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Drought risk assessment ideally requires long-term rainfall records especially where inter-annual droughts are of

potential concern, and spatially consistent estimates of rainfall to support regional and inter-regional scale

assessments. This paper addresses these challenges by developing a spatially consistent stochastic model of monthly

rainfall for south-east UK. Conditioned on 50 gauged sites, the model infills the historic record from 1855–2011 in

both space and time, and extends the record by synthesising droughts which are consistent with the observed

rainfall statistics. The long record length allows more insight into the variability of rainfall and potentially a stronger

basis for risk assessment than is generally possible. It is shown that, although localised biases exist in both space and

time, the model results are generally consistent with the observed record including for a range of inter-annual

droughts and spatial statistics. Simulations show that some of the most severe inter-annual droughts on the record

may recur, despite a trend towards generally wetter winters.

Notation
c correlation coefficient

Cii variance of the unconditional error at site i

Csi vector of covariance values between s sites and

another site i

Css covariance matrix describing the dependencies

between the errors at s sites

D distance between two sites

E n 3 1 vector of errors

�eei expected value of the error at site i

es vector of errors observed at s sites over all the

years for any month

N (�eei, � 2
i ) a random sample drawn from a normal distribution

with mean �eei and variance � 2
i

r untransformed rainfall

X n 3 m matrix containing n values of m observed

input variables

Y n 3 1 vector of observations

y transformed rainfall

�yyi expected value of transformed rainfall

Æ parameter of the correlogram

� parameter of the correlogram.

Ł m 3 1 vector of regression coefficients

º Box–Cox transform parameter

� 2
i variance of the conditional error at site i

1. Introduction
The sustainability of water supply in much of Europe is a major

concern for economic and environmental planning (Mechler and

Kundzewicz, 2010). One region of particular concern is south-

east UK, which has a high and increasing population, relatively

low rainfall and high evaporation (Arnell and Delaney, 2006;

Marsh et al., 2007). A large proportion of the supply in this

region is from the chalk aquifer, which is under stress in places

from over-abstraction and agricultural contamination (Smith et

al., 2010). To relieve the stress on water resources, options for

desalination, bulk imports and inter-basin transfers from the

Thames and Severn basins have been considered (Arnell and

Delaney, 2006). Moreover, towards more optimal sharing of water

resources during drought periods, there are currently efforts to

optimise water transfer schemes within the south-east (von Lany

et al., 2008).

In south-east UK it is generally perceived that three dry winters

in succession would present severe regional water supply deficits

(the winter season, with its higher rainfall and lower potential

evaporation, being the primary source of effective rainfall and

recharge to the aquifers) (von Lany et al., 2008), and should the

most extreme historic droughts recur (see Marsh et al., 2007) it

seems unlikely that an acceptable level of service could be

maintained (McIntyre et al., 2003). Of particular concern to water

managers is the possible recurrence of the long-term droughts of

1887–1910, which included a series of five unusually dry

winters, and shorter inter-annual droughts of 1920–1922, 1933–

1934, 1975–1976, 1990–1992 and 1995–1997 (Marsh, 1996;

Marsh et al., 2007; Subak, 2000).

As well as drought duration, the spatial aspect of drought is also

of interest (Burke and Brown, 2010; Zaidman et al., 2002). The

spatial properties of drought have particular practical relevance in
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south-east UK, where extending the water network within and

beyond the region is potentially viable (von Lany et al., 2008).

Assessing the scope for such transfers requires a good under-

standing of the spatial characteristics of water availability over

the relevant scales. Hence there is considerable motivation for

developing data sets and tools which deliver a capability for

characterising both the temporal and spatial characteristics of

extreme droughts.

Gridded climate re-analysis data sets (e.g. the ERA40 data,

Uppala et al. (2005)) produce historical rainfall going back to

1957 on a grid scale of about 1.1258. However this time coverage

and grid scale are rather restrictive for analysis of extremes

within one region. Downscaling tools provide a simulation

capability at more applicable scales (e.g. Kenabatho et al., 2011;

Kigobe et al., 2011). For example, the weather generator

associated with UKCP09 (Jones et al., 2009) can be used to

generate scenarios of extreme rainfall on a 5 km grid scale.

However, that weather generator was not designed to produce

spatially consistent rainfall in the sense that observed inter-grid

dependence of rainfall is not preserved (Jones et al., 2009), and

hence has limitations for spatial assessment of drought risk. Also,

many stochastic rainfall models (e.g. Jones et al., 2009; Yang et

al., 2005) are trained on only around 30 years of data, and hence

their suitability for generating a range of extreme droughts is

unclear. Therefore, despite their attractions, existing re-analysis

data sets and stochastic rainfall models are not by themselves

adequate to support regional drought risk analysis.

The concern about water stress in England, Europe and beyond

calls for suitable data sets and tools to support regional water

resources management (Thyer et al., 2002). This includes gener-

ating long sequences of spatially distributed rainfall over space

and time. This paper aims to address this challenge by developing

new statistical rainfall models using a case study of south-east

UK, including the following activities.

(a) Compilation of available long-term rainfall records covering

south-east UK (Kent, Sussex, Hampshire, Surrey, Isle of

Wight, east Wiltshire, south Berkshire and south London).

(b) Identification of large-scale climatic drivers of rainfall and

regional variability to give a deterministic model to predict

expected rainfall over the region; and identification of a

stochastic model to describe variability around the expected

values.

(c) Infilling of missing data to provide continuous monthly

sequences of rainfall dating back to 1855, gridded over the

south-east region, including uncertainty estimates.

(d ) Assessment of the ability of the model to replicate the

historical extreme droughts, in particular the severe droughts

of 1887–1910, 1920–1922 and 1975–1976.

2. Rainfall analysis using regression
Statistical modelling has commonly been employed to infill

partial historical rainfall sequences and to downscale climate

model projections (Fowler et al., 2007; Xu, 1999): regression is

one such approach (Hanssen-Bauer and Førland, 1998; Murphy

and Washington, 2001; Phillips and McGregor, 2002). Multiple

linear regression may be described by

Y ¼ XTŁþ e1:

where Y is a n 3 1 vector of observations, X is a n 3 m

matrix containing n values of m observed input variables, Ł is

a m 3 1 vector of constant regression coefficients, and e is an

n 3 1 vector of errors. Ł is generally estimated by minimising

the sum of the squared errors given the set of observations, Y

and X. With the assumption that the errors in vector e are

independent of each other, and are identically and normally

distributed, the least squares estimate of Ł is equivalent to the

maximum likelihood estimate. This assumption also allows the

covariance matrix of the regression coefficients to be esti-

mated using standard linear methods (Kottegoda and Rosso,

2008). The input variables to include in X are generally

identified by trial and error, aiming to produce a model which

explains much of the variability in Y (generally measured

using the R2 statistic), and also, ideally, to produce a Ł with

low covariance. Stepwise regression (Draper and Smith, 1998)

is a set of procedures which assists with the identification of

the optimal X variables (from a set of pre-specified candi-

dates).

The identification of a suitable probability density function to

describe e means that Equation 1 may be employed as a

stochastic model, from which random realisations of Y can be

simulated. This potentially provides a model for stochastic

simulation of rainfall variability and extremes. Consistent with

the general statistical assumptions behind least squares regres-

sion, it is common to assume a normal distribution of errors.

Towards achieving such a normal distribution, the skewness

generally observed in rainfall data can be managed by trans-

forming the rainfall prior to the regression, for example using a

logarithmic or Box–Cox transform (Kottegoda and Rosso,

2008). When the errors are not independent of each other (as in

the case study below), a multivariate normal distribution is

required. Where the rainfall sample contains a significant num-

ber of zeros, as would be the case using daily or sub-daily data

in the UK, the random variability cannot conveniently be

described by a single continuous distribution function. Further-

more, at these time scales there is significant serial dependence.

These challenges have led to the use of statistical methods for

rainfall modelling which are more flexible than simple regres-

sion (Chandler and Wheater, 2002, Segond et al., 2006).

However, in this paper, the use of monthly rainfall data

sufficiently simplifies the problem so that a stochastic model of

the form of Equation 1 (including suitable Box–Cox transforms

of the data and suitable models of inter-site dependence) is

proposed as sufficient.
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3. A monthly rainfall model for south-east
UK

3.1 Definition of ‘south-east UK’

The ‘south-east UK’ is defined here as the region illustrated in

Figure 1, bounded to the south and east by the coast, to the west

by (using the UK national grid coordinate system) easting

410000 m and to the north by 180000 m. This spatial covergage

was governed by: (1) the wish to cover a large part of south and

south-east UK; (2) the increased difficulty of achieving a

satisfactory spatial model if extending the region further north

and/or west; and (3) the computational demands of stochastic

modelling, which inhibit the inclusion of many more sites.

Therefore, no particular climatic, geographical, political or water

company boundaries were used to define the coverage, and they

would need to be reviewed prior to a practical application of the

model at the regional scale.

3.2 The climate of south-east UK

South-west frontal systems dominate the rainfall of south-east

UK, hence rainfall generally reduces towards the east and north.

As over the UK in general, significant correlations between

rainfall and the North Atlantic Oscillation, and other variables

and indices related to the Atlantic low pressure systems, are

observed particularly in the winter months (Lavers et al., 2010;

Murphy and Washington, 2001; Wilby et al., 2004; Yang et al.,

2005). Other climate indices reported to have some influence on

rainfall in this region include the East Atlantic pattern (Barnston

and Livezey, 1987) and storm track blocking indices (Pelly and

Hoskins, 2003). The south-east is hotter and more humid in the

summer than the rest of the UK, and convective type rainfall is

significant. The average annual rainfall over the case study region

is 730 mm, ranging from 524 mm in the dry north of Kent (site

6762 in Figure 1) to 982 mm in the relatively high altitude coastal

South Downs (site 7504 in Figure 1). Considering regional-

average annual rainfall (based on the infilled data set presented

later in the paper), the standard deviation during the period

1855–2011 was 105 mm, the minimum was 430 mm (1921) and

the maximum was 1017 mm (1960). The UKCP09 analysis

(Jenkins et al., 2008) did not find a significant trend (95% level)

in either summer or winter rainfall in the south-east over the

period 1914–2006 (their analysis included the whole of the

Thames basin). Significant droughts in the south-east have

included the long droughts from 1887 to 1910, and the shorter

but more severe 1920–1922, 1975–1976 and 2004–2006

droughts (Marsh et al., 2007).

3.3 Data sets

The rainfall data used in this study originate from the UK

Meteorological Office MIDAS database. Details of the rain gauge

network and recording practices can be found on the Hadley

Centre website (see Table 1). Twenty-eight of the rain gauges

provide long-term data (defined here as more than 80 years), and

almost all gauges have considerable periods of missing data. In

this study, the 28 long-term gauges were used to fit the rainfall

model, supplemented by 22 shorter-term gauges to provide a

spatially representative set. The gauge numbers and locations are

shown in Figure 1, and the extent and continuity of data are

shown in Figure 2. The data period used was from March 1855

(the earliest record available, at the Southampton East Park
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Figure 1. Gauge sites with outline of south-east UK
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Data Definition Units Period available Data source Website

Mean sea level

pressure (MSLP)

The Met Office Hadley Centre’s mean sea level pressure

data set, HadSLP2, on a 58 latitude–longitude grid

mbar 1850–2004 Met Office Hadley Centre

observations datasets

http://www.hadobs.org/

Central England

temperature (CET)

Representative of a roughly triangular area of the UK

enclosed by Bristol, Lancashire and London

8C 1659–2010 Met Office Hadley Centre

observations datasets

http://www.hadobs.org/

North Atlantic

oscillation (NAO)

Normalised pressure difference between Gibraltar and

Reykjavik, Iceland

— 1821–2010 University of East Anglia

Climatic Research Unit

http://www.cru.uea.ac.uk/

cru/data/nao/

Atmospheric

carbon dioxide

From 1958–2008, the Mauna Loa air intakes; from

1855–1957 from a spline of the Law Dome DE08 and

DE08-2 ice cores

PPM 1832–1978/

1958–2010

The Carbon Dioxide

Information Analysis Center

http://cdiac.ornl.gov/

Trend A linear trend years — — —

Elevation Above UK Ordnance Datum (Newlyn) m — British Atmospheric Data

Centre

http://badc.nerc.ac.uk/

Northing UK National Grid reference m — British Atmospheric Data

Centre

http://badc.nerc.ac.uk/

Easting UK National Grid reference m — British Atmospheric Data

Centre

http://badc.nerc.ac.uk/

Table 1. Definitions and sources of predictor variables

5
2
2

W
a
te

r
M

a
n

a
g

e
m

e
n

t
V

o
lu

m
e

1
6
6

Issu
e

W
M

1
0

A
ra

in
fa

ll
m

o
d

e
l

fo
r

d
ro

u
g

h
t

risk
a
n

a
ly

sis
in

so
u

th
-e

a
st

U
K

D
u
an

,
M

cIn
tyre

an
d

O
n
o
f

Downloaded by [ University of Queensland - Central Library] on [23/12/15]. Copyright © ICE Publishing, all rights reserved.

http://www.hadobs.org/<Tb_1>
http://www.hadobs.org/<Tb_1>
http://www.cru.uea.ac.uk/cru/data/nao/<Tb_1>
http://www.cru.uea.ac.uk/cru/data/nao/<Tb_1>
http://cdiac.ornl.gov/<Tb_1>
http://badc.nerc.ac.uk/<Tb_1>
http://badc.nerc.ac.uk/<Tb_1>
http://badc.nerc.ac.uk/<Trule_3>


gauge) to December 2011. The daily data were aggregated to

monthly; any month which contained one or more missing days

was considered to be a missing month (to be infilled by the

model). The monthly time-series were checked for inconsistencies

and, for each gauge, any months with clearly perceived quality

problems were removed (44 values of monthly rainfall in total).

Monthly climate data used as inputs to the model were selected

according to the availability of long-term records and according

to indications from the literature about their possible importance

(Barry and Chorley, 2003; Hulme and Barrow, 1997). These

climate variables are: the North Atlantic Oscillation index,

Central England temperature, Mean Sea Level Pressure, and the

East Atlantic index. Central England air temperature (as opposed

to more local air temperature) is used because it spans the rainfall

time period of 1855–2011 and at a monthly scale it is almost

perfectly correlated with the south-east regional average tempera-

ture during the period 1914–2006 (correlation coeffi-

cient ¼ 0.99). The spatial inputs are: northing and easting on the

UK national grid coordinate system in units of metres, and

altitude in units of metres above sea level. The definitions, origins

and time periods covered by the data sets are listed in Table 1.

3.4 Deterministic component of the model

The aim of the regression is to identify a model which

characterises the space and time variability of rainfall, and allows

simulation. This includes a deterministic component (which

estimates the expected rainfall given the input variable values for

any month for any location) and a stochastic component (to

estimate variability around the expected value including inter-site

dependence). The analysis methods are essentially empirical,

although any models found to be inconsistent with known

physical relationships would be rejected. All modelling was done

using Matlab version R2010b.

In the study presented here the general regression model in

Equation 1 is applied where Y is the vector of rainfall observa-

tions including all 50 sites, and X is the corresponding values of

the predictor variables in Table 1. In pursuit of a normal

distribution of regression errors, a one-parameter Box–Cox trans-

form (Kottegoda and Rosso, 2008, p. 366) is applied to the

monthly rainfall data before the regression model is fitted

y ¼ rº � 1

º2:

where y is the transformed rainfall sample (i.e. a sample from the

Y vector), r is the corresponding untransformed value (in mm/

month) and º is the Box–Cox parameter which is optimised to

minimise skewness of the error distribution. After the model is

applied, y is transformed back into r using the inverse of

Equation 2. Each of the input variables in X was normalised so

that its sample had zero mean and unit variance. This transforma-

tion allows the magnitudes of the optimised regression coeffi-

cients to be interpreted as relative sensitivity measures (Draper

and Smith, 1998; Tabachnik and Fidell, 1996).
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Figure 2. Record continuity at each gauge. The black bars

indicate months with data
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An independent regression model is developed for each of the 12

months. While this divides the data set into 12 and hence restricts

the number of data points available per model, this month-by-

month approach has the advantage that it allows the seasonal

variability of the rainfall to be characterised by the model

coefficients rather than imposing an approximate seasonal struc-

ture. Despite splitting of the data set into 12, the long-term data

and multiple sites ensure that there are sufficient data to identify

statistically significant models.

Within this regression framework, the model may be fitted either

to a single site, where the vector Y contains transformed rainfall

data from only one rain gauge and matrix X contains no spatial

information, or to multiple sites, where Y contains data from

multiple gauges and X contains spatial input variables which aim

to explain the variation in expected rainfall between gauges. Only

the multi-site analysis results are presented herein.

3.5 Stochastic component of the model

The deterministic regression of transformed rainfall allows

identification and analysis of significant input variables, and

infilling expected values of monthly rainfall at gauged and

ungauged sites. However, to represent variability around the

expected value a stochastic error model is also required. This

allows the uncertainty in reconstructing partially observed events

such as those in 1897–1910 to be modelled, and is essential for

the simulation of possible but yet unobserved extreme droughts.

The Box–Cox transform allows the errors to be approximately

normally distributed with zero mean, hence the error model for

any one month for a single site is straightforward. However, two

types of error-to-error dependency potentially exist: dependency

between errors from one month to another, and dependency

between errors from one site to another. The former turns out to

be insignificant (as confirmed in the results reported below); the

inter-site dependency, as should be expected using monthly data

from sites within one region, is crucial.

When infilling missing data at any one of the 50 gauged sites, the

inter-site dependency of errors is treated in the following manner.

The stochastic component of (Box–Cox transformed) rainfall at

any site can be estimated conditional on the errors observed at

the other sites using the standard procedure of generating samples

from a multivariate normal distribution. This procedure is

described in Searle (1971) and summarised here. Given a vector

of errors observed at s sites over all the years for any month

(es ¼ Y � XTŁ) and the covariance matrix describing the depen-

dencies between the errors at these s sites (Css) and the vector of

covariance values between these s sites and another site i for

which data are missing (Csi), then the expected value of the error

at site i is

�eei ¼ CT
si Css½ ��1

es3:

Given an estimate of the variance of the unconditional error at

the unobserved site (i.e. the variance of the error at site i

irrespective of the other sites) (Cii) the variance of the conditional

error ei is

� 2
i ¼ Cii � CT

si Css½ ��1
Csi4:

For the set of 50 gauged sites, all of which have periods of

overlapping data (Figure 2), the covariances can be estimated, so

that Csi, Css and Cii are known for any s set of sites and any site

i. A missing month of data at site i is then simulated as

yi ¼ �yyi þ N �eei, �
2
i

� �
5:

where �yyi is the expected value from the deterministic component

of the model and N (�eei, � 2
i ) signifies a random sample drawn from

a normal distribution with mean �eei and variance � 2
i : In principle,

this method can be used to synthesise data for missing periods in

the data record while approximating the observed spatial depen-

dence structure. This would result (as far as the underlying model

assumptions allow) in a spatially and temporally consistent

historical time series. Furthermore, the stochastic nature of Equa-

tion 5 means that multiple realisations can be generated to

represent the uncertainty associated with the infilling. For

example, periods with few operating gauges will have relatively

high uncertainty in regional rainfall, and sites at large distances

from the nearest gauged sites will have relatively high uncer-

tainty.

In practice, the direct use of the observed covariances in Equa-

tions 3 and 4 was problematic using the case study data, because

Css was not positive-definite (Horn and Johnson, 1985), an

indication that the sampled covariance is not consistent with a

multivariate normal distribution. This is assumed to arise because

the overlapping periods used to estimate Css were not the same

for all pairs of sites, and so the sample used to calculate Css is

not necessarily from a unique multivariate distribution. A poten-

tial solution is to form Css using only the sites nearest to site i.

However, when tested, this only consistently resolved the problem

when data from less than five sites were included, which is

unlikely to produce an acceptable level of spatial consistency

over the region. Instead, the problem of obtaining a real solution

to Equations 3 and 4 was resolved by smoothing out the

unwanted variability within Css by fitting a model of inter-site

covariance, specified below, rather than directly using the

sampled observations.

A model of inter-site covariance is obtained by identifying a

correlogram model, where correlation between each pair of sites

c is estimated as a continuous function of the distance between

the two sites D. After testing various models, the following two-

parameter equation was preferred
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c ¼ exp �ÆD�ð Þ6:

Also considering the difference in elevation between pairs of sites

did not significantly improve upon this model. Parameters Æ and

� were optimised using non-linear least squares using the ob-

served inter-site correlations. Only pairs of sites with more than

50 years of overlapping data were used in this optimisation to

reduce influence of less precise estimates of correlation. For any

two gauged sites, multiplying the correlation by the observed

standard deviation of errors at both sites gives an estimate of the

covariance. Hence a smoothed version of the observed Css is

obtained, which leads to a consistently real solution to Equations

3 and 4. The significance of using a modelled instead of observed

inter-site error covariance will be tested as part of model

verification.

The error model described above can be modified to allow

extension of the historical record in space and time. Extension

only in time requires generation of sets of errors over the 50 sites

for months when no rainfall observations exist. Extension only in

space means generating rainfall within the record period for

hypothetical sites, for example to produce gridded rainfall. In this

case (because i represents an ungauged site) rather than using an

observed error variance in Cii and Csi, a model is needed. This is

approached by assessing whether and how error variance changes

across the 50 gauged sites, and interpolating to the synthesised

sites. Extending the record in both space and time combines these

two modifications.

3.6 Model verification

The aim of model verification is, first, to test to what degree the

statistical properties of the errors conform to the assumptions

which have been made in model estimation. The specific tests

carried out are listed here.

(a) Bias in errors over space and time.

(b) Deviation of errors from a normal distribution.

(c) Dependence of errors on input variables.

(d ) Stationarity of variance in errors over space and time.

(e) Autocorrelation of errors between months.

Recognising that the properties of the errors will not exactly

conform to the assumptions (no model is perfect), the second

stage of verification is to test if this non-conformity significantly

affects the model’s ability to simulate relevant observed rainfall

statistics. Multiple realisations of rainfall are simulated for the

gauged time period and sites, not conditional on the observed

historical rainfall, while still being conditional on the historical

input variables X. This simulation represents the range of

possible rainfall time-series which could have occurred (accord-

ing to the model) given the historic climate variability. If the

model is adequate, the observed rainfall data will appear to be

one realisation from the simulated distribution of rainfall (Chand-

ler and Wheater, 2002; Yang et al., 2005). Because the observed

rainfall statistics have some uncertainty themselves due to the

missing data, this stage of verification is preceded by using the

model for infilling the historical record, in our case from 1855 to

2011. While the infilled data are dependent on the model itself,

and thus not a perfect test-bed, the infilling uncertainty proves to

be low in the case study; moreover, explicitly estimating the

uncertainty in the historical rainfall in this way is considered an

improvement upon the typical practice of neglecting observation

uncertainty. The following specific comparisons of simulated and

infilled rainfall were used.

(a) Time-series of annual site-averaged rainfall, winter (October

to March) site-average rainfall, and summer (May to

September) site-averaged rainfall. These averages do not

include any weighting to represent the area represented by

each site.

(b) Statistics of inter-annual variability of site-averaged rainfall

for each of the 12 months: average, standard deviation,

skewness and selected percentiles.

(c) Annual average rainfall at each site.

(d ) Variance, skewness and correlation of annual average rainfall

over sites.

(e) Two-year, five-year and ten-year running averages of annual

and winter rainfall, to assess the ability of the model to

represent persistence.

It was decided not to apply split-sample validation, in which

some data are omitted from model fitting and used solely for

verification, in order to maximise data available for model fitting.

However, the analysis of model residuals provides information

about model bias over time and space that is similar to split-

sample testing, and the testing of the model on various statistics

not used in the model fitting is the typical approach to verification

of stochastic rainfall models (Chandler and Wheater, 2002; Yang

et al., 2005). Although there is not enough space to show them

all, a sample of results is shown below. Some supplementary

results are available on the article’s web-page.

4. Results

4.1 Deterministic predictors of mean rainfall

The input climate variables found to significantly affect the time

variation of rainfall in at least some months are: Central England

temperature, Mean Sea Level Pressure and the North Atlantic

Oscillation index. For most months, a linear trend (increasing

rainfall) was also present. This trend term by itself does not

necessarily mean increasing rainfall because it is the combined

effect of all the input variables that matters; however repeating

the regression using only a trend term also illustrates a general

increase in rainfall. Easting and northing coordinates and altitude

were significant in explaining the regional variability. The coeffi-

cient estimates over the 12 months are shown in Figures 3(a) to

(i), together with intervals which are not significantly different

from zero at the 95% significance level. There is no easy

analytical solution for these 95% significance intervals because of
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the inter-site dependencies, and so they have been estimated

using simulation (i.e. with the regression coefficients set to zero,

the data were simulated 200 times from the estimated error

model, and 200 sample regression coefficients were identified:

the top and bottom 2.5% were removed to give the simulated

intervals). There was interaction between the effects of coeffi-

cients due to the co-linearity between input variables. This was

most notable for the coefficients for Mean Sea Level Pressure

and Central England temperature (e.g. in January, their correla-

tion was �0.77), and for the coefficients for Central England

temperature and trend (e.g. in January, their correlation was

�0.25). This leads to relatively high variance in these coefficient

estimates and hence wide significance intervals in Figure 3.

Nevertheless, Figure 3 illustrates that all the input variables have

significant independent effects in at least some months. The

second-order effect of variables (e.g. whether the North Atlantic

Oscillation has greater influence for the more southerly gauges)

was tested by using combinations of variables as inputs to the

regression. The only significant second-order effect was the

combined effect of Mean Sea Level Pressure and the North

Atlantic Oscillation: in February, May and November, pressure

had a greater influence when the oscillation was strong (Figure

3(i)). The magnitude of the coefficient values are measures of

relative sensitivity of the rainfall to the inputs showing the

dominant roles of Mean Sea Level Pressure, northing and altitude

(Figures 3(c), (g) and (h)).

The linear trend term is significant at the 95% level in only three

months – January, March and December. However, it is above

zero for all months except July, and for this to occur due to

random variability is extremely improbable. Hence it was con-

cluded that the trend over the period 1855–2011 was significant

in all seasons except summer. For the purpose of explaining the

rainfall variability and providing the potential for extrapolating

the model, the trend would ideally be explained by physical

phenomena. Various attempts were made to introduce explanatory

variables to explain this trend, including non-linear transforms of

Central England temperature, Mean Sea Level Pressure and the

North Atlantic Oscillation index and their interactions, but these

were not helpful. If time-series of atmospheric carbon dioxide

concentrations (constructed from the Hawaii measurements of

Keeling et al. (1995) and the Antarctic ice-cores of Etheridge et
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Figure 3. Regression coefficients for each month. Dashed lines

represent the interval which is not different from zero at the

95% significance level
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al. (1996)) are used as inputs then the R2 values are slightly

increased and the linear trend term becomes much less signifi-

cant. While the statistical explanation for this is simple – the

carbon dioxide data increase over time hence replacing the trend

term – there is no clear physical explanation of why carbon

dioxide should explain rainfall variability when the climate

variables do not and hence the carbon dioxide input was not

adopted. The attraction of this model, however, is noted again

below when considering its effect on the structure of errors.

4.2 Error analysis

The regression model summarised in Figure 3 used the same

Box–Cox transform for all 12 months and all 50 sites with

optimised º of 0.41. The use of a constant º for all 12 regression

models was necessary to make meaningful comparisons of coef-

ficients between months (the Box–Cox transform rescales the

data, so that use of 12 different coefficients would result in

coefficients which were not comparable over months as they are

in Figure 3). The use of constant º, however, causes undesirable

skewness in the errors for several months (in July, for example,

the skewness coefficient was 0.39) and reduces applicability of

the error model specified in Equations 3, 4 and 5. For further

analysis, therefore, º was optimised for each month individually,

which produced near-normal distributions of errors for each of

the 12 models. Optimising º individually for all 50 sites for each

month is possible, but likely to lead to non-unique solutions and,

in any case, using a spatially uniform value produced satisfactory

error distributions.

When averaged over sites, the errors showed little apparent

structure. This included no discernible relationships between

errors and input variables, the error histograms had no visible

deviation from a zero-mean normal distribution, and there were

no significant autocorrelations of errors from one month to the

next. The latter result is illustrated in Figure 4, in which the error

autocorrelations for the gauges in Kent are plotted. Although

there is significant month-to-month correlation in the actual

rainfall time series, this is represented by the deterministic part of

the model, leaving the month-to-month dependency between

errors insignificant. This supports the view that a continuous time

series can be simulated using an independent model for each

month. There was a tendency for the model to underestimate

rainfall in the early years of the record, introducing a visible bias

in the errors in the period 1855–1875 (although not illustrated
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Figure 4. Autocorrelation of errors for the gauges in Kent at lags

0–12 months. Dashed lines represent the interval which is not

different from zero at the 95% significance level
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here, this will be seen in the verification results described later

and shown in Figures 8 and 9). This apparent bias occurred

because the linear trend term describing the general increase in

winter rainfall was applied over the whole series, whereas closer

inspection reveals that there was a much weaker trend between

1855 and 1900. Again, it is tempting to use the atmospheric

carbon dioxide concentrations instead of the linear trend: this

substantially reduces the bias because carbon dioxide concentra-

tions rose more slowly in the pre-1900 period. However, as

previously noted, there is a reluctance to do so without a physical

explanation. Also, the small number of gauges operational during

these problematic early years (Figure 2) means that there would

be relatively low confidence in such a model.

The spatial error analysis also illustrated potential minor flaws in

the model. This is seen in Figure 5, which, as an example, plots

the mean monthly errors for the 15 sites in Kent. While the

statistical significance of many of these errors is indicated by

their lying outside the estimated 95% significance intervals, their

physical significance is questionable. This is because the bias

may be explained by measurement error, for example Rodda and

Smith (1986) present 5% as the typical under-catch associated

with gauges not installed at ground level, and they found that in

some cases the measurement error was much larger than that.

From our model, the maximum observed relative error, out of all

sites, was 5% (at the driest site in the region, Figure 5(m)).

Nevertheless, an improved spatial model should be considered in

future model development.

For each month, there was no evident spatial structure in the error

variance estimates. This is illustrated in Figure 6 which shows the

sample standard deviation of errors for the sites in Kent with

their 95% confidence intervals (the intervals are calculated using

the approximate solution described by Kottegoda and Rosso,

2008; p. 244). For comparison, superimposed upon those results

as a horizontal line, Figure 6 also shows the sample standard

deviation of errors when all 50 sites are considered together,

illustrating that, with very few exceptions, this regionally lumped

value is a fair estimate for each individual site. Hence the

assumption is made that variance of errors is uniform over the

whole region within any one month. The correlation of errors

between sites, on the other hand, displays a strong spatial

structure, with correlation decreasing with distance as described

by Equation 6. The fitted correlogram models are illustrated in

Figure 7. The models are relatively consistent over the months,

with a faster decline in correlation with distance from April to

September in comparison with October to March, reflecting the

increasing role of more localised, convective events in summer.
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4.3 Model verification

First, the historical data from 1855–2011 were infilled using the

model. For each month/site with missing data, 200 samples of the

time-series of errors were used to represent the stochastic

variability. The 200 time-series of infilled annual, summer and

winter site-average rainfall are shown in Figure 8. Notably,

uncertainty in the infilled data is highest during the earlier years

when there were fewer active gauges. Nevertheless, the uncer-

tainty is not overriding in terms of the regional rainfall estimate,

because: (1) much of the rainfall variability is predictable by the

regression equation; (2) the relatively high inter-site correlations

evident in Figure 7 mean that the long-term sites provide much of

the necessary information about residual variability; and (3)

averaging over sites, and over years or seasons (as in this plot)

reduces the variance. If considering sub-regions, the uncertainty

in the earlier years would become higher especially when moving

further from the long-term gauges; and if considering rainfall in

individual months then the uncertainty is also higher. The

infilling was also applied to synthesised sites on a 5 km grid,

producing a spatially quasi-continuous data set covering the

period 1855–2011 (results not shown here).

Second, 200 time-series of rainfall (not conditioned upon the

observations) were simulated with the model to represent statisti-

cally plausible ranges of rainfall. The 95% confidence intervals

derived from the ensemble of site-average rainfall are shown in

Figure 8, as well as the maximum and minimum values from the

ensemble. Comparing the infilled and simulated distributions in

Figure 8, it appears that the infilled data are a sample from the

simulated rainfall, supporting the view that the model usefully

represents the historic variability. The rainfall during the extreme

winter drought of 1975–1976 and the extreme summer drought

of 1921 are only just encompassed by the simulation bounds,

implying that these drought events were extreme given the large-

scale climatic conditions at the time. The long drought of 1887–

1910 also appears from Figure 8 to be captured by the

simulations, as are the dry winters in 1879–1880 and 1897–

1898, and the pairs of dry winters in 1995–1997 and 2004–2006.

Figure 8, however, does not allow inter-annual drought persis-

tency to be properly evaluated. To do so, two-year, five-year and

ten-year running averages are presented in Figure 9. This

illustrates that the series of droughts from 1887 to 1910 are
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Figure 6. Standard deviation of errors for each site in Kent.

Dashed lines are approximate 95% confidence intervals.

Horizontal line is the estimate assuming that variance is uniform

over all 50 sites in the south-east region. Note: months cannot be

inter-compared in this plot because a different Box–Cox

transform was used for each month
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captured, but only by the driest of the simulations, illustrating the

extremeness of this drought period given the forcing climate. It is

pertinent to note that, according to Figure 9, the most severe two-

year drought on record (1920–1922) could recur; indeed it

appears that the south-east region was fortunate in 2004–2006

not to have suffered a similar episode given the general climatic

conditions at that time. As previously discussed, a feature of

Figure 9 is the model’s tendency to underestimate multi-year

rainfall in the period 1855–1875.

Figure 10 shows a number of temporal and spatial statistics of

the infilled and simulated data. Generally, this further supports

the view that the model is approximating the properties of the

observed rainfall. Some statistics – the minimum, maximum,

standard deviation and skewness over time – are persistently

towards the lower bound of the simulated distribution, which is

expected due to the skewed nature of the rainfall distribution.

Figure 10(c) shows, however, a clear tendency to over-estimate

the maximum July and October rainfalls: this is associated with

errors in representing the distribution of transformed rainfall in

these months using a normal distribution. Another interesting

result in Figure 10 is the model’s tendency to overestimate the

spatial skewness of average monthly rainfall in October, Novem-

ber and December. While the model predicts insignificant spatial

skewness in these months, the infilled data imply that there are a

few sites with much lower monthly averages than the norm,

producing significant negative skewness. This is due to the

overestimation of rainfall at some of the driest sites in the region,

in northern Kent. This was seen in the negative residuals at sites

6762 and 6898 in Figure 5. As previously discussed, this may be

resolved by using a more sophisticated spatial model (e.g.

quadratic terms for east and north coordinates), however arguably

this would be over-fitting as the biases at these sites are within

possible measurement errors.

5. Discussion
This paper was motivated by the need for spatially and temporally

complete, long-term rainfall records to support regional drought

management. The south-east UK is an example of a region which

is vulnerable to extreme droughts, and repetition of historical

inter-annual droughts is a worrying prospect under current and

future demand for water. The south-east UK is, however,

fortunate in having gauged sites going back to the mid-nineteenth

century, allowing more insight into rainfall variability and more
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reliable estimation of rainfall extremes than is generally possible.

Nevertheless, there are long periods of missing records, and many

parts of the region with no long-term records. Significant effort

has previously been made under the UKCP09 programme to

produce a nationally applicable statistical downscaling tool for

UK daily rainfall simulation. However, that downscaling tool is

not applicable to infilling historic rainfall in a spatially consistent

manner, and may have limitations in replicating extreme historic

droughts because it is not linked to the physical drivers of rainfall

and has been fitted using a limited range of droughts (Chun,

2011; Jones et al., 2009). The model presented in this paper aims

to address these limitations and hence provide complementary

data sets.

This paper described a set of regression models for characterising

rainfall variability, and infilling and simulating monthly rainfall.

The models include a deterministic component that models

expected monthly rainfall under specified large-scale climatic

conditions, and also a stochastic component that simulates the

random variability around the expected value. Gridded rainfall

can be produced for a range of observed or synthetic droughts.

Using the case study of south-east UK, 50 long-term rain gauges

with records spanning from 1855–2011 were used to identify and

assess the models. The large-scale variables found to affect

rainfall were generally consistent with the findings of previous

research on UK rainfall: air pressure, air temperature and North

Atlantic Oscillation. A positive linear trend term was identified

throughout the twentieth century in all seasons except summer.

However, the trend was weak in comparison with the other effects

and the random component, and did not preclude recurrence of

the severe inter-annual droughts observed in the record.

The model assessment illustrates the potential value of relatively

simple rainfall models for generating realistic monthly rainfall

patterns. Performance in terms of error diagnosis and comparison

of infilled and simulated statistics was considered to be good,

although there were two main issues which might benefit from

further investigation. First, spatial biases arose from the use of a

simple spatial model, causing apparent over-estimation of rainfall

at some of the driest sites in Kent. These biases might be

explained by rainfall measurement errors, although their particu-

lar prevalence in north Kent makes this seems unlikely. Second,

temporal biases arose in the period 1855–1875 because the linear

trend was weaker in this early period. Using atmospheric carbon

dioxide as an input helped to explain the non-stationarity in the

trend. It may be speculated that carbon dioxide has influenced
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global climate patterns, and hence south-east UK rainfall, in a

manner that cannot be represented by the combinations of

pressure, temperature and NAO and their interactions investigated

in this paper. For example, although east Atlantic ‘blocking’

patterns are known to be influenced by global climate and to

affect rainfall (Pelly and Hoskins, 2003), they were omitted in

this investigation because reconstructions of blocking only date

back to 1958. This deserves some further investigation. In terms

of the model’s ability to simulate inter-annual drought, indices

of the long droughts within 1887–1910 were within the range of

simulations, as were indices of the extreme two-year droughts of

1920–1922, 1933–1934 and 1975–1976. According to the

model, the recent droughts of 2004–2006 could have been much

more severe given the climatic conditions at the time –

potentially more severe than the 1920–1922 event.

The ability of the model to simulate rainfall as a function of

large-scale climate variables and indices makes it tempting to

employ the model for downscaling global climate model outputs

for climate change impacts assessment. However, extrapolating

the historic signals to future climate in this manner, although

common practice (e.g. Chun et al., 2009; Haylock et al., 2006;

Maraun et al., 2010), is not recommended unless it can be shown

that the signals are expected to be stationary under a changed

climate. Further research is required towards characterising non-

stationarity and how it might be resolved in the model. Perhaps

the primary limitation of the model described here is that for

some applications daily rainfall would be preferred. Development

to simulate daily rainfall would require the wet–dry day distribu-

tion to be modelled independently of the rainfall depth distribu-

tion (Mehrotra and Sharma, 2010). This would naturally lead to

the more generalised linear modelling techniques used, for

example, by Yang et al. (2005). However, for regional analysis of

inter-annual droughts in systems with large storage capacity such

as south-east UK, monthly scale analysis is likely to be sufficient.

Another potential extension to the analysis would be extending

records even further back in time by including palaeo data as

predictors (Henley et al., 2011).

6. Practical relevance and potential
applications

A major challenge in water resource planning is the hindcasting

of hydrological data to ensure that possible extreme droughts,

including inter-annual sequences of droughts, are adequately

considered. A second challenge, important when considering

options for intra- and inter-regional water transfers, is spatially

consistent characterisation of droughts. These challenges are

especially relevant in the water-stressed south-east UK. Currently
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available climate modelling tools and data sets, such as UKCP09,

are not by themselves designed to meet these challenges. This

paper describes and tests a statistical model that infills and

extends historical rainfall observations to allow improved con-

sideration of extreme and inter-annual droughts in the south-east

UK, with potential applicability to other regions where similar

problems exist.
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Figure 10. Selected statistics of the infilled and simulated rainfall;

95% intervals of ensemble are shaded; outer lines are bounds of

ensemble; black lines are ensembles of infilled data
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Uppala SM, Kållberg PW, Simmons AJ et al. (2005) The ERA-40

Reanalysis. Quarterly Journal of the Royal Meteorological

Society 131(612): 2961–3012.

von Lany PH, Hepworth N, Hawker PJ and Choudhury F (2008)

Working towards integrated and more sustainable water

resources planning in Southeast England. Proceedings of the

BHS 10th National Hydrology Symposium, Exeter, pp. 1–8.

Wilby RL, Wedgbrow CS and Fox HR (2004) Seasonal

predictability of the summer hydrometeorology of the River

Thames, UK. Journal of Hydrology 295(1–4): 1–16.

Xu CY (1999) From GCMs to river flow: A review of

534

Water Management
Volume 166 Issue WM10

A rainfall model for drought risk analysis
in south-east UK
Duan, McIntyre and Onof

Downloaded by [ University of Queensland - Central Library] on [23/12/15]. Copyright © ICE Publishing, all rights reserved.

http://dx.doi.org/10.1029/2010WR010034
http://dx.doi.org/10.1029/2010WR010034
http://dx.doi.org/10.1029/2009RG000314
http://dx.doi.org/10.1029/2009RG000314
http://dx.doi.org/10.1029/2009WR008423


downscaling methods and hydrologic modelling approaches.

Progress in Physical Geography 23(2): 229–249.

Yang C, Chandler RE, Isham VS and Wheater HS (2005) Spatial-

temporal rainfall simulation using generalized linear models.

Water Resources Research 41(11): 11415.

Zaidman MD, Rees HG and Young AR (2002) Spatio-temporal

development of streamflow droughts in northwest Europe.

Hydrology and Earth System Sciences 6(4): 733–751.

WHAT DO YOU THINK?

To discuss this paper, please email up to 500 words to the

editor at journals@ice.org.uk. Your contribution will be

forwarded to the author(s) for a reply and, if considered

appropriate by the editorial panel, will be published as a

discussion in a future issue of the journal.

Proceedings journals rely entirely on contributions sent in

by civil engineering professionals, academics and students.

Papers should be 2000–5000 words long (briefing papers

should be 1000–2000 words long), with adequate illustra-

tions and references. You can submit your paper online via

www.icevirtuallibrary.com/content/journals, where you

will also find detailed author guidelines.

535

Water Management
Volume 166 Issue WM10

A rainfall model for drought risk analysis
in south-east UK
Duan, McIntyre and Onof

Downloaded by [ University of Queensland - Central Library] on [23/12/15]. Copyright © ICE Publishing, all rights reserved.


	Notation
	1. Introduction
	2. Rainfall analysis using regression
	Equation 1

	3. A monthly rainfall model for south-east UK
	3.1 Definition of ‘south-east UK’
	3.2 The climate of south-east UK
	3.3 Data sets
	Figure 1
	Table 1
	3.4 Deterministic component of the model
	Equation 2
	Figure 2
	3.5 Stochastic component of the model
	Equation 3
	Equation 4
	Equation 5
	Equation 6
	3.6 Model verification

	4. Results
	4.1 Deterministic predictors of mean rainfall
	Figure 3
	4.2 Error analysis
	Figure 4
	Figure 5
	4.3 Model verification
	Figure 6

	5. Discussion
	Figure 7
	Figure 8

	6. Practical relevance and potential applications
	Figure 9
	Figure 10

	Acknowledgements
	REFERENCES
	Arnell and Delaney 2006
	Barnston and Livezey 1987
	Barry and Chorley 2003
	Burke and Brown 2010
	Chandler and Wheater 2002
	Chun 2011
	Chun et al. 2009
	Draper and Smith 1998
	Etheridge et al. 1996
	Fowler et al. 2007
	Hanssen-Bauer and Førland 1998
	Haylock et al. 2006
	Henley et al. 2011
	Horn and Johnson 1985
	Hulme and Barrow 1997
	Jenkins et al. 2008
	Jones et al. 2009
	Keeling et al. 1995
	Kenabatho et al. 2011
	Kigobe et al. 2011
	Kottegoda and Rosso 2008
	Lavers et al. 2010
	Maraun et al. 2010
	Marsh 1996
	Marsh et al. 2007
	McIntyre et al. 2003
	Mechler and Kundzewicz 2010
	Mehrotra and Sharma 2010
	Murphy and Washington 2001
	Pelly and Hoskins 2003
	Phillips and McGregor 2002
	Rodda and Smith 1986
	Searle 1971
	Segond et al. 2006
	Smith et al. 2010
	Subak 2000
	Tabachnik and Fidell 1996
	Thyer et al. 2002
	Uppala et al. 2005
	von Lany et al. 2008
	Wilby et al. 2004
	Xu 1999
	Yang et al. 2005
	Zaidman et al. 2002


