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SUMMARY

The research described in this thesis was undertaken with the aim
of providing a suitable computer architecture for supporting the
development and execution of 1large software systems decomposed into
modules according to the information hiding principle. In the course of
this work, the author developed two models relevant to the achievement

of this aim.

The first model is framed in terms of a memory management and
addressing scheme which bases protection on capabilities and overcomes
the major memory management and address translation problems found 1in

other capability-based architectures.

The second model arose from the author‘'s practical work in~
modifying an existing computer (a Hewlett Packard HP2100A) to support
this architecture. It proposes a general technique for upgrading
relatively primitive computers to support more advanced features, in
terms of addressing modes, additional registers, new instructions and

virtual memory.

Chapter 1 provides background information which led the author to

undertake this research, and explains the structure of the thesis.

Chapter 2 surveys the conventional memory management systems, and

describes a number of the more common problems associated with them.

Chapter 3 describes the hardware used by most memory management

systems .

Chapter 4 surveys current capability based addressing schemes and

highlights their problems.

Chapter 5 describes the new architectural model and shows how it

solves the problems raised in earlier chapters.

Chapter 6 addresses the problem of how to implement the new model
both cheaply and quickly. In doing so, it develops a general technique

which can be used to implement new computer architectures.



Chapter 7 describes a practical implementation of the addressing
scheme described in chapter 5 using the technique defined in Chapter 6.

The concluding chapter examines the extent to which the two models

proposed in this thesis have been successful and practical.

The two major contributions of this research work are the new
addressing model  proposed in Chapter 5, and the architectural

enhancement model proposed in Chapter 6.

The new addressing model avoids the two major problems of current
capability based computers, namely memory management problems associated
with small and large segments, and also address translation problems
which arise 1n systems which make abundant use of segments. The model
is shown to be more efficient than the addressing schemes used in other
capability systems. Unlike other capability based and conventional
computers, it is flexible enough to efficiently implement many different
capability addressing structures. Consequently, the software ideas can

change and evolve, without affecting the hardware.

The new enhancement technique allows many different architectural
enhancements to be implemented and tested as an extension of an existing
computer system, and thus allows a full scale evaluation of the ideas to
be made. Because the technique allows complex structures to be
constructed quickly, accurately and cheaply, it avoids the problems
found 1in many theses which propose new architectures without coming to

terms with their practical implicationmns.

In addition to these contributions, during the course of the
implementation work, a new address translation unit was devised which,
whilst not significantly different in concept, is significantly

different in implementation from many other units.
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1l. Introduction

The research described in this thesis was conducted as part of the
MONADS project in the Department of Computer Science at Monash
University. The thesis topic 1s concerned with the development of
computer hardware, in the form of the MONADS II system, but in addition
to descriptions of the actual MONADS II development the thesis describes
two general models which have more general applicability. The first of
these is a model for building capability-based computer systems i1in a
more flexible way than has hitherto been attempted. The second model
describes a general approach which can be adopted to enhance existing
relatively simple computers to support a wide variety of extensionms,
such as the addition of new addressing modes, new registers and support

for a virtual memory.

l.1. The MONADS Project

l.l.1. Aims of the MONADS Project

The MONADS project (Keedy, 1978, 1981; Keedy, Abramson, Rosenberg
and Rowe, 1982) began in 1976 with the intention of investigating
methods for developing large complex software systems. The techniques
used in the project are based on the information hiding principle, as
advocated by Parnmas (1971, 1972) and others (Wirth, 1977; Liskov and
Zilles, 1974; Keedy and Rosenberg, 1981; Keedy and Rosenberg, 1982b).
Using this principle software systems are decomposed into small
information hiding modules, each of which performs a specific task. The
data structures and algorithms used by these modules are totally hidden
from other modules which make use of their services, and communication
between modules is by a procedural interface. Unlike many language based
solutions (Liskov, Snyder, Atkinson, and Schaffert, 1977; Dahl,
Myhrhaug and Nygaard, 1968; Wulf, London and Shaw, 1976), the MONADS
project provides support for the 1information hiding module at an
architectural level (Keedy, 1982b). Moreover, modules are used
uniformly to represent all addressable objects, even those which
conventionally have their own mechanisms for addressing, protection and

sharing, such as files (Keedy and Richards, 1982).

From an implementation viewpoint, modules are constructed from

segments of memory, each of which must be addressed from within the
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module and protected from access by other modules. For this reason, both
modules and segments are addressed by capabilities (Fabry, 1974).
Algorithms are implemented by code segments, and data structures can be.
held 1in data segments. Because the interface is strictly procedural the

segments can only be directly addressed from within a module.

1l.1.2. History of the Project

The first phase of the project involved building an operating
"system (Keedy, 1978). The 1idea was to demonstrate that an operating
system, and in fact any large software system, could be broken 1into
small units, each of which 1s implemented by an information hiding
module. During the system design it became clear that a conventional
computer architecture was ill-suited to the new software methodology.
The major area of concern was the way that information and modules are
shared and protected. Consequently, the MONADS I processor was developed
in about 1978 (Hagan and Wallace, 1979; Wallace, 1978; Hagan 1977) from
a modified Hewlett Packard HP2100A. This processor provided a small
virtual memory (4 x 32k word address spaces) and a number of previously
unsupported addressing modes, such as process stack addressing and base
and index register addressing. This new hardware was still wunable to
implement all of the required support functions, and the idea of a
hardware kernel was developed in an attempt to bridge the hardware-
software gulf (Rosenberg and Keedy, 1978; Rosenberg, 1979). Much was
learned from this preliminary implementation. Apart from the concept of
a hardware kernel, a process structuring model was designed
(Ramamohanarao and Keedy, 1978; Ramamohanarao, 1980; Keedy and
Ramamohanarao, 1979), and a model was developed to describe the way that
the information hiding modules should be addressed and protected
(Richards and Keedy, 1978; Richards, 1982).

The MONADS I hardware presented a number of major implementation
problems. First, the hardware was not totally secure. While individual
user programs could be protected from each other, it was difficult to
protect a program from corrupting sensitive information held on the
process stack (e.g. linkage or parameter information), allowing security
violations to occur. Second, user programs (and the associated data and
stack space) could not be larger that 32k words, the size of one address

space. This severely restricted the use of the system. Third, the
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hardware provided a paged addressing scheme, which presented sharing and
protection problems. Fourth, the hardware could only support three
concurrent user programs. Finally, because many of the important:
functions were implemented in the kernel (due to insufficient room in

the microprogrém control store) the system was quite inefficient.

Because of these drawbacks, the author developed the MONADS II
processor in 1980, again from a Hewlett Packard HP2100A minicomputer.
However, this computer differed from MONADS I in two important respects.
First, a different construction technique was used (Abramson, 1982a).
Second, the MONADS II hardware was not specifically designed for the
MONADS software methodology, but was a general capability based
addressing processor able to implement many different software
- structures (Abramson, 1982b). At the same time as the new hardware was
being designed, the MONADS software group was defining the addressing
structure of the information hiding modules, which was then mapped onto
the hardware. Following this, a new hardware kernel (Wallis, 1980) and .
a new operating system were designed. MONADS II removed some of the
restrictions of MONADS I by providing a large virtual memory (Abramson,
1981), a wuniform addressing mechanism and many new addressing modes

(Abramson, 1980) .

Whilst MONADS II demonstrated all of the principles of the new
software structures, it was developed as a pilot system capable of
supporting only a limited number of concurrent user programs. Thus,
work began on a new processor, MONADS III (Keedy and Rosenberg, 1982),
which built on the experience gained from the MONADS II system, but
which would be powerful enough to provide a fast computer utility to a
number of users. While MONADS II and MONADS III have many features 1in
common (Keedy, Ros2nberg, Abramson and Rowe, 1982), and may be coupled
to form a multi-computer system, they differ significantly at the

implementation 1level.

1.2. Objectives of the Thesis

This thesis contributes to the implementation of the MONADS
software ideas by developing two general models, which are used in the
MONADS II processor design. The first provides a hardware addressing

unit, which allows information to be shared and protected in a uniform,
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flexible and efficient manner. This unit should be able to be used with
a number of different software structures. The model draws a clear
distinction between functions which should be supported in hardware (for.
efficiency reasons) and functions which should be implemented in
software or firmware (for flexibility reasons). Because of this
flexibility the hardware may be used in other capability projects as
well as the MONADS project. -

The second model defines a technique for implementing complex and
different computer architectures quickly and cheaply. This not only
enables a full scale evaluation of the new addressing model to be
performed (in terms of supporting a real program development
environment) but also serves as a general technique for evaluating many
new architectural ideas. This scheme has many advantages over existing

techniques, particularly in terms of efficiency and simplicity.

1l.3. Layout of the Thesis

Chapter 2 describes the memory management models used by
conventional computer systems, such as linear memories, paged memories,
segmented memories and paged and segmented memories. By examining these
systems in terms of their ability to protect and freely share
information, we show that they do not provide an adequate addressing
scheme. The chapter concludes that the segmentation scheme offers the
best 1logical advantages, but acknowledges that it also has many

implementation problems.

Chapter 3 examines the addressing hardware currently used in
computer systems, and describes the common building blocks. These blocks

are then used later in the thesis to implement a new addressing model.

Chapter 4 examines an addressing model based on the segmentation
scheme, called capability based addressing, and shows how it solves some
of the shortcomings of conventional architectures. The problems

associated with the implementation are also discussed in detail.

Chapter 5 describes a new addressing model which is based on the
capability addressing scheme, but which solves the outstanding problems
and provides a flexible and uniform hardware addressing mechanism. A
major design consideration 1is that the addressing hardware should not

only be able to implement the MONADS software structures, but should be
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flexible enough to implement those of other capability based processors.

Chapter 6 examines the ways in which the new addressing model could
be implemented, and shows that many conventional techniques are not
suitable. Building a totally new computer is discarded because of lack
of time and money, and other interpretive techniques (such as software
and firmware implementations) are often too inefficient. The chapter
then describes a general model for enhancing primitive computer
architectures, and demonstrates some of the enhancements which are

possible.

Chapter 7 describes the MONADS II computer system, and demonstrates
the practically of the two new models proposed in this thesis.

Chapter 8 concludes the thesis, commenting on the relevance of this

research and suggesting additional work which might be undertaken.
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2. Conventional Memory Organizations

This chapter examines the conventional memory management models_
used 1in many computer systems. First, we consider the types of requests
which a memory system must be able to satisfy. These requests come from
a number of different types of software. Second, we describe the
conventional memory management models used in many current computer
systems. These models can then be examined in terms of the different
software requests, exposing the advantages and disadvantages of each

scheme.

2.1. Software Environment

From the viewpoint of the information storage system of a
processor, memory demands come from three classes of software: user

programs, the operating system and compilers.

2.1.1. User Programs

User programs are designed to perform some task on behalf of a
user. They require the information store to possess a number of

attributes, namely:

- The store must be able to save and retrieve both high speed
computational data (e.g. program variables) and permanent data (e.g.

file data).

- User programs which share the central processor must be protected from

corrupting data belonging to other users.

- User programs should be protected from corrupting their own code and

read-only data.
- User programs should be able to share certain data with other wusers.
This allows processes to cooperate with each other in performing one

task.

- The information storage, sharing and protection system should be

simple to use.
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- The information storage system should be efficient in space and time.

- The store should be 1large enough to hold all computational and~

permanent data.

- The store should allow dynamic memory allocation for dynamic data

structures.

A user program demands a number of functions from the memory
system, and 1s not concerned with the way that the requests are
implemented. As we shall see when we examine the various conventional
memory management models 1in use, some of these basic requirements are

not well supported.

2.1.2. The Operating System

The operating system has the task of controlling all the user
programs which execute on the processor. With respect to the information

storage system, the operating system must:

- allocate memory when a user program 1is 1loaded, or requires more

memory;

- deallocate memory when a user program terminates, or releases memory;

- control the protection system;

control the sharing system;
- cuutrol any address modification hardware;

be able to share code modules between users, in order to save space

(this form of sharing, unlike data sharing, is not visible to the user

program) .

Unlike user programs, which only wuse the memory, the operating
system  must also manage and control the memory system. These
requirements demand that the memory system is easy to manage and

control. Again, not all of these are well supported in conventional
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memory management schemes .

2.1.3. Compilers

Compilers are affected by the memory system in two respects. First,
most compilers execute as a normal program (although they may have some
extra privileges) on behalf of a user, and thus have the same needs as a
user programe. Second, they are used to translate user programs from
high level languages into the machine code of the processor, and are
expected to understand how to address memory. The main requirement that
the compilers make on the memory system is that the addressing, sharing
and protection systems are simple to use. This means that the code is
easy to generate, and the compiler code generator is simple 1in design.
The memory system should be able to represent and address the logical
structures of a program, e.g. arrays and subroutines, rather than
requiring the compiler to translate them into units which are meaningful

to the memory.

2.2. Conventional Memory Management Systems

This section describes a number of conventional memory management
models wused for addressing the main, or computational, memory of a
processor. Most conventional computer systems also use a secondary
memory (such as a disk or drum) to hold permanent data. Whilst some
also use the secondary store as part of their main memory storage system
(as 1in virtual memory systems), the mechanisms for addressing secondary
memory are not considered, because they only affect the operating system

software, rather than the addressing hardware.

2.2.1. Linear Memories

The earliest memory management model used was tﬁe >linear memory’
model. In this scheme the main memory of a processor is viewed as a set
of linearly arranged addressable storage locations, and each word (or
location) of memory is accessed by supplying an address. These absolute
addresses may be manipulated by a wuser program in order to access
various data items. The way that 1linear memories are used varies

depending on how many concurrent users the system must supporte.
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2.2.1.1. Single User Systems

In the earliest computer systems, the central processor was
allocated to a particular user when a job commenced, and was only.
relinquished when that job had terminated. In such systems, the program
and associated computational data is loaded into the linear memory, and
execution begins at the start of a program. The sequencing, loading and
unloading of jobs 1is controlled by a supervisor program, which is loaded
into the bottom of the memory. (In very early computer systems the
supervisor was only capable of 1loading binary program tapes into
memory.) User programs are then 1loaded into the memory above the
supervisor. The ’linear memory’ scheme, shown in Figure 2.1, has the
advantage that it is simple. It also has a number of disadvantages.
First, no program can be 1larger than the size of the main memory
(although some systems use a manual overlaying scheme). Second, if a
program starts a slow autonomous operation, such as an input-output
transfer, the processor must remain idle wuntil the transfer is
completed. Third, there is no way of protecting the supervisor program
from being corrupted by the user program. This problem was resolved by
introducing a ’fence register’ into the processor, which is loaded with
the highest address of the monitor program. By preventing the user
program from writing into memory below that address the supervisor can
be protected. Fourth, because the supervisor program resides at the
bottom of the memory, the wuser program no longer resides at address
zero. Consequently, the start address, and the addresses of all
variables and labels, must be adjusted so that the program begins at the
top of the supervisor. This operation is called static relocation and
can be quite expensive. The linear memory scheme has been used in many

o)d single user systems, such as the HP2100A (Hewlett Packa.d, 1972).

2.2.1.2. Multi-user Systems

The 1linear addressihg model can also support a multi-user
environment. In this case the central processor is shared amongst many
different user programs. Each program receives a slice of processor
time, and 1s suspended either when the time slice expires or an input
output transfer 1s started. Multi-user systems are able to use the
processor more efficiently, because it is used to execute another job

while other users are suspended, rather than being left idle.
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low addresses

supervisor

user
program

high addresses

Figure 2.1 - a single user linear memory

The problem with constantly swapping the executing program is how
to allocate the main memory. Two main solutions have been used. First,
the entire memory is allocated to a program when it enters 1its time -
slice. All of the program code and data is loaded into memory (from a
secondary storage device). When the time slice is over, the memory image
is copied back into secondary memory, and the next program is loaded.
This method has a number of disadvantages. While it may wutilize the
central processor better than in the single user system, the memory' may
still be under-utilized. A small program still uses the entire user
area of main memory, wasting the rest of the space. Also, the time spent
swapping code and data in and out of main memory 1s excessive, during
which time the processor cannot be used. To avoid the load and unload
operations every time slice, a second memory allocation scheme can be
used, as shown in Figure 2.2. In this method all, or many, of the
current programs are loaded into memory, each packed into the arailable
space. When a program enters its time slice, the o0ld register values are
reloaded and the program is restarted. At the end of the time slice, the
register values are saved and another program is restarted. This scheme
avoids copying the code and data for a program into memory before it can
be executed, and is thus much more efficient than the first solution. It
also has a number of problems. First, because programs contain absolute
addresses the code must be statically relocated before it can be loaded.
In a single user system once the code has been relocated, it can be used

repeatedly. However, in a multi-user system, the code must always be
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low addresses

supervisor

user program 1l

user program 2

user program 3

high addresses

Figure 2.2 - a linear memory multi user system

relocated before it is loaded, as its position may change each time the
program 1is executed. This operation is expensive. Second, the simple
fence register scheme cannot protect programs from corruption. A more
elaborate protection scheme places a base register at the lowest address
of a program, and a 1limit register at the top of the program. Addresses
can then be restricted to a particular addressing region. Third, as
programs are loaded and unloaded, the memory may become fragmented. This
’external fragmentation’ complicates loading new programs, as
insufficient free space may be available to hold an entire program. To
simplify the problems of static relocation and memory management, a

dynamic relocation scheme was devised.

In the dynamic relocation scheme each program assumes that it is
loaded at address zero, and the processor augments each address by the
contents of a base register before it reaches the memory. This new
address can also be validated against a 1limit register, thereby
protecting other programs from corruption. These dynamic relocation
registers also assist with memory management. A statically relocated
program cannot be moved in memory once it has been 1loaded, because it
may have absolute addresses 1in data variables. Thus, if insufficient
contiguous space is available, it may be impossible to 1load a program
into memory. Dynamic relocation registers, however, allow a program to
be moved; thus the memory may be periodically reorganized. Unfortunately

the cost of moving programs in memory is quite high, and it may be more
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efficient to waste some of the main memory.

Another solution aimed at simplifying the external fragmentation
problem 1is the partitioned scheme, used in the ICL System 4 (ICL, 1971)
and some of the IBM 360 range (Belady, Parmelee and Scalzi, 1981). In
this scheme the main memory is divided by the operating system into a
number of fixed size partitions. When a program is loaded into memory it
is placed in a free partition. Because memory is allocated in fixed size
units, the task of memory management becomes much simpler, and external
fragmentation is eliminated. Unfortunately internal fragmentation
occurs, as programs which are smaller than a partition will waste space.
Thus, while memory management may be simpler, the fixed partition scheme
may waste even more space than a variable space allocation scheme. Also,
large programs must be manually overlayed so that they £it in a
partition. The effect of internal fragmentation may be diminished by
using small partitions; however, this 1limits the maximum size of a

program (unless it is broken down into overlays).

Another problem with the linear memory model 1is that from the
compilers’ viewpoint the memory image is totally unstructured. It must
allocate space within the address space for all of the data structures
and code of a program without any assistance form the memory management

system.

It is often desirable to share access to areas of memory between
user programs. In the swapping scheme sharing 1is awkward. The
supervisor program must allocate an area of shared memory at a reserved
address, and as programs are loaded and unloaded this area must remain
unaltered. In this way many programs can share access to a statically
defined set of data items. In the scheme which loads all programs into
memory at the same time, data items may be shared by using the absolute
address of the 1item. This procedure does not work if base and 1limit
registers are used to protect a program, or 1if dynamic relocation
registers are wused. Sharing of code is extremely difficult in a linear
mémory scheme. Because of the problems, very few linear memory computers

allow sharing at all.
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2.2.1.2.2. Protection between User Programs

We have already shown that user programs may be protected from_
corruption by base and 1limit registers. This scheme has been used in
many linear memory computers, such as the ICL1900 series (ICL, 1976).
The partition scheme can also provide inter-program protection, as shown
in Figure 2.3. In this scheme the hardware recognizes a number of fixed
size areas (in the IBM 360 range this was 2k words in size), and
associated with each area is a protection lock which holds the identity
of the program. (If the partition size chosen by the operating system 1is
larger than the area size recognized by the hardware then a number of
protection locks may be assigned to the same partition.) The central
processor has a current-protection-key register, which holds the
identity of the currently executing program. When a program enters its
time slice the current-protection-key register 1is 1loaded with the
identity of the- program. Each time memory 1is addressed, this value 1is
compared to the protection lock for the area being addressed. If they -
differ, then a protection violation has occurred, and the program is
aborted. Consequently, a program can only address areas which it owns.
Whilst it is conceptually possible to dynamically change the values held
in the protection locks to facilitate controlled sharing, this has not
been implemented. Thus, it 1is very difficult to share memory between

lock 1
Partition 1
lock 2 key
Partition 2 processor
register
lock 3
Partition 3
lock 4

Figure 2.3 - the protection key system
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programs. None of the ﬁrotection systems discussed protect a program
from corrupting its own code. Most of these schemes make the sharing of

-

memory extremely difficult.

2.2.2. Paged Virtual Memories

The concept of a paged virtual memory was first proposed and
implemented by the Atlas design team in the late 1950s (Fotheringham,
1961; Kilburn, Edwards, Lanigan and Sumner, 1962). The scheme consists
of detaching the 1logical view of memory as seen by a program from the
physical organization of the main memory. The logical memory, or virtual
memory, 1s mapped onto the main memory by a mapping function. The
implementation of this addressing structure requires that both the
virtual and physical memories are divided into a number of fixed size
pages. Consequently, an address (either virtual or physical) consists of
two portions, a page number field and a within page displacement field,
as shown in Figure 2.4. A mapping unit can then map pages of virtual‘_
memory onto pages of physical memory as shown in Figure 2.5. The within
page displacement from the virtual address is used as a within page

displacement for the physical page.

The paged scheme has a number of general advantages. First, the
type of reference applied to a page of virtual memory may be controlled.
Associated with each page of virtual memory may be some access rights,
which determine whether the page may be read from, written into, or
executed as code. With this information, the processor can monitor every
memory reference and report addressing errors. Unlike a linear memory,
the paged memory organization can protect a user program from modifying
~its own code, and pages of constants can be protected from being
modified. Second, a contiguous area of virtual memory need not be

allocated contiguously in main memory. The mapping function can map

page number displacement

Figure 2.4 - a paged virtual address
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- mapping

Page 1 . functio.
Page 2 >
Page 3 \\\~——->
Page 4 >
Page 5 >

— >

Virtual address space

Main memory

Figure 2.5 - a paged virtual memory

pages of virtual memory arbitrarily onto main memory, allowing large
contiguous areas of virtual memory to be created. This makes memory
management easier and eliminates the external fragmentation experienced
in the 1linear memory scheme. Third, the virtual space may be larger
than the physical space. Any pages of virtual memory which are not
mapped onto a page of physical memory can be tagged absent. A reference
to these pages causes an addressing error, called a page fault, which is
similar to an access rights violation. Because the virtual address space
may be very large, programs larger than the main memory may be loaded.
If an absent page of virtual memory is addressed, a supervisor program
may fetch a copy of the page required from secondary memory, find a free
page 1in main memory, place it in main memory, and update the mapping
function. When the reference is attempted again, the processor will
address the correct page of physical memory. This operation is called
demand paging, as pages are only fetched into main memory on demand.
Some systems have experimented with prepaging, i.e. attempting to fetch
pages before they are required. Unfortunately, it is very difficult to
determine the access patterns of a program, and because the overheads of
moving unneeded pages into main memory are high, prepaging 1s not
éommonly used. Fourth, as we will see shortly, user programs may be

protected from interference from each other.
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The paged scheme also has some disadvantages. Because memory 1is
allocated in fixed size units, some space will be wasted in the last
page of the virtual address space. This internal fragmentation 1is the’
same problem experienced 1in the partitioned linear memory. We shall
examine some more serious disadvantages later, in terms of the 1logical

properties of pages.

2.2.2.1. Single User Systems

In a single user system, the program executing on the processor 1is
loaded into the virtual address space. To the user program, the memory
appears to be linearly arranged. However, unlike the 1linear memory
model, the pages may be allocated randomly £from main memory. In
addition, pages may be protected from inadvertent corruption. When the
program terminates, the virtual address space can be loaded with a new

user program.

2.2.2.2. Multi-user Systems

Most paged computers support a multi-user facility by creating a
number of virtual address spaces. Each user program is loaded into a
different address space and the main memory is composed of pages of many
different programs. Each of the virtual spaces is then mapped onto the
main memory by its own mapping function, as shown in Figure 2.6. When a
program enters 1its time slice, the appropriate mapping function is
selected so the program can only address its own pages. When the time
slice 1s over, a new mapping function is selected. This arrangement 1is
similar to the swapping technique used in the 1linear memory scheme.
However, only the mapping function 1s altered after each time slice
(which'can be performed very quickly), rather than copying each address
space to and from secondary memory. The demand paging system allows a

program to load its pages into main memory as they are required.

2.2.2.3. Address Translation

So far we have assumed a mapping function between virtual addresses
and physical addresses, without considering how this function can be
iﬁplemented. This translation operation 1is performed each time the
processor accesses memory. The virtual address may either be translated

into a main memory address, in which case the reference can proceed, or
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Figure 2.6 - a paged multi-user system

a secondary memory address, in which case the page is fetched into main
memory . The implementation of the mapping function depends on the size
of the virtual memory and the size of the main memory, and four
categories can be identified: small virtual address spaces, small main
memories, large virtual address spaces with large main memories and very
large virtual address spaces. These categories will be examined again in
the next chapter, which deals with the hardware necessary to translate
addresses. Here we briefly consider the implementation of these

different categories from the view of the operating system software.

2.2.2.3.1. Small Virtual Address Spaces

When the virtual address space 1is comparatively small the virtual
page numbers can be translated into physical page numbers by a directly
indexed table held in main memory, as shown in Figure 2.7. The virtual
page number 1is used as an index to a page table entry. The page table
entry contains the physical page number, the access rights for the page,
and an absent/present flag, which is set if the page is present in main
memory . If the page is not present, then the physical page number field
can be used to hold the secondary memory address of the page. When this
table is small enough, it may be held in a special address translation

memory, rather than in main memory, and this 1is discussed in more detail
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Figure 2.7 - a small virtual address space

in the next chapter. The size of the main memory has 1little effect on -
the size of the mapping table, and only influences the width of each
page table entry. The size of the virtual memory affects the length of
the table, and the scheme is thus only viable for small virtual address

spaces.

In a single user system only one page table 1s required. In a
multi-user system, a page table is required for each virtual address
space. A register is often used to hold the address of the current page
table. When a user program enters its time slice, this register can be
modified to point to the new page table, thus changing the mapping
function. Similar address translation schemes have been successfully
used in processors such as the HP2IMX (Hewlett Packard, 1974), Data
General Eclipse (Data General, 1974).

2.2.2.3.2. Small Phlsical Memories

If the main memory has a 1limited number of pages, a different
translation technique can be used. Rather than indexing the page table
on virtual page number, this method uses the main memory page number as
an index value, as shown in Figure 2.8. Each page table entry contains
a virtual page number, some access rights and an invalid flag. When a

virtual address is translated into a main memory address, the page table

CHAPTER 2 CONVENTIONAL MEMORY ORGANIZATIONS



Page 1 Page 3|<—f Page 1 -
Page 2 i Page 1|<—-{ Page 2
Page 3 < Page 4|<——] Page 3
Page 4 < Page 2]< Page 4
Page 5 < jPage 6] <——{ Page 5
<>C Page 5|< Page 6
Virtual address space Page 7

Page table

Main memory
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is searched associatively for the virtual page number. If found, the .
index value of the page table entry is used as the main memory page
number. If not found, then the virtual page 1is not present in main
memory, and 1s fetched from secondary memory. If a page of main memory
is not mapped to a page of virtual memory, then the invalid flag must be
set. Special hardware is required to search the page table, and this is
described in Chapter 3. This technique 1is sensitive to the size of the
main memory, as this affects the length of the page table, and is only
used when the main memory is small. In a single user system there 1is
only one page table. In a multi user system, each user address space
uses a different page table. Those pages of main memory which do not
pertain to a user program, must have their page table entries flagged
invalid.

2.2.2.3.3. Large Virtual Address Spaces

When both the virtual address space and the main memory become
large the techniques discussed above become infeasible. A large virtual
address space makes the directly indexed page tables too 1large to be
placed permanently in main memory, or in a special hardware table.
Similarly, because of poor hardware an associative search becomes
difficult. (In the next chapter we will examine some associative schemes

which are effective.) One solution places directly indexed tables in
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main memory (which can be addressed by a special processor register),
and swaps them between memory and disk as they are required. In some
systems the page tables may be placed in virtual memory themselves, as’
in the VAX 11/780 computer (Digital Equipment Corp., 1979), and the
paging mechanism can be used to address the page tables. Consequently,
the page tables are mapped onto main memory by page tables, which may
then be small enough to place permanently in main memory. When an
address 1is translated, the virtual page number is used to form a virtual
address of a page table entry. This virtual address 1is then translated
into a main memory address by the page table for the page tables. At any
stage, either of these translations may cause a page fault, i.e. the
page table entry 1is not present in main memory at the time. Each
address translation may cause a number of page faults to be generated.
Further page faults may be generated when a page is removed from main
memory (possibly to find room for a page which has already caused a
fault), as the present/absent bit must be updated in the page table
entry. To prevent an endless loop of page faults, this scheme must
always have a pool of free pages. In this way a page may be brought into
memory without having to remove another page, and thus cause further
page faults. The scheme requires special hardware to assist in address

translation, and this is discussed. in the next chapter.

2.2.2.3.4. Very large virtual address spaces

This class of virtual memory is typically used to hold file data as
well as computational data. The only processor which has attempted this
operation (namely MULTICS (Organick, 1972)) did not use a very large
virtual address, and could use normal page tables. In this class of
address space the page tables would certainly be placed 1in virtual
memory, and would be very 1large 1indeed. Consequently it requires
special hardware to translate addresses. Such hardware 1s discussed 1in

Chapters 3, 4 and 7.

2.2.2.4. Protection

A paged virtual memory offers a multi-user system a number of
levels of protection. First, programs are protected from corruption by
each other. Because each program is loaded into its own virtual address

space, and has its own mapping function, it is impossible for a program
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to inadvertently address the pages of another. Second, a program may be
prevented from corrupting pages of code, or non-modifiable data. In this
way a program is partially protected from itself. Third, the operating
system (or supervisor program) is treated as another user program, and
is loaded into its own address space. Thus, fence register schemes are

not needed to protect the operating system from corruption.

2.2.2.5. Sharing

Whilst enforcing an effective protection mechanism, a paged memory
scheme also allows controlled sharing of data and code. The page table
structure allows a page of main memory to appear 1in more than one
virtual address space, as shown in Figure 2.9. Moreover, each address
space can have different access rights for the page. Thus, one program
may be allowed to read from a shared page, whilst another may be allowed

to read from and write to the page.

Because the operation of removing a page from main memory may
become complicated by the need to 1locate and update all page table
entries which refer to it, a variation of this sharing scheme may be
used. To simplify this problem, some systems maintain an additional
table, located between the page table entries and the main memory, as

shown 1in Figure 2.10. Each page table entry which addresses a shared

Page table 1

Page table 2
Main memory

Figure 2.9 - shared pages
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page contains an index into the additional table. This table entry then

contains the main memory page number. If the

memory, only one entry needs to be adjusted.

2.2.2.6. Memory Allocation

page 1s banished from

Memory allocation in the paged scheme is much simpler than in the

linear model. Because memory 1s allocated in fixed size units, there

will always be an area of the correct size avail

able when space 1is

required, even if some other pages must be removed from main memory.

2+.2.2.6.1. Page Replacement

When a page is brought into main memory from secondary memory, it

is often first necessary to remove another page

page to remove may have a significant effect on the

« The choice of which
efficiency of the

computer system, i.e. if the wrong page is discarded then it may need to

be fetched again soon afterwards, leading to an 1

known as ’thrashing’. Many different discard

nefficient situation

algorithms have been

devised (Denning, 1970), the most common being Random, First In First

Out (FIFO), Least Recently Used, Atlas Loop Detection (Kilburn, Edwards,
Lanigan and Sumner, 1962) and Working Sets (Denning, 1968, 1980); these

often require hardware assistance (Morris, 197

Page table 1

Page table 2
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Figure 2.10 - shared pages
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discussed further.

2¢2¢2.6.2. Internal Fragmentation

Because memory is allocated in fixed size units, namely pages, each
address space will totally occupy an integral number of pages, and only
partly occupy the last page of the address space. Consequently, each
address space will waste, on average, half a page of memory. This
internal fragmentation is also experienced in the partitioned 1linear
memory, and 1s a major disadvantage of the paged memory scheme. It has
been shown that a significant proportion of memory may be wasted from

internal fragmentation (Randell, 1969).

2.2.3. Segmented Memory Schemes

The segmented memory scheme 1is similar to the paged memory model.
Both map a logical view of memory onto the main memory of the processor,
and both allow information to be protected and shared amongst wusers.
However, pages are an inappropriate unit of protection and sharing as
many unrelated structures may be placed in the same page. Also, the
compiler must place the logical structures of a program into the pages
of a linear address space, which both hides the 1logical structure of
programs from the architecture and requires more address calculation by
the compiler. To avoid these problems the segmented scheme divides the
virtual memory into a number of variable length segments, instead of
fixed length pages. Each logical component of a program, such as a code
procedure, déta array, and scalar variable, is loaded into a segment of
memory, rather than being arbitrarily decomposed 1into fixed 1length
pages. Each segment is protected by a set of access rights, in the same

way as pages may be protected.

Each process has access to a set of segments. Typically, a
segmented address consists of a segment number (which 1is usually
numbered relative to the segments of a program or process) and an offset
within the segment. This address, as shown in Figure 2.11, is then

translated into a main memory address before the reference can proceed.

Z'Z'é'.l' Address Translation

For each segment address, the main memory base address of the

segment, and the size of the segment must be determined. Also, to allow
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segment number displacement

Figure 2.11 - a segmented address

segments to be removed from main memory and fetched on demand (in the
same way as demand paging) it must be possible to flag a segment as
absent from main memory, and to supply its secondary memory address
instead. There are two common methods of address translation, segment

lists and tagged absolute descriptors.

2.2.3.1.1. Segment Lists

In this scheme, each process has access to a list of segments, as
shown in Figure 2.12. Memory reference instructions can address segments
by supplying a segment number relative to the process (i.e. starting at
zero) and a within segment offset. The segment number, which forms an
index into the process segment list, must then be translated into a main
memory base address. Contained in each entry of the segment 1list is the
main memory base address of the segment, the size of the segment (or the
main memory limit address), a set of access rights and a present/absent
flag. The word in memory address 1s calculated by adding the base

address to the offset.

index

address of segment
length & access

Figure 2.12 - a segment list
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The current segment list is usually held in main memory, and may be
located by a special processor register, in much the same way as a page
table. The segment list is protected from corruption by the user program’
in the same way as other segments may be protected, as we will see

later.

2.2.3.1.2. Tagged Descriptors

An alternative address translation system is the tagged absolute
descriptor mechanism, as used in the B6700 family of computers
(Organick, 1973). In this scheme, each segment descriptor, consisting of
a main memory base address, segment size, access rights and
present/absent flag, is placed in the data area of a process, e.g. the
process stack, and is possibly intermixed with program variables. These
descriptors are then used as pointers to segments. A segment cannot be
addressed without the correct descriptor. So that descriptors cannot be
modified, and used to address other segments of memory, it 1is possible
to protect them by using tag bits (Feustal, 1972; Myers, 1978a, 1978b).
Each word of main memory has a tag field attached to it. A word which is
tagged as a descriptor cannot be modified by a normal user program.
(Although the B6700 hardware allows a program to modify descriptors, the
compilers prevent high level language programs from changing them.) The
tags are also wused for detecting the difference between integer
variables, character variables etc. Absolute descriptors have the
disadvantage that they are not always easy to find when they must be
updated (e.g. 1f a segment is removed from memory, the segment address
and present flag must be updated). An illustration can be found in the
B6700 computer, which provides a special instruction for finding all
descriptors for a particular segment. This process 1is not only time
consuming, but also means that the stack segments can never be removed
from main memory, as they may hold active descriptors. Segment 1list
entries, unlike descriptors, are always held in a well known place and

can be easily found.

2.2.3.2. Memory Allocation

In the paged memory scheme, memory is allocated in fixed size
units. Consequently, memory allocation is relatively easy. When space

is required, a page frame must be found in main memory which, 1in the
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worst case, may mean that another page may need to be removed from
memory. In the segmentation scheme, each segment is of a different size,
and must occupy a contiguous area of main memory. Moreover, it must’
either be totally loaded into memory, or totally absent. This may mean
that a large segment cannot ever be loaded into memory because there is
not enough space. (The B6700 uses a modified segmentation scheme and
allows very large segments to be divided into a number of ’pages’. This
will be discussed later). A number of allocation policies have been
used to try and allocate space in the most efficient manner such as Best
Fit, First Fit and the Buddy system (Knuth, 1978). Often these policies
are augmented by a compaction scheme, in an attempt to waste as little
main memory as possible. Compaction can also be used when no particular
allocation policy 1is used. Space is simply used up sequentially until

there is none left, and then the memory space 1is compacted.

2.2.3.2.1. Compaction

Of ten the main memory may undergo some data compaction to try to
remove areas which are too small to be of any use. During this time,
all the processes executing on the processor are stopped, and a special
operating system routine packs all the segments together. This scheme
has two important drawbacks. First, the compaction operation is
expensive in time. It must be performed by the central processor, during
which time no other process can run. Second, all the segment table
entries must be updated to reflect the new segment addresses. While this
operation is possible, it also is extremely expensive. Moreover, if the
B6700 type of absolute descriptors are used, these must also be updated.
Unfortunately, such descriptors are very difficult to locate, as they

may be mixed with data variables.

2.2.3.2.2. External Fragmentation

Regardless of the allocation policy, unless memory compaction 1is
used frequently (which would be far too expensive) a large amount of
memory space will be wasted, because very few areas will be exactly the
same size as the segments. This is called external fragmentation, and is
also experienced in the linear memory model in which memory 1is allocated
in variable size units. It has been shown that this space loss can add

up to a significant proportion of the available main memory space
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(Randell, 1969). External fragmentation is, however, often less serious

than the internal fragmentation found in paged memories.

2.2+3+2.3. Segment Replacement

If sufficient space in main memory cannot be found for a segment,
an already loaded segment may need to be removed. This operation is
similar to the removing a page from a paged main memory. It is possible
to apply the same kind of algorithms used in the paged model, such as
Random, Least Recently Used, etc. However, in the segmented scheme the
segment which is removed from memory must leave sufficient space to hold
the new segment. Consequently, algorithms such as Least Recently Used
can only be applied to those segments which are large enough (or to

groups of contiguous segments).

2.2.3.2.4. Dynamic Segments

One form of segment which complicates the task of memory management
1s the dynamic segment. These segments are initially allocated a fixed
amount of space, like all other segments. However, during the 1lifetime
of the segment it may grow in size. Examples of such segments include
stacks, queues, lists and heaps. Space for dynamic segments may be
allocated 1in two ways. First, extra space may be found contiguously in
main memory, which may mean that a segment must be removed .
Unfortunately, this may not always be possible. Second, the segment may
need to be copied from its current place in memory, to a new contiguous
area large enough‘ to hold the entire segment. This is an expensive
operation, and is avoided if possible. If the data structure has
embedded 1link pointers, such as 1in a heap, and if the pointers are
absolute memory addresses, then contiguous space need not be allocated.
Howevef, this organization is impractical because it complicates memory
management significantly, as these pointers must be wupdated when the

memory 1is rearranged.

2.2.3.3. Protection

Because it is impossible for user programs to modify segments which
are not addressed by the process segment list, users may be protected
from corruption by other users. To ensure that the segment list entries

only point to the correct segments, the list itself (and any descriptor)
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is protected from being modified by a user program. Also, a program can
be protected from inadvertently modifying its own code or constant data
by setting the access rights for each segment to prevent modification.’
In the paging model information is randomly packed into pages of memory.
Because there is no logical link between the access rights of objects in
a page and the access rights of a page (unless this has been
specifically arranged by the compiler), pages form the wrong unit of
protection. Segments, however, are used to represent logical objects,
and thus form the correct unit of protection. They also form the best

unit of sharing.

2.2.3.4. Sharing

An important feature of the segmentation scheme is that many users
may share access to a single segment. Again, unlike pages, segments are
used to hold individual objects. Two users may wish to share access to
an object, such as an array, but may not wish to share all of the
objects held in a page of memory, unless the page holds only one object.
A number of different schemes have been devised which allow programs to
share segments. The simplest implementation is achieved by 1loading the
same memory base and limit addresses into more than one segment list.
Thus, any process with the same segment list entry will automatically
address the correct segment, regardless of the segment number chosen.
Furthermore, each segment list entry may use different access rights to
address the segment. This simple implementation causes two problems when
a code procedure is shared amongst a number of user processes, and 1is
illustrated by the example shown in Figure 2.13 (Fabry, 1974), where the

code addresses a shared subroutine and a process-own data segment.

First, it is not clear how the shar=d program should be coded to
allow each process, with a different segment list structure, to refer to
the same object (e.g. the subroutine). Process 1 should use a ’call
segment 2’ whereas process 2 should use a ’call segment 1’. However,
since the code is shared it must contain the same call operand in each
process. Second, it is not clear how the main program should be coded so
that the segment numbers which it has assigned to objects do not
conflict with those used for different objects within the separately
compiled subroutine. Thus, the segment number used for the data segment

must not be the same as the segment number used for the subroutine. A
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Figure 2.13 - shared segments

number of different solutions have been used, which we now describe.

2.2.3.4.1. Uniform Addressing

The most obvious solution is the uniform addressing scheme, which
has been successfully used in the B6700 family of computers. The scheme
demands that all code, mainline and subroutines, are compiled at the
same time. Because of this all images of shared segment references (e.g.
instructions) will have the same segment number, regardless of the
process 1in which the reference occurs. Thus a segment which is shared
will be known by the same segment number. Also, since the segment
numbers for the mainline and the subroutine are assigned at the same
time, there will be no conflict. The scheme can be implemented by
maintaining a 1list of segment numbers at compile time. When a new

segment reference is discovered, a new segment number is assigned.

The scheme has two main disadvantages. First, it 1s not always
convenient to compile all the subroutines together with the mainline,
especially if subroutine libraries are used. Second, when a segment 1is

removed from memory, all of the segment lists which address the segment
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must be altered. This operation may be extremely expensive. Another

proposal, the indirect evaluation scheme, attempts to remove these two

-

problems.

2.2.3.4.2. Indirect Evaluation

The indirect evaluation scheme solves the two sharing problems by
means of linkage segments, which are used to dynamically translate the
segment numbers used within a program (either the mainline or a
subroutine) into the segment numbers held in the process segment list.

An example is shown in Figure 2.14.

Each process retains the segment list used in the wuniform scheme.
However, additional 1linkage segments are associated with each code
segment . These linkage tables then translate the segment numbers in the
code into those required by the process segment list. Each linkage
segment is located by an entry in the process segment 1list, and a
processor register is used to address the current linkage segment. While
the process 1is executing within the mainline, the linkage segment number
associated with the mainline code is loaded into the processor register.
Any reference to a segment is first translated into a process segment
number, via the linkage segment. When the process enters the subroutine,
the processor register is altered to point to the new 1linkage segment.
Any segment references are then translated by a different linkage
segment. The only exception to these translation rules 1is when
parameters are addressed from a subroutine. In this case the process

segment numbers are used.

The indirect evaluation scheme solves the sharing problems in two
ways . First, each subroutine (and the mainline) is associated with its
own lihkage segment . Thus, the segment numbers used in the mainline may
be the same as those used in the subroutine, and still address different
segments . Second, the process segment lists may be ordered in any way,
provided that the 1linkage segments for a shared code segment map the
code segment numbers onto those of the process 1list correctly. Thus,
different processes may share the same code segment even though the
structure of their process segment 1lists 1is different. The 1linkage
segments for each of the processes can be ordered to correct the segment

numbers. This solution is effective because it maps a program onto a
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Figure 2.14 - the indirect evaluation scheme
process.

Indirect evaluation has some problems. First, both the 1linkage
segment and the process segment list must be consulted on every memory
reference. Second, the scheme does not solve the problem of searching
all process segment lists for references to a segment when it is removed
from memory. Third, free standing data structures do not have a linkage
segment. These segments may, however, contain embedded pointers to other
segments and like programs may be shared between processes. Thus, these

segments suffer all of the naming problems experienced with program
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segments. The only sensible solution to this problem 1is to not allow
free standing data structures to address other segments without a code
body, as proposed by Parnas (1972) and others (Wirth, 1977; Liskov and’
Zilles, 1974). In spite of its problems, the indirect evaluation scheme
is used by MULTICS (Organick, 1972). An optimization of the indirect

evaluation scheme is the multiple segment list scheme.

2.2.3.4.3. Multiple Segment Lists

The multiple segment scheme, shown in Figure 2.15, associates a
segment list with each mainline and subroutine. A processor register 1is
used to point to the current segment 1list, depending on whether the
mainline 1is executing or one of the subroutines. Any reference made
within a routine is translated into a main memory address via the
segment list associated with that routine. When a subroutine is entered
-the processor register 1is modified. The scheme differs from the
indirect evaluation scheme by removing the process segment list. Segment
addresses are translated directly by the segment 1list associated with
the code routine, rather than via a central process list. Thus, it is

more efficient than the indirect scheme.

Whilst the removal of the process segment 1l1list may improve the
speed of the system, it also destroys the mechanism for passing
parameters. One solution to this problem is that each subroutine call
creates entries for the parameters in the subroutine’s segment list
(Evans and LeClerc, 1967). Recursive calls are only allowed if multiple
coples of the new segment list can be created, an expensive operation.
An alternative solution addresses parameters via descriptors, rather
than via the segment 1list, which may be held on the process stack (as in
the B6700) .

2.2.4. Segmented and Paged Memories

The segmented and paged memory scheme combines the segmented memory
model and the paged memory organization with the aim of gaining both the
logical advantages of segmentation, and the memory management advantages
of paging. In this scheme, the user program addresses a set of segments.
However, in distinction from the segmentation scheme, each segment 1is
composed of a number of pages. Thus, while the user program perceives a

number of variable length segments, the operating system can allocate
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Figure 2.15 - multiple segment lists

main memory in units of fixed size pages. It also has the advantage
that large segments can be addressed without the need to load the entire
segment into memory. Only those pages which are being referenced need be
loaded. If any other pages are accessed, a page fault is generated and

the pages can be loaded from secondary memory.

The processor addresses are now composed of three fields: a segment
number (within the process), a page number within the segment, and an
offset within the page. This address, as shown in Figure 2.16, 1is then

translated into a main memory address before the reference can proceed.

2.2.4.1. Address Translation

In the most widely used segmented and paged scheme, address
translation 1is performed by a combination of segment lists and page
tables, as shown in Figure 2.17. Unlike the purely segmented scheme,

the segment 1list entries hold the main memory address of a page table
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Figure 2.16 - a paged.and segmented address
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Figure 2.17 - paged and segmented address translation

for the segment. The page table contains entries which hold the main
memory page frame numbers of the pages within the segment. Along with
the address of the page table, each segient list entry also holds the
page table size (i.e. the segment size), an absent flag (which is set 1if
the page table for the segment is not in memory) and the access rights
of the segment. Thus, segmentation 1s still used as the unit of
protection. The page table entries hold the main memory page number and
an absent/present flag. Segments are paged in the same way as address
spaces 1in a purely paged system. Because this technique uses two tables
before main memory can be addressed, special hardware 1is often used to

speed up the translation (such as a cache memory, as described in the

next chapter).
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Whilst the B6700 is classified as a purely segmented machine, it
does allow very large segments to be divided into a number of fixed
length pages. Address translation for large segments is accomplished 1in-
a manner similar to that described for the paged and segmented memory
model, except that the processor views a large segment as a collection
of smaller segments, each of which is referenced by a different segment
descriptor. It is then the responsibility of the compiler to generate
code to address segments via lists of descriptors. However, unlike the
paged and segmented model described above, the wuse of paging in the
B6700 is not uniform and therefore offers the operating system no

assistance with the management of the virtual memory.

2.2.4.2. Protection

Since the paged and segmented addressing scheme provides a process
with a segment list in the same way as the segmented model, it inherits
the same protection properties as the segmented scheme. Segments are
used as the logical unit of protection. Other processes cannot address
segments for which they do not have segment list entries. Moreover,
segments still have access rights associated with them as in the purely
segmented scheme. The introduction of paging only has an effect on

memory management.

2.2.4.3. Sharing

Segments may be shared between processes in this scheme by placing
the same segment list entry in more than one segment list. In this way,
more than one process has access to the same page table. This
arrangement 1s superior to the purely segmented scheme, because when
various pages of a segment are removed from memory, only the one page
table entry needs to be wupdated. In the sogmentation scheme every
segment list which addresses the segment must be updated if the segment
is removed from main memory. However, this simple implementation has
some problems. First, if a segment is deleted, or totally removed f£from
memory, all of the segment list entries must still be updated. Second,
if the page table for the segment is moved in memory, all of the segment
list entries for that segment must be updated. Some systems (such as the
ICL2900 series (Keedy, 1977)) have solved these problems by introducing

an extra level of indirection between the segment list and the page
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tables of shared segments. In this scheme, each segment list entry for
a shared segment points to an entry in a global segment 1list, which in
turn points to the correct page table. Thus, if the segment is deleted,’
or the page table is relocated, only the global segment list is updated.
The disadvantages of this solution are that it increases the number of
translation operations required to map segment addresses onto main
memory addresses, and space must be allocated for the global segment

list.

The paged and segmented memory scheme inherits the same problems
for addressing segments from shared code segments as the segmentation

model. Accordingly, the same solutions may be applied.

«

2.2.4.4. Memory Allocation

Whilst the paged and segmented model inherits the advantages and
disadvantages of segmentation from the user programs viewpoint, it also
inherits the memory management advantages and disadvantages of the paged
model. As in the paged scheme, memory is allocated in fixed size units,
thus large segments do not require contiguous areas of main memory. The
problem of external fragmentation, experienced in purely segmented
memories, is also removed. However, the internal fragmentation of the
paged memory scheme becomes far more serious. Rather than wasting half a
page of memory per address space, as in the paged scheme, the paged and
segmented model wastes half a page per segment. If the segments are
small in size, as experiments have shown to be a common occurrence
(Batson and Brundage, 1977), then this can waste a substantial amount of
memory. This effect can be diminished by using a very small page size.
Unfortunately, this increases the size of the page tables significantly,
posing memory management problems for th2se tables (such as finding

space) and possibly creating more page faults.

A few solutions to this problem have been proposed. The MULTICS
designers originally suggested that the processor could support two page
sizes, one of 64 words and one of 1024 words. Because of the problems of
maintaining two different types of page tables, this scheme was never
implemented. Randell (1969) proposes a scheme in which segments may
still be divided 1into pages, but memory 1s allocated in smaller fixed

size wunits (of powers of two) called quanta. The scheme uses

CHAPTER 2 CONVENTIONAL MEMORY ORGANIZATIONS



- 37 -

conventional page and segment tables except that the page table entries
contain a main memory quantum number rather than a page frame number.
This quantum number 1is then added to the within page displacement to
produce a main memory address. Large segments are composed of pages
(and a number of quanta for the 1last page) and small segments are
composed purely of a number of quanta. Moreover, since small segments
only require one page table entry, this relocation information is held
in the segment list rather than in a page table. This organization,
called partitioned segmentation, causes much less fragmentation than the
segmented or paged and segmented schemes. Also, since a number of small
segments are packed into one page, the cost of transferring small
segments between main and secondary memory is reduced. However, Because
memory 1is allocated in variable size units (even though they are units
of quanta, which are powers of two), memory management becomes
increasingly difficult, and may even become as awkward as in the purely
segmented scheme. Consequently, neither of these solutions

satisfactorily solves the small segment problems experienced in a

segmented and paged memory.

g,;. Conclusion

The aim of this chapter was to determine the extent to which the
conventional memory management schemes fulfil the needs of computer
programs. We demonstrated that programs can be divided into three
classes, each of which places different kinds of requests on the

information system.

From this examination we have determined that the segmentation
scheme has by far the most advantages, because of 1ts 1logical
properties. These properties are lacking in the linear and paged memory
organizations. User programs can be divided into segments of memory,
allowing logical structures to be protected and shared between users.
The major disadvantage of the segmentation scheme is that it complicates
the task of the operating system, because memory is allocated in
variable size wunits. The paged and segmented scheme attempts to solve
these problems by simplifying memory management, at the cost of internal
fragmentation. The few proposed solutions to this problem appear to be
ineffective. Later in the thesis we shall reconsider this problem, and

make use of another solution.
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Now that we have discussed the 1logical structure of the
conventional memory management models, we can describe the hardware

-

which is commonly used to implement these schemes.
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3. Computer Memory Hardware

3.1. Introduction .

In Chapter 2 we examined the conventional memory management models,
but did not consider the hardware necessary to implement these
structures. This chapter provides a summary of the current memory
technology, and shows how these conventional memory organizations can be
implemented. Later in this thesis, we develop a new  memory

organization, and show how it can be implemented with current

technology .

3.2. Memory Building Blocks

A number of different memory building blocks are available, each

suited to a particular environment. The following devices are discussed

in detail in this chapter:

1 Registers

2 Fast addressable memories
3 Large storage devices

4 Associative memories

5 Cache memories

_:i.g._l_. Registers

The most elementary form of computer storage device 1is the
register, which is usually capable of retaining one word of information.
The active components of a register are flip-flop devices, each capable
of remembering the state of a binary digit presented at their inputs.
Flip-flops may be concatenated to form a register of any length, as

shown in Figure 3.1.

The input values are usually saved when the register is addressed,
via a control line (or clock input). The output is always available, and

only changes state when the control line is pulsed.

Registers were first implemented using thermionic valve devices,
but most modern types are made of semiconductors. It is also possible to

produce very fast registers, implemented with high speed logic.

CHAPTER 3 MEMORY HARDWARE



- 40 -

Many processors use registers for holding temporary results,
instruction operands, addresses and short term data items. Registers are
not used for holding large amounts of data because of the high number of

inputs and outputs required, and also because of their physical size.

3.2.2. Fast Addressable Memories

Large fast memory devices have been built using many different
media and techniques. These memories, unlike registers, are capable of
storing a large amount of data. Two classes of memory have been wused,
serial memories and random access memories. Both classes of memory have

been used to hold the data and the instruction stream of a program.

é,g,g,l. Serial Devices

Serial memories are only capable of storing a sequential bit
stream. To change the state of a bit, the unit must wait for the
correct digit to appear at the output of the memory, change the bit, and

restore the sequence.

A number of serial devices have been built, namely various delay
line wunits. The wunits are not in common use now, not only because a
processor cannot randomly extract data efficiently (because on average
half of the memory must first be read), but also because they are

volatile in nature.

bit O k -F— bit O
flip-
flops
data data
in out
bit n % -} bit n

Figure 3.1 - a register device
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The serial devices were superseded when the core memory was

designed, in the early 1950s.

3.2.2.2. Random Access Devices

Random access devices differ from serial memories by allowing any
bit in the memory to be addressed randomly, rather than by waiting for
the bit to appear in the serial bit stream. The main effect of such
devices 1s to 1improve the average speed at which the bits can be
retrieved. The first random access memory to achieve wide-spread use

was the core memory.

3.2.2.2.1. Core Memories

Core memories were introduced in the early 1950s, and are still in
use 1in many modern computers. The scheme relies on the magnetic
hysteresis properties of small ferrite cores. Each bit is saved in onmne

core.

Large matrices of cores may be constructed, forming a core plane of
many thousand bits. Core memories have two main advantages over serial
devices. First, the core plane may be addressed by a row and colummn
number. Thus, information may be retrieved in any order from store.
Second, the cores are non-volatile, and withhold their magnetic

polarization indefinitely.

Core memories are now being replaced by modern semiconductor
memories, for two main reasons. First, each core plane requires a large
amount of extra electronics to address and retrieve data. Second, the
construction of each core plane 1s a complex and time consuming
procedure. The modern semiconductor memories can be made with far 1less

labour.

3.2.2.2.2. Modern Memory Devices

The 1ntroduction of micro electronic chips has enabled the
construction of very highly populated memory devices, capable of saving
many thousands of bits per chip. Two main classes of device are

available, static and dynamic.

Static memories are constructed from many thousand flip-flops, and

can thus hold many thousands of bits of information. The flip-flops are
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individually referenced via an address word and, like core memories, may
be randomly accessed. Current static memories can provide a retrieval

time as low as 1 nanosecond and up to 2 microseconds.

Dynamic memories are also capable of storing many bits of
information. However, unlike static memories, each bit is saved in a
capacitive device, rather than a flip-flop. Each capacitor can only
retain the data for a fixed length of time, and thus 1is dynamically
refreshed. Because their internal construction is more compact, dynamic
memories can achieve a higher bit density than static memories. Like

static memories, dynamic memories may be randomly addressed.

Both static and dynamic memories suffer the drawback that they are

volatile, and without power they lose their information.

3.2.3. Large Storage Devices

The addressable memories described are invariably too small and far
too expensive to hold 1large amounts of information for any length of
time. In addition, with the exception of core memories, they are

volatile, and are thus unsuitable for long term storage of data.

Large data bases are thus held in large permanent memories, such as
magnetic tape, disk and drum. The retrieval times, and storage
capacities, vary across these different media. However, they are usually

too slow to use as the computational memory of a processor.

This chapter 1is concerned with the hardware implementations of main
computational memories, thus disk, drum and tape memories will not be

considered further.

3.2.4.. Associative Memories

The most common form of computational memory 1is accessed via an
address word, which acts as a direct key identifying a data cell, shown
in Figure 3.2. Most addressable memories are usually constructed from
random access devices, though serial memories could be used. Another,
less commonly used form of memory, is the ’associative’ or ’content
addressable’ memory. This memory is capable of retrieving data via the

content of the cell, rather than by the address of the cell.
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<;> address

Figure 3.2 - an addressable memory

Typically, each cell in the memory is divided into a key field and
a data field, as shown in Figure 3.3. When the memory is addressed, all
key fields are compared to the search key. Any cells which have the same
key field as the search key (or bear some relationship with the key,
such as less than or greater than) are read, and the data retrieved, or
updated. If more than one match occurs, the memory must include some

multiple resolution logic to extract each response individually.

The use of such a memory may not be immediately apparent, and 1is
best illustrated by example. Consider a table of surnames and
residential addresses, each surname corresponding to an address. The

surname can be 1loaded into the key area of an associative memory; the

?

search key 2 2

?=—|key | data

K

?

Figure 3.3 - an associative memory
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residential address into the data area. It 1is then obvious that the
memory can find all occurrences of a given surname, and provide the

-

corresponding residential addresses.

Associative memories are extremely wuseful in improving the
performance of central processors, and this will be discussed in more
detail 1later. We will now describe some of the more common

implementation techniques used to construct associative memories.

3.2.4.1. True Content Addressable Memories

The implementation chosen for a content addressable memory (CAM)
varies depending on how the memory is to be used. In many cases, the CAM
must perform very high speed association and retrieval; in such cases a

true parallel CAM is used.

For implementation reasons, a distinction is made between the key
field and the data field of a cell, as shown 'in Figure 3.4. Since the
data field is not addressed by association, it may be held in a separate
word addressable memory. When a key field match 1is found, the

appropriate data field may be read and/or updated.

In a true parallel CAM, each bit of the key word is simultaneously

{=——n bits ——>
kO] k1| k2| k3 kn{ key
kO |kl |k2 |k3 - >]data word 0 1
kO }jkl |k2 |k3 —ee———>ldata word 1
kO |kl |k2 |k3 |————>|data word 2 m words
kO jkl |k2 |k3 >]data word 3
key memory data memory

Figure 3.4 - a content addressable memory
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compared with each bit of the key fields of all the words of the CAM.
Any key field which indicates a match (i.e. the keys are the same, or
have a relationship to each other) is flagged, and the appropriate data
cell retrieved. The worst case retrieval time is clearly the sum of the
time to compare two keys and the time to read the data memory. This time

remains the same regardless of the number of cells in the memory.

The actual implementation of a true parallel CAM is, unfortunately,
complex. Each bit of a cell must not only hold the bits of the key, but
also contain a comparator. Thus, in a memory of m words, and a key size
of n bits, a total of m * n bits of storage must be provided, and m * n

comparator devices.

The high cost of each cell places severe restrictions on the
ultimate size of the associative memory. Consequently, most true
parallel associative memories are quite small in size. Other techniques
are available when 1larger, but slower, associative memories are

required.

3.2.4.2. Linear Scan - Word serial - Bit parallel

If the speed at which the data 1s retrieved from the CAM 1is
unimportant, the memory may be scanned sequentially, rather than all
cells testing their keys on parallel, as shown in Figure 3.5. In this
scheme, the key memory is replaced by a fast addressable memory, of m
rows and n columns. When a key is addressed, each row of the memory 1is
read sequentially, and the n bits of the cell are compared to the n bits
of the search key. If any cell indicates a match condition, the data

memory may be addressed in the same manner as the true parallel CAM.

The hardware required for this scheme 1s simpler than the true
parallel CAM. Rather then m * n comparators, only n are required.
Because the key memory is word addressable, and only a small number of
comparators are required, quite 1large word serial memories may be
constructed. The worst case retrieval time of these CAMs 1is the time
taken to read and compare all of the keys in the key memory, plus the

read time of the data memory.

This device reads each word serially, and compares all bits of the
key 1in parallel. Another CAM structure reads the words in parallel and
compares the key bits serially.
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-
<=——— n bits —> )
kO] k1| k2| k3 kn| key
( compare with row )
>|k0 |kl |k2 |k3 ——>]data word 0 ;
kO |kl [k2 |k3 e > &ata word 1
kO |kl |k2 |k3 ———>|data word 2 | m words
row kO |kl [k2 |k3 —>|data word 3
counter . - i ¢
key memory data memory

Figure 3.5 - a word serial - bit parallel CAM

3.2.4.3. Linear Scan - Word parallel - Bit serial

An alternative organisation may be devised which 1is faster than the
word serial CAM, but slower and less expensive than a true parallel CAM.
The word parallel system, shown in Figure 3.6 is the 1logical 1inversion
of the serial scheme. In this method, the same bits of all key words
are compared in parallel. Each key field is written serially into the
memory, rather than in parallel, and is saved down a columm rather than

across a rowe

When a key is addressed, each row is read sequentially. After each
read, all m bits are compared to the corresponding bit in the search
key. At each stage, a match for a column is saved. If, after the entire
n rows have been read, a column matched for every row, then the data

word can be retrieved from the data memory.

This scheme uses m comparators rather than n and, given that n 1is
usually 1less than m, 1s usually more expensive to implement than the
word serial memory. However, only n reads are required to match all
keys, rather than m. Providing that there are more keys to be compared

than bits in a key, this approach 1is faster than the serial scheme.
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The word parallel scheme poses an important problem. Whilst it 1is
capable of executing faster retrievals than the word serial memory, a
key field can only be updated serially, requiring n write operations.‘
It 1is also likely that all other m columns will be forced to execute an
update cycle (as all will share a write signal), even though they are

not being modified.

A modification of this scheme allows bit parallel access for write

cycles and word parallel access for associative retrievals.

3.2.4.4. Skew Addressing

In this scheme, shown in Figure 3.7, a key word is held diagonally
in the store, rather than being confined to a particular row or column.
The address supplied to each column of the memory is skewed, or offset,
by one relative to the next column. The memory still possesses the
property that each row holds the same bit of each key field, and thus by
sequentially scanning the rows, the same associative search used in the
bit serial scheme may be used. However, when a key is updated, each bit
is held in a different column, and thus all bits of the key may be

written in parallel.

<{——— m bits —m—>
k0 ¢ k0 |k0 [kO |kO data word 0
kl kl |kl |kl |kl data word 1
k2 n bits {k2 |k2 |k2 |k2 >]data word 2
k3 ~>fk3 |k3 |k3 |k3 data word 3
v -

if match on all
key n reads

data memory
il row counter

Figure 3.6 - a word parallel - bit serial CAM
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{=——— m bits > -
kO % kO data word 0
kl kl data word 1
k2 | n bits k2 >{data word 2
k3 -> k3 data word 3
Y if match on all
key n reads

data memory

row counter

Figure 3.7 - skew addressing

3.2.4.5. Other Searching Algorithms

It 1s theoretically possible to implement other searching
strategies 1in an associative memory, such as a binary searches, tree
searches and hashing techniques. However, very few of these algorithms
have actually been implemented in hardware, and will not be described
here. A hashing algorithm is used to implement a 1large associative
memory later 1in this thesis. A full description of this unit may be
found in Chapter 7.

_2.3.2. Cache Memories

Most processors are connected to their memory units via an address
bus and a data bus, as shown in Figure 3.8. When a memory read or write
request is initiated, the CPU must wait until the memory has completed a
memory cycle which, depending on the main memory speed, may be in the

order of micro seconds.

Substantial speed savings may be experienced by placing a small,
very fast, associative memory between the processor and the memory.
Thus a CAM 1is used to retain copies of the most frequently used memory
locations. The scheme relies on some address locality; once a location

has been referenced it is likely to be used again. Thus, once a location
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is wused, a copy of the data is placed into the cache. When a reference
to the same location is made in the future, the cache copy may be used

-

rather than the slower main store.

The key used in these associative memories i1is the main memory
address. The data field of the CAM is used to hold a copy of the data.

Cache memories can offer excellent speed improvements, as described in
(Strecker, 1978).

3.2.5.1. Memory Write Operations

When the central processor requests a write operation, two
different write algorithms can be used. First, the data can be updated
in both the cache location (1f it is present in the cache) and the main
store. This protocol, called ’write through’, has many advantages, as
discussed in (Kohonen, 1978; 1980). The second alternative 1s to only
update the 1location 1in the cache. The main store location is only
modified when the variable leaves the cache memory, in which case the

correct value is written to memory.

Whilst this solution avoids unnecessary memory write operations,
it suffers from two problems. First, special hardware must detect when
a location leaves the cache, and write the data back to main store.
Second, two different copies of the same 1location exist, which

complicates the sharing of variables in a multi-processor environment.

In addition, the ’write through’ approach may be implemented so
that it is no slower than the cache only write solution, by overlapping
the main memory write with the next processor operation. Consequently,

the former solution is usually implemented.

<-handshaking & control->
Processor Memory &
ADDRESSES =————>] Peripherals

Control &
Registers |< DATA >

Figure 3.8 - a typical processor configuration
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3.2.5.2. Inserting and Deleting Items

An important consideration affecting the efficiency of a cache

memory 1is which words to 1insert 1into the cache and, when space is

required, which words to remove.

Most systems use a simple, but effective, demand insertion
protocol. When a word is fetched from main store, it is automatically
copied into the cache. The likelihood that the word will be addressed
again 1is quite high, making it an ideal choice to insert in the cache.

Two different cases may arise when a word is to be inserted. First,
if there 1s sufficient free space, then any free location may be used.
If, however, there is no free space, then a word must be removed.
Various deletion algorithms are possible, the most common being Random

or Least Recently Used.

Random selects a location at random from the cache. This algorithm
is easy to implement, especially in hardware, and chooses a word
quickly. Unfortunately, it often removes the wrong word. Least Recently
Used selects the word which has remained unused for the longest time.
Whilst harder to implement than Random, and even though it is slower 1in
choosing a cell, this algorithm tends to choose a better location to
remove. In spite of these advantages, Random is usually used because of

the ease of implementation, and the speed of operation.

3.2.5.3. Data Caches and Address Translation Caches

The data cache memories discussed so far are capable of retaining
copies of the most used words of memory in high speed memory. It is
often desirable to retain entries from the address translation tables,
to improve the speed at which addresses can be tran:lated. In many
cases, a separate address translation cache is provided, and this will
be discussed in the 1latter part of this chapter. An important
distinction between these two is that an address translation cache 1is
not usually modified. Thus, the data from these caches need not usually

be written back to main memory.

3.2.5.4. Implementing Cache Memories

An important attribute of a cache memory 1s high speed. A slow

cache may offer no speed improvement over the main memory. Many
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different types of cache memory have been implemented, the most popular

being the freely 1loadable cache, the direct mapping cache and the set

-

associative cache.

3.2.5.4.1. The Freely Loadable Cache

The most obvious implementation technique for building a cache
memory 1is by using a true parallel CAM. The cache may be searched very
quickly (as all comparisons are performed at the same time), and

address-data pairs may be loaded into any position within the CAM.

Unfortunately, true parallel CAMs are often too small to hold
enough main memory data locations. Consequently, other techniques have

been developed especially for use in cache memories.

3.2.5 bho2. Direct Mapping

A direct mapping cache 1s constructed from very high speed
addressable memory. Each cell holds both the key field and the data
field, as shown in Figure 3.9. The key field is used to hold the main
memory address and the data field holds the memory data at that address.

The index position of a cell in the cache is calculated from the
key value, and is often extracted from the least significant bits of the
key (although a randomising function may be applied). When the
processor requests a memory cycle, the cell contents at the calculated
index value are retrieved. The key field is then compared to the main

memory address and, 1if equal, the data field 1is returned to the

' : --[-> key data
address
l—> 77?7 | <t

<

yes/no

Figure 3.9 - direct mapping cache
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processor. If a write operation was requested the field in the cache 1is

updated.

-

This scheme is only limited in speed by the cache retrieval time
and the delay time of the comparator. Both of these may be very fast,
producing a CAM many times faster than main memory. Unlike the f£freely
loadable cache, this organization requires only a one word comparator,

and is thus inexpensive to produce.

The most important criticism of the scheme is that it in not truly
associative; two addresses which have the same low order bits will
’home’ to the same cache cell, and cannot be held in the cache at the

same time.

This restriction is not serious for a number of reasons. First, the
choice of 1low order bits for a randomising function guarantee that
successive main memory locations can be held in the cache. Sequential
addressing 1s particularly common when instructions are fetched, thus
the ’clashing’ is not a serious drawback. Second, the cache only needs
to hold a high percentage of the words being constantly addressed, not
all of them. If a word is not held in the cache, either because there
was no room, or it clashed with another address, then the processor may
still continue by using the main memory. Provided that only a small
percentage of commonly wused locations are absent from the memory, the
cache will still give a significant speed improvement. Third, the
effect of addresses homing to the same cell may be diminished by
increasing the size of the cache itself. Thus more bits from the memory
address are used to calculate the index value, decreasing the likelihood

of a clash.

Unlike the true parallel CAM, an address can only be inserted into
one cell of a direct mapping cache: Thus, 1f an address is to be
inserted into the cache, it must be placed 1in the correct 1index
position, possibly removing an address. The same éhoice of insertion
algorithms 1is not available for the direct mapping cache; the address is

either inserted in the correct cell, or not at all.

An important optimization of this style of cache which reduces the
size of the memory, 1is to only save the bits of the key not used to

calculate the index value. This can save many bits of high speed memory.
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Another modification of the direct mapping cache 1is the set associative

cache.

3.2.5.4.3. The Set Associate Cache

If more than one address homes to the same cell of a direct mapping
cache, then only one address entry can be saved. All others must reside
in main memory. In a set associative cache this limit is extended to 2
or 4 such entries. A collection of addresses which home to the same cell

is called a ’set’

The scheme is implemented by providing more than one direct mapping
cache, each placed side by side, as shown in Figure 3.10. Thus, two
units allow two different addresses to be held at the same 1index
position. When a third address is to be saved at an index position, a
choice is made of which address entry to discard. Either Random or Least
Recently Used may be applied, however, because of the ease of

implementation random is usually chosen.

Two way and four way set associative memories offer extremely good
performance and are often used for both data and address translation

caches (Strecker, 1978).

3.3. Implementing Memory Organizations

This section examines the memory constructs which have been used to

implement the structures described in Chapter 2, namely linear memories,

'——]—> key 1 data 1 key 2 data 2
address

| 277 |<——d

—>] 77?7 <

Figure 3.10 - a set associative memory
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paged memories, segmented memories and paged-segmented memories.

3.3.1. Linear Memory Schemes :

Linear memory schemes have been implemented with varying degrees of
hardware support. In all of these, the logical view of memory is the
same as the physical view, and no address distortion 1is introduced
(excluding simple 1linear offsets). In the simplest case very little

hardware is required to allow the processor to address memory.

3.3.1.1. Basic Scheme

In the most basic linear memory scheme, shown in Figure 3.8, each
address generated by the processor is transferred directly to the memory
unit. The memory itself is constructed from the addressable memory

described in section 3.2.2.

The inclusion of a fence register (see Chapter 2) has no effect on
the actual addresses. The processor addresses are simply compared to the
value of the fence register and, if an address 1if detected below the
fence value, an interrupt is caused. The relocation scheme (see Chapter

2.2.1.2) requires slightly more complex address modification hardware.

3.3.1.2. Relocation Registers

When a system is fitted with base and 1imit registers, the
addresses produced by the processor are different from those accepted by

the memory unit, as shown in Figure 3.1l1.

<=>base
Processor —]

Memory &
> + >| Peripherals

Control &
Registers [<->limit ——————> 7

<

yes/no

Figure 3.11 - relocation hardware
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Whilst the linearity of the address space is preserved, a program
may be relocated in the main memory. Each address from the processor is
augmented by the contents of a base register, and the result may be
validated against the contents of a limit register. The address 1is
modified by a fast adder, which has little effect upon the total memory

access time.

When the processor addresses are distorted, such as 1in a paged

memory, much more hardware must be provided.

3.3.2. The Paged Memory Scheme

The paged memory scheme was first implemented on the Atlas computer
(Fotheringham, 1961; Kilburn, Edwards, Lanigan and Sumner, 1962) in
1958. Since that time many different hardware implementations have been
designed and built. As stated in Chapter 2, these implementations fall

into four classes:

(1) Processors with small virtual address spaces
(2) Processors with small main memories
(3) Processors with large main and virtual memories

(4) Processors with very large virtual memories

Each class has different properties, which influence the techniques
used to implement them.

3.3.2.1. Small Virtual Address Spaces

This class includes processors in which the addressing range of an
individual process is quite small, even though the combined space of all

processes may be large.

Each time the processor generates a virtual address, the address 1is
mapped onto the physical memory. The mapping operation is usually
performed by a page table, often held in main memory itself. If the
address space 1s small enough, it 1s possible to place the contents of
this page table in a special fast mapping memory, placed between the

processor and the memory, as shown in Figure 3.12.

Each time a virtual address 1is generated, the page number 1is
extracted from the rest of the address (leaving a within page

displacement), and used as an index into the mapping memory. The entry
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page #

>

processor main memory

indexed mapping table

displacement

Figure 3.12 - a small paged memory

addressed in the mapping table is used to hold the main store page
number, a set of access rights, and a valid flag. The main store page
number is concatenated with the page displacement to form a main memory
address. The other fields in the table are used to validate the type of

access, and to detect page faults.

The time required to translate an address in this method 1is the
time taken to read the mapping memory, which can be made a small
fraction of the main memory cycle time. Using this scheme the overhead

incurred by address modification is extremely low.

Depending upon the number of processes concurrently executing on
the processor, it may be possible to dedicate a separate address
translation memory for each process, as found in (Hagan, 1977). However,
if the processor executes many processes, the contents of the mapping
memory may be loaded from the page tables in main store when the process

is scheduled for execution.

This method of address translation can only be used when the number
of wvirtual pages 1n an address space is small, because one entry is
required for every page of virtual space. The amount of main memory has
little effect on the size of the table, only on the width of the

individual mapping entries.

The mapping memory must usually be implemented from fast
addressable memory. Consequently the cost of a mapping memory for a

large address space becomes prohibitive. In addition, the cost of
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swapping the contents of the address translator becomes too high. Thus,
different techniques are used when the virtual address size becomes

large.

3.3.2.2. Small Physical Memories

When the size of the main store is small (as it was on the Atlas
computer) even though the virtual space may be large, a different
address translation mechanism may be used. In these cases, the page
tables contain many empty entries. By inverting the structure of the
page tables and, rather than indexing the tables by virtual page number,
using the physical page number as a key, the size of the tables may be
reduced dramatically, as shown in Figure 3.13. Address translation may
be accomplished by associatively matching the virtual page number with
the cells of the mapping memory. Because the address mapping must be

fast, the mapping memory must be constructed from a true parallel CAM.

Thus, an associative memory large enough to hold the page table
entries for the entire main store can be used to translate all of the
processor virtual addresses. Any virtual address which cannot be found
in the memory, 1is not present in main store, and should cause a page

fault.

In most systems the virtual addresses are not unique between

processes. Thus, the associative memory must either be cleared and

virtual real p—>
page # pageif

processor main memory

associative memory

displacement

Figure 3.13 - a small main memory
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reloaded on each context change, or the virtual address must contain the

process number.

-

Unfortunately, most true parallel CAMs are quite small, and this
technique may only be used when the number of main memory pages 1is
small. The scheme 1is comparatively 1insensitive to the size of the
virtual address (unlike the previous method), as this only affects the
width of the memory entries and the comparators. The next technique 1is
used when both the virtual address size and the main memory address size

are large.

3.3.2.3. Large Virtual and Physical Memories

*\ Traditionally, very little hardware support has been available for
the translation of large virtual addresses. Clearly, a table indexed on
virfual page number cannot be provided, because of the size of the
virtual address space. Likewise, a truly associative parallel CAM
cannot be provided because of the size of the main memory. Thus, the
address translation in large memories is nearly always accomplished via
tree structured page tables held in main memory. In some circumstances,
these tables are so large that they are held in virtual memory, and are
paged in and out of main memory like all other pages of virtual memory
(Digital Equipment Corp., 1979), which causes many complications, as
discussed in Chapter 2.

Because the cost of consulting these tables on every memory
reference would be prohibitive, it is common to augment this mechanism
with an associative memory, or address translation cache, capable of
holding the most commonly used page table entries as shown in Figure

3.14.

When a virtual address is translated, the cache memory is first
consulted. If the translation table entry is not found, then the page
tables are searched. This entry may then be placed in the cache in order

to assist future references to this page.

Because virtual addresses are not usually unique, the cache must be
cleared on each process switch, and be allowed to reload itself when a
process 1s started. Because the entries of the cache are not modified,
there 1is no need to write the entries back to the page tables when the

process is changed. Various forms of cache are wutilized. Since the
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Figure 3. 14

cache need not be fully associative (i.e. the page tables can always be
read 1in the case of a cache miss), quite large set associative memories

are often used for assisting this address translation.

Whilst this technique is effective for quite large virtual address
spaces, the space required by the page tables 1s still considerable.
Consequently, this scheme has not been used on a virtual address size

above 32 bits (as in the VAX 11/780).

3.3.2.4. Very Large Virtual Spaces

When the virtual address becomes very large (for example 48 or 64
bits) conventional page tables are no longer an effective method of
address translation, for a number of reasons. First, an enormous amount
of space 1s required to hold the page tables. These page tables would
certainly be held in virtual memory themselves. Second, because of the
the size of the page tables, and the complexity of the retrieval
algorithms, translating an address using the tables is a slow process.
Even if the address translation cache provides o very high ’hit’ rate,
the small percentage of memory references which use the page tables will
be so slow that the average memory reference time will fall
dramatically. Third, as described in the last chapter, a page fault
operation may generate a number of further page féults in an attempt to

translate an address.

To avoid the problems associated with holding the page tables 1in
virtual memory another technique may be used. In this method, the page
tables are never used to translate main memory addresses, and are only

used to find the location of a page in secondary memory. This approach
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was used by the Atlas computer. All addresses for pages in main memory
were translated by an associative memory, which held page table entries
for every page of main store. Unfortunately, true parallel associative
memories 1large enough to manage the large main memories now commonly in

use, are not available.

One computer, MU6-G (Edwards, Knowles and Woods, 1980) has used a
word serial associative technique to emulate a large CAM. However,
because this method is so slow, the processor also uses an additional
pseudo associative cache to achieve a respectable translation time.
Another computer, the IBM System/38 (IBM, 1978, 1980; Houdek, Soltis and
Hoffman, 1981) also uses an associative translation technique, which is

described in Chapter 4.

3.3.3. Segmented Memories

Like large paged virtual memories, very little hardware support has
been developed for segmented memories. The two conventional translation
mechanisms are descriptors (as used in the B6700 family) and segment
lists. Whilst it may be possible to provide special mapping memory for
the segment lists or the descriptors, they are wusually held in main
store. These translation mechanisms are augmented by cache memories to

improve their translation times.

Thus, when a process generates a segment address, the cache 1is
searched for the segment relocation information. If it is not found,
then the segment list (or descriptor) is used to translate the address,
and the information is placed in the cache for future reference. Since
segment numbers, like page numbers, are not wusually unique between
processes, it may be necessary to clear the cache on a process change.
If additional indirection tables are used, the cache may alse need to

retain entries from these tables.

3.3.4. Segmented-Paged Memories

Address translation in segmented-paged virtual memories is similar
to that of purely paged memories, except that both page and segment
tables are usually used to translate virtual addresses into main store
addresses. These tables can be augmented by a cache memory which holds

the most frequently used page and segment table entries. The key wused
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for the associative search is the combined segment and page numbers. In
all other respects, the address translation is the same as for the paged

memories.

3.4. Conclusions

We have described the digital technology used in the construction
of memory systems, and have shown how to implement the conventional
addressing schemes. The next chapter describes a different method of
addressing memory, called capability based addressing, and shows how

schemes based in this technique are built.
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4. Capability Based Addressing

In Chapters 2 and 3 we examined various conventional memory

organizations, and compared the advantages and disadvantages of each.

The segmentation scheme appeared to offer many logical advantages.
However, this addressing scheme wusually applies only to segments of
memory. The other objects which are addressed by a program, such as
files, I-0 devices and other programs, are addressed, shared, protected

and synchronised by different mechanisms.

For example, file data is not retrieved in the same way as data
from an array. Sharing a bounded buffer between processes is not
implemented with the primitives used for sharing access to a file.
Record access within files 1is often synchronised by ’record locks’,
whereas shared code and data may be synchronised by semaphores. Files
afe protected by directories, whereas code and data are protected by

isolated address spaces, or protected domains.

A capability based addressing scheme (Dennis and Van Horn, 1966)
attempts to extend the 1logical view of segmentation to addressable
objects other than memory, and provides a uniform scheme for sharing and
protecting these objects. This uniform approach has the advantage that
it simplifies, and even removes, many of the mechanisms which are
duplicated in most conventional computer systems. This chapter
comprises four sections. The first discusses the properties of
capabilities. The second concentrates on the objects that they address.
The third section categorises the various implementations, and develops
some general models. The fourth section examines some particular
objects which can be addressed and protected by capabilities and the
effects that they have on the models.

4.1. The Properties of Capabilities

A capability is a protected pointer which gives a program the
ability to address an object. A capability is logically composed of two
fields, <object name> and <access rights>. The name field holds the
name of the object which the capability addresses. The access rights
field describes the way in which the object may be addressed by that
capability. Capabilities are normally regarded as possessing the

following intrinsic properties:
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- The object name should uniquely define the object. No two
objects should ever have the same name. The name, which is
typically encoded as a long integer, is assigned when the object is’

created, and is never reused.

- Possession of a capability allows a program to address the
object. If a program does not possess a capability for an object,
then no other mechanism allows the program to reference the object.
This property provides a means of implementing the principle of

least privilege and of enforcing a 'need to know’ security policy.

- A capability describes how the object may be manipulated. The
access rights may be used to restrict certain operations, whilst
allowing others. A capability for a memory segment, for example,
may contain access rights defining whether a segment may be read by

a user and whether it may be modified.

- A capability should not be forgeable. The two fields within the
capability contain sensitive information. If possession of a
capability is the only means of accessing an object, then a user
must be prevented from changing the name to point to another
object, and from changing the access rights which define the way in

which the object may be accessed.

- Object names should never be reused, even after the object has
been destroyed. This property 1s important if capabilities for
deleted objects are not reclaimed. If the names were reused, the
capability for the old object could be used to address a new object
assigned the same name. Some systems relax this rule by collecting

all old capabilities.
- Capabilities facilitate easy sharing. An object may be shared

amongst all users who possess capabilities for the object. The

capability mechanism allows as few and as many users as necessary

to share access to an object.

- Capabilities facilitate different views of an object. Because
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each capability contains an access rights field of its own,
different users may be given different views of the same object.
Thus, one wuser may only be allowed to read a segment, whilst

another may be allowed to write to the same segment.

Having enumerated the properties of capabilities, we shall now

briefly consider the objects that they address.

4.2. Capabilities and Objects

Two different classes of objects are important, memory segments and

other types of objects.

A memory segment is a logical collection of information held either
in main memory or in secondary memory. Capability systems often differ
from the conventional architectures discussed in Chapter 2 in that they
use a common segmentation mechanism for storing both computational data
and file data. In both cases each segment 1s addressed by a segment
capability, which contains a unique name permanently associated with the

segment .

The access rights field of a segment capability is typically wused
to 1indicate modes such as read access, write access or execute access.
Some systems distinguish between two sorts of segment; one which holds
data, and one which holds capabilities. These two properties are often
distinguished in the list of allowable access rights. A segment with
capability access 1is protected from arbitrary modification by users,

thus guaranteeing the integrity of the capabilities which it contains.

Many other objects are traditionally addressed Dby special
addressing mechanisms. For example, most systems provide separate
input-output sub-systems to access objects such as card readers and
printers. But these, and other high level abstractions such as files,
stacks, queues, ports and user defined abstractions may also be
addressed by a uniform capability mechanism. In this case instances of
such objects are assigned unique names, which are then used within the
capabilities which address them. The access rights field may be used to
restrict certain operations on the objects in the same way as for memory
segments. For example the holder of a capability for a port might be

allowed to send messages via the port but not receive them via the same

port.
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This chapter concentrates on the mechanism used to address memory
segments within a capability based addressing scheme. (The addressing of
other high level objects by capabilities will be considered later.) The
addressing of memory segments 1is particularly important because of the
way in which segments are used. Each time an instruction 1is fetched from
a code segment, the capability system must be used. Each time an
instruction addresses a data item, the capability mechanism must again
be used. Provided that an efficient and flexible implementation is found
for addressing memory segments via capabilities, an efficient

implementation for other objects should also be possible.

4.3. Implementing a Capability Addressing Scheme

This section considers two important areas related to the
implemention a capability addressing scheme. The first 1s how to protect
and use the non-forgeable capabilities. The second area 1is far more
complex, and 1involves the techniques for implementing the capability
model on real processors. Several existing systems are examined, and two

general models are drawn.

4.3.1. Protecting and Using Capabilities

The storage of capabilities poses two implementation problems.
First, as stated earlier, capabilities must be unforgeable. Thué, the
mechanism used for storing and using capabilities must also protect them
from corruption. Second, capabilities are quite 1long. It may be
infeasible to use them directly as operands for instructions, and embed
them within the instruction stream. Two solutions to these problems have

been proposed, partitioning and tagging.

4.3.1.1. Partitioned Segments

In a partitioned machine two different sorts of segment are
recognised, data segments and capability segments. A capability segment
may only be used for holding capabilities, and may never be directly
manipulated by data instructions. Special instructions are provided for
manipulating capability segments which allow capabilities to be moved,

created, deleted and copied to other segments.

The capability segment associated with an executing program 1is

often called a C-list, shown in Figure 4.l. Instructions may address
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Figure 4.1 - a partitioned addressing scheme

objects by specifyiﬁg the index value of the capability in the C-list.
C-lists solve both of the problems described in 4.3.1. Because
capabilities are held in a special protected segment, there is no way of
modifying pointers, or creating illegal pointers. This protection system
can be enforced by creating capabilities which point to the C-1list with
an access type of ’capability’, rather than type ’data’. Thus, the

capability mechanism can be used to protect C-lists themselves.

Moreover, the size of the index value is many times smaller than
the name of the objects, and may be efficiently coded as an instruction

operand .

Whilst the C-list may appear to be the same as the segment 1list
discussed in Chapter 2, the capability addressing scheme does not
inherit the linkage problems with shared code segments, as experienced
in the segmentation scheme (Fabry, 1974). The main reason for this is
that most capability systems associate a C-list with a code body. Thus,

even if many processes use the same‘code, they all use the same C-list.

Partitioning has the overhead of an extra segment per addressing
environment, but 1is still widely used. This scheme is used by Plessey
250 (England, 1972), Intel iAPX432 (Intel, 198la, 1981b), CAL (Lampson
and Sturgis, 1976), CAP (Needham, 1977; Wilkes and Needham, 1979) and
HYDRA (Wulf, et. al. 1974; Wulf, Levin and Harbison, 1981). A slightly
modified version of partitioning 1is wused 1in StarOS (Gehringer and
Chansler, 1981) (and conceptually Hydra). In this system each segment
may be partitioned into a data portion and capability portion. Apart

from reducing the need for an extra segment, the two schemes are
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conceptually identical.

Wilkes (1980) proposes placing some of a program’s capabilities in
the same segment as the code, thus reducing the number of segments
required. Because the code itself 1s protected from corruption, the
capabilities cannot be illegally modified. In this scheme, care must be
taken that the capabilities cannot be executed, which can be achieved by
some form of fence register scheme. Apart from requiring extra
protection hardware, this scheme does not remove all of the extra C-
lists. Some capabilities must be modified and copied around the system,
and others must be addressed as parameters to a program. Neither of
these two types of capability can be held in the code segment, mainly
because they are not necessarily owned by the code body. Thus, extra
addressing mechanisms must still exist to cater for those capabilities

not held in a code segment.

4.3.1.2. Tagging

An alternative solution to the problems raised in 4.3.1 1is the
tagged approach. In this scheme each word of store, or each structure in
store, 1s assigned a tag field. This field defines which operations are
allowed on the data, and is checked before the data item is used. Thus,
integers may be tagged as type ’'integer’, and may not be used as

operands for a floating-point instruction (Myers, 1978a, 1978b).

Similarly, capabilities may be tagged as type ’capability’, which
prevents them from being wused as data items, or from being modified.
Tagging capabilities solves the protection problem, but it does not
reduce the operand size. The length of the effective address is governed
by the mechanism which references the capability. Tagged capabilities,
however, may be placed on the process stack, and addressed relative to
the stack registers, reducing the operand size. The IBM System/38 (IBM,
1980) uses an additional addressing table to shorten the operand size.

Tagging has a number of advantages and disadvantages when used as a
general data protection mechanism. These are discussed by Gehringer and
Keedy (1982). It also possesses a number of disadvantages when
specifically used to protect capabilities, some of which are relevant to

this discussion.
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First, it 1s sometimes necessary to garbage collect old
capabilities. This task is more complex in a tagged architecture than in
a partitioned organization. In a tagged system, capabilities will be
distributed over various segments of store, and are thus harder to find
than if they are all grouped together in a special segment (Wilkes and
Needham, 1979). Second, in a tagged scheme, the type ’capability’ is
associated with the capability, rather than with the view of the
capability. It 1is often necessary for system functions to manipulate
capabilities as though they were data. A system which allows different
views of a capability, such as the partitioned scheme, makes this
objective easier to achieve. Third, the tagging approach only solves
the problem of protecting capabilities. Another mechanism, which often
duplicates many features of a capability scheme, must be used to shorten

the operand size (such as in the IBM System/38).

Tagging has only been used in the IBM System/38 to protect
capabilities, but has been proposed for use 1in many other systems
(Myers, 1978a, 1978b; Myers and Buckingham, 1980; Bishop, 1977;
Gehringer, 1979).

4.3.2. Names and Mapping Information

We have shown how capabilities may be used to address objects, and
how they may be protected. This section examines how the unique name of
an object can actually be used to address the object. Section 4.3.2.1
demonstrates the need for some mapping information i1in capability
systems. Sections 4.3.2.2 and 4.3.2.3 describe the current
implementations of the mapping mechanism, and section 4.3.2.4 describes
the hardware required for an efficient implementation. Section 4.2.3.5
shows how the mapping information for memory segment objects may be

extended and used to address abstract, or extended, types of objects.

4.3.2.1. The Need for Mapping

Like many conventional computer systems, most capability systems
find 1t necessary to realize a number of discrete levels of addressing.
This occurs because the logical name space, which holds all objects that
have ever been created, will always be many times larger than the amount
of real store which a system can provide (either main memory or

secondary memory). Three levels of address are often visible, defining
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three spaces: the name space, the virtual space and the real space.

The name space must be large enough to hold all objects that have
ever existed, and all objects which will ever exist in the lifetime of

the system.

The virtual space is sometimes as large as the name space, but may
instead define a smaller area, which is still larger than the amount of

real memory .

The real space must be large enough to hold all current objects,
and may consist of a combination of secondary memory ( such as a disk)

and fast main memory.

Unlike name space addresses, virtual and real addresses may be
reused after objects have been destroyed, reducing their size
' considerably. The relationship between the three 1levels 1is shown in
Figure 4.2. Because the sizes of the spaces are different, it is
necessary to use a mapping function to translate addresses from one

space to another.

4.3.2.1.1. Direct Mapping

— e m— — —

In the direct mapping model, shown in Figure 4.3, a capability is

used directly to address the object, without performing any name

Name Virtual
Space >] Space }eo——>| Real
' s t———>| Space
map map

size(name space ) > = size(virtual space) >>> size(real space)

Figure 4.2 - the three addressing levels
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conversion or translation. Such a model could be realized by one of two

different methods.

First, the real store could be associatively addressed. In this
scheme, the ’name’ 1in a capability 1is recognised by the associative
store, and thus allows the correct data to be addressed. Unfortunately,
very large associative stores are not available, as mentioned in Chapter

3, and this technique 1is not possible.

Second, the capability could contain an extra field, holding the
real address of an object. This technique is also unsuitable, because
the task of memory management becomes extremely difficult. When objects
are moved 1in store, all capabilities for the object must be updated;
this is a time consuming operation. This problem is evident in the B6700
family of computers (Organick, 1973).

Thus, because of practical difficulties, the direct mapping model

is never actually used in capability based systems.

4.3.2.1.2. One Level Translation

Because of the problems encountered in a direct mapping system,
most capability based computers place a mapping function, or structure,
between the capability and the object in real store, as shown in Figure
4.4,

In this scheme, the unique name found in the capability 1is
translated, via a mapping structure, into a real memory address. Real
memory addresses may be safely reused by modifying the mapping
information in such a way that no old names ever map to the reused real

store addresses.

name access >| object

capability

Figure 4.3 - the direct mapping model
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name | access map object
names e >
capability to
real
>|addresses

Figure 4.4 - one level translation

In such systems, the name space is the same size as the virtual
space, and 1is wusually very 1large. Systems which use this model are
HYDRA, the Intel i1APX432, CAL, the Plessey 250 and CAP. All of these
systems use the mapping structure to translate segment names into main
store addresses, and none allow virtual addresses to be reused. Bishop
(1977) proposes a scheme which belongs to this class, but uses a smaller
name space than 1s necessary. He therefore allows names to be reused
proposing a complex method of collecting o0ld addresses to deleted
objects. Unlike the other systems in this class, Bishop uses the mapping
structure to translate virtual page addresses into main store page
addresses. Segments are loaded into virtual pages without any further

mapping.

4.3.2.1.3. Two Level Translation

If the name space 1is larger than the virtual space, then two levels
of mapping are required between a capability and an object, as shown in
Figure 4.5.

In the two level scheme names are first translated 1into virtual
addresses, and then virtual addresses are translated into real
addresses. Whilst names are very large, both virtual addresses and real
addresses may be safely reused when virtual and real objects are
destroyed. This model is employed in the IBM System/38 and in a proposal
by Gligor (1978). Both of these systems use the second mapping structure

to translate virtual page addresses into real page addresses.
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map
name | access map virtual object
names —>|to —
capability to real adrs
virtual
>|addresses map 2
map 1

Figure 4.5 - two level tranmslation

The two level scheme, whilst logically equivalent to the one 1level
system, has some effect upon the implementation efficiency, and on the
organization of the store. The next section examines the
implementations, both used and proposed, for mapping names onto virtual

addresses

4.3.2.2. Translating Names into Virtual Addresses

The task of translating the very large object names 1into smaller
virtual addresses has been attempted on two systems, the IBM System/38,

a real production computer, and in a system proposed by Gligor (1978).

Gligor’s solution consists of two sections. The first involves an
additional field in the capability, used to hold an index value. The
second involves the use of a large mapping table which translates names

into virtual addresses. This scheme is shown in Figure 4.6.

Each capability holds the name of the object, and also a shorter
index - value 1into the object mapping table. When a capability is used,
the object mapping table is read, and the virtual address of the object
determined. Entries 1in the object map are only reused when all old
capabilities have been found and destroyed. This garbage collection
operation only occurs when the object map overflows. Gligor proposes
placing the map in virtual memory itself in order to prolong the time
between garbage collections, because an object map in virtual space can

afford to be longer than one held in main memory.

The IBM System/38 provides two different addressing mechanisms; one

which uses 1large wunique object names, and one which only uses virtual
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name access index

capability

>|virtual address

object mapping
table

Figure 4.6 - Gligor’s name translation

addresses. When the unique names are used, the names are mapped onto
virtual addresses; however, when objects are referenced by their virtual
-address, this mapping process is not used. Thus, the IBM processor in

many ways may not be considered a true capability processor.

Object addresses in the System/38 are 64 bits 1in length, whereas
virtual addresses are only 48 bits. The virtual space is composed of
paged segments. By allowing segment addresses to be reused, the 64 bit
names are mapped onto the 48 bit virtual addresses of the System/38

hardware.

Segments are grouped into segment groups, each of 256 segments. As
shown 1in Figure 4.7, up to 2724 different segment groups may be formed
from a 48 bit address.

<= 16 =>< 24 >< 8 ><= ] =><= 9 —>
extender| segment group segment |page byte
value number in group|number| offset
< 48 bits >
< 64 bits >

Figure 4.7 - the IBM System/38 address format
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If no two segment groups of the same group number (but different
extender value) are allowed to exist at the same time, then the extender
value can be dropped, and the remaining 48 bits wused to address the
virtual store. A segment group can only be reused when all segments in
the group have been deleted. When a segment group 1s reused, a new
extender value is assigned, giving the object a unique 64 bit name. This
mapping scheme, whilst simple, allows 64 bit names to be efficiently
mapped onto 48 bit addresses. Unlike Gligor’s scheme, no actual mapping
table is required.

An obvious danger with reusing segment groups in this way 1is that
capabilities for deleted objects may be kept, and later reused to
address a new object with the same segment and group numbers as the old
object. To prevent this problem, the extender value for a particular
segment group 1s stored in the header of the group. When a segment
within the group is addressed, the 16 bit extender from the capability
is compared with the extender in the appropriate group header. If they
are not the same, then the capability is for an old object, and the
reference 1is aborted. This mapping technique has a number of

attributes:

(1) No mapping table 1s required. The mapping information 1is

distributed over the segments which are addressed.

(11) The extender must be held in the group header. Whilst only two
bytes 1long, the entire header page must be present in store when

the group is addressed.

(111) Only 2724 different segment groups may exist at any time.
This 1s such a 1large number that it 1s wunlikely to be a

restriction.

(iv) The group header must be read for every reference made to a
segment. This overhead 1in 1incurred only when 64 bit names are

translated into 48 bit addresses, which may be avoided much of the

time.
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Because the capability mechanism on the System/38 includes some
inherent inefficiencies, another method of addressing objects 1is
provided. In this method, 64 bit names are never used, and instructions

can directly use 48 bit virtual addresses.

Segments may instead be addressed via the Operand Description Table
(ODT) associated with a particular program. This table describes the
type and size of each operand used in the program. The type information
is wused for validating that the data type 1is compatible with the
instruction type. Many 1instructions wuse this field for performing

automatic type conversions.

Operands are mapped onto the segmented memory via another table of
the same size as the ODT, the Operand Mapping Table (OMT)( which
conceptually can be regarded as an extension of the ODT). Each ODT entry
corresponds to an OMT cell which holds the 48 bit virtual address of the
object. Because capabilities are held in segments of store, they are
also addressed via the OMT. This addressing mechanism is demonstrated by

an example in Figure 4.8.

Because two different addressing mechanisms are present, one using
unique 64 bit names, and the other wusing 48 bit reusable virtual
addresses, care must be taken when unique names are generated. When an
OMT address 1s used, the object is referenced without validating an

extender value; thus the same segment group numbers must never be

instruction stream

ADD n

operand

o>

>|integer |[|48 bit }p—>
4 bytes |]address

segment

Figure 4.8 - the IBM addressing mechanism
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allocated to a capability. Moreover, OMT entries must never be saved

between program invocations.

This section has demonstrated two different methods of mapping
names to virtual addresses. The next section examines how virtual

addresses are mapped onto real addresses.

4.3.2.3. Translating Virtual Addresses into Real Addresses

Both the one level and the two 1level mapping models require
translation of either names or virtual addresses into real secondary
memory addresses or main store addresses. As we will discover 1later,
secondary memory and main memory addresses are usually produced by
different mechanisms; however, we will examine the main store addresses

primarily.

Unlike name space translation, all of the virtual address
translation systems wuse tables to map virtual addresses onto real
addresses. Moreover, because these tables implement the virtual memory
system,- they cannot be easily placed in the virtual memory. Instead,

they are placed in real memory, often at a ’well known’ place.

Virtual address translation tables may be categorized 1into four
classes, each with a different organization: linear lists, conventional
page tables, reusable index tables and hash tables. This section will
examine each organization, and explain how various capability based

computers use the tables.

4.3.2.3.1. Linear Lists

A common method of mapping addresses in conventional computers 1is
to provide a mapping table, indexed by part of the virtual address. Each
cell can contain the real memory address corresponding to each virtual
address. Such tables are used in small paged processors, such as MONADS

I (Hagan, 1977) and in segmented machines.

The technique becomes impractical in capability systems because the
virtual addresses, or names, become far too large. In spite of early
docﬁmentation for the Intel 1APX 432, which suggests that this technique
can be used, no capability systems appear to have used a linear mapping

table.
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name

v real address f———— >  memory

Figure 4.9 - a linear mapping table

4¢3.2.3.2. Conventional Page Tables

Bishop (1977) proposes the use of conventional page tables to
translate the virtual addresses of a capability system into real page
addresses. The virtual address size suggested is in the range of 40 to
50 bits, and the virtual space is composed of a number of variable size

paged areas.

Whilst a processor was not built, Bishop’s paper design relies on
normal page tables to translate virtual addresses. Unfortunately, the
page table space for a 50 bit virtual address would be in the order of
2740 page table entries. Because of the space required, these would need
to be placed in virtual space. A conventional system which supports 1its
paged store 1in this way 1is the VAX 11/780 (Digital Equipment Corp.
1979) . The VAX, however, only uses a 32 bit address, which is 2718 times

smaller than that of Bishop’s processor.

Bishop aléo suggests that an associative memory (similar in nature
to thﬁt of MULTICS (Organick, 1972)), with a hit rate of only 50 %,
would significantly speed up the address translation. (This figure 1is
calculated 1in the thesis (Bishop, 1977)) However, if as many as half of
the addresses requiring translation used the page tables, which are many
orders of magnitude slower than an associative memory, then the

effective memory cycle time would be excessively slow.

Thus, 1n spite- of Bishop’s proposal, it would appear that
conventional page tables are not a suitable method for translating very

large virtual addresses. It is notable that Bishop’s processor design
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was not built.

4.3.2.3.3. Reusable Index Tables

A number of capability processors have used a small indexed table,
and a modified capability format, to translate unique names into real
addresses. The capability is altered to include an index value field, as

shown in Figure 4.10.

The indexed table contains entries which hold the base address, the
size, and the possible the resident status (whether the object is in
memory or not) of the memory segment. The Plessey 250, Chicago Magic
Number Computer (Shepherd, 1968; Yngve, 1968), and CAP-3 (Wilkes and
Needham, 1979) use such a technique. In these processors, the base
address from the central mapping table is added to an offset within the
segment to form a main store address. The offset 1s validated against
the segment size, and the mode of access is compared to the access
rights. Violation of the size or access constraints causes an exception

condition.

In these three systems, the size and organization of the central
mapping table may have an effect on the efficiency of the system. If
this table is used to hold the mapping information for all of the
objects, then it will become too large to hold in main store. It must,

therefore, only hold the most active capabilities.

In addition, unless a garbage collection scheme 1is built which
collects and invalidates capabilities for objects which no longer exist,

name access index

> |base,size
present

central
mapping
table

Figure 4.10 - a directly indexed table
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or appear in the main store, the mapping table will continue to grow in
size. Entries can only be safely reused when all capabilities which
address them are destroyed or 1invalidated. To avoid this garbage
collection, the CAL system places the name of the object in the central
mapping table as well as in the capability. In this way entries may be
safely reused. When a central mapping table entry is used, the name
field from the capability is compared to the name field in the entry. If
they are not equal, then the object being referenced either no longer
exists or does not use that entry any more, and the slot in the table
has been reused. Thus, unlike the tables in the Plessey system, entries

can be reclaimed without having to collect all old capabilities first.

The reusable index tables are effective providing that there 1is a
method of reusing cells. The next section describes a hashed table

organization.

4.3.2.3.4. Hash Tables

Hash tables of various forms have also been used to translate names
and virtual addresses into real addresses. Fabry suggests that a hash
table, indexed by a hashed form of an object name could be used to hold
the mapping information about the object (Fabry, 1974). Hydra uses a
number of hash tables to translate names into real addresses, and the

IBM System/38 uses a hash table to map virtual pages onto real pages.

The System/38 uses a hash table to translate 48 bit wvirtual
addresses into main store addresses, shown in Figure 4.11. As far as the
virtual address tramnslator is concerned, the address is composed of a 39
bit page number, and a 9 bit offset. The 39 bit page number is then
mapped_ onto. a main store page number. Because of the size of this

address, conventional page and segment tables are inappropriate.

The mechanism used is only responsible for translating addresses in
which the page 1s actually in main memory. If a page is not in store,
then other tables are consulted. This approach was chosen in the Atlas
(Fotheringham, 1961) address translator, although the Atlas translation

mechanism was a true parallel content addressable memory (CAM).

The System/38 maintains a hash table in main memory, which 1is
indexed by a hashed version of the virtual page number. The address

translator microcode follows overflow chains until either the address,
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< 39 bits ><— 9 bits —>
virtual page number of fset
HASH
p > hash
page dir |index
index table
real page #
‘ >|virtual page #| 1link =
Hash
table

f- virtual page #| link|<

——

real page number offset

Figure 4.11 - the IBM address translator

or an end of chain, is found. The latter causes a page fault. If the
page 1s found, then a translated page number is formed and placed in a
lookaside buffer. IBM expect that ah average f 2.25 main store accesses
(IBM, 1978), plus the time spent in microcode, on top of every memory
reference which uses the address translator. (Some references wuse real

addresses via a special register, and thus avoid this overhead).

Myers proposes the use of a hash table to translate object names
into memory addresses (Myers and Buckingham, 1980). However, rather than
incorporating an overflow strategy, Myers wuses an allocation scheme
which does not allow any two name to hash to the same cell. Any name
which would clash with an existing one is not used. In practice this

scheme would waste an enormous number of potential names, which is
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particularly serious in SWARD as they are only 32 bits in length.

Hydra uses a hash table, the Global Symbol Table (GST), to
translate object names into memory page frame numbers. This table

maintains entries describing the location and the nature of the objects.

Hydra distinguishes between two classes of segments, active
segments and passive segments. Active segments are resident in main
memory, whereas passive segments are resident 1in secondary memory.
Consequently, Hydra provides two different GST’s, an active GST and a
passive GST. The active GST, which is resident itself in main memory,
translates names for all active segments, and a small number of passive
segments. The passive GST 1is resident 1in secondary memory, and
translates names for all passive segments. This scheme is shown in
Figure 4.12.

4.3.2.3.5. Active and Passive Segments

The distinction between active (main store resident) and passive
(disk resident) segments 1s made not only in the Hydra system, but in
all of the capability systems under discussion. The active segment table
is always much smaller than the passive table, and must be addressed for

all active segment references. Consequently, the active tables are

main memory addresses
e > | HASH > - >

main memory

name |access secondary memory
active GST addresses
" capability
>
>| HASH p——> ————>| disk
memory

passive GST

Figure 4.12 - the Hydra address translator
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always loaded into main memory.

The passive table, which 1s much larger than the active table and
is addressed much 1less frequently, can be placed in secondary memory.
Most of the literature falls to document the passive translation table,
however the table is present in all systems, including the Plessey 250 ,
CAL, CAP, Intel 1APX432 and the IBM System/38.

4.3.2.4. Efficient Address Translation

In systems which use a central mapping table to locate segments,
the table must be consulted each time a capability is used to address a
segment of memory. Such references not only include addressing data, but
also fetching instructions from the code segments of a program. It was
demonstrated by the CAL system that without adequate hardware support a
capability based addressing scheme cannot be efficiently implemented. A
graphic example can also be drawn from the IBM System/38. An average of
2.25 main store references per memory access would slow the memory
access down to some 30% of full speed. Accordingly, the IBM processor,
and all other systems apart from CAL, have provided specific hardware
support. Such hardware can be divided into two classes, visible

addressing registers and automatic caches.

4.3.2.4.1. Visible Addressing Registers

The hardware provided by the Plessey 250 and Chicago processors was
in the form of a number of high speed, directly addressed, capability

registers, as shown in Figure 4.13.

When a program wishes to address a segment, it must first 1load a
capability register with the main memory base address of the segment,
the main memory 1imit address and access rights information. This

information 1is taken from both the capability and the central mapping

main memory base address limit address | access

Figure 4.13 - a capability register
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table. Capabilities which have not been loaded into registers are termed
passive, and when a capability has been loaded into a register the
capability 1s termed active (using Hydra terminology) . Since
instructions refer to data by the capability register number, only
active capabilities can actually address store. Capability registers are
usually used with a modifier (or index) register, which augments the

base address.

The addressing register scheme has the advantage that it 1is
extremely efficient. This is because object names are only translated
into memory addresses when the register is loaded. Unfortunately, there
are also a number of disadvantages. The only time that logical names are
used to address segments 1is when the capability registers 1s 1loaded.
Once the base and 1limit values have been loaded into a register, it is
impossible to move the segment around in main memory, without checking
all capability registers 1in all domains (and in all processors in the
Plessey 250). It 1is also difficult to determine when a segment 1s no
longer being addressed, and when it can be safely moved without an old

register still being valid.

Hydra also uses some relocation registers to address store. Hydra
was 1mplemented on a PDPll computer, which provides a number of small
(64 k byte) paged address spaces, each consisting of 8 pages. Each page
is addressed relative to a relocation register. When capabilities are
activated in Hydra, the object is made visible in the 64 k byte address
space of the user program, as shown in Figure 4.14. This is done by
copying the relocation information from the Global Symbol Table (GST)
into the appropriate relocation register. Because the PDPll is a paged
processor, segments in Hydra are all 8k bytes in size. Larger objects
are composed of basic ’page’ objects. Also, since the PDP1l cannot
support demand paging (because some instructions are not repeatable),
the relocation registers must be specifically loaded under program
control, like the addressing registers of the Plessey 250. Since only a
small number of pages are allowed in an address space, and because large
objects must be composed of many pages, capabilities are frequently made

active and passive in Hydra, an expensive operation.

Because of the problems associated with relocation register

schemes, many processors provide automatic address translation caches.
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relocation register 0 —>

code
page
relocation register 1 —>
object 1
relocation register 2 —>,
L
relocation register 7 —>
object 7

figure 4.14 - the Hydra address space

4.3.2.4.2. Address Translation Caches

Address translation caches are used to augment the active tables
used to translate names, or virtual addresses, 1into main memory
addresses. Such caches, which were described in Chapter 3, are used 1in
CAP, Intel 1APX432, and the IBM System/38. The IBM system also provides
a Resolved Address Register (RAR), for use by the microcode, which
bypasses both the cache and the hash table (Houdek, Soltis and Hoffman,
1981).

In general, these caches reduce the number of main store accesses
per memory reference significantly. It would appear that the cache
chosen by Bishop (1977) does not reduce the number of accesses by a
significant amount (as Bishop assumes a hit rate of only 50%). To be
effective, such caches should aim for hit rates 1in excess of 90 %,
because the active table search times are much greater than the access

time of the caches (Strecker, 1978).

4.3.2.5. Logical Properties of Objects

To date we have only considered the essential administrative
information which must be associated with objects, such as where the

object actually resides, and how large it is. Some logical information
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can also be associated with the object, possibly controlling the way in
which the object may be addressed.

For segments, it 1is often desirable to have, in addition to the
access rights, an extra property associated with the capability, namely
a length attribute. Such a field allows some capabilities to only
address part of a segment, whilst others can address the entire segment.
CAP is the only processor of those described which actually allows this
refinement (although the capability format defined for SWARD would allow
size refinement). Each capabiliﬁy in CAP includes base and limit values
relative to the original segment. Like the access rights field, these
can be validated when the capability 1is wused. All other systems
associate the length of a segment with the segment itself.

If logical information pertains to an object itself, rather than a
view, 1t can be placed in the central mapping table. For example, the
segment size in CAP and similar systems is held 1in the object map.
Moreover, if we associate a 1logical type field with an object, then
other abstract, or extended, types of object can be addressed by the
same mechanism which addresses memory segments. In this case, segments
become a particular type of object which may be addressed from memory
reference 1instructions. Other types of object may be addressed by
special instructions (as in the IBM System/38 ) or in general by special
code bodies (called type managers (Wulf, Levin and Harbison, 1981).

Processors such as CAP-3, Intel 1APX432 and Hydra allow extended
type objects by placing a type field in the object map entry. Such
systems as CAL, Gligor’s scheme and Bishop’s proposal associate the type
field with the view, and place this information in the capability.
Whilst- there appears to be no reason for such a decisicn, it does allow

different users to treat an object as different basic types.

Regardless of where logical information is actually placed, such
type fields allow the processor to support abstract objects in a uniform
manner. For this reason, we have placed little emphasis upon extended

types of objects, and have concentrated on memory segments.

4.4. Memory Segmentation

In this section we consider some of the problems encountered 1in

addressing segments 1in the capability schemes just described. An
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important feature of a capability based addressing scheme 1is that all
data 1s stored in segments of memory, regardless of how large or small.
Many segments will, by nature, be either very large or quite small in

size.

Large segments are often necessary to represent the data from
files. Particularly large files must be composed of many segments; the
larger each segment 1s, the fewer segments required. Thus, the
capability mechanism should ideally be able to provide efficient support

for large segments.

Small segments are generated from small procedures, data
structures, stack frames etc. Studies have indicated that it is not
uncommon for many very small segments to be generated, even 1in a
conventional computer architecture (Batson and Brundage, 1977). The
problem of managing small segments has been realized by many (e.g.
Randel, 1969; Fabry, 1974; Wilkes and Needham, 1979; Wilkes, 1980;
Gligor, 1978; Lanciaux, Schiller and Wulf, 1976 and Keedy, 1980).

Most of the capability systems we have examined do not provide an
efficient environment for wusing both small and large segments. Two
primary areas of contention appear to be the mapping tables and memory

management, which we will now discuss.

4.4.1. Mapping Tables

The mapping tables become 1inefficient to operate when a large
number of active segments must be supported. A large number of segments
often increases the size of the table significantly, and may increase
the access time as well. Moreover, 1f the active table becomes too
large, 1t cannot be held permanently in main store, seiriously affecting

system efficiency.

Wilkes’s proposal (1980) simply tries to remove some of the extra
small segments present, and does not attempt to solve the basic
management problem (see section 4.3.1.1). However, a few proposals have

been made to ease the management of the central mapping tables.

The scheme proposed by Gligor (section 4.3.2.2 ) places the name
space translation table in virtual store rather than in real store.

Gligor suggests that because the object map resides in virtual memory,
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it can grow to a much larger size, allowing the memory to support many
small segments. He claims that the object map may be allowed to grow in
virtual space, and slots need not be reused for a 1long time.
Consequently, old capabilities need not be found and deleted as often.
Unfortunately, any locality of reference which is exhibited within pages
of store will not necessarily be reflected by locality within the map
pages. This 1s because the order of the map entries bears no
relationship to the location of segments within pages. Thus, after a
short time it may be necessary to keep all of the pages of the map
resident, even though only a few words of each page may be required.
Hence Gligor’s scheme does not adequately solve the basic problem of

many segmentse.

Bishop solves the problem of map management by eliminating the
object name map altogether. Instead, his system maps pages of memory,
rather than segments. The number of virtual pages will remain constant
regardless of how many segments each page contains. It is unfortunate
that the conventional page tables proposed by Bishop are unsuitable for

translating 50 bit addresses.

Lanciaux, Schiller and Wulf (1976) suggest that many small segments
could be placed together 1in a large segment. This scheme reduces the
number of map entries required, as each 1large object contains map
entries for the objects which it contains. It does, however, create the
problem of large segments, which together with small segments complicate

memory management .

4.4.2. Memory Management

The task of memory management becomes more complex when the system
must support both very small and very 1large objects. In segmented
schemes, such as the Plessey 250, Chicago Magic Number computer, CAP and
Intel  1APX432, small segments tend to fragment the main store
excessively. In addition, small segments are expensive to transfer
between primary and secondary memory. Large segments, on the other hand,
must either be totally resident or absent from store. If 1insufficient
space is available then the segment cannot be loaded, and the task which
causes the memory reference must be suspended until space 1s made

available. Such problems are also experienced in the conventional
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segmented processors, discussed in Chapters 2 and 3.

In a paged machine, like Hydra, all segments must be exactly one
page 1n size. Consequently, large segments cannot exist and must be
composed of much smaller ones. Small segments waste much of the page

that they occupy.

A paged and segmented memory, such as that of the IBM System/38,
manages large segments very well by only loading those pages which are
required, but this wastes a large amount of space for small segments,
which must occupy at 1least one page. Again, such problems are
experienced in the conventional paged and segmented processors, such as

Multics.

A few of the processors which we have examined in this chapter have
attempted to alleviate the complex memory management of both large and
small segments. The solutions 1involve placing many small segments into
each page of virtual memory. Both Bishop and Gligor place segments
consecutively in virtual memory. Thus, many small segments can be placed

in one page, and large segments may occupy many pages.

In Gligor’s scheme all segments are organized randomly in store.
Consequently, after a small amount of time, one would expect the virtual
store to become fragmented, as segments are deleted and created.
Moreover, there 1s no guarantee that segments which are addressed
together will reside in the same page. Thus, this scheme may behave as
badly as a paged and segmented scheme, in which the entire page 1is

required 1in order to address only a small segment.

Bishop attempts to place all segments which are addressed together
in an ’area’, which consists of a variable number of pages- Thus,
segments which are addressed together will be swapped between primary
and secondary memory at the same time. Whilst the page locality of
Bishop’s scheme is superior to Gligor’s, one would still expect the
virtual space to become as fragmented as the real store of other
capability processors. Because areas are all of different sizes, when an
area 1s deleted, or moved, a hole is left in the virtual space. Even
though the capabilities for the hole are deleted, it may not be possible
to reuse the area without considerable store reorganization.

Accordingly, Bishop provides a very elaborate garbage collection scheme .
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Lanciaux’s solution suggests that many small segments may be placed
in one large segment. Consequently, all segments will be swapped between
primary and secondary memory at the same time. Unfortunately, whilst
solving the small segment problem, this scheme may create a large

segment problem instead.

4.5. Conclusion

This chapter has described all the significant current capability
based computers, and has developed some general models into which these
systems can be placed. Most importantly, by this analysis, it has shown
the difficulties that these systems experience 1in certain common

situations.

The next chapter will reexamine these difficulties, and propose an

addressing model which can avoid many of the problems.
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2. A New Capability Based Addressing Model

This chapter develops a new addressing scheme which 1s capable of
addressing, protecting and sharing the logical structures of a program
(or information hiding module) in a uniform manner. This scheme 1is based
on segmentation, which, as we saw in Chapter 2, has suitable properties
for structuring 1logical objects. The scheme also makes wuse of
capabilities as the mechanism for addressing, sharing and protecting

such segments.

5.1. Aims of the Model

In Chapter 4 we examined some real capability based processors and
some theoretical models. Whilst the philosophy of many of these systems
was admirable, their implementations often exhibited considerable
problems. Some of these problems were intrinsically associated with the
approach, such as using a segmented store. Others, however, were present
because of inadequate hardware. Examples of the latter include Hydra, in
which the available hardware affected the maximum segment size
dramatically, and CAL, which used a conventional, and quite unsuitable,
computer . Because of inadequate hardware the CAL system was effectively

- useless and was abandoned.

The model presented in this chapter defines a hardware 1interface
which can successfully implement most, 1if not all, of the systems
discussed in Chapter 4. Processors for these systems based on the
proposed model may even be simpler and more efficient than the original

hardware used to implement them.

The requirements of the model may be summarized in terms of five
basic aims: to solve the memory management problems associsted with most
capability based processors, to solve the address translation problems
associated with other capability based systems, to produce a uniform
addressing mechanism, to produce an efficient capability addressing
mechanism, and to produce a flexible hardware unit. Some of these aims
are not shared by the existing capability systems. We shall now consider

these basic aims in turn.
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5.1.1. Memory Management

Most of the capability systems discussed in this thesis apply a
segmented main memory scheme in order to achieve segmented addressing.
Unfortunately, this scheme does not cater well for either very 1large
segments or for very small segments. Large segments are awkward because
they must be held in contiguous memory. Small segments are 1inefficient
to swap between main and secondary memory because the time taken to
initiate the transfer may exceed the time taken to actually transfer the

data.

Some systems have attempted to use paging as a basis for memory
management. Hydra used a paging system by forcing all segments to be one
fixed size. This scheme simplifies the memory management task, but does
not solve the small and large segment problem. Small segments waste
much of the page that they occupy, and large segments can not exist.
Thus, this scheme creates even more segments than are logically

required, as large segments are constructed from many smaller segments.

Some solutions (Gligor and Bishop) have used paging as the memory
management model, and have superimposed a segmentation scheme on top of
the virtual memory. Whilst these proposals have solved some of the
small and 1large memory management problems, they still have inherent
inefficiencies, as discussed in Chapter 4. The model proposed in this
chapter attempts to solve the outstanding memory managemént problems of

all these capability based computers.

S5.1.2. Address Translation Problems

Many of the capability based processors experience significant
problems in translating virtual addresses 1into memory addresses,
especially when the system is burdened with many small segments. A
source of contention 1s the central object table which contains an entry
for each segment in the system and 1s usually split into an active table
and a passive table. When the system contains many small segments the
size of the central object table becomes excessive, and translation

times may be 1increased.

In those systems which have removed the central object table, such
as Bishop’s (Bishop, 1977), the task of address translation 1is
significantly simplified. The model proposed in this chapter seeks to
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remove the overhead of many small segments, by removing the central

object table altogether.

5¢1.3. Uniformity and Simplicity

In a true capability based addressing scheme all 1local and
permanent data should be addressed by the same mechanism. Only one way
of addressing data should be provided, unlike systems such as the IBM
System/38 which provide two different addressing mechanisms.

With one common addressing mechanism the system design becomes much
simpler. A simpler design in not only easier to understand, but often
ylelds a more orthogonal and less expensive implementation. Moreover,
only one sharing and protection mechanism 1s required. The model
proposed in this chapter avoids wunnecessary duplication by providing

only one way of addressing memory.

5.1.4. Efficiency

The CAL system demonstrated that a capability based addressing
scheme requires hardware support for an efficient implementation. Even
in those systems which have provided hardware support for addressing
memory, the wuse of capabilities still creates 1inefficiencies, as
described in the last chapter. The model proposed 1in this chapter
defines a hardware addressing structure which can be efficiently
implemented with current technology. Moreover, the model is capable of
implementing many different software structures without significant

overheads.

5.1.5. Flexibility

Most processors, both capability based and of conventional design,
are built with a specific addressing structure in mind. For example,
the instruction operands in the 1Intel 1APX432 processor expect a
particular C-list structure. The operands of the CAP system expect a
different C-list structure. Because these organizations are so well
understood by the processor hardware (and firmware) it is unlikely that
one processor could efficiently or easily implement the C-list structure

of another processor.
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The lack of flexibility in some of the existing systems 1s not a
problem, only because the system design does not change significantly at
any stage. However, in a research environment a flexible processor is
extremely desirable, as it allows the hardware to survive a number of
major redesigns of the software 1deas. The model proposed in this
chapter should be capable not only of efficiently implementing a
particular addressing structure, but also of implementing any of the
other capability addressing structures described in Chapter 4, such as
the different C-lists of CAP, Intel 1APX432 etc. The model can achieve
this flexibility by providing a general hardware unit which provides a
capability based addressing style, and a small section of software (or
firmware 1if the host machine 1s microcoded) which understands the
addressing structure. If the software ideas change at any stage, then
the hardware may remain the same and the software or firmware may be

changed.

5.2. Object Addressing

The capability based addressing schemes described in Chapter 4 all
have the property that all addressable objects are treated alike in
terms of addressing and protection. All are addressed via the
capability mechanism which the processor uses. Such references can be
categorized into two classes, memory segments and high-level objects.
High-level objects 1include I1/0 devices, data abstracﬁions, program

modules (Keedy, 1982a) and type managers (Wulf, Levin and Harbison,
1981) .

When a memory segment 1s addressed (via  memory reference
instructions) the capability mechanism 1s used to find a segment of
memory- and make it available to the program. Thus, in & purely segmented
system the central object table may contain the main memory address of
the segment, and the size of the segment. The access rights field of the
capability can then be used to restrict certain operations on the
segment . To produce efficient memory references this mechanism is nearly

always augmented by some special hardware.

High level objects are also addressed via the capability mechanism.
However, the central object table contains information which declares

that the object is not a memory segment and requires further software or
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firmware assistance. (Alternatively, this information may be held in the
capability (Lampson and Sturgis, 1976).) These high 1level objects are
not wusually addressed by the normal memory reference instructions. Type
checking information may then validate the type of instruction against
the type of object. For example, a memory segment may be addressed by an
add instruction, but a program module 1s addressed via a call

instruction.

From this viewpoint, capability support can be built into a
processor 1in two separate areas: first, a section of hardware which
allows efficient manipulation of memory segments; second, a body of
software, or firmware, which 1interprets operations on high 1level
objects. Thus, the knowledge of high level objects need not be built
into the processor..The information which usually resides in the central
object table about high level objects (e.g. the type of the object) can
now either reside in the capability for the object (as in the CAL
system) or can be found in segments associated with the object 1itself
(e.g. with the code which manipulates the object (as in the MONADS
system) . The implementation of operations on high level objects 1is left
entirely up to the software or firmware concerned. This general approach
in used in the addressing model described in this chapter. This allows
us to design hardware which is very efficient at addressing segments of
memory and yet, when combined with suitable firmware, provides a
flexible addressing structure. We will now consider the form of the

memory segmentation hardware.

5.3. Segment Addressing

[®)

«3.1. The Basic Form of a Capability

The virtual memory of the proposed capability based addressing
scheme 1s addressed via a number of capability registers, each of which
holds a segment capability. These capability registers are the only
addressing mechanism available to the processor. Each register, shown
in.Figure 5.1, contains three fields: an address, a length and some
access rights. Before we discuss the precise nature of these fields, it
will be useful to consider the advantages of a scheme based on

registers:

CHAPTER 5 A NEW ADDRESSING MODEL



- 95 =

(1) The problem of operand size for addressing memory via
capabilities, discussed 1in Chapter 4, disappears in a register based
system because once a register has been loaded with a capability
subsequent references need only specify a register number, which is

likely to be of the order of four bits.

(2) Registers hide the nature and structure of the logical
addressing mechanism from the processor instruction set. The model 1is
invariant to the method of saving capabilities (i.e. C-lists of various
structures or tagged protected memory) and the actual structure of a C-
list or tagged memory need not be determined at the hardware level (for
example, whether the C-1list allows tree structures or lattice
structures). Thus, the scheme 1s flexible, because the software

structures may be modified without affecting the hardware.

(3) Because registers can uniformly address all kinds of segment,
‘no special registers are required, for example to implement a stack
pointer, display registers, etc. Indeed, a combination of a capability
register and an index register can be used not only to address data but

also to control program sequencing.

(4) Because registers are normally built from high speed 1logic,
they have the same advantages as capability caches (cf. IBM System/38
and Intel 1APX432), but they are generally less expensive and 1in some
cases easier to implement. Because the scheme only translates logical
addresses (of the form C-list number and slot number) into capabilities
when the register is loaded, it avoids many unnecessary memory accesses

by removing repeated references to the C-list.

(5) Given the use of registers, protection can be efficiently
implemented Dby allowing only particular micrccodad or kernel
instructions (or only instructions executing in a special machine state)
to modify their contents. This makes 1t 1mpossible to modify a
capability illegally once it has been placed in a register. The
protection of capabilities outside of registers depends on the C-list

structure, or tagging mechanism, which the processor provides.

A register based addressing scheme does have some basic
disadvantages. First, it requires the compiler or assembler programmer

to allocate and deallocate the registers. This problem is not considered
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address of segment length of segment access rights

Figure 5.1 - a capability register

serious enough to overpower the advantages of the scheme, for two
reasons . Assembler programmers are far better at judging the working set
of a program than a cache, and can choose the correct registers to
allocate. Furthermore, compilers often have to allocate data registers,
and have successfully done so for a long time. Addressing registers are
no more difficult to allocate than data registers. Also, the compiler
can form conventions which dedicate the use of certain registers. For
example, one register may be wused for addressing scalars at lexical
level zero, whilst another register may be dedicated for addressing data
at the current 1lexical 1level. Such conventions can help register
allocation significantly. Capability registers are also easier to
allocate than many of the addressing registers used in conventional
processors, because they are the only addressing mechanism. Thus, the

compiler is only concerned with one addressing scheme, rather than many.

Second, the registers may need to be saved and reloaded when a
module 1s entered by a call instruction, or when a process switch 1is
executed. When a new module 1s entered the compiler may either
invalidate the active capability registers, or the call instruction may
save their contents. If the registers are invalidated, then the program
must trestore. them after the call. If they are saved, then the return
instruction must restore the original contents. If a capability cache 1is
used 1instead of registers, then it must be invalidated when the call

instruction 1s executed. The cache will then reload itself after the
call as the capabilities are used. Thus, the cache scheme 1is equivalent
to the register scheme which invalidates the contents of the registers.
If the registers contents are saved prior to a call, then on return the
old capabilities are simply copied from an image in memory (e.g. as part
of the 1linkage on the stack). However, when the cache is reloaded, the

C-list entries must be retrieved, which could take longer than a simple
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copy operation.

When a process change is made, the registers must be saved for the
executing process, and the registers for the new process must be loaded.
If a capability cache 1s used it must be cleared of capabilities from
the o0ld process, and will automatically reload when operands are used.
Providing that some hardware support 1is provided to support efficient
process changes (such as described in chapter 7) there 1is no reason why
the register based scheme should be 1less efficient than the cache

scheme.

5.3.2. The Load-capability-register Instruction

Because in the proposed scheme the 1logical structure of the
éddressing mechanism 1is hidden from the hardware, special software (or
firmware) must be written which understands this structure. One such
instruction is the load-capability-register instruction. This
instruction (or kernel routine 1f the machine does not possess a
microcoded control wunit) accepts a capability register number and a
program address, and loads the capability found at that address into the
register. If the processor uses a C-list for holding capabilities, then
the program address may define a C-list number and a slot number, as
described 1in Chapter 4. If the system must at some later stage
understand a different C-list structure, then only the 1load=-capability-
register 1instruction need be altered. All other data manipulation
instructions address their operands via a capability register. This
combination of microcode and hardware gives the model a large degree of

flexibility but still allows very efficient addressing.

3.3.3. Representation of a Capability

A memory capability, shown in Figure 5.1, 1is composed of three
sections: an address, a 1length and a set of access rights. The key
difference between these registers and those of the Plessey 250
(England, 1972) 1s that our capability uses a virtual address, rather
than a main memory address. As shown in Chapter 4, the wuse of main
memory addresses both causes difficulties in re-organizing store and
also means that the main memory must be segmented. Apart from the
difficulties of organizing a segmented memory, a central object table is

required in the Plessey 250 to map segment addresses onto main memory
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addresses, which causes further problems related to the size of the
object table, as discussed in chapter 4. The use of a virtual address
in the capability registers avoids these problems. First, the store can
be physically reorganized without affecting the addresses held 1in
registers. Second, from the viewpoint of the memory management system
the memory does not appear to be segmented This removes the problems of
a segmented memory, and also means that the system does not need a

central object table.

The length field of the capability holds the size of the segment,
and must be large enough to allow large segments. Ideally, this field is
the same size as the virtual address. However, it may be considerably
less without being restrictive. By contrast, the length field used in
Bishop’s capability is too small (9 bits) to allow large objects to be
created 1f the length is treated as a byte or word count. Alternatively
if the length field is considered as a larger unit (e.g. a page) then
the unit of protection and store allocation is not sufficiently granular

in Bishop’s scheme.

The access rights field must allow operations to be performed or
restricted, such as read only, write only, read-write, execute etc.

These can be encoded in a bit pattern.

Thus the registers which we propose differ significantly from those
of the Plessey 250. The format of the capability 1is similar to that of
Bishop, except that the length field of the model will be 1large enough
to address 1large segments. The model differs significantly from those
systems which implement segmentation at the memory 1level, and use a
central object table, such as CAP, Hydra, Plessey 250, Gligor, Intel
etc. We shall now briefly consider the refinement propevties of the

capabilities.

5.3.4. Refinement of Capabilities

In will be recalled that in Chapter 4 we introduced the concept of
capability refinement. All of the systems discussed in this chapter
allowed the access rights of a capability to be reduced, and a
diminished copy of the capability given to another user. These
capabilities then have access to the same object as the master, but with

fewer access privileges. A capability may also be refined in range as
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well as type of access. This type of refinement 1s wuseful when a
procedure wishes to grant another user access to only part of a data
structure (e.g. when passing a parameter by reference). In the model
proposed in this chapter, access to a segment may be refined by
modifying the base virtual address and the segment length fields of the
capability. The new capability can then only address part of the
original structure, as shown 1in Figure 5.2. Surprisingly, very few
systems have allowed a capability to be reduced in range, although the
Plessey 250, Bishop and CAP could allow such refinement.

Whilst the format of the Plessey 250 registers would in principle
allow a segment addressed by a register to be refined in size, the
capability format does not contain a 1limit field. All capabilities point
to a central object table which contains the the main memory limit of
the object. This 1limit is later copied into the register when 1t 1is
loaded. Also, because the Plessey 250 registers hold main memory
addresses, when moving a segment in main store it would be difficult to
determine whether a capability pointed to part of the segment in
question without checking if the refined base and limit were contained
in the segment. Thus, the Plessey 250 addressing scheme does not allow

segments to be refined in size. This is shown in Figure 5.3.

virtual memory base length Ll| access

master capability

virtual memory base length L2 access

refined capability 3
virtual
memory

Figure 5.2 - a refined capability
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a Plessey 250 capability

name access rights index

>|main memory
base ,1limit

I

access main memory |limit central
rights base value object
table
capability register
>
segment
>
main
memory

Figure 5.3 -The Plessey 250 - no size refinement

Bishop’s capability contains a virtual base address and also the
size of the segment. Thus a capability may be created which only
addresses part of the original segment. Unfortunately, Bishop does not
use enough bits to allow large objects to be addressed (or alternatively

support sufficient granularity).

In CAP both the capability and the central object table contain a
size field and a base field as shown in Figure 5.4. The fields in the
centrai object table are used as absqlute main memory bounds of the
segment, whereas the values in the capability are interpreted relative
to the original bounds. Consequently, a refined capability, which only

allows access to part of the segment, may be created.

The refinement system of the model capability registers closely
matches that of Bishop’s capabilities. However, the size field of our
capability 1s large enough to allow 1large segments to be addressed.
Because both of these systems use virtual addresses in capabilities,

there is no danger in allowing many capabilities to reference part of an
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object. In CAP, however, one set of base and limit values must be
assoclated with the main memory properties of a segment, and another set
of values must be associated with the capability. Both of these values
must be validated before the reference can proceed to memory. This
overhead 1s not present in the model capability system. Thus, the
refinement qualities of the model appear to match, and 1in most cases
improve on, those of other systems. It 1is noteworthy that very few

systems allow this useful operation at all.

5.3.5. Summar

So far, the capability addressing modei fulfils some of its primary
aims. The use of capability registers allows a flexible hardware unit to
be constructed. If the addressing structure is modified at any stage,
then the load-capability register instruction can be modified. Because

they are the only addressing mechanisms available to the processor, they

relative relative access index

base O size S rights
master capability
>
base B {—¢
size S
refined capability
relative relative access index central
| base Bl size Sl rights object
. table

main
— memory

Figure 5.4 - CAP refinement of capabilities

CHAPTER 5 A NEW ADDRESSING MODEL



- 102 -

also provide a uniform, simple and efficient method of addressing store.
In order to fulfil all of the aims we must describe a virtual memory

which can hold small and large segments.

S5.4. Virtual Memory

5.4.1. Requirements of the Virtual Memory

In Chapters 2, 3 and 4 we examined many different virtual memory
organizations. In this section we will examine the requirements of the

virtual memory which 1is used by the model. They are as follows:

(1) Virtual addresses should be large and unique. When a segment is
created 1t consumes a range of virtual addresses, which eventually
reside in C-lists and capability registers. When a segment 1s deleted,
the address may either be found and destroyed, or never reused. A large
addressing range means that it is not necessary to reuse addresses,

saving on the number of addresses which need to be found and deleted.

(2) The virtual memory must be the only memory mechanism. This
uniform treatment of store means that all data, files and code, are
present in the same virtual memory without support from a separate f£file
store. This technique was pioneered in MULTICS and has been used in
other capability systems with many advantages (Rosenberg and Keedy,
1981a).

(3) The tables, or mechanism, used to translate virtual addresses
to main store addresses should not affect the way in which the virtual
memory management software organizes the secondary store. This condition
is not met 1in many existing systems, such as MULTICS. The page table
structure which is used by the hardware, or firmware, to translate
virtual addresses 1into main memory addresses 1s also wused by the
software to locate pages in secondary memory. If the software wishes to
change the table format then the hardware may also need to be modified.
Greater flexibility 1is desirable because better secondary storage
methods may be devised after the hardware has been built. Thus secondary
memory address translation and main memory address translation should be

independent .

(4) Virtual store management should be simple. If virtual addresses

are ever reused, the virtual space may become fragmented due to objects
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being created and destroyed. Both Gligor (1978) and Bishop (1977)
propose the use of large paged virtual memories for holding segments.
Gligor packs segments into virtual space in a random manner, whereas
Bishop places common segments 1n areas, or groups. The first scheme,
whilst conceptually simple, means that the virtual space may become very
fragmented in time. Bishop’s scheme does not totally avoid this problem,
as areas themselves are variable in size. The virtual store should be
organized so that 1f addresses are ever reused, the store can be

reorganized without massive data manipulation.

(5) The virtual store should efficiently support both 1large and
small segments. This problem is vastly simplified by implementing the
segmentation at the register level. It then only becomes necessary for
the virtual space to hold both large and small areas. All of the models

previously discussed fail to provide an acceptable mechanism.

(6) Real store management should be simple. Unlike the segmented
schemes of some capability systems, the model can choose another main
store organization without losing the logical advantages of
segmentation. Thus a simpler main store scheme can be used instead of

the complex and inefficient segmented scheme.

Unfortunately all of the virtual memory systems discussed 1in the
earlier part of this thesis fail to provide a suitable virtual memory
which supports all these requirements. Another scheme, not previously
discussed, allows a conventional processor to efficiently support small

and large segments. The next section will discuss this model.

De4.2. A Small Segment Model

Keedy (1980) proposes a memory management model which allows a
conventional processor to support both large and small segments without
the inefficiencies described in Chapters 2 and 4. The scheme uses
capabilities which hold a virtual address, segment length and access
rights. The virtual address 1s further composed of an address space
number and an offset within the address space. Each offset is composed

of a page number and a within page displacement.

Address translation 1is performed via a number of tables, shown in
Figure 5.5. The address space list 1is consulted to find the location in

main memory of the page table for the space. Each page table entry
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Figure 5.5 - the Keedy addressing scheme

reveals either the main memory address of the page or the secondary
memory address. This model is sirilar to the paged and segmented scheme
discussed in Chapter 2, and thus could be supported by a processor
similar in nature to MULTICS. Unlike MULTICS, however, a segment offset
is added to the virtual address before it 1is translated into a main
memory address. Thus, because many segments may be placed in one page of
main memory, this model can support items 4, 5 and 6 of the model aims,
namely simple real and virtual store management and support for small
and large segments. All the advantages of the scheme are discussed 1in

Keedy (1980). However, the following are particularly relevant.
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504.2.1. Simple Real Memory Management

The main memory is far easier to manage 1in this model than the
segmented solutions because store 1s allocated in fixed size pages.
Provided that some reference locality is achieved, several independently
addressed and protected segments can be packed into a single address
space, and the amount of space lost to 1internal fragmentation 1s on
average only half a page per address space rather than half a page per
segment (or more for small segments). Thus while internal fragmentation
is not entirely eliminated, the amount of space wasted in this way can

be greatly reduced.

2+4.2.2. Simple Virtual Memory Management

The virtual memory 1is easier to. manage than that of Gligor or
Bishop because the virtual space 1s allocated in fixed size units,
namely address spaces. Typically, because of reference locality, all the
segments of a module are placed together in a single address space. If
the module is deleted, and all o0ld addresses within the space are
collected and destroyed, then the address of the address space may be
reused. Because the address spaces are all of the same size, the hole
left 1in the virtual space is not of a variable size, unlike those of
Bishop and Gligor. Consequently, the virtual space will not become as
fragmented as those of Bishop or Gligor.

Even though the address spaces are all of a fixed size, spaces
smaller than the maximum size do not actually require this fixed amount
of disk space to be allocated. Thus, the scheme does not require any

more disk space or page table space than other schemes.

5.4.2.3. Support for Small and Large Segments

The scheme does not use a large central object table, but rather a
smaller address space 1list, and can therefore support many small
segments efficiently. As more segments are added to an address space,
the address space list will remain the same size, and not grow like the
central object tables in many of the capability systems. Moreover,
provided that a reasonable amount of locality of reference is exhibited,
many small related segments may be placed 1in one page, reducing the

amount of wasted space and making segment swapping more efficient. Large
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segments may be composed of many pages. Because only those pages
actually being addressed are held in main store the scheme does not have

the large segment problems experienced in segmented schemes.

Thus, the scheme solves both the memory management problems and the
address translation problems associated with many small and large
segments. However, the model in this form does not support requirements
1, 2 and 3 of the model aims, namely large unique virtual addresses, a
uniform store and separate main and secondary memory address translation
systems. The next section shows how the model can be modified and used

to provide a virtual memory with all the required attributes.

5.4.3. Applying the Memory Management Model

Requirements 1, 2 and 3 of the model demanded a 1large uniform
virtual memory and a separate main and secondary memory address
translation system. A large uniform uniquely addressed memory which
holds all data and files 1implies an address size of the order of 64
bits, as used in some other capability systems. The model described in
section 5.3 implies an address size comparable to processors such as the
ICL2900, MULTICS etc, and of the order of 32 bits because it uses page
tables 1in main memory for address translation. Unfortunately, a simple
scaling up of the tables is not possible because the large address 1is
2*32 times that of the conventional address. The problems with
conventional page tables were discussed 1in Chapter 4. Moreover, the
table structure would be used for both main memory and secondary store
address translation, contrary to the requirements set out 1in section
5.4.1. Thus, in order to use the memory model, the address size must be
expanded to about 64 bits 1in size and another address translation
mechanism must be found. Also, to allow large segments to be created,
the size of an individual address space must be larger than 2716 words,
as 1implied in the model (if half of the address is used for the address
space number). Thus, the 64 bit address must be composed of an address
space number field of about 32 bits, and a within address space
displacement of 32 bits. This would allow the largest address space to
be 2732 words in size. In order to find a suitable address translation

mechanism we can consider a number of the techniques described in this

thesis.
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Gligor’s addressing scheme assumes the presence of a robust virtual
memory without 1indicating how to provide such a mechanism. Bishop
attempts to use conventional page tables to translate addresses. We
showed 1in Chapter 4 that this technique is unsuitable because of the
size of the directly indexed page table. For the same reasons, the page
and segment tables proposed by Keedy, and used by the ICL2900 series,
MULTICS, Prime 750 (Prime, 1979) etc, are unsuitable because of the
space required for the tables, and the time taken to translate an

address.

The best form of address translation for an address of this size is
the associative technique used by Atlas, IBM System/38 and MU6-G. These
methods only attempt to translate addresses for those pages resident 1in
main memory, and leave the software free to organize the secondary

memory translation tables in any suitable way.

Thus, by increasing the address size to 64 bits and by wusing an
associative address translation scheme the Keedy model can provide an

acceptable virtual memory for our capability model.

S.4.4. Summary

The specification for the capability addressing model of this
chapter 1s now complete, and 1s summarized in Figure 5.6. The model
provides a flexible, uniform, simple and efficient method for addressing
store. The virtual memory required can be realistically provided by a

modification of the Keedy model.

5«5« Application of the Model

The first three sections of this chapter described a hardware model
which can be used to support a capability style of addressing. A major
consideration in the design was that the model be flexible enough to
cater for a number of different software 1deas. This section will
demonstrate that the model 1s flexible by applying it to three different
different software models: the Intel 1APX432, CAP-3 and MONADS.

As described earlier, the implementation of the model consists of
two separate sections, the hardware registers and address translation
mechanism, and a body of software or firmware. In each of the examples

to be considered, a different load-capability-register instruction must
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Figure 5.6 - the new addressing model

be implemented to address segments. The hardware can then be wused to
support = the addressing structure. Access to high level objects will
typically be via a call instruction, which can be supported in microcode

or software and does not affect the hardware.

5.5.1. The INTEL iAPX432

The Intel 1APX432 supports 1information hiding modules, each of
which . consist of a number of memory segments. iJe will now describe the

C-list structure used by the Intel processor.

Sede.lcl. The Intel Addressing Structure

The 1APX432 uses two different types of segment, data segments and
access segménts. Data segments are used to hold data and code. The
addressing environment of a module is defined by an access segment,
which contains all of the capabilities for the addressable segments. A
capability consists of a unique segment number and a set of access

rights.
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The segment number is translated into a main memory address by a
central segment table. Each segment table entry contains a start
address, segment size, presence bit and additional segment information.
Whilst the 1literature suggests that this central table is indexed
directly on segment number, such a scheme is quite inappropriate and we

assumed in Chapter 4 that in practice some other scheme is used.

While other tables are used to bind access and code segments to a
module (e.g. context and domain objects), a program may address memory
by supplying an index 1into the access segment, called the segment
selector, and an offset within the segment, as shown in Figure 5.7. An
access segment may 1in turn address another access segment, and a tree
structured addressing environment may be created, as shown 1in Figure
5.8. Thus, rather than identifying a number of specific classes of
segment the 1APX432 only recognizes two main classes, and allows the

environment to be structured as a tree of capabilities.

As discussed in Chapter 4, the Intel processor is particularly poor
at supporting very 1large and very small segments. Large segments
complicate store management and small segments are expensive to swap in
and out of store, and also increase the size of the segment list. All of
these problems are removed when our hardware model is used to support

the 1APX432 addressing structure.

lfegment selector | offset | effective program address

r—>|base |limit

—>Iseg# | AR

access segment segment list

Figure 5.7 - the Intel iAPX432 addressing structure
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Figure 5.8 - a tree of access segments

5.5.1.2. Mapping the Intel iAPX432 onto the Model

In order to map the Intel software configuration onto the model,
the processor must adopt the capability format of the model. This change
does not affect the use of access segments, but does allow the model to
be wused to address store. In addition, a load-capability-register
instruction must be provided to translate addresses of the form <segment
selector> into a capability. This 1instruction must also detect
capabilities for high level objects and stop them from being loaded into
registers. High 1level object support can then be provided by special
software of firmuare. With these changes, which do not affect the aims
of the system, the i1APX432 inherits the simplicity and efficiency of the

model, in three areas.

First, there 1is no longer any need for the central segment 1list.
Without this 1list, the system can efficiently support many small
segments. Second, the real store is no longer segmented, avoiding store
management problems with large segments. Third, because the real store
is paged, many small segments may be swapped in one operation. The new

addressing scheme is shown in Figure 5.9.
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segment selector | offset | effective program address

+

s> virtual address length access

capability register

> segment

access
segment

Figure 5.9 - the new Intel addressing scheme

Access segments can be protected from corruption by only ever
granting capabilities to them with read-only access to a user program.
Thus, a program may be able to use an access segment capability as the
target of a data manipulation instruction, but cannot modify the

contents of the access segment itself.

This implementation shows that the capability register scheme 1s
not only flexible enough to implement the C-1list structure of the Intel
1APX432, but also 1improves the efficiency of the final addressing
mechanism. The secondary memory translation is no longer dependent on

the segment list, and may be freely modified.

_5_0502- CAP-Q

CAP-3 is a capability based computer which addresses a segmented

memory via a C-list structure.

g.’g.g.l. CAP-3 Addressing Structure

Segments in CAP are addressed via one of the different C-lists
attached to a protection domain. Each C-list is addressed by a domain
descriptor, and there are 16 domain descriptors attached to any domain.

Each C-list entry holds a capability which defines the bounds of the
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reference and the access rights. Capabilities also contain a pointer
into a central object table, which holds the central mapping information
for the segment. A program can address memory by forming a 32 bit
virtual address, which 1is constructed from a 4 bit C-1list selector (one
of the 16 domain descriptors), an 8 bit capability number (relative to
the C-1list chosen), 16 bits of offset within a segment and 4 unused
bits. This address is mapped onto a real memory address via the central
object table, which contains an entry for every active segment. A
capability cache helps speed up the address translation for frequently

used segments. The addressing structure is summarized in Figure 5.10.

CAP-3 differs from the Intel processor by using a different C-list
organization. In CAP, a domain can only address one of the C-lists for
which it has a domain descriptor. Unlike the Intel processor, CAP-3
cannot construct a tree of capability segments. Since CAP-3 uses the
same main store organization as the 1APX432, it possesses the same
lnefficiencies when small and large segments are addressed. We will now
show how the capability register addressing scheme may be applied to the
CAP-3 architecture.

capability segment segment selector | offset

virtual address

>
16 o
domain > segment
descriptors
>

C-list

Figure 5.10 - the CAP addressing structure
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5¢5+2.2. Mapping CAP-3 onto the Model

As in the Intel processor a load-capability-register instruction
must be written which understands the C-list structure of CAP-3. This
instruction accepts a 4 bit C-list selector value, an 8 bit capability
selector and loads a register with the capability.

Instructions can then address the segments of store via the
capability registers. The scheme inherits the advantages of the model.
Small and large segments can be efficiently addressed and transferred in
and out of store. The problem of managing the central object table
disappears as the table 1s eliminated. The only 1instruction which
understands the use of domain descriptors and C-lists is the load-

capability-register instruction.

5.5.3. MONADS

The MONADS system requires software systems to be constructed from
a number of information hiding modules, each composed of a number of
memory segments, namely local data segments, file data segments,
retained data segments, code-related data segments, parameter segments
and code segments (Keedy, 1982a). We will now describe the addressing
structure and show how the model hardware may be used to implement this

structure.

5¢5.3.1. The MONADS Addressing Structure

An information hiding module in MONADS is active and may address
its data segments when a process 1s executing within the code segments
of the module. Under such circumstances a process stack will be present.
This stack forms the centre of the MONADS addressing structure. Each
class.of segment is addressed via a separate segment 1list. Thus, for
example, each segment of local data is addressed via an offset relative
to the local segment list, and each segment of file data 1s addressed
via the file segment 1list. Each segment 1list contains a list of
capabilities for the segments of the class. A capability, shown in
Figure 5.11, consists of a virtual address field, a length field and a
set of access rights. Thus, any segment may be addressed by a segment
list number (called the base number b) and a segment number (s), as

shown in Figure 5.12. Moreover, each segment list is addressed via the
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Address of segment length access

Figure 5.11 - a MONADS capability

BASE table, as shown in Figure 5.13.

The process stack forms a convenient place to hold the BASE table
and some of the C-lists, because some of these pertain to the module and
process 1intersection. Other C-lists, such as the file C-list, are held
off the stack. Thus, the BASE table conceptually holds capabilities for
the C-lists, and each C-list holds capabilities for each segment in the

capability

— )

<— base b

Figure 5.12 - a segment list

s

I

v
_////,/”’—’ segment list

segment list

BASE table

Figure 5.13 - the BASE table
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class. Because the C-lists are not general purpose, like in the Intel
1APX432, but dedicated, capabilities within a C-list cannot point to
another C-list.

An instruction forms a logical address of the form <base number,
segment number, offset>. The addressing structure, summarized in Figure
5.14, allows this address to be translated into a capability and offset.
The next section shows how the model proposed in this chapter may be

used to support this structure.

5.5¢3.2. Mapping the MONADS Software Structure onto the Model

In mapping the addressing structure described in 5.4.1.1 onto the
model hardware care must be taken to protect the contents of the BASE
table and the various C-lists. As with the other implementations, a
load-capability-register instruction must be developed which translates
a logical address, of the form <base number, segment number>, into a
capability, and saves the capability in a register. The register number

may then be wused as the operand for future  memory reference

capability

>
segment list b segment s
<¢

<o ->»

BASE table

- >

Process stack

Figure 5.14 - the MONADS addressing structure
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instructions. This translation 1s clearly efficient. The logical address
is only translated into a capability when a register 1s loaded.

Subsequent accesses to the segment bypass this translation.

In order for the load-capability-register instruction to translate
the 1logical addresses, 1t must have access to the BASE table and also
the various C-lists. Because the stack itself resides in virtual memory,
these tables are addressable via the capability registers. The areas of
the stack which contain sensitive information may be protected by never
issuing ‘ to programs capabilities to the information. Moreover, because
the tables are simply segments, there is no need for them necessarily to
reside on the stack at all. In fact, those lists which do not belong to
a process reside 1in other segments of virtual memory . The

implementation is summarized in Figure 5.15.

éo‘ioi- Summar

In this section we have implemented three different capability

addressing structures using the addressing hardware proposed in this

capability
¢
s | segment list b
¢ &
capability registers

address length | access
T address length | access
b | BASE table capability register
¢ < for BASE table

Process stack

Figure 5.15 - the new MONADS addressing scheme
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chapter. In each case, the hardware remained unmodified, and a new
load-capability-register instruction was written for the new structure.
From the detailed examination of the capability systems 1in Chapter 4 it
would appear that the model could be applied to all of the different C-
list structures in the same way as those described in this chapter. In
addition, the hardware 1s not concerned whether the capabilities are
taken from a C-list or from tagged memory. Thus, the proposed model
could also implement those systems which use tagged memory rather than

a segment list to hold capabilities.

Because the capabilities are interpreted by software before they
are used to address memory, the scheme does not interfere with the way
that the systems manage high level objects. The only requirement that
the hardware places on the load-capability-register instruction 1is that
only segment capabilities can be placed in a register. Thus, the model
seems to have fulfilled its aim of flexibility.

5.6 Evaluation of the Hardware Model

This section addresses two questions. First, has the model proposed
in this chapter fulfilled its primary aims? Second, how does this
solution differ from the other capability based computers discussed 1in
Chapter 4?

éoéolo Model Aims

We can now reconsider the aims of the model, cited in section 5.1.

S5.6.1.1. Memory Management

We showed in Chapter 4 that many systems have difficulty in
managing a memory addressed by capabilities. The model avoids many of
these problems by using the memory management model described in
section 5.4. This scheme allows both large and small segments to exist
in a paged virtual memory. Large segments may occupy as many pages of
real memory as required. Because many small segments may be packed into
a page, many related segments may be swapped between main and secondary
memory at the same time. Thus, the model has solved many of the memory

management problems.
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5.6.1.2. Address Translation Problems

In systems which use a central object table for segment address
translation, the size of the table may become excessive if the processor
addresses many small segments. The model proposed in this chapter avoids
this problem by eliminating the object table altogether. Because
segments are no longer a unit of main memory, no mapping information
needs to be maintained about the segment which cannot be placed safely
in the capability for the segment. Moreover, we suggest that the virtual
addresses are translated into main memory addresses by an associative
address translation system, which can not only efficiently translate
large addresses, but also detaches main memory address translation frém

'secondary memory address translation. Thus, the model has solved many of

the problems associated with address translation.

éﬁéﬁlﬁéﬁ Uniformity and Simplicity

The scheme is uniform in two respects. First, the capability
registers are the only way of addressing store. No extra mechanisms
exist which bypass the capability structure. Section 5.5 showed that
these registers alone are sufficient to implement a real addressing
structure above the hardware. Second, all data, regardless of how 1large
or small it is, or how long it exists, is stored in the virtual memory.

No other secondary memory is visible to the programmer.

Because of this uniformity, the overall addressing mechanism 1is
comparatively simple. Only one addressing system is available, and only
one protection system is needed. Thus, the model satisfies the aim of

uniformity.

S5.6.1.4. E1ficiency

The efficiency of the solution may be judged by considering two
separate functions: (i) the translation of a program address (e.g. of
the form C-1list index and offset) 1into a capability, and (i11i) the
translation of a capability into a main memory address. The first of
these is only performed when a capability register is loaded, or when a
domain switch 1s performed, and is dependent upon the access time of the
C-lists. Provided that (a) sufficient capability registers are
available to contain the working set of the process (Denning, 1968,

\
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1980), (b) capability registers are allocated sensibly, and (c) some
hardware support 1s provided for domain changes, then the cost of

loading the registers may be ignored.

The second function depends on two factors. The first 1s the access
time of the registers. This time is usually so small that it may be
ignored. The second is the virtual address translation time. This time
depends on the translation technique chosen. In Chapter 7 we propose a
mechanism which compares favorably with schemes such as MU6-G and IBM
System/38. Provided that an associative scheme is chosen, there is no

reason in principle why this address translation should be inefficient.

5.6.1.5. Flexibility

The hardware proposed in this chapter was designed to be flexible
enough to survive a number of changes in software ideas. In section 5.5
we applied the model to a number of different addressing structures. In
each of these the model was capable of 1implementing a different
addressing structure with only a different 1load-capability-register
instruction, and with instructions for the different high level objects.
Thus, by example, it appears that the model 1s sufficiently flexible.
The model gains its flexibility from the clear distinction between those
functions which must be supported in hardware (purely for efficiency
reasons), and those functions which can be implemented by microcode (and

are thus easy to change).

5.6.2. Comparison to Other Systems

Whilst consideration of the primary aims has highlighted many
differences between the model and other capability based systems, the
model can best be compared with other work in this area by considering a

number of its features.

5.6.2.1. The Use of Registers

The model is similar to the Plessey 250 and the Chicago magic
number computer 1in the use of capability registers. The model avoids
many of the problems associated with the Plessey 250 by using a virtual
address 1in the capability register rather than a real address. No other
systems known to the author make use of such registers, or are as

flexible as the proposed system.
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5¢6.2.2. The Capability Format

The format of the model capability is similar to that of Bishop.
Both 1include a virtual address, a 1length field and access rights.
However, the length field of Bishop’s capability appears to be too small
to allow 1large objects to be created, or for sufficient addressing
granularity. The CAP capabilities differ in address specification but do
allow a 1length field. The model capability is also similar to that of
the IBM System/38. However, the System/38 allows store to be addressed
without capabilities and provides two different addressing mechanisms.
Most of the other systems discussed use an object number as an address

rather than a virtual address.

5.6.2.3. Refinement

Whilst all of the capability systems allow the access rights of a
capability to be refined, CAP and Bishop are the only systems which
allow the bounds to be refined. As discussed in 5.3.4 Bishop’s length
field 1is far too small to be of any use. The CAP length field is
duplicated in both the capability and the central object table because

of the segmented store. This duplication is avoided in our model.

5.6.2.4. Real Store Management

The use of paging vastly simplifies the management of real store.
Systems which also use paging are Hydra, IBM System/38, Bishop and
Gligor. In Hydra, paging has the effect of restricting the maximum
segment size to one page. In the IBM System/38 segments must be at least
one page in length, which wastes a great deal of space for small
segments. Because Gligor allows segments to be placed arbitrarily in
virtual space, there is no guarantee that segments with a common owner
are placed within the same page. Bishop’s scheme, like our model,
guarantees this by using areas, or address spaces. This allows common
segments to be swapped in and out of store in one operation. The model
differs vastly from schemes such as Plessey 250, Chicago Magic Number
Computer, Intel 1APX432 and CAP which use a segmented store.

5.6.2.5. Virtual Store Management

The only schemes which use virtual addresses in a similar way to

the model are Gligor and Bishop. We showed in Chapter 4 that both of
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these virtual spaces can become fragmented after use. The model avoids

this problem by allocating virtual space in fixed size units.

2¢6.2.6. Small and Large Segments

We showed in some detail the difficulties experienced by other
capability systems 1in supporting both small and large segments. The
model uses a memory organization which allows most of these problems to
be avoided or minimized, allowing it to be far more efficient than the

systems discussed in Chapter 4.

5.6.2.7. Address Translation

We showed that the model requires an associative address
translation scheme to operate efficiently. Two processors which provide
such a scheme are MU6-G and the IBM System/38. In Chapter 7 we will
propose another associative mapping technique which compares favorably

with these two.

5.7. Conclusion

This chapter has defined a hardware model for implementing a
capability based addressing scheme. Many theses conclude at this stage
without demonstrating the effectiveness of their solution. We were
concerned that the model should be implemented to show that the solution
is practical. Unfortunately, in achieving such an implementation, we

faced two problems.

First, funds had to be found to produce this implementation.
Second, time had to be found to produce a working processor. The next
chapter proposes a model which allowed a working implementation of the
hardware to be built both cheaply and quickly. Chapter 7 then applies
this model to the capability addressing scheme to produce a capability

based computer system.
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6. An Architectural Enhancement Technique

In Chapter 5 we proposed a hardware model which can be wused to
support many different software structures, particularly those of the
MONADS project. It was particularly important that these ideas be
implemented as the internal structure of a new processor, and not remain
untested. It was also important that the MONADS software group could
have a capability based computer system to use for the development of

thelr software structures and ideas.

Many new ideas are often only designed and documented at a
conceptual level and are never actually implemented as the basic
structure of a new processor, e.g. the Chicago Magic Number Computer
(Shepherd, 1968; Yngve, 1968), Gligor (1978), and Bishop (1977).
Unfortunately, many major design flaws are not discovered wuntil an
attempt 1is made to implement the design. Moreover, some designs cannot
be implemented at all. Thus, a real implementation determines both that
the 1deas are basically sound and that they can be efficiently built
with the available techniques. The problem faced by the author was how
to demonstrate the effectiveness of the capability registers, both

cheaply and quickly, and still produce a usable computer system.

This chapter comprises three main sections. The first examines
some of the standard implementation techniques. The second proposes a
hardware enhancement model, and the third demonstrates the model by

citing examples of some architectural enhancements.

In the next chapter we describe how the technique was actually used
to build the MONADS SERIES II computer system, and to implement the
capability registers described in Chapter 5.

6.1. Realizing a New Architecture

A system designer 1s presented with two alternatives when
attempting to implement a new architecture. First, the architecture can
be incorporated into a totally new computer system. This approach,
whilst logically the more desirable, often involves many more hours than

may superficially appear necessary.

Apart from implementing the instructions which pertain to the new

architecture, basic arithmetic and 1logic instructions must also be
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implemented. These instructions, while conceptually simple, may occupy a
large part of the machine microcode (and/or hardware). For example, to
realize a general shift instruction, not only microcode must be written
but also some special hardware may need to be built (such as a parallel

shifter).

Extra devices (such as 1interfaces and controllers) must Dbe
constructed purely to operate the new processor. Some of these devices
may require a lérge amount of design effort; effort which 1s not
directly connected to the original architectural aims. Many software
packages must then be developed, such as assemblers, compilers, loaders

and bootstraps.

Consequently, the project often grows 1in size and 1large group
management problems are encountered. Much of this extra effort appears
to be directed to the devices which must communicate with the processor,
rather than to the processor itself. Thus, because of the extra effort
involved, the full scale production of a new computer simply to test out
some architectural enhancements 1s often not viable 1in a research

environment .

The second alternative consists of modifying or using an existing
computer system (called the ’source’ architecture) in order to test out
a new architectural design (called the ’target’ architecture). This
approach has the advantage that the design time and effort may be
dramatically reduced. Many of the features of the source processor may
be 1inherited, for example the 1input-output system and the basic
instruction set. However, great care must be exercised to prevent the
source architecture from restricting the scope and effectiveness of the

target.

6.2. Using an Existing Computer System

Three different techniques may be used when the target architecture
is constructed on top of a simpler source machine. First, an
environment may be constructed in software. Second, 1f the source
processor uses a microcoded control unit, the target may be implemented
in firmware. Third, the actual hardware of the source processor may be

modified to implement the target architecture.
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6.2.1. A Software Emulation

This solution may take a number of forms. The most general 1is to
produce a program (called the interpreter) which interprets instructions
for the target machine. The 1interpreter emulates the fetch-execute
cycle of the target processor, and executes target instructions by using
small sections of source instructions. Interpreting the new
architecture offers many advantages. Because the interpreter is a
program, often written in a high 1level 1language, it may be easily
modified. Complex debugging and monitoring aids may be incorporated in
the design, allowing the designers to measure and judge the
effectiveness of the new processor. At the same time as emulating the
target architecture, the source machine may be executing many other

programs .

This approach also has some major disadvantages. The wultimate
execution speed of the target processor is often far too slow to support
realistic tests . Moreover, it is not always obvious whether efficient
hardware can later Dbe constructed, somewhat diminishing the

effectiveness of the implementation.

A slightly more efficient software emulation involves another
different body of code (called the Kernel) which attempts to provide a
normal source machine program with attributes from the target processor.
Programs for the target machine are compiled into source machine
instructions. When a target machine operation is required which cannot
be directly translated into a short sequence of source instructions, a
call to the kernel 1is executed, which performs the task and returns

control to the source program.

Whilst far more efficient than an interpreter, the kernel solution
tends to highlight the architectural features of both the source
processor and the target, often with disastrous effects. (Such an
example 1is found i1in CAL (Lampson and Sturgis, 1976)). Moreover, this
technique may not be able to manage a target machine which 1is
dramatically different in design from the source. Thus, a target
program may degenerate mainly to kernel calls and appear the same as an

interpretive solution.
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Because many source instructions may be required to emulate a
target instruction, the speed of the kernel is often far too slow to
support a realistic test environment. Many different types of kernel

have been written. A good review is found in Rosenberg (1979).

A common disadvantage is that both the kernel and the interpreter
often occupy large amounts of memory and may reduce the space available

for user programs significantly.

The advantages of these solutions are mostly logical. An
interpretive solution can wusually emulate the target architecture
successfully. The disadvantages are mostly practical. Poor execution

speed often makes the model useless.

6.2.2. A Firmware Implementation

Another technique used is to emulate the target architecture 1in
firmware (or microcode). This solution 1is clearly only applicable if
the source machine uses a microcoded control unit and possesses a

writable control store.

The internal microcycle of most processors 1s several times faster
than their fetch-execute cycle. Consequently, target machine
instructions can be much more efficiently emulated with microcode than
with software. Because new 1instructions can be placed in writable
control store, the processor can continue to execute normal source

machine programs at the same time as target programs.

Unfortunately, most processors provide only a small writable
control store and, more importantly, a limited number of uncommitted
operation codes. Thus, it is usually difficult to microcode all of the

operations required by the target machine.

Even when sufficient store and entry points are available, this
technique often encounters another important problem. Many target
instructions may i1implicitly require storage space, which must be
provided by the source machine mainstore. (An obvious example is the
implementation of a virtual memory system, which requires page tables in
order to translate addresses). In many cases the fact that target
operations are implemented in microcode may not be sufficient to make

them efficient. The operations may be limited in speed by the time
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taken to scan or search various data structures which, if built into
hardware, would have used much faster store and searching strategies.
(Examples of such an address translation system are found in Belgard
(1976), Cohen (1973), Tanenbaum (1979), D’Hautcourt-Carrette (1977) and
Sitton and Wear (1974).

In addition, the structure of the micro instruction 1s wusually
designed for the source instruction set, not the target. Consequently,
it is often quite difficult to write the target microcode on the source

machine.

Thus, a firmware emulation, whilst much more efficient than a
kernel or interpretive solution, is often still too slow to provide a
usable system. Moreover, the implementation often leaves too much of
the source processor architecture visible, affecting the attributes and

view of the target architecture.

In the situation where speed is important, the only solution may be

to provide special hardware.

6.2.3. Modifying the Source Hardware

The third possibility is to modify the hardware of an existing
machine. Clearly, this technique can offer the best performance.
Traditionally, however, this method 1s only wused when the target

architecture does not differ greatly from the source architecture.

Small changes such as small modifications to the instruction set,
adding virtual memory hardware (an example is found in Hagan (1977))
and detecting extra error modes (such as those in HYDRA), have been done
successfully. Each of these changes, however, has not introduced major

architectural enhan~ements to the source processor.

In fact, it is clear that the major changes possible with an
emulation environment are not always possible when modifying the

hardware of an existing machine.

The technique 1is often rejected because it may alter the
environment for normal source machine programs as well as target machine

machine programs, dedicating the use of the source machine.

In spite of the disadvantages and practical difficulties a number

of architectural changes have been achieved by hardware changes. The
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next section examines some of the more common hardware modification

schemes used.

6.3. Hardware Modifications

Many specific changes are possible when the processor design 1is
modified. These depend upon the 1internal implementation of the
processor itself, and will not be considered further. This section
describes one of the most general modification techniques used. This

requires an examination of the general structure of many computers.

6.3.1. Processor Configurations

Most computer systems can be divided into two main parts, the CPU
and the memory, connected usually by a ’clean’ set of interface signals,

shown in Figure 6.1.

The signals involved in the interface can typically be divided into
three sections; addresses, data and control/handshaking information.
The CPU communicates with the memory mostly by read and write commands.
When the CPU executes a read operation control information is generated
together with an address pattern. The CPU may then wait for data,
which 1is passed back over the data pathway. When a write 1is executed

data is sent with the address to the memory unit

The connections between the CPU and memory section may be
generalized to form a system bus which connects to devices other than

the memory.

<-handshaking & control->
Processor Memory &
ADDRESSES >] Peripherals

Control &
Registers |< DATA >

Figure 6.1 - a typical processor configuration
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It is the ’clean’ nature of the interface between CPU and memory

which i1s often employed when architectural enhancements are introduced.

6.3.2. Breaking the Address Bus

One technique used to enhance the architecture of the source
processor 1s to introduce extra logic into the address pathway between

the CPU and the memory, shown in Figure 6.2.

If the architectural enhancement is the addition of a virtual
memory system, then the extra logic may be used to modify, or tramslate,
the processor addresses before they reach the memory. Such a system 1is

described in Hagan (1977).

If, however, the target architecture is to include more registers,
these may be assigned addresses and placed in the extra logic. Read and
write commands directed to these addresses are ’stolen’ by the extra

logic and may never reach the memory.

The extra logic in some systems appears to the source processor as
a block of memory, but the data in the locations is calculated by the
logic rather than being the previously saved values. Such a system 1is
described in Wallace (1978) to implement a stack mechanism and

addressing registers.

Many systems have been constructed which place special significance
upon certain addresses within the address space. Many rely on special
addresses for performing I/0 operations (such as the PDPll and VAX
computers (Digital Equipment Corp., 1979)). All, however, only ’steal’
a limited number of addresses for such operations, and perform very

specific operations. None of these systems make dramatic architectural

———Address-> Address >

cC.P.U. EXTRA MEMORY
<==Data >} LOGIC |< Data >
<=—Control-=> {=———=Control >

Figure 6.2 - breaking the address bus
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changes. Such systems do, however, suggest that treating the addresses
from a source processor in a special way may be used as a general
mechanism for enhancing an existing machine architecture. The next

section proposes such a model.

6.4. An Enhancement Model

The systems discussed in the last section used the processor
addresses 1in various ways. If rather than using a dedicated piece of
extra logic, another fast processor is placed in the address path, a
general mechanism for dramatic architectural enhancements 1is created.
In such a scheme, the processor addresses are treated as instructions by
another, small fast processor, the intermediate processor, as shown in
Figure 6.3. These new instructions may be tailored to the target

architecture.

The intermediate processor reinterprets all of the CPU addresses,
and executes them as though they were instructions. Some may be sent to

the memory unit, whilst others may be used internally.

The intermediate processor appears as a piece of memory to the
source processor. When a memory reference occurs, the source processor
is suspended and the 1intermediate processor is started. The
intermediate processor then executes the function associated with the

memory address and return control to the source processor

The model possesses some particularly notable attributes.

i) Many new operation codes are available, thus many new target
——Addresses=>|Instruction ——Addresses>
C.P.U. |<—Data—>] ALU|<—Data >|MEMORY
Registers
<=——Control—> <—Control—>
Intermediate
Processor

Figure 6.3 - the enhancement model
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operations may be supported. The potential number of codes

available is the size of the address space.

i) Because the intermediate processor is a general processor many
different target operations may be attempted, from very simple

memory references to complex data manipulation.

111) Extra target architecture registers may be 1located 1in the
structure of the intermediate processor, and can be manipulated by

read and write commands from the source processor.

iv) Normal memory references can be made to proceed from the source

processor to the memory with very little delay.

v) Complex target operations may be added to the source without major
modifications to the source processor hardware. Thus, the source
processor may be a mainframe, a minicomputer or possibly even a

microprocessor.

vi) The new architecture 1s partly transportable among source
pProcessors. Most of the target architecture is housed within the

intermediate processor itself.

vii) The intermediate processor may be removed, or made logically
transparent; thus it 1is not difficult to allow the source
processor to execute normal source programs instead of target

machine programs.

viii).The target architecture inherits all of the input/output devices,
controllers, communication system, frame and power supplies from
the source processor. It also inherits the basic instruction set
from the source processor. This vastly reduces the amount of

effort required to implement a working target architecture.
ix) Depending upon the address interpretations it may be possible to

execute source programs on the new target machine. At the very

least, these programs can execute on another source processor of
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the same type. Thus the assemblers, compilers and loaders already
available for the source processor may be modified to produce code
for the target architecture. Consequently, some software

development may be avoided.

X) Because the intermediate processor only consists of a central
processor unit it may be easily constructed, possibly from bit
slice components. This processor is often simpler in design than
the source machine as it only implements those features of the

target which are new.

The next section will consider the application of this model and

give examples of the architectural modifications which are possible.

6.5. Application of the Enhancement Model

6.5.1. Dividing the Address Space into Areas

In order to apply the enhancement model, the address space of the
source processor must be divided 1into areas, and the new target
functions must be assigned addresses from an area. Whilst an arbitrary
division 1is allowed, two key logical areas can be identified; the code

area and a special area, as shown in Figure 6.4.

Because the fetch phase of the source processor remains unmodified,
an area in the address space must be reserved for addresses which are to
be interpreted as a region of code. When the source processor 1issues a
fetch in this region, the intermediate processor returns an instruction.
The second area can be further divided into the many new functions which
the target procecsor must provide. We will now consider the types of

functions that can be provided.

6.5.2. Some Architectural Enhancements

The model is capable of a wide range of enhancements, many of which
cannot be achieved by the emulation techniques discussed earlier in this

chapter. We shall now consider some examples:
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Code

Special
Area

Figure 6.4 - dividing the address space

6.5.2.1. Adding New Registers.

Three classes of registers are often required in a processor: data
registers, address registers and status registers. Each new register is
held within the intermediate processor, and is assigned an address from
the source processor address space. The register may then be loaded from
or stored into from the source processor, as though it were actually a
word of store. The intermediate processor may treat the register purely

as an internal register.

Data registers are the simplest form of register, and usually only
require load and store operations. Addressing registers can also be
loaded from and stored into by the source processor, but or may be used
indirectly to address store. Status registers are typically read from
the source processor and loaded from hardware control 1lines, such as
interrupt masks, error flags, timers, etc. Figure 6.5 shows how the
regisfers may be integrated into the address space of the source
processor, where Ar is the address of the new register in the address
space. Data may move between the source processor and the register via
the memory location allocated for the register, and may also move

between the intermediate processor via internal data pathways.

6.5.2.2. Adding New Instructions.

New instructions, which are activated when a particular source

address 1s referenced, may be 1implemented within the intermediate
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* ' data
Ar
v >| register intermediate
< processor
data 't l

data
address space

Figure 6.5 - adding new registers

processor. Thus, the source address appears to act as an 1instruction
word for the 1intermediate processor. A range of addresses may be
allocated, all of which activate the same intermediate instruction, but
which use some bits from the source address to specify an operand. This
scheme is shown in Figure 6.6. In this diagram A1 is the address of the
new instruction, and the constant n can define a frame of addresses
relative to the 1instruction in the address space. The instruction
address may then be converted into a microcode entry point in the
intermediate processor, which defines code to interpret the new

instruction. Examples of instructions are:

- An instruction which manipulates some of the intermediate processor
registers, e.g. add 1 to register n. This type of instruction 1is totally

executed within the intermediate processor.

A
Al
¢ > intermediate
entry processor
T point in
n-———n microcode microcode for
instruction
inst operand 2 : . for Ai

address space

Figure 6.6 - adding a new instruction
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- A long move instruction, which uses two addressing registers, and a
counter register, and moves data around the store. This instruction

iteratively addresses store until the block is moved.

- A context switch 1instruction, which changes processes within the

intermediate processor.

6.5.2.3. Adding New Addressing Modes.

The basic addressing modes of the source processor may be augmented
by new modes, provided within the intermediate processor. Some examples

are:

Indexing.

Certain addresses within the address space may cause a mainstore
address to be calculated from a combination of addressing registers.
When the 1location 1s referenced, the intermediate processor may
calculate a store address, retrieve the data, and return it to the
source processor. This dynamic address calculation may' be wused to
provide an index mode, which may not be present in the source
architecture. An example of index mode addressing is shown 1in Figure
6.7. In this diagram Aa defines the location of the new addressing mode
in the address space. If this 1location 1is referenced then the
intermediate processor forms a main memory address by adding the
contents of an addressing register and a modifier register together.

This effective address is then used to reference store.

Stacks.

Certain modes may use an addrecsing register to reference store,
and then modify the contents of the register. This operation could
provide push and pop instructions. Stack frames may also be defined
relative to a stack register, by reserving a number of locations within
the source address space. An example is shown in Figure 6.8. Separate
addresses are assigned for push and pop operations. If either of these
addresses 18 referenced the value of the stack pointer register 1is
modified, and a main memory address is generated. If a frame relative to

a frame pointer is required, the constant n is added to the value 1in
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Figure 6.7 - index mode addressing

{

this register in order to form a main memory address.

Constants.

If part of the source processor address is returned as data, by the
intermediate processor, then a number of constants may be referenced
without reading the mainstore. This mode of addressing is often called
immediate mode. An example is shown in Figure 6.9. The intermediate

processor returns the value i when the location Ai is read.

6.5.2.4. Adding a Virtual Memory.

Because the source processor addresses are 1solated from the

mainstore, the intermediate processor can develop virtual rather than

push L/ >] address | +1 > main memory
Pop - address
frame + n => main memory
>| address address

stack

/r
n frame
v

address space

Figure 6.8 - stack addressing
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data

address space

Figure 6.9 - constant addressing

real addresses. Special translation hardware may then be placed between

the intermediate processor and the memory subsystem.

6.5.2.5. Expanding the Address Size.

The size of the addressing registers within the intermediate
processor may be many times the size of the source processor address.
Thus, the effective address space size of the target architecture may be

much larger than that of the source processor.

6.5.2.6. Detecting Errors.

The intermediate processor may detect many error conditions, e.g.
removing too many items from a stack, addressing beyond the top of a
stack, addressing memory which is protected, etc. These may then be
reported to the source processor. Control registers may be used to

describe the nature of the error.

6.6. Conclusions

In this chapter we have developed a general mechanism for expanding
the power of an existing computer. The solution is both cheap and
efficient. By considering some examples we have shown that the model is,

at least theoretically, realistic.

The next chapter will use this technique to expand the architecture

of a very simple mini-computer and, at the same time, implement the
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addressing structure proposed in Chapter 5.
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7. The MONADS SERIES II System - An Implementation

Chapter 6 described a technique for enhancing the architecture of a
primitive source processor. In this chapter we show how the enhancement
model has been applied to the 1implementation of a capability based
computer system according to the design proposed in Chapter 5, using a

primitive source minicomputer, an HP2100A (Hewlett Packard, 1972).

Section 1 defines the aims of this system, which is known as the
MONADS Series II computer. Section 2 describes the HP2100A source
processor hardware. Section 3 describes the intermediate processor
developed to expand the HP2100A. Section 4 defines the MONADS II
address translation hardware, and compares it to other similar schemeé.
Section 5 comments on the modifications made to the HP2100A processor.
Section 6 describes the software packages developed during the
construction of the MONADS II system. The chapter concludes by
demonstrating that the MONADS II computer system fulfils its primary

aims.

7.1l. The MONADS SERIES II System - Primary Aims

The MONADS II hardware has a number of major aims:

(1) To demonstrate that the capability register addressing scheme,
proposed 1in Chapter 5, 1is realistic and can be efficiently
implemented. This aim is tested by using the architectural model as
the centre of the MONADS II addressing structure.

(2) To provide a pilot system for future software development work
on the MONADS project. Because of time and fiscal constraints it
was not possible to produce a computer utility with the speed and
power of large mainframe computer systems. However, the MONADS II
system is suitably scaled down so that it can still support a
number of wusers, each developing software modules. The processor
is considered a testbed for both the hardware and the software

ideas.

(3) To demonstrate that the enhancement technique proposed 1in

Chapter 6 is both practical and powerful in scope.
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(4) To provide supporting hardware for the addressing structure
described 1in Chapter 5, 1in the form of a hardware address

translation scheme.

The MONADS Series II system 1s composed of a number of key
components, as shown in Figure 7.1. The system is constructed around a
HP2100A minicomputer which provides all of the Dbasic computing
facilities, such as a standard instruction set, and an input-output
system. All of the complex addressing modes which are required by the
MONADS architecture are provided by the intermediate processor. This
unit develops a 31 bit virtual address, which is translated into a main
memory address by the virtual memory manager. The current configuration
is connected to 400k bytes of semi-conductor memory. The rest of this
chapter will examine these components in detail, and show how the entire

system fulfils these aims.

7.2. The HP2100A Processor

The HP2100A is typical of many 16 bit minicomputers of the same
era, and 1incorporates a microcoded control unit, two general purpose
accumulators and 32k words of memory. Processor  addresses are
constructed from 16 bit words, 15 bits of which form the memory address.
The top (most significant) bit determines whether addresses are direct

memory addresses, or are part of a chain of indirect addresses.

7.2.1. The View of Memory

With its 15 bit addresses, the HP2100A can address up to 32k 16 bit

words of core memory. This address space is divided into 32 lk word

’leaves’ 1. Thus, the memory address 1s logically composed of a 5 bit
leaf number, and a 10 bit within leaf displacement. The leaf with a
number of zero is called the base leaf, and the leaf number in which an

instruction resides is called the current leaf.

1 The HP2100A literature refers to leaves as pages. However, we have

adopted the present terminology, preferring to use the term ’page’ as a

unit of virtual memory transfers.
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Figure 7.1 - the MONADS Series II computer system

If a memory address 1s used directly, the contents of the 1location
are treated as data. However, if the address is used indirectly, then
the contents of the location are treated as an address. In general,

arbitrarily long indirect address chains may be created in memory.

'7.2.2. The Instruction Format

Instructions are divided into two main classes, the memory
reference group and the register and I/0 group. Most instructions are

held in 16 bits. The format of the memory reference instructions are as

follows:
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bit 15 indirect bit

bits 14 - 11 function code

bit 10 base or current leaf bit
bits 9 - 0 within leaf displacement

The function code specifies which operation the instruction 1is to
perform. (Valid functions are 1load, store, or, and, add, compare,
increment, jump, jump subroutine and exclusive or). Some functions may
be applied to either of the processor accumulators. The instruction
operand is specified by the address field. Because this field is only 10
bits 1in length, the instruction can only address one leaf of store. The
base leaf or current leaf bit determines whether the 10 bit address 1is

used within the base leaf or the leaf in which the instruction resides.

To allow an instruction to reference all of the store, an address
may be placed in a word of memory (called a link) and used indirectly,
by setting the indirect bit of the instruction. The processor will
follow an indirect chain of addresses until a word is found with a zero
top bit. The last address in the chain defines the effective address of
the operand. The use of 10 bit address fields allows a program to
reference most of its data with 16 bit instructions and to wuse links

only when the data is not in the base or current leaf.

7.2.3. The Input-Output (I/0) System

The HP2100A processor supports a primitive input-output system
which- allows a program to communicate with any of 64 devices (although
some of these have special meaning). The bottom 6 bits of an 1I/0
instruction specify which device the instruction 1s addressing.
Transfers of 16 bit data words may be directed to or from a device under

program control.

7.2.4. The Direct Memory Access System (DMA)

Certain devices, such as disks, require interword service times
faster than a programmed I/0 loop can operate. To communicate with these
devices, the processor provides two autonomous direct memory access
channels. Each channel, once set up, can transfer a block of data
between memory and a device without processor intervention. The DMA

system operates by stealing cycles from the processor when it requires
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attention.

7.2.5. The Control System

The HP2100A is controlled by a micro-programmed state machine. The
processor can be equipped with 256 x 24 bit words of basic instruction
set, 256 words of extended (floating point) instructions, and up to 512
words of writable control store. The writable control store appears as
part of the I/0O system, and can be read from or written to under program

control.

7.2.6. Interrupts

The HP2100A supports a vectored interrupt system. When an interrupt
occurs, control is transferred to one of 64 base leaf memory locationms,
any of which can then transfer control to an interrupt service routine.

Interrupts are normally processed at the end of an HP2100A instruction.

7.3. The Intermediate Processor

This section describes the main features of the intermediate
processor designed and implemented by the author to extend the
functionality of the basic HP2100A.

I~

«3.1. Functionality

1.

|w

«l.1. Privilege Modes

In order to protect sensitive information within the intermediate
processor, the hardware may operate in one of two modes: kernel mode or

user mode.

In kernel mode two conditions are created. First, all code 1is
fetched from a special code address space, which holds the kernel
program. Second, the HP2100A may modify any of the 1intermediate
processor registers. Kernel mode may be entered in one of two well
defined ways. First, every interrupt causes the processor to enter
kernel mode. This is necessary because the kernel software contains the
interrupt service routines. Second, a special HP2100 micro instruction
can set the processor 1into and out of kernel mode. Thus HP2100A

instructions may enter kernel mode to address privileged registers.
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In user mode code is fetched from the current software subsystem,

and only certain intermediate processor registers may be addressed.

7.3.1.2. Addressing Structure

The intermediate processor enhances the HP2100A architecture in the
following ways. First, the single 32k address space in extended into a
virtual space of 2731 words. This consists of 2716 separate address
spaces, in the sense described in Chapter 5, each of 32k words. While a
full scale capability system would 1ideally require more and larger
address spaces (e.g. 2732 by 2732), the MONADS II addressing range is
sufficient to demonstrate the principles involved and to support a pilot

System .

Second, the 1intermediate processor supports 16 sets of new
registers, and so can efficiently support process-switching between 16
processes. Each register set includes 16 standard capability registers,
six special capability registers intended to address code, constants,
base leaf links, and scalars on the stack (there are three registers for
this task), eight modifier registers for addressing relative to
capability registers, and eight associated counter registers which can
be used for efficient 1loop control. In addition, various control

registers are provided to support timers, interrupt handling, etc.

7.3.1.2.1. The Capability Registers

The intermediate processor provides each of the 16 processes
executing on the HP2100A with 16 capability registers for addressing
segments of memory. Each register is composed of 4 16 bit words, as

follows:

1: Address space number - 16 bits
2: Displacement within address - 15 bits
word 3: Length of segment - 16 bits
4: Access bits - read, write, kernel, invalid - 4 bits

The address space number defines one of the 64k byte addressing
regions in virtual memory. The displacement is used to mark the start of
the segment in the address space. The length field marks the end of the

segment 1in the address space. The read and write bits determine whether
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the segment may be read from or written into. The kernel bit specifies
that the segment may only be addressed if the processor is in kernel
mode. The invalid bit prevents the register from being used, and is set
when a register 1is wuninitialized. A capability register can only be
loaded when the processor is in kernel mode (e.g. executing a 1load
capability register instruction) and thus its contents are protected
from corruption. Because the HP2100A only has 16 bit data pathways, four
write cycles are required to set up each register. The HP2100A microcode
provides a load capability register instruction of the type discussed in
Chapter 5.

A capability register may be used as an operand of any of the
HP2100A memory reference instructions. When used, the 31 bit address 1is
treated as a paged virtual address. The displacement field 1is checked
against the 1length field, and an interrupt is sent to the HP2100A 1if a
violation occurs. If the mode of access 1is contrary to the read or write
bits, or the kernel bit is set and the processor is not in kernel mode,

or a register is invalid, an interrupt 1is sent to the HP2100A.

The displacement held in the register may be modified by two
different methods. In the first, a small constant offset in the range O
= 7 may be dynamically added to the value in the register. Alternatively
a value held in a modifier register can be used to index into a segment

defined by a capability register.

7.3.1.2.2. The Modifier Registers

The intermediate processor provides each process with eight
modifier registers. A modifier may be combined with a capability
register to dynamically address data relative to the capability. The
modifier may be treated as containing either a word offset or a byte
offset. If a word offset is specified, the contents of the displacement
field of the capability is added to the modifier and, subject to checks
on the length field and the access field, a word of data is referenced.
If a byte offset 1s specified, the modifier is converted to a word

offset and the designated byte is transferred to or from store.

Modifier registers are particularly useful for searching and
scanning through segments of store. A set of associated counter

registers assists in counting loop iteratioms.
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7.3.1.2.3. The Counter Registers

Associated with each of the 8 modifier registers 1is a counter
register. These registers may be set to an initial value and used as
loop control registers. Special 1instructions are provided by the
intermediate processor for manipulating a modifier and associated

counter as follows:

(1) set the counter register to a value
set the modifier to zero.

This instruction 1s useful for initializing a loop counter.

(2) add 1 to a counter register
add 1 to a modifier register
return the contents of the counter.

This instruction may be used for keeping track of the number of

loop iterations performed whilst stepping through a segment.

7.3.1.2.4. Extra Capability Registers

Special capability registers are provided for addressing code, a
frame of scalers on the stack, a set of constants and the HP2100A
address links. These items are addressed by extra capability registers,
rather than the 16 general capability registers, because of
peculiarities of the HP2100 processor and for efficiency reasons, and
consequently differ slightly in format to the general capability

registers.

The register used for addressing code 1is formed by the
concatenation of the HP2100A program counter with a code address space
regisfer. The code register differs from the capability registers by not
checking the bounds of the reference and also by not checking the access
rights. When the processor was first built, the software group
assoclated with the MONADS project decided that all the code of a
subsystem should reside in a large single unit within the code address
space. Consequently, bounds checking was not required, and could be
safely removed. Subsequent work has revealed that this is not
satisfactory, and that code should be constructed from protected

segments. In the new scheme, the code address space register would be
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formed from one of the general capability registers. Similarly, because
no mechanism allows a program to write to its own code address space,
there 1s no need to validate the access rights. Thus, code 1is not
addressed by the capability registers more for historical reasons than

any logical reasons.

Three capability registers are wused for addressing the process
stack; one defines the top of the computational area, and the other two
define local variable stack frames. Whilst logically the same format as
the general capability registers, these three registers differ slightly
in physical format. Because all require the same address space number,
namely the current stack address space number, they may share the one

register.

Another capability register allows a program to directly address up
to 512 constants without the need for a modifier register. Because only
a small constant offset may be specified from a capability register
(i.e. 0-7), modifier registers must often be used to address scalers in
large segments. The offset of the scaler can be held in the constants
segment, which can then be addressed via the special constant capability
register. Because of the special nature of these constants, a full
capability register 1is not required. In a processor which allowed a
larger constant offset relative to the start of a segment this register
would not be required, and 1s only needed because of the small

addressing range of the HP2100A source processor.

The last special capability register allows a program to address up
to 512 address links. These links are required by the HP2100A to address
all of its 32k word address space, and are usually only needed when an
instruction wishes to transfer control out of the leaf in which it
resides. Because of their special significance, and the way that they
are addressed, a general capability register 1s not required. In a
processor which did not require address links this register would not be

needed.

loéolozoéc Summarz
The intermediate processor allows a program to address the virtual

space by either the 16 capability registers or the six extra capability

registers. No other addressing mechanisms exist. The six extra
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addressing registers differ only 1in physical format from the 16
capability registers, mostly because of the addressing restrictions of
the HP2100. Accordingly, the intermediate processor may be considered a
real implementation of the model cited in Chapter 5. The processor also
pc3sesses a number of other features which assist the MONADS software,

which we will now describe.

7+3.1.3. Process Changes

All of the registers described so far are held 1in an internal
2gister file of the 1intermediate processor. Most of these registers

pertain to a particular process.

In an operating system which applies the in-process technique even
to job management (Ramamohanarao, 1980), such as the MONADS system, the
number of processes present at any time is quite small, ‘as no other
system processes exist. Consequently, the MONADS II hardware currently
provides 16 sets of registers (although this number is easily expanded).
When a process switch occurs, an intermediate processor instruction
switches all of the registers, allowing very efficient process changes

to be executed.

7.3.1.4. The Kernel

Embedded in the intermediate processor is support for the MONADS
hardware kernel (Rosenberg, 1979; Wallis, 1980). This body of code 1is
responsible for providing high level support functions for the software,
for managing I/0 functions, for memory management and for responding to
interrupts. The kernel code 1is activated when the processor enters
kernel mode. The intermediate processor assumes that the kernel code 1is
held in address space number 1, and a software convention dJdedicates

process register set zero to the kernel.

7.3.1.5. Control Registers

The intermediate processor includes a number of other registers
which are required by the operating system. A mask registers returns the
cause of the last violation interrupt. A number of time registers
provide the time since bootstrap and process time limits. A register
which counts the number of instructions executed assists 1in monitoring

process behaviour.
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l.é._l_._6_. Additional Features

Whilst we have now described the most important features of the
intermediate processor, a number of other support features are also
provided. These are described in detail in Appendix A. In addition, a
large amount of HP2100A microcode provides instructions, including load

capability register, and these are discussed in Wallis (1980).

12_2_ Address Mapping

It will be recalled from Chapter 6 that the technique proposed 1in
the processor enhancement model for addressing extensions to the source
hardware (e.g. capability registers) involves setting aside certain
addresses in the source processor’s address space which are

reinterpreted by the intermediate processor.

The address mapping calculations are performed on a 16 bit HP2100A
addresé, constructed from the 15 bits word address and an indirect bit

as the 16th bit. The division chosen is as follows:

0 -777b frame relative to constant capability register
1000b - 1377b frame relative to stack capability register 1
1400b - 2000b frame relative to stack capability register 2

2000b - 76777b code space, relative to code capability register

76000b - 77777b special control 1leaf. This 1leaf contains access
pathways to all of the MONADS II registers and

addressing modes
100000b - 100777b frame relative to links capability register

101000b - 177777 indirect forms of addresses 1000b - 77777b

Note: The character ’b’ denotes the use of the octal

number system.

Using this allocation, the HP2100A memory reference 1instructions
can easily address the constants, links and stack frames by setting the
base leaf bit to zero. To simplify addressing the special control 1leaf,
the HP2100A has been modified so that any instruction with the current
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leaf bit set, except the jump instruction, produces an address 1in the
special control leaf rather than the current 1leaf. Thus, the
base/current leaf bit of the instruction is reinterpreted as a base or
special 1leaf bit. Because it is not sensible for data instructions to
address the code space, the current leaf mode is only required for jump
instructions. In addition, the special control leaf, like any leaf, may

be addressed via a link word.

The interpretations of the addresses within the special control
leaf vary greatly, and are found 1in Appendix B. Access to all the
capability registers, modifiers, counters and control registers 1is
gained through this 1leaf. In addition, access to the memory via the
capability registers and stack registers may be gained through this
leaf . The next section examines the implementation of the intermediate

processor.

BN

e3.3. Implementation Details

I~
Jw

«3.1. The Intermediate Processor Bus Structure

The intermediate processor is based around a 16 bit bi-directional
data bus, as shown in Figure 7.2. Attached to the bus are a number of

units, namely:

(1) Various individual dedicated registers (shaded 1lines in
Figure 7.2)

(2) A high speed arithmetic unit and accumulator (shaded dots
in Figure 7.2)

(3) A register file (unshaded in Figure 7.2)

Units may claim the bus for the duration of one microcycle, and
either read a 16 bit pattern from the bus or place a 16 bit pattern on
the bus. The 32 bit registers are implemented as two, individually
addressable, 16 bit registers. The next section examines the role of

each of the dedicated registers.
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Figure 7.2 - the intermediate processor structure
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7.3.3.2. The Dedicated Registers

Unlike many of the registers of the MONADS II system, certain
internal registers require dedicated hardware support. Consequently,
these are not held in fast register memory, but are allocated individual

registers. Fifteen such registers exist, namely:

(1) An address space descriptor

(2) A displacement descriptor

(3) An access control descriptor

(4) Two watchdog timer registers

(5) Two instruction counter registers
(6) Two display registers

(7) Two time registers

(8) A process number register

(9) The HP2100A memory address register
(10) The HP2100A memory data register

(11) A violation mask register

7.3.3.2.1. The Descriptor Registers

The first three registers, the address space descriptor, the
displacement descriptor and the access descriptor, are used for
addressing the virtual memory. They can be loaded with the contents of a
capability register (held in the register file) and are always available

for the memory manager.

When a memory reference is requested, the address space descriptor
and displacement descriptor are concatenated to form a 31 bit virtual
address. At the same time, the bit pattern held in the access register
is wvalidated against the mode of access. The bit set of the access
register is identical to that of the access field of a capability

register, and thus includes read, write, kernel and invalid access bits.
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7.3.3.2.2. The Watchdog Timer Registers

The watchdog timer registers are concatenated to form a 31 bit
timer register. If the most significant bit 1s clear, the timer
decrements its value every millisecond, until zero. When a zero value is
reached, an 1interrupt 1s sent to the HP2100A. If the most significant
bit of the timer 1s set, then the count 1is inhibited. This register 1is
used to alert the operating system when a process has exhausted its time

allocation.

7.3.3.2.3. The Instruction Counters

The two instruction counter registers are concatenated to form a 32
bit .instruction count. Each time the HP2100A enters a fetch instruction
phase the counter 1s incremented. This counter 1is useful for monitoring

process behaviour.

7.3.3.2.4. The Display Registers

The display registers allow the intermediate processor to display
16 bit values, 1in octal, on the front panel of the processor. In
addition, one of the display registers may act as an index register'into

the register file.

7.3.3.2.5. The Time Registers

The time register displays the number of milliseconds since the
internal processor was initialized. This 32 bit count allows programs to

accurately time events.

7.3.3.2.6. The Process Number Register

The proces: number register is used to select which bank of the
register file 1s made visible. A context switch consists mainly of

changing the value held in this register.

7.3.3.2.7. The HP2100A Memory Address Register

This register is held within the HP2100A and is used to determine
which function should be executed by the intermediate processor. In

addition, the register contents may be placed on the intermal bus.
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7.3.3.2.8. The HP2100A Memory Data Register

Like the memory address register, the memory data register is held
in the HP2100A, and may be loaded or read by the intermediate processor.
It is this register which forms the data communication path between the
HP2100A and the intermediate processor.

7.3.3.2.9. The Violation Register

The violation register holds a bit map in which each bit indicates
the cause of an interrupt, which may be examined by the operating system

kernel.

7.3.3.3. The High Speed Arithmetic Unit and Accumulator

The arithmetic and logic unit (ALU) is attached to the bus, and
allows high speed arithmetic and 1logic operations to be performed
between two inputs. One of the ALU inputs is permanently tied to the
bus, whilst the other may either be connected to the accumulator, or one
of seven predefined constants. The output of the ALU is returned to the
accumulator via a shifter. The value of the accumulator may later be

placed onto the bus.

A comparator is always actively comparing the two 1inputs of the
ALU. The ALU 1is capable of ADD, SUBTRACT, AND, OR operations and of
LEFT or RIGHT shifts.

7.3.3.4. The Register File

Most of the registers described in section 7.3.1 (for example the
capability registers, counter registers, etc) are held in the register
file. When a register value is requested, the appropriate entry is read,
and the data 1is placed onto the bus. Those registers which require
hardware assistance have their data copied from the register file into

the dedicated registers.

Each bank of registers holds 128 x 16 bit values. When the process
number register 1s altered, a different bank 1in the file is made
visible. When a context change 1is executed, those register values held
in the dedicated 15 registers are copied back to the file. Because the
128 process own registers are only logically switched, rather than

physically moved, very fast process switches are possible.
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7.3.3.5. The Control Unit

The intermediate processor 1is controlled by a micro-programmed
state machine. The control store consists of 1024 x 24 bit micro-
instruction words, 512 of which are devoted to implementing the MONADS
II instruction set and 512 for debugging and diagnostic instructions.

When the HP2100A 1issues a memory request, the HP2100A memory
address register 1s mapped 1into a microcode entry point value, and a
stream of microcode 1is executed. When an end-of-instruction micro-

instruction is executed control is returned to the HP2100A.

Each micro-instruction 1is composed of 7 fields for controlling bus
activity, ALU function and interrupt generation. The format is described
in Appendix C, along with the MONADS II microcode listings.

7.3.3.6. Summary
Section 7.3 has described the functionality and structure of the

intermediate processor. Further details may be found in the appendices.

1.4. The Memory Manager

The intermediate processor develops a 31 bit virtual address, which
must be translated into a main memory address. This task is performed by

the MONADS address translation hardware, which we now describe.

BN

o4.1. Functionality

I~
| &

.l.1. Nature of the Problem

In Chapter 3 we described the address translation mechanisms
commonly used for mapping paged (or paged and segmented) virtual

addresses onto paged main memories. The schemes were divided into four

categories: -

1 - Systems with small virtual memories
2 - Systems with small main memories

3 - Systems with large virtual memories
4

- Systems with very large virtual memories

The MONADS II system, like other capability based architectures,
belongs to the fourth category. In Chapter 4 we explained why the
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conventional solutions to category 4 systems cannot be wused in
capability based addressing schemes. Those solutions which are
effective, however, are assocliative address translation mechanisms, such
as those of MU6-G (although this machine is not capability based) and
the IBM System/38. Consequently, the MONADS II system also wuses an
associative translation mechanism, but employs a different

implementation technique to the MU6 system and the IBM System/38.

7.4.1.2. Aims of the MONADS II Address Translation

The MONADS II address translator has been designed to fulfil a

number of aims, as follows:-

-~ The mechanism used must employ an associative technique, for

reasons explained in Chapters 3 and 5.

- The unit must only hold entries for those pages of virtual
memory actually present in main store. This criterion reduces the
number of entries required and makes the table size proportional to

the size of the main memory.

- The unit should indicate a page fault for any page not present

in memory.
- The unit must be fast.

~ The unit should be self contained and not require software
support for translating addresses. This is necessary so that the
limited power of the Hf?loo_source engine is not wasted on address

translation.

- Operating and loading the unit should be well defined and easy
to execute 1in software, again to avoid wasting the power of the

HP2100.

A large associative memory is capable of achieving all of these
aims. However, such memory is not currently available. The MONADS II
scheme attempts to emulate the functions of an associative memory and

thus fulfil these primary aims.

CHAPTER 7 AN IMPLEMENTATION



- 156 -

7.4.1.3. The MONADS II Address Translation Hardware

The MONADS II virtual address can be interpreted as being composed
of three fields: an address space number, a page number and a within
page displacement. The address space and page numbers are concatenated
to form a virtual page number, which must be translated into a main
memory page number. The displacement 1is removed from the virtual
address and forms part of the main memory address. Any address 1is
either translated into a physical memory address or causes a page fault

interrupt to occur.

Figure 7.3 shows the logical organization of the address
translator. A high speed sparsely occupied hash table with embedded
overflow chains is used to emulate a large associative memory. Each
hash table entry consists of a valid field, a virtual page number field,

a main memory page number field, and a link field.

During the translation of an address, the address space and page
numbers are hashed to produce a uniformly distributed hash table cell
address. The virtual page number field of the hash table entry is
compared with the virtual page number being translated. If they are

.equal and if the cell is valid, the main memory page number is used to
address main store. The 1link field 1is uséd to form a list of all
virtual addresses which hash to the same cell. The 1link £field 1is

followed until the virtual address being searched for is found, or an

[——- valid field

virtual main link |—
page # page #

<

Figure 7.3 - the address translator
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end of chain is found. We will show later that providing the hash table
is sparsely occupied, 1i.e. has more cells than there are pages of
physical memory, this hash table structure emulates a large associative

memory very efficiently.

The retrieval algorithm is the simplest to implement, and 1in the
MONADS II system it is implemented entirely in hardware. Consequently
the address translator can map addresses very efficiently. The
insertion and deletion algorithms are more complex and are implemented
in kernel software. We will now describe the retrieval, insertion, and

deletion algorithms in detail.

7.4.1.4. Retrieval

Retrieval of a mapping cell is performed by the address translation

hardware, and conforms to the algorithm provided in Figure 7.4.

A cell 1s used providing that it is valid and the virtual page
number 1in the cell corresponds to the page number being translated. An
overflow chain is only followed 1if (a) the cell 1is valid, (b) an
overflow chain is present, and (c) the list pertains to the cell itself
(i.e. it 1is not simply part of another list). Condition (c) is detected
by hashing the virtual page number of the cell and validating it against
the cell address. If a virtual address is not found in the hash table,

then a page fault interrupt is sent to the processor.

7.4.1.5. Insertion

Insertion of a page mapping entry into the hash table is performed
when a page 1s brought into main store, and is handled by the kernel
software. The algorithm, shown in Figure 7.5, is slightly more complex
than that of retrieval, and 1is divided into three cases. First, a
mapping entry is being inserted into an empty cell. In this case the
cell is loaded with the mapping information, made valid and the overflow
chain terminated. Second, a mapping entry is being inserted into a cell
which has an overflow chain. In this case, the entry is placed in a
free cell of the table, and is chained into the second position of the
current overflow chain. Third, a mapping entry is being inserted into a
cell which is part of another overflow chain. In this case, the cell is

used in the same way as the first case, but the old contents of the cell
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{form of the hash table)}

type tableentry = record of

begin

vpn: virtual-page-number;
valid: boolean;

rpn: real-page-number;
ov: link-field

end;

var:

vpn: virtual-page-number;
rpn: real-page-number;
table: array[l..size] of tableentry;

i:= hash(vpn);
j:= hash(table[1i] .vpn);

if j <1 or
not table[i] .valid then error(‘page fault’);

while table(i] .vpn <> vpn and
table([i] .ov <> nil
do i:= table[1i] .ov;

if vpn = table[i] .vpn

then rpn:= table[i] .rpn
else error(‘page fault);

end.
Figure 7.4 - the retrieval algorithm

are placed in another free cell of the table. The overflow chain of the

foreign cell is then updated to point to the new free cell.

J+4.1.6. Deletion Algorithm

A map entry is deleted from the hash table when a page 1s removed
from main store, and 1is again handled by the kernel software. The
algorithm is divided into three cases, shown in Figure 7.6. First, the
entry being deleted 1is 1in the correct cell of the table and has no
overflow chain. In this case the cell is made invalid. Second, the

entry being deleted is in the correct cell but has an overflow list. 1In
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¢= hash(vpn);
:= hash(table[1] .vpn)

if 1 <> j and table[i] .valid

then begin {a foreigner is in home cell}

{insert new page and banish foreigner}

{category 3}

while 1 <> j begin lastj := j; j := table[j] .ov end;

{banish j}

new := freecell;

table[new] .vpn := table[1i] .vpn;
table([new] .rpn := table([i] .rpn;
table[new] .ov := table[i] .ov;
table[new] .valid := true;
table[lastj] .ov := new;

{load in new page}

table(1i] .vpn := vpn;

table[1i] .rpn := rpn;
table[i] .ov := nil
end
else

if table([i] .valid

then begin {chain in after this cell}

{category 2}
new := freecell;
table[new] .vpn := vpn;
table[new] .rpn := rpn;
table[new] .ov := table[i].ov
table([new] .valid := true;
table(1i] .ov := new
end
else
begin {cell is 1invalid}
{category 1}
table(1i] .vpn := vpn;
table(1i] .rpn := rpn;

table[i]) .ov := nil;
table[1i] .valid := true
end;

end;

Figure 7.5 - the insertion
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begin
home :=h
i ¢= home;
A ¢t=h

if 1 <> j or not table(1i] .valid then error (‘not present’);
{try to find the page in the table}

while table[i].vpn <> vpn and
table([i] .ov <> nil do
begin lasti := 1; 1i:= table[i] .ov end;

if table[i] .vpn <> vpn then error (‘not present’)
else begin {page is found)}
if 1 <> home then ({page is part of 1list}
{category 3}

begin
table[lasti] .ov := table[1] .ov;
table[1i] .valid := false

end
else begin {page is in home cell}
k := table[1] .ov;
if k <> nil then ({there is a list}
{category 2}
begin ]
table [home] .vpn := table(k] .vpn;
table[home] .rpn := table[k] .rpn;
table[home] .ov := table[k] .ov;
table(k] .valid := false
end
else {category 1}
table[home] .valid := false

end
end

end.
Figure 7.6 - the deletion algorithm

this case, the next entry of the list 1is copied into the head of the
list, and the old cell made invalid. Third, the entry is found within
an overflow chain. In this case, the cell 1s made invalid and 1is
removed from the chain. The cell which previously pointed to the
deleted cell is changed to point around the cell.

7.4.2. Implementation Details

The address translator is built as a stand alone piece of hardware.
The 1interface consists of an incoming virtual address, an outgoing main

memory address and a page fault signal, shown in Figure 7.7.
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<

page fault

> >
31 bit virtual 22 bit main
address memory address

Figure 7.7 - the virtual address tramslator

7.4.2.1. Internal Structure

The hardware consists of three distinct components, a hashing unit,
the hash table and a comparator, shown in Figure 7.8. These three areas
are controlled by a fast finite state machine, which performs the

retrieval algorithm.

7.4.2.2. Hashing Unit

The hashing unit accepts a 22 bit virtual page number and generates

a 10 bit uniformly distributed index into the hash table. The current

—>
9 bit displacement
>
hashing 12 10 3 1 1 1 13
—>| unit |~——ee==>| bits|{bits|bits|bit|bit|bit} bits
— virtual page no
link field >
access control field —>
valid bit >
foreigner bit >
end of chain bit >
physical page number >
A
—>| comparator
EQUAL ? > page fault
no

Figure 7.8 - the hash table format

CHAPTER 7 AN IMPLEMENTATION



- 162 -

hashing unit assumes a simplistic form and merely extracts the low order
bits of both the address space number and the page number. More complex
hashing algorithms can produce a better randomising effect for 1little
extra cost, and may be included in later versions of the hashing unit if

necessarye.

7.4.2.3. The Hash Table

The hash table differs slightly in format from the table described
in 7.4.1. The unit is held in high speed bipolar memory, with a cycle
time of 50 nano-seconds. Each cell of the hash table is 41 bits in size
and the current version of the hardware uses 1024 cells. (This size
hash table can easily support the 400k bytes of main memory attached to
the system, as we will see later). The seven fields of each cell are as

follows:-

1 - wvirtual address 1identifier - 12 bits
2 - physical page number - 13 bits
3 - Access field - 3 bits
4 = valid field (V) - 1 bit
5 - 1link field - 10 bits
6 = foreigner field (F) - 1 bit
7 -~ end of chain field (E) - 1 bit

7.4.2.3.1. The Virtual Address Identifier

This field 1is used to identify the virtual address which wuses the
cell. The field 1s only 12 bits in length as the 10 bits used in the
hashing function need not be saved. The identity of the virtual page
may be recovered by combining the 10 bit cell address and the 12 bit
virtual address identifier field. All the information held in the cell

pertains to this virtual address.

7.4.2.3.2. The Physical Page Number

This field is used to hold the page number in main memory of the
virtual page. This number is combined with the displacement to form a

full 22 bit main memory address.

7.4.2.3.3. Access Control Field

The access control field governs the type of access which the page,

as opposed to the segments within the page, may receive, such as read,

CHAPTER 7 AN IMPLEMENTATION



- 163 -

write and kernel. This field is not normally required, because such
access checks are made by the capability registers. However, because
some of the extra capability registers lack an access control field (for
implementation reasons), one is placed in the hash table. Consequently,
if a segment 1is addressed via one of the general capability registers,
the access rights field is validated for both the capability register
and the page of memory. If either one of these checks fails a violation
interrupt 1s generated. Thus, 1if several segments are loaded into one
page, the page access must be the union of the access rights of all of
the segments. For example, if a capability to a segment has an access
of read only, and another capability has an access of write only to a
different segment 1in the same page, then the page must have both read

.and write access.

7.402-3-40 Valid Field

This boolean field declares a cell to be wvalid. When the hash
table 1s 1initialized, all cells are invalid. However, when page map
entries are loaded into the table, cells become valid. The hardware

ignores the contents of an invalid cell.

7:4.2.3.5. The Link Field

This field contains the address of the next cell in a 1list. The
last cell of the 1list is linked to the head, so that the software can
find the home cell. A special field (rather than a nil value) signifies -
the end of a list.

7.4.2.3.6. Foreigner Field

Because the virtual address identifier field does not contain all
the bits of a virtual page number, it is not possible to determine
whether a cell is part of another 1list or belongs at 1its current
address. The foreigner bit is set if the virtual page number would not
hash to the cell address at which the mapping information 1is held.
Thus, all cells which are part of a list, except the head, are tagged as

foreign cells.
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7.4.2.3.7. End ﬁ Chain Field

This boolean field declares a cell to be at the end of a list. It
is required because no special null value is reserved for the link
field. This also allows the last cell of a chain to be 1linked to the
top of the list and yet still be recognized by the hardware as the last
cell.

7.4.2.3.8. Summary

The cell format in the actual address translator differs from that
described 1in section 7.4.1 by the addition of the access field, the
foreigner field and the end of chain field. The foreigner field 1is
required because the virtual page field is smaller than the size of the
virtual page number. This optimization represents a saving of 9 bits.
The end of chain field is required because no special null address is
reserved. The access field is not logically required, but 1is present
- because some of the extra capability registers are not of the same

format as the 16 standard registers provided.

7.4.2.4. The Comparator

This unit tests the virtual address identifier field, and those
bits of the virtual page number not used by the hashing function, for
equality. If equal, the physical page number field value is used as the

translated page number.

7+4.2.5. The Finite State Control Machine

The hash table, hashing unit and comparator are controlled by a
small finite state machine. This machine 1is designed to follow overflow
chains and detect various page fault conditions. The flowchart shown in

Figure 7.9 describes the cycle of the machine.

When a virtual address requires translation the machine is started.
The cycle either retrieves a main memory page number from the hash

table, or exits with a page fault condition.

7.4.2.6. The Software Algorithms

The algorithms used for inserting and deleting items from the hash

table are basically the same as those described in 7.4.1. However,
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Figure 7.9 - the hardware retrieval algorithm

because the actual table format differs slightly, the algorithms also
differ slightly. The foreign bit simplifies the steps which determine
whether a cell belongs at a particular address. The modified algorithm
only needs to test the value of this field, rather than hashing the
virtual page number held in the cell. The end of chain bit must be
tested rather than examining the link field in order to determine if a
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chain has ended. The last item in a list must be chained to the head of
list, so that the algorithms can find the head of any list. This was
previously determined by hashing the virtual page number held in a cell.

In all other respects, the algorithms remain unaltered.

7.4.2.7. Communicating with the Hash Table

To the software responsible for initialising and maintaining the
data 1in the mapping hardware, the hash table and associated registers
appear in a special address space, the memory control address space
(number zero). Values may be saved into or read from the various fields
of the hash table by executing memory reference instructions on this
address space. The contents of the hardware tables are protected by the
normal capability addressing mechanism. The format of the memory

control address space is defined in Appendix D.

~7.4.2.8. Address Spaces 1, 2, 3 and 4

Four of the 2716 address spaces are not mapped by the hash table
address translator, but by directly indexed map tables, held in high
speed bipolar memory. Address space 1 holds the code of the kernel,
whilst address space 2 is reserved for the kernel data. Address spaces
3 and 4 are reserved for the two DMA channels. Because the kernel
itself must handle the page replacement and mapping algorithms and it
has its own locked down pages, the kernel is mapped by its own address
translator. Whilst not strictly necessary, this decision simplifies the
memory management. Moreover, the directly indexed tables can translate
an address in unit time, unlike the hash table in which the translation
time varies depending on the chain length. This timing consideration is
not of consequence for norual programs, but is extremely important for
the DMA channels, which must receive immediate and fast attention, when
addressing a fast device (such as disk). It 1is also desirable that the

kernel program execute as fast as 1s actually possible.

Another reason for the inclusion of the special map tables is that
they significantly simplified the hardware development. A base level
address translator was available, and allowed the processor to execute
‘kernel 1like’ test programs before the hash table unit was debugged.
The map tables for these address spaces are also referenced via address

space zero, the format of which is found in Appendix D.
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7.4.2.9. The Peek Operation

For an efficient implementation of the page replacement software it
is 1important to determine whether a page reference would cause a page
fault to occur, without actually generating a page fault. Whilst this
software could execute a software retrieval algorithm, the hardware
provides a fast mechanism which allows an instruction to test for a page
fault. This 1is 1implemented by means of a special bit in the access
field of a capability register, which, if set, causes the page fault
interrupt for the reference to be 1inhibited. The program may then
examine the violation register (see section 7.3.3.2.9) to determine
whether an interrupt would have resulted. For security reasons, the
peek operation only inhibits the actual interrupt if a fault condition
exists; the reference is still aborted, whether or not the peek bit is

set.

7+4.2.10. Performance of the Address Translator

A potential danger with using a hash table is that the number of
collisions (or clashes), to any one cell and the average chain length
may become unacceptably high. Acceptable performance can, however, be
obtained 1f the hash table 1s sparsely occupied (1.e. a low loading
factor). Providing that the hashing unit generates a uniform
distribution of hash keys, the expected number of probes (E) to retrieve

an item in the hash table can be calculated from:

E=1+ a/2 where a is the loading factor (Morris, 1968)

The current version of the MONADS II processor uses a hash table
size four times the number of pages of physical memory (i.e. a = 1/4),
so E=1+1/8 = 1.125, which is acceptably low. In a true associative

memory E = 1.

The hash table performance is also affected by the efficiency of
the hashing function, which should guarantee a uniform distribution of
hash keys. The current version of hashing unit uses a combination of
low order bits from both the address space number and the page number.
Should this function yield poor results, experiments may be made with

more complex hashing functions, such as the one used in the IBM
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System/38 (IBM, 1978).

Figure 7.10 shows the timing delays inherent 1in the Series II
address translation unit. It can be seen that the minimum access time

(t min) will be

t =0+ 50 + 50 + (300 ~ 700) ns
min
= 400 ~ 800 ns
On average
t = (400 ~ 800) + (E-1) x 100
av

412 ~ 812 ns

The variation in the main memory time is dependent on the cycle stealing

of the refresh hardware for the dynamic memories used.

To maintain acceptable performance, the value E must be kept low.
Thus when additional main memory is added the hash table size must be
expanded proportionally. This increase in size does not necessarily
affect any of the fields within the hash table. If the hash table 1is
divided into blocks, links may be restricted to the >block’ of hash
table in which they exist.

The MONADS II virtual address size is only 31 bits in size, whereas
other capability processors use a much larger address. If the MONADS II
address were expanded to 64 bits, the size of each cell 1in the hash
table would 1increase from 41 bits to 73 bits. This increase is less

link chain

hashing |--> hash comparator -J main
function p—>] table |-> ——>| memory

|<- 0 ns =—>|<= 50 ns =>|<— 50 ns >[<=300 ~ 700 ns=>|

Figure 7.10 - the address translator timing
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significant than doubling the size of main memory, i.e. adding a bit to
the hash key. Thus, the address translator is relatively unaffected by

changes in virtual address size.

Performance of the hash table may be optimized by overlapping the
comparison of the virtual page identifier in the current cell to the
virtual page number, with the fetch of the cell linked to the current
cell. This optimization, however, has little effect if the value E-1 is

low.

7.4.3. Alternative Solutions

Only two other computers have attempted to translate long virtual
addresses without using the conventional solutions, one 1is the MU6-G
processor described in Chapter 3 (which provides a hardware associative
address translator unit) and the IBM System/38, described in Chapter 4

(which uses a pair of main memory hash tables with firmware assistance).

The MU6-G processor uses a serial associative memory, with an
average retrieval time of 6 micro-seconds. This unacceptably high time
is reduced by a small pseudo-associative cache memory. The IBM
System/38 uses a microcoded loop to search a hash table for a page table
entry which, since the tables are held in main memory, 1is bounded 1in
time by the memory access time. Again, this translation process is
augmented by a small pseudo-associative cache memory. Thus, both these
processors require two address translator wunits, and microcode (or

hardware) for loading and maintaining the cache memories.

The MONADS II processor uses one hardware address translator, and
needs no microcode assistance for translating addresses. Moreover, the
technology used in the construction of the hash table, and thus the
cost, 1s 1little more than that of the cache memories used by the other
two systems. Thus, the overall complexity of the MONADS II system 1s
less than either the MU6-G or the IBM System/38.

Not only is the technology of the hash table the same as that of
the cache memories, but the overflow chains are contained within the

table, without the need to address the slower associative tables.

Consequently, one could expect the MONADS II translation unit to

offer at least equal, or superior performance to the MU6-G or System/38
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translation units.

7.4.4. Conclusions

We have now described both the functionality and implementation of
the MONADS 1II virtual address translator. We have demonstrated that
this unit can offer equal or superior performance to the other available
units (MU6-G and IBM System/38) and is slightly simpler in design. The
technique chosen can easily cater for a larger virtual address, without
significant increase in cost and no real increase in complexity. The

unit fulfils its aims (section 7.4.1.2)
= 1t uses an associative address translation technique

- 1it only maps-pages of virtual memory which are present in

mainstore

= the unit generates a page fault for any page not present in

mainstore
- the unit 1is fast

- software assistance is only required for ~performing insertions
and deletions. Whilst these algorithms are more complex than the
retrieval algorithms, they are only performed when the processor
discovers a page fault, an inherently slow operation which can be

performed in parallel with the insertion or deletion

- loading the address translator is easy.

The next major section examines the changes made to the HP2100

source processore.

7.5. Modifications to the HP2100A Hardware

One of the advantages of the enhancement technique described in
Chapter 6 1is that it requires very few changes to the hardware of the
source processor. In reality, six small modifications to the HP2100
were required, partly for 1logical reasons and partly to enhance the

efficiency of the processor. These changes were not complex.
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7.5.1. The Memory Controller

The basic HP2100A processor 1is divided 1into three areas; the
central engine, the input-output system and the memory unit. The latter
consists of up to 32 k words of core memory, many driver cards and a
logic controller card. The logic controller card generates the timing
signals for the core stack, and also contains the memory data and

address registers.

The controller card was replaced by a plug compatible, but much
simpler, card which interfaces the HP2100 to the intermediate processor.
The memory data and address registers are made available to the
intermediate processor via an 1interface cable, which connects the

processor to the HP2100A.

7.5.2. DMA Logic

Unfortunately, the DMA system used by the HP2100 has full knowledge
of the timing and nature of the processor. When the DMA system requires
a cycle, it requests the next processor transfer cycle, and without
checking the response assumes that the cycle may be used. It also
manipulates the major processor buses when transferring data. Thus,
when the intermediate processor interface was introduced the DMA logic
was also changed to accommodate the new logic. The DMA 1logic bypasses

the intermediate processor, and interfaces directly to the memory

manager .

7.5.3. More Writable Control Store

The basic HP2100 only allows 512 x 24 bit words of writable control
store. In order to efficiently implement the MONADS operating system,
thc size of the control store was expanded to 4096 wecrds. This

modification was carried out by Dr. J. Rosenberg.

71.5.4. Mapping to Top Leaf

The HP2100 memory reference instructions can easily address the
base leaf and the current instruction leaf. Whilst special address
interpretations are placed on the base leaf, it was not sensible for
data manipulation instructions to address the current instruction leaf,

as this only contains code in the new architecture. To simplify the
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addressing of the top leaf, which has very many address interpretationms,
the current leaf data instructions were altered to address the top leaf.
Only the control 1instructions, such as jumps, can address the current

code leaf.

7.5.5. Interrupt Logic

The interrupt logic of the HP2100 was modified to allow the
intermediate processor to abort an 1instruction after a fatal error.
This allowed page faults to be trapped correctly. In addition, the
interrupt vector was moved from the base leaf to the first leaf of the

kernel code space.

71.5.6. Asynchronous Interface

The basic HP2100 assumes a standard delay time for the core memory
cycle time. Because the intermediate processor takes a variable amount
of time to execute different sized instructions, the HP2100 was modified

to allow it to wailt for a memory acknowledge signal before continuing.

7.5.7. Summary

Most of the changes made to the HP2100 were relatively small and
easy to implement. The most complex change was to the DMA logic, mainly

because of its poor initial design.

71.6. Software Packages

During the development of the MONADS II hardware a number of
software packages were developed by the author. These packages either
formed an integral part of the processor, such as the microcode for the
intermediate processor, or asssted the construction of the hardware and

firmware. This section will briefly describe these modules.

7.6.1. The Intermediate Processor Microcode

The 1024 words of intermediate processor microcode are generated
from a microcode source file of about 1400 1lines of code. This
microcode 1s responsible for executing the target 1instruction set,
performing diagnostic functions and for configuring the processor map
tables prior to bootstrap. A full 1listing of the code 1is found in

Appendix C.
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7.6.2. The Microcode Assembler

The intermediate processor microcode 1s assembled by a microcode
assembler, written for the HP2100A minicomputer running under the DOS-M
system. The assembler generates a compiled 1listing, code files, a

symbol table 1listing and an entry point listing.

7.6.3. The Bootstrap

A number of levels of bootstrap are provided. The lowest level 1is
implemented as a microcoded instruction in the intermediate processor.
The next level is held in read only memory of the virtual space, and 1is
written 1in assembler. The 1last level is held on disk, and loads the
operating system into memory. The middle 1level bootstrap may also

communicate with another HP2100 and act as a fast link monitor.

7.6.4. Utilities

Various wutilities were developed, such as a PROM programmer

program, and a signal cross reference generator.

J.7. Conclusion

This section concludes the description of the MONADS II system, and
demonstrates that the system has fulfilled its primary aims.

(1) The 1intermediate processor provides a programmer with 16
capability registers. Software has been written which uses these
registers and microcode exists which maps the registers onto the MONADS
addressing structure. The registers are held in a fast register file,
and receive hardware assistance when they are used (for example, the
access descriptor register checks that the mode of access 1is not
contraQened.) Thus, 1t 1s possible to efficiently implement the
addressing structure. All the HP2100 memory reference instructions can
address the 31 bit virtual space by using only the 4 bit capability
register number. Thus, the registers can be efficiently addressed.
Moreover, whilst the intermediate processor provides extra registers for
addressing code and the stack, some of the 16 capability registers could
have easily been dedicated for these purposes. Consequently, the MONADS
I1 system demonstrates the practicality of the capability register

addressing scheme proposed in Chapter 5.
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(2) Software is at this present time being developed for the MONADS
II processor. The repertoire of programs consists of a macro assembler,
a Pascal compiler and a Modula compiler, and many test and diagnostic
programs. An operating system is being developed which will allow the
system to be used as a development testbed. Since the MONADS II system
is basically a scaled down implementation of the MONADS architecture, it
may be used to develop software using the MONADS concepts.

(3) The enhancement technique developed in Chapter 6 has clearly
been demonstrated as practical and powerful. The MONADS II processor is
based around a very simple 16 bit minicomputer and yet it provides an
advanced architecture to the assembler level programmer. The building
of the intermediate processor was demonstrably simpler than developing a

totally new processor.

(4) The MONADS address translation hardware is capable of mapping
very 1large virtual addresses onto main memory addresses quickly and

simply. The scheme compares very favourably with alternative solutionms.
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8. Conclusion

This chapter serves three purposes. First, we discuss some of the
limitations of the MONADS II computer system. Second, we indicate areas
in which future research will be wuseful. Third, we evaluate the

significance of the work described in this thesis.

8.1. Limitations of the MONADS II System

The MONADS 1II computer system, while representing a real
implementation of the two models developed in this thesis, has a number
of limitations. We now discuss these, and consider how they might be

removed.

8.1.1. The Address Size

As described in Chapter 7, the MONADS II address is 31 bits 1long,
consisting of a 16 bit address space number and a 15 bit displacement.
While this may be sufficient for a pilot system, a  production
environment would require both many more address spaces, and much larger

address spaces.

A small address space number means that the number of address
spaces will be exhausted quite quickly, and old address space numbers
must be reused. As explained 1in Chapter 5, this requires that all
capabilities for these address spaces be found and deleted before the
number can be safely reassigned. Whilst this 1s 1less serious 1in the
MONADS system than 1n other capability based computers (because
capabilities are not freely distributed) it is still inconvenient and
time consuming. A larger address space number allows many more address

spaces to be allocated before they must be reused.

The maximum size of an address space should be large enough to hold
the data of most 1large segments (e.g. containing file data) and only
very large segments should be composed of many address spaces. If the
address space size is too small, then many address spaces are required
to contain the data from large segments. This then complicates the way
that data 1s addressed, and uses many more address space numbers than

are logically required.

If the MONADS II computer system were being redesigned both of

these restrictions could be removed. The address space number held in
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the capability registers could be expanded (e.g. to 32 bits) and the
within address space displacement (in capability registers and modifier
registers) could also be expanded (e.g. to 31 bits). If this were done a
restriction would need to be placed on code address spaces, as the
Hewlett Packard can only fetch code from a 32k word space. All other
address spaces would need to be addressed via capability registers and

modifier registers, in the same way as they are currently referenced.

A larger address space would also increase the size of the address
translation unit. The unit would need to hold an extra 32 bits of
information per cell because of the larger virtual address. This 1is a
small 1increase 1in cost (less than twice the size) for a very large
increase in the size of the virtual space (from 2731 to 2763 words).
Later we will mention a new version of the MONADS II computer which

implements one of these enhancements namely, more address spaces.

8.1.2. Special Capability Registers

It will recalled that the MONADS II hardware provides 16 general
capability registers and 6 special registers. These six special
registers (for addressing the process stack, code, inter-leaf links and
code related data) were implemented differently partly for historical

.reasons and partly because of peculiarities of the HP2100A, rather than
for theoretical reasons, and could easily have been constructed from
general capability registers. In a new implementation, all of these
would be general capability registers, as described 1in Chapter 5.
Without these extra registers the addressing mechanism 1s completely
uniform, which simplifies the construction of the hardware, removes the
need for access rights at the page level and also simplifies the code

generation ohase of the compilers.

8.1.3. The Hashing Function

As described in Chapter 7, the hashing function used 1in the
prototype address translation unit of MONADS II is very simple, and it
is not expected that this function will yield a particularly uniform
distribution of hash keys. Because of this, a more complex hashing
function (such as described in (IBM, 1978) and (Ramamohanarao and
Sacks=Davis, 1981)) could easily be implemented, without increasing the

total address translation time.
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8.1.4. Processor Speed

The MONADS II system, while far faster than a software or firmware
implementation (as discussed 1in Chapter 6), 1s still slower than
desired. The most significant cause for this 1lack of speed 1is the
current implementation of the intermediate processor, which uses 300
nano-second Programmable Read Only Memories to hold its microcode. This
limits the micro-cycle time to 300 nano-seconds. This microcode could
instead be placed in faster 70 nano-second Read Only Memories, which
would allow the processor to achieve a micro-cycle time of about 150
nano-seconds. (A decrease to 70 nano-seconds is not possible because of
other timing constraints.) Such a modification would improve the speed
of the MONADS II system significantly, because all memory traffic

proceeds via the intermediate processor.

8.1.5. The HP2100A Instruction Set

While there were many advantages in inheriting the HP2100A basic
instruction set 1in terms of speed of implementation (see Chapter 6),
this instruction set is not ideally suited to the software methodology
of the MONADS project. The only solution to this problem is to build a
new processor, which was not a viable alternative at the time that
MONADS II was built. Since that time funds have become available and a
new processor, MONADS III, which we will briefly discuss later, is being
designed.

8.1.6. Page Replacement

The MONADS II processor provides no support for page replacement
algorithms (e.g. in the form of ’use’ bits or ’modify’ bits). Thus, the
operating system las no knowledge of which pages have been modified, or
which pages are being used, and must use a random replacement algorithm.
Whilst it is possible to simulate some of this information in software,
as 1in the VAX 11/780 (Digital Equipment Corp., 1979), this is an
expensive process, and would consume much of the power of the HP2100A.
Consequently, 1t was decided that special hardware would be built when
time was available, and that it was more important to have a slow, but
complete, system than an impressive but 1incomplete one. Taking
advantage of the concept of the hardware kernel (Rosenberg, 1979;

Rosenberg and Keedy, 1978), this hardware could then be introduced at a
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later stage, without any effect on the main operating system software

other than improved performance.

8.1.7. Offsets from Capability Registers

Another limitation of the MONADS II hardware is the size of literal
of fsets which may be used with capability registers. Because this 1is
only three bits, only a small frame of words may be addressed without
using a modifier register. Ideally this offset should be as large as the
size of an address space, however, there are not enough free bits in the
memory reference instructions. The only solution to this problem is to
create some new HP2100 memory reference instructions which are two words
long. In this case the first word could contain the operation code, and

the second word could contain a 16 bit literal offset.

8.2. Future Research

In this section we briefly indicate the direction 1in which the
research described in this thesis may be extended.

8.2.1. MONADS III

Because of the limitations of the MONADS II system a grant was
requested (ARGC Grant Number F80/15191) to build a totally new computer
system, called MONADS III (Rosenberg, Rowe and Keedy, 1982; Keedy and
Rosenberg, 1982a, 1982b). The role of this processor is different from
MONADS II. It is designed to support a large number of terminals and
provide a fast and powerful computer utility. Eventually the MONADS II
processor will form part of the MONADS III system, and provide 1its
communications facilities. Most of the software for MONADS III will
initially be prepared on the MONADS II system.

Unfortunately, the design of the MONADS III processor has been
suspended due to the resignation of the project’s chief investigators
and an alternative plan has been adopted. In order that a full system
could be realized, work was started on another processor which was

basically the same as the MONADS II system, but which removed some of

the limitations.
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8.2.2. MONADS II/2

MONADS II/2 removes some of the restrictions cited above. The
processor 1increases the address space number field to 32 bits, and uses
a larger page size (1024 words instead of 512). In addition, the main
memory limit has been extended from a maximum of 512k bytes in MONADS II
to 2M bytes. It also provides support for more processes, and a number
of additional registers. In this way, MONADS II/2 is less of a pilot
system and more of a production machine. Unfortunately, it will never

achieve the power of the proposed MONADS III.

8.2.3. Future Work

There are a number of areas 1in which future research could be
directed. The MONADS II computer provides no support for the paging
software. This 1is partly because there was not time to design such
hardware, and partly because it 1s not obvious what paging criteria
should be applied to address spaces when a page must be removed from
main memory. Whilst the working set model (Denning, 1968, 1980) is
appropriate for computational virtual memories in conventional computer
environments, it 1is not clear that this is the case in a system which
supports a large uniform virtual memory which contains permanent data
(e.g. files) as well as computational data. Further work needs to be
done to determine the best policy for removing (and fetching) pages of a
module, and then to develop a hardware unit (in the same spirit as the
MANIAC II unit (Morris, 1972)) which can monitor and provide this
information. (The MONADS 1II system already allows different page
placement policies to be developed and evaluated because the address
translation system 1is not concerned with the organization of the page
tables. Thus, alternative secondary storage and vage fetching techniques

may be attempted without affecting the hardware.)

Another appropriate topic for future work is in the area of backup
and recovery. In the event of a hardware (or software) malfunction, the
operating system should be able to provide recovery of any data which
may have become corrupted. Conventional file systems provide such
features by maintaining backup and recovery information when file data
is modified. However, in a uniform virtual memory there is no longer a

clear distinction between file data and computational data, which
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complicates the task of recovery.

The MONADS II operating system provides a symbolic debugger
subsystem for use 1in tracing errors 1in Pascal or Modula programs
(Dawson, 1982). Since the processor provides no hardware support, all
the debugger functions are emulated by compiler generated software.
Consequently, the debugger is very inefficient. The author is currently
designing hardware which detects when breakpoints have been reached
(either for data or code addresses) and when variable values have
changed. This research will be reported in a separate paper (Abramson

and Rosenberg, 1982).

8.3. Achievements and Significance

The most significant achievements of this thesis are threefold.
First, we have developed a new hardware model for capability based
addressing. Second, we have developed a general technique which can be
used to 1implement complex and novel computer architectures quickly and
cheaply. Third, we have 1implemented a real computer system which

demonstrates the viability of these ideas.

8.3.1. The Addressing Model

In Chapter 1 we stated that one of the objectives of this thesis
was to provide a hardware unit which allowed information to be shared
and protected in a uniform, flexible and efficient manner. We can now

determine if these objectives have been met.

:8.3.1.1. Sharing of Data and Code

Because of the clear distinction between hardware and system
firmware the new model does not enforce any particular sharing policy,
but leaves this to the firmware which manipulates capabilities. If a
module has a capability for a segment in a register, then it has access
to the segment. The firmware must determine whether this capability may
be placed in a register. In the MONADS system, sharing of data and code
is allowed only through the sharing of the modules themselves, in
accordance with the 1information hiding principle. Thus segment
capabilities are never passed freely around the system (Keedy, 1982c),
as 1s the case in many other capability systems, such as Hydra, StarOS,

etc. Because the hardware is not concerned with the management of
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capabilities it supports either method of sharing.

8.3.1.2. Protection of Information.

Since the model uses a capability based addressing scheme
information can be protected from inadvertent corruption either by the
owner or another user. A module may only address a segment if the
capability has been 1loaded into a capability register. As this is
controlled by system firmware, segments are protected. The access rights
field of the capability only allows valid operations to be performed on
segments. For example, code segments and read only data segments can be
protected from being modified. In addition, since the model has
attractive refinement properties, it is possible to restrict access to a

particular part of a reference parameter.

8.3.1.3. Flexibility

The model proposed in this thesis 1s flexible because it confines
the use of hardware (which is difficult to change) to mechanisms which
(for efficiency reasons) have to be fast, and 1leaves all important
policy decisions to firmware (which is relatively easy to modify). We
have demonstrated this flexibility, both on paper and by practical
experience. In Chapter 5 we proposed mappings of various software
structures onto the hardware, and each time the result was a uniform and
efficient addressing structure. In addition, the hardware for MONADS II
was built and tested before the MONADS software group had defined the
'format and nature of the capability structure of a- module. This
structure was then mapped onto the hardware without difficulty, which
was a realistic and practical demonstration of the flexibility of the

hardware.

8.3.1.4. Efficiency

The model proposed in Chapter 5 1is efficient because 1t places
those operations which must occur quickly in hardware, and uses firmware
to support those which do not. Thus, capabilities are held and wused 1in
fast hardware registers. The virtual addresses are then mapped onto main
memory addresses by a hardware address translator. The structure of the
capability 1lists, and operations on high level objects, are left to the

high level firmware as these do not require the same level of efficiency
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(e.g. the capability list 1is only consulted when a capability register
is loaded). These may then change and evolve with the software 1ideas.
The 1implementation of the MONADS operating system, which will support a
number of concurrent user programs, demonstrates the overall efficiency

of the proposal.

8.3.1.5. Uniformity

The capability registers are the only way of addressing memory,
thus providing one uniform method for addressing, protecting and sharing
information in the computer utility. This simplifies the hardware
construction, the compilers, the hardware kernel, the main operating

system and also the task of the computer user.

8.3.2. The Enhancement Model

After we had developed the addressing model, we faced to problem of
how to produce an 1mplementation with which we could evaluate 1its
effectiveness. In Chapter 6 we examined a number of alternatives, such
as various software 1implementations, microcode techniques and some
limited hardware modifications. Because of time and fiscal constraints
we were forced to modify an existing computer. The enhancement model
which was developed allowed us to produce a real implementation which 1is

efficient enough to support a number of concurrent user programs.

The value of this model 1is best illustrated by considering the time
taken to design and build MONADS II. The intermediate processor was
designed by the author over a period of a few months, built in about 6
weeks, and tested in about 2 weeks. The address translation unit, which
was not part of the intermediate processor, took about the same period
of time again. Without the new implementation t~=chnique, a totally new
processor would have been required which would have taken much more
man-power than was needed to build MONADS II. For example, MONADS III
has already consumed about 4 man-years of effort, and has not yet been

completed .

8.3.3. Practical Achievements

The practical achievements of this research work are embodied in
the MONADS II system, which is a complete working computer utility. As
described in Chapter 7, the MONADS II system consists mainly of the
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central processor, main memory, 80 Mbytes of disk and a terminal
multiplexor which can be connected to 16 terminals. This configuration

can support a number of concurrent user programs.

After completion of the hardware, a hardware kernel was written
(Wallis, 1980). This body of code resides partly in firmware and partly
in the kernel address space of the processor. It provides a higher level
interface to the hardware for the main operating system. At this stage
of the project, the primitive components of an operating system have
been developed, together with a command line interpreter (Patterson,
1981) . Compilers have already been developed for assembly code (Rees,
1981), Modula 2 (Wirth, 1977) and Pascal, and programs written in any of
these languages can be executed directly on the MONADS II system. In
addition, a C compiler 1s currently been written (Bird, 1982). At
present all compilers and assemblers execute on a VAX 11/780 processor,
and code 1is down-line loaded to MONADS II. It is expected that shortly
the compilers will execute directly under the MONADS II operating

system.

Once the main operating system has been completed, and the
compilers are resident on the MONADS 1II processor, the system will
support a software test and development environment similar in nature to

other commercial systems.

8.4. Final Remarks

This thesis has made a contribution in the area of hardware support
used 1in capability based computers. It provides a hardware framework
around which a software designer may experiment with different
capability structures. The widespread availability of a machine which
impleme..ts the memory and capability features of this model (e.g. with
V.L.S.I. technology) would greatly aid research into operating systems
in both universities and industry.

The thesis has also demonstrated a technique which should allow
different computer architectures to be evaluated without the need for
many man years of effort by expert staff. Once new ideas have been

evaluated they may then become the framework for new computer designs.
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Appendix A

This appendix defines the new operands which are executed by the
intermediate processor. Most of these operands can be used with any of
the HP2100A memory reference instructions, and are all 1located 1in the
top leaf of the address space. Some operands are only effective for load
type of instructions (i.e. a read from the address space) whereas others

are only effective when a store type instruction is used.

Immediate load instruction

This operand takes the 8 bit value of the address and returns it to
the HP2100A. This valﬁe is treated as a 7 bit two’s complement integer.
The bottom bit of the address is used as the sign bit. Negative numbers
are sign extended to the full 16 bits. The instruction allows a program
to use numbers in the range of =128 to 127 without addressing a segment

of store.

n(CRr)

This operand uses one of the general capability registers, CRr, to
address a segment in memory. A small constant n (in the range 0-7) may
be specified as an offset to the segment start address. The offset 1is
added to the start address and validated against the segment length

before the memory reference is executed.

(CRr) [Mm]

This operand also uses one of the general capability registers,
CRr, to address memory. However, the segment start address may be
modified by the contents of one of the 8 modifier registers, Mm. Thus,
the modifier value is added to the start address and validated against

the segment length before the segment is referenced.

(CRr) [Mm/2]

This operand is the same as the previous one, except the modifier
is treated as a byte count rather than a word count. The modifier value
is halved before it is added to the segment start address. When the word
of memory is addressed, either the left or the right byte of the word is
used depending on the least significant bit of the modifier register.
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CRr .subsystem

This operand is used to address the subsystem field of a capability
register. This field has not been described in the thesis, and is no
longer used by the hardware. When the capability registers were first
designed, this field held the identity of the subsystem which owned the
contents of a capability register. Validation checks were performed to
only allow the subsystem which had originally loaded a register to use
the register. This removed the need to 1invalidate registers when a

domain change was executed.

CRr .address-space-number

This operand is used to address the address space field of a

capability register.

CRr .displacement

This operand is used to address the contents of the displacement

field of a capability register.

CRr .segment-limit

This operand is used to address the segment 1limit field of the
capability register.

CRr .access-rights (decrease only)

This operand allows a program to reduce the set of access rights
within a capability register. When a store operation is performed on
this address, the data pattern from the HP2100A 1is ’anded’ with the

contents of the access rights field, reducing the allowed access.

CRr.access~r.ghts

This operand addresses the access rights £field of a capability

register.

STACK .address—-space-number

This operand 1is used for addressing the contents of the STACK
address space number register. This register is used to form addresses
in the process stack, and is combined with various displacement and

length register to form a one of the special capability registers.
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n(T)

This operand is used to access scaler variables held on the process
stack. A virtual address 1s formed from the displacement in the T
register (Top of stack) and the STACK address space number register. The
value n may be used to modify the displacement. Unlike the general
capability registers, this value may be in the range 0-31, and 1is

subtracted from the displacement.

T.limit

This operand is used to address the limit field of the Top of stack
capability register. No stack reference is allowed below this register.

+(T)

This operand performs a push operation on the process stack. The
Top of stack displacement is incremented and, providing it is not below
the T.limit register, data is saved on the stack.

(T)-

This operation performs a pop operation on the process stack. Data
is read from the current top of stack location, and then the Top of
stack displacement register 1is decremented. The Top of stack

displacement register is not allowed to fall below the T.limit register.
I
This operand is used for addressing the Top of stack displacement

register.

T=T+MDR

This operand is used to modify the contents of the Top of stack
displacement register. The value in the HP2100A memory data register is

added to the contents of the Top of stack register in one operation.

Mm

This operand 1is used for addressing the 8 modifier register.
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This operand is used for addressing the 8 counter registers.

ldw +Cc - (load word from +Cc

——— c—

This operation is only executed when a load type of instruction 1is
used. The contents of counter register Cc is incremented, the contents
of modifier register Mc is also incremented, and the new value of the
counter register 1s returned. The instruction is useful for scanning

through segments of memory.

stz Cc - (store zero Cc

This operation is only executed when a store type of instruction
is executed. Data 1s saved 1in the counter register Cc, and the
associated modifier register, Mc, is set to zero. This instruction 1is

useful for initializing the modifier and loop counter registers.

Ll.displacement

This operand 1is used to address the contents of the L1 displacement
register. This register defines a frame of 256 words in the current

STACK address space, and forms one of the special capability registers.

o

l.1limit

This operand 1is wused to address the Ll.limit register. This
register forms the limit field of the capability register for addressing

scalars on the L1 stack frame.

1=L1+MDR

This operand is used to modify the contents of the L1 displacement
register. The contents of the memory data register is added to the

contents of the Ll register.

L2.displacement

This operand is used to address the contents of the L2 displacement
register. This register defines a frame of 256 words in the current

STACK address space, and forms one of the special capability registers.
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L2.1imit

This operand 1s wused to address the L2.1imit register. This
register forms the limit field of the capability register for addressing

scalars on the L2 stack frame.
L2=L2+MDR

This operand is used to modify the contents of the L2 displacement
register. The contents of the memory data register is added to the

contents of the L2 register.

CONSTANT .address-space~number

This operand is used to address the address space number of the
constant address space. It froms one of the special capability

registers.

CODE .address-space-number

This operand is used to address the address space number of the

code address space. It froms one of the special capability registers.

PROCESS-NUMBER

This operand 1is used to address the process number register. When
this register 1s altered, the current process is exchanged for the new
process. All of the process own registers are swapped by the

intermediate processor.

CURRENT-SUBSYSTEM

This operand 1s used to address the current subsystem register.
This register 1is wused to hold the identity of the currently executing
subsyétem. When the capability registers held a subsystem field, this

register was used for validation purposes.

VIOLATION-MASK

This operand is used to address the violation register. When the
intermediate processor causes an interrupt, this register 1is loaded with

a bit map which describes the cause of the interrupt.
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KERNEL-OFF

This operand is used to take the intermediate processor out of
kernel mode. The kernel executes this instruction before it returns to a

user program.

PROCESS-TIME-MSW

This operand is used to address the most significant word of the
process time limit register. This register is decremented every 2~16’th

milliseconds and if it reaches zero an interrupt is generated.

PROCESS-TIME-LSW

This operand 1is used to address the least significant word of the
process time 1limit register. This register 1is decremented every

millisecond and 1if it reaches zero the most significant word 1is

decremented.

INSTRUCTION-COUNTER-MSW

This operand is used to address the most significant word of the
instruction counter register. It is 1incremented every 2716’th

instruction.

INSTRUCTION-COUNTER-L SW

This operand is used to address the least significant word of the
instruction counter register. It is incremented time an instruction is

executed.

TIME-MSW

This operand returns the most significant word of the clock.

TIME-LSW

This operand returns the least significant word of the clock.
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Appendix B

This appendix defines the mapping details of the HP2100A top leaf
addresses. The table shows the BASE address for a particular
instruction, followed by the within 1leaf displacement wused for the
instruction. These address patterns are decoded by the intermediate
processor, and are translated into microcode entry points. The R bit
denotes whether the reference is a read from the address space of the
HP2100A or a write. Various characters are used in the within 1leaf
displacement. Four bits, ’r’, are used to form a capability register
number. These are alwaysitaken from bits 3-6 of the address. Three
bits, ’c’, are used to identify a counter register and are taken from
bits 0-2 of the address. These same bits are used to address the
modifier registers, called ’m’, and to form the small three bits
capability offset, called 'n’. A five bit stack offset 1is taken from
bits 0-4 of the address. An ’x’ in any position signifies a don’t care

condition.

APPENDIX B MAPPING DETAILS



- B2 -

BASE M9 M8 M7 M6 M5 M4 M3 M2 Ml MO R Instruction

76000 0 0 n n n n n n n n Immediate load instruction
76400 0 1 0 r r r *r n n n n(CRr)

76600 0 1 1 r r r * m m m (CRr) [Mm]

77000 1 0 O r r r *r m m m (CRr) [Mm/2]

77200 1 0 1 r r r r 0 O O CRr .subsystem

77201 1 0 1 r r r r O 0 1 CRr .address-space-number
77202 1 0 1 r r r r 0 1 O CRr .displacement

77203 1 0 1 r r r r 0 1 1 CRr.segment-limit

77206 1 0 1 r r r r 1 0 O CRr .access-rights (decrease only)
77205 1 0 1 r r r r 1 0 1 CRr.access-rights

77400 1 1 0 x 0 n n n n n n(T)

77440 1 1 0 x 1 0 0 ¢ ¢ ¢ r 1ldw +Cc

77440 1 1 0 x 1 0 0 ¢ ¢ ¢ w stz Cc

77460 1 1 0 x 1 1 0 m m m Mm

77470 1 1 0 x 1 1 1 ¢ ¢ ¢ Cc

77601 1 1 1 x 0 0 O O O 1 +(T)

77602 1 1 1 x 0 0 O O 1 O +(T)

77603 1 1 1 x 0 0 0 0 1 1 T

776046 1 1 1 x 0 0 0O 1 O O Ll .displacement

77605 1 1 1 x 0 0 0O 1 O 1 L2 .displacement .
77606 1 1 1 x 0 0 O 1 1 O CONSTANT .address-space-number
77607 1 1 1 x 0 0 0 1 1 1 CODE .address-space-number
77610 1 1 1 x 0 0 1 O O O STACK.address-space-number
77611 1 1 1 x 0 0 1 O O 1 PROCESS-NUMBER

77612 1 1 1 x 0 0 1 0 1 O CURRENT-SUBSYSTEM

77613 1 1 1 x 0 0 1 0 1 1 r VIOLATION-MASK

77613 1 1 1 x 0 0 1 0 1 1 w KERNEL-OFF

77614 1 1 1 x 0 0 1 1 0 O PROCESS-TIME-MSW

77615 1 1 1 x 0 0 1 1 0 1 PROCESS-TIME-LSW

77616 1 1 1 x 0 0 1 1 1 O INSTRUCTION-COUNTER-MSW
77617 1 1 1 x 0 0 1 1 1 1 INSTRUCTION-COUNTER-LSW
77620 1 1 1 x 0 1 0 O O O T=T+MDR

77621 1 1 1 x 0 1 0 0 0 1 L1=L14MDR

77622 1 1 1 x 0 1 0 0 1 O L2=L24MDR

77624 1 1 1 x 0 1 0 1 0 O TIME-MSW

77625 1 1 1 x 0 1 0 1 0 1 TIME-LSW

77626 1 1 1 x 0 1 0 1 1 O T.limit

77627 1 1 1 x 0 1 0 1 1 1 Ll.limit

77630 1 1 1 x 0 1 1 0 0 O L2.1imit

77631 1 1 1 x 0 1 1 0 0 1 (T)-

77632 1 1 1 x 0 1 1 0 1 O (T)-

77633 1 1 1 x 0 1 1 0 1 1 Clear CR.access-rights
77634 1 1 1 x 0 1 1 1 0 O Double Pop

77635 1 1 1 x 0 1 1 1 0 1 Double Push
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Appendix C

This appendix contains the details of the microcode instruction
format along with the intermediate processor microcode. Each

microinstruction is 24 bits in length, and is composed of 7 fields, as

follows:
(1) BUS1 field 7 bits bit 23
(2) BUS I1-0 field 1 bit : :
(3) BUS2 field 4 bits . s
(4) CONSTANT field 3 bits : :
(5) FUNCTION field 4 bits ] .
(6) SPECIAL field 3 bits : :
(7) MEMORY field 2 bits bit 0

The source line of a microinstruction consists of these 7 fields and
also a 1label field (before the BUS1 field), a jump target field (after
the memory field) and a comment field (after the jump target field).
The operands which are allowed in the various field are shown in Tables
Cl through C7. We will briefly describe the purpose of each field of the

microinstruction.

The BUS1 field

The BUS1 field determines which register 1s connected to the
central bus of the intermedite processor. The allowed operands are shown
in Table Cl. The operand REGSTR takes the contents of DISPLAY register
one as the register number. This allows a microprogram to scan through

the intermediate processor registers.

This field determines whether the register specified in the BUSI
field 1s placed onto the bus, or the bus contents are saved into the
register. The allowed operands are shown in Table C2. If an INTO

directive is issued, the accumulator is placed onto the bus.

The BUS2 field

This field allows the bus contents to be saved in one of the
dedicated registers at the same time as another register is specified in

the BUS1 field. Allowed operands are shown in Table C3.
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Opcode Code Description

NOP OR BLANK 0

MDR 1 Memory Data register
MAR 2 Memory Address register
PROCN 3 Process Number register
STIMELl + 2 4-5 Time

ADRSPC 6 Address Space descriptor
DISP 7 Displacement descriptor
ACCESS 8 Access descriptor

DISPL1 + DISPL2 9-10 Display registers

INST 13 Instruction counter
WCHDGL + 2 11-12 Watchdog timers

SVR 14 Stack violation register
INST2 15 Instruction counter - 1lsw
C.SSN 16 CR Subsystem field

C.ASN 32 CR Address Space field
C.DISP 48 CR Displacement field
C.LEN 64 CR Length field

C.ACCS 80 CR Access field

M 96 Modifier registers

c 104 Counter registers

T 112 Top of stack register
L1 113 L1 register

L2 114 L2 register

CASN 115 Constant Address Space
CCAS 116 Code Address Space #
CSAS 117 Stack Address Space #
CSSN 118 Current Subsystem number
PTIME1 119 Process time - msw
PTIME2 120 Process time - lsw
PINST1 121 Instruction count - msw
PINST2 122 Instruction count - lsw
TR1 123 Temporary register

TB 124 T Base register

L1L 125 L1 Limit register

L2L 126 L2 Limit register

REGSTR 127 Register file indirect

Table Cl - the BUS1 field

Opcode Code Description

BLANK 0

NOP 0

ONTO 0 Place register Onto bus
INTO 1 Store bus into register

Table C2 - the BUS I-0 field

APPENDIX C MICROCODE



-C3 -

Opcode Code Description

BLANK 0

NOP 0

MDR 1 Memory Data register

MAR 2 Memory Address register
PROCN 3 Process number register
STIMEL + 2 4=-5 Time

ADRSPC 6 Address Space descriptor
DISP 7 Displacement descriptor
ACCESS 8 Access descriptor

DISPL1 + 2 9-10 Display registers

WCHDG1 + 2 11-12 Watchdog timers

INST1 13 Instruction counter - msw
INST2 15 Instruction counter - lsw

Table C3 - the BUS2 field

The CONSTANT field

This field specifies the contents of one of the inputs of the ALU.
This may be either one of 7 predefined constants, or the accumulator

value. The allowed operands are shown in Table C4.

The FUNCTION field

This field specifies the operation which the ALU 1is to perform.
Apart from the standard arithmetic and logic operations, the field may

also be used for setting various processor states (such as kernel mode

Opcode Code Description
BLANK 0

NOP 0

ACC 0 Accumulator

377 1 Constant 377B

FF 1 Constant 377B
Fr00 6 Constant 177400B
177400 6 Constant 177400B
7 2 Constant 7

0 3 Constant O

1 4 Constant 1

2 5 Constant 2

77777 7 Constant 77777B
7FFF 7 Constant 77777B

Table C4 - the CONSTANT field
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or debug state), and for performing a microcode jump. When a jump is
specified, the 10 most significant bits of the instruction are used for
the jump target address. The allowed operands are shown in Table C5.

The SPECIAL field

The special field 1s wused to detect error conditons, cause
interrupts, and to generate conditional microprogram skip operations. If
the processor is not in debug mode (which is a special processor state)
then any condition which is flagged will cause an interrupt and set a
particular bit in the violation register. If the processor is in debug
mode, then a flagged condition will cause a microprogrammed skip to

occur. The allowable operands are shown in Table C6.

Opcode Code Description
NOP 0
BLANK 0
ADD 1 Function add
SUB 2 Function subtract
OR 3 Function logical or
AND 4 Function logical and
SWAP 5 Swap bytes of input
LEFT 6 Left shift input
RIGHT 7 Right shift input
JUMP 8 Micro code jump
END 9 Return to HP2100 instruction
KNLOFF 10 Turn the kernel bit off
DBGON 11 Turn Debug bit on
DBGOFF 12 Turn Debug bit off

Table C5 - the FUNCTION field
Orcode Code Description
NOP 0
BLANK 0
MPL 1 flag BUS < accumulator
MPS 2 flag BUS > accumulator
MPK 3 flag processor not in kernel mode
MPO 4 flag BUS <> accumulator
LSBS 5 Skip if least sig bit set
UNMAP 6 Turn on Unmap bit

Table C6 - the SPECIAL field
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The MEMORY control field

This field allows the intermediate processor to start memory
references. The processor may issue a read request, a write request, or
a conditional request. The latter kind will be either a read or a write
depending on the type of operation which the HP2100 requested of the

intermediate processor. The allowable operands are shown in Table C7.

Opcode Code Description

NOP 0

BLANK 0

READ 1 Perform a memory Read
WRITE 2 Perform a memory Write
RW 3 Perform a Read or a Write

Table C7 - the MEMORY control field

The remainder of this appendix contains the microcode used by the
intermediate processor. The first section contains the basic MONADS II
instruction set, while the second section contains microcode used for

initial bootstrapping and diagnostic purposes.
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Appendix D

This appendix describes the properties of address space zero, which
is wused to communicate with the MONADS II address translation hardware.
This address space is not mapped onto memory, but 1s recognized as a
data pathway to the dedicated map units, the hash table address
translator, and a register holding to address of the last page fault.

Each dedicated map table entry is 13 bits in length, and occupies
one 16 bit word of the address space. Thus, the four dedicated map units
occupy 256 words of the address space. Each hash table cell is 41 bits
in length, and is split over 4 16 bits words. Thus, the 1024 word hash
table occupies 4096 words of address space zero. The value of the 1last
legal address 1is saved in a special register. When the operating system
wishes to find out which page caused the last page £fault it can read
this register. The 31 bit address 1s accessible through 2 words of
address space zero. An overall picture of address space zero is shown in
Figure 1. The structure of each dedicated map cell entry is shown in

Figure 2. The structure of each hash table cell is shown in Figure 3.
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0-63 DMA channel 2 map entries
64-127 Kernel code map entries
128-191 Kernel data map entries
192-255 DMA channel 1 map entries
256-257 Address at last interrupt
512- 4608

Hash table

Figure 1 - address space zero

bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

main memory page frame number

Figure 2 - a dedicated map entry
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bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
word 1 logical address
word 2 main memory page frame number
word 3 R |w X
word 4 F E link address A
where:

F is foreigner bit

E 1is end of chain bit

V 1is valid bit

R is read access allowed

W is write access allowed

K is kernel access allowed

APPENDIX D

Figure 3 - a hash table map entry
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Appendix E

This appendix contains copies of papers which have been published
by the author relating to the work described in this thesis.

Abramson, D.A. (1982b) "Hardware for Capability Based Addressing", Proc.

9th Australian Computer Conference, Hobart.

Abramson, D.A. (1982a) "A  Technique for Enhancing Processor

Architecture", Proc. 5th Australian Computer Science Conference,

Perth (Australian Computer Science Communications 4, 1, pp. 47-57).

Abramson, D.A. (1981) "Hardware Management of a Large Virtual Memory",

Proc. 4th Australian Computer Science Conference, Brisbane

(Australian Computer Science Communications 3, 1, pp. 1-13).
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Hardware for Capability Based Addressing

David Abramson

Department of Computer Science
Monash University

Clayton

This paper examines a number of capability based
computer systems and describes some outstanding
problems. A new addressing model is proposed which
not only alleviates these problems, but which is
also efficient, flexible and wuniform. The MONADS
Series 1II computer, which implements the new model,
is described. Finally, the effectiveness of the new
solution is evaluated.
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1l. INTRODUCTION

Capability based addressing was first proposed by Dennis and Van
Horn (1966) as a method for uniformly addressing and protecting objects
in a multiprogrammed computer utility. Since that time a number of
capability based computer architectures have been implemented, such as
the Plessey 250 (England, 1972), Hydra (Wulf et. al., 1981), CAP
(Wilkes, 1979), IBM System/38 (IBM, 1978) and the Intel iAPX432 (Intel,
1981), and a number have been proposed, such as the Chicago Magic Number
Computer (Shepherd, 1968), and the schemes outlined by Bishop (1977) and
Gligor (1978). This paper briefly describes the addressing mechanism
common to these capability schemes, and shows how they implement the
addressing structure. It then considers some outstanding problems , and
proposes an alternative model. To demonstrate that the new model can be
efficiently implemented, it was used as the central structure of the
MONADS II computer.

2. CAPABILITY BASED ADDRESSING

2.1. Capabilities as an addressing system

A capability is a protected pointer which gives a program the
ability to address an object (Fabry, 1974). A capability is logically
composed of two fields, <object name> and <access rights>. The name
field holds the name of the object which the capability addresses. The
access rights field describes the way 1in which the object may be
addressed by that capability. Capabilities possess a number of
intrinsic properties:

- the object name is a unique name which defines the object.

- possession of a capability allows a program to address the object.
- there may be several capabilities for an object.

- a capability describes how the object may be addressed.

- a capability is not forgeable.

- object names are never reused, even after the object has been
destroyed.

- capabilities facilitate easy sharing of objects.

- capabilities offer different views of the same object.

All current capability systems allow the access rights of a
capability to be reduced, and a diminished copy of the capability to be
given to another user. These capabilities (known as refined
capabilities) then have access to the same object as the master, but
with fewer access privileges. A capability may also be refined in range
as well as type of access. This type of refinement is useful when a
procedure wishes to grant another user access to only part of a data
structure (e.g. when passing a parameter by reference).

2.2. Implementing Capability Addressing
Two different methods of addressing capabilities are usually used.
One places the capabilities in a small 1list, called a Capability List

(or C-1list). The capability may then be addressed by supplying an index
value into the 1list. The other, less commonly used, scheme places
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capabilities in tagged memory (IBM, 1978). Both schemes have their
advantages and disadvantages, which will not be discussed in this paper.

Because the unique name of an object is very large, and because it
may not be reused, the virtual space of a capability system is much
larger than the real memory attached to the processor. Thus, the
processor hardware must translate a segment name into a real memory
address (either main memory or secondary memory) before a reference can
proceed. In addition to address translation, the system must maintain
logical information about the object, such as its type. Almost all of
the capability based processors use a central object table, which holds
both the logical information and the mapping information (such as 1its
main memory address and size) about every object in the system. This
table is usually split into an active table (for currently addressed
objects) and a passive table (for older objects) in an attempt to speed
up address translation. Many different table organizations have been
used, such as linear 1lists, directly indexed tables and hash tables and
are used in systems such as Hydra, CAL, CAP, Gligor, Intel and Plessey.

Most of these systems place the active object table in main memory.
To avoid the speed penality of accessing main memory on every memory
reference, most systems apart from CAL, provide some hardware support to
speed up address translation. The Plessey 250, Hydra and the Chicago
Magic Number Computer use some manual addressing registers which are
loaded with the main memory address of a segment before it is addressed.
Other systems, such as Intel 1iPAX432, IBM System/38 and CAP, use
automatic address translation caches, which retain the most frequently
used object table entries.

Placing the active object table in main memory also limits its size
significantly. To avoid this problem, Gligor places the object table in
virtual memory. The scheme proposed by Bishop (1977) (and one of the
IBM System/38 addressing methods) eliminates the need for a central
object table by including in a segment capability a virtual address,
which 1is also a wunique name, and a size field. This also has the
advantage that object size refinement is easily implemented. In such
systems the object type is also placed in the capability.

2.3. Outstanding problems

The existing capability based computers have two main problem
areas, memory management and address translation.

2.3.1. Memory Management

Many of the capability systems use a segmented main memory scheme
in order to achieve segmented addressing. Unfortunately, this scheme
does not cater well for either very large segments or for very small
segments . Large segments are awkward because they must be held in
contiguous memory. Small segments are inefficient to swap between main
and secondary memory because the time taken to initiate the transfer may
exceed the time taken to actually transfer the data. These problems
have received much attention in the literature (Gligor, 1978; Lanciaux,
1977; Randel 1969; Fabry, 1974; Wilkes, 1979; Keedy, 1980).

Some systems have attempted to use paging as a basis for memory
management . Hydra used a paging system by forcing all segments to be one
fixed size. This scheme simplifies the memory management task, but does
not solve the small and large segment problem. Small segments waste
much of the page that they occupy, and large segments can not exist.
Thus, this scheme creates even more segments than are 1logically
required, as large segments are constructed from many smaller segments.
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Some solutions (cf Gligor and Bishop) have used paging as the
memory management model, and have superimposed a segmentation scheme
above the virtual memory. Whilst these proposals have solved some of
the small and large memory management problems, they still suffer from
some memory management problems, as we shall see later.

2.3.2. Address Translation problems

Many of the capability based processors experience significant
problems in translating virtual addresses into memory addresses,
especially when the system is burdened with many small segments. One
source of contention is the central object table which contains an entry
for each segment in the system. When the system contains many small
segments the size of the central object table becomes excessive, and
translation times may be increased. In those systems which have removed
the central object table, such as Bishop’s, the task of address
translation is significantly simplified.

In the processors which have used manual addressing registers with
a segmented memory another problem is experienced. Because they hold a
main memory address all registers (and all dormant images of registers)
of all processors must be modified when main memory is reorganized. Such
reorganization is required when segments are brought into and banished
from main memory, and requires all absolute pointers to be modified.
This overhead is considerable.

3. AIMS OF THE MODEL

The requirements of the model may be summarized in terms of five
basic aims: to solve the memory management problems associated with most
capability based processors, to solve the address translation problems
associated with other capability based systems, to produce a uniform
addressing mechanism, to produce an efficient capability addressing
mechanism, and to produce a flexible hardware unit. Some of these aims
are not shared by the existing capability systems. The first two
requirements are associated with the outstanding problems discussed in
section 2.3. We shall now consider the other three basic aims in turn.

3.1.1. Uniformity and simplicity

In a true capability based addressing scheme all 1local and
permanent data should be addressed by the same mechanism. Only one way
of addressing data should be provided, unlike systems such as the IBM
System/38 which provide two different addressing mechanisms.

With one common addressing mechanism the system design becomes much
simpler. A simpler design in not only easier to understand, but often
yields a more orthogonal and less expensive implementation. Moreover,
only one sharing and protection mechanism 1is required. The model
proposed in this paper avoids unnecessary duplication by providing only
one way of addressing memory.

3.1.2. Efficiency

The CAL system demonstrated that a capability based addressing
scheme requires hardware support for an efficient implementation. Even
in those systems which have provided hardware support for addressing
memory, the use of capabilities still creates 1inefficiencies, as
described in section 2.3. The model proposed 1in this paper defines a
hardware addressing structure which can be efficiently implemented with
current technology. Moreover, the model is capable of implementing many
different software structures without significant overheads.
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3.1.3. Flexibility

Most processors, both of conventional design and capability based,
are designed with a specific addressing structure in mind. For example,
the instruction operands in the Intel 1APX432 processor expect a
particular C-1list structure. The operands of the CAP system expect a
different C-list structure. Because these organizations are so well
understood by the processor hardware (and firmware) it is unlikely that
one processor could efficiently or easily implement the C-list structure
of another processor.

The lack of flexibility in some of the existing systems 1is not a
problem, only because the system design does not change significantly at
any stage. However, in a research environment a flexible processor 1is
extremely desirable, as it allows the hardware to survive a number of
major redesigns of the software ideas. The model proposed in this paper
should be capable not only of efficiently implementing a particular
addressing structure, but also of implementing any of the other
capability addressing structures, such as the different C-lists of CAP,
Intel 1APX432 etc. The model can achieve this flexibility by providing a
general hardware wunit which provides a capability based addressing
style, and a small section of software (or firmware if the host machine
is microcoded) which wunderstands the addressing structure. If the
software ideas change at any stage, then the hardware may remain the
same and the software or firmware may be changed.

4. OBJECT ADDRESSING

Most capability based addressing schemes have the property that all
addressable objects are treated alike in terms of addressing and
protecting. All are addressed via the capability mechanism which the
processor uses. Such references can be categorized into two classes,
memory segments and high-level objects. High-level objects include 1/0
devices, data abstractions, program modules (Keedy, 1982) or type
managers (Wulf et. al., 1981) etc.

When a memory segment 1s addressed (via  memory reference
instructions) the capability mechanism is used to find a segment of
memory and make it available to the program. Thus, in a purely segmented
system the central object table may contain the main memory address of
the segment, and the size of the segment. The access rights field of the
capability can then be used to restrict certain operations on the
segment. To produce efficient memory references this mechanism is nearly
always augmented by some special hardware.

High level objects are also addressed via the capability mechanism.
However, the central object table contains informat.on which declares
that the object is not a memory segment and requires further software or
firmware assistance. (Alternatively, this information may be held in the
capability (Lampson, 1976).) These high level objects are not wusually
addressed by the normal memory reference instructions. Type checking
information may then validate the type of instruction against the type
of object. For example, a memory segment may be addressed by an add
instruction, but a program module is addressed via a call instruction.

From this viewpoint, capability support can be built into a
processor 1in two separate areas: first, a section of hardware which
allows efficient manipulation of memory segments; second, a body of
software, or firmware, which interprets operations on high 1level
objects. Thus, the knowledge of high level objects need not be built
into the processor. The information which usually resides in the central
object table about high level objects can now either reside 1in the
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capability for the object (e.g. the type of the object) or can be found
in segments associated with the object itself (e.g. with the code which
manipulates the object). The implementation of operations on high level
objects 1is left entirely up to the software or firmware concerned. We
will now consider the form of the memory segmentation hardware.

5. SEGMENT ADDRESSING

3-l. The basic form of a capability

The virtual memory of the proposed capability based addressing
scheme 1is addressed via a number of capability registers, each of which
holds a segment capability. These capability registers are the only
addressing mechanism available to the processor. Each register, shown
in Figure 1, contains three fields: an address, a length and some access
rights. Before we discuss the precise nature of these fields, it will be
useful to consider the advantages of a scheme based on registers:

(1) Because of the size of capabilities, they cannot be placed
directly in the instruction stream itself. This problem of operand size
for addressing memory via capabilities disappears in a register based
system because once a register has been loaded with a capability
subsequent references need only specify a register number, which 1is
likely to be of the order of four bits.

(2) Registers hide the nature and structure of the 1logical
addressing mechanism from the processor instruction set. The model is
invariant to the method of saving capabilities (i.e. C-lists of various
structures or tagged protected memory) and the actual structure of a C-
list or tagged memory need not be determined at the hardware level (for
example, whether the C-1list allows tree structures or lattice
structures) . Thus, the scheme 1is flexible, because the software
structures may be modified without affecting the hardware.

(3) Because registers can uniformly address all kinds of segment,
no special registers are required, for example to implement a stack
pointer, display registers, etc. Indeed, a combination of a capability
register and an index register can be used not only to address data but
also to control program sequencing.

(4) Because registers are normally built from high speed 1logic,
they have the same advantages as capability caches (cf. IBM System/38,
CAP and Intel 1APX432), but they are generally less expensive and 1in
some cases easier to implement. Because the scheme only translates
logical addresses (of the form C-list number and slot number) into
capabilities when the register 1is loaded, it avoids many unnecessary
memory -references by removing many repeated references to the C-list.

(5) Given the use of registers, protection can be efficiently
implemented by allowing only particular instructions (or only
instructions executing in a special machine state) to modify their
contents. This makes it impossible to modify a capability illegally once
it has been placed in a register. The protection of capabilities outside
of registers depends on the C-list structure, or tagging mechanism,
which the processor provides.

A register based addressing scheme does have some basic
disadvantages. First, it requires the compiler or assembler programmers
to allocate and deallocate the registers. This problem is not considered
serious enough to cancel the advantages of the scheme. First, assembler
programmers are far better at judging the working set of a program than
a cache, and can choose the correct registers to allocate. Second,
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address of segment | length of segment | access rights

Figure 1 - a capability register

compilers often have to allocate data registers, and have successfully
done so for a long time. Addressing registers are no worse to allocate
correctly than data registers. Also, the compiler can form conventions
which dedicate the use of certain registers. For example, one register
may be used for addressing scalars at lexical level zero, whilst another
register may be dedicated for addressing data at the current lexical
level. Such conventions can help register allocation significantly.

Second, the registers may need to be saved and reloaded when a
module 1is entered by a call instruction, or when a process switch is
executed. Similar operations are also required for capability caches.
Thus domain changes in the register scheme are not significantly slower
than when a cache 1is used.

5.2. " The load—-capability-register instruction

Because the logical structure of the addressing mechanism is hidden
from the hardware, special software (or firmware) must be written which
understands this structure. One such instruction is the load-
capability-register instruction. This instruction (or kernel routine if
the machine does not possess a microcoded control wunit) accepts a
capability register number and a program address, and 1loads the
capability found at that address into the register. If the processor
uses a C-list for holding capabilities, then the program address may
define a C-list number and a slot number. If the system must at some
later stage understand a different C-list structure, then only the
load-capability-register instruction need be altered. All other data
manipulation 1instructions address their operands via a capability
register.

5.3. Representation of a capability

A memory capability, shown 1in Figure 1, 1s composed of three
sections: an address, a 1length and a set of access rights. The key
difference between these registers and those of the other manual
addrecsing register schemes 1s that our capability wuses a virtual
address, rather than a main memory address. As described in section 2.3,
the use of main memory addresses both causes difficulties in re-
organizing memory and also means that the main memory must be segmented.
Apart from the difficulties of organizing a segmented memory, a central
object table is required to map segment addresses onto main memory
addresses which causes further problems related to the size of the
mapping table, as discussed in section 2.3. The use of a wvirtual
address 1in the capability registers avoids these problems. First, the
memory can be physically reorganized without affecting the addresses
held 1in registers. Second, the memory does not have to be segmented
(from the viewpoint of the memory management system). This removes the
problems of a segmented memory, and also means that the system does not
need a central object table.

APPENDIX E PUBLISHED PAPERS



= E9 -

The length field of the capability holds the length of the segment,
and must be large enough to allow large segments. Ideally, this field is

the same size as the virtual address. However, it may be considerably
less without being restrictive.

The access rights field must allow operations to be performed or

restricted, such as read only, write only, read-write, execute etc.
These can be encoded in a bit pattern.

6. VIRTUAL MEMORY

This section comprises three subsections. The first defines the
nature of the virtual memory required by the capability register
addressing scheme. The second describes a memory management model which
provides some of the required attributes, and the third shows what
modifications are necessary to this model to provide a virtual memory
which may be addressed by the registers described in section 5.

6.1. Requirements of the virtual memory

In this section we will examine the requirements of the virtual
memory which is used by the model. They are as follows:

(1) Virtual addresses should be large and unique. When a segment 1is
created it consumes a range of virtual addresses, which eventually
reside in C-lists and capability registers. When a segment 1is deleted,
the address may either be found and destroyed, or never reused. A large
addressing range means that it is not necessary to reuse addresses,
saving on the number of addresses which need to be found and deleted.

(2) The virtual memory must be the only memory mechanism. This
uniform treatment of memory means that all data, files and code, are
present in the same virtual memory without support from a separate f£file
store. This technique was pioneered in MULTICS (Organick, 1972) and has
been used in other capability systems with many advantages (Rosenberg
and Keedy, 1981).

(3) The tables, or mechanism, used to translate virtual addresses
to main memory addresses should not affect the way in which the virtual
memory management software organizes the secondary . memory. This
condition is not met in many existing systems, such as MULTICS. The page
table structure which is used by the hardware, or firmware, to translate
virtual addresses into main memory addresses 1s also used by the
software to locate pages in secondary memory. If the software wishes to
change the table format then the hardware may also need to be modified.
Greater flexibility 1s desirable because better secondary storage
methods may be devised after the hardware has been built. Thus secondary
memory address translation and main memory address translation should be
independent.

(4) Virtual memory management should be simple. If  virtual
addresses are ever reused, the virtual space may become fragmented due
to objects being created and destroyed. Both Gligor and Bishop propose
the use of large paged virtual memories for holding segments. Gligor
packs segments into virtual space in a random manner, whereas Bishop
places common segments 1in areas, or groups. The first scheme, whilst
conceptually simple, means that the virtual space may become very
fragmented in time. Bishop’s scheme does not totally avoid this problem,
as areas themselves are variable in size. The virtual memory should be
organized so that 1if addresses are ever reused, the memory can be
reorganized without massive data manipulation.
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(5) The virtual memory should efficiently support both 1large and
small segments. This problem is vastly simplified by implementing the
segmentation at the register level. It then only becomes necessary for
the virtual space to hold both large and small areas. All of the models
previously discussed fail to provide an acceptable mechanism.

(6) Real memory management should be simple. Unlike the segmented
schemes of some capability systems, the model can choose another main
memory organization without losing the logical advantages of
segmentation. Thus a simpler main memory scheme can be used instead of
the complex and inefficient segmented scheme.

Unfortunately most virtual memory systems fail to provide a
suitable virtual memory which supports these requirements. Another
scheme, not previously discussed, allows a conventional processor to

efficiently support small and large segments. The next section will
discuss this model.

6.2. A small segment model

Keedy (1980) proposes a memory management model which allows a
conventional processor to support both large and small segments without
many of the associated 1inefficiencies. The scheme uses capabilities
which hold a virtual address, segment length and access rights. The
virtual address is further composed of an address space number and an
offset within the address space. Each offset is composed of a page
number and a within page displacement.

Address translation is performed via a number of tables. An
address space 1list is consulted to find the location of the page table
for the space. The page table reveals either the main memory address of
the pages or the secondary memory addresses. This model is similar to
various paged and segmented schemes and thus could be supported by a
processor similar in nature to MULTICS. Unlike MULTICS, however, this
model can support items 4,5 and 6 of the model aims, namely simple real
and virtual memory management and support for small and large segments.
All the advantages of the scheme are discussed in Keedy (1980). However,
the following are particularly relevant:

6.2.1. Simple real memory management

The main memory is far easier to manage 1in this model than the
segmented solutions because memory 1s allocated in fixed size pages.
Provided some reference locality is experienced, several independently
addressed and protected segments can be packed into a single address
space, and the amount of space lost to internal fragmentation 1is on
averag: only half a page per address space rather than half a page per
segment (or more for small segments). Thus while internal fragmentation
is not entirely eliminated, the amount of space wasted in this way can
be greatly reduced.

6.2.2. Simple virtual memory management

The virtual memory is easier to manage than that of Gligor or
Bishop because the virtual space 1s allocated in fixed size units,
namely address spaces. Typically, because of reference locality, all the
segments of a module are placed together in one or more address spaces.
If the module is deleted, and all old addresses within the space are
collected and destroyed, then the address of the address space may be
reused. Because the address spaces are all of the same size, the hole
left 1in the virtual space is not of a variable size, unlike those of
Bishop and Gligor.
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Even though the address spaces are all of a fixed size, spaces
smaller than the maximum size do not actually require this fixed amount
of disk space to be allocated. Thus, the scheme does not require any
more disk space or page table space than other schemes.

6.2.3. Support for small and large segments

The scheme does not use a large central object table, but rather a
smaller address space 1list, and can therefore support many small
segments efficiently. As more segments are added to an address space,
the address space list will remain the same size, and not grow like the
central object tables in many of the capability systems. Moreover,
provided that a reasonable amount of locality of reference is exhibited,
many small related segments may be placed in one page, reducing the
amount of wasted space and making segment swapping more efficient. Large
segments may be composed of many pages. Because only those pages
actually being addressed are held in main memory the scheme does not
have the large segment problems experienced in segmented schemes.

Thus, the scheme solves both the memory management problems and the
address translation problems associated with many small and large
segments. However, the model in this form does not support requirements
1,2 and 3 of the model aims, namely large unique virtual addresses, a
uniform memory and separate main and secondary  memory address
translation systems. The next section shows how the model can be
modified and used to provide a virtual memory with all the required
attributes.

6.3. Applying the memory management model

Requirements 1,2 and 3 of the model demanded a large uniform
virtual memory and a separate main and secondary memory address
translation system. A large uniform uniquely addressed memory which
holds all data and files 1implies an address size of the order of 64
bits, as used in some other capability systems. The model described in
section 6.2 implies an address size comparable to processors such as the
ICL2900 (Keedy, 1977), MULTICS etc, and of the order of 32 bits because
it uses page tables in main memory for address translation.
Unfortunately, a simple scaling up of the tables is not possible because
the large address 1is 2732 times that of the conventional address.
Moreover, the table structure would be used for both main memory and
secondary memory address translation, contrary to the requirements set
out in 6.1 (3). Thus, in order to use the memory model, the address size
must be expanded to about 64 bits in size and another address
translation mechanism must be found. We can consider a number of the
techniques used by other capability based computers.

Gligor’s addressing scheme assumes the presence of a robust virtual
memory without indicating how to provide such a mechanism. Bishop
attempts to use conventional page tables to translate addresses. This
technique is unsuitable because of the size of the directly indexed page
table. For the same reasons, the page and segment tables proposed by
Keedy, and used by the ICL2900 series, MULTICS, Prime 750 (Prime) etc,
are unsuitable because of the space required for the tables, and the
time taken to translate an address.

The best form of address translation for an address of this size is
the associative technique used by Atlas (Kilburn et. al. 1962), IBM
System/38, MU6-G (Edwards et. al. 1980), and MONADS II (Abramson, 1981).
These methods only attempt to translate addresses for those pages
resident in main memory, and leave the software free to organize the
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secondary memory translation tables in any suitable way (Rosenberg and
Keedy, 1981).

Thus, by increasing the address size to 64 bits and by wusing an
. associative address translation scheme the Keedy model can provide an

acceptable virtual memory for our capability model. The new addressing
scheme 1is summarized in Figure 2. '

7. MONADS

7.1l. Background

The MONADS II computer was built in the Department of Computer
Science at Monash University in 1980. The processor is constructed above
an HP2100A minicomputer using the technique described in Abramson

(1982), and uses the addressing structure described in this paper as the
method for addressing memory.

71.2. Addressing structure

The MONADS II system supports the capability register scheme in two
ways. First, the processor provides a virtual space of 2731 words. This
consists of 2716 separate address spaces, in the sense described in this
paper, each of 32k words. While a full scale capability system would
ideally require more and larger address spaces (e.g. 2732 by 2732), the
MONADS II addressing range 1is sufficient to demonstrate the principles
involved and to support a pilot system.

Second, the processor provides 16 sets of registers. Thus, the
system can efficiently support process-switching between 16 processes.
Each register set includes 16 standard capability registers, six special

effective
capability register number| offset program
address

breneeeeem> | virtual address|]length]access
{

address space #
page #
start address

I capability registers

associative
address
>] translation >
address space # | scheme real page #
page i offset
start + offset

Figure 2 - The new addressing model
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capability registers intended to address code, constants, base leaf

links (Hewlett Packard, 1970) and scalars on the stack, and various
other associated registers.

7.3. The capability registers

Each of the 16 processes executing on the HP2100A is provided with-
16 capability registers for addressing segments of memory. Each register
is composed of 4 16 bit words, as follows:

word 1l: Address space number - 16 bits

word 2: Displacement within address - 15 bits

word 3: length of segment - 16 bits

word 4: access bits - read,write,kernel,invalid - 4 bits

The address space number defines one of the 32k word addressing
regions in virtual memory. The displacement is used to mark the start of
the segment in the address space. The length field marks the end of the
segment 1in the address space. The read and write bits determine whether
the segment may be read from or written into. The kernel bit specifies
that the segment may only be addressed if the processor is in kernel
mode. The invalid bit prevents the register from being used, and is set
when a register 1s wuninitialized. A capability register can only be
loaded when the processor is in kernel mode (e.g. executing a load
capability register instruction) and thus its contents are protected
from corruption. Because the HP2100A only has 16 bit data pathways, four
write cycles are required to set up each register. The HP2100A microcode
provides a load capability register instruction of the type described in
section 5.2.

A capability register may be used as an operand of any of the
HP2100A memory reference instructions. When used, the 31 bit address is
treated as a paged virtual address. This virtual address is mapped onto
the main memory by the MONADS II address translation hardware, described
in Abramson (1981). The displacement field is checked against the length
field, and an interrupt is sent to the HP2100A if a violation occurs. If
the mode of access is contrary to the read or write bits, or the kernel
bit 1s set and the processor is not in kernel mode, or a register is
invalid, an interrupt is sent to the HP2100A.

The displacement held in the register may be modified by two
different methods. In the first, a small constant offset in the range O
- 7 may be dynamically added to the value in the register. Alternatively
a value held in a modifier register can be used to index into a segment
defined by a capability register.

7+4. The load-capability-register instruction

There is not sufficient space in this paper to describe the details
of the MONADS C-list structure. However, MONADS II uses a microcoded
instruction to map this structure onto the capability registers. Before
a segment can be addressed, the capability must be loaded into one of
the 16 capability registers. Instructions may then address memory by
specifying the 4 bit capability register number. Other instructions are
provided for managing high level objects such as information hiding
modules.
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8. CONCLUSION

Many systems have difficulty in managing a memory addressed by
capabilities. The model avoids many of these problems by using the
memory management model described in section 6. In systems which wuse a
central object table for segment address translation, the size of the
table may become excessive 1if the processor addresses many small
segments. The model proposed in this paper avoids this problem by
eliminating the object table altogether. The scheme is uniform in two
respects. First, the capability registers are the only way of addressing
memory . Second, all data, regardless of its size or lifetime, is stored
in the virtual memory. The efficiency of the solution is dependent on
two main factors. First, sufficient capability registers must be
available to contain the working set of the process (Denning, 1980).
Capability registers must be allocated sensibly, and some hardware
support 1is provided for domain changes. Second, an associative address
translation scheme must be used. All of these are true in MONADS 1II.
The hardware proposed in this paper was designed to be flexible enough
to survive a number of changes in software ideas. Whilst there 1is not
space in this paper to demonstrate the flexibility, the addressing model
has actually been applied to a number of different C-list structures
quite successfully. In each of these the model was capable of
implementing a different addressing structure with only a different
load-capability-register instruction and new high 1level object
instructions.

. ACKNOWLEDGEMENTS

This work was only possible after many hours of discussion with Les
Keedy and John Rosenberg to whom I am eternally grateful. This paper
would never have been finished without many more hours of help from Les
Keedy. I am also grateful to the rest of the MONADS group who
contributed significantly to the MONADS II processor and associated
software.

REFERENCES

Abramson, D. (1981) "Hardware Management of a Large Virtual Memory",
Proc. 4th Australian Computer Science Conference, Brisbane
(Australian Computer Science Communications 3, 1, pp. 1-13).

Abramson, D. (1982) "A Technique for Enhancing Processor Architecture",
Proc. 5th Australian Computer Science Conference, Perth
(Australian Computer Science Communications 4, 1, pp. 47-57).

Bishop;P (1977) "Computer systems with a very large address space and
garbage collection'" PhD Thesis, MIT.

Denning P.J., (1980) "Working sets past and present'" IEEE Transactions
on Software Engineering, Vol SE-6 Number 1 pp 64 - 84.

Dennis .J, Van Horn,E (1966) "Programming semantics for multiprogrammed
computations" Comms of ACM, Vol 9, No 3 pp 143-155.

Edwards D.B.G, Knowles A.E and Woods J.V. (1980) "The MU6-G: A new

design to achieve mainframe performance from a mini sized
computer", Proc. of the 7°th Annual Symposium on Computer

Architecture, pp 161-167.

England,D.M. (1972) "Architectural features of the system 250" Infotech

APPENDIX E PUBLISHED PAPERS



- E15 -

state of the art report 14 on Operating systems. pp 395-426.

Fabry, R.S. (1974) "Capability Based Addressing'" Comms. of ACM, Vol 17,
Num 7, pp 403-412

Gligor,V. (1978) "Architectural implications of abstract data type-
implementations" Dept of Computer Science internal report,
University of Maryland. TR-659.

Hewlett Packard (1970) "A Pocket Guide to the HP2100A minicomputer",
Hewlett Packard Co., California, U.S.A.

Intel. (1981) "Introduction to the 1APX432 garchitecture" Intel
corporation manual 171821-001.

- IBM. (1978) "IBM System/38 Technical developments'" IBM Corporation.

Keedy J.L. (1977) "An outline of the ICL2900 Series system architecture"
The Australian Computer Journal Vol 9 Number 2, pp 53 - 62.

Keedy,J.L. (1980) "Paging and small segments: a memory management model"
Proceedings of 8th World Computer Conference IFIP-80.

Keedy, J.L. "The MONADS View of Software Modules'", Proc. 9th Australian
Computer Conference, Hobart.

Kilburn T.,Edwards D.B.E.,Lanigan M.J. and Sumner F.H. (1962) '"One Level
Storage System", I.R.E Trans. Electronic Computation, EC-11,
No 2, pp 223-234

Lampson,B., Sturgis,H (1976) '"Reflections on an Operating System design"
Comms of ACM, Vol 19, No 5, pp 251-265.

Lanciaux D, Schiller L, Wulf W "Supporting small objects in a capability
system" Carnegie Mellon University, Internal report, Dec 1977.

Organick E.I. (1972) '"The MULTICS System: An examination of its
structure", MIT Press, Cambridge MAS & London.

Prime. "The System architecture reference guide" PDR 3060.

Randel, B. (1969) "A note on storage fragmentation and program
segmentation'" Comms. of ACM, Vol 12, Num 7, pp 365-372

Rosenberg J., Keedy J.L (1981) "Software Management of a Large Virtual
Memory " Proc. 4th Australian Computer Science Conference,
Brisbane (Australian Computer Science Communications 3, 1, pp

173-181.

Shepherd J.H., (1968) "The principle design features of the multi-
computer Chicago Magic Number Computer" ICR quarterly report
19, Nov 1968, University of Chicago.

Wulf ,W et al (1981) "HYDRA/Cmmp An experimental system" , McGraw-Hill

Wilkes,M.V.,Needham,R.M. (1979) "The Cambridge CAP computer and 1its
operating system" North Holland.

APPENDIX E PUBLISHED PAPERS



- El16 -

A Technique for Enhancing Processor Architecture

D. Abramson
Dept. of Computer Science,
Monash University.

Abstract:

The  MONADS II computer implements an
architecture with a large segmented and paged

virtual  memory, an “inprocess’ stack
organization and a capability based addressing
scheme.

The processor is constructed around a 16 bit
minicomputer, a HP2100A.

This paper describes the techniques used in the
MONADS II processor to enhance a primitive
architecture and proposes this technique as a
general method of constructing research
processors cheaply and quickly.
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l. Introduction

Since the time that Charles Babbage designed his mechanical
analytical engine in 1837, many new and different computer architectures
have been proposed. The rapid changes in technique have enabled many
structures to be built which previously could not be implemented.
Moreover, the view of computer architecture has altered dramatically and
has been affected by computer language research, providing architectures

capable of directly supporting some high level languages [l] and
operating systems.

Currently, much research 1s being conducted into architectures
which, whilst basically VonNeuman, have new and different memory
organizations (such as capability based addressing [2]) and which can
manipulate higher level data constructs (such as sets and queues).

Many of these ideas are often only designed and documented at a
conceptual 1level and are never actually implemented as the basic
structure of a new processor. Unfortunately, many major design flaws
are not discovered until an attempt is made to implement the design.
Moreover, some designs cannot be implemented at all. Thus, a real
implementation determines both that the ideas are basically sound and
" that they can be efficiently built with the available techniques.

A problem often faced is how to realize a new computer architecture
in an environment in which resources are both expensive and limited, as
in many Universities and research institutes.

This paper discusses some of the common practices and proposes an
interesting technique.

2. Realizing a new architecture

A system designer 1is presented with two alternatives when
attempting to implement a new architecture. First, the architecture can
be incorporated into a totally new -computer system. This approach,
whilst logically the more desirable, often involves many more hours than
may superficially appear necessary.

Extra devices (such as interfaces and controllers) must Dbe
constructed purely to operate the new processor. Some may require a
large amount of design effort; effort which is not directly connected to
the original architectural aims. Many software packages must then be
developed, such as assemblers, compilers, loaders and bootstraps.

Consequently, the project often grows in size where ‘large group
management protlems’ are encountered. Much of this extra effort appears
to be directed to the devices which must communicate with the processor,
rather than to the processor itself. Thus, because of the extra effort
involved, the full scale production of a new computer simply to test out
some architectural enhancements 1is often not viable 1in a research
environment.

The second alternative consists of modifying or using an existing
computer system (called the “source’ architecture) in order to test out
a new architectural design (called the ‘target’ architecture). This
approach has the advantage that the design time and effort may be
dramatically reduced. However, great care must be exercised to prevent
the source architecture from restricting the scope and effectiveness of
the target.
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3. Using an existing computer system

Three different techniques may be used when the target architecture
is constructed on top of a simpler source machine. First, an
environment may be constructed in software. Second, if the source
processor uses a microcoded control unit, the target may be implemented
in firmware. Third, the actual hardware of the source processor may be
modified to implement the target architecture.

3.1. A Software Emulation

This solution may take a number of forms. The most general 1is to
produce a program (called the interpreter) which interprets instructionms
for the target machine. The interpreter emulates the fetch-execute
cycle of the target processor, and executes target instructions by using
small sections of source instructions. Interpreting the new
architecture offers many advantages. Because the interpreter is a
program, often written in a high 1level language, it may be easily
modified. Complex debugging and monitoring aids may be incorporated in
the design, allowing the designers to measure and Judge the
effectiveness of the new processor. At the same time as emulating the

target architecture, the source machine may be executing many other
programs.

This approach also has some major disadvantages. The wultimate
execution speed of the target processor is often far too slow to support
realistic tests . Moreover, it is not always obvious whether efficient
hardware can later Dbe constructed, somewhat diminishing the
effectiveness of the implementation.

A slightly more efficient software emulation involves another
different body of code (called the Kernel) which attempts to provide a
normal source machine program with attributes from the target processor.
Programs for the target machine are compiled into source machine
instructions. When a target machine operation is required which cannot
be directly translated into a short sequence of source instructions,a
call to the kernel is executed, which performs the task and returns
control to the source program.

Whilst far more efficient than an interpreter, the kernel solution
tends to highlight the architectural features of both the source
processor and the target, often with disastrous effects. (Such an
example is found in (4]). Moreover, this technique may not be able to
manage a target machine which 1is dramatically different in design from
the source. Thus, a target program may be reduced mainly to kernel
calls and appear the same as an interpretive solution.

Because many source instructions may be required to emulate a
target instruction, the speed of the kernel is often far too slow to
support a realistic test environment.

Many different types of kernel have been written. A good review is
found in [16].

A common disadvantage is that both the kernel and the interpreter
often occupy large amounts of memory and may reduce the space available
for user programs significantly.

The advantages of these solutions are mostly logical. An
interpretive solution can usually emulate the target architecture
successfully. The disadvantages are mostly practical. Poor execution
speed often makes the model useless.
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In spite of the disadvantages, many architectures have been
successfully emulated in software. Most, however, have failed to

provide a usable, long term computer utility [4, 5] because of poor
efficiency.

3.2. A Firmware Implementation

Another technique used is to emulate the target architecture in
firmware (or microcode). This solution is clearly only applicable if

the source machine uses a microcoded control unit and possesses a
writable control store.

The internal microcycle of most processors is several times faster
than their fetch-execute cycle. Consequently, target machine
instructions can be much more efficiently emulated with microcode than
with software. Because new 1instructions can be placed in writable
control store, the processor can continue to execute normal source
machine programs at the same time as target programs.

Unfortunately, most processors provide only a small writable
control store and, more importantly, a limited number of uncommitted
operation codes. Thus, it is usually difficult to microcode all of the
operations required by the target machine.

Even when sufficient store and entry points are available, this
technique often encounters another important problem. Many target
instructions may implicitly require storage space, which must be
provided by the source machine mainstore. (An obvious example is the
implementation of a virtual memory system, which requires page tables in.
order to translate addresses). In many cases the fact that target
operations are implemented in microcode may not be sufficient to make
them efficient. The operations may be limited in speed by the time
taken to scan or search various data structures which, i1if built 1into
hardware, would have used much faster store and searching strategies.
(examples of such an address translation system are found in [6] and

(71 .

In addition, the structure of the micro instruction is wusually
designed for the source instruction set, not the target. Consequently,
it is often quite difficult to write the target microcode on the source
machine.

Thus, a firmware emulation, whilst much more efficient than a
kernel or interpretive solution, is often still too slow to provide a
usable system. Moreover, the implementation often leaves too much of
the source processor architecture visible, affecting the attributes and
view of the_target architecture.

In the situation where speed is important, the only solution may be
to provide special hardware.

3.3. Modifying the source hardware

The third possibility is to modify the hardware of an existing
machine. Clearly, this technique can offer the best performance.
Traditionally, however, this method 1s only used when the target
architecture does not differ greatly from the source architecture.

Small changes such as small modifications to the 1instruction set,
adding virtual memory hardware [8] and detecting extra error modes [5],
have been done successfully. Each of these changes, however, has not
introduced major architectural enhancements to the source processor.
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In fact, it is clear that the major changes possible with an

emulation environment are not always possible when modifying the
hardware of an existing machine.

The technique 1is often rejected because it may alter the
environment for normal source machine programs as well as target machine
machine programs, dedicating the use of the source machine. '

In spite of the disadvantages and practical difficulties a number
of architectural changes have been achieved by hardware changes. The

next section examines some of the more common hardware modification
schemes used.

4. Hardware modifications

Many specific changes are possible when the processor design 1is
modified. These depend upon the internal implementation of the
processor itself, and will not be considered further. This section
concentrates on some of the more general modification techniques
available.

4.1. Processor Configurations

Most computer systems can be divided into two main parts, the CPU
and the memory, connected usually by a “clean’ set of interface signals,
shown Fi 1.

€—— handshaking & control—>
rocessor Memory &
ADDRESSES >|Peripherals
€ DATA >
figure 1.

The signals involved in the interface can typically be divided into
three sections; addresses, data and control/ handshaking information.
The CPU communicates with the memory mostly by read and write commands.
When the CPU executes a read operation control inforimation is generated
together with an address pattern. The CPU may then wait for data,
which 1is passed back over the data pathway. When a write is executed
data is sent with the address to the memory unit

The connections between the CPU and memory section may be
generalized to form a system bus which connects to devices other than
the memory.

It is the ‘clean’ nature of the interface between CPU and memory
which is often employed when architectural enhancements are introduced.

4.2. Breaking the address bus

One technique used to enhance the architecture of the source
processor 1is to introduce extra logic into the address pathway between
the CPU and the memory, shown in Figure 2.

If the architectural enhancement 1is the addition of a virtual
memory system, then the extra logic may be used to modify, or translate,
the processor addresses before they reach the memory. Such a system 1is
described in [8].
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—Address - |———— Address ——|
C.P.U. EXTRA MEMORY
<&—Data-—— LOGIC &~——Data —1
[&—Control—] |¢&———Control——>
figure 2.

If however, the target architecture is to include more registers,
these may be assigned addresses and placed in the extra logic. Read and
write commands directed to these addresses are ‘stolen’ by the extra
logic and may never reach the memory.

The extra logic in some systems appears as a block of memory, but
the data 1in the locations is calculated by the logic rather than being
the previously saved values. Such a system 1s described in [9] to
implement a stack mechanism and addressing registers.

Many systems have been constructed which place special significance
upon certain addresses within the address space. Many rely on special
addresses for performing I/0O operations. All, however, only ‘steal’ a
limited number of addresses for such operations, and perform very
specific operations. None of these systems make dramatic architectural
changes. Such systems do, however, suggest that treating the addresses
from a source processor in a special way may be wused as a general
mechanism for enhancing an existing machine architecture. The next
section proposes such a model.

5. A general model

The systems discussed in section 4 used the processor addresses in
various ways. If rather than using a dedicated piece of extra logic,
another fast processor 1is placed in the address path, a general
mechanism for dramatic architectural enhancements is created. In such a
scheme, the processor addresses are treated as instructions by another,
small fast processor, the intermediate processor, as shown in Figure 3.
These new instructions may be tailored to the target architecture.

|———Addresses—y|Instruction Addresses—»
C.P.U. g——Data — ALU {&—Data———1 MEMORY
Registers
&— Control—— €—Control——
Intermediate
Processor
figure 3.

The intermediate processor reinterprets all of the CPU addresses,
and executes them as though they were instructions. Some may be sent to
the memory unit, whilst others may be used internally.

The intermediate processor appears as a plece of memory to the
source processor.

The model possesses some particularly notable attributes.

1) Many new operation codes are available, thus many new target
operations may be supported. The potential number of codes
available is the size of the address space.
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i1) Because the intermediate processor is a general processor many
different target operations may be attempted, from very simple
memory references to complex data manipulation.

111) Extra target architecture registers may be 1located 1in the
structure of the intermediate processor, and can be manipulated by
read and write commands from the source processor.

iv) Normal memory references can be made to proceed from the source
processor to the memory with very little delay.

v) Complex target operation may be added to the source without major
modifications to the source processor hardware. Thus,the source
processor may be a mainframe, a minicomputer or possibly even a
microprocessor.

vi) The new architecture 1s partly transportable among source
Processors. Most of the target architecture is housed within the
intermediate processor itself.

vii) The intermediate processor may be removed, or made logically
transparent; thus it 1s not difficult to allow the source
processor to execute normal source programs instead of target
machine programs.

viii) The target architecture inherits all of the input/output devices,
controllers, communications, frame and power supplies from the
source processor. This vastly reduces the amount of effort
required to implement a working target architecture.

ix) Depending upon the address interpretations it may be possible to
execute source programs on the new target machine. At the very
least, these programs can execute on another source processor of
the same type. Thus the assemblers, compilers and loaders already
available for the source processor may be modified to produce code
for the target architecture. Consequently, some software
development may be avoided.

x) Because the intermediate processor only consists of a central
processor unit it may be easily constructed, possibly from bit
slice components. ‘

The next section examines the MONADS 1II processor, which was
designed and built using this general model.

6. MONADS II

The MONADS project began in 1976 with the intention of
investigating methods for developing 1large software Systems. An
operating system [10-14] was written to execute on MONADS I, a modified
HP2100 minicomputer [8] [9].

The principles underlying the design of the operating system extend
far beyond that system and can be applied to any large software system.

During the development of the MONADS I system it became obvious
that the available hardware was not entirely suitable for the MONADS
software structures. This prompted the building of a second computer,
MONADS II, which 1is designed around the general model proposed in
Section 5, and uses a HP2100A minicomputer as the source processor.
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6.1. The HP2100

The HP2100 [15] is typical of many 16 bit minicomputers of the:same
era, and incorporates a microcoded control unit, some general
accumulators and 32k words of memory. Addresses are constructed from a
word of 16 bits, 15 of which form the memory address. The top bit
represents whether addresses are to be used indirectly. [15, page 2-8

1.

Physically, the processor is divided into three areas; the central
processor itself, the input output section and the memory section.

The interface between the memory section and the processor consists
of 15 address bits, 16 bidirectional data bits and a number of control

signals. The memory section is self contained and uses 16 bit words of
core memory .

6.2. The MONADS II Architecture

It is beyond the scope of this paper to describe the architecture
of the MONADS II system. It is, however, easy to demonstrate that the
target architecture could never be efficiently emulated, either by
software or firmware, totally within the HP2100A.

The MONADS II processor supports a number of processes directly 1in
hardware and provides each process with 124 extra 16 bit registers.
Some of these are used as capability registers to address a segmented
virtual memory with 31 bit virtual addresses. The processor also
supports the MONADS subsystem [13] and inprocess [12, 13] architecture
with a protected stack structure. Most of these concepts are so alien
to the HP2100A that an emulation would be extremely inefficient.

6.3. The MONADS II system

The MONADS 1II system comprises four sections; The HP2100A
processor and I/0 logic, the intermediate processor, the virtual memory
manager and the system mainstore. The old HP2100A core controller has
been removed and the 1interface 1s wused to communicate with the
intermediate processor, as shown in Figure 4.

figure 4.

6.3.1. The ﬁPZlOO processor

The changes made to the HP2100 engine itself were minimal. Some of
these were essential for the correct operation of MONADS II, whilst
others were made for efficiency reasons. Four changes were made.

First, the microcode control store of the HP2100A was increased in
size from 1024, 24 bit words to 4096 words. This modification whilst
not essential, simplified the implementation and improved the efficiency
of the operating system.

Second, the direct memory access (DMA) logic was modified to
communicate directly with the virtual memory manager. This modification
was essential, and guaranteed that the DMA system would always receive

immediate service.
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Third, minor changes were made to the interrupt logic to allow the

Intermediate processor to interrupt the HP2100A and abort the current
instruction.

Fourth, small changes were made to the control signals between the
HP2100A and the intermediate processor to make them asynchronous with
respect to each other. -

The core controller board and associated cards were removed from
the frame and an interface to the intermediate processor substituted.

6.3.2. The intermediate processor

The intermediate processor is fast microcoded processor. Each
Instruction from the source processor 1s interpreted by a stream of
microcode. It accepts all HP2100 addresses and reinterprets them
according to the following rule:

if address is direct and =< 777B then read from current data
segment else

if address is indirect and =< 777B then read from current 1link
segment else

if address >= 1000B and =< 1377B then read from stack frame 1 else

if address >= 1400B and =< 1777B then read from stack frame 2 else

if address >= 2000B and =< 75777B then read from current code
segment else

if address >= 76000B and =< 77777B then use another special set of
interpretations.

The special interpretations allow the HP2100 to perform many
other operations, 1including modifying registers, addressing the top of
the stack, using push and pop operations on the stack, using and loading
the capability registers, changing processes, reading the time, setting
process time limits and addressing constants. The details of the
address 1interpretations are beyond the scope of this paper and range
widely in complexity.The simplest instruction manipulates a register
whereas the most complex performs byte operations on word oriented
segments. The intermediate processor is described in more detail in
(17] .

6.3.3. The memory manager and real memory

The intermediate processor is capable of expanding the 15 bit
HP2100A address to a 31 bit virtual address. The virtual memory manager
translates this address into a mainstore address and 1s described in
detail in [18].

7. Achievements

The intermediate processor was designed by one person over a period
of months, built 1in about 6 weeks and tested in about 2 weeks. The
processor was implemented for two reasons.

First, and most obvious, to provide the MONADS group with a new
processor capable of supporting the goals of the MONADS project.

Second, to determine whether the general model proposed in section
5 was realistic.

Both of these objectives were successfully met. The MONADS group
is currently wusing the MONADS II system for software development.
Moreover, the fact that such a complex architecture was developed
efficiently on a very simple computer demonstrates that the model is
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indeed realistic. The implementation appears to support the advantages
cited in Section 5. The number of internal modifications made to the
HP2100 was small. Whilst the processor is effectively dedicated to the
MONADS project it would be possible to make the intermediate processor
logically transparent and allow the HP2100A to execute normal programs.

Providing certain rules were obeyed it would also be possible to-
move the 1intermediate processor to another 16 bit minicomputer, with
very little change to the intermediate processor.

Initially, a hardware diagnostic and monitor system was developed.
This system was written in normal HP assembler and compiled and linked
using the normal DOS-M assembler and loader software.

The effective speed possible within the intermediate processor
would suggest that the implementation chosen is far more efficient than
an interpretive or firmware solution. The design of the intermediate
processor 1s significantly 1less complex than the design of a complete
CPU module, and avoids all of the extra device 1logic described 1in
Section 2.

An unexpected advantage was found in the initial bootstrap of the
system. The 1intermediate processor has a special instruction which,
when executed, sets up the address translation hardware and performs
internal register diagnostics.

The most notable disadvantage of this technique, 1like the firmware
solution, 1s that the source architecture is still somewhat visible.
For example, the data paths in the target machine are still 16 bits
wide. In spite of the simplicity of the source machine, these features
did not appear to limit the target too significantly.

8. Conclusions

The success of the implementation of MONADS II clearly demonstrates
that the model developed in Section 5 is realistic.

The end result of this research is a usable implementation of a new
computer architecture.
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HARDWARE MANAGEMENT OF

A LARGE VIRTUAL MEMORY.

D. Abramson,
Dept. of Computer Science,

Monash University.

ABSTRACT

The MONADS II Computer was built in the Computer Science department at
Monash University in 1980. Among its many features, the Series II
utilizes a capability based addressing scheme, in a large virtual -
memory.

Standard techniques unfortunately fail to provide an efficient mechanism
for translating the Series II virtual addresses into main memory
addresses.

Another technique is proposed for mapping very large addresses, which
operates very efficiently for a relatively low cost.

The address translation units of two other computers are examined and
are compared to the Series II unit.
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1.0 Introduction

1.1 The MONADS Project.

The MONADS project began in 1976, with the intention of investigating
methods for developing large software systems. An operating system
([1]-(6])) was implemented to execute on the MONADS Series I computer; a
modified HP2100A minicomputer [2], [7). The principles underlying the
design of the operating system extend far beyond that system, and
indeed can be applied to the development of any large software system.

During the development of the Series I system, it became evident that
the available hardware was not entirely suitable for supporting the
MONADS software structures. This prompted the building of a second

computer, the MONADS Series II [8][9], which is partly based on a vastly
modified HP2100A minicomputer.

1.2 MONADS Series II.

The MONADS Series II processor was designed to support an environment
sympathetic to the philosophy of the MONADS project. It provides
constructs for efficiently managing and supporting the key features of
MONADS, some of which are not well 'understood' by other computers,
including the Series I processor. This paper describes one of these
areas, the Virtual Memory System.

Section 2 portrays a logical view of virtual memory systems whilst
Section 3 comments on some standard implementations and their problems.
Section 4 describes the Series II address translation unit and Section 5
compares it with two other virtual memory systems.

2.0 Logical View of Memory

2.1 Series II Virtual Memory.

It was demonstrated by the Multics designers [10] in 1964 that it was
highly desirable to treat the memory of a processor in a homogeneous
manner. From a aser's viewpoint, there is no conceptual difference
between a block of core (or semiconductor) memory and a block of disc
memory; the only practical difference being the way in which the data is
retrieved and the relative speed at which it is returned.

It was therefore decided that the Series I1 processor would provide the
user (and system) with a very large virtual memory, and like multics,
draw no distinction between fast and slow memory (or between files and
arrays) .

It was also deemed desirable that programs could be broken into their
logical sections, or segments, so that these segments could be treated

separately.

Thus the Virtual memory of the Series II is designed as a very large
segmented memory (as this is now the only form of storage). Each
segment is paged to simplify the enormous task of managing a segmented

memory [15].
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Address translation Is the process of mapping an address as viewed
from the processor onto the physical address required by the main
memory system. If the address to be translated 1s not resident in main
memory a page fault Interrupt is caused, and the supervisor program
fetches the page into mainstore.

The virtual address is typically divided into two sections, a virtual
page number (possibly including a segment identifier) and an offset
within page. The address translator maps the virtual page number onto
a main memory page number, which is combined with the unaffected offset
to form a main memory address. The model translation process is shown
in Figure 1.

< - page fault
] -7 -1
(
virtual virtual main main
address page no. Address memor mem%r
translator y y
page no. address
offset
FIGURE 1

3.0 Virtual Memory Systems

3.1 Virtual Mémory Categories.

For the purpose of implementing address translation haraware, virtual.
memory systems mav be divided into three categories:

(1) Small Virtual memories
(2) Large Virtual memories with small main memories
(3) Large Virtual memories with large main memories.

3.1.1 Category (1) refers to systems where the address space viewed from
a program is small enough to allow the address translation tables
to be held directly in the hardware [7] [l11]. Some such systems allow
the operating systexz to swap these tables into and out of the hardware,
so that individual processes may execute their own isolated address spaces.

These systems are relatively unaffected by changes in the size of the

main memory, as this only alters the width of the translation tables.
However, they are greatly affected by the size of the virtual address space,
as this alters the length of the translation tables. A simple address
translation unit is shown in Figure 2.

Hardware mapping table

virtual virtual , ; . \ main
age no. in
address page no. ||P f DemOr ¢ memory
L Y address

offset FIGURE 2
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3.1.2 In systems with a large virtual memory and a small main memory
(c.f. Atlas [12]), address translation is typically accomplished
by utilising an associative memory to hold the translation tables. Each
page of main memory is associated with one page address register, which
holds the virtual address pertaining to that main memory page.

Translation is accomplished by the simultaneous comparison of the contents
of each page address register with the page number part of the virtual
address; the matching register then pointing to the page in main memory

is the required ome. Contrary to category (]), this technique is
relatively unaffected by changes in the size of the virtual memory.
However, it is greatly affected by the size of the main memory, as this

alters the number of page address registers and comparators required.
Such a scheme is described in Figure 3.

virtual
address mVirtual page no'jl " main N
: . memory
: : address
! )
comparators page address
registers
offset
FIGURE 3

The use of an associative memory cannot, unfortunately, be extended to
provide tranglation for category (3) systems due to the number of page
address registers and comparators required.

3.1.3 The classical solution for systems with large virtual memories and
large main memories (category 3) [10] [13] involves the use of

page tables, (and segment tables) which are held either in main memory or

virtual memory. _These tables, which are maintained and searched by

system software and firmware, offer a multi level indexed address

translation table.

To achieve respectable translation times, this mechanism is usually
augmented by a small as<ociative memory, which holds the mos: recently
used page table entries. This scheme is shown in Figure 4.

Segment table

1
segment page table
no.
Ay —>
virtual \ main 4
address memory
~_J address

offset

FIGURE 4
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3.2 This classical solution would unfortunately fail to provide an

efficient address translation mechanism for the Series II
processor. The addressing style of Series II (which is capability
based)[22] would introduce a very large number of small segments [14].
In addition, the page tables, which would be too large to reside in.
main memory, would be forced into virtual memory. This would greatly
complicate the address translation software, and cuase the translation
process to become extremely inefficient.

3.3 Logically, the solution adopted by systems such as Atlas (category

(2) systems) would offer the best performance. However, the
production of an associative memory capable of managing the many
thousand pages of main memory, has not yet become feasible.

The next section describes an address translation unit which emulates a
large associative memory very efficiently.

4.0 The Series II Virtual Memory System

4.1 The Virtual Address.

The virtual memory of the Series II processor is addressed by a 31 bit
virtual address, which is unforgeable and unique across the system.
From the viewpoint of the virtual memory hardware, this address
<segment no (16 bits), page no, (6 bits) displacement (9 bits)> may be
considered as 22 bits of virtual page identifier, and 9 bits of within
page displacement, <virtual page no (22 bits), displacement (9 bits)>

Because the address is unique, the mapping hardware need never concern
itself with the identity of the executing process and the system
software need never swap mapping entries when switching processes.

4.2 The Physical Address.

The Series II physical address, for the main memory, consists of 13 bits
of page number and 9 bits of within page displacement. This 22 bit
address <page no (13 bits), displacement (4 bits)> allows a maximum
main memory size of 8 MB.

4.3 Control of the Virtual Memory.

Control of the virtual memory may be divided into three sections, namely:

(1) Mapping Hardware
(2) Swap out software
(3) Swap in software.

Sections (2) and (3) are responsible for moving pages out of and into
main memory respectively, and are managed by the Series II Hardware
Kernel [16]. This software is fully described in a companion paper
[17]). The remainder of this paper is concerned only with section (1).

4.4 Mapping Hardware.

The Mapping Hardware is solely responsible for mapping the 31 bit
virtual address onto a 22 bit physical address. The external appearance
is characterized in Figure 5.
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page fault
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cpy |31 bits 22 bits [ TAPPINE | 3 pyeg .22 bit

hardware ?physical
address

9 bits displacement

FIGURE 5

When presented with a virtual address, the mapping hardware may
either produce a physical address, or a page fault signal. If the
page required is in main memory, a physical address will be
produced. However, if the page required is in secondary memory, a
page fault interrupt will be signalled to the system, in order that
remedial action may be taken.

4.5 'Internal Operation.

The mapping hardware is organised as a high speed sparsely occupied
hash table, with embedded overflow chains, as characterized in Figure
6.

The unit consists of three main components, a hashing unit, a hash
table and a comparator. . " '

9 bitsidisplacemeﬁt

hashing Al 12 {10 | 3 13
Unit ~ bits|bits|bits |1{1|1]| bits
1| Virt-|link Accessv,F E Physical
ual [field|Con- pageno
N pageng trol
compare key //////
12 bits A
Comparator
EQUAL?
]
2 X
<'-"i;:a"g-:;fault
~ FIGURE 6

4.5.1 Hashing Unit.

The hashing unit accepts a 22 bit virtual page number and generates a
10 bits uniformly distributed index into the hash table.

- The current version of the hashing unit uses low order bits from both
the segment field and the page field of the virtual address (See 4.9.2.)
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The hash table is implemented uys

ing very high speed bipolar memory.
Each cell is addressed by a 10 b oL 4 4

it hash key, and contains seven fields:

(1) virtual address jdentifier 12 bits
(2) Physical page number 13 bits
(3) Access field 3 bits
(4) valid field (V) 1 bit
(5) Link field 10 bits
(6) Foreigner field (F) 1 bit
(7) end of chain field (E) 1 bit

4.5.2.1 Virtual Address Identifier.

This field contains the remaining 12 bits of the virtual page number
not used by the hashing function. All other information in the cell
pertains to this virtual page.

4.5.2.2 Physical Page number.
The field holds the page number to which the virtual page is mapped.

4.5.2.3 Access Control Field

This field consists of three access control bits, controlling read,
write and execute access respectively.

If a reference to a page contravenes any of the access control bits,
an interrupt is generated and the reference is aborted.

4.5.2.4 Valid field.

This field specifies whether the virtual address identifier field
contains a valid address. If an address hashes to an invalid cell, a
page fault signal is generated.

4.5.2.5 Link field.

If more than one virtual address hashes to a given cell (i.e. clashes
occur), an overflow chain is maintained by using another unused cell in
the hash table. This field holds the address of the next cell in the
overflow chain. It is maintained by the kernel software and is
searched by the mapping hardware.

4.5.2.6 Forcigner field.

An address is foreign to a cell if its hash key value is not equal to the
cell number in which it is held. If an address is foreign, the foreign bit
is set. This bit is required because the Virtual address identifier field
does not hold the entire virtual page number.

4.5.2.7 End of chain field.

This bit is set tc signify that the cell is at the end of a link chain.

4.5.3 The comparator.

This unit tests the virtual address identifier field, and those bits of
the virtual page number not used by the hashing unit, for equality. If
equal, the physical page number field value is used as the translated
Page number.
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4.6 Mapping Unit Operation.

Operation of the mapping unit is summarised in Figure 7. The entire
translation process is managed by the mapping hardware, including the
following of overflow chains. Control is returned to the software once
the memory reference is completed (or after a page fault).

translate
virtual

\ address

hash
virtual
page
number

Cause
Page
fault
A -
omparator
true?
Use
Physical
page no
field
/N | EXIT
look at cell
pointed to by
link field
Y
ez
FIGURE 7
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4.7 'Peek' Operation

For certain critical system software, it is important to know whether a

?age feference will cause a page fault. This may be achieved with the
peek' operation.

When a peek operation is performed on a virtual address, the mapping unit
attempts to translate the address. The software may then examine a
Series II status register (SVR) to determine whether the reference would
have caused a page fault. If the peek operation indicates that no page
fault would have occured, then the reference is regarded as a normal

(non peek) reference.

However, if the status register indicates a page fault condition, then
the page must be fetched into main memory.

4.8 Control of the Mapping Hardware.

To the software responsible for initializing and maintaining the data in
the mapping hardware, the hash table and associated registers appear in

a special segment, the memory control segment (segment ). Values may be
saved into or read from the various fields of the hash table by executing
memory reference instructions on this segment.

4.8.1 Insertion and deletion.

Algorithms for inserting and deleting entries from the translation unit
are fully defined in [23], and thus are not described here. Correct
operation of the hardware demands that the software responsible for
insertions and deletions conforms to these algorithms.

4.9 Performance of the Translation Unit.
4.9.1 Loading Factor.

A potential danger with using a hash table is that the number of
collisions to any one cell (or clashes), and the average chain length.

may become unacceptably high. Acceptable performance can, however, be
obtained 1f the hash table is sparsely occupied (i.e. low loading factor).
Providing that the hashing unit generates a uniform distribution of hash
keys, the expected number of probes to retrieve an item in the hash table
can be calculated from

E=1+cr./2
where = loading factor [18], [23].

The current version of the Series II processor has a hash table size four
times the number of pages in physical memory, so in this version
E = 1.125 which is acceptably low.

(Note that for a true associative memory, E = 1)

4.9.2 Hashing Function.

The hash table performance is also affected by the efficiency of the
hashing function, which should guarantee a uniform distribution of hash
keys. The current version of the hashing unit uses a combination of low
order bits from both the segment field and the page field of the virtual
- address. Should this function yield poor results, experiments may be

made with more complex hashing functionms.
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Figure 11 shows the timing delays inherent in the Series II address
translation unit. It can be seen that the minimum access time will be

t . =@+ 50+ 5 + (300°700) ns
min
= 4007800 ns
On average
tav = (400 -800) + (E-1) x 100

412 “812 ns

The variation in the main memory time is dependent on the cycle
stealing of the refresh hardware for the dynamic memories used.

link chain

|

Virtual Jhashing hash main
Address table .omparator

4
-

| function memory

| *— @ ns — | +—50 ns = | < 50 ns — |<€=300-700 ns—>

FIGURE 8

4.9.4 Expansion of main memory.

To maintain acceptable performance, the value E must be kept low, thus
on addition of main memory the hash table size must be expanded
proportionally. This increase in size does not necessarily affect any
of the fields within the hash table. If the hash table 1is divided into
blocks, links may be restricted to the 'block' of hash table in which
they exist.

4.9.5 Optimization.

Performance of the hash table may be optimized by overlapping the
comparison of the virtual page id~ntifier in the current cell to the
virtual page number, with the fetch of the cell linked to the current
cell. This optimization, however, has little effect 1f the value E-1 1is

low.

5.0 Alternative Solutions

Two other computers have made attempts at solving the problem of
translating very long virtual addresses, both using unconventional
techniques.

5.1 MU6-G [19]

The MU6-G was recently developed at Manchester University as a "high
performance machine useful for general and scientific applications".
Among its many features, MU6-G includes a Memory Access Controller, or
MAC, for translating virtual to physical addresses.
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Memory Managment

The virtual address format in the MU6-G processor is as follows

< process no. (8 bits)
segment no. (8 bits),
block no. (7 bits),
bit no. (14 bits)>

MU6-G associates one Page Address Register (PAR) with each physical
page, as in Atlas [12]. However, rather than using a fully associative
mechanism, which would be prohibitively expensive, a sequential search
is made of these registers.

PARs are organized in banks of 256 locations, which gives an average
translation time a little under 6ps. This unacceptably high time is
reduced by the use of a translation look aside buffer. If the main
memory cache on MU6-G is ignored, a mainstore access time of 750 ns is
achieved.

5.2 The IBM System/38

The IBM System 38 [20] [21] is the most recent computer in the IBM range,
and was developed by the General Systems Division in 1978.

Like the Series II, the System/38 translates an extremely long virtual
address into a smaller mainstore address.

The translation process involves the use of a sparse hash table in the
main memory of the System/38. Two tables are involved; the hash index .
table and the page directory. The page directory serves as an overflow
table, unlike the Series II address translator which uses overflow chains
embedded in the hash table. In addition, the hash index table, which is
equivalent to the hash table in Series II, is held in the main memory

of the system/38. This memory is far slower than the high speed bipolar
RAM used in Series II.

Acceptable translation times are only achieved by the addition of a
translation look aside buffer.

No timing values have been published for the System/38.

5.3 Coriclusion.

Both MU6-G and System/38 require the use of high speed look aside buffers
to achieve respectable translation times. The design of such buffers is
usually similar to the design of the Series II mapping unit, i.e. as high
speed hash tables, but with'no overflow strategy, and usually of much
smaller size. When the lookaside buffers in MU6-G and System/38 fail to
translate an address, some form of slower overflow strategy is utilized.
When a clash condition in the Series II mapping unit occurs, (which is less
likely than a lookaside buffer failure) a high speed search is made within
the hash table.

The paper has demonstrated that the address translation technique
utilized by the MONADS Series II computer is practical, and offers very
acceptable performance. It suggests that the Series II translation unit
should offer equal or superior performance to the MU6-G or System/38
translation units.
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