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Abstract. We simulate rock fracture using ESyS_Particle, which is a 3-D Discrete Element Model developed for 
modeling geological materials. Two types of simulations are carried out: Unconfined Compressive Test (UCT) and 
Brazilian Tensile Test (BTT). The results are compared to laboratory tests. Model parameters are determined on the 
basis of theoretical studies on the elastic properties of regular lattices and dimensionless analysis. The fracture patterns 
and realistic macroscopic strength are well reproduced. Also the ratio of the macroscopic strength of compression to the 
tensile strength is obtained numerically. 
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INTRODUCTION 

Discrete Element Method (DEM) has great 
advantages in modeling fracture process due to its 
discrete nature and the possibility to reproduce 
dynamic processes. However, two major difficulties 
hinder its applications in rock mechanics. The first one 
is the fact that it is very time-consuming because of its 
step-by-step updating style and small time step is 
required. The second problem is parameter calibration. 
In the most current DEM simulations, parameters are 
chosen based on the trial-and-error methods. In the 
previous analytical studies [1], we show how to choose 
the spring parameters according to the given 
macroscopic elastic constants. However, some 
parameters, such as strength of the bonds, can only be 
investigated numerically. In this study we simulate 
rock fracture using ESyS_Particle, the 3-D parallel 
DEM software. We run two types of simulations: 
Unconfined Compressive Test (UCT) and Brazilian 
Tensile Test (BTT), and compare the results to the 
laboratory tests and discuss the limitations of the DEM 
model. 

ESYS_PARTICLE M O D E L 

ESyS_Particle is a 3D DEM software to simulate 
rock mechanics, developed in the University of 

Queensland [2, 3, 4]. Within Esys_Particle, the 
recently developed Finite Deformation Method 
includes explicit particle rotation and a complete set of 
interactions between particles [3, 4]. Figure 1 shows 
the six interactions (normal, shearing forces, bending 
and twisting moment) transmitted between 3-D bonded 
particles. The force-displacement law between two 
bonded particles can be written as 

FR =Kr R , FS1 =Ks1 S1 , FS2 =Ks2 S2 , 

τT =Kt αT , τB1 =Kb1 αB1, τB2 =Kb2 αB2. (1) 

Where R , SI are the relative displacements in 

normal and tangent directions. αT and αBI are the 
relative angular displacements caused by twisting and 
bending. FR , FS1, FS2 ,τT ,τB1 andτB2 are forces and 
torques, Kr , Ks1 , Ks2 , Kt , Kb1 and Kb2 are relevant 
stiffness. In this study, we assume that 

and K =K =K . Detailed KS=KS1=KS2 
description of the model can be found in [3, 4, 5]. 

The following empirical criterion is used to judge 
whether or not a bond is going to break: 

frMMM\ 
F rO FS0 rtO rbO 

>1 (2) 
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Where Fr0 , Fs0 Γ Γ 
T0 and B0 are thresholds for a bond to break under pure extension, pure shearing, 

pure bending and pure twisting respectively. We set 
/ positive under extension and negative under 
compression such that the effects of normal force on 
breakage of the bond has been taken into account. 

Ft0 and rb0 are not independent of Fr0 and Fs0 . In 

this study we choose rb0 = RFr0 4 and 

Fro= RFsol2 [3]. 

FIGURE 1. Six kinds of interactions between bonded 
particles. FR is normal force, FS1 and FS2 are shear forces , 
τ τ τ 

T is twisting torque, B1 and B2 are bending torque. 

Calibration of the model parameters 

As the first step to compare simulations with real 
experimental data, we studied analytically the relation 
between contact stiffness and the macroscopic elastic 
constants of materials [1]. For example, in 3D case of 
Face-Centered Cubic (FCC) packing with equal sized 
particles, the realistic macroscopic elastic parameters 
(Young’s modulus and Poission’s ratio) are guaranteed 
if the normal, shear, bending and twisting stiffnesses in 
DEM are chosen as: 

Kr = 
•J2ER 1 — 3v T. 

Ks = K 
2(1 - 2v) 1 + v 

Kb = 
-J2ER3 (1-2v)R2 

Kt = 

48(1 -v) 24(1 -v) 
1-3v 

K 

1 + v 
(1-2v)R2 

Kb = K (3) 
24(1 -v) 

Where E, Vand R are Young’s modulus and 
Poisson’s ratio and radius of particles. 

amd x/dt 

Dimensional analysis 

In the DEM simulation it is desirable to choose the 
contact parameters in such a way that they match the 
material constants of the model. Sometimes these 
parameters are rescaled up or down, and the new group 
of parameters may not match the laboratory data, then 
other quantities should be scaled up or down 
accordingly. Therefore it is convenient to make 
dimensional analysis of the parameters. In such way 
we can keep the scale invariance of the model and 
reduce the parameters to a minimum of non-
dimensionless constants [6]. 

The equation of Newton F = md2x/dt2, can be 

written in dimensionless form as F 

where F = FJFC, in = m/mc, x = x/xc, 

t =t/tc and a=mcxjFct2, xc, mc, fcand Fc are 
the characteristic length, mass, time and force. Two 
models will be dynamically similar if 

m1 X1 IF1 t1
2 = m2 x2/F212

2 , (4) 
where x1, m1,t1,F1 and x2, m2,t2,F2 are the 

characteristic length, mass, time, force of model 1 and 
2 respectively. For a pure mechanical system, there 
are three independent dimensions: mass, length and 
time. Therefore if any of the three ratios between two 
models in Equation 4 are determined, the ratios of 
other quantities (such as gravitational acceleration, 
spring stiffness and artificial damping parameters etc) 
must be fixed according to Equation 4. 

NUMERICAL SET UP AND RESULTS 

We simulate two different laboratory tests: 
Unconfined Compressive Test (UCT) and Brazilian 
Tensile Test (BTT). In UCT test a slow uni-axial 
loading is applied in axial direction of a cylindrical 
sample and the compressive strength is measured. In 
BTT test, the tensile strength is measured indirectly by 
loading a cylindrical sample in diametrical direction. 

The laboratory data (model 1) for UCT and BTT 
tests are listed in table 1. According to Eq. (3), the 
realistic spring stiffnesses are: 

Kr1 = v2£'1/?1 /2(1-2V1 ) = 1.453 x107 Pa, 
Ks1 = Kr1 ( 1-3v)/( 1 + v) = Kr1/3 . 

In the simulation (model 2), we may scale up or 
down some quantities. If we choose normal stiffness 
Kr2 = 8000Pa, and radius of grains R2 = 1m and 
density p2 = 1.0 kg/m3 , we have 

x2/x1 =950—1000, m2/m1 = p2x2
3/p1x1

3 =311475, 
t2jt1 ~ 2.3786x104and V2/V1 = 3.974x10~2. Other 
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quantities are: D2 = 49 m, H2 = 139 m, V2 = 
1.6758×10-7 m/ s , F2 = 161.85 kN, which is the value 
we try to reproduce for UCT tests. 

The initial set up of the UCT test is shown in Fig. 2 
(left). It contains 44394 particles. Time step 
incremental is dt2 = 0.001s, the simulation is run for Nt 

× 
= 1.6 106 steps on a supercomputer with 64 CPUs, 
and it requires about 50 hours to run for each 
simulation. 

However if the loading rate of 1.6758×10-7 m / s is 
used, the calculation would be beyond the current 
computer power. In this simulations, we choose the 
rate of loading of 8×10 -4 m / s , which is 5000 times 
larger. It is not a good strategy to increase the time 
step dt2 in order to reduce computer time, since the 
large time step would result in fast accumulated errors. 

While the spring parameters can be chosen 
according to the given macroscopic elastic constants 
(Equation 3), it is difficult to derive analytically the 
relation between the macroscopic strength and the 
strength of the bonds ( Fr0 and Fs0 ). Therefore this is 
investigated numerically in this study. We choose 
different fracture parameters Fr0 and Fs0 , and 
numerically measure the maximum load. The results 
are list in table 2 and 3. The data with stars mean the 
maximum load mostly close to the laboratory data, and 
the ratio between UCT strength and BTT strength is 
about 10, slightly larger than that of the laboratory 
value of 6. The fracture pattern corresponding to the 
star value is shown in Fig. 2b (right). The colors 
represent vertical displacement. The macroscopic 
shear fracture is clearly seen. 

FIGURE 1. Initial set up (left) and final fracture 
pattern (right) for UCT tests. The color represent 
displacement. 

It is also interesting to note from Table 2 and 3 that 
in UCT tests, the larger strength is observed for the 
large Fs0 for the same F^ , but for the same Fs0, the 

strength increases with the decrease of Fr0, that is, 
the macro-scopic strength has a positive correlation 
with Fw and Fs0/Fr0, However, in case of BTT test, 
the macroscopic strength is not so sensitive to the ratio 
Fs0/Fr0, but has a strong dependence on Fr0. This 

difference may be explained by the fact that in UCT 
tests macroscopic failures are mainly caused by shear 
fractures and in BTT tests they are mostly controlled 
by tensile fractures. 

SUMMARY AND DISCUSSIONS 

We reproduce the fracture patterns and realistic 
macroscopic strength. In the laboratory tests, it is 
generally found that the macroscopic strength of UCT 
is 5-20 times larger than BTT. The UCT to BTT 
strength ratio of 10 is reproduced in the simulations. 
This ratio can be used as a good limitation to the 
microscopic parameters. Generally the macroscopic 
strength is found to have a positive correlation 
with Fw and Fs0/Fr0. It should be bore in mind that 
although we reproduced the realistic strength by 
changing Fr0 and Fs0, it is not a unique combination 

of parameters. A more detailed investigation on the 
parameters of bond breaking should be done in the 
future. 

We conclude that using supercomputer facilities 
and dimensional analysis we can simulate samples 
with relative large number of particles and realistic 
materials properties. However, due to computer power, 
we employed a larger loading velocity in the 
simulations. The concern raised by such a larger 
loading rate is: how does the macroscopic strength 
change with loading velocity? To avoid this problem, 
one suggestion for the future simulation is that two 
loading rate may be used: faster loading rate during the 
earlier stage when the sample is relatively intact and 
realistic one in the latter stage when the sample is 
close to failure. 

It became also evident that the main limitation of 
the computer efficiency of DEM simulations is that the 
currently used integration methods are unstable for 
larger time steps. Therefore it is a challenge for the 
future to develop integration methods numerically 
stable for large time steps, and at the same time able to 
reproduce the realistic dynamics of the systems. 
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TABLE 1. Laboratory data for UCT and BTT tests 

UCT test BTT test 
Diameter (mm) 
Height (mm) 
Density (kg/m3) 

Young Modulus (Gpa) 
Poisson Ratio 

Sizes of grains (mm) 
Rate of loading (m/s) 
Maximum load (kN) 

D1 = 54.46 
H1 = 147.05 

/?1 = 2711.6 

E1 = 12.33 

V1 = 0.2-0.25 

R1 = 1 
V1= 4.2167 ^ 10-

F1 = 311 

D1 = 54.46 
H1 = 147.05 

/?1 = 2711.6 

E1 = 12.33 

V1 = 0.2-0.25 

R1 = 1 
V1= 4.2167 X10-6 

F1 = 51.9 

TABLE 2. Modeled maximum load for UCT tests. 
Data with asterisk is the closest value to the 
experimental data. 

F (N) 
4.8 
4.8 
8 
8 
8 
14.4 
14.4 
14.4 
16 
64 
64 

Fso (N) 
14.4 
24 
14.4 
20 
32 
4.8 
6.4 
9.6 
24 
64 
128 

Maximum load (kN) 
60696 
140000 
45758 
75475 
113798 
18000 
21432 
29040 
55195 
164422 * 
236588 

TABLE 3. Modeled maximum load for BTT tests. 
Data with asterisk is the closest value to the 
experimental data 

4.8 
6.4 
32 
32 
64 
64 
64 

Fr0 (N) Fso (N) 
24 
14.4 
64 
96 
64 
96 
128 

Maximum load (N) 
6337 
5000 
14025 
14101 
17814 * 
22337 
27161 

ACKNOWLEDGMENTS 

We are grateful to the support of the ACcESS and 
AuScope project, University of Queensland ECR 
Grant and the Australian Research Council (project 
number DP0772409). We thank Sevda Dehkhoda for 
providing the laboratory data. 

REFERENCES 

1. Y. C. Wang and P. Mora, Journal of Mechanics and 
Physics of Solids 56, 3459-3474 (2008). 

2. P. Mora and D. Place, International Journal Modern 
Physics C 4, 1059-1074 (1993). 

3. Y. C. Wang, S. Abe, S., Latham and P. Mora, Pure and 
Applied Geophysics 163, 1769-1785 (2006). 

4. Y. C. Wang, Acta Geotechnica, in print (2008). 
5. Y. C. Wang and F. Alonso-Marroquin, Granular matter, 

accepted (2009). 
6. F. Alonso-Marroquin and H. J.Herrmann, Phys. Rev. E 

66, 021301 (2002). 

400 


