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Abstract 

 A packed powder diffusion coating (PPDC) treatment produced two intermetallic layers on 

the surface of the commercial magnesium alloy AZ91E. The β-phase (Mg17Al12) was immediately 

on top of the AZ91E, on top of which was the τ-phase (Mg32(Al,Zn)49). Nanoindentation showed 

that the elastic modulus and hardness of each of the intermetallic compounds was significantly 

greater than that of the AZ91E substrate. Staircase displacement bursts occurred during 

nanoindentation of the intermetallic compounds, attributed to the combination of incipient plasticity 

at low loads, and the development of dislocation networks due to dislocation pile ups around the 

indentation at higher loads. Crystallographic analysis of β phase orientations using EBSD showed 

that the nanomechanical properties of the intermetallic compound produced through PPDC 

treatment were isotropic. 
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1. Introduction 

Magnesium (Mg) alloys are widely used in engineering applications due to their high strength-

to-weight ratio [1]. Their major drawbacks are relatively low wear and low corrosion resistance [2], 

which have considerably limited their wider application. Surface modification is an effective 
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approach to enhance surface durability without changing the mechanical properties [3]. 

Aluminizing via diffusion coating is a promising approach to improve wear and corrosion resistance 

[4-9]. Aluminizing forms intermetallic compounds on the surface of Mg alloys, such as the 

intermetallic phase β-Mg17Al12, which increase hardness and wear resistance [8]. These can also 

enhance corrosion resistance [10-13]. Surface durability is expected to increase with increasing 

volume fraction of the β phase in the aluminized layer.  

However, most surface aluminizing treatments of Mg alloys are carried out at temperatures 

above 430 °C [6, 14-17], whereas the eutectic temperature for Mg-Al system is only 437 °C. At 

such high temperatures, hot cracks occur frequently in both the substrate and the alloyed layer, as a 

result of the local melting at eutectic areas. To overcome hot cracking, Zhang and Kelly [18] 

developed the packed powder diffusion coating (PPDC) technique, and introduced Zn into the Al 

powder so that a thick alloy layer was produced on an AZ91D alloy substrate after treatment below 

430 °C. Hirmke et al. [19] refined the PPDC technique by adding more Zn, and produced thicker 

and more effective aluminized layers consisting of τ-Mg32(Al,Zn)49 and β-Mg17Al12 on AZ91. 

However, the mechanical properties of the β (Mg17Al12) and τ (Mg32(Al,Zn)49) phases have not 

been characterised, because the focus of the previous studies was on the optimisation of the PPDC 

process.  

The present research to aims to characterise the mechanical properties of these intermetallic 

phases in-situ in such coatings using nanoindentation. 

2. Experimental details 

Specimens for the packed powder diffusion coating (PPDC) treatment were cut from a cast 

commercial AZ91E ingot, which had the following chemical composition: 8.31 wt.% Al, 0.52 wt.% 

Zn, 0.6 wt.% Mn, and remainder Mg. The grain size was approximately 500 μm. The specimen size 

was 15 mm x 10 mm x 10 mm. The specimens were buried in a mixture of powders (10 wt.% Zn 

plus 90 wt. % Al) in a steel container. The particle sizes were in the range of 15 to 75 μm.  The 
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container was filled about two thirds with the Mg alloy specimens in the Al and Zn powder mixture, 

topped up with sand, on which was placed a mixture of sand and charcoal to reduce oxidation of the 

specimens. The PPDC treatment was carried at 413 °C for 18 hours followed by air cooling to room 

temperature [5, 19]. The temperature of 413 °C was selected because this temperature is typical for 

solid solution heat treatment for AZ91, and the maximum Al concentration could be obtained in the 

Mg solid solution without melting due to eutectic formation. Previous study [5] had found that the 

Mg-Al intermetallic coating produced by the PPDC process at 413 °C had the best corrosion 

resistance. After the PPDC treatment, the specimens were cross-sectioned, mounted in resin and 

ground and polished. The thickness of the intermetallic layers was measured on the cross sections 

using optical microscopy. Electron backscattered diffraction (EBSD) was performed in a JEOL 

7001 scanning electron microscope to determine the orientations of individual grains within the 

intermetallic layers. Nanoindentation was performed on both the β and τ phases and the AZ91E 

substrate using a Hysitron Triboindenter®, with a three sided Berkovich indenter, with tip radius of 

100 nm. The indentation load was 3000 μN. The loading /unloading rate was 100 μN per second. 

There was a stabilized period of 5 seconds between loading and unloading [20]. An atomic force 

microscope (AFM) was used to examine the surface topographies prior to, and after each 

indentation. The reduced elastic modulus and nanoindentation hardness (hardness in short 

thereinafter) were calculated from the load-displacement curves [21].  

 

3. Results and discussion 

Fig. 1(a) presents an optical micrograph of a typical intermetallic layer on the AZ91E substrate 

after the PPDC treatment at 413 °C for 18 hours. The 250 µm thick intermetallic coating consisted 

of two layers, as in previous work [5]. The top layer with a thickness of ~175 µm consisted of the τ-

phase with composition Mg32(Al, Zn)49. The 75 µm thick second layer consisted of the β-phase with 

composition Mg17(Al, Zn)12. The EBSD analysis shown in Fig. 1(b) indicated that the β-phase layer 

contained equiaxed grains with an average grain size of 60 μm, and the τ-phase layer consisted of 
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columnar grains. Fig. 1(c) presents the distribution of grain orientation along the normal direction 

(ND) in an inversed pole figure (IPF), indicating that there was no obvious texture in the 

intermetallic layers. Fig. 1(d) presents a typical TEM micrograph of the τ and β phases and a typical 

τ/β interface produced by focused ion beam (FIB) etching. There were no pores within β-phase and 

τ-phase layers, both intermetallic layers were fully dense, and there were no pores at the interface. 

Nanoindentation mapping was performed on cross-sections of the PPDC treated specimens to 

characterize the nanomechanical properties of the τ and β phases. The local crystallographic 

orientations in the nanoindentation mapping area were measured using electron backscattered 

diffraction (EBSD) and are presented in Fig. 2(a). The difference in the grey level in the β-phase 

layer indicates β grains with different crystallographic orientations. Fig. 2(a) also presents an EDS 

line scan showing the composition of Mg (red), Al (green) and Zn (blue) with depth into the coating. 

The Al and Mg contents were consistent with the compositions of the τ and β phases, and that of 

AZ91E. In addition there was Zn in the intermetallic layers, with a somewhat higher concentration 

towards the surface. This was consistent with that previously reported [19].  

Nanoindentation mapping was carried out under constant conditions. An array of 18 × 21 

indents was made in an area of 180 × 200 µm2. The elastic modulus of the τ and β phases were 

evaluated using the elastic modulus of 1141 GPa and the Poisson’s ratio of 0.07 for the diamond 

indenter [20] and a nominal Poisson’s ratio of 0.29 for the intermetallic phases. Figs. 2(b) and (c) 

present the values of hardness and elastic modulus, plotted as a function of depth from the specimen 

surface. Fig. 2(b) shows that the hardness of the τ phase was similar to that of the β phase. The 

hardness of both the intermetallic compounds was approximately 4 times larger than that of the 

AZ91E substrate. For most materials, higher hardness is associated with greater sliding wear 

resistance.  

Fig. 2(c) shows that the elastic modulus of the β phase was larger than that of the τ phase and 

both were significantly greater than that of the substrate. The higher elastic moduli of the 
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intermetallic phases are attributed to their stronger atomic bonds, which are considered to be a 

mixture of metallic and covalent bonds, because the difference in electronegativity (E) between Mg, 

Al and Zn is small.   

The values of the modulus and hardness were lower at the interface between the intermetallic 

layers. This is attributed to an edge effect. Phase boundaries between τ and β or β and AZ91E are 

weaker than the bulk phase because plastic flow occurs more easily near a boundary as a result of 

lower constraint. Therefore, lower values of the hardness and modulus are typically measured near 

boundaries and free surfaces.  

The error bars for the elastic modulus of the AZ91E substrate in Fig. 2(c) were relatively large, 

with the highest values close to the β phase. This is attributed to the fact that the boundary was not 

straight between the β phase and the AZ91E. The indents in the AZ91E closer to the boundary had 

some probability to have a contribution from the β phase, and these would produce a higher value 

of modulus. In contrast, values more representative for the substrate were measured further from the 

boundary, and consequently these measurements had lower scatter.  

Fig. 3(a) shows typical nanoindentation load-displacement curves for the τ phase, the β phase, 

and the AZ91E substrate. There were numerous displacement bursts on the loading curves for the τ 

and β phases. Such staircase or zigzag deformation is common in the indentation of bulk single 

crystals of Au [22], and polycrystalline thin films of Al and Cu [23]. The displacement burst is 

normally considered to be associated with (i) incipient plasticity, (ii) development of dislocation 

networks, (iii) mechanical instability, and (iv) phase transformations. Incipient plasticity often 

occurs upon the earliest stages of the mechanical contact, corresponding to the transition from 

elastic to plastic deformation [24]. Beyond initial yield during nanoindentation, additional 

displacement burst events at higher loads were associated with the development of dislocation 

networks, including the nucleation of dislocations and their subsequent propagation into the crystals, 

dislocation multiplication, and the evolution of a complex defect structure [25]. Mechanical 

instabilities and serrated flow occur also in crystalline metals due to the interaction of dislocations 
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and mobile solute atoms [26]. There are no dislocations in amorphous metals or metal glasses, and 

plastic deformation is inherently unstable, occurring in bursts of highly localized strain, called shear 

banding events [27]. Phase transformations occur in many materials when they are subjected to 

large hydrostatic stresses, such as during nanoindentation [28]. The displacement bursts observed in 

the present work are attributed to the incipient plasticity and the development of dislocation 

networks.  

Fig. 3(b) shows a magnified version of the start of the load-displacement (p-h) curves, shown by 

the black rectangle in Fig. 3(a).  The first displacement burst occurred at around 25 nm for both 

intermetallic phases, and corresponded to a load of 177 μN for the β phase, and 212 μN for the τ 

phase. The corresponding maximum shear stress underneath the indenter tip for a displacement 

burst, τmax, was computed to be 8.5 for the β phase, and 8.2 GPa for the τ phase. These values of τmax 

were computed from [29] 

                                                         (1)  

where E* is reduced elastic modulus obtained from the p-h curves, R is the tip radius and P is the 

load for displacement burst. These estimates exceed the estimate of the theoretical shear strength of 

3.5-4.8 GPa for the β-phase, which is estimated as µs/2π GPa, where the shear modulus of β phase, 

µs, is taken to be in the range 22 to 30 GPa based on the first-principle calculations and 

experimental measurement [30-32]. These estimates indicate that the maximum shear stress beneath 

the indenter was equal to or exceeded the theoretical shear strength, which satisfied the stress 

condition for inducing the incipient plasticity.   

No similar comparison can be done for the τ-phase, because there are no published data for the 

shear modulus.  

Figs. 3(c) and (d) present typical AFM images of the nanoindents on the β phase and τ phase. 

The triangular impressions of the indents appeared sharp, but pile ups around the indenter (white 

region along the indentation) were also evident for both phases. The plastic response of a material 

subjected to indentation is a plastic zone like an expanding cavity, which expands radially beneath 
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the indenter, and is confined by the adjacent elastic material [33, 34]. This expanding cavity model 

can be considered as a series of prismatic dislocation loops that are punched out into the material to 

accommodate the indenter [35, 36]. Pile-ups are generated by the rotation of the crystalline material 

around the indenter, and the relaxation engendered by the unloading of the indenter [37]. These 

pile-ups may be the cause of the displacement burst at higher loads. In contrast, Figs. 3(a) and (e) 

show that the load-displacement curve for AZ91E was relatively smooth, without any apparent pile-

up.  

Fig. 4(a) shows the EBSD mapping of the β phase layer over an area of 200 × 150 µm2, carried 

out in order to examine the effect of grain orientation on the elastic modulus. The grains were 

numbered and their ND orientations are presented in Fig. 4(b). An array of 21 × 16 indentations 

were performed in this area. Fig. 4(c) presents the map of the elastic modulus, in which a bicubic 

interpolation was used between the measurement points. The numbered grains were divided into 

three groups according to their pole directions of [001], [101] and [111]. Table 1 presents the 

orientation of each grain with respect to the respective pole direction, and the corresponding elastic 

modulus, Er. The measured elastic modulus of the β phase was in the range of 78-80 GPa. The 

influence of orientation on elastic modulus was not significant.  

This measured result can be compared with the theoretical modulus for a grain with orientation 

[hkl] aligned with the loading axis, evaluated from [38]  

                                                    (2) 

where S11, S12 and S44 are the compliances of the material, and the anisotropy factor is given by 

 for a cubic crystal.  For the β phase, first-principle 

method calculations [31] gave S11 = 13.836 ×10-3 GPa-1, S12 = -3.46 ×10-3 GPa-1 and S44 = 50 ×10-3 

GPa-1. The calculated modulus for [001], [101] and [111] were 72, 57 and 53 GPa, respectively, 

which indicated that the [111] direction has the lowest modulus and [001] has the highest modulus.  
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The experimental results obtained from nanoindentation mapping (Table 1) showed the same 

trend that the [001] direction had the largest modulus, and the [111] direction has the lowest value. 

But the difference of measured modulus in those directions was insignificant compared with those 

from the theoretical evaluation. The cause of the small influence of orientation on the measured 

elastic modulus may be related to the complexity of crystal structure of the β phase, which reduces 

the difference in number of atomic bonds in different directions.  

    Fig. 5(a) presents the modulus map obtained from the nanoindentation map performed on the 

cross-sectional specimen shown in Fig. 2(a). Fig. 5(b) shows the variation of the modulus within 

each β grain with distance from the τ/β interface. As the PPDC process is a diffusion control 

process, the Zn and Al concentration decreased with increasing depth from the surface as shown in 

Fig. 2(a). However, Figs. 5(a) and (b) show that the modulus varied from 75-80 GPa, and that there 

was no significant change with deceasing concentration of Zn and Al solute, which indicated that 

the elastic modulus did not vary with the variation of solute concentration of Zn and Al. 

4. Conclusions 

(1) PPDC treatment produced an intermetallic compound surface coating, consisting of τ phase 

and β phases, which had similar values of elastic modulus and hardness, and the values were 

larger than those of the AZ91E substrate.   

(2) Staircase displacement bursts typically occurred during nanoindentation, attributed to 

incipient plasticity and the development of dislocation networks. 

(3) Crystallographic grain orientation using EBSD analysis indicated that the elastic modulus of 

the β phase layer was isotropic.  
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List of Figure captions 

Fig. 1 (a) A typical optical micrograph showing both the τ phase and β phase layers on top of the 

AZ91E substrate after PPDC treatment at 413 °C for 18 hours; (b) EBSD mapping on the cross-

section showing the grain size; (c) grain orientation distribution along the direction normal to the 

surface (i.e. the ND direction); and (d) TEM observation of the β and τ phases and the β/τ interface. 

Fig. 2 (a) EBSD mapping on a typical cross-section specimen, the difference in grey level in the β 

phase layer indicated different grain orientations, and an EDS line scan showing the variation of 

concentration of Mg (red), Al(green) and Zn (blue); (b) hardness, and (c) elastic modulus values 

plotted as a function of the depth measured from the outmost surface.  

Fig. 3 (a) Load-displacement curves obtained from nanoindentation on the τ phase, the β phase and 

the AZ91E substrate; (b) low load part of (a); and (c), (d), (e) AFM images of the nanoindents on 

the τ phase, the β phase and the AZ91E substrate. 

Fig. 4 (a) EBSD mapping and (b) inversed pole figure obtained from the β phase layer (the grains 

have been numbered for easy identification) after removal of the τ phase layer; and (c) elastic 

modulus map obtained from the nanoindentation mapping array shown in (a).  

Fig. 5 (a) Modulus map obtained from nanoindentation testing on the cross-section specimen (β 

phase grains have been numbered); and (b) average modulus for each grain as a function of distance 

away from the τ/β interface. 

Table 1. The grains with different orientation and their reduced elastic modulus, Er 
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Table 1 The grains with different orientation and their reduced elastic modulus 

 
 
 
 
 
 
 
 
 

β-Mg17Al12 

 
Grain 

No. 
Orientation(φ1, Φ, φ2) misorientation Er 

Average value 

of Er of grains 

near pole 

Near 

[111] 

17 94.5, 50.1, 38.3 7° from (111) 78.6 ± 0.6 

78.8 

1 210.9, 46.3, 51.2 9° from (111) 79.4 ± 1.3 

5 192.1, 35.8, 41.7 19° from (111) 77.8 ± 0.8 

16 183.4, 42.5, 62.0 19° from (111) 78.1 ± 0.8 

10 93.0, 37.3, 62.5 22° from (111) 79.7 ± 1.0 

13 60.7, 31.3, 55.5 25° from (111) 78.9 ± 0.7 

Near 

[101] 

12 105.4, 41.2, 6.2  9° from (101) 78.9 ± 0.6 

79.1 

15 288.8, 45.9, 71.7 13° from (101) 78.2 ± 0.9 

2 247.8, 38.1, 68.4 14° from (101) 79.2 ± 0.6 

8 68.4, 32.1, 8.4 14° from (101) 81.0 ± 0.9 

11 227.7, 31.7, 82.3 14° from (101) 79.7 ± 1.0 

3 57.5, 43.5, 71.3 15° from (101) 78.3 ± 0.8 

6 326.1, 43.1, 69.3  15° from (101) 79.0 ± 0.5 

9 60.8, 36.5, 65.3 19° from (101) 78.6 ± 0.7 

Near 

[001] 

7 188.9, 8.7, 32.9 13° from (001) 80.6 ± 0.1 

80.5 14 231.5, 19.4, 52.5 19° from (001) 81.3 ± 1.0 

4 274.2, 25.0, 73.7 28° from (001) 79.5 ± 0.2 


