
JOURNAL OF OBJECT TECHNOLOGY
Online at http://www.jot.fm. Published by ETH Zurich, Chair of Software Engineering ©JOT, 2008

Vol. 7, No. 4, May-June 2008

Dave Thomas, “Enabling Application Agility - Software as A Service, Cloud Computing and
Dynamic Languages”, in Journal of Object Technology, vol. 7 no. 4 May-June 2008, pp. 29-32
http://www.jot.fm/issues/issue_2008_05/column3/

Enabling Application Agility - Software
as A Service, Cloud Computing and
Dynamic Languages

Dave Thomas

BEYOND MIDDLEWARE

For the past decade, application developers have been forced into an increasingly
complex labyrinth of multi-tiered hardware, complex OO frameworks and
middleware and associated tools. Each year, developers have faced new frameworks
and a sea of new APIs. Instead of making the life of application developers easier and
reducing the cost of application development, these technologies have done just the
opposite. We are only now beginning to understand the expense of the middleware
legacy.

The good news is that application developers are on the verge of being liberated
from the tyranny of middleware. Next Generation IT will leverage a new computing
platform which makes the development and delivery of applications significantly
easier than it is today. This new platform consists of Cloud Computing, Software As
A Service and Dynamic Languages. Cloud Computing [1] offers mainframe or better
infrastructure through a small set of services delivered globally over the Internet.
Software as a Service is a new delivery model which provides flexibility to both the
provider and the customers. Dynamic languages and modern frameworks lower the
barrier for application development and enable the rapid development of applications.

SOFTWARE AS A SERVICE (SAAS) – ALWAYS UP TO DATE

The great benefit of SAAS is the ability, though hopefully not the requirement, to run
the most recent version of the application. The pain of installation and upgrading is
replaced by a simple request to run a specific version of the software. It eliminates the
need to install hardware or software on the client premises.

A major challenge for SAAS providers is ensuring the security and privacy of
client data which is held outside their organization. SSL VPNs and client based
encryption as well as mission critical fault tolerant, environmentally and physically
protected data centers are minimum capabilities to enable the use of external service

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Queensland eSpace

https://core.ac.uk/display/18445705?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

ENABLING APPLICATION AGILITY

SOFTWARE AS A SERVICE, CLOUD COMPUTING AND DYNMAIC LANGUAGES

30 JOURNAL OF OBJECT TECHNOLOGY VOL. 7, NO. 4.

based software. SalesForce.com [4] is a pioneer in providing a robust secure
infrastructure which has earned the trust of otherwise conservative corporations.

Currently, most applications require the user to be connected to the Internet to
use their applications, but increasingly services are being designed such that they can
work in an occasionally disconnected world which is the reality for mobile users.
Google Gears [6], for example, provides a local web server which allows local data
storage using simple web protocols.

SAAS enables the service provider to support many clients using a common
infrastructure. It may even allow all clients to run a single or small number of
instances of the application. Providers have the ability to collect detailed information
about defects, performance and usage patterns to improve their product. Finally,
SAAS allows updates, beta and new release features to be delivered to clients on a per
user, team or company basis.

Google has clearly demonstrated the benefits of the software as a service model.
Amazon Web Services [2] and recently Google App Engine [3] enable others to
deliver their own applications leveraging their massive infrastructures.

CLOUD COMPUTING

Despite the massive investment in modern 2 and 3 Tier computing platforms, in many
cases these platforms still fall short of mainframes when it comes to delivering
enterprise applications in terms of scale and/or total cost of ownership. It isn’t
surprising then that IBM has announced a recent resurgence in mainframe sales.
These systems require different kinds of programming for each tier. They require
moving data to and from each tier.

Cloud Computing leverages high performance, relatively inexpensive commodity
computers clustered closely together in a data center and connected to other similar
data centers located globally as close to the users as possible. In contrast to
middleware, Cloud Computing presents application developers with a small set of
services (<100). These services provide a limited set of operations, reducing the
learning curve for developers. Services [5] are invoked using simple REST XML
requests and/or RSS, making them easy to use from any programming language.
Convenience frameworks are provided for popular languages, most importantly low
barrier dynamic languages.

While the initial service offerings were limited web and storage services,
Amazon recently introduced their SimpleDB database services and Google’s new
APP Engine promises to allow developers access to its Big Table and Map Reduce
infrastructure.

The latter allow a functional style of programming where functions are passed
into the cloud infrastructure and executed close to the data rather than moving all of
the data to the functions on a mainframe or mid-tier server. These higher level query
and update services provide application developers the high performance data services
of Cloud Computing via simple collection operations.

VOL. 7, NO. 4. JOURNAL OF OBJECT TECHNOLOGY 31

Legacy data can be made available through generic collection interfaces,
reducing the complexity of middleware, persistence, and message bus APIs. We
believe that we are now seeing the CRUD and the mainframe VSAM, IMS and RDB
of the future.

Services can of course be composed such that every application is really nothing
more than a composition of other services. Clouds enable loosely coupled services to
execute efficiently inside the cloud eliminating or at least reducing the overheads of
message buses, RPCs and persistence frameworks. Applications can be composed and
orchestrated via simple end user tools such as mashup editors. The Programmable
Web [5] documents the currently available Web APIs along with some interesting
mashups.

DYNAMIC LANGUAGES

Dynamic languages such as Python, Ruby, Scheme, PHP, Java Script, VB91 and LUA
etc. have much lower entry barriers than Java 6 and C# 3.0. The libraries are much
smaller, they have a simple object model, and the objects rather than the variables are
typed, increasing the polymorphism. This typically means less syntax and less code.
This enables more agile development with easier refactoring and increased
polymorphism2.

Dynamic Languages also encourage the use of programming with collections and
iterative style and most allow for functions to be easily passed as first class values
supporting more a functional style of programming.

These languages encourage exploratory programming and can be used without
the need for a complex IDE. Web application development is further enabled through
frame works such as Ruby On Rails, and Django provides ready made scaffolding
web sites which can built by application developers without deep technical knowledge
of either Ruby, Python or the underlying web infrastructure.

Dynamic languages are ideal for writing small services which can be dynamically
invoked on demand. The ability to leverage a powerful but very simple cloud service
API reduces the complexity of persistence and messaging APIs, allowing the
application to just deal with collections of data and invoke other services. This is in
sharp contrast to J2EE where developers must weave/inject their application code into
the middle of J2EE and deal with OR mapping, serialization etc. REST and RSS
provide simple, ubiquitous protocols for a wide variety of communications. The
complexity of CORBA and RPC and even SOAP is reduced through the use of JSON
and YAML.

Ajax frameworks enable the development of rich client UI, or even complete
applications which run in the browser scripted in JavaScript. The pervasive
importance of such browser based application has resulting in browser vendors
improving their browsers and scripting engines. While applications security remains a

1 Local type inference and integrated support for LINQ have brought new life back to VB.
2 Generics in C# and Java offer the opportunity for increased polymorphism but experience to date
suggests that the complexity of generics and their interaction with other language features makes them
less useful than designers had hoped.

ENABLING APPLICATION AGILITY

SOFTWARE AS A SERVICE, CLOUD COMPUTING AND DYNMAIC LANGUAGES

32 JOURNAL OF OBJECT TECHNOLOGY VOL. 7, NO. 4.

concern, Google, Facebook, HP etc. have developed preprocessors that scan the JS
code for potential problems and localize references to client data.

FINALLY LIFE AFTER MIDDLEWARE

Next Generation IT holds the promise that applications programming will no longer
require climbing API Mountain and learning complex tools. This means increasing
agility by significantly reducing application development time and expense. Instead of
one monolithic application to deal with every type of customer or product,
applications can be developed and delivered to types of customers, specific
geographies or even to specific individual customers. Applications can instantly
deploy on any Internet capable device.

Platforms such as Amazon, Google, iPhone, iPod, and Facebook, are used daily
by millions of users. If your business wants to interact with these customers you need
to reach them on their platform, not assume they will come to yours.

REFERENCES

[1] Nick Carr, The Big Switch: Rewiring the World, from Edison to Google, W. W.
Norton.

[2] James Murty, Programming Amazon Web Services: S3, EC2, SQS, FPS, and
SimpleDB (Programming), O’Reilly.

[3] Google App Engine, http://code.google.com/appengine/ and Google Data APIs
http://code.google.com/apis/gdata/

[4] Tony Stubblebine, An Introduction to Salesforce.com's AppExchange,
http://www.oreillynet.com/pub/a/network/2006/11/13/an-introduction-to-
saleforcecoms-appexchange.html

[5] The Programmable Web, http://www.programmableweb.com/

[6] Google Gears, http://code.google.com/apis/gears/

About the author

Dave Thomas is cofounder/chairman of Bedarra Research Labs
(www.bedarra.com), www.Online-Learning.com and the Open
Augment Consortium (www.openaugment.org) and a founding
director of the Agile Alliance (www.agilealliance.com). He is an
adjunct research professor at Carleton University, Canada and the
University of Queensland, Australia. Dave is the founder and past

CEO of Object Technology International (www.oti.com) creator of the Eclipse IDE
Platform, IBM VisualAge for Smalltalk, for Java, and MicroEdition for embedded
systems. Contact him at dave@bedarra.com or www.davethomas.net.

