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Abstract. Stream bank condition is an important physical form indicator for streams related to
the environmental condition of riparian corridors. This research developed and applied an
approach for mapping bank condition from airborne light detection and ranging (LiDAR)
and high-spatial resolution optical image data in a temperate forest/woodland/urban environ-
ment. Field observations of bank condition were related to LiDAR and optical image-derived
variables, including bank slope, plant projective cover, bank-full width, valley confinement,
bank height, bank top crenulation, and ground vegetation cover. Image-based variables, showing
correlation with the field measurements of stream bank condition, were used as input to a cumu-
lative logistic regression model to estimate and map bank condition. The highest correlation
was achieved between field-assessed bank condition and image-derived average bank slope
(R2 ¼ 0.60, n ¼ 41), ground vegetation cover (R2 ¼ 0.43, n ¼ 41), bank width/height ratio
(R2 ¼ 0.41, n ¼ 41), and valley confinement (producer’s accuracy ¼ 100%, n ¼ 9). Cross-
validation showed an average misclassification error of 0.95 from an ordinal scale from 0 to 4
using the developed model. This approach was developed to support the remotely sensed map-
ping of stream bank condition for 26,000 km of streams in Victoria, Australia, from 2010
to 2012. © 2013 Society of Photo-Optical Instrumentation Engineers (SPIE) [DOI: 10.1117/1.JRS.7
.073492]
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1 Introduction

Increasingly, river management is considered a holistic exercise, where isolated work at a reach
scale is moving toward planning at catchment scales. This results in compromises between the
spatial and temporal extent of information collected. In Europe, the Water Framework Directive
has created the demand for assessment at a country and continent scale.1 In Australia, the impor-
tance of water as an anthropogenic and environmental resource has resulted in mapping and
monitoring of stream condition mainly at a state scale through field-based approaches.2–4

Such snapshot approaches do not allow a quantification of riverbank erosion rates but only report
condition, i.e., the morphology of riverbank relative to a reference state. Stream bank condition
is one of the several parameters generally used for assessment of stream condition as it is related
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to changes such as channel widening and incision caused by climatic and/or anthropogenic
factors.5

Sediment supplied by bank erosion provides bed and suspended material to the channel. If
these sediment inputs are above reference conditions, they may disturb ecological habitats and
change the water chemistry by contributing nutrients or other adhered pollutants.6 Knowing the
stream bank condition and the associated extent and position of erosion in a catchment enables
more effective river management and allows clearer comparison of river systems against each
other for management prioritization.

1.1 Field Approaches

Field approaches focusing on mapping bank condition for managing catchments tend to be rapid
and based on visual and quantitative assessment of the present form of stream channels.7–12 More
detailed analysis and larger field-based sampling density of bank stability are more data inten-
sive13 and hence tend to be limited to reach scale management of tens of kilometers of stream
length. As field-based approaches are time consuming, they are generally used to sample
selected stream sections. Therefore, the samples may, in some cases, not be a representative
of large areas.14 If sites are selected randomly, variation in bank condition cannot be tracked
over time, except at fixed sentinel sites. Interoperator variability and subjective visual interpre-
tation may compromise the accuracy of field observations.15,16 The use of remotely sensed data
has been identified as a suitable means to address the limitations of field-based approaches for
assessment of riparian zones, including bank condition, as remotely sensed data can provide
complete spatial coverage.17

1.2 Remotely Sensed Approaches

Remote sensing of the physical form of streams and their riparian zones have mainly relied upon
high-spatial resolution optical and light detection and ranging (LiDAR) data because of the lim-
ited width of riparian zones, dense vegetation cover, and spatial scale of variability.18–20

Winterbottom and Gilvear21 used geomorphic bank variables as well as sediment type, flood-
plain vegetation, and flood magnitudes to predict bank erosion probability from multitemporal
high-spatial resolution aerial photography. The results showed that accurate erosion probability
mapping can be used for effective river management and predictions of the effects of flood
regime changes. Several articles have also found multitemporal image data useful for identifying
changes in stream and bank geomorphic characteristics.18,22 Bank stability and bank condition
have previously been mapped with some success in relatively homogenous natural tropical sav-
anna riparian environments in the Northern Territory, Australia using the extent of bare ground
and amount of canopy cover as explanatory variables mapped from high-spatial resolution
satellite image data.23

Airborne LiDAR data are important for collecting information on stream banks and riparian
vegetation due to its capability to capture three-dimensional information on vegetation and banks
at very fine spatial scales.20,24 Airborne LiDAR sensors derive information on the elevation
and reflectance of terrain and vegetation from a pulse or continuous wave laser fired from an
airborne transmitter, for which its position is precisely and accurately measured. Processing
of the reflected LiDAR signal provides an accurate measure of distance between the transmitter
and reflecting surfaces based on the time of travel of the pulse and the position of the sensor.24

Airborne LiDAR data can produce very detailed digital elevation and terrain models.25 Milan
et al.26 stated that digital elevation models (DEMs) can be used for estimation of scour and
fill for sediment budgets within fluvial environments. A large number of fluvial terrain and
hydraulic modeling studies have successfully used airborne LiDAR data,27–30 whereas others
have used multitemporal LiDAR data and DEM differencing to detect geomorphic changes
within streams.31 Casas et al.32 successfully assessed levee stability of the Sacramento River
using airborne LiDAR data to map levee crown width, height, and water and landside slopes
to produce a levee stability index. Tarolli et al.33 asserted that with the high levels of geomorphic
detail derivable from high-resolution and high-quality airborne and terrestrial laser scanners,
there is a need for developing methods for mapping channel networks, bank geometry,
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slope, and erosion scars. Some studies have also highlighted the benefits of combining airborne
LiDAR data with high-spatial resolution optical image data to improve the mapping of riparian
zone and physical form of biophysical characteristics.34,35 Multitemporal coverage of LiDAR
and optical image data, before and after a catastrophic flood, allowed erosion volumes and
the relative contributions from different erosion processes to be quantified along a 100-km
stretch of the Lockyer Creek in Queensland, Australia.36,37 The combination of LiDAR and
optical data was found essential for feature delineation and subsequent process interpretation.

1.3 Index of Stream Condition

In the State of Victoria, Australia, the original Index of Stream Condition (ISC) was designed
to provide information on the condition of lowland rivers at the state scale.2 It consisted
of a subindex for physical form with the following components: (1) bank stability, (2) bed sta-
bility, (3) fish barriers, and (4) woody debris. These physical form indicators were included
to provide key information on the ecological condition of Victorian streams. They were
also recognized as indicators that could be reliably measured in the field by trained
Catchment Management Authority staff. The bank erosion indicator was based on a comparison
with photographic examples and a brief description of five levels of erosion. The types of
erosion included in the examples consisted of both fluvial entrainment and mass failures,
but were mainly tailored to common situations found in Victoria, such as erosion signatures
left by incision and subsequent channel widening.38 Photographs allowed the assessor to
identify key geomorphic features, such as breaks in slope and the lack of vegetation
cover, which indicated whether erosion may have occurred in the past. So, while this method
was tested and found to be objective and repeatable,2 with low variability between different
observers, it was not quantitative in terms of areas, volumes, rates, and processes of erosion.

In Australia, it is often very difficult to assess the timing of the last erosion, due to the high
interannual variability in rainfall and flows and sparse flow data.39 To accommodate this issue,
a reference condition of no erosion was used. Any erosion that was identified recently, however,
reduced the condition score as it would lower the stream bank stability. The condition was scored
at three 30-m long transects within each site with the average reported for the site. Sites were
randomly selected and were aggregated to provide information at the reach scale, typically vary-
ing from 5 to 40 km in length. In 2004, the second statewide ISC assessment included a modified
bank condition indicator, which incorporated some proxy measures of reference condition.10 For
example, bank condition was not assessed on the outside of meander bends, where erosion is
expected to occur in the majority of cases.40 Therefore, the outside of a meander should not
necessarily be scored poorly. Also, the bank was defined more clearly by describing the concept
of a bank-full channel, giving examples of terraced and confined channels, so that the correct
active bank could be assessed. To obtain complete spatial coverage and enable effective future
monitoring of ISC indicators, including bank condition, the third statewide ISC assessment ini-
tiated in 2010 was based on analysis of airborne LiDAR and high-spatial resolution optical
image data. This research presents the method developed for the third statewide ISC assessment
for measuring bank condition.

1.4 Objective

Currently, no suitable methods exist for mapping bank condition over large spatial
extents (>100 km of stream length). Remote sensing is the only appropriate means for large
spatial extent mapping of riparian areas.15 However, only datasets providing high levels of
details and information on landform and vegetation characteristics are suitable because of the
varying spatial scales of stream banks.19,41 Therefore, the objective of this research was
to develop and apply an approach for mapping bank condition from airborne LiDAR
and high-spatial resolution optical image data to allow the existing ISC method to be
implemented with complete spatial coverage for large spatial extents. This addresses a signifi-
cant gap in knowledge for stream and riparian zone assessment and management-related
activities.
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2 Study Area and Data

2.1 Study Area

The spatial extent of the study area covered parts of the natural water courses forming the
Werribee catchment area (Fig. 1). The Werribee River is the major drainage stream emanating
from the Werribee catchment, and the study area included the Lerderderg River and Pyrites,
Parwan, and Djerriwarrh Creek tributaries. The main flow direction is south from the hilly
Ordovician slate, shale, siltstone, and sandstone formation in the northern part of the study
area until reaching basalts at the confluence with the Werribee River,42 where flows turn
east and then southeast before eventually draining into Port Phillip Bay. The southern half
of the study area is a part of the flat Victorian Volcanic Plain bioregion.43 The southern
plain is characterized by anthropologically modified terrain with agricultural (grazing and cul-
tivation) and urban land use. Being close to Melbourne, the land use is dominated by semirural
residential style allotments. The southern parts of the study area also have small scale quarry and
coal mining activities. The streams, riparian zones, and associated floodplains of this part of
the Werribee catchment have been significantly modified by these anthropogenic activities
and flow regulation from dams and weirs. The study area within the Werribee catchment receives
500 to 600 mm of rain annually, which is evenly distributed throughout the year.44 Discharges of
the Werribee River within the study area vary considerably with average monthly flows from
0 to 1415 ml∕day (average monthly flow of 54 ml∕day) recorded between 1978 and 2011 at
the Bacchus March Station.45

(a)

(b)

Fig. 1 (a) Area and stream sections covered by the LiDAR and Ultracam-D image data in (b) the
Werribee catchment, Victoria, Australia. Fifty field plots were assessed.
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2.2 Field Approach and Data

Field plots of set dimensions introduce difficulties for categorizing a stream bank section into
a score of bank condition because of variation in bank condition within the sections.23,46 Hence,
it was decided to assess bank condition in the field within homogenous plots to ensure that bank
condition scores did not vary at the plot level for those areas related to the image data. In this
case, a homogenous field plot was defined as an area of the bank with similar biophysical veg-
etation and physical form characteristics and no obvious variation in the previous, field-derived,
ISC bank condition. A number of both quantitative and qualitative measurements (Table 1) were
obtained within each of the 50 homogenous plots assessed in the field between October 24 and
28, 2009, to facilitate the interpretation of the research results. These plots generally measured
between 8 and 20 m in length parallel to the stream and 3 to 15 m in width perpendicular to the
stream and covered in most cases the full extent of the banks in the direction perpendicular to the
stream. An inspection of the LiDAR data (May 2005), Ultracam-D image data (April 2008), and
the field data (October 2009) revealed that the condition of the study sites had not changed
significantly between the different acquisition dates. This assumption was supported by
below average annual rainfalls and a peak flow of 115 ml∕day (1.33 m3 s−1) between May
2005 and October 2009.44,45 The bank-full flow level for the Werribee River at Bacchus
Marsh was 4.4 m, or 37; 167 ml∕day (430 m3 s−1), and the maximum flow between LiDAR
data and optical image acquisition dates had an average recurrence interval of 1.12 years.
This period of low flow and channel modification was also confirmed by a comparison of
existing ISC field observations and photographs from 2004 and 2008.47

The position was measured for all four corners of each plot using two 12-channel Global
Positioning System (GPS) receivers and averaging the position for at least one of the corners for
more than 1000 s or until the estimated positional error was <2 m. The exact location of the plots
was then identified in the field using a field laptop, ArcGIS, and the Ultracam-D image data.
A polygon covering the extent of the field plots was manually drawn in ArcGIS at the time of
the field survey. An ISC bank condition score was assigned to each of the field plots based on
the bank characteristics outlined in Table 2 and Fig. 2.

2.3 Image Data

2.3.1 Multispectral airborne imagery

Airborne Vexcel Ultracam-D image data were captured on April 19, 20, and 23, 2008, at a spatial
resolution of 0.25-m pixels consisting of four multispectral bands located in the blue, green,
red, and near infrared parts of the spectrum. The image data were captured at ∼3000 m height
with side and forward overlaps of 30% and 70%, respectively. A total of 448 frames
(7500 × 11500 pixels per frame) were captured at 16 bits. These data were orthorectified by
the data provider and delivered in at-surface radiance values. The Ultracam-D image data
were not atmospherically corrected as time series analysis of consecutive image data was
not required for this study, and detailed information on the atmospheric conditions at the
time of data collection was not available. Based on 10 field–derived ground control points
using a 12-channel GPS receiver with the position averaged >1000 s, the root mean squared
error (RMSE) was found to be 1.4 m. The custodian of the Ultracam-D image data is the
Victorian Department of Sustainability and Environment.

2.3.2 LiDAR data

The LiDAR data used in this study were captured using the Optech ALTM3025 sensor between
May 7 and 9, 2005, for the study area. The LiDAR data were captured with an average point
spacing of 1.6 m (0.625 points∕m2) and a laser footprint size of 0.30 m and consisted of two
returns, first and last returns, as well as intensity. The LiDAR returns were classified as ground or
nonground by the data provider using proprietary software. The LiDAR data were captured at
∼1500 m above ground level. The maximum scan angle was set to 40 deg with a 25% overlap of
different flight lines. The estimated vertical and horizontal accuracies were <0.20 and <0.75 m,
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Table 1 Field-based measurements and observations related to bank condition.

Measure Method

Plot dimensions Tape measure length and width between plot corner markers (m).
Measurement accuracy of approximately 0.10 m.

Plot position Description of position in reach, e.g., meander bend, point bar,
straight section, bedrock, and island.

Vegetation ground cover The areal extent of vegetation ground cover and bare ground (%)
was derived by visually estimating the ground cover with 2m × 2m
within each plot. Vegetation ground cover included green and
senescent grass, shrubs, and forbs, whereas litter and bare ground
cover were not included. Because of the very dense ground
vegetation and understory within parts of the riparian areas, a visual
assessment approach was deemed most suitable and logistically
possible. A plot size of 4m2 was selected as smaller plot sizes can
result in larger variation in visual observations (Ref. 48). The average
vegetation ground cover within each plot was calculated to the
nearest 5%.

Plant projective cover (PPC) PPC was assessed using a digital camera to obtain upward looking
photos taken at 5-m intervals within each plot. These photos were
subsequently analyzed to divide the photos into canopy cover and
sky using the approach outlined by Johansen et al. (Ref. 46) to
estimate PPC.

Surface character Visual assessment classifying the plot as smooth, hummocky or
uneven.

Bank slope Clinometer measure of average and maximum bank slope (degrees)
within the plot area.

Bank-full width Distance measured from the top of bank to opposite top of bank
using a laser range finder with an accuracy of 0.5 m.

Bank height Bank height was calculated from the field-derived measure of
average bank slope and the plot width of the bank section assessed.

Streambed width Distance measured from the bank toe to opposite bank toe using a
laser range finder or tape measure with an accuracy of 0.5 m.

Erosion processes The method of Hupp et al. (Ref. 49) was used to classify the erosion
processes on both sides of the stream (fluvial entrainment was only
assessed on the plot side).

Exposed woody roots Visually estimated into three classes of plot areal coverage (0, <33%,
>33%).

Crenulation of banktop Scalloping of the edge of the bank top was visually assessed as:
0 ¼ none; 1 ¼ small indents in the bank surface of >0.3 m and <1 m
from the extrapolated bank edge; 2 ¼ 1 large indent >1 m and small
indents; and 3 ¼> 1 large indent >1 m and small indents. The
distance along the bank top contour line and the Euclidean distance
within each plot were also measured.

Bank type The homogenous plots were categorized as: vertical/undercut;
vertical bank with slumped material at toe; steep >45 deg, but not
vertical; gentle <45 deg; composite, complex profile; natural berm,
transitional feature; re-sectioned, reprofiled; concave; convex; and
planar.

Valley confinement Valley confinement was noted in the field by labelling the bank:
(a) “not confined” if a floodplain wider than 10 m in the direction
perpendicular to the stream occurred; (b) “confined” if no floodplain
occurred and the landscape kept increasing in height beyond the
point of estimated bank-full width; and (c) “partly confined” if one side
of the bank was classified as confined and the other as not confined.

ISC 2004 score The score from the ISC 2004 method was assessed and assigned to
each plot using Table 2 (Ref. 10).
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respectively. GPS base stations were used to improve the geometric accuracy of the dataset and
validate the vertical and horizontal accuracies. The standard error of ground elevation data com-
pared to 537 field survey points was 0.053 m. The custodians of the LiDAR data are Melbourne
Water and the Victorian Department of Sustainability and Environment.

3 Methods

3.1 Production and Extraction of Image-Based Biophysical Parameters

In this research, bank condition was defined as the state of the bank at a particular instance in
time. The use of remotely sensed imagery will, in the first instance, provide a single-temporal
dataset. Multitemporal imagery may allow rates and volumes of material eroded and deposited to
be calculated through detection of changes in images.18,31,36 To provide some information on
erosion, i.e., the removal of sediment over time, both the geomorphic characteristics and veg-
etation cover of the banks were investigated from the remotely sensed dataset. Geomorphic char-
acteristics may provide an indication of historical bank failures. This is usually from large and
episodic mass failures that encroach onto the floodplain surface such as rotational or slab fail-
ures.50 Structural vegetation information may indirectly indicate variation since actively eroding
sites limit vegetation establishment on the bank face. The combination of limited vegetation
cover and steep riverbanks with little downstream variability of the bank top and mean
reach width may indicate fluvial entrainment.

The aim was to model the ISC bank condition scores using biophysical parameters derived
from remotely sensed data that are likely to explain most of the variability observed in the ISC
bank condition scores of the assessed plots. It was not considered to be an issue that the field-
based qualitative assessment producing the ISC bank condition scores are not directly compat-
ible with remotely sensed quantitative measurements because of the modeling approach used.
The image-based biophysical parameters considered likely to be correlated with field-derived
bank condition scores within the study area included: (1) average bank slope; (2) maximum bank
slope; (3) plant projective cover (PPC); (4) bank-full width; (5) valley confinement; (6) bank
height; (7) bank top crenulations; and (8) percentage vegetation ground cover (Table 3).

3.1.1 LiDAR-derived digital terrain model

A digital terrain model (DTM) was produced by inverse distance weighted interpolation of
returns classified as ground hits. Several interpolation approaches, including nearest neighbor,
inverse distance, and natural neighbor, were assessed and resulted in very similar results.

Table 2 ISC bank condition scores used in the field assessment (Ref. 10).

ISC bank
condition
score Description

4 Very few local bank instabilities, none of which are at the toe of the bank; continuous cover of
woody and/or grassy vegetation; gentle batter; very few exposed tree roots of woody vegetation;
erosion resistant soils.

3 Some isolated bank instabilities, though generally not at the toe of the bank; cover of woody and/
or grass vegetation is nearly continuous; few exposed tree roots of woody vegetation.

2 Some bank instabilities that extend to the toe of the bank (which is generally stable);
discontinuous woody and/or grassy vegetation; some exposure of tree roots of woody vegetation.

1 Mostly unstable toe of the bank; little woody and/or grassy vegetation; many exposed tree roots of
woody vegetation.

0 Unstable toe of bank; no woody and/or grassy vegetation; very recent bankmovement (trees may
have recently fallen in stream or obvious bank collapses are present); steep bank surface;
numerous exposed tree roots of woody vegetation; erodible soils.
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As inverse distance weighted interpolation is computationally simple and commonly used, this
interpolation was applied. The DTM was produced at a pixel size of 1 m.

3.1.2 LiDAR-derived slope

From the DTM, a raster surface representing slope, i.e., rate of change in horizontal and vertical
directions from the center pixel of a 3 × 3 moving window and variance of the slope within a
moving window of 3 × 3 pixels, was calculated using ArcMap 9.2. The LiDAR-derived slope
layer was used to automatically extract all pixels representing slope within each stream bank plot
using ENVI 4.6. Within each field plot, the average and maximum slope values were extracted.

3.1.3 Mapping fractional and PPC

Fractional cover count is defined as one minus the gap fraction probability, i.e., the probability of
an unobstructed path between the point and range in a set direction.52 This measure was
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Fig. 2 Field photos of different levels of bank condition in relation to the Index of Stream Condition
(Ref. 10).
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calculated from the proportion of counts from LiDAR first returns >2 m above ground level
within 5m × 5 mpixels. The height threshold of 2 m above ground was set to match field mea-
surements of PPC and avoid the inclusion of nonwoody ground cover such as grass. The pixel
size was set to maximize the spatial resolution, and at the same time, reduce the number of pixels
without data, i.e., areas within each bin without any first and last returns producing null values.
PPC, defined as the vertically projected percentage cover of photosynthetic and nonphotosyn-
thetic foliage and branches, was calculated from fractional cover counts using the method pre-
sented by Armston et al.53

3.1.4 Mapping bank-full width

Mapping bank-full width was achieved using object-based image analysis (OBIA) and the
eCognition Developer 8 software through a two stage process,54,55 first including the mapping
of streambed extent and then mapping the bank-full width using the LiDAR-derived DTM and
slope layers. The OBIA approach used was similar to the one presented by Johansen et al.56

To map the extent of the streambed, a shapefile representing the stream centerline was used
as a basis to grow this line until the steeper stream banks were reached. The classification
of the streambed was used to identify the streamside edge of the stream bank. As the bank-
full width was mapped in this case, as opposed to the riparian zone extent as reported by
Johansen et al.,56 the last stage in the rule set used for mapping riparian zone extent was omitted,

Table 3 Explanatory variables derived from the airborne LiDAR and optical image data and used
for comparison with the field-based ISC bank condition scores.

Variable
Image data used for mapping

variable Definition

Bank slope LiDAR-derived terrain slope Terrain slope, i.e., change in elevation as a function of
the distance between the toe and the top of the stream
bank (equal to the plot width).

Plant protective
cover

LiDAR-derived cover fraction Percentage of ground area covered by the vertical
projection of vegetation, trunks and branches
(Ref. 51).

Streambed width LiDAR-derived terrain slope
and DTM, stream centerline
shapefile

The horizontal distance from the toe of the lowest bank
to the opposite bank.

Bank-full width LiDAR-derived terrain slope
and DTM, streambed extent

The horizontal distance from the top of the lowest bank
to the opposite bank (Ref. 10), often occurring with an
obvious break in slope that differentiates the channel
from the relatively flat floodplain (Ref. 35).

Valley
confinement

LiDAR-derived terrain slope
and DTM

System where watercourse is located in a well-defined
valley corridor with streams abutting hill slopes of
colluvial material (as opposed to alluvial material).
Relatively flat areas consisting of alluvial material,
extending >10 m beyond the top of the stream bank
were classified as unconfined floodplains.

Bank height LiDAR-derived DTM, streambed
extent, bank-full width

The height difference between the toe of the bank
(edge of the streambed layer) and the highest point of
the first bank also used to define bank-full extent.

Crenulation
of banktop

LiDAR-derived contour lines Crenulation or scalloping of the edge of the bank top
was defined as the ratio of the distance along the bank
top contour line and the Euclidean distance.

Percentage
vegetation
ground cover

LiDAR-derived PPC,
Ultracam-D image data

Vegetation less than 2 m tall, including both
photosynthetically and nonphotosynthetically active
vegetation (green and senescent). Vegetation ground
cover mainly consisted of grass and shrub within the
riparian study area.
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i.e., no adjustment to riparian zone edges was made based on PPC, to ensure the mapping of
bank-full width was based on geomorphic features only.

3.1.5 Mapping valley confinement

In some regions of the study area, the river was in direct contact with, or confined by, the hill
slope (colluvial) material, often consisting of large boulders or bedrock. Hence, the study area
was mapped into confined and unconfined valleys, as the presence of steep unvegetated banks
could not be related to bank condition within confined valleys. OBIAwas used to map confined
and unconfined valleys. In areas with confined valleys, no floodplains were present. Hence,
some empirical assumptions were made based on the geomorphic characteristics of the
study area and associated terrain slope using the LiDAR-derived slope and DTM layers.
The mapped bank-full width was used to provide contextual information for developing
a rule set in eCognition Developer 8 for mapping valley confinement. The unclassified areas
bordering the stream banks (based on mapped bank-full width) were assessed at the object
level. A chessboard segmentation was applied to segment unclassified areas into objects of
5 × 5 pixels. Those objects bordering the stream banks were classified as floodplains if their
slope <7% and their standard deviation of DTM values <0.6, indicating flat areas with limited
variation in elevation. Using a region growing algorithm, neighboring objects were classified
based on the same criteria until an elevation difference of 5 m above the top of the stream
bank elevation was reached. The edge pixels of the stream banks were then classified into uncon-
fined valleys, where the relative area of floodplains within a radius of 15 m of the stream bank
edge pixels was above 20%. If this condition was not fulfilled, the stream bank edge pixels were
classified as confined valleys. These empirically derived thresholds were based on the definition
of confined valleys (Table 3).

3.1.6 Mapping bank height

Measurements of bank height were derived at the stream bank plot level using DTM values
within each plot for those areas classified as bank-full width. First, the edge pixels of both
the streambed and the top of the bank were identified. Then, the mean DTM value of the
streambed edge pixels was subtracted from the mean DTM value of the edge pixels of the
bank top, providing a measure of bank height.

3.1.7 Mapping crenulation

Crenulation or scalloping of the edge of the bank top was used as an indicator of mass failures.50

It was assessed from the 0.5-m contour lines (lines indicating similar terrain height at 0.5-m
intervals) and produced in ArcGIS based on the DTM. To derive a measure of crenulation within
each plot, the distance along the contour line and the Euclidean distance from the start and end
points of the contour line were measured and divided by each other at the stream bank plot level.

3.1.8 Mapping percentage vegetation ground cover

Percentage vegetation ground cover, defined as the percentage cover of the ground by photo-
synthetically and nonphotosynthetically active vegetation (mainly grass and shrub within the
study area) <2-m tall, was mapped from the Ultracam-D and LiDAR data. Along the stream
banks, several areas had both green and dry grass. To estimate percentage vegetation cover
(including both ground, mid story, and over story cover), the Perpendicular Distance 54
(PD54) index was used.57 This is a well-established vegetation cover index that has proven suc-
cessful in areas with multiple types of both dry and green vegetation.58–60 The PD54 index uses
the green and red spectral space to derive an upper limit line for soils (based on selected sites with
soil) [Fig. 3(c)] and a lower limit line for pixels representing 100% vegetation cover [Fig. 3(d)].
Observations between the soil and 100% vegetation cover lines suggest a mixture of soil and
vegetation. The perpendicular distance from the soil line in green-red spectral space then
becomes the percentage vegetation cover, scaled based on the distance between the soil and
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100% vegetation cover lines [Fig. 3(e)].57 Sites visited in the field were used to select soil sam-
ples within the streambed to produce the soil line, whereas sites with 100% vegetation ground
cover were selected to produce the 100% vegetation cover line. To ensure pure soil and veg-
etation pixels were used, the Ultracam-D image data with 0.25-m pixels were used. Only sites
with 100% vegetation ground cover and no canopy cover were selected to establish the vegeta-
tion line because the vegetation ground cover tended to have slightly higher radiance values than
dense canopy cover. Based on the soil and vegetation lines, the percentage vegetation cover was
calculated for the Ultracam-D image after the pixel size had been resampled to 5 m to match with
the pixel size of the LiDAR-derived PPC layer. While the selection of dense vegetation ground
cover sites improved the scaling of percentage vegetation ground cover using the PD54 index,
it resulted in very dense canopy cover being mapped with >100% vegetation cover because of
the canopy cover appearing darker than vegetation ground cover in the green-red spectral space

Fig. 3 Workflow for production of percentage vegetation ground cover using the Ultracam-D and
LiDAR data: (a) Ultracam-D imagery; (b) LiDAR-derived PPC; (c) soil line based on Ultracam-D
imagery; (d) vegetation line based on Ultracam-D imagery; (e) percentage vegetation cover using
the PD54 index; and (f) percentage vegetation ground cover produced by combining the Ultracam-
D derived PD54 index and the LiDAR-derived PPC layers.
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due to the in-crown shadowing effects. Hence, these values were subsequently set to 100%. This
was not considered an issue as the LiDAR data were used to remove overstory cover to estimate
percentage vegetation ground cover [Fig. 3(f)]. Based on the results of this research and the fact
that many riparian zones in Australia have limited or no vegetation ground cover underneath
areas with very dense overstory canopy cover, the removal of the PPC component from the
PD54 cover estimate was considered important. The estimation of percentage vegetation ground
cover, i.e., vegetation of < 2 m height, was accomplished using the LiDAR-derived estimates of
PPC and Eq. (1):

%vegetation groundcover ¼ ðPD54cover − PPCLiDARÞ
ð1 − PPCLiDARÞ

: (1)

Because of the careful selection of pixels representing the soil and 100% vegetation cover
line, there were only very few occurrences where PPCLiDAR > PD54 cover. In those cases, where
PPCLiDAR > PD54 cover, the resulting negative values were set to 0%.

3.2 Validation of Image-Based Biophysical Parameters

Modeling bank condition based on image-derived biophysical parameters relies on their accurate
mapping. Hence, the accuracy of the image-based biophysical parameters was assessed. The
accuracy assessments were carried out by comparing field measurements with the corresponding
image-derived biophysical parameter measurements. With the exception of valley confinement,
linear regression based on produced scatterplots between the field- and image-based measure-
ments was used for validation to assess the model fit.

• Bank slope measurements derived in the field for each plot were related to the LiDAR-
derived slope layer using the mean of all the pixels occurring within each plot as the field-
derived slope measurements were considered representative at the plot level.

• A total of 242 upward looking photos were taken in the field and converted to a measure of
PPC (Table 1). However, to minimize effects of any horizontal offsets between the field
photos and the LiDAR data, the accuracy of LiDAR-derived PPC was assessed at the
object level against the average of the PPC field measurements occurring within each
object.46 This produced 68 samples.

• The streambed and bank-full widths measured in the field were compared to the widths
mapped from the OBIA at the corresponding location.

• The validation on mapped valley confinement was carried out by using the 50
locations visited in the field, where valley confinement was noted on each bank side,
producing a total of 100 observations. User’s and producer’s accuracies were
calculated.

• In eCognition Developer 8, the edge pixels bordering the streambed (toe of the bank) and
unclassified parts of the image (top of the bank) were classified within each of the field
plots. The average DTM elevation of the edge pixels representing the toe of the bank was
subtracted from the average DTM elevation of the edge pixels representing the top of the
bank. This produced a measure of bank height for each plot, which was compared to the
corresponding field-derived bank height measurements.

• Crenulation, i.e., the ratio of the distance along the bank top contour line and the Euclidean
distance, assessed in the field was compared to the corresponding measurements derived
from the DTM contour lines closest to the top of the bank.

• Field estimates of percentage vegetation ground cover within each field plot were com-
pared to the image-derived average of percentage vegetation ground cover of the pixels
within each field plot.

3.3 Predictive Modeling

Initially, a number of linear scatter plots were produced to assess the relationship between the
ISC bank condition scores of the field plots and the image-derived variables of the corresponding
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locations in the image data. Those biophysical parameters that produced a clear relationship with
the field-based ISC bank condition scores were selected for the modeling using either linear
or logarithmic relationships. An interaction term, i.e., multiplication of two explanatory
variables, in this case, percentage vegetation ground cover and average bank slope, was also
produced to add additional information to the model. When considered individually, it was
found reasonable to expect that an increase in vegetation ground cover would lead to an increase
in bank condition scores and that an increase in slope would lead to a decrease in scores. The
effects of vegetation ground cover might be diminished at low slopes or be even negligible.
However, vegetation ground cover at high slopes might have a significant effect. Hence,
this interaction term was considered important based on a reasonable physical relationship.
The modeling procedure was implemented in the statistical analysis software package R
version 2.10.1,61 using the combination of variables deemed most suitable from the univariate
regression analysis.

The relationship developed between the field assessed ISC bank condition scores consisted
of five values on an ordinal scale and image-derived parameters consisted of continuous data
values, so a cumulative logistic regression model for multinomial response variables was found
appropriate.62 Other statistical approaches, including partial proportional odds models (con-
strained and unconstrained) and machine learning approaches (support vector ordinal regression
and neutral network ordinal regression), were considered. However, these methods can be very
difficult and time consuming to apply or interpret and are unlikely to yield much improvement on
a small dataset.

Those valley confined sections visited in the field occurred either in gorge or upland
sections. The reference for a confined valley section is guided by the fact that the river is in
contact with hill slope (colluvial) material rather than stream bank (alluvial) material. Often,
the bank material in confined sections is large (boulders) or bedrock. The presence of steep-
unvegetated banks is therefore an inappropriate reference for these bank types and it was decided
to leave these out and classify areas with confined valleys separately. The predictive models had
the following form:

pn ¼ β0 þ β1Metric1þ β2Metric2þ Bn−1Metricðn − 1Þ þ βnMetricðnÞ (2)

and

pðISCscore nÞ ¼ epn

1þ epn
: (3)

In this case, four β0 intercept values were produced, representing the cumulative probability
for deriving an ISC score of: 0; 0 and 1; 0, 1, and 2; and 0, 1, 2, and 3. The probability of deriving
an ISC score of 4 then becomes 1 minus the probability of deriving the cumulative ISC bank
condition score of 0, 1, 2, and 3. In addition, β1; β2: : : βn−1; βn values were derived for the bio-
physical parameters included in the model.

3.4 Comparison of Predicted and Observed ISC Scores

To compare the model outcome with the ISC scores, a confusion matrix and related
overall accuracy were produced in the statistical software package R. A graph showing observed
versus predicted ISC bank condition scores was also produced. Since these comparison measures
include the data used to train the model, the estimates are likely to be optimistic. A 10-fold cross-
validation of RMSE was used to provide a more realistic estimate of the predictive accuracy of
the model. The overall accuracy was also calculated including the plots located in areas
with confined valleys. To produce a realistic measure of misclassification error, cross-validation
was used in 10 loops, where 10% of the data were left out each time for validation.

Probability plots for each bank condition category of the cumulative logistic regression mod-
els were produced to assess the model sensitivity of the reported RMSE for each of the variables
included in the predictive modeling of bank condition. These plots were produced for the indi-
vidual explanatory variables with the assumption that the remaining explanatory variables were
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kept constant at the average value extracted from the image data set for the plots visited in
the field.

4 Results

This section first presents the mapping accuracies of the LiDAR and Ultracam-D derived layers
assessed in this research. Then, the results of relating the field assessed bank condition scores
and remotely sensed biophysical parameters are shown. Finally, the predictive models and an
applied mapping result are presented.

4.1 Image-Based Biophysical Parameters

The maps of the biophysical parameters and thematic information used to predict the ISC bank
condition scores are presented in Fig. 4. The associated mapping accuracies and model fits of the
LiDAR and image-derived variables are presented in Fig. 5. The model fit of the individual
biophysical variables was all statistically significant (P < 0.001), with R2 varying between
0.75 and 0.95. Out of the 100 field-based observations of confined and unconfined valleys,
only one location with an unconfined floodplain was classified as valley confined because
some local variability in the terrain elevation near the bank top did not fulfill the conditions
in the rule set of the OBIA.

4.2 Relation of Biophysical Parameters to Bank Condition

Box and whisker plots relating field assessed ISC bank condition scores and the image-derived
biophysical parameters were produced to identify those image biophysical parameters that were
most suitable to include in the predictive modeling (Fig. 6). Those biophysical parameters show-
ing the highest correlation with ISC bank condition scores were average terrain slope
(R2 ¼ 0.60, n ¼ 41, P < 0.001) and maximum terrain slope (R2 ¼ 0.58, n ¼ 41, P < 0.001)
within the field plots, with increasing terrain slope producing lower bank condition scores.
However, average terrain slope within plots was found more reliable to use than maximum ter-
rain slope as the maximum terrain slope value was derived from only one pixel per plot and is
hence potentially risky to include as this value is not representative of the plot. The percentage
vegetation ground cover within the field plots exhibited a statistically significant positive rela-
tionship with the ISC bank condition scores (R2 ¼ 0.43, n ¼ 41, P < 0.001). The ratio of bank-
full width and bank height also showed statistically significant positive relationships with ISC
bank condition scores (R2 ¼ 0.31, n ¼ 41, P < 0.001). Using the logarithm of the ratio of bank-
full width and bank height increased the R2 to 0.41. This suggests that narrow streams with high
banks have lower bank condition scores than wider streams with low banks within the study area.

The relationship between bank top crenulation and ISC bank condition scores was
negative and statistically insignificant. There was insufficient evidence to support the hypothesis
that scalloped banks were associated with lower bank condition scores. No statistically
significant correlations between field-assessed ISC bank condition scores and PPC were
observed. As a consequence, bank top crenulation and PPC were excluded from the predictive
models.

4.3 Predictive Models

Cumulative logistic regression models were developed for calculating the probability of a given
value of average slope, bank-full width/height ratio, percentage vegetation ground cover, and an
interaction term (percentage vegetation ground cover multiplied with average slope) belonging
to a bank condition score of 0, 1, 2, 3, or 4 within the corresponding plots. The results of the
model building are shown below [Eqs. (4)–(7)]. The model that produces the highest probability
value will indicate the most likely bank condition score for the plot under consideration. An
example of applying the predictive models [Eqs. (4)–(7)] is provided in Fig. 7 for a section
without valley confinement.
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pðISCscore0Þ

¼ e
−5.5057þ

h
−2.5551×lnðBankwidth

BankheightÞ
i
þ3.4191×%grasscoverþ0.4665�AveSlopeþ½−0.4224×ð%grasscover×AveSlopeÞ�

1þ e
−5.5057þ

h
−2.5551×lnðBankwidth

BankheightÞ
i
þ3.4191×%grasscoverþ0.4665×AveSlopeþ½−0.4224×ð%grasscover×AveSlopeÞ�

;

(4)
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Fig. 4 Input layers of biophysical parameters and thematic information used for predicting ISC
bank condition scores: (a) true color Ultracam-D image; (b) DTM; (c) terrain slope; (d) PPC;
(e) streambed and bank-full widths; and (f) vegetation ground cover.
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Fig. 5 Scatterplots and accuracy measures of LiDAR and optical image-derived bank form and
vegetation biophysical variables, as well as valley confinement, mapped and used for modeling
ISC bank condition scores.
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pðISCscore0;1Þ
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(5)

pðISCscore0;1;2Þ
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Fig. 6 Box and whisker plots showing the median, 25% and 75% percentiles (box), 1 and 99
nonoutlier range (whiskers), outliers and extreme values of average slope, maximum slope,
the logarithm of bank width/height ratio, vegetation ground cover, PPC, and crenulation in relation
to individual ISC bank condition scores.
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:

(7)

4.4 Comparison of Observed and Predicted ISC scores

A confusion matrix was produced to compare the observed ISC bank condition scores assessed
in the field and the predicted values. The confusion matrix was produced for 41 observations,
excluding the plots with confined valleys (Table 4 and Fig. 8). Based on the confusion matrix, the
overall accuracy was 61%. ISC bank condition scores of 0 and 4 were most accurately predicted.
In 13 out of 16 cases where the observed and predicted scores did not match, there was only a
difference of one score between them.

The nine plots that were located within a confined valley were all correctly identified using
the mapping approach developed in eCognition Developer 8. This increased the overall accuracy
to 68%. It should also be noted that the confusion matrix only presents the empirical modeling

Fig. 7 Bank condition scores calculated using the predictive models for manually delineated 50-m
long sections for a subset of the Werribee River, Victoria, Australia.

Johansen et al.: Assessing stream bank condition using airborne LiDAR. . .

Journal of Applied Remote Sensing 073492-18 Vol. 7, 2013

Downloaded From: http://remotesensing.spiedigitallibrary.org/ on 10/13/2015 Terms of Use: http://spiedigitallibrary.org/ss/TermsOfUse.aspx



results and not a true comparison because the observed values were used to predict the scores. To
obtain a reliable comparison measure, cross-validation was used. A 10-fold cross-validation esti-
mate of the mis-classification RMSE was 0.95 of the ISC bank condition score. This measure
indicates that the predictive modeling produced an ISC bank condition score within less than one
observed score. The misclassification error of 0.95 was only based on the 41 plots, excluding the
plots with valley confinement. As the valley confinement could be reliably mapped, the mis-
classification error is in reality smaller than 0.95 of the ISC bank condition score. The results of
the probability plots of the cumulative logistic regression model showed that the RMSE values
derived in the comparison process (Fig. 5) were sufficiently low and did not affect the predicted
ISC bank condition score unless the value of the explanatory variable was close to the threshold
separating two ISC bank condition scores.

5 Discussion

5.1 Using Landform and Biophysical Variables to Predict ISC Scores

Our approach for mapping bank condition from airborne LiDAR and high-spatial resolution
image data effectively predicted bank condition based on a subset of image-derived variables.
The adoption of image-based biophysical variables that exhibited statistically significant cova-
riation with visual ISC bank condition scores approximated the way humans perceive bank con-
dition. Despite the promising results, it is important to carefully evaluate the spatial scale of
applying the approach and how representative the explanatory variables are for the area they
are applied to. Therefore, different models may be required for different catchments. For exam-
ple, previous research established statistically significant correlation between PPC and bank con-
dition in a north Australian woodland riparian environment due to the stabilizing effect of tree
roots.23 While tree canopy cover has been used to guide large spatial scale erodibility model-
ing,63 and may be indirectly related to bank strength,64 the absence of trees does not necessarily
mean erosion is occurring. In this study, we obtained field measurements from a range of sites
with varying severities of different active bank and fluvial processes. The restriction of data used
to train the models from a specific region with a limited range of processes and severity remains.
The general applicability of models may increase if more information is used to train the model
over a larger area. An alternative would be to create a regionalization of different process dom-
inances,65 or river type,3 and create different models with different representative biophysical
parameters for each region or type of process.

The outliers of the observed versus predicted bank condition data may provide information
on areas where a generic scoring method is inappropriate. Three sites were evident with large
differences between predicted and observed ISC scores. In the first example where the observed
ISC bank condition score was 0 and the predicted score was 3, the average bank slope was
17 deg, the vegetation ground cover was 60%, and the bank-full width/height ratio was 7.2.
These values would, in most cases, have produced ISC bank condition scores of at least 2,
but because of two mass failures within the plot, the score was assessed as 0 in the field.

Table 4 Confusion matrix comparing the observed and predicted ISC bank condition scores.

ISC score 0 (observed) 1 (observed) 2 (observed) 3 (observed) 4 (observed) User’s accuracy

0 (predicted) 9 2 0 0 0 81.82

1 (predicted) 0 2 3 0 0 40.00

2 (predicted) 1 1 3 2 0 50.00

3 (predicted) 1 1 2 4 1 44.44

4 (predicted) 0 0 0 2 7 77.78

Producer’s accuracy 81.82 33.33 37.50 50.00 87.50

Johansen et al.: Assessing stream bank condition using airborne LiDAR. . .

Journal of Applied Remote Sensing 073492-19 Vol. 7, 2013

Downloaded From: http://remotesensing.spiedigitallibrary.org/ on 10/13/2015 Terms of Use: http://spiedigitallibrary.org/ss/TermsOfUse.aspx



Some crenulation within the plot was observed in the contour lines (ratio of 1.12 between con-
tour line and Euclidean distance). Another outlier with an observed score of 1 and a predicted
value of 3 had an average bank slope of 19.7 deg, vegetation ground cover of 50%, and
a bank width/height ratio of 8.6. The probability of obtaining a bank condition score of
2 and 3 was 41.1% and 44.6%, respectively. Because of the similar probabilities of deriving
a score of 2 and 3, a reduction in the input vegetation ground cover value of 2% would
have resulted in a predicted score of 2. The third outlier deviating by more than one score had
a field assessed score of 0, but the highest probability score indicated a bank condition score of
2 based on an average bank slope of 22.1 deg, vegetation ground cover of 0%, and a bank width/
height ratio of 15. In this case, the relatively high bank-full width/height ratio caused by the
limited bank height of 2.54 m and the relatively low average bank slope produced the highest
predicted probability for a score of 2. This plot was only 2.5-m wide because of a narrow bank
section between the toe and the top of the bank. The bank was vertical in parts and also undercut
in some areas.

The limited ability of the LiDAR data to accurately map steep slopes, e.g., >70 deg, should
be considered in relation to the narrow bank section and the LiDAR point density of
0.625 points∕m2. Other studies have found that LiDAR point density and DEM resolution
have a significant impact on surface slope and surface derivatives.29,32,66 A LiDAR dataset
with a higher point density to increase the number of canopy and ground returns and a derived
slope layer with a smaller pixel size would be more suitable for identification of narrow sections
with steep bank slopes. If the slope had been increased from 22.1% to 26% while keeping all
other explanatory variables constant, the predicted bank score would have been 0.

5.2 Spatial Scaling Considerations

It is essential to assess the mapping accuracy of the input layers used for the predictive modeling
as the accuracy of these layers may significantly affect the bank condition mapping results. Also,
the larger the plots are for assessment of bank condition, the more averaging of bank condition
will occur. Therefore, small bank instabilities or erosive features may not be identified for plot
sections of ≥50 m. Based on the observations in the field, some river and creek stretches showed
large variation over short distances (10 to 15 m). It would therefore be important to determine the
optimal plot section length to avoid excessive averaging of bank condition. For rivers and creeks
in the study area, a plot section length of 10 m would be suitable in most cases based on ISC bank
condition score variability and the observed spatial variation in the explanatory variables derived
from the LiDAR and optical image data. Therefore, it is also important that the remotely sensed
image data have a spatial resolution suitable for detecting bank condition variability. The point
density of the LiDAR data used in this research was 0.625 points∕m2. A LiDAR point density of
10 points∕m2 or more would significantly improve the ability to accurately map PPC and veg-
etation ground cover and detect detailed slope variation of stream banks at higher spatial
resolution and enable a reduction of the plot section length.32,67,68

For assessment of the mapping results and for comparison of different stream sections, it
is recommended that sections covering at least one meander wavelength be used, as the outside
of meander bends are often exposed to erosive processes and hence appear with low bank
condition scores, whereas point bars are generally more stable.40 Using at least one meander
wavelength for assessment of bank condition mapping results will ensure a less biased com-
parison of different stream sections. To automate the mapping approach, a method for devel-
oping plot sections of equal size is required. These sections should have a set length, e.g., 10 m
and a width perpendicular to the stream equal to the bank width on each side of the streams.
Once these plots have been automatically produced, the explanatory variables used in the pre-
dictive models can be automatically derived and subsequently subjected to the predictive models
at the plot level. Future work will focus on automating the mapping process in eCognition
Developer 8.

Rehabilitation or restoration in river systems is often undertaken at a reach scale and very
infrequently assessed on its subsequent performance.69 Landholders often apply pressure to gov-
ernment to fix bank erosion as it is a clearly visible process that encroaches onto their property.
Accurate spatial information on bank condition, at a catchment scale, allows a more targeted
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approach to management and potential establishment of regulations and other policy mecha-
nisms concerning the environmental condition of streams.

5.3 Application Value of the Results

The developed mapping approach provides an opportunity to adopt more rigorous and quanti-
tative approaches to quantify spatial variability of stream bank condition and potentially rates of
change in bank condition over time. Although the objective of this research was to assess the
capability to use airborne LiDAR and high-spatial resolution optical image data for mapping
bank condition using the same scoring system as the ISC field-based approach, it should be
highlighted that the remotely sensed method developed represents a quantitative mapping
approach compared to the qualitative scoring–based ISC approach. Hence, the differences
reported in the comparison of the predicted and observed ISC scores may, to some extent, reflect
the difference in scoring-based qualitative techniques and quantitative-based mapping
approaches. As shown in Fig. 5, the LiDAR- and image-based mapping accuracies demonstrate
the ability to quantitatively measure a large number of variables related to stream bank condition
over large spatial extents and with complete spatial coverage, which may in fact be a more
significant finding in itself for fluvial geomorphologists and environmental managers than
the ability to estimate ISC scores from these remotely sensed quantitative variables. This should
especially be considered in relation to the repeatability and consistency of deriving the remotely
sensed quantitative measures, whereas assessment bias and interoperator variability of field-
based qualitative assessments may reduce the ability to compare different sites or the same
site over time in an accurate manner.15 Hence, the ability of producing accurate measures of
bank form and riparian zone biophysical parameters from LiDAR data and high-spatial reso-
lution image data represents an opportunity to move beyond field-based qualitative measures
of bank condition toward more direct quantitative and consistent assessment methods of stream
bank condition.

Fig. 8 Plot showing the relationship between the observed and predicted ISC bank condition
scores, excluding the nine plots with confined valleys. Also note that points have been jittered
for clarity.
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6 Conclusions and Future Work

This research presents a method suitable for mapping bank condition based on LiDAR and high-
spatial resolution remotely sensed image and field data. The study was undertaken within an area
restricted by available imagery. It is possible that adjustments and additional explanatory var-
iables are needed for other areas and streams with different active processes and vegetation and
terrain characteristics. A number of different landform and biophysical parameters and character-
istics were assessed at the plot level in the field. From the LiDAR and high-spatial resolution
image data, the following layers were required for developing the predictive models: (1) DTM,
(2) terrain slope, (3) PPC, (4) streambed extent, (5) bank-full width, (6) vegetation ground cover,
and (7) contour lines. From these layers, the following explanatory variables could be extracted
for comparison against field assessed ISC bank condition scores to produce the predictive
models:

• Average bank slope,
• PPC,
• Bank-full width,
• Valley confinement,
• Bank height,
• Crenulation of banks,
• Percentage vegetation ground cover, and
• Bank width/bank height ratio.

Cumulative logistic regression models for multinomial response variables were used for pre-
dicting bank condition by calculating the probability of the ISC bank condition scores based on
the most suitable explanatory variables. The average bank slope, percentage vegetation ground
cover, the bank-full width/height ratio, and an interaction term between average terrain slope and
vegetation ground cover were found most suitable for the development of the predictive models.
On average, the predicted ISC bank condition scores were within less than one score of
the observed ISC bank condition and had an overall accuracy of 68% when including field
plots with confined valleys. The developed approach for mapping bank condition may reduce
the time and cost of traditional field-based approaches when applied at the reach and catchment
scales, which may facilitate future management decision making. In addition, the results high-
light the ability to move from field-based qualitative approaches toward more direct unbiased,
repeatable, quantitative, and spatially extensive remotely sensed assessment methods of stream
bank condition with complete spatial coverage. The approach will be applied to airborne LiDAR
and high-spatial resolution optical image data covering 26,000 km of stream length in Victoria,
Australia.
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