cost
O(ND3). In that case, the use of sampling techniques reduced
the cost from O(D5) to O(D3), but at the same time enforced
the multiplicative factor N , since a TI MPS does not represent
a TI state once a given configuration is chosen during the
sampling.

An obvious way to find the TI MPS with minimal energy is
a multidimensional minimization procedure that requires only
evaluations of the energy function itself, such as the downhill
simplex method.20 When no further information about the
function is available, this is indeed the method of choice. It
is extremely robust but also extremely slow. However, if there
is a feasible way to obtain more elaborate information such
as the gradient or the Hessian, there are methods relying on
these quantities that are clearly superior as regards the speed
of convergence and the required storage space.

In the following we will present an efficient algorithm
to calculate the gradient of the energy ∇E(a) where the
argument a = vec(A) denotes the vector containing all entries
of the MPS tensor A. The result will then be used by a
standard numerical library conjugate gradient algorithm to find
a minimum of E(a). We must emphasize that this minimum is
by no means guaranteed to be the global one, i.e., the optimal
ground-state approximation within the subspace defined by our
special MPS ansatz. However, our numerical results seem to
be slightly more accurate than previous results,7 while we have
obtained a reduction in computational costs. We will illustrate
the accuracy of this approach by applying it to two exactly
solvable models in order to give exact values for the numerical
errors.

The computational cost will turn out to scale as O(mnD3) +
O(n2D3) where D is the virtual bond dimension and m

and n are some parameters to be specified below. Briefly
speaking, the scaling can be understood as follows: First
we approximate large powers of the MPS transfer matrix,
whose exact definition will be given later in the text, within
a reduced subspace of dimension n. Treating each of the n

dimensions separately allows us to transform the contraction
of a tensor network with PBC [which scales as O(D5)] into
n contractions of tensor networks with OBC [each of which
scales as O(D3)]. As we will explain in more detail in the next
section, the resulting tensor networks will still contain at most
one portion represented by say m adjacent transfer matrices
that is not directly connected to the already approximated one.
If m is large, this second portion can again be approximated
within an n-dimensional subspace, thereby yielding the scaling
O(n2D3). If m is small, we are forced to contract the transfer
matrices one after the other, which gives the scaling O(mnD3).

III. THE ALGORITHM

Let us rearrange the MPS tensor components in a vector
a = vec(A) which allows us to write the energy as a function
over the manifold of free parameters in the MPS:

E(a) = 〈ψ(a)| H |ψ(a)〉
〈ψ(a)|ψ(a)〉 ≡ 〈ψ(A)| H |ψ(A)〉

〈ψ(A)|ψ(A)〉 . (2)

Note that, due to the constraints that the matrices are real
and symmetric, the number of vector components in a has
been reduced to 1

2dD(D + 1). Furthermore we will denote
expectation values taken with respect to the MPS defined by
the tensor A as 〈O〉A := 〈ψ(A)| O |ψ(A)〉.

Note that (2) can have local extrema as opposed to E(�) =
〈�| H |�〉 where |�〉 is an arbitrary, normalized vector in the
exponentially large Hilbert space. The MPS parametrization
restricts the full parameter space to a submanifold, thus
possibly generating local extrema where all derivatives in this
subspace vanish. If one uses as a starting point of the conjugate
gradient algorithm a random vector arand, the search algorithm
will typically get stuck in a local minimum. In order to avoid
getting stuck in one of these, we will choose as a starting
point a vector a0 of which we can be sure that it is close
to the global minimum. This approach turns out to be very
robust and fast. If we are interested in ground states of chains
with very large N , the most natural choice for the starting
vector is an MPS approximation of the GS of the same model
in the thermodynamic limit. Note that this MPS must have
exactly the same symmetry properties as our ansatz. It was
shown in previous work14 how to obtain this MPS and we will
actually use the tensors computed there as starting points for
the present algorithm. It is obvious why the MPS for the GS of
the infinite chain is a good choice if one is interested in finite
PBC chains with N � ξ̃D , where ξ̃D is the correlation length
induced by finite D. However, it turns out that this approach
also works satisfactorily for moderately large N . Of course,
if there already is any PBC solution available, using that one
as a starting point may provide a gain in convergence time,
especially if the chain lengths are similar.

The gradient ∇E(a) reads explicitly

∇E(a) = 1

〈ψ(a)|ψ(a)〉∇ 〈ψ(a)| H |ψ(a)〉

− 〈ψ(a)| H |ψ(a)〉
〈ψ(a)|ψ(a)〉2 ∇ 〈ψ(a)|ψ(a)〉 . (3)

It turns out that this quantity can be computed efficiently. First,
since we assume a translationally invariant Hamiltonian with
nearest-neighbor interactions, we have

〈H 〉A = 〈HN,1〉A +
N−1∑
s=1

〈Hs,s+1〉A = N〈Hs,s+1〉A.

Hence the first term in (3) is proportional to the gradient
of the energy density ρE(a) = 〈Hs,s+1〉A, ∀ s ∈ [1,N ] [see
Fig. 2(d)]. Second, we can obtain gradients such as the ones
occurring in (3) numerically at a given point a by expanding
the differentiated quantity in powers of δa and computing the
coefficient of the linear term. Thus the derivative in the first
term is obtained via

ρE(a + δa) = ρE(a) + δa[∇a′ρE(a′)]a′=a + O(δa2) (4)

and the one in the second via

〈ψ(a + δa)|ψ(a + δa)〉
= 〈ψ(a)|ψ(a)〉 + δa[∇a′ 〈ψ(a′)|ψ(a′)〉]a′=a + O(δa2). (5)

Let us first consider (4) which can be computed explicitly
by taking a sum of completely contracted tensor networks
[see Fig. 2(e)]. Let Heff(A) denote the object that is obtained
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(a) (b)

(c)

(e)

(d)

FIG. 2. (Color online) (a) Graphical representation of the TI PBC MPS |ψ(A)〉 of a TI spin chain with four sites. Note the identical tensors
A at each site. (b) Small perturbation δA is added to the MPS tensor A. (c) Norm of a state 〈ψ(A)|ψ(A)〉. (d) Expectation value of a two-site
operator, e.g., 〈ψ(A)|Hs,s+1|ψ(A)〉. (e) The expectation value is expanded in powers of δA.

by removing the tensor δA from each term of ρE(a + δa)
that is linear in δa (see Fig. 3). This is a tensor with three
indices that, reshaped in vector form, yields the desired
derivative ∇ρE(a) = vec[Heff(A))]. The computational cost
for the exact contraction of the tensor networks in Heff(A)
scales as O(ND5).4 We will give below a prescription of how
this can be improved to O(mnD3) + O(n2D3) by making an
ansatz for the approximation of the exact result that depends
on two integer parameters m and n. Subsequently we will
show how to choose the smallest possible m and n such that
no loss in precision occurs and why the scaling reduces to
O(mD3) + O(nD3) in the case of very long chains.

The other piece that is necessary for the computation of
∇E(a) is the derivative occurring in the second term of (3);
this term can be obtained in a very similar way (see Fig. 3).
We will use the notation Neff(A) for the object defined by
∇ 〈ψ(a)|ψ(a)〉 =: vec[Neff(A)]. Due to the simpler structure
of the tensor network the computational cost here will scale as
O(nD3) for arbitrary chains and as O(D3) for very long chains.

Now let us introduce the following convention for denoting
incomplete tensor networks where merely one of the MPS ten-
sors is missing: 〈O〉[s]

A shall henceforth denote the expectation
value of the operator O with respect to the TI MPS defined
by the tensor A, where one tensor A has been removed from
|ψ(A)〉 at site s. Following this definition, the first term in the

graphical representation of Heff(A) (see Fig. 3) reads 〈H2,3〉[1]
A .

If a tensor has been removed from 〈ψ(A)| at site s, we will
denote this by underlining the site index; thus we write 〈O〉[s]

A .
Using this convention we can write Heff(A) as

Heff(A) =
N∑

s=1

(〈H1,2〉[s]
A + 〈H1,2〉[s]

A

)
. (6)

For real Hamiltonians and real MPS this reduces of course to

Heff(A) = 2
N∑

s=1

〈H1,2〉[s]
A . (7)

FIG. 3. (Color online) Graphical representation of the tensor Heff (A) and Neff (A).
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Similar considerations hold for Neff(A). Thus, using I to
denote the identity operator, we can rewrite the gradient of
the energy (3) as

∇E(a) = NHeff(A)

〈ψ(A)|ψ(A)〉 − NρE(a)Neff(A)

〈ψ(A)|ψ(A)〉2

= 2N

N∑
s=1

(
〈H1,2〉[s]

A

〈I 〉A
− 〈H1,2〉A〈I 〉[s]

A

〈I 〉2
A

)
(8)

Let us make a brief excursion to sketch how a gradient-
based procedure can be employed to find ground states of PBC
chains if one is dealing with complex Hamiltonians and thereby
complex MPS. One possibility is to use a gradient-based
algorithm that converges to a minimum of the real-valued
function E : Cn → R within the complex manifold (n stands
here for the number of independent complex parameters in
the MPS). It can be shown that in this case one obtains the
same expression (8) for the gradient of the energy albeit the
individual terms are now complex-valued vectors. However,
since standard library routines for gradient-based search
cannot minimize over complex manifolds, let us mention the
second possibility just for the sake of completeness. Because
a = x + iy with x,y ∈ Rn, one can treat the energy as an
analytic function over a real manifold with twice as many
degrees of freedom, i.e., E : R2n → R. Similar considerations
to the ones leading to (8) yield then for the gradient

∇xE(x,y) = 2N

N∑
s=1

(
Re〈H1,2〉[s]

A

〈I 〉A
− 〈H1,2〉ARe〈I 〉[s]

A

〈I 〉2
A

)
,

(9)

∇yE(x,y) =− 2N

N∑
s=1

(
Im〈H1,2〉[s]

A

〈I 〉A
− 〈H1,2〉AIm〈I 〉[s]

A

〈I 〉2
A

)
.

Returning to real MPS, we still have to show how
Heff(A) and Neff(A) can be computed efficiently. Since this is
somewhat technical we will put the details into the Appendix
and give here only a brief overview of the algorithm. First note
that for big chains (i.e., large N ) tensor networks of the form
shown in Fig. 3 will contain big powers of the transfer matrix

T =
d∑

i=1

Ai ⊗ Ai. (10)

The main idea is to exploit the fact that the eigenvalues
of this D2 × D2 transfer matrix usually decay rapidly enough
such that we can approximate big powers of T within a low-
dimensional subspace spanned by its dominant eigenvectors.
We will denote the dimension of this subspace by n. It is
important, however, to realize that also small powers of T

occur and that these may eventually require exact contraction.
Let us denote the largest power of the transfer matrix that we
contract exactly by m. As shown in the Appendix, it turns out
that in general it is possible to perform the contractions in such
a way that the overall computational cost for Heff(A) scales
like O(mnD3) + O(n2D3) and that for Neff(A) like O(nD3).
It is easy to see that the scalar expectation values in (3) can
be obtained in an analogous yet simpler way. The fact that
there are no vacant sites in the corresponding tensor networks
enables us to use in that case a contraction method that is
similar to the one used for Neff(A). Thus the computational

cost for our algorithm scales as its most expensive part, namely,
as O(mnD3) + O(n2D3).

It is also not difficult to check that for very large chains
(i.e., either when N � ξ for noncritical systems or N � ξ̃D

for critical ones, where ξ̃D is the effective correlation length
induced by finite D) this scaling can be improved. First note
that, as shown in the Appendix, we have in every tensor
network at least one portion of the chain expressed as a power
of T that we approximate using its dominant eigenvectors.
Now, for any bond dimension D there exists an N above
which all approximated portions are long enough such that all
eigenvalues except the largest one are suppressed by the very
large exponent. In this case the overall scaling is O(mD3) +
O(nD3). Note that in the scaling for the “extremal-s”
(Appendix A1) terms we cannot get rid of m because there will
always be short portions between the H1,2 and the vacant site
that must be contracted exactly. Similarly, for the “medium-s”
terms (Appendix A2) only the combinations of λm

α λm
β where

both α and β are large will be negligible. Factors like λm
1 λm

β

must usually always be taken into account. In any case, the
ultimate check of whether our approximations are justified
must be done in the simulations, where one must verify if
there exists an n beyond which our approximated ground-state
energy does not decrease.

We would like to compare our scaling of the computational
cost to that of Ref. 7 once again. Note that, expressed in the
terms used in this work, the scaling from Ref. 7 is O(NnD3).
On one hand, as previously mentioned, our TI algorithm yields
an improvement of one factor N . On the other hand there
is an additional factor n that appears in our scaling. This is
due to the fact that we compute the gradient of the energy
explicitly. It is easy to see that the computational cost for
the evaluation of the energy itself is O(nD3). However, if we
were to restrict ourselves to evaluations of the energy only, we
would have to use something like a downhill simplex method
as the outer function that scans the MPS manifold for the
energy minimum. In this case the outer function would call
the energy evaluator a huge number of times, thereby yielding
an overall cost much higher than the one factor of n that we
must pay when computing the gradient.

IV. NUMERICAL RESULTS

We have studied both critical and noncritical nearest-
neighbor interaction spin models. The first one is the quantum
Ising model for spins 1/2,

HIS = −
N∑

i=1

σ z
i σ z

i+1 − B
∑

i

σ x
i , (11)

which we have simulated at its critical point B = 1. The
periodic boundary conditions are implemented as usual by
identifying σα

N+1 with σα
1 . The second one is the antiferromag-

netic Heisenberg model

HHB = 1

2

N∑
i=1

(
σx

i σ x
i+1 + σ

y

i σ
y

i+1 + σ z
i σ z

i+1

)
. (12)

This model is critical for spin-1/2 chains but noncritical for
spin-1 chains. We have studied both cases. Note that (12) is
not very well suited for description with one-site TI MPS
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FIG. 4. (Color online) Critical quantum Ising chain with N = 100: Relative precision of the MPS ground-state energy as compared to the
analytical result as a function of the parameters (m,n) for D = 16 (left) and 32 (right).

due to its antiferromagnetic character. In order to cure this
problem we apply in the case of the spin-1/2 chain a unitary
transformation consisting of Pauli σy matrices on each second
site.21 This leaves the spectrum unchanged and after we have
found the 1-site TI MPS for the ground state, we can recover
the one for the unchanged Hamiltonian by a new application of
a unitary transformation. The resulting MPS is then of course
two-site TI. The rotated Heisenberg Hamiltonian reads

HHB = 1

2

N∑
i=1

( − σx
i σ x

i+1 + σ
y

i σ
y

i+1 − σ z
i σ z

i+1

)
. (13)

A. Critical systems

Let us illustrate the strategy for the scan of the parameter
space spanned by {m,n} on the basis of results obtained
for small critical chains of 100 and 400 sites. Figures 4
and 5 show the relative precision �relE0(m,n) = [Eexact

0 −
EMPS

0 (m,n)]/Eexact
0 of the MPS ground-state energy compared

to the exact solution as a function of the algorithm parameters
m and n for the quantum Ising and Heisenberg chains,
respectively. The first observation is that there exist mmax and
nmax such that for all m � mmax, n � nmax the precision does
not improve any more. In the featured plots the plateau P
with minimal energy is reached within the plot range. The

FIG. 5. (Color online) Critical Heisenberg chain with N = 100: Relative precision of the MPS ground-state energy as compared to the
analytical result as a function of the parameters (m,n) for D = 16 (left) and 32 (right).
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FIG. 6. (Color online) Critical quantum Ising chain with N = 100 (left) and 400 (right): Relative precision of the MPS ground-state energy
as a function of the parameter n for different bond dimensions D. The scan has been performed along the line m = 5n up to the maximal value
of m and then along the line with constant m = (N − 2)/2.

optimal point {mopt,nopt} is then the point of P that minimizes
the scaling of the computational cost O(mnD3) + O(n2D3),
i.e., {mopt,nopt} = min |{m,n}∈P (mn + n2). Clearly, the optimal
parameters mopt and nopt will be different for different models
and different values of the chain length N and the MPS bond
dimension D.

The plots reveal a further detail: if we are not very pedantic
about the optimal {m,n} pair, it is not necessary to scan
the entire plane, which is computationally very expensive.
If we are willing to settle for any pair {m,n} that yields
maximal precision, we can scan along any line n = km and
we can be sure that at some point we will hit P . This pair is
quasioptimal in the sense that we have found the optimal n for
the corresponding m and vice versa. This is due to the fact that
for any point of P , especially for its boundary, walking along
lines with increasing m or n does not take us out of P . As one
can see in Figs. 4 and 5, P is roughly symmetric in m and
n, so a sensible line to scan along would be given by n = m.
In practice it might be better to choose k < 1 since there are

parts of the algorithm with the scaling O(nD3) multiplied
by a big constant factor. In our simulations we have used
k = 1/5. As we have explained in the Appendix, our algorithm
allows us to increase m only up to (N − 2)/2. If until then the
results obtained along n = m have not converged yet, we must
continue the scan along the line given by the constant maximal
m toward larger n.

The relative precision of the MPS ground-state energy
for such line scans is plotted in Fig. 6. We notice that with
increasing D the maximally reachable precision gets better
in concordance with what one would expect. The fact that
mopt and nopt increase with D is also intuitive. What is a bit
surprising is that for small n the results obtained for small
bond dimensions are either similar to or even better than the
ones obtained for higher bond dimensions. This means that if
one is not willing to go to larger values of n, there is no point
in increasing D.

Another interesting point is that for fixed D, as we increase
N , the plateau P is reached sooner and sooner (i.e., for smaller
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FIG. 7. (Color online) Critical quantum Ising model: relative precision of the MPS ground-state energy for different N as a function of D.
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FIG. 8. (Color online) Critical Heisenberg model: relative precision of the MPS ground-state energy for different N as a function of D.

values of n and implicitly of m). This behavior is due to the fact
that with increasing N the weight that we lose in our contracted
tensor network by choosing n < D2 becomes negligible at
smaller n.

B. Observables: Energy and correlation functions

As the computational cost of our algorithm actually
decreases if we increase the number of sites N while keeping
D constant, we can investigate PBC chains of arbitrary size.
Nevertheless, if we want to maintain the same level of precision
for very long chains, we must also increase D while going
up in N . Figures 7 and 8 show the relative precision of
the ground-state energy for the critical quantum Ising and
Heisenberg models, respectively, as a function of the MPS
bond dimension D. We can see that generally the relative error
is decreasing as a polynomial of D, i.e., �relE0(D) ∝ D−μ.
We have fitted straight lines through the reliable22 data of the
N = 100 and 5000 plots and have obtained for the exponent
μ the values 7.84 and 3.21 (6.12 and 2.52) for the critical

quantum Ising (Heisenberg) model. In the central plots (i.e.,
N = 500 and 1000) one can distinguish between two regions
where the relative precision is decaying polynomially with
the exponents obtained from the outer plots (i.e., N = 100
and 5000). We have emphasized this by drawing dashed lines
through the data points in the central plots. Note that the dashed
lines are not fitted, they have merely the same slope as the full
lines in the outer plots. This behavior can be best understood
if one looks at correlation functions.

Let us first consider the critical quantum Ising model.
In Fig. 9 we have plotted the ZZ and the XX correlation
functions, i.e.,


ZZ(�r) = 〈
σ z

r σ z
r+�r

〉 − 〈
σ z

r

〉 〈
σ z

r+�r

〉
,

(14)

XX(�r) = 〈

σx
r σ x

r+�r

〉 − 〈
σx

r

〉 〈
σx

r+�r

〉
,

in the MPS ground state of a chain with N = 500 sites. The
solid line represents the exact solution obtained by applying the
program of Ref. 23 to the quantum Ising model with PBC. One
can clearly see that with increasing D the MPS correlations
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FIG. 9. (Color online) Correlation functions for a critical quantum Ising chain with N = 500. Left: order parameter correlator 
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become more and more accurate, just as one would expect.
Note that we have only plotted the correlation functions for
separations �r � N/2. This is because due to the periodic
boundary conditions 
(�r) is symmetric around �r = N/2,
i.e., 
(N/2 − i) = 
(N/2 + i) for integer i < N/2. Strictly
speaking this holds only for even N . In the case of odd N we
have the slightly different relation 
((N − i)/2) = 
((N +
i)/2), ∀ i ∈ {1,3,5, . . . ,N − 2}. We would like to point out
that while the exact 
(�r) is linear for small �r in the log-log
plot, thus implying polynomial decay of correlations in that
regime, it flattens out toward �r ≈ N/2. This behavior is
consistent with the physical requirement that the correlation
function is smooth at �r = N/2. The insets show the value
of the half-chain correlators 
N/2(D) := 
(�r = N/2,D) as
a function of D. One can clearly see a jump in 
N/2(D) at
some D′. This means that in this model, if one wants to obtain
good approximations for long-range correlations in the ground
state, one must use MPS with bond dimension D � D′(N ).
Note that the jump in the inset of Fig. 9 occurs roughly in the
same region as the change of the slope in the second plot of
Fig. 7. This allows us to understand why in Fig. 7 the slope
for large D is steeper than the one for small D: if D is not
large enough such that correlations are faithfully reproduced
throughout the entire chain, this represents a further source of
error besides the inherent error of MPS with nonexponential
bond dimension (i.e., D � dN/2).

The absolute values of the correlation functions for the
critical Heisenberg chain with N = 500 sites can be found
in Fig. 10. We have taken the absolute value since due to
the antiferromagnetic nature of the Heisenberg model the
ground-state correlation function is changing its sign from site
to site. Note that these plots only contain the simulation data
since we do not have analytical expressions for the long-range
correlations. Qualitatively Fig. 10 shows the same behavior as
Fig. 9. Quantitatively we can see that the correlation functions
converge at much larger D than in the case of the critical

quantum Ising model, which is exactly what we would expect.
The half-chain correlators 
N/2(D) exhibit a more or less
continuous transition to the region where correlations are
faithfully reproduced.

We would like to make an interesting final remark regarding
the error in the correlation functions as a function of �r . In
the left part of Fig. 11 we have plotted 
ZZ

MPS(�r) − 
ZZ
exact(�r)

for different D in the regime where the half-chain correlators
have well converged (i.e., D > 25). The surprising thing is
that the error does not grow monotonically as a function of
�r as one would expect, but that it rather oscillates around
zero. Nevertheless the amplitude of the oscillations is growing
monotonically with �r . The right part of Fig. 11 reveals that,
similarly to the relative error of the ground-state energy, the
relative error of the half-chain correlators �rel
N/2(D) obeys
power-law decay as a function of D in the large-D regime.

Our numerical analysis thus indicates that for each N there
is a minimum value of D = D′(N ) such that correlations
throughout the entire chain are properly captured. As investi-
gated in Ref. 19, for critical systems this minimum value of
D′(N ) is seen to be given by a small power of N that depends
on the universality class of the model. This dependence will
allow us in Ref. 19 to characterize the cost of the algorithm
presented in this work as a power of N . For the moment we
will settle for a scaling of the overall computational cost of
O(g(D,ξ/N )D3) where g(D,ξ/N ) will be seen to become
trivial only for noncritical systems.

C. Noncritical systems

We have seen that for critical systems it is quite involved to
predict the computational cost of MPS algorithms that find the
optimal approximation of the ground state within the manifold
defined by MPS with fixed bond dimension D. This turns out to
be much easier for noncritical systems where the correlation
length ξ is much smaller than the chain length N . We have
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studied the spin-1 Heisenberg chain as the prototype of a
noncritical quantum spin chain in order to be able to compare
our results with the ones presented in Ref. 7. As pictured
in Fig. 12, for N = 100 and D that is not too big, n = 4 is
sufficient in order to obtain the optimal MPS approximation
to the ground state. This is in agreement with the predictions
of Ref. 7. However for D as big as 100, we would have to
choose n = 7 if we are not willing to lose any precision. This
indicates a dependence of n on D which is much weaker than
in the case of critical systems. Since due to finite computer
memory we cannot increase D arbitrarily, it is safe to say that
for systems where ξ � N , n is given by a small constant. This

is exactly what happens for a spin-1 Heisenberg chain with
100 sites since as shown in Ref. 24 the correlation length is
roughly ξ ≈ 6 such that ξ � N . It is obvious from Fig. 12
that m can be chosen arbitrarily so we can fix it to m = 1.
Thus in this case the cost of our algorithm scales as O(D3)
which is indeed less by a factor N than the cost from Ref. 7.
Nevertheless we must emphasize that for systems where the
condition ξ � N is not fulfilled anymore, the picture of a
small constant n breaks down and the characterization of the
computational cost becomes nontrivial.

In Fig. 13 we have plotted the relative energy precision
and the correlation functions as functions of D. Note that
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FIG. 12. (Color online) Spin-1 Heisenberg chain with N = 100: relative precision of the MPS ground-state energy as compared to the best
numerical approximation as a function of the parameters (m,n) for D = 16 (left) and 100 (right).
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for the “exact” ground-state energy density we have used
E0 = −1.401 484 039 which is the value obtained by an
extrapolation of our own finite-D results to infinite D. We
have done this since the ground-state energy that we obtain for
D = 100 is smaller than any other value we have found in the
literature, and in particular slightly smaller than the one used
as the “exact” ground-state energy in Ref. 7.

The correlation functions plotted in Fig. 13 show nontrivial
behavior around �r ≈ N/2 where they clearly deviate from
exponential decay. The half-chain correlator plotted in the inset
seems to converge as a function of D but we do not have
compelling evidence for that.

V. CONCLUSIONS AND OUTLOOK

We have demonstrated the performance of a gradient-
based algorithm for the simulation of TI spin chains with
PBC for both critical and noncritical systems. For critical
systems where the correlation length is of the order of the
system size, the overall scaling of the computational cost is
O(mnD3) + O(n2D3) and we have given an analysis of the
parameter space {m,n} with a prescription of how to obtain a
quasioptimal pair {mopt,nopt}. In the special case of a critical
system that is simulated by MPS with comparatively small D,
such that ξ̃D � N holds for the induced correlation length, the
overall scaling is given by O(mD3) + O(nD3). For noncritical
systems with a correlation length that is much smaller than the
system size, increasing D barely affects the parameters m and
n and we can write for the overall scaling O(D3). In the last
two cases the cost is one factor N less than that of the algorithm
presented in Ref. 7. However, for critical systems in the large-
D regime, the cost of Ref. 7 is improved merely by a factor
N/n due to the appearence of n2 in the scaling of our algorithm.

The different types of scaling of the computational cost
are directly related to the entanglement entropy of the studied
ground states. For critical systems, the exact dependence of m

and n on the universality class is an open question and will be
treated in future work.

With a TI MPS approximation of the ground state of a
system with PBC at hand, it is possible to develop efficient
MPS algorithms for the approximation of excited states. The
preliminary results we have obtained using the MPS computed
in this work as the backbone for an ansatz for momentum
eigenstates are very promising.

In higher dimensions, one can use a gradient-based ap-
proach to obtain tensor network approximations of the ground
state too. However, a straightforward generalization of the
present algorithm to higher-dimensional systems with PBC,
e.g., in the context of projected entangled pair states, is not
obvious due to the fact that the dimension of the transfer matrix
grows exponentially with the system size in that case.
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APPENDIX A: COMPUTATION OF Heff (A)

Let us introduce a shorthand notation for the building blocks
of Heff(A) that will allow us to express it in a very compact
way. From the graphical representation (see Fig. 14) it should
be obvious what the objects HAA

AA , H A
AA , HA

AA , T = T A
A , and

TA mean; note that T denotes the MPS transfer matrix that
has been repeatedly mentioned in the main text. For the sake
of completeness we also give the definition of the tensor HAA

AA

explicitly in terms of its components:(
HAA

AA

)α γ

α′ γ ′ = A α
i βA

β

j γ (Hs,s+1)ij i ′j ′A
i ′ β ′

α′ A
j ′ γ ′

β ′ . (A1)
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FIG. 14. (Color online) Graphical representation of HAA
AA , H A

AA , HA
AA, T = T A

A , and TA.

Here we have used greek letters to label the virtual bonds,
latin ones for the physical bonds, and the Einstein summation
convention to denote contracted indices. If one combines the
left-hand side indices α and α′ into one big index and does the
same for the right-hand side indices γ and γ ′, it is clear that
HAA

AA represents a D2 × D2 matrix. The other objects defined
in Fig. 14 have similar explicit definitions. Heff(A) now reads

Heff(A) = 2Tr∗
[
H A

AA T N−2 + HA
AA T N−2

+
N−3∑
s=0

HAA
AA T sTAT N−3−s

]
, (A2)

where Tr∗[· · ·] indicates that the trace is taken only with respect
to the matrix multiplication of the “outer” indices of the “big”
D2 × D2 matrices. These big matrices may have internal open
indices that survive the Tr∗[· · ·] operation and make sure that
Heff(A) is left with its tensor structure such that it can be later
reexpressed as a vector.

The computation of (A2) is the bottleneck of our method.
If we were to compute it by straightforward matrix multi-
plication, even using the sparseness, the computational cost
would scale as O(ND5). In order to improve this scaling, the
crucial point is to realize that for large N most terms in (A2)
will contain high powers of T , which means that they can be
very well approximated within the subspace spanned by the
dominant eigenvectors25 of T . This can be easily seen if we
write such factors in their eigenbasis

T s =
D2∑
α=1

λs
α |λα〉 〈λα|

= λs
1

⎡
⎣|λ1〉 〈λ1| +

D2∑
α=2

(
λα

λ1

)s

|λα〉 〈λα|
⎤
⎦ , (A3)

where |λ1| � |λ2| · · · � |λD2 |. Obtaining the eigenbasis does
not spoil the overall computational cost since, due to the sparse
structure of T , one can obtain its n dominant eigenvectors with
O(nD3) operations. Obviously the subspace corresponding to
the small-magnitude eigenvalues is suppressed exponentially
with increasing s and thus it can be neglected for powers
s that are large enough (e.g., for s = 20 and | λα

λ1
| ≈ 0.1,

| λα

λ1
|s ≈ 10−20 < 10−16 which is the machine precision of

double-precision floating-point numbers). In these cases it is
perfectly fine to restrict ourselves to the subspace spanned by
say n dominant eigenvectors, with the parameter n yet to be
determined. In fact, we will perform the entire computation a
few times, starting with a rather small n and increasing it until
the result does not improve any more. When this happens, we
know that we have found the optimal n beyond which, when
all other parameters are fixed, the precision does not get any

better. Thus we will approximate large powers of the transfer
matrix as

T s ≈
n∑

α=1

λs
α |λα〉 〈λα| . (A4)

At this point we must remark that this approximation
only works if the moduli of the transfer matrix eigenvalues
|λα| are not concentrated around a certain point (i.e., T is
not approximately proportional to unity). In that case, any
increment of n will improve the precision and we will end up
with very bad overall scaling. In the extremal case of optimal
n = D2 the overall scaling becomes O(D7). For models where
this behavior occurs the algorithm presented here may be
worse than contracting the tensor networks explicitly, where
the scaling is O(ND5). In these cases the chain length N

ultimately decides which method is preferable. Fortunately
for the models treated by us, this undesirable behavior does
not occur and we end up with relatively small n beyond which
the precision does not improve any more.

Let us now return to (A2). There are two different types
of terms which must be treated differently. The first and the
second terms under the trace can be considered as “easy.” They
are approximated by

〈H1,2〉[1]
A = Tr∗

[
H A

AA T N−2
] ≈

n∑
α=1

〈λα| H A
AA |λα〉 λN−2

α , (A5)

which is computed within O(nD3) operations. This is because
each contraction 〈λα| H A

AA |λα〉 can be performed with cost
O(D3) and this has to be done n times.

The computationally more expensive terms are the ones
under the sum over s, where two different powers of T

are involved. We will call these terms “hard.” They are
approximated by

〈H1,2〉[3+s]
A = Tr∗

[
HAA

AA T sTAT N−3−s
]

≈
n∑

α,β=1

〈λβ | HAA
AA |λα〉 〈λα| TA |λβ〉 λs

αλN−3−s
β . (A6)

Here we must remark two things: (i) It is not necessary to let
the second index β run over the same range as α. It would
be possible to choose as an upper bound a further parameter
n′ and also vary this one until the precision did not improve
anymore. However, since expression (A6) obviously has left-
right symmetry, it is sensible to assume that the optimal result
would yield n = n′. Even if this were not the case, due to the
fact that we scan along n, convergence would be reached only
for some noptimal � sup{n,n′}, so we would find the lowest
achievable energy anyway. (ii) For very small or very large
s either the left or the right transfer matrix segments in (A6)
cannot be well approximated by a small number of eigenvalues
n since the lower λα are not sufficiently suppressed by the
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small exponent. In the worst case we would have to take all
D2 eigenvalues into account, which dramatically increases
the computational cost. In order to solve this issue, we will
compute these terms by exact contraction of segments of length
m, which introduces this further parameter into our algorithm.
This will be explained in more detail below. For the moment let
us note that, depending on the magnitude of s, we can further
separate the sum in (A2) over the hard terms into

N−3∑
s=0

≡
m−1∑
s=0

+
N−3−m∑

s=m

+
N−3∑

s=N−2−m

. (A7)

We call the terms over which the second sum is taken “medium-
s” terms and will treat them differently from the “extremal-s”
terms that appear in the first and third sums. Thus Heff(A) can
be divided into

Heff(A) = 2
(
H

easy
eff (A) + H

hard,extr
eff (A) + H

hard,med
eff (A)

)
.

(A8)

A. Computation of extremal-s terms

In this section we treat the terms with small and large s.
The first thing to remark is that for large N , if T s cannot
be well approximated within some low-dimensional subspace
because s is too small, it is very likely that for T N−3−s the
approximation will work because N − 3 − s � s. The same
observation holds in the other direction if s is too large. Second,
depending on the MPS bond dimension D and the amount of
entanglement present in the MPS (i.e., depending on the model
one is treating), there is a certain m above which T s with
s � m can be faithfully approximated within the (n < D2)-
dimensional subspace spanned by n dominant eigenvectors. As
we know nothing about m a priori, we introduce it as a further
parameter into our algorithm. We will scan m within its range
[1,1/2(N − 2)] and in the end we will obtain some optimal
pair (m,n). The reason why m does not go all the way up to
N − 3 is that, in order for our algorithm to scale effectively as
D3, we must employ the dominant eigenvector approximation
on the other half of the chain. Without it we would get the
undesirable scaling O(ND5). The contraction (see Fig. 15)
we must perform for each term with small s thus reads

〈H1,2〉[3+s]
A = Tr∗

[
HAA

AA T sTAT N−3−s
]

≈
n∑

α=1

〈λα| HAA
AA T sTA |λα〉 λN−3−s

α , ∀ s < m,

(A9)

and can be done with computational cost O(nD3) using a
sparse matrix contraction scheme. As we have to repeat this
procedure m times, the total cost scales as O(mnD3).

The large-s terms (i.e., when N − 3 − m < s � N − 3)
can be easily obtained by making use of the left-right symmetry
of the tensor network around the point with s = (N − 2)/2.
The sum over all these s turns out to be related to the sum
over the small-s terms by taking the transpose with respect
to the open virtual bond indices at the empty site where
TA sits. Thus the computational cost remains unchanged,
O(mnD3).

B. Computation of medium-s terms

For terms where s is neither too small nor too large, both
powers of the transfer matrix (i.e., T s and T N−3−s) can be
well approximated within the subspace spanned by n dominant
eigenvectors. The good news is that in this case the sum over
s can be performed analytically in contrast to the extremal-s
case where we had to compute each of the m terms separately.
However, there is also bad news, namely, that we now have
an additional sum over the eigenvalue index stemming from
the approximation of T N−3−s . Explicitly, the sum over all
medium-s terms reads

H
hard,med
eff (A) = Tr∗

[
N−3−m∑

s=m

HAA
AA T sTAT N−3−s

]

≈ Tr∗
[

N−3−2m∑
s=0

n∑
α,β=1

HAA
AA T m |λα〉

× λs
α 〈λα| TA |λβ〉 λN−3−2m−s

β 〈λβ | T m

]

=
n∑

α,β=1

〈λβ | HAA
AA |λα〉 〈λα| TA |λβ〉 λm

α

× λm
β

λN−2−2m
β − λN−2−2m

α

λβ − λα

. (A10)

In the first step we have shifted the summation variable s and
have written the matrices T in their eigenbasis. To move from
the second to the third line we have used the cyclic property of
the trace to write the entire expression as a sum over products
of scalars (actually the factor containing TA is only a scalar
with respect to our specially defined trace since it contains
internal free indices). Furthermore we have performed the s

sum straightforwardly.

FIG. 15. (Color online) Graphical representation of a term with small s and its approximation within the subspace spanned by n dominant
eigenvectors of T .
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The computational cost scales here as O(n2D3). This is
because we have two sums going from 1 to n over terms that
are contracted within O(D3) operations.

APPENDIX B: COMPUTATION OF Neff (A)

Our prescription for the computation of Neff(A) is also
based on the observation that big powers of the transfer matrix
T can be very well approximated within the subspace spanned
by the dominant eigenvectors. However, here things are much
easier than for Heff(A). This is because the translational

invariance is not broken by the two-site Hamiltonian (see
Fig. 3) and we can write

Neff(A) = 2N〈I 〉[1]
A . (B1)

Similarly to 〈H1,2〉[1]
A in (A5), 〈I 〉[1]

A is approximated by

〈I 〉[1]
A = Tr∗[TAT N−1] ≈

n∑
α=1

〈λα| TA |λα〉 λN−1
α , (B2)

which is computed within O(nD3) operations.
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