
JOURNAL OF OBJECT TECHNOLOGY
Online at http://www.jot.fm. Published by ETH Zurich, Chair of Software Engineering ©JOT, 2008

Vol. 7, No. 6, July-August 2008

Dave Thomas, “The Legacy and Liability of Object Technology - The Dark Side of OO”, in
Journal of Object Technology, vol. 7 no. 6, July-August 2008, pp. 27-30
http://www.jot.fm/issues/issue_2008_07/column3/

The Legacy and Liability of Object
Technology
The Dark Side of OO

Dave Thomas

LARGE OO LEGACIES REVEAL THE DARK SIDE

It took until the mid 80s for the pioneering ideas of object-orientation from Simula 67
to appear in industrial languages such as Objective-C, C++, Smalltalk, Eiffel and until
the mid 90s for OO to become mainstream with Java and C#, UML etc. Now, even
Cobol and Fortran have modern dialects that are OO. Java has reportedly passed
COBOL in terms of usage. Many companies have the majority of their legacy code in
C++ or Java. Since COBOL has for many years been the dominant legacy language
these companies are now looking at their OO legacy with increasing concerns about
their ability to cope with it.

Many of the most successful products currently in use were developed using C
and then C++, while others are written all or substantially in Java.

OO provides great potential benefits of increased modularity through components
and reduced code bulk through reuse, however, little is said about the downsides of
object technology used inappropriately. Unfortunately, a disproportionate number of
beautiful 80s and 90s products and applications have morphed into complex, scary
legacies that hold their owners hostage, limiting their ability to deliver timely new
value to their customers despite significantly increased investment in people and
tools. More and more time is spent delivering less and less.

The OO generation is learning that despite having a great technology, their once
wonderful code is turning into a complex legacy. Almost every organization seeking
to adopt new practices such as TDD faces their own code mountain with numerous
dangerous caves where both new and old developers fear to enter.

OO Legacy code is particularly difficult to deal with due to the acute lack of
modularity and the additional dependencies introduced by open frameworks. These
dependencies make Builds slow and error prone and they make refactoring code
difficult and risky.

Beyond that, much OO code has been written by developers with little
appreciation of OO design and development disciplines leading to cut and paste reuse,
and code bulk due to casual even unintended inclusion of frameworks or libraries.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Queensland eSpace

https://core.ac.uk/display/18445747?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

THE LEGACY AND LIABILITY OF OBJECT TECHNOLOGY – THE DARK SIDE OF OO

28 JOURNAL OF OBJECT TECHNOLOGY VOL. 7, NO. 6.

Clever programs leverage dynamic loading and reflective features, which
unfortunately often increases the difficulty of understanding legacy code.

FRAMEWORK HELL

Many frameworks force developers to work inside the framework rather than just
through the framework APIs. Often they require the developer to develop an intimate
knowledge of framework internals to instantiate and extend the framework. Indeed,
AOP has found traction in part because it allows one to modularize such framework
modifications. Many framework APIs are rushed through too quickly to establish a
control position in the market or to meet the need for architecture to get development
going before things have been properly thought through.

Finally, many frameworks are enabled by other frameworks but often the ease of
using another framework forces a huge amount of additional code to be unnecessarily
included. Eclipse has a very nice plugin mechanism, however, many lazy developers,
seeing something useful in other plugins, just include them all, rather than selecting
the appropriate classes and methods that deliver the small amount of functionality
needed. Framework dependencies have become even more problematic with the large
number of open source frameworks and Java and MS.Net framework upgrades. Each
year developers must decide if they should maintain the their current code, which
deviates from this years and next years frameworks, or if they should take the
business and technical risk of migrating to newer versions of their current frameworks
or their even newer alternatives. E.g. Swing, AWT, SWT, Jaces, Ajax or EJB1,2,3 or
Spring, ORM mapping etc.

LACK OF MODULARITY - HEY! WHERE ARE THE
INTERFACES?

Modularity relies on well defined and explicit interfaces. It is shocking, given
encapsulation is the hallmark of OO, that most legacy application are so lacking when
it comes to well defined interfaces. Even though Java and C# have explicit support for
interfaces they are seldom used and when they are often not used properly. It is telling
that only recently have speakers and authors started talking about APIs.

An API is a stable well defined interface that a client can count on without
needing to know the intimacies of the provider code it is using. It is a contract
between the interface provider and their clients.

Unfortunately far too much legacy code lacks well managed APIs, and even more
so how little API testing is done. This lack of clean, well defined interfaces results in
an ugly tangle of legacy code appropriately called a tar ball. It is really a zipped tar
baby, touch it and it will stick to everything you touch it with.

BUILD HELL

VOL. 7, NO. 6. JOURNAL OF OBJECT TECHNOLOGY 29

Many large OO systems have such complex dependencies, especially in C++, that
build scripts are like mythical writings on cave walls, which none dare change lest the
build be broken forever. The Java Build story has better language and tool support,
however, the massive dependencies induced by Java frameworks and configuration
scripts are quickly challenging the C++ world. The lack of modularity limits the
ability to do frequent builds, greatly increasing the risks of making changes of legacy
code makes “the build” the first monster of OO legacy development. Fortunately, in
most cases, a small 3 – 5 person team can substantially improve build modularity and
performance in 1 – 2 months but most organizations fail to see the huge benefit until it
is way too late.

WORKING WITH LEGACY CODE

We are beginning to understand how to work with Legacy OO code, but only just so.
Mike Feathers’ book outlines how to tease apart classes and use TDD to pick apart an
existing program but Mike himself readily admits that this is very hard for a large
legacy code base. Unlike many Agilists, Mike points out the critical importance of
carefully defining APIs and the naivety of thinking that one can just refactor the code
mountain using your favorite IDE. Working with legacy code currently takes brave
experts who are not afraid to jump into the code mountain knowing they may die in a
cave before succeeding. Legacy refactoring is an important constructive intervention
but it can often take 3 – 4 months with a top notch team to make a significant progress
on a code mountain. This important entropy reduction activity seldom gets the
investment until it is too late.

Recently there have been numerous tools to help understanding OO legacy code.
Klocworks and Software Tomograph provide graphical visualizations of the
architecture and code. Structure 101 and Lattix both produce dependency structure
matrices (DSM) to illustrate and manage complex dependencies. Both the
visualizations and the matrices will very quickly scare anyone when you point them at
your unsuspecting legacy code base. Unfortunately, none of these tools is yet up to
dealing with the really large legacies of mixed C, C++, Java, QL etc that are typically
found in large legacy systems, but at least there is some light to see into the legacy tar
ball.

However, even with these tools restructuring the legacy code base remains
wizard’s work. This is even more challenging if the code base is moving underneath
you.

About the author

Dave Thomas is cofounder/chairman of Bedarra Research Labs
(www.bedarra.com), www.Online-Learning.com and the Open
Augment Consortium (www.openaugment.org) and a founding
director of the Agile Alliance (www.agilealliance.com). He is an
adjunct research professor at Carleton University, Canada and the
University of Queensland, Australia. Dave is the founder and past

CEO of Object Technology International (www.oti.com) creator of the Eclipse IDE

THE LEGACY AND LIABILITY OF OBJECT TECHNOLOGY – THE DARK SIDE OF OO

30 JOURNAL OF OBJECT TECHNOLOGY VOL. 7, NO. 6.

Platform, IBM VisualAge for Smalltalk, for Java, and MicroEdition for embedded
systems. Contact him at dave@bedarra.com or www.davethomas.net.

