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SUMMARY 

The research described in this thes is was undertaken with the aim 

of providing a sui table comput er architecture for supporting the 

development and execution of large software systems decompos ed into 

modules accord ing to the information hiding princip le . In the cour se of 
this work , the author develop ed two models relevant to the achievement 

of this aim . 

The first  model is framed in terms of a memory management and 

address ing scheme which bas es p rotection on capab ilities and overcomes 

the maj or memory management and address trans lation problems found in 

other capab ility-bas ed archit ec tures .

The second model arose from the author's practical work in 

modifying an exis ting computer (a Hewlett Packard HP 2 1 00A) to support 

this architecture . It proposes a general technique for upgrading 

relatively p rimitive computers to support more advanced features , in 

terms of addressing modes , add itional regis t ers , new instructions and 

vi rtual memory . 

Chap ter 1 provides background informat ion which led the author to 

undertake this research, and exp lains the s truc ture of the thes is . 

Chap ter 2 surveys the convent ional memory management sys tems , and 

des c ribes a number of the more counnon p rob lems associated with them . 

Chap ter 3 describes the hardware used by most  memory management 

syst�ms . 

Chap ter 4 surveys current capab il ity based address ing schemes and 

highlights their problems . 

Chapter 5 describes the new architectural model and shows how it 

solves the p roblems rais ed in earlier chapt ers . 

Chapter 6 addresses the problem of how to implement the new model 

both cheap ly and quickly . In doing so, it d evelops a general technique 

which can be used to implement new computer architectures . 



Chap ter 7 desc ribes a practical imp lementation of the address ing 

s cheme described in chapter 5 using the technique def ined in Chap ter 6 .  

The concluding chap ter examines the extent to which the two models 

proposed in this thes is have been succes sful and prac tical . 

The two maj or cont ribu tions of this res earch work are the new 

address ing model proposed in Chap ter 5 ,  and the architectural 

enhancement model proposed in Chap t er 6 .  

The new address ing model avoids the two maj or problems of current 
capab ility bas ed computers , namely memory management problems associated 

with small and large segments ,  and also address trans lation prob lems 

which aris e in sys tems which make abundant use of s egments . The model 
is shown to be more eff icient than the address ing schemes used in other 

capab ility sys tems . Unlike other capab ility bas ed and conventional 

comput ers , it is flexible enough to efficiently implement many different 

capability addres sing structures . Consequent ly , the software ideas can 
change and evolve , without affecting the hardware . 

The new enhancement technique allows many different architectural 

enhancements to be implemented and tes ted as an extens ion of an exis t ing 

computer system, and thus allows a full s cale evaluation of the ide�s to 

be made . Because the technique allows comp lex structures to be 

constructed quickly, accurately and cheap ly ,  it avoids the p rob lems 

found in many theses which propose new architectures without coming to 

t erms wi th their practical implications . 

In addition to these contributions , during the course of the 

imp lementation work , a new address trans lation unit was devis ed which, 

whilst not s ignif icantly dif ferent in concept , is s ignif icantly 

d if ferent in imp lementation f rom many other units . 
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1 .  Introduction 

The research des cribed in this thes is was conducted as part of the 

MONADS proj ect in the Department of Computer Science at Monash 
Pniversity . The thes is topic is concerned with the development of 

comput er hardware , in the form of the MONADS II sys tem, but in addition 

to des crip tions of the actual MONADS II development the thes is des cribes 

two general models which have more general app licability . The first of 

these is a model for building capab ility-based computer sys tems in a 

more flexible way than has hitherto been attempted . The second model 

des cribes a general approach which can be adop ted to enhance exis ting 

relatively simp le computers to supp ort a wide variety of extens ions , 

such as the addition of new address ing modes , new regis ters and support 
f or a virtual memory . 

1 . 1 .  The MONADS Proj ect 

l·l·!· Aims of the MONADS Proj ect 

The MONADS proj ect (Keedy , 1 9 7 8 , 198 1 ; Keedy , Abramson , Rosenberg 

and Rowe , 1 982 ) began in 1 976 with the intention of inves tigating 

methods for developing large complex sof tware sys tems . The techniques 

us ed in the p roj ect are based on the information hiding princip le, as 

advocated by Parnas ( 1 97 1 ,  1 9 7 2 )  and others (Wirth ,  197 7 ;  Liskov and 

Zilles , 1 9 7 4 ;  Keedy and Rosenberg , 1 98 1 ;  Keedy and Rosenberg , 1 982b ) . 

Us ing this princip le software sys tems are decomposed into small 

inf ormation hid ing modules , each of  which perf orms a specif ic task . The 

data structures and algorithms used by these modules are to tally hidden 

f rom other modules which make use of their s ervices ,  and connnunication 

between modules is by a procedural interface . Unlike many language based 
solutions (Lisk�v , Snyder , Atkinson , and Schaf�ert , 1 9 7 7 ; Dahl , 

Myhrhaug and Nygaard , 1968 ; Wulf , London and Shaw, 1 9 7 6 ) , the MONADS 

p roj ect p rovides support f or the inf ormation hid ing module at an 

architectural level (Keedy , 1 982b ) . Moreover , modules are used 

unif ormly to rep resent all addressable obj ects , even those which 

conventionally have their own mechanisms for address ing , protection and 

sharing , such as f iles (Keedy and Richards , 1 9 82 ) . 

From an imp lementat ion 

segments of memory , each 

CHAPTER 1 

viewpoint , modules are cons tructed from 

of which must be addressed from within the 
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module and protected from access by other modules . For this reason , both 

modules and segments are addressed by capabilities (Fabry , 1 9 74 ) . 
Algorithms are implemented by code segments ,  and data structures can be. 

held in da ta segments . Because the int erf ace is s trictly p rocedural the 

segments can only be directly addressed from within a module . 

1·1·1· His tory of the Project 

The f irst phase of the proj ect involved building an operating 
·sys tem (Keedy , 1 978 ) . The idea was to demons trate that an operating
sys tem, and in fact  any large sof tware sys tem, could be broken into
small units , each of which is imp lemented by an inf ormation hiding
module . During the sys tem des ign it became clear that a convent ional
computer architec ture was ill-suited to the new sof tware methodology .

The maj or area of concern was the way that information and modules are

shared and p rotected . Consequently,  the MONADS I p rocessor was developed

in about 1 97 8  (Hagan and Wal lace , 19 79 ; Wallace , 1 97 8 ; Hagan 1 9 7 7 )  from

a modif ied Hewlett  Packard HP 2100A .  This p rocessor p rovided a small

virtual memory ( 4  x 32k word address spaces ) and a number of previous ly

unsupported addressing modes , such as p rocess s tack addressing and base

and index regis ter address ing . This new hardware was still unab le to

implement all of the required suppo rt func tions , and the idea of a

hardware kernel was developed in an attemp t  to bridge the hardware-

software gulf (Rosenberg and Keedy , 1 9 78 ;  Rosenberg , 1 97 9 ) . Much was

learned from this preliminary implementation . Apart from the concept of

a hardware 

(Ramamohanarao 

kernel,  a 

and Keedy , 

p rocess s truc turing 

1 9 78 ; Ramamohanarao , 

model 

1980 ; 

was designed

Keedy and

Ramamohanarao , 1 979 ) , and a model was developed to des cribe the way that

the informat ion hiding modules should be address ed and protected

(Richards and Keedy , 1 97 8 ;  Richards , 1 9 82 ) .

The MONADS I hardware present ed a number of maj or imp lementation 

prob lems . First , the hardware was not to tally secure . While individual 

user programs could be protected from each other , it was dif f icult to 

protect a p rogram f rom corrup ting sens itive inf ormat ion held on the 

process s tack ( e .g . linkage or parameter information ) ,  allowing security 

violations to occur . Second , us er p rograms ( and the ass ociated data and 

s tack space ) could not be larger that 32k words , the size of one address 

space . This s ev erely res tric ted the use of the system . Thi rd , the 
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hardware provided a paged address ing scheme , which presented sharing and 

p rotec tion prob lems . Fourth , the hardware cou ld only support three 
concurrent user programs . Finally , because many of the important

func tions were imp lemented in the kernel (due to insuf fic ient room in 
the microprogram control store ) the sys t em was qui te ineff icient . 

Because of these drawbacks , the author developed the MONADS II 

processor in 1 980 , again from a Hewlet t Packard HP 2 100A minicomputer . 

However ,  this computer differed f rom MONADS I in two important respects . 

First , a different cons truction technique was used (Abramson , 1982a) . 

Second , the MONADS II hardware was not specif ically designed f or the 

MONADS software methodo logy , but was a general capab il ity based 
address ing processor ab le to imp lement many different software 

s tructures (Abramson , 1 982b ) . At the same time as the new hardware was 
being designed , the MONADS software g roup was defining the address ing 

s tructure of the information hiding modules , which was then mapped onto 

the hardware . Following this , a new hardware kernel (Wallis , 1 980) and 
a new operating sys tem were des igned . M>NADS II removed some of the 

restrictions of MONADS I by p roviding a large virtual memory (Abramson , 

1 9 8 1 ) , a unif orm address ing mechanism and many new address ing modes 

(Abramson , 1 980 ) . 

Whilst MONADS II demons trated all of the princip les of the new 

sof tware s truc tures , it was developed as a p ilot sys tem capable of 

support ing only a limited number of concurrent user programs . Thus , 

work began on a new processor , MONADS I II (Keedy and Rosenberg , 1 982 ) , 

which built on the experience gained from the MONADS II sys tem, but 

which would be powerful enough to p rovide a fast computer util ity to a 

number of users . While MONADS II and MJNADS III have many features in 

connnon· (Keedy , Ros�nberg , Ab ramson and Rowe , 1 9 82 ) , and may be coup led 

to form a multi-computer sys tem, they dif fer signif icantly at the 

implementation level . 

1 . 2 .  Objectives of the Thesis 

This thes is contributes to the imp lementation of the MONADS 

software ideas by developing two g eneral models , which are us ed in the 

MONADS II processor des ign . The first  provides a hardware address ing 

unit , which allows inf ormation to be shared and p rotected in a uniform,  
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f lexib le and eff icient manner . This unit  should be ab le to be used with 
a number of d iff erent software s tructures . The model draws a clear 

dis tinction between functions which should be supported in hardware (for. 

ef ficiency reasons ) and func tions which shou ld be imp lemented in 

software or f irmware (for flexibility reas ons ) . Because of this 

f lexib ility the hardware may be us ed in other capability proj ects as 
well as the MONADS proj ect . 

The second model def ines a technique for implementing complex and 

diff erent computer architectures quickly and cheap ly . This not only 

enab les a full scale evaluat ion of the new address ing model to be 

p erformed ( in terms of supporting a real program development 

environment )  but also serves as a general technique for evaluating many 

new architectural ideas . This scheme has many advantages over existing 

techniques , particularly in terms of ef f iciency and simplicity . 

1 . 3 .  Layou t of the Thes is 

Chap ter 2 des cribes the memory management models used by 

conventional computer systems , such as linear memories , paged memories , 

segmented memories and paged and segmented memories . By examining these 

sys tems in t erms of their abil ity to protect and freely share 

information , we show that they do not provide an adequate addressing 

scheme . The chapter concludes that the s egmentation scheme offers the 

bes t logical advantages , but acknowledges that it al so has many 

imp lementation problems . 

Chap ter 3 examines the address ing hardware currently used in 

computer sys tems , and des crib es the connnon building blocks . These blocks 

are then used later in the thes is to imp lement a new address ing model . 

Chapter 4 examines an address ing model based on the segmentation 

scheme , cal led capab ility bas ed address ing , and shows how it solves some 

of the shortcomings of conventional architec tures . The p roblems 

associated with the implementation are also  dis cussed in detail . 

Chap ter 5 des cribes a new addressing model which is bas ed on the 

capab il ity address ing scheme , but which solves the outs tanding problems 

and p rovides a f lexible and unif orm hardware addressing mechanism . A 

maj or des ign cons iderat ion is that the address ing hardware should not 

only be ab le to imp lement the MONADS software structures , b ut should be 
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f lexib le enough to implement those of other capab ility based processors . 

Chapter 6 examines the ways in which the new addressing model cou ld 

be imp lemented , and shows that many conventional techniques are not 

suitab le . Build ing a totally new computer is dis carded because of lack 

of time and money , and other int erpret ive techniques (such as sof tware 

and f irmware imp lementations ) are of ten too ineff icient . The chapter 

then describes a general model for enhancing primit ive computer 

architec tures , and demonstrates some of the enhancements which are 

possible . 

Chap ter 7 describes the MONADS II computer sys tem, and demons trates 

the practically of the two new models p roposed in this thesis . 

Chapter 8 concludes the thes is , comment ing on the relevance of this 

research and suggesting add itional work which might be undertaken . 
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2 .  Conventional Memory Organizat ions 

This chap ter examines the conventional memory management models 
used in many computer sys tems . First , we cons ider the types of requests 

which a memory sys tem must  be ab le to satisfy . These requests come from 

a number of diff erent types of software . Second , we describe the 

conventional memory management models used in many current computer 

systems . These models can then be examined in terms of the dif ferent 

sof tware reques ts , exposing the advantages and disadvantages of each 

scheme . 

2 . 1 . Sof tware Environment 

From the viewpoint of the information storage sys tem of a 

p ro cess or ,  memory demands come f rom three classes of sof tware : us er 

programs , the operat ing sys tem and compilers . 

1 ·l·l· User Programs 

User programs are des igned to perform some task on behalf of a 

us er . They require the inf ormat ion s tore to possess a number of 

attributes , namely :  

- The s tore mus t  be ab le to save and retrieve both high speed 

computational data (e .g .  p rogram variables )  and permanent data (e .g . 

f ile data) . 

- User programs which share the central processor mus t  be protected from 

corrup ting data belong ing to other us ers . 

- User programs should be protected from corrupting their own co�e and 

read-only data . 

- Us er programs should be able to share certain data with other users . 

This al lows p rocesses to cooperate with each o ther in perfo rming one 

task . 

- The information storage , sharing and protection sys tem should be 

s imp le to use . 
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- The inf ormation storage sys tem should be ef ficient in space and time . 

- The store shou ld be large enough to hold all computat ional and · 

permanent data . 

- The store should allow dynamic memory allocation for dynamic data 

structures . 

A user program demands a number of functions from the memory 

sys tem, and is not concerned with the way that the reques ts are 

imp lemented . As we shall  see when we examine the various conventional 

memory management models in use, some of these bas ic requirements are 

not well supported . 

1·1·1· The Operating Sys tem 

The operating sys tem has the task of controlling all the user 

programs which execute on the p rocessor . With respect to the information -

storage sys tem, the operat ing sys tem mus t :  

- allocate memory when a us er p rogram is loaded , or requires more 

memory ; 

- deallocate memory when a user program terminates , or releases nemory ; 

- control the p rotection sys tem ; 

- control the sharing sys tem; 

- c'-nt rol any address modif ication hardware ; 

- be ab le to share code modules between users , in order to save space 

( this f orm of sharing , unlike data sharing, is not vis ible to the user 

program) . 

Unlike user programs , which only use the memory , the operat ing 

sys tem must also manage and control the memory sys tem . These 

requirements demand that the memory sys tem is easy to manage and 

control . Again , not all of these are well supported in conventional 
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memory management s chemes . 

1 ·!·1· Compilers 

Compilers are affected by the memory sys tem in two respects . Firs t , 

most  compilers execute as a normal program { although they may have some 

extra privileges ) on behalf of a user , and thus have the same needs as a 

us er program . Second , they are used to trans late user p rograms f rom 

high level languages into the machine code of the processor , and are 

expected to unders tand how to address memory . The main requirement that 

the compilers make on the memory sys tem is that the address ing , sharing 

and p rotection systems are simp le to use . This means that the code is 

easy to generate , and the compiler code generator is simple in des ign . 

The memory system shou ld be able to rep res ent and address the logical 

s tructures of a program, e .g .  arrays and subrout ines , rather than 

requiring the comp iler to trans late them into units which are meaningful 

to the memory . 

2 . 2 .  Conventional Memory Management Sys tems 

This section des cribes a number of conventional memory management 

models used for address ing the main , or computat ional , memory of a 

p rocessor . Most conventional computer sys tems also use a secondary 

memory { such as a disk or drum) to hold permanent data . Whils t some 

also use the secondary s tore as part of their main memory s torage s ystem 

{as in virtual memory sys tems ) , the mechanisms for address ing secondary 

memory are not considered , because they only affect the operating system 

software , rather than the addressing hardware . 

l·l·l· L inear Memories 

The earlies t memory management model used was the ' linear memory '

model .  In this s cheme the main memory of a p roces sor is viewed as a s et 

of linear ly arranged address ab le storage locations , and each word {or 

location) of memory is accessed by supp ly ing an address . These ab solute 

address es may be manipulated by a user prog ram in order to access 

various data items . The way that linear memories are used varies 

depending on how many concurrent users the sys tem mus t support . 
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l·l·.!.·.!.· Single User Systems 

In the earlies t computer sys tems , the central processor was 

allocated to a part icular us er when a j ob commenced , and was only 

relinquished when that job had terminated . In such sys tems , the program 

and associat ed computational data is loaded into the linear memory, and 

execut ion begins at the start of a program . The sequencing , loading and 

unloading of j obs is controlled by a supervisor program, which is loaded 

into the bottom of the memory . (In very early comput er sys tems the 

supervis or was only cap able of loading binary p rogram tapes into 

memory . )  User programs are then loaded int o the memory ab ove the 

supervisor . The ' linear memory ' scheme , shown in Figure 2 . 1 ,  has the

advantage that it is simp le .  It also has a number of disadvantages . 

Firs t , no program can be larger than the 

(al though some sys tems use a manual overlaying 
size of the main memory 

scheme ) . Second , if a 

program starts a slow autonomous operation , such as an input-output 

trans fer , the p rocessor must remain idle unt il the transfer is -

comp leted . Third , there is no way of protecting the supervisor program 

from being corrup ted by the user program. This p roblem was resolved by 

introducing a ' fence regis ter ' into the processor , which is loaded with

the highest address of the monitor p rogram . By p reventing the user 

program from writing into memory below that address the supervisor can 

be p rotected . Fourth , because the supervis or p rogram res ides at the 

bottom of the memory , the user program no _longer res ides at address 

zero . Consequently , the s tart address , and the addres ses of all 

variab les and labels , mus t  be adjus ted so that the program begins at the 

top of the supervisor . This op eration is called s tatic relocation and 

can be quit e  expens ive . The linear memory scheme has been used in many 

o�d s ingle us er sys tems , such as the HP 2 100A ( Hewlett Packa�d , 1 9 72 ) .

2 . 2 . 1 . 2 .  Mult i-user Sys tems 

The linear address ing model can also support a mult i-user 

environment . In this case the central p rocessor is shared amongst many 

dif ferent use r  programs . Each program receives a slice of processor 

t ime , and is suspended either when the time s lice exp ires or an input 

output transfer is started . Multi-user sys tems are ab le to use the 

p rocess or mo re ef f iciently , because it is us ed to execute another j ob 

while other users are suspended , rather than being lef t  idle . 
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high addresses 

Figure 2 . 1 - a single user linear memory 

The problem with cons tant ly swapping the execut ing program is how 

to allocate the main memory . Two main s olutions have been used . Firs t , 

the ent ire memory is allocated to a program when it enters its time 

s lice . All of the program code and data is loaded into memory ( from a 

secondary storage device ) .  When the time slice is over , the memory image 

is cop ied back into s econdary memory ,  and the next p rogram is loaded . 

This method has a number of disadvantages . While it may utilize the 

central p rocessor better than in the s ingle user system, the memory·.may 

s till be under-utilized . A small program still uses the entire user 

area of main memory , was ting the rest of the space . Al so , the time spent 

swapping code and data in and out of main memory is excess ive , during 

which time the p rocessor cannot be used . To avoid the load and unload 

operations every time slice , a second memory allocation scheme can be 

us ed , as shown in Figure 2 . 2 .  In this method all , or many , of the 

currel..t: programs are loaded into memory , each packed into  the a ."ail�b le 

space . When a p rogram enters its time s lice ,  the old register values are 

reloaded and the program is res tarted . At the end of the time sl ice , the 

regis ter values are saved and another p rogram is restarted . This scheme 

avoids copying the code and data for a program into memory before it can 

be executed , and is thus much more ef f icient than the f irst solution . I t  

also has a number of prob lems . Firs t , because programs contain absolute 

addres s es the code must be statically relocated before it can be loaded . 

In a single user sys tem once the code has been relocated , it can be used 

repeatedly . However , in a mul ti-user system,  the code mus t  always be 
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Figure 2 . 2 - a l inear memory mul ti user system 

relocated before it is loaded , as its position may change each time the 

p rogram is executed . This operation is expensive . Second , the simp le 
f ence regis t er scheme cannot protect programs from corruption . A more 

elab orate p ro tection scheme p laces a base register at the lowest address 

of a program, and a limit regis ter at the top of the program . Addresses 

can then be restricted to a particular address ing region . Third , as 

programs are loaded and unloaded , the memory may become fragmented . This 
' external fragmentation ' complicates loading new programs , as

insufficient free space may be available to hold an entire program . To  

s implify the prob lems of  static relocation and nemory management , a 

dynamic reloca tion scheme was devised . 

In the dynamic relocation scheme each program assumes that it is 

loaded at address z ero , and the p rocessor augments each address by the 

contents of a base regis ter before it reaches the memory . This new 

address can also be validated against a limit reg ister ,  thereby 

protecting other programs from corrup tion . These dynamic relocation 

registers also ass ist  with memory management . A s tatically relocated 

prog ram cannot be moved in memory once it has been loaded , because it 

may have abs olute addresses in data variables . Thus , if insuff icient 
cont iguous space is availab le , it may be imposs ib le to load a program 

into memory . Dynamic relocation reg isters , however ,  allow a p rogram to 

be moved ; thus  the memory may be periodically reorganized . Unf ortunately 
the cost of moving programs in memory is quite high, and it may be more 
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ef f icient to waste some of the main memory .  

Another solution aimed at simplifying the external fragmentation.
p rob lem is the partitioned scheme, us ed in the !CL Sys tem 4 ( ICL , 1 9 71 ) 

and some of the IBM 360 range (Belady , Parmelee and Scalzi , 198 1 ) . In 

this s cheme the main memory is divided by the operating sys tem into a 

number of fixed s ize partit ions . When a program is loaded into memory it 

is p laced in a free partition . Because memory is allocated in fixed size 
units , the task of memory management becomes much simpler , and external 

fragmentation is eliminated . Unf ortunately internal fragmentation 
occurs , as programs which are smaller than a partition wil l  was te space . 

Thus , while memory management may be simp ler , the f ixed partition scheme 

may was te even more space than a variab le space allocation scheme . Also , 

large p rograms must be manually overlayed so that they f it in a 

part ition . The ef fect of internal fragmentation may be diminished by 

using small partitions ; however , this limi ts the maximum size of a 

program (unless it is broken down into overlays ) .  

Another problem with the linear memory model is that from the 

compilers ' viewpoint the memory image is total ly uns tructured . It must

allocate space within the address space f or all of the data structures 

and code of a program without any ass is tance form the memory management 

sys tem . 

1·1 ·!·1·!• Sharing Memory 

I t  is of ten des irable to share access to areas of memory between 

us er p rograms . In the swapping scheme sharing is awkward . The 
supervisor program nust allocate an area of shared memory at a reserved 
address , and as p rograms are loaded and unloaded this area must remain 
unaltered . In this way many programs can share access to a s tat ically 
def ined set of data items . In the scheme which loads all programs into 
memory at the same time ,  data items may be shared by using the absolute 
address of the item . This p rocedure does not work if base and limit 
regis ters are used to protect a program, or if dynamic relocation 
regis ters are used . Sharing of code is extremely d if f icu lt in a linear 
memory scheme . Because of the problems , very few linear memory comput ers 
allow sharing at all . 
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1·1·1·1·1 ·  Protection between User Programs 

We have already shown that user programs may be protected from 

corruption by base and limit registers . This scheme has been used in 
many linear memory computers , such as the ICL 1900 series (ICL , 19  7 6 )  • 

The partition scheme can al so p rovide inter-program protection, as shown 
in Figure 2 . 3 .  In this scheme the hardware recognizes a number of fixed 

s ize  areas ( in the IBM 360 range this was 2k words in size ) , and 

associated with each area is a protection lock which holds the identity 

of the program . ( If the partition size chosen by the operating system is 

larger than the area size recognized by the hardware then a number of 

p rotection locks may be assigned to the same partition . )  The central 

processor has a current-protection-key register , which holds the 

identity of the currently executing p rogram . When a p rogram enters its 
.. time slice the current-protection-key regis ter is loaded with the 

identity of the- p rogram . Each time memory is addres s ed ,  this value is 
compared to the protection lock for the area being addressed . If they -

diff er , then a p rotection violation has occurred , and the p rogram is 
aborted . Consequently , a program can only address areas which it owns . 

Whil st it is concep tually possible to dynamically change the values held 
in the protection locks to facilitate controlled sharing , this has not 

been imp lemented . Thus , it is very d if f icult to share memory between 

..---------------.... �lock 1 

Partition 1 

-----------ot ........ lock 2 

Partition 2 

1-----------------+--tlock 3 

Partition 3 

...,.. ______________ ....,.. ... lock 4 

processor 
regis ter 

Figure 2 . 3 - the protection key sys tem 
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programs . None of the protection systems discussed protect a program 

from corrup ting its own code . Most of these schemes make the sharing of 

memory extremely d iff icult . 

2 . 2 . 2 .  Paged Virtual Memories 

The concept of a paged virtual memory was first proposed and 

imp lemented by the Atlas design team in the late 1 950s (Fotheringham, 

1 96 1 ; Kilburn , Edwards ,  Lanigan and Sumner , 196 2 ) . The scheme consis ts 

of detaching the logical view of memory as seen by a program from the 

phys ical organizat ion of the main memory . The logical memory , or virtual 

memory , is mapped onto the main memory by a mapp ing function . The 

implementat ion of this address ing structure requires that both the 

virtual and phys ical memories are divided into a number of f ixed size 

pages . Consequent ly , an address (either virtual or phys ical ) cons is ts of 

two po rtions , a page number f ield and a within page displacement f ield , 

as shown in Figure 2 . 4 .  A mapping unit  can then map pages of virtual 

memory onto pag es of physical memory as shown in Figure 2 . 5 .  The within 

p age disp lacement from the virtual address is used as a within page 

disp lacement f or the physical page . 

The paged scheme has a number of general advantages . First , the 

type of ref erence app lied to a page of virtual memory may be controlled . 

Associated with each page of virtual memory may be some access rights , 

which determine whether the page may be read from, written into, or 

executed as code . With this information , the processor can monitor every 

memory reference and rep ort addressing errors . Unlike a linear memory ,  

the paged memory organization can protect a user program from modifying 

its own code , and pag es of cons tants can be p rotec t ed f rom being 

modif ied . Second , a contiguous area of virtual memory · need not be 

allocated contiguous ly in main memory . The mapp ing function can map 

J page number disp lacement 

Figure 2 .4 - a paged virtual address 
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Figure 2 .5 - a paged virtual memory 

pages of virtual memory arbitrarily onto main memory , allowing large 
contiguous areas of virtual memory to be created . This makes memory 

management eas ier and eliminates the external fragmentat ion experienced 

in the linear memory s cheme . Third,  the virtual space may be larger 

than the phys ical space . Any pages of virtual memory which are not 

mapped onto a page of phys ical memory can be tagged ab sent . A reference 

to these pages causes an address ing error ,  called a page fault , which is 

similar to an access rights violation . Because the virtual address space 

may be very large , programs larger than the main memory may be loaded . 

If an abs ent page of virtual memory is addres s ed ,  a supervisor p rogram 

may fetch a copy of the page required from secondary memory , find a free 

page in main memory,  p lace it in main memory, and update the mapping 

function . When the reference is at tempted again , the processor will  

address the correct page of  phys ical memory . This operation is  called 

demand paging , as pages are only fetched into main memory on demand . 

Some systems have experimented with p repaging , i .e .  attemp ting to fetch 

pages before they are required . Unfortunately , it is very dif f icult  to 

determine the access patterns of a program, and because the overheads of 

moving unneeded pages into  main memory are high , prepaging is not 
-

coumonly used . Fourth , as we will s ee shortly, user p rograms may be 

protected from interference from each other . 
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The paged scheme also has some disadvantages . Because memory is 
allocated in f ixed size units , some space will be wasted in the last 

page of the virtual address space . This internal fragmentation is the · 

same p rob lem experienced in the partitioned linear memory . We shall 

examine some more serious disadvantages later , in terms of the logical 

propert ies of pages . 

l ·l·l·l· Single User Systems 

In a single user sys tem, the program executing on the processor is 

load ed into the virtual address space . To the user program, the memory 

appears to be linearly arranged . However , unlike the linear memory 

model,  the pages may be allocated randomly from main memory . In 

addition , pages may be pro tected from inadvertent corruption . When the 

program t erminates , the virtual address space can be loaded with a new 

user program . 

l·l·l·l· Multi-user Systems 

Most  paged computers support a multi-user facility by creating a 

number of  virtual address spaces . Each us er program is loaded into a 

different address space and the main memory is composed of pages of many 

diff erent p rograms . Each of the virtual spaces is then mapped onto the 

main memory by its own mapping function , as shown in Figure 2 . 6 .  When a 

p rogram enters its time s lice , the app rop riate mapp ing function is 

selected so the program can only address its own pages . When the t ime 

slice is over , a new mapping func tion is selected . This arrangement is 

similar to the swapping technique used in the linear memory scheme . 

However , only the mapp ing function is altered after each time s l ice 

(which can be performed very quickly) , rather than copying each address 

space to and f rom aecondary memory . The demand paging system allows a 

program to load its pages into main memory as they are required . 

l·l·l.·1 · Address Trans lation 

So far we have assumed a mapping funct ion between virtual addresses 

and phys ical addresses , without cons idering how this function can be 

imp lemented . This trans lation operation is performed each time the 

p roces sor a ccesses memory . The virtual address may either be trans lated 

into a main memory address , in which cas e the reference can proceed , or 
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Figure 2 . 6  - a paged multi-user sys tem 

a secondary memory address ,  in which case the page is fetched into main 

memory . The imp lementation of the mapp.ing _ function depends on the size

of the virtual memory and the size of the main memory , and four 

categories can be identif ied : small virtual address spaces , small main 

memories , large virtual address spaces with large main memories and very 

large virtual address spaces . These categories will be examined again in 

the next chapter ,  which deals with the hardware necess ary to translate 
addresses . Here we brief ly cons ider the implementation of these 

diff erent categories f rom the view of the operating system sof tware . 

1 ·1·1·1·! · Small Virtual Address Spaces 

When the virtual address space is comparatively small the virtual 

page numbers can be translated into phys ical page numbers by a directly 

indexed tab le held in main memory, as shown in Figure 2 . 7 .  The virtual 

page number is used as an index to a page table entry . The page table 

entry contains the physical page number , the access rights for the page , 

and an ab sent /present f lag , which is set if the page is present in main 

memory . If the page is not pres ent , then the phys ical page number f ield 

can be used to hold the secondary memory address of the page . When this 

tab le is small enough , it may be held in a special address trans lation 

memory , rather than in main memory , and this is dis cus sed in more detail 
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Figure 2 .7 - a small virtual address space 

in the next chapter . The size of the main memory has little effect on -

the size of the mapping table , and only inf luences the wid th of each 

page table entry . The size of the virtual memory af fects the length of 

the table ,  and the scheme is thus only viable f or small virtual address 

spaces . 

In a single user sys tem only one page table is required . In a 

mul ti-user sys tem, a page table is required for each virtual address 

space . A regis ter is of ten used to hold the address of the current page 

table . When a user program enters its time slice , this reg ister can be 

modif ied to point to the new page tab le , thus changing the mapping 

func tion . Similar address translation schemes have been successfully 

used in processors such as the HP21MX (Hewlett  Packard , 1 9 74 ) , Data 

General Eclip se ( Da ta General , 1 9 74 ) . 

l·l·l·l·l· Small  Physical Memories 

If  the main memory has a limited number of pages , a different 

translat ion technique can be us ed . Rather than indexing the page tab le 

on virtual page number , this method uses the main memory page number as 

an index value , as shown in Figure 2 . 8 .  Each page table entry contains 

a virtual page number , some acces s rights  and an inval id flag . When a 

virtual address is t rans lated into a main memory addres s , the page tab le 
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is searched associat ively for ·the virtual page number . If found , the _ 

index value of the page table entry is used as the main memory page 

number . If not found , then the virtual page is not present in main 

memory , and is fetched f rom secondary memory . If a page of main memory 

is not mapped to a page of virtual memory , then the invalid flag mus t be 

s et . Special hardware is required to s earch the page table ,  and this is 

des cribed in Chap ter 3 .  This technique is sens itive to the size of the 

main memory , as this affects the leng th of the page table,  and is only 
used when the main memory is smal l . In a single user sys tem there is 

only one page table . In a mul ti user system, each user address space 

uses a dif ferent page tab le . Those pages of main memory which do not 

pertain to a user p rogram, must  have their page table entries f lagged 

inval id . 

1·1·1·1·1· Large Virtual Addres s Spaces 

When both the virtual address space and the main memory become 

large the techniques dis cussed ab ove become infeas ib le . A large virtual 

address space makes the d irectly indexed page tab les too large to be 

p laced permanent ly in main memory , or in a special hardware tab le . 

Similarly, because of  poor hardware an ass ociative search becomes 

dif f icult . ( In the next chap ter we will  examine some associative schemes 

which are effec tive . )  One s olution p laces directly indexed tables in 
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main memory (which can be addressed by a special processor regis ter ) , 

and swaps them between memory and disk as they are required . In some 

sys tems the page tables may be placed in virtual memory themselves , as · 

in the VAX 1 1 /780  computer ( Dig ital Equipment Corp . ,  1 979 ) , and the 
paging mechanism can be used to addres s the page tab les . Consequent ly , 

the page tables are mapped onto main memory by page tables , which may 

then be smal l enough to place permanently in main memory . When an 

address is trans lated ,  the virtual page number is used to form a virtual 

addres s  of a page tab le entry . This virtual address is then translated 

into a main memory address by the page table for the page tables . At any 

s tage , either of these trans lat ions may cause a page fault , i . e . the 

page tab le entry is not pres ent in main memory at the time . Each 

address  trans lation may cause a number of page faults to be generated . 

Furth er page faul ts may be generated when a page is removed from main 

memory (poss ibly to find room for a page which has already caused a 

faul t ) , as the present /ab s ent b it must be updated in the page tab le 

entry . To prevent an endless loop of page faults , this scheme must 

always have a pool of free pages . In this way a page may be brought into 

memory without having to remove another page , and thus cause further 

page faults . The scheme requires special hardware to assist in address 

trans lation , and this is dis cussed . in the next chapter .

1·1·1·1·.i· Very large virtual addres s spaces 

This class of virtual memory is typically used to hold file data as 

well as computational data . The only p roces sor which has attemp t ed  this 

operat ion (namely MULTIC S (Organick , 1 972 ) )  did not use a very large 

virtual  address , and could use normal page tables . In this class of 

address  space the page tab les would ce·rtainly be p lacetl in virtual 

memory , an<l wou ld be very large indeed . Consequently it re quires 

special hardware to trans late addresses . Such hardware is discussed in 

Chap ters 3 ,  4 and 7 .  

1 ·1 ·1 ·.i· P rotection 

A paged virtual memory offers a mul ti-user sys tem a number of 

levels of p rotection . First , p rograms are p rotec ted from corrup tion by 

each other . Because each program is loaded into its own virtual addres s 

space , and has i ts own mapping function, it is impossible f or a program 
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to inadvertently address the pages of another . Second , a prog ram may be 

p revented f rom corrup ting pages of code, or non-mod if iable data . In this 

way a prog ram is part ially protected from itself . Third , the operating · 
system ( or supervisor p rogram) is treated as another user p rogram, and 

is loaded into its own address space . Thus , fence regis ter schemes are 

not needed to protect the operating sys tem f rom corrup tion . 

1·1.·1·1· Sharing 

Whilst enforcing an ef fective protection mechanis m, a paged memory 

scheme also allows controlled sharing of data and code . The page table 

structure al lows a page of main memory to appear in more than one 

vi rtual address space , as shown in Figure 2 . 9 .  Moreover , each address 

space can have dif ferent acces s  rights for the page . Thus , one program 

may be allowed to read from a shared page , whilst another may be allowed 

to read from and write to the page . 

Because the operation of removing a page from ma in memory may 

become comp licated by the need to locate and up date all page table 

entries which refer to it , a variation of this sharing scheme may be 

used . To simplify this p roblem, some systems maintain an additional 

tab le ,  located between the page tab le entries and the main memory , as 

shown in Figure 2 . 1 0 .  Each ·page table entry which addresses a shared 

Page tab le 1 

Page table 2 
Main memory 

Figure 2 .9 - shared pag es 
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page contains an index into the addit ional tab le . This tab le entry then 

contains the main memory page number . If the page is banished from 

memory , only one entry needs to be adj usted . 

1·1·1·§.. · Memory Allocation 

Memory al location in the paged scheme is much simpler than in the 

linear model . Because memory is allocat ed in fixed size units , there 

will always be an area of the correc t s ize availab le when space is 

required , even if some other pag es must be removed from main memory . 

1 ·1·1·§.. ·l· Page Replacement 

When a page is brought into main memory from secondary memory , it 

is often f irst necessary to remove another page . The choice of which 

page to remove may have a signif icant ef fect on the ef f iciency of the 

computer sys tem, i .e .  if the wrong page is d is carded then it may need to 
be fetched again soon af terwards , leading to an ineff icient situation 

known as ' thrashing ' . Many different dis card algorithms have been

devis ed  ( Denning , 1 9 70 ) , the mo st common being Random, F ir st In F irst 

Out (FIFO ) , Leas t Recent ly Used , Atlas Loop Det ection (Kilburn , Edwards ,  

Lanigan and Sumner , 1 9 62 ) and Working Sets (Denning , 1 968 ,  1 980 ) ; these 

of ten require hardware ass is tance (Morris , 1 9 7 2 )  and will  not be 
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dis cuss ed furth er . 

l·1·1·i·1· Internal Fragmentation 

Because memory is allocated in fixed size units , namely pages , each 

address spa ce will totally occupy an integral number of pages , and only 

partly occupy the las t page of the address space . Consequent ly , each 

address space will waste , on average , half a page of memory . This 

internal fragmentation is also experienced in the partit ioned linear 

memory , and is a maj or dis advantage of the paged memory scheme . It has 

been shown that a signif icant proportion of nemory may be was ted from 

internal f ragmentation (Randell , 1 969 ) . 

l.·1·1· Segmented Memory Schemes 

The segmented memory scheme is similar to the paged memory model . 

Bo th .map a logi cal view of memory onto the main memory of the p roces sor , 

and both allow information to be protected and shared amongs t users . 

However , pages are an inapp ropriate unit of p rotection and sharing as 

many tmrelated s tructures may be placed in the same page . Also , the 

comp iler mus t  p lace the logical struc tures of a program into the pages 

of a linear address  space , ,,,,-hich both hides the logical structure of 

programs from the architec ture and requires more address calculation by 

the compiler . To avoid these problems the segmented scheme divides the 

virtual memory into a number of variable length s egments , instead of 

fixed length pages . Each log ical component of a program , such as a code 

procedure , data array, and s calar variab le, is loaded into a segment of 

memory , rather than being arbitrarily decomposed into fixed length 

pages . Each s egment is p rotec t ed by a set of access rights , in the same 

way as _ pages may be pro tected . 

Each proces s  has access to a set of segments .  Typically , a 

s egmented address cons ists  of a s egment number (which is usually 

numbered relative to the segments of a program or process )  and an off set 

within the s egment . This address , as shown in Figure 2 . 1 1 ,  is then 

t ranslated into a main uemory address before the reference can proceed . 

2 . 2 . 3 . 1 . Address Translation 
- - - -

For each segment address , the main memory base address of the 

segment , and the size of the segment must be determined . Also , to allow 
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j segment number displacement 

Figure 2 . 1 1  - a segmented address 

segments to be removed from main memory and f etched on demand ( in the 

same way as demand paging ) it nus t be possible to flag a segment as 

absent from main memory, and to supply its secondary memory address 

ins tead . There are two common methods of address trans lation , segment 

lists and tagged ab solute d esc rip tors . 

1·1·1·1·!· Segment Lis ts

In this scheme , each process has access to a lis t of segments , as 

shown in Figure 2 . 1 2 .  Memory reference instructions can address segments 

by supp lying a segment number relative to the process ( i . e . starting at 

zero ) and a within segment o ffs et . The segment number ,  which forms an 

index into the process segment lis t , mus t  then be trans lated into a main 

memory base address . Contained in each entry of the segment list is the 

main memory base address of the segment , the size of the segment ( or the 

main memory limit address ) , a s et of access rights and a p resent /absent 

flag . The word in memory address is calculated by adding the base 

address to the offset . 

index 

J 
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Figure 2 . 1 2 - a segment lis t 
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The current segment lis t is usual ly held in main memory , and may be 

located by a special p rocessor register ,  in much the same way as a page 

tab le . The segment lis t is protected from corruption by the user program · 

in the same way as other segments may be p rotected,  as we will see 

later . 

l·l·l·l·.£· Tagged Des criptors 

An al ternative address trans lat ion sys tem is the tagged ab solute 

des criptor mechanism, as us ed in the B 6 700 family of computers 

(Organick, 1 97 3 ) . In this scheme , each segment des crip tor , cons is ting of 

a main memory base address , segment size ,  access rights and 
present /ab sent f lag , is placed in the data area of a process ,  e .g .  the 

process s tack, and is possibly intermixed with program variables . These 

des crip tors are then used as pointers to segments . A segment cannot be 

address ed without the correct des crip tor . So that des crip tors cannot be 

mod if ied , and used to address other segments of memory , it is poss ible 

to  protec t them by us ing tag bits (Feustal , 1 97 2 ;  Myers , 1 978a , 1 978b ) . 

Each word of main memory has a tag field at tached to it . A word which is 

tagged as a descriptor cannot be mod if ied by a normal user program . 

(Al though the B6 700 hardware allows a program to modify descrip tors , the 

comp ilers prevent high level language p rograms from changing them . )  The 

tags are also used for detecting the dif ference between integer 

variables , character variables etc . Ab solute descrip tors have the 

disadvantage that they are not always easy to find when they mus t  be 

updated ( e .g .  if a segment is removed f rom memory, the s egment address 

and present flag must be updated ) . An illustration can be found in the 

B 6 700 computer , which p rovides a special instruction f or f inding all 
descriptors for a part icular segment . This proces � is not only time 

consuming , but al so means that the s tack segments can never be removed 

from main memory ,  as they may hold ac tive descripto rs . Segment lis t 

ent ries , unlike descrip tors , are always held in a well known p lace and 

can be eas ily found . 

l·l·l·l· Memory Allocat ion 

In the paged memory scheme , memory is allocated in fixed size 

units . Consequently , memory allocation is relatively easy . When space 

is required , a page frame 111.1s t  be found in ma.in memory wh ich , in the 
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wor st case , may mean that another page may need to be removed from 

memory . In the segmentat ion scheme , each segment is of a dif ferent size , 

and must occupy a contiguous area of main memory . Moreover, it must· 

either be totally loaded into memory , or to tally ab sent . This may mean 

that a large segment cannot ever be loaded into memory because there is 

not enough space . (The B6700 uses a modif ied segmentat ion scheme and 

allows very large segments to be divided into a number of ' pages ' . This

will be d iscuss ed later) . A number of allocation policies have been 

used to try and allocate space in the most  ef f icient manner such as Best 

Fit , First Fit and the Buddy system (Knuth , 1 9 78 ) . O f ten these policies 

are augmented by a compac tion scheme , in an at temp t to was te as little 

main memory as possible . Compaction can al so be us ed when no part icular 

allocation policy is used . Space is simp ly used up sequentially llllt il 

there is none left , and then the . memory space is compacted . 

·2 ·1·1·1·1· Compaction 

Of ten the main memory may undergo some data compaction to try to 

remove areas which are t oo small to be of any use . During this time , 

all the processes executing on the processor are stopped , and a special 

operating system routine packs all the segments together . This scheme 

has two important drawbacks . Firs t , the compaction operation is 

expensive in time . It must be perf ormed by the central p rocessor , during 

which time no other process can run . Second , all the segment tab le 

ent ries must be updated to r ef lect the new segment addresses . While this 

operat ion is poss ible , it also is extremely expensive . Moreover , if the 

B6 700 type of ab solute descrip tors are us ed ,  these must al so be updated . 

Unfortunately , such des crip tors are very dif f icult to locate ,  as they 

may be mixed with data variables . 

1·1·1·1·1· External Fragmentation 

Regardless of the allocation policy , unless memory compaction is 

us ed frequently (which would be far too expensive) a large amount of 

memory space will be was ted , because very few areas will be exactly the 

same size as the s egments . This is called external fragmentation, and is 

a lso experienced in the linear memory model in wh ich memory is allocated 

in variab le size units . It has been shown that this space loss can add 

up to a signif icant proport ion of the availab le main memory space 
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(Randell , 1 969 ) . External f ragmentation is , however,  o f ten less serious 

than the internal fragmentat ion found in paged memories . 

1.•1•1•1•1 • Segment Replacement 

If suf f icient space in main memory cannot be found for a segment , 

an already loaded segment may need to be removed .  This operat ion is 

similar to the removing a page from a paged main memory . It is po ssible 
to app ly the same kind of algorithms us ed in the paged model , such as 

Random, Leas t Recently Used , etc . However , in the segmented scheme the 

segment which is removed from memory must leave suffic ient space to hold 

the new segment . Consequently , algorithms such as Leas t Recently Used 

can only be appl ied to those segments which are large enough ( or to 

groups of contiguous segments ) . 

1.·1·1·1·� · Dynamic Segments 

One form of segment which complicates the task of memory management 

· is the dynamic segment . These segments are initially allocated a fixed

amount of space , like all other segments .  However , during the lifetime

of the s egment it may grow in size . Examp les of such s egments include

stacks , queues , lists and heaps . Space for dynamic s egments may be

allocated in two ways . Fir st , extra space may be found contiguously in

main memory , wh ich may mean that a segment must be removed .

Unfortunately, this may not always be pos s ible . Second , the s egment may

need to be copied from its current place in memory , to a new contiguous

area large enough to hold the entire segment . This is an expensive

operation , and is avoided if poss ible . If the data s tructure has

embedded link p ointers , such as in a heap ,  and if the p ointers are

ab solute memory address es , then contiguous space need not be allocated .

However , this organization is impract ical because it compl icates memory

management signif icant ly , as these pointers lD.lS t be updated when the

memory is rearranged .

1·1·1·1 ·  Protection

Because it is imposs ib le for user programs to modify segments �ich 

are not addressed by the p rocess s egment l ist , us ers may be p rotected 

f rom corrup t ion by other users . To ensure that the segment lis t entries 

only point to the correct segments , the l ist its elf ( and any des crip tor ) 
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is protec ted from being modif ied by a user program . Also , a program can 

be p rotected f rom inadvertently mod ifying its own code or cons tant data 

by set ting the acces s rights for each segment to prevent modif icat ion . · 

In the paging model inf ormation is randomly packed into pages of memory .  
Because there is no logical link between the access rights of obj ects in 

a page and the access rights of a page (unless this has been 

specif ical ly arranged by the compiler) , pages form the wrong unit of 

p rotec tion . Segments , however ,  are us ed to rep res ent logical obj ects , 

and thus form the correc t unit  of protection . They also form the bes t 

unit of sharing . 

1 ·1.·l·i· Sharing 

An important feature of the segmentat ion scheme is that many users 

may share access to a single segment . Again , unlike pages , segments are 

used to hold ind ividual obj ec ts . Two users may wish to share access to 

an obj ect , such as an array , but may not wish to share all of the 

obj ects held in a page of memory , unless the page holds only one obj ect . 

A number of d if ferent schemes have been devis ed which allow p rograms to  

share segments .  The simples t implementation is achieved by loading the 

same memory base and limit addresses into more than one segment l ist . 

Thus , any process with the same segment lis t entry wil l  automatically 

address the correc t segment , regardless of the segment number chosen . 

Furthermore , each segment lis t entry may use dif ferent access  rights to 

address the segment . This simp le imp lementation caus es two p roblems when 

a code procedure is shared amongst a number of user processes , and is 

illustrated by the examp le shown in Figure 2 . 13 (Fabry , 1 974 ) ,  where the 

code addresses a shared subrout ine and a process-own data segment . 

Fir st , it is not clear how the shat �d program should be coded to  

allow each process , with a dif ferent segment lis t structure , to  refer to 

the same obj ect (e .g . the sub routine ) . Process 1 should use a ' call

segment 2 ' wh ereas process 2 should use a ' call segment 1 ' . However ,

s ince the code is shared it must contain the same call operand in each 

process . Second , it is not clear how the main program should be coded so 

that the segment numbers which it has assigned to obj ects do not 

conflic t  with those used for dif ferent obj ects within the separately 

comp iled sub routine . Thus , the segment number us ed for the data segment 

must  not be the same as the segment number used for the subroutine . A 

CHAPTER 2 CONVENTIONAL MEMORY ORGANI ZATIONS 



0 
1 
2 
3 

0 
1 
2 
3 

PRO C E S S  1 

PRO C E SS 2 

- 29 -

> 

> 

data fo r 
p ro c e s s  1 

Code for  
mainl ine 

call s eg ? 

code f or 
sub rout ine 

read s eg ? 

dat a for  
p r o ces s 2 

Figure 2 . 13 - shared segments 

number of dif ferent solutions have been used , which we now describ e . 

l·l·l ·.!·l·  Uniform Addressing 

The most obvious so lution is the unif orm address ing scheme , wh ich 

has been success fu lly us ed in the B6 700 family of comput ers . The scheme 

demands that all code , mainline and subrout ines , are compiled at the 

same time . Because of this all images of shared segment references (e .g . 

ins tructions ) will have the same segment number ,  regardless of the 

process in which the ref er ence o ccurs . Thus a segment which is shared 

will be known by the same segment number . Also , since the segment 

numbers for  the mainline and the subroutine are assigned at the same 

time , there will be no conf lic t . The scheme can be implemented by 

maintaining a list of  segment numbers at comp ile time . When a new 

segment reference is dis covered , a new segment number is ass igned . 

The scheme has two main d isadvantages . First , it is not always 

convenient to compile all the subroutines together with the mainline , 

especially if subroutine l ibraries are us ed . Second , when a segment is 

removed from memory , all of the segment lis ts  which address the segment 
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must be al tered . This operation may be extremely expensive . Another 

proposal , the indirect evaluation scheme , attemp ts to remove these two 

prob lems . 

1·1·1·.i·l· Indirect Evaluat ion 

The ind irect evaluation scheme solves the two sharing problems by 

means of linkage segments ,  which are us ed to dynamically translate the 

segment numbers used within a program (either the mainline or a 

subroutine ) into the segment numb ers held in the p rocess segment list . 

An examp le is shown in Figure 2 . 1 4 .  

Each process retains the segment lis t used in the uniform scheme . 

However , additional linkage segments are as sociated with each code 

segment . These linkage tab les then trans late  the segment numbers in the 

code into those required by the p rocess s egment list . Each linkage 

segment is lo cated by an entry in the process segment lis t , and a 

processor regis t er is us ed to address the current linkage segment . Whi le 

the process is executing within the mainline , the linkage segment number 

ass ociated with the mainline code is loaded into the processor reg ister . 

Any ref erence to a segment is first translated into a process segment 

number , via the linkage s egment . When the p rocess ent ers the subrout ine ,  

the processor regis ter is altered to point to the new linkage segment . 

Any segment ref erences are then trans lated by a d if f erent linkage 

segment . 

parameters 
The 

are 
only exception 

address ed f rom 

segment numbers are used . 

to these trans lat ion rules is when 

a sub routine . In this case the process 

The ind irect evaluation scheme so lves the sharing problems in two 

ways . First , each subroutine (and the mainline) is ass ociated with its 

own linkage segment . Thus , the segment numbers used in the mainline may 

be the same as tho se us ed in the sub routine , and still . address dif ferent 

s egments . Seco�d , the process segment lis ts  may be ordered in any way , 

provided that the linkage segments f or a shared code segment map the 

code segment numbers onto those of the process lis t correctly . Thus , 

d if f erent p rocess es may share the same code segment even though the 

s truc ture of their process  segment lis ts  is dif ferent . The linkage 

s egments f or each of the p rocess es can be order ed to correct the s egment 

numbers . This solution is effective because it maps a program onto a 
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Code f or 
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code for · 
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data for 
process 2 

3 or 4 current linkage segment 
number 

Figure 2 . 1 4  - the indirect evaluation scheme 

Ind irect evaluation has some problems . First , both the linkage 

segment and the process segment list must be consult ed  on every memory 

reference . Second , the scheme does not solve the prob lem of searching 

all process s egment lists f or ref erences to a segment when it is removed 

from memory . Third , free s tand ing data struc tures do not have a linkage 

s egment . These segments may ,  however ,  contain embedded p ointers to other 

segments and like programs may be shared between processes . Thus , these 

s egments  suf f er all of  the naming prob lems experienced with p rogram 
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segments . The only sens ible solution to this problem is to not allow 

free standing data s tructures to address other segments without a code 

body , as proposed by Parnas ( 1 97 2 )  and others (Wirth , 1'97 7 ;  Liskov and · 

Zilles , 1 974 ) . In spite of its prob lems , the ind irect evaluation scheme 

is used by MULTICS (Organick, 1 97 2 ) . An op timizat ion of the ind irect 

evaluation scheme is the mul t ip le segment list scheme . 

l.·l.·1·i·1· Multiple Segment Lis ts 

The multip le segment scheme , shown in Figure 2 . 1 5 , associates a 
s egment list wi th each mainline and subroutine . A p rocessor register is 

used to point to the current segment lis t , depending on whether the 

mainline is executing or one of the sub routines . Any reference made 

within a rout ine is trans lated into a main memory address via the 

segment list associated with that routine . When a subroutine is entered 

- the processor regis ter is modif ied . The scheme dif fers from the 

indirect evaluation scheme by removing the p rocess segment l ist . Segment 

addresses are translated directly by the segment lis t associated with 

the code routine , rather than via a cent ral p rocess list . Thus , it is 

more eff icient than the indirect scheme . 

Whilst the removal of the process segment list may improve the 

speed of the sys tem,  it also des troys the mechanism for pas s ing 

parameters . One solution to this p roblem is that each subroutine call 
' creates entries for the parameters in the subrout ine s segment lis t 

(Evans and LeClerc , 1 9 6 7 ) . Recursive calls are only allowed if multip le 

copies of the new segment lis t can be created , an expens ive operation . 

An alternative s olution address es parameters via des criptors , rather 

than via the segment lis t , which may be held on the process s tack ( as in 

the B6 700) . 

!·!·i· Segmented and Paged Memories 

The segmented and paged memory scheme comb ines the segment ed memory 

model and the pag ed memory organization with the aim of gaining both the 

logical advantages of segmentation , and the memory management advantages 

of paging . In this s cheme , the us er program address es a s et of segments . 

However , in dis tinction from the segmentat ion scheme , each segment is 

compos ed of a number of pag es . Thus , while the user p rogram perceives a 

number of variab le length segments ,  the operating sys tem can allocate 
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data for 

0 I p rocess 2 
SUB 1 I 2 

Figure 2 . 1 5  - multip le segment lis ts 

main memory in units of fixed size pages . It al so has the advantage 

that large segments can be addressed without the need to load the entire 

segment into memory . Only tho se pages which are being referenced need be 

loaded . If any other pages are accessed , a page fault is generated and 

the pages can be load ed f rom secondary memory . 

The processor addresses are now composed of three fields : a segment 

number · (within the process ) ,  a page number within the segment , and an 

off set within the page . This address ,  as shown in Figure 2 . 16 ,  is then 

translated into a main memory address before the reference can p ro ceed . 

2 . 2 . 4 . 1 . Address Translation 
- - - -

In the mos t  widely used segmented and paged scheme , address 

trans lation is performed by a c ombination of segment lists and page 

tables , as shown in Figure 2 . 1 7 .  Unlike the purely segmented scheme , 

the s egment list entries ho ld the main memory address of a page tab le 
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segment number page number disp lacement 

Figure 2 . 1 6 - a paged and segmented address 

segment # l page # disp lacement
p rogram 
address 

'-----------------------------------> 

.----------------> 
main memory 
address 

.__ __ > page table address 

segment 
lis t 

> real page number 

-----------------------> -----------------. . .  
page tab le 

Figure 2 . 1 7 - pag ed and segmented address trans lation 

for the segment . The page table contains entries which hold the main 

memory page f rame numbers of the pages within the segment . Along with 

the address of the page tab le , each segBent lis t entry also holds the 

page table size ( i .e . the segment size ) , an ab s ent flag (which is set if 

the page tab le for the segment is not in memory ) and the access rights 

of the segment . Thus , segmentation is s till us ed as the unit of 

protection . The page tab le entries hold the main memory page number and 

an abs ent /present f lag . Segments are paged in the same way as address 

spaces in a purely paged sys t em .  Because this technique uses two tab les 

before main memory can be address ed , special hardware is o f  ten us ed to 

speed up the trans lation (such as a cache memory , as described in the 

next chapter ) . 
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Whilst the B6700 is class if ied as a purely segment ed machine , it 

does allow very large segments to be divided into a number of f ixed 

length pages . Address trans lat ion for large segments is accompl ished in · 
a manner similar to that described for the paged and segment ed memory 

model , except that the processor views a large segment as a collection 

of smaller segments , each of which is referenced by a d ifferent segment 

descrip tor . It is then the respons ibility of the compiler to generate 

code to address segments via lists of descrip tors . However , unlike the 

paged and segmented model described above ,  the use of paging in the 

B6 700 is not unif orm and therefore offers the operating system no 

ass is tance with the . management of the virtual memory . 

1 ·1.·.i·l· Protect ion 
-

Since the paged and segmented address ing scheme provides a process 

with a segment list in the same way as the segmented model , it inherits 

the same prot ection properties as the segment ed scheme . Segments are 

us ed as the logical unit of protection . O ther processes cannot address 

segments for which they do not have segment lis t entries . Moreover , 

segments st ill have access rights associat ed wi th them as in the purely 

segmented scheme . The introduc tion of paging only has an effect on 

memory management . 

l •1.•.i ·1 · Sharing 

Segments may be shared between processes in this scheme by placing 

the same segment list entry in more than one segment list . In this way,  

more than one process has access to  the same page tab le . This 

arrangement is superior to the purely s egmented scheme, because when 

various pages of a segment are removed from memory , only the one page 

tab le entry needs to be updated . In the s �gmentation scheme every 

segment lis t which addresses the segment mus t be updated if the segment 

is removed f rom main memory . However, this simp le imp lementation has 

s ome problems . First , if a segment is delet ed , or totally removed from 

memory , all of  the segment list entries must still be updat ed . Second , 
if the page tab le for the segment is 100ved in memory , all of the segment 

list entries f or that segment must be updat ed . Some systems ( such as the

ICL2900 series (Keedy , 1 97 7 ) )  have solved these problems by introducing

an ext ra level of indirection between the s egment l ist and the page 
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tables of shared segments .  In this scheme , each segment lis t entry for 

a shared s egment points to an entry in a global segment list , which in 

turn points to the correc t page table . Thus , if the segment is delet ed , 

or the page tab le is relocated,  only the global segment list is updated . 

The disadvantages of this solution are that it increases the number of 

translation operations required to map segment addresses onto main 

memory addres ses , and space mus t be al located for the global segment 

list . 

The paged and segmented memory scheme inherits the same problems 

for address ing segments f rom shared code segments as the segmentation 

model . Accordingly , the same solutions may be applied . 

1·1 ·.!·.!·  Memory Allocation 

Whilst the paged and segmented model inherits the advantages and 

disadvantages of segmentation f rom the us er programs viewpoint , it also 

inherits the memory management advantages and dis advantages of the paged 

model . As in the paged scheme , memory is allocated in fixed size units , 

thus large segments do not require contiguous areas of main memory . The 

problem of external fragmentation , experienced in purely segmented 

memories , is also removed . However , the int ernal fragmentation of the 

paged memory scheme becomes far more serious . Rather than wasting half a 

page of memory per address space , as in the paged scheme , the paged and 

segment ed model wastes half a page per segment . If the segments are 

small in size , as experiment s have shown to be a common occurrence 

(Batson and Brundage , 1 9 77 ) , then this can waste a substantial amount of 

memory . This effect can be diminished by us ing a very small page s ize . 

Unfortunately, this increas es the size of the page tab les signif icantly , 
posing · memory management problems for th ?.se tab les (such as finding 

space) and poss ibly creating mo re page faults . 

A few solutions to this problem have been proposed . The MULTICS 

des igners o riginally suggested that the p rocess or could supp ort two page 

si zes , one of 64 words and one of 1 0 24 words . Because of the problems of 

maintaining two different typ es of page tables , this scheme was never 

imp lemented . Randell ( 1 969 ) proposes a scheme in wh ich segments may 

still be d ivided into pages , but memory is allocated in smaller f ixed 

size units  (of powers of two ) called quanta . The scheme uses 
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conventional page and segment tables except that the page table entries 

contain a main memory quantum number rather than a page frame number . 

This quantum number is then added to the within page d isp lacement to· 

produce a main memory address .  Large segments are composed of pages 

(and a number of quanta for the last page) and small segments are 
composed purely of a number of quanta .  Moreover , since smal l segments 

only require one page table entry, this relocation information is held 

in the segment lis t rather than in a page tab le . This organi zation , 

called partitioned segmentation, causes much less f ragmentation than the 

segmented or paged and segment ed schemes . Also ,  since a number of small 

segments are packed into one page,  the co st of trans f erring small 
segments between main and secondary memory is reduced . However , because 

memory is allocated in variable size units ( even though they are units 

of  quant a ,  which are powers of two ) , memory management becomes 

increas ingly d ifficult , and may even become as awkward as in the purely 

segmented scheme . Consequently , neither of these solutions 

satisfactorily solves the small segment p rob lems experienced in a 

segmented and paged memory . 

l·l· C onclusion 

The aim of this chap ter was to determine the extent to which the 

conventional memory management schemes fulf il the needs of computer 

programs . We demons trated that programs can be divided into three 
classes , each of which p laces d if f erent kinds of reques ts on the 

information sys tem .  

From this examination we have determined that the segmentation 

scheme has by far the most advantages , because of its logical 

properties . These properties are lacking in the linear and paged memory 

organizat ions . User programs can be divided into segments of memory , 

allowing logical structures to be protected and shared between users . 

The maj or d is advantage of the segmentation scheme is that it comp licates 

the task of the operating sys tem,  because memory is al located in 

variab le size unit s . The paged and segment ed scheme attemp ts to s o lve 

these prob lems by simplifying memory management , at the cos t of internal 

f ragmentation . The few p ropos ed s olut ions to this p roblem appear to be 

ineffective . Later in the thes is we shal l reconsider this prob lem, and 

make use of another s olution . 
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Now that we have dis cussed the logical struc ture of the 
conventional memory management models , we can describe the hardware 

which is commonly used to implement these schemes . 
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3 .  Computer Memory Hardware 

l·l· Introduct ion 

In Chap ter 2 we examined the convent ional memory management models , 

but did not consider the hardware necessary to imp lement these 

structures . This chapt er provides a summary of the current memory 

technology , and shows how these conventional memory organiz ations can be 

imp lemented . Later in this thes is , we develop a new memory 

organiz ation,  and show how it can be imp lemented with current 

technology . 

1·1.· Memory Building B locks 

A number of dif ferent memory building blocks are available ,  each 
suited to a particular environment . The f ollowing devices are discussed 

in detail in this chap ter : 

1 Registers 

2 Fas t addressable memories 

3 Large storage devices 

4 As sociative memories 

5 Cache memories 

.1·1.·l· Registers 

The mos t  elementary form of computer storage device is the 

regis ter ,  which is us ually capable of retaining one word of information . 

The active components of a regis ter are flip-f lop devices , each capable 

of remembering the s tate of a b inary digit presented at their inputs . 

Flip-f lops may be concatenated to �orm a regis ter of any length , as 

shown in Figure 3 . 1 . 

The input values are usually saved when the regis t er is addressed , 

via a control l ine ( or c lock input ) .  The output is always available ,  and 
only changes state wh en the control line is puls ed . 

Registers were f irst imp lemented us ing thermionic valve devices , 

but mos t  modern types are made of semiconductors . It  is also  possib le to 

p roduce very f ast  registers , implemented with high speed logic . 
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Many processors use registers for holding temporary results , 

ins truction operands , addres ses and short term data items . Registers are 

not used for holding large amounts of data because of the high number of 

inputs and outputs required , and al so because of their phys ical size . 

l·l.·1.· Fas t Addressable Memories 

Large fas t memory devices have been built us ing many different 
media and techniques . These memories , unlike regis ters , are capable of 

storing a large amount of data . Two class es of memory have been used , 

serial memories and random access memories . Both classes of memory have 

been used to hold the data and the ins truction stream of a program . 

1·1·1.·l· Serial Devices 

Serial memories are only capable of storing a sequential bit 

stream . To change the state of a bit , the unit must wait for the 

correct digit to appear at the output of the memory , change the bit , and 

restore the sequence . 

A number of serial devices have been built , namely various delay 

line units . The units are not in couunon use now, not only because a 

processor cannot randomly extrac t data eff iciently (because on average 

half of the memory must f irst be read ) , but al so because they are 

volat ile in nature . 

CHAPTER 3 
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Figure 3 . 1 - a regis ter device 
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The serial devices were supersede� when the core memory was 

designed , in the early 1950s . 

1·1·1·1· Random Acces s Devices 

Random ac cess devices dif fer from serial memories by allowing any 

b it in the memory to be address ed randomly, rather than by wait ing f or 

the bit to appear in the serial bit stream . The main ef fect of such 

devices is to imp rove the average speed at which the bits can be 
retrieved . The first random access memory to achieve wide-spread use 

was the core memory . 

1 ·1·1·1·1· Core Memories

Core memories were introduced in the early 1 950s , and are still in 

use in many modern computers . The s cheme relies on the magnetic 

hysteres is properties of small ferrite cores . Each bit is saved in one 
core . 

Large matrices of cores may be cons tructed , forming a core plane of 

many thousand bits . Core memories have two main advantages over serial 

devices . Firs t ,  the core plane may be addressed by a row and column 

number . Thus , inf ormation may be retrieved in any order from s tore . 

Second , the cores are non-volatile , and withhold their magnetic 

polarization indef initely . 

Core memories are now being replaced by modern semiconductor 

memories , f or two main reasons . First ,  each core plane requires a large 

amount of extra electronics  to address and retrieve data . Second , the 

cons truction of each core p lane is a comp lex and time consuming 

p rocedure . The modern semiconductor memories can be made with far les s  

labour . 

1·1·1·1·1· Modern Memory Devices 

The introduction of mic ro electronic chips has enab led the 

construct ion of very highly populated memory devices , capable of saving 

many thousands of bits per chip . Two main clas ses of device are 

available , s tatic and dynamic . 

Stat ic memories are cons tructed from many thousand flip-f lop s , and 

can thus hold many thousands of bits of information . The f lip-f lops are 
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individually referenced via an address word and , like core memories , may 

be randomly ac cessed . Current static memo ries can provide a ret rieval 

time as low as 1 nanosecond and up to 2 microse conds . 

Dynamic memories are also capable of storing many bits of  

information . However , unlike static memories , each bit is saved in a 
capacitive device ,  rather than a flip-f lop . Each capac itor can only 

retain the data for a fixed length of time , and thus is dynamically 
refreshed . Because their int ernal cons truc tion is more compact , dynamic 

memories can achieve a higher bit dens ity than static memories . Like 
s tatic memories , dynamic memories may be randomly address ed . 

Both stat ic and dynamic memories suf fer the drawback that they are 

volatile , and without power they lose their inf orma tion . 

l·l·l· Large Storage Devices 

The addressab le memories described are invariably too small and far 
too expensive to ho ld large amounts of inf ormation for any length of 

time . In addition , with the excep tion of core memories , they are 

volatile , and are thus unsuitable f or long term s torage of data . 

Large data  bases are thus held in large permanent memories , such as 

magnetic tape , disk and drum . The retrieval times , and s torage 

capacit ies , vary across  these dif ferent media . However , they are usually 

too s low to use as the computational memory of a process or . 

This chapter is concerned with the hardware implementations of main 

computational memories , thus disk, drum and tape memories will not be 

cons idered further . 

l·l·.!· · AssQciat ive Memories 

The most  common form of computational memory is accessed via an 

address word , which ac ts as a direct key identifying a data cell , shown 

in Figure 3 . 2 .  Most  address ab le memories are usually constructed from 

random access devices , though serial memories could be used . Another , 

less  commonly used form of memory ,  is the ' associative ' or ' content

addressable ' memory . This memory is capab le of retrieving data via the

content of  the cell , rath er than by the address of the cell . 
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1
address 

l 
Figure 3 . 2 - an addressab le nemory 

Typ ically, each cell in the memory is divided into a key f ield and 

a data field , as shown in Figure 3 . 3 .  When the roomory is addressed , all 

key fields are compared to the search key . Any cells which have the same 

key field as the search key (or bear some relationship with the key , 

such as less than or greater than) are read ,  and the data retrieved , or 

up dated . If more than one match occurs , the memory must include some 

multip le res olution logic to extract each response individually . 

The use of such a memory may not be immediately apparent , and is 

best illustrated by example . Cons ider a tab le of surnames and 

residential addresses , each surname corresponding to an address . The 

surname can be loaded into the key area of an associative memory ; the 
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Figure 3 . 3 - an associative memory 
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residential address into the data area . It is then obvious that the 

memory can f ind al l occurrences of a given surname , and provide the 

corresponding residential addresses . 

Associative memories are extremely useful in improving the 

perf ormance of central p rocessors , and this will be discussed in more 

detail later . We wil l  now des cribe some of the more common 

imp lementation techniques used to cons truct associative memories . 

1 ·1·.i·l· T rue Content Addressable Memories 

The imp lementation chosen for a content addressable memory ( CAM) 

varies depending on how the memory is  to  be  used . In many cases , the CAM 

must  perform very high speed ass ociation and retrieval ; in such cases a 

true paral lel CAM is used . 

For imp lementation reasons , a dis tinction is made between the key 

f ield and the data f ield of a cell, as shown ' in Figure 3 . 4 .  Since the 

data field is not addressed by association , it may be held in a separate 

word addressable memory . When a key f ield match is found , the 

appropriate data field may be read and /or updated . 

In a true parallel CAM, each bit of the key word is simultaneously 
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Figure 3 . 4 - a content addressable memory 
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compared with each bit of the key f ields of all the words of the CAM . 

Any key field which indicates a match ( i .e . the keys are the same , or 

have a relationship to each other) is f lagged , and the appropriate data 
cell retrieved . The wors t case retrieval time is clearly the sum of the 

time to compare two keys and the time to read the data memory . This time 

remains the same regardless of the number of cells in the memory . 

The actual imp lementation of a true parallel CAM is , unfortunately , 

complex . Each bit of a cell must not only hold the bits of the key , but 

al so contain a comparator . Thus , in a memory of m words , and a key size 

of n bits , a total of m * n bits of storage mus t be provided , and m * n 

comparator devices . 

The high cos t  of each cell places severe restrictions on the 

ul timate size of the ass ocia tive memory . Consequently , most true 

parallel as sociative memories are quite small in size . Other techniques 

are availab le when larger ,  but s lower , ass ociative memories are 

required . 

1•1•.!•1• Linear Scan - Word serial - Bit parallel 

If the speed at which the data is retrieved f rom the CAM is 

unimportant , the memory may be scanned sequential ly , rather than all 

cells testing their keys on parallel, as shown in Figure 3 . 5 .  In this 

scheme , the key memory is replaced by a fas t  addressab le nemory , of m 

rows and n columns . When a key is address ed ,  each row of the memory is 

read sequential ly , and the n bits  of the cel l  are compared to the n bits 

of the s earch key . If any cell indicates a match cond ition , the data 

memory may be addressed in the same manner as the true parallel CAM . 

The hardware required f or this s cheme is simp ler than the true 

p arallel CAM . Rather then m * n comparators , only n are required . 

Because the key memory . is word addressab le,  and only a small number of 

comparators are required , quite large word serial memories may be 

construc ted . ·  The worst case retrieval time of these CAMs is the time 

taken to read and compare all of the keys in the key memory , plus the 

read time of the data memory . 

This device reads each word serially , and compares all bits of the 

key in parallel . Another CAM s tructure reads the words in parallel and 

compares the key bits serially . 
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Figure 3 . 5 - a word serial - bit  parallel CAM 

1·1·.i·1 · Linear Scan - Word parallel - B it serial 

An alternative organis ation may be devised which is faster than the 

word serial CAM, but s lower and less expensive than a true parallel CAM . 

The word paral lel sys tem, shown in Figure 3 . 6 is the logical inversion 

of the s erial scheme . In this method , the same bits of all key words 

are compared in parallel . Each key field is writ ten serially into the 

memory , rather than in parallel ,  and is saved down a column rather than 

across a row . 

When a key is addressed , each row is read sequential ly . Af ter each 

read , all m b its are compared to the corresponding b it in the s earch 

key • At each stage , a match for a column is saved . If , after the entire 

n rows have been read , a column matched f or every row, then the data 

word can be retrieved from the data memory . 

This s cheme uses m comparators rather than n and , given that n is 

usually les s  than m, is usually more expens ive to implement than the 

word s erial memory . Howev'er , only n reads are required to match all 

keys , rather than m. Providing that there are more keys to be compared 

than b its in a key ,  this app roach is f aster than the s erial scheme . 
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The word parallel scheme poses an important problem . Whils t  it is 

capable of  executing fas ter retrievals than the word serial memory , a 

key field can only be updated serially , requiring n write operations . 

It is also likely that all other m columns will be forced to execute an 

update cycle (as all wil l  share a write signal ) ,  even though they are 

not being modif ied . 

A modif ication of this scheme al lows bit parallel access  fo r write 

cycles and word parallel access for as soc iative ret rievals . 

l·l·i·i· Skew Addres sing 

In this scheme , shown in Figure 3 . 7 ,  a key word is held diagonally 

in the s tore , rather than being confined to a part icular row or column . 

The address supplied to each column of the memory is skewed , or off set , 

by one relative to the next column . The memory s till possesses the 

property that each row holds the same bit of each key field , and thus by 

sequentially s canning the rows , the same as sociative search us ed in the 

bit serial scheme may be used . However , when a key is updated , each bit 

is held in a d iff erent column ,  and thus all bits of the key may be 

written in parallel . 
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Figure 3 . 6 - a word parallel - bit  serial CAM 
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----> 
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Figure 3 . 7 - skew addres s ing 

1·1·.!·1·  O ther Searching Algorithms 

It  is theoret ically pos s ib le to implement other searching 

strategies in an ass ociative memory , such as a binary s earches , tree 

searches and hashing techniques . However , very few of these algorithms 

have actually been imp lemented in hardware , and will not be des cribed 

here . A hashing algorithm is used to implement a large as sociative 

memory later in this thesis . A fu ll descrip tion of this unit may be 

f ound in Chap ter 7 .  

1·1·1· Cache Memories 

Mos t  processors are connected to their memory units  via an address 

bus arid a data bus , as shown in Figure 3 . 8 .  When a memory read or write 

reques t is ini tiat ed , the CPU must  wait until the memory has completed a 

memory cycle which , depend ing on the main memory speed , may be in the 

order of micro seconds . 

Substant ial speed savings may be experienced by placing a smal l , 

very fast , associative memory between the processor and the memory . 

Thus a CAM is used to retain copies of the mos t  frequently used memory 

locations . The scheme relies on some address locality ; once a location 

has been referenced it is likely to be used again . Thus , once a location 
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is us ed , a copy of the data is placed into the cache . When a ref erence 

t o  the same location is made in the future , the cache copy may be used 

rather than the s lower main s tore . 

The key used in these associative memories is the main memory 

address . The data field of the CAM is us ed to hold a copy of the data . 

Cache memories can offer excellent speed improvements , as described in 

( Strecker , 1 97 8 ) . 

1 ·1·1 ·1· Memory Write Operations 

When the central processor reques ts a write operat ion , two 

dif f erent write algorithms can be us ed . First , the data can be updated 

in both the cache locat ion (if it is present in the cache ) and the main 

store . This p rotocol , called 'wri te through ' , has many advantages , as

dis cuss ed in (Kohonen, 1 97 8 ;  1 9 80) . The second alternative is to only 

update the location in the cache . The main store location is only 

modified wh en the variable leaves the cache memory , in which case the 

correct value is written to memory . 

Whilst this solution avoids unneces sary memory wri te operations , 

it suff ers f rom two problems . First , special hardware must detect when 

a locat ion leaves the cache , and write the data back to main store . 

Second, two d ifferent copies of the same location exist , which 

comp licates the sharing of variables in a nn.ilti-processor environment . 

In addition, the 'write through ' approach may be implemented so

that it is no s lower than the cache only write solution ,  by overlapping 

the main memory write with the next processor operat ion . Consequent ly , 

the f ormer s olution is usually imp lemented . 

<-handshaking & control-> 
Processor Memory &

ADDRESSES > Peripherals 
Control &
Regis ters < DATA > 

Figure 3 . 8 - a typical processor configuration 
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1·1·1·1 · Insert ing and Deleting Items 

An important cons ideration af fecting the ef f ic iency of a cache 
memory is which wo rds to insert into the cache and , when space is 
required , which words to remove . 

Mos t  sys tems use a simple , but ef fective , demand insertion 

pro tocol . When a word is fe tched from main s tore, it is au tomatically 

copied into the cache . The likelihood that the word will  be addres sed 

again is qui te high , making it an ideal choice to insert in the cache . 

Two dif ferent cases may arise when a word is to be inserted . First , 

if there is s uf f icient free spa ce,  then any free location may be us ed . 

If , however , there is no free space , then a word mus t be removed . 

Various deletion algorithms are pos s ible,  the most common being Random 

or Leas t Recent ly Used . 

Random selects a location at random from the cache . This algorithm 
is easy to imp lement , especially in hardware , and chooses a word 

quickly . Unfortunately , it often removes the wrong word . Leas t Recently 
Us ed s elects the word which has remained unused for the longest time . 

Whilst harder to imp lement than Random, and even though it is slower in 

choosing a cel l ,  this algorithm tends to choose a better locat ion to 

remove . In spite of these advantages , Ran�om is usual ly used because of

the ease of imp lementation, and the speed of op eration . 

1·1·1·1·  Data C aches and Address T rans lation Caches 

The data cache memories discussed so far are capab le of retaining 

copies of the mo st  used words of memory in high speed memory . It is 

of ten des irab le to retain entries from the address translation tab les , 

to improve the speed at which addresses can be tran� lat�d . In many 

cases , a separate address translat ion cache is provided , and this will  

be  d iscuss ed in the latter part of this chapter . An important 

dis tinction between these two is that an address translation cache is 

not usually modified . Thus , the data from these caches need not usually 

be written back to main memory . 

1·1·1 ·.! · Implementing Cache Memories 

An important attribut e of a cache memory is high speed . A s low 

cache may o f f er no speed imp rovement over the main memory . Many 
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different types of cache memory have been implemented , the most popular 

being the freely loadab le cache , the direct mapping cache and the set 

as sociative cache . 

1 ·1·1·.i·l· The Freely Loadab le Cache 

The most obvious imp lementation technique for building a cache 

memory is by us ing a true parallel CAM . The cache may be searched very 

quickly (as al l comparis ons are performed at the same time ) , and 

address-data pairs may be loaded in to any pos ition wi thin the CAM . 

Unfortunately , true parallel CAMs are often too smal l to hold 

enough main memory data locat ions . Consequently, other techniques have 

been developed especially for use in cache memories . 

1·1·1 ·.i·l · Direct  Mapping 

A direct mapping cache is cons tructed from very high speed 

addressable memory . Each cell ho lds both the key f ield and the data 

f ield , as shown in Figure 3 . 9 .  The key field is used to hold the main 

memory address and the data f ield holds the memory data at that address . 

The index position of a cell  in the cache is calculated from the 

key value , and is often ext racted from the least signif icant b its of the 

key (al though a randomis ing function may be app lied ) . When the 

processor requests  a memory cycle,  the cell contents at the calculated 

index value are retrieved . The key field is then compared to the main 

memory address and , if e qual , the data f ield is returned to the 

> key data 

address 

I 
Figure 3 . 9 - d irect mapping cache 
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proces sor . If a write operation was requested the field in the cache is 

updated . 

This scheme is only limited in speed by the cache retrieval time 

and the delay time of the comparator . Both . of these may be very fast , 

producing a CAM many times fas ter than ma.in memory . Unlike the freely 

loadab le cache , this organization requires only a one word comparator , 

and is thus inexpens ive to produce . 

The mos t important criticism of the scheme is that it in not truly 

associative ; two addres ses which have the same low order bits will 
' ' home to the same cache cel l ,  and cannot be held in the cache at the
same time . 

This res tric tion is not serious for a number of reasons . First ,  the 
choice of low order bits for a randomis ing function guarantee that 

success ive ma.in memory lo cat ions can be held in the cache . Sequential 

address ing is part icularly connnon when instructions are fetched ,  thus 

the ' clashing ' is not a serious drawback . Second , the cache only needs
to hold a high percentage of the words being cons tantly addressed ,  not 

all of them . If a word is not held in . the cache , either because there 

was no room, or it clash ed with another address , then the process or may 

still continue by using the main memory . Provided that only a small 

percentage of connnonly us ed locations are ab s ent from the memory, the 

cache will  s till give a s ignif icant speed improvement .  Third , the 

effect of addresses homing to the same cell may be diminished by 

increas ing the size of the cache itself . Thus more bits from the memory 

address are used to calculate the index value , decreasing the likelihood 

of a clash . 

Unlike the true parallel CAM, an address can only be inserted into 

one cell  of a direct mapp ing cache . Thus , if an address is to be 

inserted into the cache , it mus t  be p laced in the correct index 

pos ition , pos sibly removing an address . The same choice of insertion 

algorithms is not available for the direct mapping cache ; the address is
either insert ed in the correct ce ll, or not at all . 

An important opt imization of this style of cache which reduces the 
size of the memory , is to only save the b i ts of the key not us ed to  

calculate the index value . This can save many bits of  high speed memory . 
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Another modification of the direct mapping cache is the set associative 

cache . 

l ·l·1·.i·l· The Set Associate Cache 

If more than one address homes to the same cell  of a direct mapping 

cache , then only one address entry can be saved . All others must res ide 

in main memory . In a set associative cache this limit is extended to 2 

or 4 such ent ries . A collection of addres ses which home to the same cell 

is called a ' set '

The scheme is imp lemented by providing more than one direct mapping 
cache , each placed side by side, as shown in Figure 3 . 10 .  Thus , two 

uni ts allow two different addresses to be held at the same index 
position . When a third address is to be saved at an index position , a 
choice is made of which address entry to discard . Either Random or Least 

Recently Used may be app lied ,  however , because of  the ease of 

imp lementat ion random is usually chosen . 

Two way and four way set as sociative memories o f fer extremely good 

performance and are often used for· both data and address translation 

caches ( St recker , 1 97 8 ) . 

3 . 3 .  Implement ing Memory O rganizations 

This sec tion examines the memory cons tructs which have been used to 

imp lement the structures describ ed in Chapt er 2, namely l inear memories , 

> key 1 data 1 key 2 data 2 

address 

I 

Figure 3 . 1 0 - a set associative memory 
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paged memories , segmented memories and paged-segment ed memories . 

1·1·1·  L inear Memory Schemes 

Linear memory schemes have been imp lemented with varying degrees of 

hardware support . In all of these ,  the logical view of memory is the 
same as the phys ical view, and no address  dis tort ion is introduced 

(excluding simp le linear offsets ) .  In the simp lest case very litt le 

hardware is requi red to allow the processor to address memory . 

1·1·l·l· B asic Scheme

In the most bas ic linear memory scheme , shown in Figure 3 . 8 ,  each 

address generated by the processor is transferred directly to the memory 

unit . Tile memory itself is constructed from the addressab le memory 

described in s ection 3 . 2 . 2 . 

The inclusion of a fence regis ter (see Chap ter 2 )  has no effect on 

the actual addresses . The p rocessor addresses are simp ly compared to the 

value of the fence reg ister and , if an address if detected below the 

fence value , an interrupt is caused . The relocation s cheme ( s ee Chapt er 

2 . 2 . 1 . 2 )  requires slight ly more comp lex address ioodif ication hardware . 

1•1•1•1 •  Relocation Registers 

When a sys tem is f it ted with base and limit regis ters , the 

addres ses produced by the p roces sor are d if ferent from those accep t ed by 

the memory unit , as shown in Figure 3 . 1 1 . 

Processor 

Control &
Regis ters 

CHAPTER 3 

<->base l 
· ----> +

Memory & -----1-----> Peripherals

<->limit ----> ?

<--------------�' 
yes /no 

Figure 3 . 1 1  - relocation hardware 
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Whils t the linearity of the address space is preserved , a program 

may be relocated in the ma in memory . Each address from the processor is 

augmented by the contents of a base regis ter , and the result may be 

validated against the contents of a limit reg ister . The address is 

modif ied by a fas t adder , which has lit tle ef fect upon the to tal memory 

acces s time . 

When the processor addresses are dis torted , such as in a paged 

memory , much more hardware must be provided . 

1·1·1 · The Paged Memory Scheme 

The . paged memory scheme was first imp lemented on the Atlas computer 
(Fotheringham, 1 96 1 ; Kilburn , Edwards , Lanigan and Sumner , 1 962 ) in 

1 958 . Since that time many dif ferent hardware imp lementations have been 

designed and built . As s tated in Chapter 2 ,  these imp lementations fall 

into four classes : 

( 1 )  Processors with small virtual address spaces 
( 2 )  Proces sors with small main memories 

( 3 )  Processors with large main and virtual memories 
( 4 )  Processors with very large virtual memories 

Each clas s has dif ferent propert ies , wh ich inf luence the techniques 

used to imp lement them . 

1·1·1·l· Small Virtual Address Spaces 

This class includes processors in which the address ing range of an 

individual p ro cess is quite small , even though the comb ined space of all 

processes may be large . 

Each time the processor generates a vir tual address ,  the address is 

mapped onto the phys ical memory . The mapping operation is usually 

performed by a page tab le ,  of ten held in main memory itself . If the 

address space is small enough, it is pos s ib le to p lace the contents of 

this page tab le in a special fas t mapping memory , placed between the 

processor and the memory, as shown in Figure 3 . 1 2 .  

Each time a virtua l  address is generated , the page number is 

extract ed from the rest of the address ( leaving a within page 

displacement ) ,  and used as an index into the mapp ing memory . The entry 
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t
� page/I real � > 

J page II 
> 

processor main memory 

indexed mapp ing table 

disp lacement 

Figure 3 . 1 2 - a small paged memory 

addressed in the mapping table is us ed to hold the main store page 

number , a set of access rights , and a val id flag . The main sto re page 

number is concatenated with the page disp lacement to form a main memory 

address . The other fields in the tab le are used to val idate the type of 

access , and to detect page f aults . 

The time requi red to translate an address in this method is the 

time taken to read the mapp ing memory, which can be made a small 

frac tion of the main memory cycle time . Us ing this scheme the overhead 

incurred by address modif ication is extremely low . 

Depending upon the number of processes concurrent ly execut ing on 
the processor , it  may be possible to ded icate a separate address 

trans lat ion memory for each process , as found in (Hagan , 1 97 7 ) . However , 

if the processor execut es many proces ses , the contents of the mapp ing 

memory may be loaded from the page tab les in main sto re when the process 

is scheduled f or execution . 

This method of address trans lat ion can only be used when the number 

of virtual pag es in an address space is small, because one entry is 

required for every page of virtual space . The amount of main memory has 

little effec t  on the size of  the table , only on the width of the 

individual mapping entries . 

The mapping memory must usual ly be 

addressab le memory . Consequently the cost 

implement ed from fas t 

of a mapp ing memory f or a 

large address space becomes prohib it ive . In addition , the cos t of 
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swapp ing the cont ents of the address t ranslator becomes too high . Thus , 

dif ferent techniques are used when the virtual address size becomes 

large . 

1·1·1.·1.·  Small Phys ical Memories 

When the size of the main store is small (as it was on the Atlas 

computer } even though the vi rtual space may be large , a different 

address translat ion mechanism may be used . In these cases , the page 

tables contain many empty ent ries . By inverting the struc ture of the 

page tab les and , rather than indexing the tab les by virtual page number , 

us ing the physical page number as a key, the size of the tables may be 

reduced dramatically , as shown in Figure 3 . 1 3 .  Address trans lation may 

be accomplished by associatively matching the virtual page number with 

the cel ls of the mapping memory . Because the address mapping must be 

fast , the mapping memory must be cons truct ed from a true parallel CAM . 

Thus , an associat ive memory large enough to ho ld the page tab le 

entries for the ent ire main s tore can be us ed to t rans late all of the 
processor virtual addresses . Any virtual address which cannot be found 

in the memory,  is not present in main store, and shou ld cause a page 

fault . 

In mos t  sys tems the virtual addresses are not unique between 

process es . Thus , the associative memory must either be cleared and 

--- virtual freal � 
page II page  II

> 

processor main nemory 

associative memory 

displacement 

Figure 3 . 1 3 - a small main memory 
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reloaded on each cont ext change, or the virtual address must contain the 

process number . 

Unfortunately ,  most true parallel CAMs are qui te small , and this 

technique may only be used when the number of main memory pages is 

small .  The scheme is comparatively ins ens itive to the size of the 

vi rtual address (unlike the previous method ) ,  as this only af fects the 

width of the memory entries and the comparators . The next technique is 

us ed when both the virtual address size and the main memory address size 
are large . 

l·l·l·l· Large Virtual and Physical Memories 

' ' Tradit ionally , very litt le hardware support has been ava ilable f or 

the , trans lation of large virtual addresses . Clearly , a tab le indexed on 

virtual page number cannot be p rovided , be cause of the size of the 

virtual address space . Likewis e ,  a truly associat ive paral lel CAM 

cannot be provided because of the size of the main memory . Thus , the 

address translat ion in large memories is nearly always accomplished via 

tree struc tured page tab les he ld in main memory . In some circumstances , 

these tab les are so large that they are held in virtual memory , and are 

paged in and out of main memory like all other pages of virtual memory 

(Digital Equipment Corp . ,  1 979 ) , which causes many complications , as 

discussed in Chap ter 2 .  

Because the cost  of consulting these tables on every memory 

ref erence wou ld be proh ib itive , it is common to augment this mechanism 

with an ass ociative memory , or address translation cache , capab le of 

holding the mo st commonly us ed page table ent ries as shown in F igure 

3 . 1 4 .  

When a virtual address is trans lated , the cache memory is firs t  

consulted . I f  the translation tab le entry is not found , then the page 

tab les are searched . This entry may then be placed in the cache in order 

to ass ist fu ture references to this page . 

Because virtual addresses are not usually tmique , the cache mus t be 

cleared on each process switch,  and be allowed t� reload itself when a 

process is started . Because the entries of the cache are not modif ied , 

there is no need to write the entries back to the page tables when the 

process is changed . Various forms of cache are ut ilized . Since the 
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1-----> I CAM I > I programs &
data 

page tab le 
mismatch 

processor main memory 

Figure 3 . 1 4 

cache need not be fully as s ociative ( i . e .  the page tables can always be 

read in the case of a cache miss ) , quite large set associative memories 

are often us ed f or assisting this address trans lation . 

Whilst this technique is effective for quite large virtual address 
spaces , the space required by the page tables is still cons iderab le . 

Consequently , this scheme has not been used on a virtual address size 

above 32  b i ts ( as in the VAX 1 1 / 7 80) . 

1·1·1·.i· Very Large Virtual Spaces 

When the virtual address becomes very large (for examp le 4 8  or 64 

bits ) conventional page tables are no longer an effective method of 

address trans lat ion , for a number of reasons . First , an enormous amount 

of  space is required to ho ld the page tables . These page tables wou ld

certainly be held in virtual memory themselves . Second , because of the 

the size o f  the page tables , and the comp lexity of the retrieval 

algorithms , trans lating an address using the tables is a slow process . 

Even .if the address t ranslation cache provides .J very high ' hit ' rate ,

the small percentage of memory ref erences which use the page tables will 

be so slow that the average memory reference time wil l  fall 

dramatically . Third, as d escribed in the last chapter ,  a page fau lt 

operat ion may generate a number of further page faults in an att empt to 

t ranslate an address . 

To avoid the problems associated with holding the page tab les in 

virtual memory another technique may be used . In this method , the page 

tab les are never used to trans late main memory addresses , and are only 

us ed to f ind the location of a page in secondary memory . This approach 
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was used by the Atlas computer . All addresses for pages in main memory 

were translated by an associative memory , which held page table ent ries 
. 

for every page of main store . Unfo rtunately , true paral lel associative 

memo ries large enough to manage the large main memories now commonly in 

use , are not availab le . 

One comput er , MU6-G ( Edwards , Knowles and Woods , 1 980 )  has used a 

wo rd serial associative technique to  emulate a la rge CAM . However , 

because this method is so slow , the processor also uses an addit ional 

ps eudo associative cache to achieve a respec table t rans lat ion time . 

Another computer , the IBM Sys tem/ 38 (IBM,  1 97 8 ,  1 980 ; Houdek , Soltis and 

Hoffman , 1 98 1 )  al so us es an associative translation technique , which is 
described in Chap ter 4 .  

1·1·1·  Segmented Memories 

Like large paged virtual memories , very little hardware support has 
been deve loped for segmented memories . The two conventional translation 

mechanisms are des criptors (as used in the B6700 family )  and segment 

lists . Wh ilst  it may be possible to provide special mapping memory f or 

the segment lis ts or the descriptors , they are usually held in main 

store . Thes e t ranslation mechanisms a re augmented by cache memories to 

improve their translation t imes . 

Thus , when a proces s generates a segment address , the cache is 

searched for  the segment relocation information . If it is not found , 

then the segment list (or descriptor ) is used to trans lat e the address ·, 
and the information is placed in the cache f or future reference . Since 

segment numbers , like page numbers , are not usually unique between 

processes , it  may be necessary to clear the cache on a process change . 

If Additional ind irection tab les are used , the cache may alsc need to 

retain entries from these tables . 

1·1·.i· Segmented-Paged Memories 

Address trans lat ion in segmented-paged virtual memories is similar 

to that of purely paged memories , except that both page and segment 

tab les are usually used to translate virtual addresses into main s tore 

addresses . Thes e tab les can be augmented by a cache memory which holds 

the most frequently used page and segment tab le entries . The key used 
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for the as sociative s earch is the comb ined segment and page numbers . In 

all other respects , the address translation is the same as f or the paged 

memories . 

3 . 4 . Conclusions 

We have described the digital technology used in the cons truction 

of memory systems , and have shown how to imp lement the conventional 

address ing schemes . The next chap ter desc rib es a different method of 

address ing memory ,  called capab ility based address ing , and shows how 

schemes based in this technique are built . 
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4 .  Capability Based Address ing 

In Chapters 2 and 3 we examined various conventional memory.
organizations , and compared the advantages and disadvantages of each . 

The segmentat ion scheme appeared to of fer many logical advantages . 

However , th is addressing s cheme usually app lies only to segments of 

memory . The other obj ects which are addressed by a program , such as 

files , I-0 devices and other p rograms , are addressed ,  shared , protected 
and synchronis ed by dif ferent mechanisms . 

For examp le , file data is not retrieved in the same way as data 
from an array . Sharing a bounded buffer between processes is not 

imp lement ed with the primitives us ed f or sharing access to a f ile . 

Record access within f iles is of ten synchronised by ' record locks ' ,

wh ereas shared code and data may be synchronised by semaphores . F iles 

are protected by directories , whereas code and data are protected by 

isolated address spaces , or p ro tected domains . 

A capab ility based address ing scheme (Dennis and Van Horn , 1 9 6 6 )  

attemp ts t o  extend the log ical view o f  segmentation t o  addressab le 

obj ects other than memory , and provides a unif orm scheme for sharing and 

protecting these obj ects . This unif orm app roach has the advantage that 

it simplif ies , and even removes , many of the mechanisms wh ich are 

duplicated in most convent ional computer sys tems . This chapter 

comprises four sections . The f irs t dis cusses the properties of 

capab ilities . The second concent rates on the obj ects that they address . 

The third sec tion categorises the various implementat ions , and develops 

some general models . The fourth section examines some particular 

obj ects which can be address ed and protected by capab ilities and the 

ef f ec ts that they have on the models • 

.! ·l· The Properties of Capabilities 

A capab ility is a protected pointer which gives a program the 

ability to address an obj ect . A capab ility is logically composed of two 

f ields , <obj ect name> and <ac cess rights> . The name f ield holds the 

name of the obj ect which the capab ility addresses . The access rights 

f ield describes the way in wh ich the obj ect  may be addressed by that 

capability . Capabilities are normally regarded as pos sessing the 

following intrins ic propert ies : 
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- The obj ect name should uniquely def ine the obj ect . No two 

obj ects shou ld ever have the same name . The name , which is 

typically encoded as a long integer , is ass igned when the obj ect is· 
created , and is never reused . 

- Possession of a capab ility allows a program to address the 

obj ect . If a p rogram does not possess a capab ility for an obj ect , 

then no other mechanism al lows the program to reference the obj ect . 

This prop erty provides a means of imp lementing the p rinc ip le of 

leas t privilege and of enf orcing a ' need to know' security policy .

- A capability des cribes how the obj ect may be manipulated . The 

access rights may be used to res trict certain operations , whilst 

allowing o thers . A capab ility f or a memory segment , for examp le , 

may contain access rights def ining whether a segment may be read by 

a user and whether it may be mod if ied . 

- A capab ility should not be forgeab le . The two fields within the 

capab ility c ontain sens itive inf ormation . If  possession of a 

capab ility is the only means of access ing an obj ect , then a user 

must be p revented from changing the name to p oint to another 

obj ect , and from changing the access rights which def ine the way in 

which the obj ect may be accessed . 

- Obj ect names should never be reused , even af ter the obj ect has 

been des t royed . This property is imp ortant if capab ilities f or 

deleted obj ects are not reclaimed . If  the names were reused , the 

c.apab il ity f or the o ld obj ect could be used to address a new obj ect 

ass igned the same name . Some sys tems relax this rule by collecting 

all old capab ilities . 

- Capab il it ies facil itate easy sharing . An obj ect may be shared 

among st all users who possess cap ab il ities f or the obj ect . The 

capab ility mechanism allows as few and as many users as necessary 

to share access to an obj ect . 

- Capab ilit ies facilitate dif ferent views of an obj ect . Because 
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each capab il ity contains an ac cess rights field of its own , 

diff erent users may be g iven different views of the same obj ect . 

Thus , one user may only be allowed to read a segment , whilst 

another may be allowed to write to the same segment . 

Having enumerated the propert ies of capab ilities , we shall now 

brief ly cons ider the obj ec ts that they address . 

4 . 2 .  Capabilit ies and Obj ect s  

Two dif ferent classes o f  obj ects are impo rtant , memory segment s and 
o ther types of obj ects .

A memory segment is a log ical collection of information held either 
in main memory or in secondary memory . Capability sys tems often differ 

f rom the convent ional architectures dis cussed in Chap ter 2 in that they 

use a connnon segmentation mechanism for s toring both computational data 

and file data . In both cases each segment is addressed by a segment 

capab ility , which c�ntains a unique name permanently associated with the 

s egment . 

The ac cess rights field of a segment capab ility is typically used 

t o  indicate modes such as read access , write access or execute access . 

Some sys tems dis tinguish between two sorts of segment ; one which holds 

data, and one which holds capab ilities . These two properties are of ten 

dis tinguished in the lis t of allowab le access rights . A segment with 

capab ility access is p rotec ted from arb itrary modif ication by users , 

thus guaranteeing the integrity of the capab ilities which it contains . 

Many o ther obj ec ts are traditionally addressed by special 

address ing mechanisms . For example , mos t  sys tems provide separate 

input-·output sub-systems to access obj ec ts such ab card readers and 

printers . But these ,  and other high level ab strac tions such as files , 

s tacks , queues , ports and us er def ined ab s tractions may also be 

addressed by a uniform capab ility mechanism . In this case ins tances of 

such obj ec ts are assigned unique names , which are then us ed within the 

capab ilities which address them . The access rights field may be used to 

rest rict certain operations on the obj ects in the same way as for memory 

s egments . For example the holder of a capab i lity for a port might be 

allowed to s end messages via the port but not receive them v ia the same 

port . 
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This chap ter concentrates on the �chanism used to address  memory 

segments within a capab ility bas ed address ing scheme . (The addressing of 

other high level obj ects by capab ilities will  be cons idered later . )  The 

addressing of memory segments is par ticularly imp ortant because of the 

way in which segments are used . Each time an ins truction is fetched from 
a code segment , the capab ility sys tem must be used . Each time an 

ins truction addresses a data item, the capab ility mechanism must  again 

be used . Provid ed that an ef f icient and f lexible imp lementation is found 

for address ing memory segments via capab ilities , an eff icient 

imp lementation for other obj ects shou ld also be poss ible . 

4 . 3 .  Implementing !. Capab ility Address ing Scheme 

This sec tion cons iders two important areas related to the 

imp lement ion a capab ility address ing scheme . The first is how to protec t 

and use the non-forg eable capab ilities . The second area is far more 

comp lex , and involves the techniques for implementing the capab il ity 

model on real p rocessors . Several existing sys tems are examined , and two 

general models are drawn . 

i ·l·l· Protecting and Us ing Capab ilit ies 

The storage of capab ilities poses two implementation problems . 

Firs t ,  as stated earlier, capab il it ies must be unf orgeab le . Thus , the 

mechanism used for storing and using capab�lities mus t also protect them 

f rom corrup tion .  Second , capab ilities are quite long . It may be 

infeas ible to use them directly as operands for instructions , and embed 

them within the instruc tion stream . Two solutions to these p roblems have 

been proposed , partit ioning and tagging . 

i·1·!·! ·  Partitioned Segments 

In a partitioned machine two different sorts of segment are 

recognis ed , data segments and capab il i.ty segments . A capab ility s egment

may only be used for holding capab ilities , and may never be directly 

manipulated by data instructions . Special ins tructions are p rovided for 

manipulating capab ility segments which allow capab ilit ies to be moved , 

created , deleted and cop ied to other segments . 

The capab il ity segment ass ociated with an executing program is 

of ten called a C-list , shown in Figure 4 . 1 .  Instructions may address
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index 

J <name> <access>  -------> to obj ect 

C-list 

Figure 4 . 1  - a partit ioned addressing scheme 

obj ec ts by spec ify ing the index value of the capab ility in the C-list . 

C-lis ts solve both of the problems described in 4 . 3 . 1 .  Because 
capab ili ties are held in a special p rotected segment , there is no way of 

modifying pointers , or creating illegal pointers . This protection sys tem 
can be enf orced by creating capab ilities which point to the C-list with 

an access type of ' capab ility ' , rather than type ' data ' . Thus , the

capab ili ty mechanism can be us ed to p rotect C-lists themselves . 

Moreover , the size of the index value is many times smaller than 

the name of the obj ects , and may be eff iciently coded as an instruction 

operand . 

Whilst the C-lis t may appear to be the same as the segment list 

discussed in Chap ter 2, the capability addressing scheme does not 

inherit the linkage problems with shared code segments ,  as experienced 

in the segmentation scheme (Fabry , 1 9 74 ) . The main reason for this is 

that mos t  capab ility sys tems associate a C-lis t  with a code body . Thus , 

even if many p rocesses use the same ' code, they all use the same C-list . 

Partitioning has the overhead of an extra segment per address ing 

environment , but is still widely used . This scheme is us ed by P lessey 

250 (England , 1 97 2 ) , Intel iAPX432  (Intel , 1 9 8 l a ,  1 98 lb ) , CAL (Lampson 

and Sturg is , 1 9 76) , CAP (Needham, 1 97 7 ;  Wilkes and Needham, 1 979)  and 

HYDRA (Wulf ,  et . al . 1 974 ; Wulf , Levin and Harbis on ,  1 98 1 ) . A slight ly 

mod if ied version of partitioning is us ed in StarOS (Gehringer and 

Chans ler , 1 98 1 )  (and concep tually Hydra ) . In this sys tem each segment 

may be partitioned into a data portion and capab ility portion . Apart 

from reducing the need for an extra segment , the two schemes are 
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conceptually identical . 

Wilkes ( 1 980)  proposes placing some of a prog ram' s capab ilities i�

the same segment as the code , thus reducing the number of segments 

required . Because the code itself is protected from corruption , the 
capab ilit ies cannot be illegally mod if ied . In this scheme , care must be 

taken that the capab ilit ies cannot be executed , which can be achieved by 
some form of fence regist er scheme . Apart from re quiring extra 

protection hardware , this scheme does not remove al l of the extra C

lists . Some capab ilities must be mod if ied and cop ied around the system , 
and others mus t be addressed as parameters to a program . Neither of 

these two types of capab ility can be held in the code segment , mainly 

because they are not necessarily owned by the code body . Thus , extra 

addressing mechanisms must still exist to cater f or those capabilities 

not held in a code segment . 

i·1·!·1· Tagging 

An al ternative so lut ion to the problems raised in 4 . 3 . 1  is the 

tagged app roach . In this scheme each word of store, or each s truc ture in 

store , is as s igned a tag f ield . This field def ines which operations are 

allowed on the data,  and is checked bef ore the data item is us ed . Thus , 
, , 

integers may be tagged as type integer , and may not be used as 

operands f or a f loating-p oint instruc tion (My ers , 1 978a , 1 978b ) . 

Similarly , capab ilities may be tagged as type ' capab ility ' , which 
p revents them from being us ed as data items , or from being mod if ied . 

Tagging capab ilities solves the protection problem, but it does not 

reduce the operand size . The length of the effec tive address is governed 

by the. mechanism which references the capab il ity . Tagged capab ilities ,

however , may be p laced on the p rocess s tack, and addressett relative to 

the stack regis t ers , reducing the operand size . The IBM Sys tem/ 38 {IBM, 
1 9 80 )  us es an add itional addressing table to shorten the operand size . 

Tagging has a number of advantages and disadvantages when used as a 

general data p rotection mechanism .  These are d iscussed by Gehringer and 

Keedy ( 1 98 2 ) . It also possesses a number of disadvantages when 

specif ically used to protect capabilities , some of which are relevant to  

this dis cus s ion . 
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First , it is somet imes necessary to garbage collect old 

capabili ties . This task is more comp lex in a tagged architecture than in 

a partit ioned organi zat ion . In a tagged sys tem, capab il ities will  be 

dist ribut ed over various segments of s tore , and are thus harder to find 

than if they are al l grouped together in a special segment (Wilkes and 

Needham , 1 9 79 ) . Second , in a tagged scheme , the type ' capab ility ' is 

as sociated with the capability,  rather than with the view of the 

capab ility . It is of ten necessary for sys tem func tions to manipulate 

capab il ities as though they were data . A sys tem which al lows different 

views of a capab ility , such as the partitioned scheme , makes this 

obj ec tive eas ier to achieve . Third , the tagging app roach only solves 

the prob lem of protecting capab ilities . Another mechanism, which of ten 

dupl icat es many features of a capab ility scheme , must be used to shorten 

the operand size (such as in the IBM Sys tem/ 3 8 ) . 

Tagging has only been us ed in the IBM System/38 to protect 
capab ilit ies , but has 

(Myers , 1 9 78a , 1 9 78b ; 

Gehringer , 1 97 9 )  • 

been proposed for use 

Myers and Buckingham , 

.i ·l·l· Names and Mapping Information 

in many other sys tems 

1 980 ; Bishop , 1 97 7 ;  

W e  have shown how capab ilities may be used to address obj ects , and 

how they may be p rotec ted . This section examines how the unique name of 

an obj ect can ac tual ly be used to address the obj ect . Section 4 . 3 . 2 . 1  

demonstrates the need f or some mapping inf ormation in capab ility 

sys tems . Sections 4 . 3 . 2 . 2 and 4 . 3 . 2 . 3  describe the current 

imp lementations of the mapping mechanism, and section 4 . 3 . 2 . 4  des cribes 

the hardware required for an ef ficient imp lementat ion . Section 4 . 2 . 3 . 5 

shows how the mapping information for memory s egment obj ects may be 

extended and used to address ab stract ,  or extended , types of obj ects • 

.i·l·l·l· The Need for Mapping 

Like many conventional computer sys tems , most  capab ility sys tems 

f ind it neces sary to realize a number of d iscrete levels of addressing . 

This occurs because the logical name space , which holds all obj ects that  

have ever been created ,  will alway.s be  many times larger than the amount 

of real store which a sys tem can provide (either main memory or 

secondary memory ) .  Three levels of address are of ten vis ible ,  def ining 
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three spaces : the name space , the virtual space and the real space . 

The name space must be large enough to ho ld all obj ects that have 

ever exis ted , and al l obj ec ts which will ever exis t in the lifet ime of 

the system . 

The virtual space is sometimes as large as the name space , but may 

ins tead def ine a smaller area , which is still larger than the amount of 

real memory • 

The real space must be large enough to hold al l current obj ects , 
and may cons ist of a combinat ion of secondary memory ( such as a d isk) 

and fas t main memory . 

Unl ike name space addresses , virtual and real addresses may be 

reus ed af ter obj ec ts have been destroyed , reducing their size 

cons iderably . The relationship between the three levels is shown in 

Figure 4 . 2 .  Because the siz es of the spaces are d iff erent , it is 
necessary to use a mapping func tion to trans late addresses from one 

space to another . 

! ·1·1·1·1·  Direct Mapping 

In the direct mapping model , shown in Figure 4 . 3 ,  a capab ility is 

us ed directly to address the obj ect , without performing any name 

Name 
Sp.ace

Virtual 
1----> Space 
..---> 

map 

...... -�-� Real 
Space 

map 

s ize (name space ) > • s ize (virtual space ) >>> s ize ( real space ) 

Figure 4 .2 - the three addressing levels 
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conversion or trans lat ion . Such a model could be real ized by one of two 

different methods . 

Firs t , the real store could be as sociatively addressed . In this 
h h 

, ,sc  eme , t e name in a capab ility is recognised by the associative 

s tore, and thus al lows the correct da ta to be addressed . Unfortunately , 

very large associative stores are not availab le ,  as ment ioned in Chapter 

3,  and this technique is not possible . 

Se cond , the capab ility could contain an extra field , holding the 

real address of an obj ect . This technique is also unsuitable, because 
the task of memory management becomes extremely dif ficult . When obj ects 

are moved in store ,  all capabil ities f or the obj ect must be updat ed ; 

this is a time consuming operation . This problem is evident in the B6700 

family of computers (Organick, 1 9 73) . 

Thus , because of practical diff iculties , the direct mapping model 

is never ac tually us ed in capabil ity bas ed systems • 

.!·1·1·!·1· One Level T rans lation 

Because of the problems encountered in a direct mapp ing sys tem, 

most  capab ility based comput ers place a mapping function, or structure , 

between the capab ility and the obj ect in real store , as shown in Figure 

4 . 4 . 

In this scheme , the unique name found in the capab ility is 

translated , via a mapp ing s truc ture , into a real memory address . Real 

memory addresses may be safely reused by modifying the mapping 

inf ormation in such a way that no old names ever map to the reused real 

s tore addresses . 

!name access!�--------------->� 
capab ility 

Figure 4 . 3 - the direct mapping model 
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�---->� 
Figure 4 . 4 - one level trans lation 

In such sys tems , the name space is the same size as the 

space , and is usually very large . Sys tems which use this 

HYDRA, the Intel iAPX432 ,  CAL , the Ples sey 2 50 and CAP . All 

sys tems use the mapping structure to trans late segment names 

virtual 

ioodel are 

of these 

into main 

store addres ses , and none allow vi rtual addresses to be reused . B ishop 

( 1 97 7 )  proposes a scheme which belongs to this class , but uses a smaller 

name space than is necessary . He therefore allows names to be reused 

propo sing a complex method of collecting old addresses to deleted 

obj ects . Unlike the other systems in this class , B ishop uses the mapping 

s truc ture to translate virtual page addresses into main store page 

address es . Segments are loaded _into virtual pages without any further 

mapping . 

i ·1·1·!·1· Two L evel T ranslation 

If the name space is larger than the virtual space , then two levels 

of mapp ing are required between a capab ility and an obj ect ,  as shown in 
Figure· 4 . 5 . 

In the two level scheme names are first trans lated into virtual 

addresses , and then virtual addres ses are trans lated into real 

addresses . Whil st  names are very large ,  both virtual  addresses and real 

address es may be safely reus ed when virtual and real obj ects are 

des troyed . This model is emp loyed in the IBM Sys tem/ 38 and in a proposal 

by Gligor ( 1 978 ) . Both of these systems use the second mapping structure 

to  trans late virtual page addresses into real page addresses . 
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map 

>EJ name acces s map virtual 
names -> to 

capab ility to real adrs 
virtual 

> address es map 2 

map 1 

Figure 4 . 5 - two level trans lation 

The two level s cheme , whilst log ically equivalent to the one level 

sys tem, has some effect upon the imp lementat ion ef f iciency , and on the 
o rganization of the s tore . The next section examines the

implementat ions , both used and proposed , for mapping names onto  virtual 

address es 

i·l·l·l· Translating Names into Virtual Addres ses 

The task of trans la ting the very large obj ect names into smaller 

virtual addresses has been attempted on two sys tems , the IBM Sys tem/ 38 , 

a real p roduc tion computer , and in a sys tem p ropos ed by Gligor ( 1 978) . 

Gligor ' s so lution cons ists of two sections . The firs t involves an

additional field in the capabil ity , used to ho ld an index value . The 

second involves the use of a large mapping tab le wh ich trans lates names 

into virtual addresses . This scheme is shown in Figure 4 . 6 .  

Each capab ility holds the name of the obj ect , and also a shorter 

index · value into the obj ect mapf· ing table . When a capab ility is used , 

the obj ect  mapping tab le is read , and the virtual addres s  of the obj ect 

determined . Entries in the obj ect map are only reus ed when all old 

capab ilit ies have been found and des troyed . This garbage collection 

operation only occurs when the obj ect map overf lows . Gligor proposes 

p lacing the map in virtual memory itself in order to prolong the time 

between garbage collections , because an obj ect map in virtual space can 

afford to be longer than one held in main memory . 

The IBM Sys tem/ 38 p r ovides two d if ferent addressing mechanisms ; one 

which uses large unique obj ect names , and one wh ich only uses virtual 
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name access index 

capability 

I 
..._��------> virtual address 

obj ect ma.pp ing 
table 

Figure 4 .6 - Gligor ' s name translation

address es . Wh en the uni que names are us ed ,  the names are mapped onto 

virtual addresses ; however , when obj ects are referenced by their virtual 

· address , this mapp ing p rocess is not us ed . Thus , the I BM  p rocessor in 

many ways may not be cons idered a true capab ility processor .

Obj ect addresses in the System/ 38 are 64 b its in length , whereas 

virtual addresses are only 48 b its . The virtual space is composed of 

paged segments . By allowing segment addresses to be reus ed , the 64 b it 

names are mapped onto the 48 b it virtual addresses of the Sys tem/38 

hardware . 

Segments are grouped into segment groups , each of 256  segments .  As 

shown in Figure 4 . 7 ,  up to  2-24 diff erent segment groups may be f ormed 

from a 48 b it address . 

<-- · 16 -><-------- 24 ---><- 8 -><- 7 -><- 9 -> 

extender segment group segment page byte 
value number in group number o f fset 

<·----------------------- 4 8  b its --------> 
<---------------- 64 bits --------------------> 

Figure 4 . 7 - the IBM System/ 38  address f ormat 
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If no two segment groups of the same group number (but dif ferent 

extender value) are allowed to exist at the same time , then the extend er 

value can be dropped , and the remaining 4 8  bits used to address the 

virtual store . A segment group can only be reus ed when all segments in 

the group have been delet ed . When a segment group is reused , a new 

extender value is assigned , giving the obj ect a unique 64 b it name . This 

mapping scheme , whilst simp le ,  allows 64 bit names to be eff icient ly 

mapp ed ont o 48 b it address es . Unlike Gligor ' s scheme , no ac tual mapping 
tab le is required . 

An obvious danger with reus ing segment group s in this way is that 

capab ilities f or deleted obj ects may be kept , and later reus ed to 

address a new obj ect with the same segment and group numbers as the old 

obj ect . To p revent this p rob lem, the extender value f or a particular 

segment group is stored in the header of the group . When a segment 

within the g roup is addressed ,  the 1 6  bit extender f rom the capab ili ty 

is compared with the extender in the appropriate group header . If they 

are not the same , then the capab ility is for an o ld obj ect , and the 

reference is aborted . This mapping technique has a number of 

attr ibut es : 

( i )  N o  mapping tab le is requi red . The mapping informat ion is 

dis t r ib ut ed over the segments which are address ed . 

( ii )  The extender must be held in the group header . Whilst only two 

bytes long , the entire header page must be p res ent in store when 

the group is addressed . 

(iii ) Only 2"'24 dif ferent segmt:nt groups may exis t at any time . 

This is such a large number that it is unlikely to be a 

res t riction . 

( iv )  The group header must be read for every reference made to a 

segment . This overhead in incurred only when 64 b it names are 

t rans lated into 4 8  b it addresses , which may be avoided much of the 

time . 
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Because the capab ility mechanis m on the Sys tem/ 38 includes some 

inherent inef ficienc ies , another method of addressing obj ects is 

provided . In this method , 64 bit names are never used , and ins tructions 

can directly use 48  bit virtual addresses . 

Segments may instead be addressed via the Operand Descrip tion Tab le 

(ODT )  as sociated with a particular program . This table describes the 

type and size of each operand used in the program . The type information 

is us ed for validating that the data type is compatible with the 

ins truction type . Many ins truc tions use this field for performing 
automatic type conversions . 

Operands are mapped onto the segmented memory via another tab le of 
the same size as the ODT ,  the Operand Mapping Table (OMT ) ( which 

conceptually can be regarded as an extens ion of the ODT ) . Each ODT entry 

corresponds to an OMT cell which ho lds the 48 bit virtual address of the 

obj ec t . Because capab ilities are held in segments of store , they are 
also addres s ed via the OMT . This addressing mechanism is demons trated by 

an example in Figure 4 . 8 .  

Because two dif ferent address ing mechanisms are present , one using 

unique 64 b it names , and the other us ing 48 bit reus able virtual 

addresses , care must  be taken when unique names are generated . When an 

OMT address is us ed ,  the obj ect is referenced without validating an 

extender value ; thus the same segment group numbers must  never be 

ins truc tion stream 

ADD n 

operand t
n
t 

..-.-------------> integer 
4 byt es 

48  bit 
address 

Figure 4 .8 - the IBM address ing mechanism 
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allocated to a capability . Moreover , OMT entries mus t never be saved 

betwe en p rogram invocat ions . 

This section has demonstrated two dif ferent methods of mapping 

names to virtual address es . The next section examines how virtual 

addresses are mapped onto real addresses . 

i ·1·1·1· Translating Virtual Addresses into Real Addresses 

Both the one level and the two level mapping models require 
t ranslation o f  either names or virtual addres ses into real secondary 
memory address es or main store addresses . As we will dis cover later , 
secondary memory and main memory addresses are usually p roduced by 
different mechanis ms ;  however , we will examine the main store addresses 

primarily . 

Unlike name space trans lat ion , all of the virtual address 

translation systems use tables to map virtual addres s es onto real 

addresses . Moreover , because these tab les implement the virtual memory 

system, · they cannot be eas ily p laced in the virtual memory . Ins tead , 

they are placed in real memory ,  often at a ' well known ' p lace .

Virtual address t rans lation tables may be categorized into four 

clas ses , each with a dif ferent organization : linear lis ts , conventional 

page tables , reusab le index tables and hash tables . This s ection will 

examine each organi zation , and explain how various capab ility bas ed 

computers use the tab les . 

i·1·1·1·l· L inear Lis ts

A common method of mapping addresses in convent ional computers is 

to provide a mapp ing table , ind�xed by part of the virtual address . Each 

cel l  can contain the real memory address corresponding to each virtual 

address . Such tables are us ed in small paged p roces sors , such as MONADS 

I (Hagan , 1 97 7 )  and in segmented machines . 

The technique becomes imprac tical in capab ility systems because the 

virtual addres ses , or names , become far too large . In spite of early 

documentation f or the Int el iAPX 4 32 ,  which sugg ests that this technique 

can be used , no capab ility sys tems appear to have used a linear mapping 

tab le . 

CHAPTER 4 CAPABILITY BASED ADDRESSING 



- 77 -

I
name 

1 real address a..--- > memory 

Figure 4 . 9  - a linear mapping table 

_i. 3· ·1·1·1· Conventional Page Tables

Bishop ( 1 97 7 )  proposes the use of convent ional page tab les to 

translate the virtual address es of a capab ility system into real page 

addresses . The virtual address size sugges ted is in the range of 40 to 

50 b its , and the virtual space is composed of a number of variable size 

paged areas • 

Whilst a processor was not built , Bishop ' s paper des ign relies on 

normal page tables to t ranslate virtual addresses . Unfortunately, the 

page tab le space for a 50  b it virtual address would be in the order of 

2-40 page table entries . Because of the space required , these would need 

to be placed in virtual space . A conventional sys tem wh ich supports its 

paged s tore in this way is the VAX 1 1 / 780 ( Digital Equipment Corp . 

1979 ) . The VAX, however , only uses a 32 b it address , which is 2-1 a t imes 

smaller than that of Bishop ' s processor . 

Bishop al so suggests that an associative memory ( similar in nature 

to that of MULTICS (Organick ,  197 2 ) ) ,  with a hit rat e  of only 50 %, 

would significantly speed up the address trans lation . (This f igure is 

calculated in the thes is (Bishop , 1 97 7 ) ) However , if as many as half of 

the add resses requiring trans lat ion used the page tab les , wh ich are many 

orders of magni tude s lower than an associative memory,  then the 

ef fective memory cycle time would be excess ively slow . 

Thus , in sp ite of  B ishop ' s proposal , it would appear that

conventional page tables are not a suitable method f or t rans lating very 

large virtual addresses . It is notable that  Bishop ' s processor des ign
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was not built . 

4 . 3 . 2 . 3 . 3 .  Reusab le Index Tab les 
- - - - -

A number of capab ility processors have used a small indexed tab le , 

and a modif ied capab ility format , to trans late unique names into real 

addresses . The capab ility is altered to include an index value field , as 

shown in Figure 4 . 1 0 .  

The indexed tab le cont ains entries which hold the base  address , the 

siz e ,  and the pos s ible the res ident s tatus {whether the obj ect is in 

memory or not )  of the memory segment . The Plessey 250,  Chicago Magic 

Number Computer ( Shepherd , 1 968 ; Yngve , 1 968 ) , and CAP-3 (Wilkes and 
Needham, 1 979 ) use such a technique . In these processors , the base 

addres s from the cent ral mapping tab le is added to an offset within the 

segment to form a main store address . The offset is validated against 

the s egment size , and the mode of access is compared to the access 
rights . Vio lation of the size or access cons traints causes an except ion 

condition . 

In these three sys tems , the size and organization of the central 

mapp ing table may have an ef fect on the ef ficiency of the system . If 

this table is used to hold the mapping information for all of the 

obj ects , th en it will become too large to hold in main store . It mus t , 

therefore , only hold the most  active capab ilities . 

In addi tion ,  unless a garbage collection scheme is built which 

collects and inval idates capab ilities for obj ects which no longer exis t ,  

name 

CHAPTER 4 

access index 

.! ___________ > base , size 

central 
mapping 
table 

present 

Figure 4 . 1 0 - a direc tly indexed table 
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or appear in the main s tore , the mapp ing tab le will continue to grow in 
size . Entries can only be safely reused when all capab ilities which 
address them are des troyed or invalidated . To avoid this garbage 
collection , the CAL sys tem places the name of the obj ect in the central 
mapp ing table as well as in the capability . In this way entries may be 
safely reused . When a central mapping tab le entry is used , the name 
f ield from the capability is compared to the name f ield in the entry . If  

they are not equal , then the obj ect being referenced either no longer 

exis ts or does not use that entry any more , and the s lot in the tab le 

has been reused . Thus , unl ike the tab les in the Plessey sys tem,  entries 

can be reclaimed without having to collect all old capab ilities f irst . 

The reusab le index tab les are effective provid ing that there is a 

method o f  reusing cells . The next section describes a hashed tab le 

organizat ion • 

.! ·1·1 ·1 ·.! ·  Hash Tab les 

Hash tables of various forms have also been used to translate names 

and virtual address es into real addresses . Fabry sugg es ts that a hash 

table , indexed by a hashed form of an obj ect name could be used to hold 
the mapp ing information about the obj ect (Fabry ,  1 974 ) . Hydra uses a 

number of hash tables to translate names into real addresses , and the 

IBM System/38  us es a hash table to map virtual pages onto real pages . 

The Sys tem/38 uses a hash tab le to trans late 4 8  bit virtual 

addresses into main s tore addresses , shown in Figure 4 . 1 1 .  As far as the 

virtual address translator is concerned , the address is composed of a 39  

bit  page number,  and a 9 b it o ffs et . The 39 b it page number is  then 

mapped onto. a main store page number . Because of the size of this 

address , conventional page and segment tables are inapp rop riate . 

The me chanism used is only respons ible for trans lating addresses in 

which the page is ac tually in main memory . If a page is not in store , 

then other tab les are consulted . This app roach was chosen in the Atlas 

(Fotheringham , 1 9 6 1 )  address translator,  although the Atlas trans lation 

mechanism was a true parallel content address ab le memory ( CAM) . 

The Sys tem/ 38 maintains a hash tab le in main memory , which is 

indexed by a hashed ver sion of the virtual page number . The address 

translat or microcode follows overf low chains unt il eith er the address , 
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39 b its  ------------><-- 9 b its  ---> 

virtual page number of fset 

HASH 

.,_ _______ _,.hash 
page dir 

r-------------------...., index 
index 
table 

----> 
Hash 
tab le 

r 

� 

I 
re al pag e #

virtual page # I link .... l 

virtual page I I link � 

real page number o ff set

Figure 4 . 1 1 - the IBM address translator 

or an end of chain , is found . The latt er causes a page fault . If the 

page is found , then a t rans lated page number is formed and p laced in a 

lookaside buf fer . IBM expect that an average �f 2 . 25 main store accesses 

(IBM , 1 97 8 ) , plus the time spent in microcode, on top of every memory 

reference which uses the address trans lator . ( Some references use real 

address es via a special register ,  and thus avoid this overhead ) . 

Mye rs proposes the use of a hash tab le to trans late obj ect names 

into memory address es (Myers and Buckingham, 1 980 ) . However , rather than 

incorporating an overflow strategy , Myers uses an allocation scheme 

which does not allow any two names to hash to the same cell . Any name 

which would clash with an exis ting one is not used . In practice this 

scheme would was te an enormous number of potential names , which is 
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particularly s erious in SWARD as they are only 32 bits in length . 

Hydra uses a hash tab le ,  the Global Symbol Tab le (G ST) , to 

translate obj ect names into memory page frame numbers . This tab le 
maintains entries des crib ing the locat ion and the nature of the obj ects . 

Hydra distinguishes b etween two classes of segments , ac tive 
segment s and pas s ive segments . Ac tive segments are res ident in main 

memory , whereas passive segments are resident in secondary memory . 

Consequent ly , Hydra provides two different GST ' s ,  an ac tive GST and a 

pass ive GST . The ac tive G ST ,  which is res ident itself in main memory , 

trans lates names for al l ac tive segments ,  and a small number of pass ive 

segments . The passive G ST is res ident in secondary memory, and 

trans lates names for all pass ive segments .  This scheme is shown in 

Figure 4 . 1 2 • 

.!·1·1·1·1· Act ive and Pas s ive Segments 

The dis t inction between ac tive (main store res ident ) and pass ive 

(disk res iden t )  s egments is made not only in the Hydra system, but in 

all of the capab il ity sys tems under dis cuss ion . The active segment tab le 

is always much smaller than the passive table,  and must be addressed f or 

all active segment references . Consequently , the ac tive tables are 

---------> �> 

name ac cess 

capab ility 

..._ ____ > I HASH ]----� 

main 

ac tive G ST 

,,,,- --

memo 
-
� 

seco 
addr 

> 

ry addresses 

lmain memoryl 
ndary memory 
esses 

1-------> disk
memory 

passive G ST 

Figure 4 . 1 2 - the Hydra address trans lator 
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always loaded into main memory . 

The pas s ive tab le ,  wh ich is much larger than the ac tive tab le and 

is addres s ed much less f requent ly, can be placed in secondary memory .  

Most  of the literature fails to document the pas s ive trans lation table , 

however the tab le is pres ent in all systems , including the Ples sey 250 , 

CAL , CAP , Int el iAPX4 32 and the IBM Sys tem/ 38 • 

.! ·1·1.·l!.· Eff icient Address Translat ion 

In sys tems which use a central mapping table to locate segments , 

the tab le must be consult ed  each time a capability is us ed to address a 

segment of memory . Such references not only include address ing data , but 

also £ etching ins truc tions f rom the code segments of a program . It was 

demons trated by the CAL sys tem that without adequate hardware support a 
capability bas ed addressing scheme cannot be eff ic iently imp lemented . A 

graphic example can al so be drawn from the IBM Sys tem/38 . An average of 
2 . 25  main store ref erences per memory access would s low the memory 

access down to some 30% of  full speed . Accordingly , the IBM processo r ,  

and all oth er sys tems apart from CAL , have provided specif ic hardware 

support . Such hardware can be divided into two classes , vis ible 

address ing regis t ers and automatic caches . 

i·l·l·i·l· Vis ib le Addressing Registers 

The hardware provided by the Plessey 250 and Chicago processors was 

in the form o f  a number of high speed , directly addressed , capab ility 

regist ers , as shown in Figure 4 . 1 3 . 

When a program wishes to address a segment , it must f irst load a 

capab ility regis ter with the main memory base address �f the segment , 
the main memory limit address and access rights information . This 

information is taken f rom both the capab ility and the cent ral mapping 

main memory base address limit address access 

Figure 4 . 13 - a capab ility register 
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tab le . Capab ilities which have not been loaded into reg is ters are termed 

passive , and when a cap ability has been loaded into a reg is ter the 

capab ility is termed ac tive (us ing Hydra terminology) . Since 

instructions ref er . to data by the capabil ity register number, only 
ac tive capab ilit ies can ac tually address store . Capab il ity regis ters are 

usually us ed with a modif ier ( or index) register , which augments the 

base address . 

The ad4ress ing regis ter scheme has the advantage that it is 

extremely eff ic ient . This is because obj ect names are only translated 

into memory addresses when the regis ter is loaded . Unfortunately , there 

are also a number of disadvantages .  The only time that logical names are 

used to address segments is when the capab ility regis ters is loaded . 

Once the b ase and limit values have been loaded into a register,  it is 

imposs ible to move the segment around in main memory , without checking 

all capability regis ters in all domains ( and in all p rocessors in the 

Plessey 250 ) . It is also dif f icult to determine when a segment is no 

longer being address ed, and when it can be saf ely moved without an old 

register still being val id . 

Hydra also uses some relocation regis ters to address store . Hydra 

was imp lement ed on a PDP l l  c omputer , which p rovides a number of small 

(64  k byte) paged address spaces , each cons is ting of 8 pages . Each page 

is addressed relative to a relocation reg ister . When capab ilities are 

activated in Hydra , the obj ect  is made vis ible in the 64 k byt e  address 
space of the us er p rogram, as shown in Figure 4 . 14 .  This is done by 

copying the relocation informat ion from the Global Symbol Tab le (GST ) 

into the approp riate relocation reg ister . Because the PDP l l  is a paged 

process or , segments in Hydra are all Bk bytes in size . Larger obj ects 

are compos ed of bas ic ' page ' obj ects . Also , since the PDP l l  cannot

support demand p aging (because some instructions are not repeatable ) , 

the relocation regis ters must be specif ically loaded under program 

control ,  like the address ing registers of the Plessey 2 50 .  Since only a 

small number of pages are allowed in an address space , and because large 

obj ects must  be compos ed of many pages , capab ilities are frequently made 

active and pass ive in Hydra , an expens ive operation . 

Becaus e  of  the p roblems as sociat ed with relocation regist er 

schemes , many processors provide automatic address trans lat ion caches . 
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relocation register 0 --> 
code 
page 

relocation register 1 --> 

obj ect 1 

relocation register 2 --> � 

relocation reg ister 7 --> 

obj ect 7 

figure 4 . 14 - the Hydra address space 

.!·1·1·.! ·1 ·  Addres s Translation Caches 

Address trans lation caches are used to augment the active tab les 

us ed to translate names , or virtual addresses , into main memory 

addresses . Such caches , which were des cribed in Chapter 3 ,  are used in 

CAP , Intel iAPX432,  and the IBM System/ 38 . The IBM system also provides 

a Resolved Address Regis ter (RAR) , for use by the microcode , which 

bypasses both the cache and the hash table (Houdek, Sol tis and Hoffman , 

1981 ) . 

In general ,  these caches reduce the number of ma.in store accesses 

per memory ref erence s ignif icantly . It would appear that the cache 

chosen by Bishop ( 1 97 7 )  does not reduce the number of accesses by a 

s ignif icant amount ( as B ishop assumes a hit rate of only 50% ) . To be 

ef fective ,  such caches should aim for hit rates in excess of 90 % ,  

becaus e the active table search times are much greater than the access 

time of the caches ( Strecker , 1 97 8 )  • 

.i•1•1•1• Logical Properties of Obj ects 

To date  we have only cons idered the essent ial administrative 

information which must be as sociated with obj ects , such as where the 

obj ect ac tually resides , and how large it is . Some logical information 
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can also be as sociated with the obj ect , poss ibly cont rolling the way in 

which the obj ect may be addressed . 

For segments , it is often des irab le to have,  in add ition to the 
acces s rights , an ext ra p roperty associated with the capability, namely 

a length attribute . Such a field allows some capab ilit ies to only 
address part of a segment , whilst others can address the entire segment . 

CAP is the only processor of those des cribed which actually allows this 
ref inement ( although the capab ility format def ined for SWARD would allow 

size refinement ) • Each capab ility in CAP includes base and limit values 

relative to the orig inal segment . Like the access rights f ield ,  these 

can be validated when the capab ility is used . All other sys tems 
associate the leng th of a segment wi th the segment itself . 

If logical information pertains to an obj ect itself , rather than a 

view, it can be placed in the central mapping table . For examp le , the 

segment size in CAP and s imilar sys tems is held in the obj ect map . 

Moreover ,  if we associate  a logical type f ield with an obj ect , then 

other ab strac t ,  or extended , types of obj ect can be addressed by the 

same mechanism which addresses memory segments . In this case , segments 

become a particular type of obj ect which may be addressed from memory 

ref erence instructions . Other types of obj ect may be addressed by 

special ins tructions (as in the IBM Sys tem/ 38 ) or in general by special 
code bodies ( called type managers (Wulf , Levin and Harb ison, 1 9 81 ) . 

Processors such as CAP-3 , Int el iAPX4 32 and Hydra allow extended 

type obj ects by p lacing a type field in the obj ect map entry . Such 

sys tems as CAL , Gligor ' s scheme and Bishop ' s proposal associate the type

f ield with the view, and p lace this information in the capab ility . 

Whilst· there appears to be no reason for such a decis iL� , it does allow 

diff erent us ers to t reat an obj ect as dif f erent bas ic typ es . 

Regardless of where log ical information is ac tually p laced , such 

type f ields allow the p rocessor to support ab stract obj ects in a uniform 

manner .  For this reason , we have placed lit t le emphas is upon extended 

types of obj ects , and have concentrat ed on memory segments • 

.!·.!· Memory Segmentation 

In this sec tion we cons ider some of the problems encountered in 

addres sing segments in the capability schemes j ust d escribed . An 
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important feature of a capab il ity based address ing scheme is that all 
data is stored in segments of memory, regardless of how large or small . 

Many segment s wil l ,  by nature , be either very large or quite small in 

size . 

Large segment s are of ten necessary to represent the data from 

f iles . Particularly large f iles must be compos ed of many segments ; the 

larger each segment is , the fewer segments required . Thus , the 

capab ility mechanism should ideally be able to provide eff ic ient support 

for large segments .  

Small segments are generated from small procedures , data 

struc tures , stack f rames etc . Stud ies have ind icated that it is not 

uncommon for many very small segments to be generated , even in a 

conventional computer architec ture (Batson and Brundage , 1 9 77 ) . The 

problem of managing small segments has been realized by many (e .g . 

Randel ,  1 96 9 ; Fabry , 1 9 74 ; Wilkes and Needham, 1 97 9 ;  Wilkes , 1 9 80 ;  
Gligor , 1 97 8 ; Lanciaux , Schiller and Wulf , 1 9 7 6  and Keedy , 1 980 ) . 

Most of the capab ility systems we have examined do not provide an 

eff icient environment for using both small and large segments .  Two 

primary areas of contention appear to be the mapping tables and memory 

management , which we will  now discuss • 

.i ·.i·l· Mapping Tab les 

The mapping tab les become inef ficient to operate when a large 

number of active segments must be supported . A large numb er of segments 

often increases the size of the tab le signif icantly , and may increase 

the access time as well . Moreover , if the ac tive tab le becomes too 

large , .  it cannot be held permanently in main sto re , se.i..·iously affecting 

system eff ic iency . 

Wilkes ' s proposal ( 1 98 0 )  s imply tries to remove some of the extra

small s egments pres ent , and does not attempt to solve the b asic 

management problem (see section 4 . 3 . 1 . 1 ) . However , a few proposals have 

been made to ease the management of the central mapping tables . 

The scheme proposed by Gl igor (section 4 . 3 . 2 . 2  ) p laces the name 

space translation tab le in virtual store rather than in real store . 

Gligor sugges ts that because the obj ect map res ides in virtual memory , 
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it can grow to a much la rger size,  allowing the memory to support many 

small segment s . He claims that the obj ect map may be al lowed to grow in 

virtual space , and s lots need not be reus ed for a long time . 

Consequent ly , old capab ilit ies need not be found and delet ed as often . 

Unfo rtunately , any locality of reference which is exhibited within pages 

of store will not necessari ly be ref lected by locality within the map 

pages . This is because the order of the map ent ries bears no 

relationship to the locat ion of segments within pages . Thus , af ter a 

short time it  may be neces sary to keep all of the pages of the map 
resident , even though only a few words of each page may be required . 

Hence Gligor ' s scheme does  not adequately so lve the bas ic problem of

many segments . 

Bishop so lves the problem of map management by el iminating the 

obj ect name map altogeth er . · Instead , his sys tem maps pag es of memory , 

rather than segments . The number of virtual pages wil l  remain constant 
regardless of  how many s egments each page contains . It is unfortunate 

that the conventional page tab les proposed by Bishop are unsuitable · for 

translating 50 b it address es . 

Lanciaux , Schiller and Wulf ( 1 97 6 )  sugges t that many small segments 

could be plac ed together in a large segment . This scheme reduces the 

number of map ent ries requi red , as each large obj ect contains map 

entries for the obj ec ts which it contains . It does , however, create the 

problem of large segments ,  which together with small segments compl icate 

memory management • 

.!•.!•!• Memory Management 

The task of memory management becomes more complex when the sys tem 

must  support buth very small and very large obj ects . In segmented 

schemes , such as the Pless ey 250 ,  Chicago Magic Number computer , CAP and 

Intel iAPX4 32 ,  small s egments tend to fragment the main store 

excessively . In addition , small segments are expens ive to trans fer 

between p rimary and secondary memory . Large s egments , on the other hand , 

mus t  either be totally res ident or ab sent from s tore . If insuff icient 

space is available then the segment cannot be loaded , and the task which 

causes the memory reference mus t  be suspended unt il space is made 

available . Such problems are al so experienced in the conventional 
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segment ed proces sors , discus s ed in Chapters 2 and 3 .

In a paged machine , like Hydra , all segments mus t be exactly one 

page in size . Consequently , large s egments cannot exist and must be 
composed of much smaller ones . Small  segments was te much of the page 

that they occupy . 

A paged and segmented memory , such as that of the IBM Sys tem/38 ,  

manages large s egments very well by only loading those pag es which are 

requi red , but this was tes a large amount of space for small segments ,  

which mus t  occupy at least one page . Again , such p roblems are 

experienced in the conventional paged and segmented proces sors , such as 

Multics . 

A few of the processors which we have examined in this chapter have 
attempted to alleviate the c omp lex memory management of both large and 

small segments .  The solutions involve placing many small segments into 

each page o f  virtual memory . Both B ishop and Gligor p lace segments 

consecutively in virtual memory . Thus , many small segments can be placed 

in one page,  and large segments may occupy many pages . 

In Gligor ' s scheme all segments are organized randomly in store .

Consequently ,  after a small amount of time, one would expect the virtual 

store ·to become fragmented , as segments are deleted and created . 

Moreover , there is no guarantee that s egments which are addressed 

together will  res ide in the same page . Thus , this scheme may behave as 

badly as a p ag ed and s egmented scheme , in which the entire page is 

required in order to address  only a small segment . 

Bishop attemp ts to place all segments which are address ed together 

in an ' area ' , which cons is ts of a variable number of pages . Thus ,

segments which are address ed together will be swapped between primary 

and secondary memory at the same time . Whilst the page locality of 

Bishop ' s scheme is superior to Gligor ' s ,  one would still expect the

virtual spa ce to become as f ragment ed as the real store of other 

capab il ity processors . Because areas are all of dif ferent sizes , when an 

area is deleted , or moved, a hole is left in the virtual space . Even 

though the capab ilities for the hole are deleted , it may not be possib le 

to reuse the area without cons iderable store reorganization . 

Accord ingly ,  Bishop provides a very elaborat e  garbage collection scheme . 
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Lanciaux ' s so lution sugges ts that many small segments may be placed

in one large s egment . Consequently, all s egments will be swapped between 

primary and secondary memory at the same time . Unfortunately , whilst 
solving the small segment prob lem, this scheme may create a large 

segment problem ins tead • 

.!·1· Conclus ion 

This chap ter has des cribed all the signif icant current capab ility 
bas ed computers , and has developed some general models into which these 

sys tems can be placed . Mos t  importantly , by this analys is , it has shown 

the diff i culties that thes e sys tems experience in certain couunon 

situations . 

The next chap ter will reexamine these diff iculties , and propose an 

address ing model which can avoid many of the p roblems . 
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5 .  !; New Capability Based Addres sing Model

This chap ter develops a new address ing scheme which is capab le of 

addres s ing , protecting and sharing the log ical structures of a program 
(or information hiding module } in a uniform manner . This scheme is based 

on segmentation , which , as we saw in Chapter 2, has suitable propert ies

for structuring logical obj ects . The scheme also makes use of 

capabilities as the mechanism f or addressing , sharing and protec ting 

such segment s .  

5 . 1 .  Aims of  the Model 

In Chap ter 4 we examined some real capab il ity based processors and 

some theoretical models . Whilst the philo sophy of many of these systems 

was admirab le ,  their imp lementations of ten exhib ited cons iderable 

problems . Some of these prob lems were intrins ically associated with the 

approach , such as us ing a segmented store . Others , however , were pr esent 

because of inade quate hardware . Examp les of the latter include Hydra , in 

which the available hardware af fected the maximum segment size 

dramatically,  and CAL , which us ed a conventional, and quite unsuitable , 

computer . Because of inadequate hardware the CAL sys tem was ef fectively 

useless and was abandoned . 

The model presented in this chap ter def ines a hardware interface 

which can successfully imp lement mo st , if not all , of the systems 

dis cussed in Chap ter 4 .  Proces sors for these sys tems based on the 

propos ed model may even be simp ler and more eff icient than the original 

hardware used to implement them . 

The requirements of the model may be summari zed in terms of five 

bas ic aims : to solve the memory management p roblems as soci�.ted with most 

capab ility based processors , to so lve the address trans lation problems 

associated with other capability bas ed systems , to produ ce a unif orm 

address ing mechanism, to produce an efficient capability addressing 

mechanism, and to p roduce a f lexible hardware unit . Some of these aims 

are not shared by the exis ting capab ility sys tems . We shall  now consider 

these bas ic aims in turn . 
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..2.·l·l· Memory Management 

Most  of the capab il ity sys tems dis cussed in this thes is apply a 

segmented main memory scheme in order to achieve segmented addressing . 

Unfortunately , this scheme does not cater well  for either very large 

segments or f or very small segments . Large segments are awkward because 

they mus t be held in cont iguous memory . Small segments are ineff icient 

to swap between main and secondary memory because the time taken to 

initiate the transfer may exceed the time taken to ac tually transfer the 

data . 

Some sys tems have attempted to use paging as a bas is for memory 

management . Hydra us ed a paging sys tem by forcing all segments to be one 

fixed size . This scheme simplif ies the memory management task , but does 

not solve the small and large segment p roblem . Small segments was te 

much of the page that they occupy , and large segments can not exis t . 

Thus , this s cheme creates even more segments than are log ically 
required , as large segments are cons tructed from many smaller segments .

Some solutions (Gligor and B ishop ) have used paging as the memory 

management model , and have superimposed a segmentation scheme on top of 

the virtual memory . Whilst these p roposals have solved some of the 

small and large memory management problems , they still  have inherent 

inef f iciencies , as d iscussed in Chap ter 4 .  The model p roposed in this

chapter attemp ts to solve the outs tanding memory management problems of 

all these capab ility based computers . 

1·1·1· Address Trans lation Prob lems 

Many of the capab ility based processors experience signif icant 

prob le� in trans lating vir tual addresses into memory addresses , 

especially when the sys tem is burdened with many small segments . A 

source of contention is the central obj ect tab le which contains an entry 

for each segment in the sys tem and is usually split into an active tab le 

and a p assive table . When the sys tem contains many small segments the 

size of the central obj ect tab le becomes excessive , and trans lation 
times may be increas ed . 

In those sys t ems which have removed the central obj ect tab le ,  such 

as Bishop ' s (Bishop , 1 97 7 ) , the task of address translation is

signif icantly simp l ified . The model p roposed in this chapter seeks to 
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remove the overhead of many small segment s ,  by removing the central 

obj ect tab le al �ogether . 

1·!·1· Uniformity and Simplic ity 

In a true capab ility based address ing scheme all local and 

permanent data shou ld be addressed by the same mechanism.  Only one way 

of addressing data should be provided , unl ike sys tems such as the IBM 

System/38 which p rovide two d if ferent address ing mechanisms . 

With one common address ing mechanism the sys tem des ign becomes much 

simp ler . A simp ler design in not only eas ier to unders tand , but often 

yields a more orthogonal and les s  expens ive 

only one sharing and p ro tec tion mechanism 

proposed in this chap ter avoids unneces sary 

only one way of address ing memory . 

1·!·.i· Efficiency 

implementation . 

is required . 

duplication by 

Moreover ,  

The model 
providing 

The CAL sys tem demons trated that a capab ility based addressing 

scheme requires hardware support f or an eff icient imp lementation . Even 

in those sys tems which have provided hardware support for addressing 

memory , the use of capab il ities still creat es inef ficiencies , as 

described in the las t chap ter . The model proposed in this chap ter 

defines a hardware address ing s tructure which can be eff iciently 

implemented with current techno logy . Moreover , the model is capable of 

imp lementing many d if ferent software s tructures without signif icant 

overheads . 

1·!·1· Flexibility 

Most  processors , both capab ility based and of convent ional des ign ,  

are built with a spec if ic addressing s tructure in mind . For examp le , 

the ins truction operands in the Intel iAPX432 processor expect a 

particular C-list struc ture . The operands of the CAP sys tem expect a 

dif ferent C-lis t structure . Because these organizations are so well 

understood by the processor hardware ( and f irmware) it is unlikely that 

one processor could eff iciently or eas ily implement the C-lis t structure 

of another p rocessor . 
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The lack of flexibility in some of the exis ting sys tems is not a 

problem, only because the sys tem design does not change signif icantly at 

any stage . However , in a research environment a flexib le processor is 

ext remely desirable , as it allows the hardware to survive a number of 
maj or redes igns of the sof tware ideas . The model proposed in this 

chapter should be capable not only of efficiently imp lementing a 

particular address ing structure , but also of implement ing any of the 

other capability address ing struc tures desc ribed in Chap ter 4 ,  such as 

the different C-lis ts of CAP , Intel iAPX432 etc . The model can achieve 

this flex ib ility by p roviding a general hardware unit which provides a 

capab il ity based address ing style , and a small section of sof tware (or 

f irmware if the host machine is microcoded ) which understands the 

address ing structure . If the so ftware ideas change at any stage , then 

the hardware may remain the same and the software or firmware may be 

changed . 

5 . 2 .  Obj ect Address ing 

The capab ility based address ing schemes des cribed in Chapter 4 all 

have the property that all addressable obj ects are treated alike in 

terms of addres s ing and protection . All are addressed via the 

capability mec-hanism which the p rocessor us es . Such references can be 

categorized into two clas ses , memory segments and high-level obj ects . 

High-level obj ects include I /O devices , data ab stractions , program 

modules (Keedy , 1 982a) and type managers (Wulf , Levin and Harbison ,  
1 981 ) . 

When a memory segment is addressed (via memory reference 

ins tructions ) the capab ility mechanism is used to find a segment of 

memory· and make it availab le to the program . Thus , in a purely segmented

system the central obj ect table may contain the main memory address of 

the segment , and the size of the segment . The access rights field of the 

capab ility can then be us ed to res trict certain operations on the 

segment . To produce eff ic ient memory references this uechanism is nearly 

always augment ed by some special hardware . 

High level obj ects are als o  addressed via the capab ility mechanism.  

However , the cent ral obj ect table contains information which declares 

that the obj ect is not a uemory segment and requires further software or 
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f irmware ass is tance . ( Alternatively , this inf ormation may be held in the 

capab ility (Lampson and Sturgis , 1 97 6 } . }  These high level obj ects are 

not usually address ed by the normal memory ref erence instructions . Type 

checking information may then validate the type of ins truction against 

the type of obj ect . For examp le , a memory segment may be addres sed by an 

add ins truction , but a program module is addressed via a call 

ins truc tion . 

From this viewpoint , capab ility support can be buil t  into a 

processor in two separate areas : first , a sect ion of hardware which 

allows ef f icient manipulation of memory segments ;  second , a body of 

software , or f irmware , which interprets operations on high level 

obj ects . Thus , the knowledge of high level obj ects need not be built  

into the p rocessor . The inf ormation which usually res ides in the central 

obj ect table about high level obj ects ( e .g .  the type of the obj ect}  can 

now either reside in the capability f or the obj ect ( as  in the CAL

sys tem) or can be found in segments associated with the obj ect itself 

(e .g . with the code which manipulates the obj ect (as in the MONADS

sys tem) . The implementation of operations on high level obj ects is lef t  

entirely up t o  the software or firmware concerned . This general app roach 

in used in the address ing model des cribed in this chapter . This allows 

us to design hardware which is very eff icient at address ing segments of 

memory and yet , when combined with suitab le firmware , provides a 

flexible address ing s tructure . We will now cons ider the f orm of the 

memory segmentat ion hardware • 

.2.•1•  Segment Address ing 

1·1•l•  The Basic Form of .!. Capability 

The virtual memory of the proposed capab ility based address ing 

scheme is addres s ed via a number of capab ility regist ers , each of which 

holds a segment capab il ity . 'lbese capab ility regis ters are the only 

addres s ing mechanism availab le to the processor . Each register ,  shown 

in Figure 5 . 1 ,  contains three fields : an address ,  a length and some 

access rights . Before we d iscuss the p recise nature of these f ields , it 

will  be useful to cons ider the advantages of a scheme based on 

regis ters : 
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( 1 )  The p roblem of operand size for address ing memory via 

capab ili ties , d iscuss ed in Chap ter 4 ,  disappears in a register based 

sys tem because once a regis ter has been loaded with a capab ility 

subsequent ref erences need only specify a register number ,  which is 

likely to be of the order of four bits . 

( 2 )  Regis ters hide the nature and structure of the logical 

address ing mechanism f rom the processor instruction set . The model is 

invariant to the method of saving capab ilities {i .e . C-lis ts of various 

struc tures or tagged protected memory) and the ac tual structure of a C

lis t or tagged memory need not be det ermined at the hardware level (for 

examp le , whether the C-list allows tree struc tures or lattice 

structures ) . Thus , the scheme is flexible ,  because the sof tware 

struc tures may be mod if ied without affecting the hardware . 

( 3 )  Because regis ters can unif ormly address all kinds of segment , 

no special reg isters are required , for examp le to imp lement a s tack 
point er , disp lay regis ters , et c .  Indeed , a combination of a capab ility 

register and an index regist er can be us ed not only to address data but 

also to control program sequencing . 

( 4 )  Because registers are normally buil t  from high speed logic , 

they have the same advantag es as capab ility caches (cf . IBM System/ 38 

and Intel iAPX4 32 ) ,  but they are generally less expens ive and in some 

cas es eas ier to imp lement . Because the scheme only trans lates logical 

addresses {of the form C-lis t number and slot number ) into capab ilities 

when the reg ist er is loaded, it avoids many unnecessary memory accesses 

by removing repeated references to the C-lis t . 

( 5 ) Given the use of 

implemented by allowing 

regis ters , p rotection can be 

only particular micr�coded 

eff iciently 

or kernel 

instruc tions { or only ins tructions executing in a special machine state ) 

to modify their contents . This makes it impossible to modify a 

capab ility illeg ally once it has been p laced in a reg ister . The 

protec tion of  capab ilities outs ide of regis ters depends on the C-lis t 

struc ture, or tagg ing mechanism, which the p rocessor p rovides . 

A regis ter based address ing scheme does have some bas ic 

disadvantag es . First , it requires the comp iler or assembler p rogrammer 

to al locate and deallocate the regis ters . This problem is not considered 
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address of segment length of segment access rights 

Figure 5 . 1 - a capab ility regis ter 

serious enough to overpower the advantag es of the scheme , for two 

reasons . Assembler programmers are far better at judging the working set 

of a program than a cache , and can choo se the correct registers to 

allocate . Furthermore , compilers often have to allo�ate data registers , 
and have successfully done so for a long time . Addressing registers are 

no more dif f icult to allocate than data regis ters . Also , the compiler 
can form convent ions which dedicate the use of certain registers . For 

example , one reg is ter may be used for address ing scalars at lexical 

level zero , whilst another reg ister may be dedicated for addressing data 

at the current lexical level . Such conventions can help regis ter 

allocation significantly . Capab ility reg isters are also easier to 

allocate than many of the address ing regis ters used in conventional 

processors , because they are the only addressing mechanism . Thus , the 

compiler is only concerned with one address ing scheme , rather than many . 

Second , the registers may need to be sav ed and reloaded when a 

module is ent ered by a call ins truction , or when a process switch is 

executed . When a new module is entered the comp iler may either 

inval idate the ac tive capab il ity regis t ers , or the call ins truction may 

save their cont ents . If the regist ers are invalidated ,  then the program 

must res tore . them af ter the call . If they are saved , then the return 

ins truc tion must restore the orig inal contents . If a capab ility cache is 

used instead of regis ters , then it mus t be inval idated when the call  

instruction is execut ed .  The cache will then reload itself after the 

call  as the capab il ities are used . Thus , the cache scheme is equivalent 

to the register scheme which inval idates the contents of the reg isters . 

If the reg is ters contents are saved prior to a call , then on return the 

o ld capab ilities are simply cop ied from an image in memory (e .g . as part

of the linkage on the stack) . However , when the cache is reloaded , the 

C-list ent ries must be retrieved ,  which cou ld take longer than a simp le 
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copy operation . 

When a process change is made , the regis ters nus t be saved for the 
executing p rocess , and the registers for the new process must be loaded . 

If a capab ility cache is used it mus t be cleared of capab ilities from 
the o ld process , and wi ll automatically reload when operands are us ed . 

Provid ing that some hardware support is provided to support ef f icient 

process changes ( such as described in chapter 7)  there is no reason why 

the regis ter based scheme should be less e�ficient than the cache 
scheme . 

1·1·1· The Load-capability-register Instruction 

Because in the p ropos ed scheme the logical structure of the 

address ing mechanism is hidden from the hardware , special sof tware (or 

firmware) must  be written which under� tands this struc ture . One such 

instruction is the load-capab ility-regis ter ins truction . This 

instruc tion ( or kernel routine if the machine does not poss ess a 

microcoded contro l unit )  accepts a capab ility regis ter number and a 

program address , and loads the capability found at that address into the 

regis ter . If the process or uses a C-lis t for holding capab ilities , then 

the program address may def ine a C-list number and a s lot number , as 

des cribed in Chapter 4 .  If the sys tem must at some later stage 

unders tand a different C-list s truc ture , then only the load-capab il ity

regis ter ins truction need be altered . All other data manipulat ion 

instructions address their operands via a capab ility register . This 

combination of microcode and hardware gives the model a large degree of 

f lexib ility but still al lows very eff icient address ing . 

1·1·1· Representation of .!. Capability 

A memory capab ility , shown in Figure 5 . 1 ,  is composed of three 

sections : an address , a length and a s et of access rights . The key 

dif ference between these regis ters and those of the Pless ey 25 0 

(England , 1 972 ) is that our capab il ity uses a virtual address , rather 

than a main memory address . As shown in Chap ter 4 ,  the use of main 

memory address es both causes difficulties in re-organiz ing s tore and 

also means that the main memory mus t  be segmented . Apart from the 

diff icul ties o f  o rg aniz ing a segmented memory, a central obj ect table is 

required in the P less ey 250 to  map segment addres ses onto main memory 
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addresses , which caus es further problems related to the size of the 

obj ect tab le ,  as discussed in chap ter 4 .  The use of a virtual address

in the capab ility regist ers avoids these problems . First , the s tore can 

be phys ically reorganized without af fe cting the addresses held in 

registers . Second , f rom the viewpoint of the memory management system 

the memory does no t appear to be segmented This removes the prob lems of 
a segmented memory ,  and al so means that the system does not need a 

central obj ec t tab le . 

The length field of the capab ility holds the size of the segment , 

and must be large enough to allow large segments . Ideally, this f ield is 

the same size as the virtual address .  However , it may be cons iderab ly 

les s  without being rest rictive . By cont rast , the length f ield used in 

Bishop ' s capab ility is too small (9 bits ) to allow large obj ects to be
created if the length is treated as a byte or word count . Alt ernatively 

if the length field is cons idered as a larger unit (e .g . a page ) then 

the unit of p rotec tion and s tore allocation is not suf f iciently granular 

in Bishop ' s scheme .

The access  rights field must allow operations to be performed or 

restricted , such as read only, write only, read-write, execute etc . 

These can be encoded in a bit pattern . 

Thus the regis ters which we propose dif fer signif icantly from tho se 

of the Plessey 250 . The format of the capab ility is similar to that of 

Bishop , except that the length field of the model wil l  be large enough 

to address large segments . The model d iffers s ignif icantly f rom those 

sys tems which implement segmentation at the memory level , and use a 

central obj ect table , such as CAP , Hydra , Plessey 2 50,  Gligor , Intel 

etc . We shall now brief ly cons ider the ref inement prop��ties of the 

capabilities . 

1 ·1·i· Refinement of Capab ilities 

In wil l  be recalled that in Chap ter 4 we introduced the concept of 

capab il ity ref inement . All of  the systems d iscus s ed  in this chapter 

allowed the access rights of a capab ility to be reduced , and a 

diminished copy of the capab il ity given to another user . These 

capab ilities then have access to the same obj ect  as the mas t er , but with

f ewer access p rivileges . A capab ility may al so be ref ined in range as 
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well as type of access • This type of ref inement is useful when a 

procedure wishes to grant ano ther user access to only part of a data 
structure (e .g . when pas sing a parameter by reference ) .  In the model 
propos ed in this chapter , access to a segment may be ref ined by 
mod ifying the bas e virtual address and the segment length fields of the 

capab ility . The new capab il ity can then only address part of the 

original structure , as shown in Figure 5 . 2 .  Surpris ingly , very few 

sys tems have allowed a capability to be reduced in range ,  al though the 

Plessey 250 , Bishop and CAP could allow such ref inement . 

Whilst the format of the Plessey 250 regis ters would in princip le 

allow a segment addressed by a regis ter to be ref ined in size , the 

capab ility format does not contain a limit f ield . All capabilities point 

to a central obj ect tab le which contains the the main memory limit of 

the obj ect . This limit is later cop ied into the regist er when it is 

loaded . Also , because the Plessey 250 regis ters hold main memory 

addresses , when moving a s egment in main s tore it would be d iff icult to 

determine whether a capab ility pointed to part of the segment in 

ques tion without checking if the ref ined base and limit were contained 

in the segment . Thus , the P lessey 250 address ing scheme does not allow 

segments to be ref ined in s iz e . This is shown in Figure 5 . 3 .  

virtual memory base length Ll access 

mast er capabil ity 

"-----------------------------------> 1o---------------1 l 
virtual memory bas e  length L2  access 

ref ined capab ility 

> t---------... 1 L l  

.,______...r j
virtual 
memory 

Figure 5 . 2 - a ref ined capab ility 
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Figure 5 .3 -The P lessey 250 - no size refinement 

Bishop ' s capab ility contains a virtual base address and also the

size of the segment . Thus a capab ility may be created which only 

addresses part of the original segment . Unfortunately , Bishop does not 

use enough b its to allow large obj ects to be addressed ( or al ternatively 

support suf f icient granularity) .  

In CAP both the capab ility and the central obj ec t tab le contain a 

size  f ie ld and a base f ie ld as shown in Figure 5 . 4 .  The f ields in the 

central obj �ct tab le are used as absolute main memory bounds of the 

segment , whereas the values in the capab ility are int erp reted relative 

to the original bounds . Consequent ly , a ref ined capab ility , wh ich only 

allows access to part of the segment , may be created . 

The ref inement sys tem of the model capab ility regis ters closely 

matches that o f  Bishop ' s capab ilities . However , the s ize field of our

capab ility is large enough to allow large segments to be addressed . 

Because bo th of these sys t ems use virtual addresses in capab ilities , 

there is no danger in allowing many capab ilit ies to ref erence part of an 
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obj ect . In CAP , however , one set of base  and limit values must be 

as sociated wi th the main memory p roperties of a segment , and another set 

of values must  be associated with the capab ility . Both of these values 

must be validated before the ref erence can p roceed to memory . This 

overhead is not present in the model capab ility sys tem .  Thus , the 

ref inement qual ities of the model appear to match , and in mo st cas es 

improve on , those of other sys tems . It is noteworthy that very few 

systems allow this useful operation at all . 

1·1·1· Summary 

So far , the capab ility address ing model fulf ils some of its primary 

aims . The use of capab ility regis ters allows a f lexible hardware unit to 

be constructed . If the address ing structure is modif ied at any stage , 

then the load-capability reg ister instruc tion can be mod if ied . Because 
they are the only address ing mechanisms available to the processor , they 

relative relative acces s  
base 0 size S righ ts 

mas t er capab ility 

ref ined capability 
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base B l  s ize S l  rights 
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F igure 5 . 4 - CAP r ef inement of capab il it ies 
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also provide a unif orm, simp le and eff icient method of addressing store . 

In order to fulfil al l of the aims we mus t describe a virtual memory 

which can hold small and large segments . 

5 . 4 .  Virtual Memory 

..2. ·i·l· Requirements of the Virtual Memory 

In Chap ters 2 ,  3 and 4 we examined many different virtual memory 

organi zat ions . In this section we will examine the requi rements of the 

virtual memory which is us ed by the model . They are as follows : 

( 1 )  Virtual addresses should be large and unique . When a segment is 
created it consumes a range of virtual addresses ,  which eventually 

res ide in C-lis ts and capab il ity regis ters . When a segment is deleted , 

the address may either be found and destroy ed, or never reus ed . A large 

address ing range means that it is not necessary to reuse addresses , 

saving on the number of addres s es  which need to be found and deleted . 

( 2 )  The virtual memory mus t . be the only memory mechanism.  This 

uniform treatment of sto re means that all data , f iles and code, are 

present in the same virtual memory without support from a separate f ile 

store . This technique was pioneered in MULTICS and has been us ed in 

other capab ility sys tems with many advantages (Rosenberg and Keedy , 

1 98 la) . 

( 3 )  The tab les , or mechanism, used to translate virtual addresses 

to main s tore addresses should not af fect the way in which the virtual 

memory management so f tware organizes the secondary store . This cond it ion 

is not met in many existing systems , such as MULTICS .  The page table 

struc ture which is used by the hardware , or f irmware , to translate 

virtual address es into main memory addresses is al 6o used by the 

software to locate pages in secondary memory . If the so f tware wishes to 

change the table f ormat then the hardware may also need to be modified . 

Greater f lexib ility is des irab le because better secondary storage 

methods may be devised aft er the hardware has been built . Thus secondary 

memory address trans lation and main memory address trans lation should be 

independent . 

(4 ) Virtual sto re management should be simple . If virtual addresses 

are ever reus ed , the virtual spa ce may become fragmented due to obj ects 
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being created and destroyed . Both Gligor ( 1 97 8 ) and B ishop ( 1 97 7 )  

propose  the use of large paged virtual memories for holding segments . 

Gligor packs segments into virtual space in a random manner , whereas 

Bishop places conunon segments in areas , or groups . The f irst scheme , 
whilst conceptual ly simple , means that the virtual space may become very 

fragment ed in time . Bishop ' s scheme does not totally avoid this prob lem,

as areas themselves are variab le in size . The virtual s tore shou ld be 

organi zed so that if addresses are ever reused , the store can be 

reorganiz ed without massive data manipulat ion . 

( 5 )  The virtual store should eff iciently support both large and 

small segments .  This p rob lem is vastly simp lif ied by imp lementing the 

segmentat ion at the regis ter level . It then only becomes necessary for 

the virtual space to ho ld both large and small areas . All of the models 

previously dis cussed fail to provide an ac ceptab le mechanis m .  

( 6 )  Real s tore management should be simp le .· Unlike the segmented 

schemes of some capab il ity sys tems , the model can choose another main 

store organization without los ing the logical advantages of 

segmentation . Thus a s impler main store scheme can be used instead of 

the complex and ineff icient segmented scheme . 

Unfortunately all of the virtual memory sys tems discussed in the 

earlier part of this thes is fail to provide a suitable virtual memory 

which supports all these requirements .  An.other scheme , not previous ly 

discuss ed , allows a conventional p rocessor to ef f iciently support small 

and large segments . The next section will dis cuss this 11X>del . 

1·i·1· A Small S egment Model 

Keedy ( 1 980 )  p roposes a memory man�gement model which allows a 

conventional p roces sor to supp ort both large and small s egments without 

the ineff iciencies describ ed in Chap ters 2 and 4 .  The scheme uses 

capab il ities which hold a virtual address , segment length and access 

rights . The virtual address is further composed of an address space 

number and an offs et within the address space . Each offset is composed 

of a page number and a with in page displacement . 

Address t rans lation is performed via a number of tables , shown in 

Figure S . S .  The address space lis t is consulted to find the locat ion in 

main memory of the page table for the space . Each page table entry 
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Figure 5 .5 - the Keedy addressing scheme

reveals either the main memory address of the page or the secondary 

memory_ address . This model is siirilar to the paged and segmented scheme 

dis cussed in Chapter 2 ,  and thus could be supported by a processor 

s imilar in nature to MULTICS . Unlike MULTICS, however, a segment offset 

is added to the virtual address before it is translated into a main 

memory address . Thus , because many segments may be p laced in one page of 

main memory , this model can support items 4 ,  5 and 6 of the model aims , 

namely simp le real and virtual store management and support for small 

and large segments .  All the advantages of the scheme are dis cussed in 

Keedy ( 1 980 ) . However , the following are particularly relevant . 
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1·.i·l·l · S imple Real Memory Management 

The main memory is fa r eas ier to manage in this model than the 

segmented s olu tions because store is allocat ed in fixed size pages . 

Provided that some reference locality is achieved , several independent ly · 

address ed and p rotected segments can be packed into a s ingle address 

space , and the amount of space lost  to internal fragmentat ion is on 

average only half a page p er address space rather than half a page per 

segment (or more for small segments ) . Thus wh ile internal fragmentation 

is not entirely eliminated , the amount of space wasted in this way can 

be great ly reduced . 

1·.i·1·1· Simple Virtual Memory Management 

The virtual memory is eas ier to manage than that o f  Gligor or 

Bishop because the virtual space , is al located in fixed size llllits ,

namely address spaces . Typ ically, because of reference locality, all the 
segments of  a module are placed together in a single address space . If 

the module is deleted ,  and all old address es within the space are 

collected and des troyed , then ilie address of the address space may be 

reused . Because the address spaces are all of the same size , the ho le 

left  in the virtual space is not of a variab le size , unlike those of 

Bishop and Gligor . Consequently, the virtual space will not become as 

fragment ed as those of Bishop or Gligor . 

Even though the address spaces are all of  a fixed siz e ,  spaces 

smaller than the maximum s ize do not ac tual ly require this fixed amount 

of disk space to be allocated . Thus , the s cheme does not require any 

more disk space or page tab le space than other schemes . 

1•.! •1 •3 •  Support for Small and Large S egments 

The scheme does  not use a large central obj ect table , but rather a 

smaller addres s space list , and can therefore support many small 

segments ef f ic ient ly . As more segments are added to an address space , 

the address space list will remain the same size,  and not grow like the 

central obj ect tables in many of the capab ility sys tems . Moreover , 

provided that a reasonab le amount of locality of reference is exhib it ed , 

many small rel at ed segments may be placed in one page , reducing the 

amount of wasted space and making segment swapp ing more eff icient . Large 
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segments may be composed of many pages . Because only those pages 

actually being address ed are he ld in main store the scheme does not have 

the large segment problems experienced in segmented schemes . 

Thus , the scheme solves both the memory management problems and the 

address trans lat ion problems associated with many small and large 

s egments . However , the model in this form does not supp ort requirements 

1 ,  2 and 3 of  the model aims , namely large unique virtual addresses , a 

uniform store and separate main and secondary memory address trans lation 

systems . The next section shows how the model can be modif ied and used 

to provide a virtual memory with all the required attributes . 

1·.!·1· Applying the Memory Management Model

Requirement s 1 ,  2 and 3 of  the model demanded a large uniform 
virtual memory and a separate main and secondary memory address 
translation system . A large unif orm uniquely addressed memory which 
holds all data and files implies an address size of the order of 64 
bits , as used in some other capab ility systems . The model described in 
section 5 . 3 imp lies an address size comparab le to processors such as the 

ICL2900, MULTICS e tc,  and of the order of 32 bits because it uses page 

tables in main memory for address translat ion . Unfortunately , a simple 

scaling up of the tables is not pos s ible because the large address is 

2"'32 times that of the convent ional address . The problems with 

conventional page tables were discuss ed in Chapter 4 .  Moreover , the 
tab le structure would be used for both main memory and secondary store 

address translation, contrary to the requirements set out in section 

5 . 4 . 1 .  Thus , in order to use the memory model , the address size must be 

expanded to about 64 bits in size and ano ther address translation 

mechanism mus t  be found . Al so , to allow large segments to be created , 

the size of an individual address space must be larger than 2"'1 6  words , 

as imp lied in the model (if half of the address is used for the address 

spa ce numb er ) . Thus , the 64  b it address must be compos ed of an address 

space number f ield of about 32 bits , and a within address space 

disp lacement of 32  bits . This would allow the largest address space to 

be 2"'32 w ords in size . In order to find a sui table address trans lat ion 

mechanism we can cons ider a number of the techniques des cribed in this 

thes is . 
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, 
Gligor s address ing scheme assumes the presence of a robus t virtual 

memory without indicating how to provide such a mechanism . Bishop 

attempts to use convent ional page tab les to trans late addresses . We 

showed in Chapter 4 that this technique is unsuitable because of the 
size of the directly indexed page table . For the same reasons , the page 

and segment tables propos ed by Keedy, and us ed by the ICL2900 series , 

MULTICS , Prime 750  (Prime , 1 979 ) et c ,  are unsuitable because of the 

space required for the tab les , and the time taken to t rans late an 

address . 

The bes t  form of address trans lat ion for an address of this size is 
the as sociative technique us ed by Atlas , IBM System/ 38 and MU6-G . These 
methods only attempt to trans late addresses for those pages resident in 
main memory , and leave the software f ree to organize the secondary 
memory trans lat ion tab les in any suitable way . 

Thus , by increas ing the address size to 64 bits and by us ing an 
associative address trans lation scheme the Keedy model can provide an 

accep table virtual memory f or our capab ility model . 

1·i·i· Summary 

The specif ication for the capab ility address ing model of this 

chapter is now comp lete , and is summarized in Figure 5 . 6 .  The model 

provides a flexible , unif orm,  simple and ef fic ient method for address ing 

store . The virtual memory required can be realistically provided by a 

modif icat ion of the Keedy model . 

1•1 •  Application of � Model

The first three sec tions of this chap ter described a hardware model 

which can be us ed to s uppo rt a capab il ity style of addres s ing . A maj or 

cons ideration in the des ign was that the model be flexib le enough to 

cater for a number of different software ideas . This section will 

demons trate  that  the model is flexib le by applying it to three dif ferent 

dif ferent software models : the Intel iAPX4 32, CAP-3 and MONADS . 

As describ ed earlier , the implementat ion of the model cons is ts of 

two separate  sections , the hardware registers and address trans latio� 

mechauism, and a body of so f tware or firmware . In each of the examples 

to be cons idered, a diff erent load-capab ility-register instruc tion must 
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capab il ity regis t er number off set 
effective 
prog ram 
address 

-----> vi rtual address length ac cess 

I 
address space II 
page II { st art address 

"-------> f address space #
page #
start + o ff set 

associative 
address 
trans lation 
s cheme 

capab ility regist ers 

�--> 

real page II 
offset

Figure 5 .6 - the new address ing model 

be imp lement ed to address segments .  The hardware can then be used to 

support ' the address ing struc ture . Access  to high level obj ects will 

typically be via a cal l instruction , which can be supported in microcode 

or software and does not aff ect the hardware . 

1·1 ·!·  .!!!£ INTEL iAPX4 32 

The Intel  iAPX432 supports informat ion hiding modules , each of 

which . cons ist  of a number of memory s egments . �Je will nor...1 describe the 

C-�is t structure used by the Intel processor .

1·1 ·!·!· The Intel Address ing Structure 

The iAPX4 32 uses two different types of segment , data segments and 

access s egments . Data s egments are us ed to hold data and code . The 

address ing environment of a module is def ined by an acces s  segment , 
\ 

which contains a ll of the capab ilities f or the address able segments . A 

capab ility consis ts of a uni que segment number and a set of acces s  

rights . 
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The segment number is trans lated into a main memory address by a 

central segment table . Each segment table entry contains a sta rt 

address , segment size , presence bit and addit ional segment information . 

Whilst the literature sugg es ts that this central table is indexed 
directly on segment number , such a scheme is qui te inappropriate and we 

assumed in Chapt er 4 that in p rac tice some other scheme is us ed . 

While other tab les are used to bind access and code segments to a 

module ( e .g .  context and domain obj ec ts ) , a program may address memory 

by supp lying an index into the access segment , called the segment 

selector, and an �ffset within the segment, as shown in Figure 5 . 7 .  An 

access segment may in turn address another access segment , and a tree 

structured addres s ing environment may be created , as shown in Figure 

5 . 8 .  Thus , rather than ident ifying a number of specif ic classes of 
segment the iAPX432 only recogniz es two main classes ,  and allows the 

environment to be structured as a tree of capab ilities . 

As discus s ed in Chap te r  4 ,  the Intel processor is particularly poor 

at supporting very large and very small segments . Large segments 

complicate store management and small segments are expensive to swap in 

and out of store , and al so increase the size of the segment list . All of 

these problems are removed when our hardware model is us ed to support· 

the iAPX432 address ing struc ture . 

�egment selector off set effective program address

�
s egll 
+ > base l limit 

:> segll AR 

access segment segment lis t 

Figur e 5 . 7 - the Intel iAPX432  addressing struc ture 
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�--------���-----------
segment 

data 
segment 

data 
s egment 

Figure 5 . 8 - a tree of access segments 

1•1 •l•1• Mapping the Intel iAPX432 onto the Model 

In order to map the Intel software configuration onto the model , 

the processor must adopt the capab ility format of the model . This change 

does not affec t the use of acces s  segments , but does allow the model to 

be us ed to address store . In addition , a load-capabil ity-reg ister 
ins truc tion mus t be provided to trans late addresses of the form <segment 

selector> into a capab ility . This instruc tion must al so detect 

capab il it ies for high level obj ects and stop them from being loaded into 

registers . High level obj ect support can then be provided by special 

software of firmJare . With these changes , which do not affect the aims 

of the system, the iAPX432 inherits the simplicity and efficiency of the 

model , in three areas . 

Firs t , there is no long er any need for the central segment lis t . 

Without this list , the sys tem can eff iciently support many small 

segments . Se cond , the real s tore is no longer segmented , avoiding s tore 

management p roblems with large s egments . Third , because the real store 

is paged , many small segments may be swapped in one operat ion . The new 

addressing scheme is shown in Figure 5 . 9 .  
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effective prog ram address 

leng th access 

capabil ity reg ister 

Figure 5 . 9 - the new Intel addressing scheme 

Access segments can be protec ted from corruption by only ever 

granting capab il ities to them with read-only access to a user program . 

Thus , a program may be able to use an access segment capab ility as the 

target of a data manipulation ins truction , but cannot modify the 

contents of the access segment its elf . 

This implementation shows that the capab ility regis ter scheme is 

not only f lexib le enough to imp lement the C-list structure of the Intel 

iAPX4 32 , but also improves the ef ficiency of the f inal address ing 

mechanism . The s econdary memory trans lation is no longer dependent on 

the segment lis t , and may be freely modif ied . 

CAP-3 is a capab ility based computer which addresses a segment ed 

memory via a C-list structure . 

1•1•1.•l• CAP-3 Addressing S tructure 

Segments in CAP are addressed via one of the different C-lists 

attach ed to a protection domain . Each C-l ist is address ed by a domain 

descrip tor , and there are 16 domain descrip tors attached to any domain .

Each C-list  entry holds a capab ility which def ines the bounds of the 
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reference and the access rights . Capab ilities also contain a pointer 

into a central obj ect tab le , which holds the central mapping information 

for the segment . A prog ram can address memory by forming a 32 bit 

virtual address , which is cons tructed from a 4 bit C-l ist selec tor ( one 

of the 1 6  domain descrip tors ) ,  an 8 bit capab ility number (relative to 

the C-list chos en) , 1 6  bits of offset within a segment and 4 unused 

bits . This address is mapped onto a real memory address via the central 

obj ect tab le ,  which contains an entry for every ac tive segment . A 

capab ility cache helps speed up the address trans lat ion for frequent ly 
us ed s egments . The address ing structure is summarized in Figure s . 10 .  

CAP-3 dif fers from the Intel processor by using a dif ferent C-lis t 

organization . In CAP, a domain can only address one of the C-l ists for 

which it has a domain des crip tor . Unlike the Intel processor , CAP-3 

cannot construct a tree of capability segments . Since CAP-3 uses the 

same ma.in store organi zation as the iAPX432 , it possesses the same 

ineff iciencies when small and large segments are addressed . We will now 

show how the capab ility regis t er address ing scheme may be applied to the 

CAP-3 architecture . 

capab ility segment s egment selector offset 

virtual address 

>
---�-----

1 6  -..., 

domain 1i---------�---> segment
descrip tors 

> 

C-lis t 

Figure 5 . 10 - the CAP addressing structure 
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1•1•1•1• Mapping CAP-3 onto the Model 

As in the Int el processor a load-capab ility-register ins truction 

must be written which unders tands the C-list structure of CAP-3 . This 

ins truction accepts a 4 bit C-lis t  selector value , an 8 bit capab ility 

selector and loads a register with the capab il ity . 

Ins tructions can then address the segments of s tore via the 

capability registers . The s cheme inherits the advantages of the model . 

Small and large segments can be ef ficiently addres sed and transferred in 

and ou t of store . The prob lem of managing the cent ral obj ect table 

disappears as the tab le is el iminated . Th e only ins truction which 

understands the use of domain des crip tors and C-lists is the load

capab ility-regis ter instruction . 

s .s . 3 .  MONADS 
- - -

The MONADS sys tem requires so ftware sys tems to be cons truc ted from 
a number of  information hiding modules , each compos ed of a number of 

memory segments ,  namely local data segments , file data segments , 

retained data segments , code-related data s egments , parameter segments 

and code segments (Keedy , 1 982a) . We wil l  now describe the address ing 

struc ture and show how the model hardware may be us ed to imp lement this 

structure . 

1·1·1·1· The MONADS Address ing Structure

An information hiding module in MONADS is active and may address 

its data segments when a proces s  is execut ing within the code segments 

of the module . Under such circums tances a process stack will be p res ent . 

This stack forms the centre of th e  MONADS address ing structure . Each 

class of s egment is address ed via a s eparate segment list . Thus , f or 

example ,  each segment of local data is address ed via an off set relative 

to the local s egment list , and each s egment of file data is addressed 

via the f ile segment lis t . Each segment lis t contains a lis t of 

capabilities for the segments of the class . A capab ility , shown in 

Figure 5 . 1 1 ,  cons ists of a virtual address f ield,  a leng th field and a 

set of acces s  rights . Thus , any segment may be addressed by a segment 

list number ( called the base number b) and a segment number ( s ) , as 

shown in Figure s . 12 . Moreover , each segment lis t is addressed via the 

CHAPTER 5 A NEW ADDRESS!?{; MODEL 



- 114 -

Address of segment I length I access I 
Figure S . 1 1  - a MONADS capab il ity 

BASE tab le , as shown in Figure S . 1 3 .

The process stack forms a convenient place to ho ld the BASE table 
and some of the C-lists , because some of these pertain to the module and 

process intersection . Other C-lists , such as the file C-lis t ,  are held 
off the stack . Thus , the BASE tab le concep tually holds capabilities f or 

the C-lis ts , and each C-lis t ho lds capab ilities for each segment in the 

. i 

i
b 
I 
� 

s 

! 

CHAPTER 5 

capab ility 

t-----------< - base b 

Figure S . 1 2  - a segment lis t 

LJ i
segment list 

BASE tab le 

segment lis t 

Figure 5 . 13 - the BASE tab le 
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class . Because the C-lis ts are not general purpose , like in the Intel 

iAPX4 32 , but dedicated , capab ilities within a C-list cannot point to 

another C-lis t • 

An ins truction forms a logical address of the form <base number , 

segment number, offset> . The address ing s truc ture , summarized in Figure 

S . 14 ,  allows this address to be translated into a capab ility and offset . 

The next section shows how the model propos ed in this chapter may be 

used to support this structure . 

1·1•1•£.• Mapping the MONADS Sof tware Structure .Q!il.Q. the Model

In mapp ing the address ing struc ture described in 5 . 4 . 1 . 1  onto the 

model hardware care must be taken to protect the contents of the BASE 

table and the various C-lists . As wi th the other imp lementations , a 

load-capab ility-regis ter ins truction mus t  be developed which translates 

a logical address ,  of the form <base number , s egment number> , into a 

capability , and saves the capab ility in a regis ter . The regis ter number 

may then be us ed as the operand for future memory reference 

t 
s 
y

1 
b
� 

CHAPTER 5 

segment lis t b 

BASE table 

Process s tack 

capability 

<· > I  I . 
segment s 

Figure 5 . 14 - the MONADS address ing structure 
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instructions . This trans lati on is clearly ef ficient . The logical address 

is only trans lated into a capab ility when a regis ter is loaded . 

Subsequent acces s es to the segment bypass this trans lation . 

In order for the load-capab ility-regis ter ins truction to translate 

the logical addresses , it must have access to the BASE table and also 

the various C-lis ts . Because the stack itself res ides in virtual memory , 

thes e tables are addressab le via the capab ility registers . The areas of 

the stack which contain sens itive informat ion may be protected by never 

issuing · to programs capab il ities to the information . Moreover ,  because 

the tables are simply segments ,  there is no need for them necessarily to 

reside on the s tack at all . In fact , those l is ts which do not belong to 

a process res ide in other segments of 

implementation is summariz ed in Figur e 5 . 1 5 . 

1·1·i· Summary 

virtual memory . The 

In this section we have implement ed three different capab ility 
address ing s t ructures using the addres sing hardware p roposed in this 

s 
" 

l 
b 
�

segment lis t b 

BASE t ab le 

Process s tack 

capab ility 

<· 

I add 

. . . . 
I add 

< 

capab ility registers 

ress  length access 

ress length access 

capab ility register 
for BASE table 

Figure 5 . 1 5  - the new M:>NADS addressing scheme
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chap ter . In each case , the hardware remained unmod if ied , and a new 

load-capab ility-regis ter ins truc tion was written for the new structure . 

From the detailed examination of the capab ility sys tems in Chap ter 4 it 

would appear that the model - could be applied to all of the dif ferent C

list structures in the same way as those described in this chapt er . In 

addition , the hardware is no t concerned whether the capab il ities are 
taken from a C-list or from tagged memory . Thus , the propos ed model 

could also implement those sys tems which use tagged memory rather than 
a segment list to ho ld capab ili ties . 

Because the capab il it ies are interpreted by sof tware before they 

are us ed to address memory , the scheme does not interfere with the way 

that the . sys t ems manage high level obj ects . The only requi rement that 

the hardware places on the load-capab ility-register instruction is that 

only segment capab ilit ies can be placed in a regis ter . Thus , the model 

s eems to have fulf illed its aim of f lex ib ility . 

5 . 6 .  Evaluation of  the Hardware Model 
- --

This sec tion addresses two ques tions . First , has the model proposed 

in this chapt er fulfilled its primary aims ? Second , how does this 

solution differ from the other capab ility based computers dis cussed in 

Chap ter 4 ?  

5 . 6 . 1 .  Model Aims 
- - -

We can now recons ider the aims of the model , cited in section 5 . 1 • 

.2.·i·l·l· Memory Management 

We showed in 

managing a memory 

these problems by 

Chapter 4 that many sys tems have dif f iculty in 

address ed by capab ilit ies . The model avoids many of 

using the memory management model des cribed in 

sec tion 5 . 4 .  This scheme allows both large and small s egments to exist 

in a paged virtual memory . Large segments may occupy as many pages of 

real memory as required . Because many small s egments may be packed into 

a page , many related segments may be swapped between main and secondary 

memory at the same time . Thus , the model has solved many of the memory 

management prob lems . 
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1·�·.!.. ·1· Addres s Translat ion Problems 

In sys tems which use a central obj ect tab le for segment address 

t ranslation , the size of the tab le may become excessive if the proces s or 

addresses many small segments . The model proposed in this chap ter avoids 

this problem by elimina ting the obj ect table al tog ether . Because 

segment s are no longer a unit  of main memory , no mapping informat ion 

needs to be maintained about the s egment which cannot be placed s af ely 

in the capab ility for the segment . Moreover , we sugges t that the virtual 

address es are trans lated into main memory addresses by an associative 

address translation sys tem, which can not only eff iciently translate 

large addresses , but also  detaches main memory address trans lation from 

' secondary memory address trans lation . Thus , the model has solved many of 

the problems associated with address trans lation . 

1·�·l·l· Unif ormity and Simplicity 

The scheme is unif orm in two respects . First ,  the capab ility 

registers are the only way of address ing s tore . No extra mechanisms 

exis t which bypas s  the capab ility structure . Section 5 . 5 showed that 

thes e registers alone are suff icient to imp lement a real addressing 

structure above the hardware . Second , all data , regardless of how large 

or small it is , or how long it exists , is s tored in the virtual memory .  

No other secondary memory is vis ib le to the programmer . 

Because of this uniformity, the overall address ing mechanism is 

comparatively s imple . Only one address ing sys tem is availab le ,  and only 

one protection sys tem is needed . Thus , the model satisf ies the aim of 

unif ormity . 

1·� ·.!..•4 • Et f iciency 

The ef f ic iency of the solution may be j udged by cons idering two 

separate functions : ( i )  the translation of a program address (e .g . of 

the form C-lis t index and offset ) into a capab ility , and ( ii )  the 
translation of a capab ility into a main memory address . The f irst of 
these is only performed when a capab ility reg is ter is loaded , or when a 

domain switch is performed, and is dependent upon the access time of the 

C-lis ts . Provided that (a)  suf f ic ient c�pab ility reg is ters are 

availab le to contain the working s et of the process ( Denning , 1 968 , 
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1980) , (b ) capab il ity regis ters are allocated sens ib ly ,  and (c ) some 

hardware s uppo rt is provided for domain changes , then the cost of 

load ing the reg is ters may be ignored . 

The second function depends on two fac tors . The first is the access 

time of the regis ters . This time is us ually so small that it may be 

ignored . The second is the virtual address  translation time . This time 

depends on the translation technique chosen . In Chap ter 7 we propose a 

mechanism which compa res favorably with schemes such as MU 6-G and IBM 

System/38 . Provided that an as sociative s cheme is chos en ,  there is no 

reason in princip le why this address trans lat ion should be ineffic ient . 

1·.£ ·1·1· F lexibility 

The hardware proposed in this chap ter was des igned to be f lexib le 

enough to survive a number of changes in software ideas . In s ec tion 5 . 5 

we app lied the model to a number of dif ferent address ing s tructures . In 

each of th ese the model was capab le of  imp lementing a dif ferent 

address ing s truc ture with only a different load-capab il ity-regis ter 

instruction,  and with instructions for the d if ferent high level obj ects . 

Thus , by example , it appears that the model is suf f iciently flexib le . 

The model gains its f lexib ility from the clear dis tinction b etween those  

functions which must be  supported in hardware (purely for eff iciency 

reasons ) ,  and those functions which can be imp lemented by microcode ( and 

are thus easy to change) . 

1 ·.£·1· Comparison to O ther Sys tems 

Whilst  cons ideration of the primary aims has highl ighted many 

differences between the model and other capab ility bas ed sys tems , the 

model ·can bes t  be compa red with other work in this area by considering a 

number of i ts features . 

1·.£·1·!· The Use of Registers 

The model is similar to the Plessey 250 and the Chicago magic 

number computer in the use of capab ility registers . The model avoids 

many of the problems associated with the P lessey 250  by us ing a virtual 

address in the capab ility r egister rath er than a real address . No oth er 

sys tems known to the author make use of such regis ters , or are as 

f lexible as the propos ed sys tem . 
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1 ·i ·1·1 ·  The C apab ility Format 

The format of the model capab ility is similar to that of Bishop . 

Both include a virtual address , a length f ield and access rights . 

However , the leng th field of Bishop ' s capab ility appears to be too small

to allow large obj ects to be created , or for suff icient addres s ing 

granularity . The CAP capab ilities dif fer in address specif ication but do 

allow a leng th field . The model capab ility is al so similar to that of 

the IBM Sys t em/38 . However , the Sys tem/38  allows store to be addressed 

without capab ilit ies and provides two d if ferent addressing mechanisms . 

Most  of the other sys tems dis cussed use an obj ect number as an address 

rather than a virtual address . 

5 . 6 . 2 . 3 .  Ref inement 
- - - -

Whilst all of the capab ility sys tems al low the access rights of a 

capab ility to be ref ined , CAP and Bishop are the only systems which 

allow the bounds to be ref ined . As dis cussed in 5 . 3 . 4 Bishop ' s length

f ield is far too small t o  be of any use . The CAP length f ield is 

duplicated in bo th the capab ility and the central obj ect tab le because 

of the s egmented s tore . This duplication is avoided in our model . 

1·i·1·i· Real S tore Management 

The use of paging vas t ly simplif ies the management of real s tore . 

Sys tems which al so use paging are Hydra , IBM Sys tem/38 , B ishop and 

Gl igor . In Hydra , paging has the ef fec t  of restric ting the maximum 

s egment s i ze to one page . In the IBM System/38  segments must be at least 

one page in length , which was tes a great deal of space for small 

segments . Because  Gligor allows s egments to be p laced arb it rarily in 

virtual space , there is no guarantee that segmen�s �"ith a common owner 
' are placed within the same page . Bishop s scheme , like our model ,

guarantees this by using areas , or address spaces . This allows connnon 

segments to be swapped in and out of store in one operation . The model 

diff ers vas tly f rom s chemes such as Ples sey 250 , Chicago Magic Number 

Computer , Int el iAPX432  and CAP which use a segmented store . 

1 •i•1•1• Virtual Store Management 

The only schemes which use virtual addresses in a s imilar way to 

the model are Gl igor and B ishop . We showed in Chapt er 4 that both of 
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these virtual spaces can become fragmented af ter use . The model avoids 

this prob lem by allocating vi rtual space in f ixed size units . 

1·�·1·�· Small and Large Segments  

We showed in some detail the dif f iculties experienced by other 

capab ility systems in supporting both small and large s egments . The 

model uses a memory organi zat ion which allows most of these problems to 

be avoided or minimized ,  al lowing it to be far more eff icient than the 

sys tems dis cussed in Chapter 4 .  

1·�·l·l · Addres s Trans lation 

We showed that the model requires an associative address 

translation scheme to operate efficiently . Two processors which provide 

such a scheme are MU6-G and the IBM Sys tem/38 . In Chap ter 7 we wil l  

propose another ass ocia tive mapping technique which compa res f avorably 

with these two . 

5 . 7 .  C onclusion 

This chapter has def ined a hardware model for implement ing a 

capab ility bas ed address ing scheme . Many thes es conclude at this s tage 

without demonstrat ing the effectiveness of  their solution . We were 

concerned that the model should be imp lemented to show that the solution 

is prac tical . Unfortunately , in achieving such an implementation , we 

faced two problems . 

First , funds had to be found to produce this implementation . 

Second , time had to be found to produce a working p rocess or . The next 

chapter proposes a 100del which allowed a working implementation of the 

hardware to be built both cheaply and quickly . Chap ter 7 then applies 

this model to the capab il ity address ing scheme to produce a capab ility 

bas ed computer sys tem . 
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6 .  An Architectural Enhancement Technique 

In Chap ter 5 we proposed a hardware model which can be used to 

support many different sof tware struc tures , particularly those of the 

MONADS proj ect . It was particularly important that these ideas be 

imp lement ed as the internal struc ture of a new processor ,  and not remain 

unt es ted . It was also important that the MONADS sof tware group could 

have a capab ility bas ed computer sys tem to use for the development of 

their so f tware s truc tures and ideas . 

Many new ideas are 

concep tual level and 

of ten only des igned and documented at a 

are never actually imp lement ed as the bas ic 

s truc ture of a new processor , e .g . the Chicago Magic Number Computer 

( Shepherd , 1 968 ; Yngve , 1 968 ) , Gligor ( 1 978 ) , and B ishop ( 1 9 77 ) . 

Unfortunat ely , many maj or des ign flaws are not discovered unt il an 

a ttemp t is made to imp lement the des ign . Moreover ,  some designs cannot 

be implemented at al l .  Thus , a real implementation determines both that 

the ideas are bas ically sound and that they can be eff ic iently b uilt 

with the avail ab le techniques . The problem faced by the author was how 

to demonst rate the effec tiveness of the capab ility reg isters , both 

cheaply and quickly , and s till produce a usab le computer sys tem . 

This chap ter compris es three main sections . The f irst examines 

some of the standard implementation techniques . The second proposes a 

hardware enh ancement model , and the third demonstrates the model by 

citing examples of some architec tural enhancements . 

In the next chap ter we describe how the technique was actually used 

to bu ild the MONADS SERIES II computer system, and to imp lement the 

capab il ity reg is ters describ ed in Chapter 5 .  

Realiz ing a New Architecture 
- --

A sys t em des igner is present ed with two al ternatives when 

a ttemp ting to imp lement a new archi tec ture . First , the architecture can 

be incorporat ed into a · to tally new comput er sys tem . This approach , 

whils t  logically the more des irable, of ten involves many more hours than 

may superf ic ially appear necessary . 

Apart  from imp lementing the ins tructions which pertain to the new 

architec ture , bas ic arithmetic and log ic instruc tions must al so be 
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imp lemented . 'nlese instructions , while concep tually simple , may occupy a 

large part of the machine mic rocode ( and/or hardware ) .  For examp le , to 

realize a general shif t instruc tion , not only microcode must be written 

but also some special hardware may need to be built ( such as a parallel 

shif ter) • 

Extra devices (such as int erfaces and contro llers ) must be 

cons tructed purely to opera te the new proces sor . Some of these devices 

may require a large amount of des ign effort ; effort which is not 

direc tly connected to the orig inal architec tural aims . Many software 

packages must then be developed , such as assemblers , compilers , loaders 

and boot straps . 

Consequent ly , the proj ect of ten grows in size and large group 

management problems are encountered . Much of this ext ra effort appears 
to be direc ted to the devices which must communicate with the processor , 

rather than to the proces sor itself . Thus , because of the ext ra effort 

involved , the full scale production of a new computer simply to test out 

some architec tural enh ancements is often not viab le in a research 

environment . 

The second al ternat ive cons is ts of modifying or using an exis ting 
, , 

computer system ( called the source architecture ) in order to tes t out 
, , 

a new architec tural design ( called the target architecture ) .  This 

approach has the advantage that the des ign time and effort may be 

dramatically reduced . Many of the features of the source processor may 

be inherited , for examp le the input-output system and the basic 

ins truction set . However , great care must be exercised to prevent the 

source architec ture f rom restricting the scope and ef fec tiveness of the 

target . 

6 . 2 .  Using � Exis ting C omputer System 

Three different techniques may be used when the target architecture 

is const ruct ed on top of  a simp ler source machine . First , an 

environment may be cons truc ted in so f tware . Second , if the source 

processor uses a microcod ed control unit , the target may be imp lemented 

in firmware . Third , the ac tual  hardware of the source processor may be 

mod ified to imp lement the targ et architec ture . 
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i·l·l· A Sof tware Emulat ion 

This so lut ion may take a number of forms . The most general is to 

produce a program ( called the int erpreter ) which interprets instructions 

for the target machine . 'lbe int erpret er emulates the fetch-execute 
cycle of the target proces sor,  and execut es target instructions by using 

small sections of source ins truc tions . Int erpret ing the new 

architec ture offers many advantages . Because the interp reter is a 

program, of ten written in a high level language , it may be eas ily 

modified . Comp lex debugging and monito ring aids may be incorporat ed in 

the des ign , al lowing the des igners to measure and j udge the 

effectiveness of the new processor . At the same time as emulating the 

target architecture , the source machine may be executing many other 

programs . 

This approach also has some maj or disadvantages . The ultimat e  

execu tion speed o f  the target processor is often far too s low to suppo rt 

realistic tes ts • Moreover , it is not always obvious whether eff icient 

hardware can later be construct ed ,  somewhat diminishing the 

effectiveness of the implementat ion . 

A sl ightly more eff ic ient sof tware emulation involves another 

d ifferent body of code ( called the Kernel ) which attemp ts to provide a 

normal source machine program with attributes from the target processor . 

Programs for the target machine are comp iled into source machine 

instruc tions . When a target machine operation is required which cannot 

be direct ly t ranslated into a short sequence of source instruc tions , a 
call to the kernel is executed , which performs the task and returns 

control to the source program . 

Whilst fa r more eff ic ient than an int erpreter , the kernel soluti�n 

tends to highl ight the architectural features of both the source 

processor and the target , of ten with dis as trous effects . ( Such an 

examp le is found in CAL (Lampson and Sturg is ,  1 9 76 ) ) .  Moreover , this 

technique may not be able to manage a target machine which is 

dramatically diff erent in design from the source . Thus , a target 

program may degenerate mainly to kernel cal ls and appear the same as an 

interpretive solution . 
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Because many source ins tructions may be requi red to emulate a 

target instruc tion , the speed of the kernel is often far too s low to 

suppor t a realis tic tes t environment . Many dif ferent types of kernel 

have been written . A good review is found in Rosenberg ( 1 979 ) . 

A common disadvantage is that bo th the kernel and the interpreter 

of ten occupy large amounts of memory and may reduce the space ava ilab le 

for user programs signif icant ly . 

The advantages of these so lutions are mos tly logical . An 
interpretive  solution can usually emulate the target architec ture 
success fully . The disadvantages are OX>s tly practical . Poor execution 
speed o f ten makes the model useless . 

i·1·1· A Firmware Implementation 
-

Another technique used is to emulate the target archit ecture in 

firmware ( or microcode) . This solution is clearly only applicable if 
the source machine uses a microcoded control unit and possesses a 

writab le control s tore . 

The int ernal microcycle of most processors is several times fas ter 

than their fetch-execu te cycle . Consequently , target machine 

instruc tions can be much more eff icient ly emulated with microcode than 

with software . Because new instructions can be p laced in writab le 

control store , the processor can continue to execut e normal source 

machine p rograms at the same time as target programs . 

Unfor tunately , mos t  processors provide only a small writab le 

control s to re and , more importantly, a limited number of uncommitted 

operation codes . Thus , it is usually diff icult to microcode all of the 

opera tions required by the target machine . 

Even when suff icient s tore and entry points are available ,  this 

technique of t en encounters another important problem • Many target 

ins truc tions may implicitly require s torage space , which mus t  be 
provided by the source machine mains tore . (An obvious examp le is the 

implementation of a virtual memory sys tem,  which requi res page tab les in 

order to t rans late address es ) .  In many cases the fact that target

operations are implemented in microcode may not be suff ic ient to make 

them efficient . The operations may be limit ed in speed by the time 
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taken to scan or search various data struc tures which , if built  into 

hardware , would have us ed much f aster s tore and s earching s t rateg ies . 

(Examples of such an address translat ion sys tem are found in Belgard 

( 1 9 76 ) , Cohen ( 1 973 ) , Tanenbaum ( 1 979 ) , D 'Hautcourt-Carrette ( 1 97 7 )  and

Sit ton and Wear ( 1 974 ) . 

In addit ion , the s truc ture of the micro instruction is usually 
des igned for the source ins truction s et ,  not the target . Consequently , 

it is of ten quite diff icult to wri te the target microcode on the source 

machine . 

Thus , a firmware emulation , whils t much more eff ic ient than a 

kernel or int erp retive solution ,  is often still too s low to p rovide a 

usable sys tem .  Moreover , the implementation often leaves too much of 

the source proces sor architec ture vis ible ,  af fecting the attributes and 

view of the target architecture . 

In the situation where speed is important , the only solut ion may be 

to provide special hardware . 

i·1·1· Modifying the Source Hardware 

The third possib ility is to modify the hardware of an exis ting 

machine . Clearly , this technique can of fer the best performance . 

Tradit ional ly ,  however , this method is only used when the target 

architecture does not differ greatly from the source a rchitec ture . 

Small changes such as small modif ications to the instruction set , 

adding virtual memory hardware ( an examp le is found in Hagan ( 1 977 ) )  

and det ec ting extra error modes (such as those in HYDRA) , have been done 

successfully . Each of these changes , however ,  has not int roduced maj or 

archi�ectural  enhan."'ements to the source processor . 

In fact , it is clear that 

emulation environment are not 

hardware of an exis ting machine . 

the maj or chang es 

always possible 

poss ib le with 

when modifying 

an 

the 

The technique is often rej ected because it may al ter the 

environment f or normal source machine p rograms as well as target machine 

machine programs , dedicating the use of the source machine . 

In sp ite of the d is advantages and p ractical d iff icul ties a number 

of architectura l changes have been achieved by hardware changes . The 
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next section examines some of  the more common hardware mod if ication 

schemes used . 

6 . 3 .  Hardware Modif ications 

Many specif ic changes are possible when the processor des ign is 

mod if ied . These depend up on the internal implementation of the 
processor its elf , and wil l  not be cons idered further . This section 

describes one of the most general mod if ication techniques us ed . This 

requires an examination of the general struc ture of many computers • 

.§. ·l ·l · Process or C onfigurat ions 

Mos t  computer sys tems can be divided into two main parts , the CPU 

and the memory , connected usually by a ' clean ' set of interface signals ,

shown in Figure 6 . 1 .  

The signal s involved in the interface can typical ly be divided into 

three sections ; addres s es , data and control/handshaking information . 

The CPU communicates with the memory mos tly by read and write commands .

When the CPU executes a read operation control information is generated 

together with an address pat tern . The CPU may then wait for data , 

which is p as s ed back over the data pathway . When a write is executed 
data is sent with the address  to the memory tmit 

The connections between the C PU and memory section may be 

general ized to form a sys tem bus wh ich connects to devices other than 

the memory . 

<-handshaking & control-> 
Processor  Memory &

ADDRE S SES > Peripherals 
Control &
Registers < DATA > 

Figure 6 . 1  - a typical processor configuration 
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It is the ' clean ' nature of the interface between CPU and memory

which is o f ten emp loyed when architec tural enhancements are introduced . 

i·1·1· Breaking the Address Bus 

One technique used to enhance the architecture of the source 
proces sor is to int roduce ext ra log ic into the address pathway between 

the CPU and the memory , shown in Figure 6 • 2 .  

If the archi tec tural enhancement is the add ition of a virtual 

memory sys tem, then the extra log ic may be used to modify , or trans late , 

the processor addres s es before they reach the memory . Such a sys tem is 

des cribed in Hagan ( 1 97 7 ) . 

If , however , the target architecture is to include more registers , 

these may be as signed address es and p laced in the extra logic . Read and 

write commands direc ted to these addresses are ' sto len ' by the extra

logic and may never reach the memory . 

The extra log ic in some sys tems appears to the source processor as 

a block of  memory , but the data in the locations is calculated by the 

logic rather than being the previously saved values . Such a sys tem is 

described in Wallace ( 1 978 ) to imp lement a s tack mechanism and 

address ing reg is t ers . 

Many sys tems have been cons tructed wh ich place special signif icance 

upon certain addres s es within the address space . Many rely on special 

addresses for performing I /O operations (such as the PDP 1 1  and VAX 

comput ers ( Digital Equipment Corp . ,  1 979 ) ) .  All , however , only ' steal '

a l imited number of address es for such operations , and perform very 

specif ic ope rations . None of these sys tems make dramatic architectural 

-Address-> a.------Address----> 
c .p  .u . EXTRA MEMORY 

<--Data----> LOGIC <-----Data-------> 

<-Control-> <-----Control----> 

Figure 6 . 2 - b reaking the address bus 
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chang es . Such sys tems do , however , suggest that treating the address es 

from a source processor in a special way may be used as a general 
mechanism for enhancing an existing machine architec ture . 

section proposes such a model . 

6 .  4 .  An Enhancement Model 

The next 

The sys tems dis cussed in the las t section used the processor  

address es in  various ways . If rather than using a dedicated p iece of 

extra log ic , another fast  processor is placed in the address path , a 

general mechanism for dramatic architec tural enhancements is created . 

In such a scheme , the processor addresses are treated as ins tructions by 

another , small fast proces sor , the intermediate proces sor, as shown in 

Figure 6 . 3 .  These new ins truct ions may be tailored to the target 

architecture . 

The intermed iate processor reinterprets all of the CPU addresses , 

·and executes them as though they were instructions . Some may be s ent t o
the memory unit , whilst others may be used internally .

The i ntermediate p roces sor appears as a p ie ce of memory to the 

source processor . When a memory reference occurs , the source processor  

is  suspended and the intermediate proces sor is s tart ed . The 

intermediate processo r then execut es the func tion associated with the 

memory address and return cont rol to the source p rocessor 

The model possesses some particularly notab le attributes . 

i) Many new operation codes are availab le ,  thus many new targ et

---Addresses-> Instruction

C .P .U .  <--Data------>

<-Control-> 
Reg is ters

Intermediate 
Proces sor 

-Addresses>

<-Data--> MEMORY

<-Control-> 

Figure 6 .3 - the enhancement model 
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operat ions may be supported . The potent ial number of codes 

availab le is the size of the address space . 

ii) Because the intermediate processor is a general processor many
diff erent targ et op erations may be attempted ,  f rom very simp le

memory references to complex data manipulation .

iii) Ext ra target architec ture registers may be located in the

s tructure of the intermed iate processor , and can be manipulated by 

read and write commands from the source processor . 

iv ) Normal memory references can be made to proceed from the source 
proces sor to the memory wi th very little delay . 

v) Comp lex target operations may be added to the source without maj or

mod if i cations to the source p rocessor hardware . Thus , the source

p rocessor may be a mainframe , a minicomputer or possibly even a

microprocessor .

vi) The new architecture is partly transportable among source

vii) 

p roces sors . Most of the ta rget architecture is hous ed within the 

intermed iate  processor itself . 

The intermediate  processor 

t ransparent ; thus it  is 

processor to execut e normal 

machine programs . 

may be removed , 

not difficult to 

source programs 

or made logically 

allow the source 

ins tead of target 

viii) The target architecture inherits all of the input /output devices ,

cont ro llers , communication system, f rame and power supp lies from

the source processor . It also inherits the bas ic ins truction set

from the source p rocessor . This vastly reduces the amount of

ef f ort requi red to implement a working target architecture .

ix) Depending upon the address interpretations it may be possible to

execute source programs on the new target machine . At  the very

least , these prog rams can execute on another source processor of
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the same type . Thus the assemblers , compi lers and loaders already 

available f or the source processor may be mod if ied to produce code 

for the target architecture . Consequently , some so f tware 
development may be avoided . 

x) Because the intermed iate processor only cons is ts of a central
proces sor unit it  may be eas ily cons tructed ,  pos s ibly from b it

slice components .  This processor is of ten simpler in des ign than
the source machine as it only imp lements those features of the

target wh ich are new .

The nex t  section will  cons ider the appl icat ion of this model and 

give exampl es of the architec tural mod if ications which are poss ible . 

6 . 5 .  Appl icat ion of the Enhancement Model

!•.2. •l• Dividing the Addres s Space into Areas 

In ord er to app ly the enhancement model , the address space of the 

source process or must be divided into areas , and the new target 

functions mus t be ass igned addresses from an area . Whilst an arbitrary 
division is allowed , two key logical areas can be identif ied ; the code 

area and a special area , as shown in Figure 6 . 4 .

Because the fetch phase of the source p rocessor remains unmod if ied , 

an area in the address space mus t be reserved for address es which are to 

be interp ret ed as a region of code . When the source proces sor issues a 

fetch in this reg ion , the intermed iate processor returns an instruction . 

The second area can be further d ivided into the many new functions which 

the target p rocec �or mus t  provide . We wil l  now cons ider the types of 

functions that can be provided . 

f ·1·1.· Some Architectural Enhancements 

The model is capab le of a wide range of enhancements , many of which 

cannot be achieved by the emulation techniques d iscuss ed earlier in this 

chapter . We shall  now consider some examples : 
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Code 

Special 
Area 

Figure 6 . 4 - dividing the address space 

f •2. •1 •! • Adding New Regis ters . 

Three clas ses of regis ters are of ten required in a processor : data 

regist ers , address reg isters and s tatus registers . Each new register is 

held within the intermediat e processor , and is ass igned an address from 

the source p rocess or address space . The register may then be loaded f rom 

or stored into from the source processor , as though it were ac tually a 

word of store . The intermediate proces sor may treat the register purely 

as an int ernal regis ter . 

Data regis ters are the simp lest form of regis ter , and usual ly only 

require load and store operations . Addressing registers can also be 

loaded from and stored into by the source processor , but or may be used 

indirectly to address store . Status regist ers are typ ically read f rom 

the source processor and loaded from hardware control lines , such as 

interrupt masks , error f lags , timers , etc . Figure 6 . 5 shows how the 

regis ters may be integrated into the address space of the source 

proces sor , where Ar is the address of the new reg ister in the address 

space . Data may move between the source processor and the register via 

the memory location allocated for the register , and may al so move 

between the intermediat e  processor via internal data pathways . 

f •.2 •1 •1 • Adding New Inst ructions .

New ins tructions , which are 

address is ref erenced , may be 

CHAPTER 6 

ac tivated when a particular source 

imp lement ed within the intermediate 
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t data 
Ar 
� 1----------+·----------> I  register ! 

.._ ___ .,_. <---- . . 

data t 
data 

address space 

1 
intermed iate 
processor 

I 

Figure 6 . 5 - adding new regis ters 

processor . Thus , the source address appears to act as an ins truc tion 

word for the intermed iate  processor . A range of addresses may be 

allocated , all of which activate the same intermediate instruc tion , but 

wh ich use some bits from the source address to specify an operand . This 

scheme is shown in Figure 6 . 6 .  In this d iagram Ai is the address of the 

new ins truc tion , and the cons tant n can def ine a frame of addresses 

rela tive to  the instruction in the address space . The instruc tion 

address may then be converted into a microcode entry point in the 

intermediate p rocessor , which def ines code to interpret the new 

instruction . Examples of ins tructions are : 

- An instruc tion which manipulates some of the intermediat e  proces sor 

regis ters , e .g .  add 1 to regis ter n .  This type of ins truction is totally 

execut ed within the intermediate processor . 

� 
Ai
� 
t 

--..

· l_n f--; 
ins t  operand 

---------+--------> 
.,_ ___ _,. entry 

p'bint in 
microcode 

address space 

intermed iate  
p roces sor 

microcode for 
instruc tion 
for Ai 

Figure 6 . 6 - adding a new instruction 
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- A long move instruc tion ,  which us es two address ing reg is ters , and a 

counter reg is ter , and moves data around the store . Tilis instruction 

iteratively address es store until the b lock is moved . 

- A cont ex t switch instruction , which changes processes within the 

intermediate processor . 

� ·1·1·1· Adding New Addressing Modes . 

The bas ic address ing modes of the source processor may be augmented 

by new modes , provided within the intermediate proces sor . Some examp l es 

are : 

Indexing . 

Certain addresses within the address space may cause a mainstore 

address to  be calculated from a combination of addressing reg isters . 
When the lo cation is referenced , the intermed iate p rocessor may 

calculate a s tore address , retrieve the data ,  and return it to the 

source processor . Th is dynamic address calculation may be used to 

provide an index mode , which may not be present in the source 

architecture . An example of index mode address ing is shown in Figure 

6 . 7 . In this diagram Aa. def ines the location of the new addres sing mode 

in the address space . If this location is referenced then the 

intermediate proces sor forms a main memory address by adding the 

cont ents of an address ing regis ter and a modif ier regis ter together . 
This effec tive address is then us ed to ref erence s tore . 

Stacks . 

Certain modes may use an addrecs ing regis ter to reference s to re , 

and then mod ify the contents of the register . This operation cou ld 

provide push and pop ins tructions . St ack frames may al so be def ined 

relative to a s tack register,  by res erving a number of locations within 

the source address space . An examp le is shown in Figure 6 . 8 .  Separate 

address es are assigned f or push and pop operations . If either of these 

addresses is referenced the value of  the s tack pointer regis t er is 

mod if ied , and a main memory address is generat ed . If a f rame relative to  

a frame point er is requi red , the cons tant n is added to  the value in 
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Figure 6 . 7 - index mode address ing 

this reg is t er in order to form a main memory address . 

Cons tants . 

If part of the source processor address is returned as data,  by the 
intermed iate proces sor , then a number of constants may be referenced 

without read ing the ma.instore . This mode of address ing is of ten called 

iuunediate mode . An examp le is shown in Figure 6 . 9 .  The intermediate 

processor returns the value i when the locat ion Ai is read . 

� ·1 ·1 ·i • Adding ..! Virtual Memory . 

Because the source processor addresses are iso lated from the 

mainstore , the intermediate processor can develop virtual rather than 

push 
pop 

s tack 
f rame 
: 

v 

. . 

address space 

CHAPTER 6 

>I address 

frame 
;::.. address 

+l -----> main memory 
address 

+ n ---> main memory 
address 

Figure 6 . 8 - s tack address ing 

AN ENHANCEMENT MO DEL 



- 136 -

t 
Ai 
� 

i 
<------------------
data 

address space 

Figure 6 . 9 - cons tant address ing 

real address es . Special t ransla tion hardware may then be placed between 

the intermediate processor and the memory subsystem .  

i·.2.·1·1· Expanding the Address Size .

The size of the address ing regis ters within the intermediate 

proces sor may be many times the size of the source processor address . 

Thus , the effective address space size of the target architecture may be 

much larger than that of the source p rocessor . 

i·1·1·i· Detecting Errors . 

The inte rmediate processor may detect many error cond itions , e .g .  

removing too many items from a stack, addressing beyond the top of a 

s tack , address ing memory which is pro tected , et c . These may then be 

repo rt ed to  the source proces sor . Control reg is ters may be us ed to 

describe the nature of the error . 

6 . 6 .  Conclusions 

In this chapter we have developed a general mechanism for expanding 

the power of an existing computer . The solution is both cheap and 

eff icient . By considering some examples we have shown that the model is , 

at least theoretically, realistic . 

The next  chapter will  use this technique to expand the architecture 

of a very simp le mini-computer and , at the same time, imp lement the 
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address ing s truc ture proposed in Chapter s .
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7 .  The MONADS  SERIE S II Sys tem - An Implementation 

Chap ter 6 des cribed a technique for enhancing the architecture of a 

primitive source processor .  In this chap ter we show how the enhancement 

model has been applied to the imp lementation of a capab ility based 

computer system according to the design proposed in Chapt er 5 ,  us ing a 

primitive source minicomputer , an HP 21 00A (Hewlett Packard , 1 9 7 2 ) . 

Sec tion 1 def ines the aims of this system, which is known as the 

MONADS Series II computer . Section 2 describes the HP 2 1 00A source 

processor hardware . Sec tion 3 des cribes the intermediate p roces s or 
developed to expand the HP 2 1 00A .  Sect ion 4 def ines the MONADS II 

address transla tion hardware , and compares it to other similar schemes . 

Section 5 comments on the modif ications made to the HP 2 1 00A processor . 

Section 6 describes the software packages developed during the 

construction of the MONADS II sys tem .  The chapter concludes by 

demonstrati ng that the MONADS II computer system fulf ils its primary 

aims . 

l•l• The MONADS SERIES II System - Primary Aims 

The MONADS I I  hardware has a number of maj or aims : 

( 1 )  To demons trate that the capab il ity regis ter address ing scheme , 

p ropos ed in Chapter 5 ,  is realis t ic and can b e  eff iciently 

imp lement ed . This aim is tes ted by us ing the archit ectural model as 

the cen t re of the MONADS II addressing structure . 

( 2 )  To  provide a pilot sys tem for future sof tware development work 

on the MONADS proj ect . Because of time and f iscal constraints it 

was not possib le to produce a computer ut ility with the speed and 

power of large mainf rame computer systems . Howev er ,  the MONADS II 

sys t em is suitab ly scaled down so that it  can s till  support a 

number of  users , each developing software modules . The process or 

is cons idered a testbed for both the hardware and the software 

ideas . 

( 3 ) To demons trate that the enhancement techni que proposed in 

Chap ter 6 is both prac tical and powerful in s co pe . 
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( 4 )  To provide support ing hardware for the address ing s tructure 
describ ed in Chapt er 5 ,  in the form of a hardware address 
translat ion scheme . 

The MONADS Series II sys tem is composed of a number of key 

components , as shown in Figure 7 . 1 .  The system is cons tructed around a 

HP 21 00A minicomputer which provides al l of the bas ic comput ing 

facil ities , such as a standard instruc tion set , and an input-output 

sys tem . All of the complex address ing modes which are required by the 

MONADS architec ture are provid ed by the int ermed iate processor . This 

unit develops a 3 1  bit  virtual address ,  which is trans lated into a main 

memory address by the virtual memory manager . The current configuration 

is connected to 4 00k bytes of semi-conductor memory . The rest  of this 

chapter will examine these components in detail , and show how the entire 

sys tem fulf ils these aims . 

l·l · The HP 2 1 00A Processor 

The HP2 1 00A is typical of many 16 b it minicomputers of the same 

era , and incorporates a microcoded cont rol unit , two general purpose 

accumulators and 32k words of memory . Processor addresses are 

construc ted from 1 6  bit words , 1 5  bits of which form the memory address . 

The top (most signif icant ) bit determines whether addresses are direct 

memory address es ,  or are part of a chain of indirect addresses . 

l·l·l· The View of Memory 

With its 1 5  b it addresses , the HP2 100A can address up to 32k 1 6  bit 

words of core memory . This address space is divided into 32 lk word 

' leaves ' 1 • Thus , the memory address is logically composed of a 5 bit

leaf number , and a 1 0  bit within leaf displacement . The leaf with a 

number of zero is called the base leaf , and the leaf number in which an 

instruc tion resides is cal led the current leaf . 

1 The HP2 1 00A l iterature ref ers to leaves as pages . However , we have

adop ted the pres ent terminology , preferring to use the term ' ' page as a

unit of virtual memory transfers . 
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dma link 

HP21 00A > > -> 400k 
source > intermed iate > address -> bytes
processor > processor > trans lator -> main 

memory 

> 2 x 5Mb cart ridge 
disks 

6 809 disk > 80 Mb winchester 
controller > disk 

>D i> 1 6  channel terminals 
multip lexor 

+lock I >O 
> 16 b it link to VAX 1 1 /780  

Figure 7 . 1 - the MONADS Series II  computer system 

If a memory address is used directly , the contents of the location 

are treated as data . However , if the address is used indirectly ,  then 

the contents of the location are treated as an address .  In general , 

arb itrarily long indirect address  chains may be created in memory . 

- 7 . 2 . 2 .· The Ins truction Format - - - --
Instruct ions are divided into two main clas ses , the memory 

reference group and the register and I /O group . Most instructions are 

held in 1 6  b its . The format of the memory reference ins tructions are as 

follows : 
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indirect bit 
function code 
base or current leaf b it 
within leaf displacement 

The function code specif ies which operation the instruction is to  

perform . (Val id functions are load , store , or , and , add ,  compare , 

increment , j ump ,  j ump sub rout ine and exclusive or ) . Some functions may 

be app lied to either of the processor accumulators . The ins truction 

operand is specified by the address f ield . Because this f ield is only 1 0  
bits in length , the ins truction can only address one leaf o f  store . The 

base leaf or current leaf bit determines whether the 10  bit address is 
used within the base leaf or the leaf in which the ins truction res ides . 

To al low an instruction to ref erence all of the store , an address 

may be p laced in a word of memory ( called a link) and used indirectly , 

by s etting the indirect b it of the instruction . The proces sor will 

follow an indirect chain of addresses until a word is found with a zero 

top b it . The last address in the chain def ines the effective address of 

the operand . The use of 10 bit addres s fields allows a program to 

reference most of its data with 16 bit instruct ions and to use links 

only when the data is not in the base or current leaf . 

l·1·1 · The Input-Output C!/O )  Sys tem 

The HP2 1 00A processor supports a primitive input-output system 

which ·  allows a p rogram to communicate with any of 64 devices ( although 

some of these have special meaning ) .  The bot tom 6 bits of an I /O 

instruction specify which device the ins truction is addressing . 

Trans fers of 1 6  b it data words may be directed to or from a device under 

progra·m cont rol  • 

l·l·i· The Direct Memory Acces s System (DMA) 

Certain devices , such as disks , require interword s ervice times 

fas ter than a programmed I /O loop can operate . To communicate with these 

devices , the proces sor p rovides two autonomous direct memory access 

channels .  Each channel ,  once set up , can trans fer a block of data  

between memory and a device without p roces sor intervention . The DMA 

sys tem operates by s tealing cycles from the processor when it requires 
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attention . 

1·1·1· The Control System 

The HP 2 1 00A is cont rolled by a micro-programmed state ma.chine . The 
processor can be equipped with 256 x 24 bit words of bas ic instruction 

set , 256  words of extended (f loating point ) ins tructions , and up to 5 1 2  

words o f  writab le cont rol store . The writable cont rol store appears as 

part of the I /O sys tem, and can be read from or written to under program 
cont rol .  

l ·l·�· Int errupts 

The HP2 1 00A supports a vectored interrupt sys tem . When an interrupt 

occurs , control is trans ferred to one of 64 base leaf memory locations , 

any of which can then trans fer cont rol to an interrup t service routine . 

Interrup ts are normally processed at the end of an HP 2 1 00A instruction . 

1·1· The Intermediate Process or

This section des cribes the main features of the intermediate 

processor designed and imp lemented by the author to ext end the 

functionality of the bas ic HP2 1 00A .  

l ·l·l.· Functionality 

1·1·!·.!.· Privilege Modes 

In order to protect sens itive information within the intermediate 

processor , the hardware may operate in one of two modes : kernel mode or 

user mode . 

I� kernel mode two cond it ions are created . Firs t , all code is 

fetched f rom a special code address space , which ho lds the kernel 

program . Se cond , the HP2 1 00A may modify any of the intermediate 

processor registers . Kernel mode may be  entered in one of two well 

defined ways . First , every interrupt causes the processor to enter 

kernel mode . This is necessary because the kernel software contains the 

interrupt  service routines . Second , a special HP 2100 micro ins truc tion 

can s et the processor into and out of kernel mode . Thus HP 2 1 00A 

ins tructions may enter kernel mode to addres s  privileged regis ters . 
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In user mode code is fetched from the current so ftware sub sys tem,  

and only certain int ermediate processor regist ers may be address ed . 

l·.1·!·1· Address ing Struc ture

The intermediate processor enhances the HP 2100A architecture in the 

following ways . First ,  the s ingle 32k address space in extended into a 

virtual space of 2-3 1 words . This cons is ts of 2�1 6  separate address 
spaces , in the s ense described in Chapter 5 ,  each of  32k words . While a 

full scale capab ility sys tem would ideally require more and larger 
address spaces (e .g . 2-32 by 2�32 ) , the MONADS II address ing range is 

suff icient to demons trate the princip les involved and to support a pilot 
system . 

Second , the int ermediate processor supports 16  sets of new 
registers , and so can eff iciently support process-swi tching between 16  

processes . Each regis ter set includes 16  standard capab ility reg is ters , 

s ix sp ecial capability regis ters intended to address code,  constant s , 

base leaf links , and scalars on the stack (there are three registers for 

this task) , eight modifier registers for addressing relative to 

capab ility reg is ters , and eight associated counter regis ters which can 

be used for  effic ient loop control . In addition , various cont rol 

regis ters are provided to support timers , interrupt handling , etc .  

l•.1•!•1•!• The Capability Regis ters 

The intermediate processor provides each of the 1 6  proces ses 

executing on the HP 2 1 00A with 16 capability regist ers f or addressing 

segments of memory . Each regis ter is composed of 4 

follows : 

word 1 :  Address space number - 16 b its 
word 2:  Disp lacement within address - 15 bits 
word 3 :  Length of segment - 16 b its 

16  bit words , as 

word 4 :  Access b its - read , write, kernel , invalid - 4 b its 

The address space number def ines one of the 64k byte addres s ing 

regions in virtual memory . The displacement is used to mark the s tart of 

the segment in the address space . The length field marks the end of the 

segment in the address space . The read and write b its determine whether 
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the segment may be read from or written into . The kernel bit specif ies 

that the s egment may only be address ed  if the processor is in kernel 

mode . The invalid bit prevent s the reg is ter from being used , and is set 

when a r egis ter is uninit ialized . A capability register can only be 
loaded when the processor is in kernel mode (e .g . executing a load 

capability regis ter instruc tion) and thus its contents are protected 

from corrup tion . Because the HP 2 1 00A only has 16 bit data pathways , four 

write cycles are required to s et up each register . The HP 21 00A microcode 

provides a load capab ility regis ter ins truction of the type discuss ed in 
Chap ter 5 .  

A capab ility regis ter may be used as an operand of any of the 

HP 2 1 00A memory reference ins tructions . When used,  the 3 1  bit address is 

treated as a paged virtual a�dress .  The displacement f ield is checked 

agains t the length f ield ,  and an interrupt is sent to the HP 2 100A if a 

violat ion occurs . If the mode of access is contrary to the read or write 

bits , or the kernel bit is  s et and the p rocessor is not in kernel mode , 

or a regis ter is inval id , an interrupt is sent to the HP 2100A . 

The d isplacement held in the reg is ter may be modif ied by two 

different methods . In the first , a small cons tant offset in the range 0 

� 7 may be dynamically added to the value in the register . Alternatively 

a value held in a modif ier regis ter can be used to index into a segment 

def ined by a capab il ity register . 

l·1·!·1·1· The Modifier Regis ters 

The intermediat e processor provides each process with eight 

mod if ier regis-ters . A modif ier may be combined with a capab ility 

regis t er to dynamically address data relative to the capab ility . The 

mod if ier may be treated as �ontaining either a word off  set or a byte 

offset . If  a word off set is specif ied , the cont ents of the displacement 

fie ld of the capability is added to the modif ier and , subj ect to checks 

on the length field and the access  field , a word of data is ref erenced . 

If a byte o ffs et is s pecif ied , the modif ier is converted to a word 

off set and the des ignated byt e  is transferred to or from store . 

Mod if ier reg ist ers are particularly useful f or s earching and 

scanning through segments of store . A set of associated counter 

registers assists in counting loop iterat ions . 
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1·1 ·1.·1·1 · The Counter ·Registers 

Associated with each of the 8 mod if ier reg is ters is a counter 
register . These regis ters may be set to an initial value and us ed as 

loop cont rol regis ters . Special ins tructions are provided by the 

intermed iate processor for manipulating a mod if ier and as sociated 

counter as fo llows : 

( 1 )  set the counter regis ter to a value 
s et the mod if ier to zero . 

This ins truc tion is useful for ini tializing a loop count er . 

( 2 )  add 1 to a count er register 
add 1 to a modif ier regis ter 
return the contents of the counter . 

This ins truction may be used for keeping track of the number of 
loop iterations performed whil st stepp ing through a segment . 

1·1·1.·l•i• Extra Capability Regis ters 

Special capab ility regis ter s are provided for address ing code , a 

frame of s calers on the stack , a set of cons tants and the HP 2 1 00A 
address links . These items are addressed by extra capab ility regis ters , 

rather than the 16  general capab ility registers , because of 

peculiarit ies of the HP2 1 00 proces sor and for ef f iciency reasons , and 

consequent ly d iffer s light ly in format to the general capability 

regis ters . 

The regis ter used for address ing code is formed by the 

concatenation of the HP 2 1 00A program counter with a code address space 

regis ter . The code regis ter dif fers from the capab ility regis ters by not 

checking the bounds of the ref erence and also by not checking the access 

rights . When the processor was f irst built ,  the software group 

as s ociated wi th the MONADS proj ect decided that all the code of a 
subsys tem should res ide in a large single unit within the code addres s 

space . Consequently , bounds checking was not required , and could be 

safely removed . Subsequent work has revealed that this is not 

sat isfactory , and that code shou ld be cons truct ed from p rotected 

segment s .  In the new scheme , the code address space regis ter would be 
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formed from one of the general capability registers . Similarly , because 

no mechanism allows a program to write to its own code address space , 

there is no need to validate the access rights . Thus , code is not 

addressed by the capab ility regis t_ers more for his torical reasons than 
any logi cal reasons . 

Three capab ility regis ters are used for address ing the process 
stack ;  one def ines the top of the computational area, and the o ther two 

def ine local variab le stack frames . Whilst logically the same format as 

the general capability regis ters , these three registers differ s lightly 

in phys ical format . Because all requi re the same address space number , 

namely the current stack address space number , they may share the one 

regis ter . 

Another capab ility regis ter allows a program to directly address up 

to  5 1 2  constants without the need for a modif ier register . Because only 

a small cons tant off set may be specif ied from a capab ility regis ter 

( i . e . 0-7 ) , modif ier registers must often be us ed to address scalers in 

large segments .  The offset of the scaler can be held in the cons tants 

segment , which can then be addressed via the special constant capab ili ty 

regis ter . Because of the special nature of these cons tants , a full 

capability regi ster is not required . In a processor which allowed a 

larger cons tant off set relative to the start of a segment this 

would not be required , and is only need ed because of 

address ing range of the HP2100A source processor .  

regist er 

the small 

The last special capability register allows a program to address up 

to 5 1 2 address links . Thes e links are required by the HP 2 1 00A to address 

all of it s 32k word address space , and are usually only needed when an 

ins truction wishes to trans fer control out of the leaf in whic� it 

res ides . Because of their special signif icance , and the way that they 

are addressed , a general capab ility regis ter is not required . In a 

processor which did not require address links this regis ter would not be 

needed . 

1·1·!·1·1 · Summary 

The intermediate processor allows a program to address the virtual 

space by e ither the 16 capab ility regi sters or the s ix extra capab ili ty 

regis t ers . No other address ing mechanisms exis t . The six extra 
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addres s ing regis ters diff er only in physical format f rom the 16  

capab ility registers , mos tly because of  the address ing res tr.ictions of 

the HP 2 10 0  • Accordingly , the intermediate processor may be considered a 

real imp lementat ion of the model cited in Chap ter s .  The processor also 

po3sess es a number of other features which ass ist the MONADS software , 

which we will now describe . 

Z ·l ·l ·-� · Process Changes 

All of the regis ters des cribed so far are held in an internal 

" ·?-gister f ile of the intermediate processor . Most of these registers 
pertain to a part icular process . . .  · 

In an operating sys tem which app lies the in-process technique even 

to j ob management (Ramamohanarao , 1 9 80) , such as the MONADS system, the 

number of processes present at any time is quite small , ·as· no other 

sys tem process es exist . Consequently ,  the MONADS II hardware currently 

provides 1 6  sets of regis ters (although this number is eas ily expanded ) .

When · a  p rocess swi tch occurs , an intermediate p rocessor instruction 

switches all of the regis ters , allowing very eff icient process changes 

to be execut ed . 

l·l·l·.i· The Kernel 

Embedded in the intermediate processor is support for the MONADS 

hardware kernel (Rosenberg , 1 979 ; Wallis , 1 980 ) . This body of code is 

respons ible for providing high level support functions for the sof tware , 

for managing I /O func tions , for memory management and for responding to 

int errupts . The kernel code is ac tivated when the processor enters 

kernel mode . The intermed iate p roces s or as sumes that the kernel code is 

held in dddress space number 1 ,  and a software convent ion dedicates 

process register s et zero to the kernel . 

l·l·!·1· Control Registers 

The intermediate process or includes a number of other regis t ers 

which are required by the operating system .  A mask regist ers returns the 

cause of the las t violation int errup t . A number of time regist ers 

provide the time s ince boots trap and p rocess time limits . A reg ister 

which counts the number of ins tructions executed ass is t s  in monitoring 

proces s behaviour . 
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l ·l ·l·�· Additional Features 

Whilst we have now des cribed the most important features of the 

intermediate p rocessor ,  a number of other supp ort features are also  

provided . These are des cribed in detail in Appendix A.  In addition , a 

large amount of HP 2 1 00A microcode provides instructions , including load 

capab ility reg is ter , and these are dis cussed in Wallis ( 1 980 ) . 

1 ·1·1 · Addres s Mapping 

It will be recalled from Chap ter 6 that the technique proposed in 

the proces s or enhancement model for address ing extens ions to the source 

hardware (e .g . capab ility regis ters)  involves sett ing as ide certain 
address es in the source p roces sor

,
s address space which are 

reinterpret ed by the intermediate processor . 

The address mapping calculations are performed on a 1 6  bit HP21 00A 

address , c onstructed f rom the 1 5  bits word address and an indirect b it 

as the 1 6 th bit . The divis ion chosen is as fo llows : 

0 - 777b 

lOOOb - 1 3 7 7b 

1400b - 2000b 

2000b - 76 7 7 7b 

76000b - 7 7 7 7 7b 

frame relative to cons tant capab ility register 

frame relat ive to stack capab ility regis ter 1 

frame relative to stack capab ility register 2 

code space , relative to code capab ility regis ter 

special control leaf . This leaf contains access 

pathways to all of the MONADS II regis ters and 

address ing modes 

lOOOOOb - 100 7 7 7b frame relat ive to links capab ility regis ter 

1 0 1 000b - 1 7 77 7 7b ind'irect forms of address es l OOOb - 7 7 7 7 7b 

Note : The charac ter 
,
b

, 
denotes the use of the octal 

number system .  

Us ing this allocation ,  the HP21 00A memory reference ins tructions 

can easily address the cons tants , links and s tack f rames by s et ting the 

base leaf bit to zero . To simp lify addres s ing the special control leaf , 

the HP 2 100A has been mod if ied so that any ins truction with the current 
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leaf bit set , except the jump ins truction , produces an address in the 

special control leaf rather than the current leaf . Thus , the 

base/current leaf bit of the ins truction is reinterpreted as a base or 

special leaf b it . Because it is not sens ible for data instructions to 

address the code space , the current leaf mode is only required for jump 

instructions . In addition ,  the special cont rol leaf , like any leaf , may 
be addressed via a link word . 

The interpretations of the addresses within the special control 

leaf vary great ly , and are found in Appendix B .  Access to all the 

capab ility regis ters , modif iers , counters and control regis ters is 

gained through this leaf . In addition, access to the memory via the 

capab ility regis ters and stack regis ters may be gained through this 

leaf . The next s ection examines the imp lementation of the intermediate 
processor . 

l ·l·l· Implementation Details 

l ·1 ·1 ·l · The Intermediate Processor � Structure 

The intermediate processor is based around a 1 6  bit  bi-directional 

data bus , as shown in Figure 7 . 2 .  Attached to the bus are a number of 

units , namely : 

( 1 )  Various ind ividual dedicated registers (shaded lines in 

Figure 7 .2 )  

( 2 ) A high speed arithmet ic unit  and accumulator (shaded dot s  

i n  Figur e 7 . 2 )  

( 3 )  A register f ile (unshaded in Figure 7 . 2 )  

Units may claim the bus for the duration of one microcycle , and 

either read a 1 6  b it pattern from the bus or place a 1 6  b it pat tern on 

the bus . Th e 32  bit registers are imp lemented as two , individually 

addressab le ,  1 6  bit regis t ers . The next section examines the role of 

each of the dedicated registers . 

CHAPTER 7 AN IMPLEMENTATION 



-
-

comp are 

CHAPTER 7 

. . . . 
. . . . . . 
. 
- . 

. 

. 
. 

. .  
. . . . . 

. . 
. . . 

. . .
. . . . . . 

. . . 
. . . .  

A .L .U 
. .  . . . . 
. 

. 
. 

. 

. . 
. 

. 
. 

. 
. . 

. 
. . . 

,_J 

. .
. .

. . 
. ' 
' 

I 

-

s 
h 
i 
f 
t 
e 
r 

._ 

c ons t ant 
l i s t  

-. .  
a . . 
c 
c 
u 
m 
u 
1 
a 
t 
0 
r 
f 

., 
,., 

� 

l./ 

I I I 
I 

- 1 50 -

/ ( / / / 
HP 2 1 00A MDR < 

( / 7/ / / 

f r om HP 2 1 0 0 
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manager 

F igure 7 . 2 - the int e rmediate proc e s s or st ruc ture 
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1 ·1 ·1 ·1· The Dedicated Registers 

Unlike many of the registers of the MONADS II sys t em, certain 

internal regist ers require dedicated hardware support . Consequently , 

these are not held in fas t  register memory , but are al located individual 
regis ters . Fif teen such registers exist ,  namely : 

( 1 )  An address space des criptor 

(2) A disp lacement des crip tor 

( 3 )  An access contro l des criptor 

( 4 )  Two watchdog timer registers 

( 5 )  Two instruction counter regis ters 

( 6 )  Two display registers 

( 7 )  Two time regis ters 

( 8 )  A p rocess number register 

( 9 )  The HP 2100A memory address regis t er 

( 10 )  The HP 2 1 00A memory data register 

( 1 1 )  A v iolation mask regis ter 

1·1·1·1·! ·  The Des criptor Regis ters 

The firs t three registers , the address space des criptor , the 

displacement des crip tor and the access descriptor , are used for 

address ing the virtual memory . lbey can be loaded with the contents of a 

capab ility register (held in the register f i le) and are always availab le 

for the memory manager . 

When a memory reference is reques ted , the address space descriptor 

and displacement des crip tor are concatenated to form a 31 bit virtual 

address . At the same time , the bit pattern held in the access regis ter 

is validat ed against the mode of ac cess . The b it s et of the access 

regis ter is ident ical to that of the access f ield of a capab ility 

register, and thus includes read , write,  kernel and inval id access bits . 
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l ·l ·1 ·1·1 · The Watchdog Timer Registers 

The watchdog timer regis ters are concatenated to form a 31 bit 

timer register . If the mo st significant b it is clear , the timer 

decrements its value every millisecond , until zero . When a zero value is 

reached , an int errupt is s ent to the HP 2100A . If the most s ignif icant 

bit of the timer is set , then the count is inh ib ited . This reg is ter is 

us ed to alert the operating system when a process has exhausted its time 
allocation . 

l·1·1·1·1· The Ins truction Counters 

The two ins truction counter regis ters are concat enated to form a 32 
bit .. instruction count . Each time the HP 2 1 00A enters a f etch instruction 

phase the counter is incremented . This counter is useful for monitoring 
process behaviour . 

l ·1·1·1·.i· The Display Registers 

The disp lay regis ters allow the intermediate processor to display 

1 6  b it values , in octal , on the front panel of the p ro cessor . In 

addit ion , one of the disp lay regis ters may act as an index reg is ter into 

the register f ile . 

l ·1 ·1·1·..2.· The T ime Regis ters 

The time register disp lays the number of milliseconds s ince the 

internal proces sor was initialized . This 32 bit count allows p rograms to 

accurately time events .  

l ·1 ·1 ·1 ·2· The Proces s Number Register 

The proces� number regis ter is used to select which bank of the 

regis ter f ile is made vis ib le . A context switch consists mainly of 

changing the value held in this register . 

l�l·l·l·l· The HP 2 1 00A Memory Addres s Regis ter 

This regis ter is held within the HP2 1 00A and is used· to determine 

which funct ion should be executed by the intermediate p roces sor . In 

addit ion , the regis ter contents may be placed on the internal bus . 
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1·1·1 ·1•1! • � HP2 1 00A Memory Data Register 

Like the memory address regis ter , the memory data reg is ter is held 

in the HP 2 1 00A, and may be loaded or read by the intermediate process or . 

It is this regis ter which forms the data communication pa th between the 
HP 2 100A and the intermed iate processor . 

1·1·1·1·.2.· The Violation Regis ter 

The violation regis ter ho lds a bit map in which each bit indicates 

the cause of an interrup t ,  which may be examined by the operating system 

kernel . 

1·1·1·1· The High Speed Arithmetic Unit and Accumulator 

The arithmetic and log ic unit (ALU) is attached to 

allows high speed arithmetic and logic operat ions 

between two inputs .  One of the ALU inputs is permanently 

the bus , and 

to be performed 

tied to the 

bus , whilst the other may either be connected to the accumulator ,  or one 

of seven predefined constants . The output of the ALU is returned to the 

accumulator via a shif ter . The value of the accumulator may later be 

placed onto the bus . 

A comparator is always ac tively comparing the two inputs of the 

ALU . The ALU is capable of ADD,  SUBTRACT , AND, OR operations and of 

LEFT or RIGHT shif ts . 

1·1·1·.! · The Register File 

Most of the regis ters described in section 7 . 3 . 1  (for example the 

capability registers , counter registers , etc) are held in the register 

file . When a register value is reques ted , the appropriate entry is read , 

and the da ta is p lac ed onto the bus . Those regist ers which require 

hardware as s is tance have their data copied from the regis ter f ile into 

the dedicat ed registers . 

Each bank of regis ters holds 1 2 8  x 1 6  b it values . When the proces s  

number register i s  al tered , a different bank in the f ile is made 

vis ible . When a context change is executed , those regis ter values held 

in the dedicat ed 1 5  registers are copied back to the f ile . Because the 

1 28 process own regis ters  are only logically switched , rather than 

physi cally moved , very f ast p rocess switches are pos s ible . 
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l ·1 ·1 ·1 · The Control Unit

The intermediate processor is controlled by a micro-programmed 

state machine . The cont rol store cons ists of 1024 x 24  bit micro

ins truction words , 5 1 2 of which are devoted to implementing the MONADS 

II instruction s et and 5 1 2  for debugging and diagno stic instructions . 

When the HP 2100A is sues a memory reques t ,  the HP 21 00A memory 

address register is mapped into a microcode entry p oint value , and a 

s tream of microcode is executed . When an end-of-ins truction micro

instruction is executed control is returned to the HP2 1 00A . 

Each micro-ins truction is composed of 7 f ields for controlling bus 

act ivity , ALU func tion and interrupt generation . The format is described 
in Appendix C, along with the MONADS II microcode listings . 

l·1·1·�· Summary 

Section 7 . 3 has described the functionality and structure of the 
intermediate processor . Furth er details may be found in the append ices . 

7 . 4 .  The Memory Manager 

The intermed iate processor develops a 3 1  bit virtual address , which 

must be translat ed into a main memory address . This task is performed by 

the MONADS address trans lation hardware , which we now describe . 

l ·i ·l· Funct ionality 

l·i·l·l· Nature of the P roblem 

In Chap t er 3 we des cribed the address trans lation mechanisms 

commonly us ed for mapping paged (or pag ed and segment ed) virtual 

addresses onto paged ma.in memories . ThP schemes were divided into four 

categories : -

1 Sys tems with small virtual memories 

2 Sys tems with small main memo ries 

3 Sys tems with large virtual memories 

4 Sys tems with very large virtual memories 

The MONADS II sys tem, like other capab ility based architectures , 

belongs to  the fourth category . In Chapter 4 we explained why the 
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convent ional so lutions to category 4 
capability bas ed addressing schemes . 

sys tems 

Those 

cannot be  used 

solutions which 

in 

are 

ef fective , however , are associative address trans lation �chanisms , such 

as those  of MU6-G ( although this machine is not capability bas ed) and 

the IBM Sys tem/ 38 . Consequently ,  the MONADS II sys tem also uses an 

associative t rans lation mechanism, but emp loys a different 

imp lementat ion technique to the MU6 sys tem and the IBM Sys tem/ 38 . 

l ·l!. ·l·l · Aims of the MONAD S I I  Addres s Translation 

The MONADS II address trans lator has been des igned to fulf il a 
number of aims , as follows : -

The mechanism used must emp loy an as sociative technique , for 

reasons exp lained in Chap ters 3 and S .

The unit  mus t only hold entries for those pages of virtual 

memory ac tually pres ent in main store . This criterion reduces the 

number of ent ries required and makes the tab le size proportional to 

the size of the main memory . 

The uni t should indicate a page fault for any page not present 

in memory . 

The unit nrust be fas t . 

The unit  should be sel f contained and not require software 

suppo rt for translating addresses . This is necessary so that the 

limited power of the HP ? lOO source engine is not wasted on address 

translation . 

Operating and loading the unit should be well defined and easy 

to execute in software , again to avo id was ting the power of the 

HP 2 1 00 . 

A large associative memory is capab le of achieving all of these 

aims . However , such memory is not currently available . The MONADS II 

scheme attemp ts to emulate the functions of an associative memory and 

thus fulf il thes e primary alms . 
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l ·.i ·.!.·l · The MONADS I I  Addres s Trans lation Hardware 

The MONADS II virtual address can be interpreted as being composed 
of three f ields : 

page disp lacement . 
an address space number,  a page number and a within 

The address space and page numbers are concatenated 

to form a virtual page number,  which must be trans lated into a main 
memory page number . The displacement is removed from the virtual 

addres s and forms part of the main memory address . Any address is 

either trans lated into a phys ical memory address or causes a page fault 
interrupt to occur . 

Figure 7 . 3 shows the logical organization of the address 

translator . A high speed spars ely occup ied hash table with embedded 

overflow chains is used to emulate a large associat ive memory . Each 

hash table entry cons is ts of a valid f ield, a virtual page number f ield ,  

a main memory page number field , and a link field . 

During the translation of an address , the address space and page 
numbers are hashed to produce a llllif ormly dis tributed hash tab le cel l  

address . The virtual page number f ield of the hash tab le entry is 

compared with the virtual page number being translated . If they are 

equal and if the cell is val id ,  the main memory page number is us ed to 

address main store . The link f ield is used to form a lis t of all 

virtual address es which hash to the same cell . The link f ield is 

followed unti l  the virtual address being searched for is found , or an 

11 valid f ield

virtual main link 
page II pag e  II 

<-

Figure 7 . 3 - the address translator 
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end of chain is found . We will show later that provid ing the hash tab le 

is sparsely occup ied , i . e .  has more cells than there are pages of 

phys ical memory , this hash tab le structure emulates a large associative 
memory very ef f iciently . 

The ret rieval algorithm is the simplest to implement , and in the 
MONADS II system it is imp lement ed entirely in hardware . Consequently 

the addres s  trans lator can map addresses very eff ic iently . The 
insertion and deletion algorithms are more comp lex and are imp lemented 

in kernel sof tware . We will now des cribe the retrieval , insertion , and 
deletion algo rithms in detail . 

l·i·l·i· Retrieval

Retrieval of a mapp ing cel l  is performed by the address translat ion 

hardware , and conforms to the algorithm provided in Figure 7 . 4 .  

A cel l is used providing that it is valid and the virtual page 

number in the cell corresponds to the page number being t ranslated . An 

overflow chain is only followed if (a ) the cell is val id , (b ) an 

overf low chain is pres ent , and (c )  the list pertains to the cell its elf 

(i .e . it is not simply part of another lis t ) . Condit ion (c )  is detected 

by hashing the virtual page number of the cell and val idating it against 

the cell address . If a virtual address is not found in the hash tab le ,  

then a page fault interrup t  is s ent to the proces sor . 

l·i·l·2· Insertion

Insertion of a page mapp ing entry into the hash tab le is performed 

when a p age is brought into main store , and is handled by the kernel 

sof tware . Th e  algorithm, shown in Figure 7 . 5 ,  is sligh tly more complex 

than that of retrieval , and is divided into three cas es . First , a 

mapp ing entry is being ins erted into an empty cel l .  In this case the 

cell is loaded with the mapp ing informat ion,  made val id and the overf low 

chain terminated . Second , a mapping entry is being ins erted into a cell  

which has  an overf low chain . In this cas e ,  the entry is  p laced in a 

free cell  of the table , and is chained into the second po sition of the 

current overf low chain . Third , a mapping entry is being ins erted into a 

cell which is part of another overflow chain . In this case , the cell is 

us ed in the same way as the f irst case ,  but the o ld contents of the cell 
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{form of the hash tab le } 

type tab leentry = record of 
begin 

var : 

vpn : virtual-page-number ; 
valid : boo lean ; 
rpn : real-page-number ; 
ov : link-f ield 
end ; 

vpn : virtual-page-number ; 
rpn: real-page-number ; 
table : array [ l  • •  s ize]  of tableentry ; 

begin 

end . 

i : = hash ( vpn ) ; 
j : = hash ( tab le [ i ]  .vpn) ; 

if j <> i or 
not tab le [ i ]  .valid then error ( ' page fault ' ) ; 

while 

do 

table [ ! ]  .vpn <> vpn and 
tab le [ i ]  .ov <> nil 
i : = table [ ! ]  .ov ; 

if vpn = tab le [ i ]  .vpn 
then rpn : =  table [ i ] .rpn 
else error ( ' page f ault ) ;  

Figure 7 . 4 - the retrieval algorithm 

are placed in ano ther free cell of the tab le . The overf low chain of the 

foreign cell is then updated to point to the new free cell . 

l·i ·l.·� · Deletion Algorithm 

A map entry is deleted from the hash table wh en a page is removed 

from main s to re ,  and is  again handled by the kernel software . The 

algorithm is divided into three cases , shown in Figure 7 . 6 .  Firs t , the 

entry being deleted is in the correct cell of the table and has no 

overf low chain . In this case the cell is made inval id . Second , the 

entry being deleted is in the correct cell but has an overf low l ist . In 
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begin 

i : =  hash (vpn ) ;  
j : =  hash (table [ i ]  .vpn) 

if i <> j 
then 

and table [ i ] .valid 
begin {a foreigner is in home cell } 

{ insert new page and banish foreigner } 
{ category 3 }  

while i <> j 
{banish j }  

begin last j  : =  j ;  j : =  tab le [ j ] .ov end ; 

new : =  freecell ;  
tab le [new] .vpn : =  table [ i ]  .vpn ; 
table [new] .rpn : =  table [ i ]  .rpn ; 
tab le [ new ] .ov : =  table [ i ] .ov ;  
table [new] .val id : =  true ; 
tab le [ las tj ] .ov : =  new ; 
{ load in new page } 
tab le [ i ]  .vpn : =  vpn ; 
table [ i] .rpn : =  rpn ; 
tab le [ i ) .ov : =  nil 
end 
else 

if table [ i ]  .valid 
then begin { chain in af ter this cell }  

els e 

end ; 

CHAPTER 7 

{ category 2 }  
new : =  f reecell ;  
table [new] .vpn : =  vpn ; 
tab le [new] .rpn : =  rpn ; 
table [new] . ov : =  table [ i ]  . ov 
tab le [new] .valid : =  true ; 
table [ i ]  .ov : =  new 
end 

begin { cell is invalid } 
{ category l }  

tab le [ i ]  .vpn : =  vpn ; 
table [ i ]  .rpn : =  rpn ; 
tab le [ i ]  .ov : = .ni l ; 
table [ i ]  .val id : =  true 
end ; 

Figure 7 . 5 - the insertion algorithm 
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i : =  home ; 
j : =  hash (tab le [ i ] .vpn ) ; 
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if i <> j or not tab le [ i] .valid then error ( ' not present ' ) ; 

{try to f ind the page in the table} 

while tab le [ ! ]  .vpn <> vpn and 
table [i ]  . ov <> nil do 

begin las ti : =  i ;  i : =  table [ i ] .ov end ; 

if table [ i] .vpn <> vpn then error ( 'not present ' )
el se begin {page is found } 

if  i <> home then {page is part of list } 
{ category 3 }  

e lse 

begin 
table [ las ti ]  .ov : =  
table [ ! ]  .valid : =  
end 
begin {page is in 
k : =  table [ i ] .ov ;  
if k <> nil then 

begin 

tab le [ i ]  .ov ;  
f alse 

home cell }  

{there is a lis t } 
{ category 2 }  

table [home] .vpn : =  tab le [k] .vpn ; 
table [home] .rpn : =  table [k]  .rpn ; 
table [home] .ov : =  tab le [k]  .ov ;  
table [k]  .valid : =  false 

end . 

this case ,  

end 
end 

end 
else { category 1 }  

table [home ] .valid : =  false 

Figure 7 . 6 - the deletion algorithm 

the next entry of the list is copied into the head of  the 

liz:; t ,  and the old cel l made invalid . Third , the entry is found within 

an overf l ow  chain . In this cas e ,  the cell is made invalid and is 

removed from the chain . The cell wh ich previously pointed to the 

deleted ce ll is changed to point around the cell . 

l•i•l• Implementation Details 

The address translator is buil t  as a stand alone piece of hardware . 

The interface cons ists of an incoming virtual address , an outgoing main 

memory address and a page fault signal , shown in Figure 7 . 7 .  
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3 1  bit virtual 
address 
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--------> 
22 bit main 
memory address 

Figure 7 . 7 - the virtual address trans lat or 

l ·i ·l·l · Internal Structure 

The hardware cons is ts of three dis tinct components ,  a hashing unit , 
the hash tab le and a comparator , shown in Figure 7 . 8 .  These three areas 

are controlled by a fas t finite state machine , which performs the 
retrieval algorithm . 

l ·!!.. ·1 ·1 • Hashing !!.!!.!! 
The hashing unit accepts a 22  bit virtual page number and generates 

a 10  bit uniformly distribut ed index into the hash table . The current 

---------------------------------------•1> 
9 bit disp lacement 

hashing 
-> unit .-.--> 

1 2  
bits 

ge no 

10  
bits 

> 
trol 

- virtual pa  
link field 
access  con 
val id bit 
foreigner b 
end of cha 
phys ical pag 

f ield 

it 
in bit 

e number 

> comparator 

3 
bits 

-> 

EQUAL ? "--> page fault 
no 

,.__ > 
1 1 1 13 

bit bit bit bits 

> 
> 

> 
> 

Figure 7 . 8 - the hash tab le format 
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hashing unit as sumes a simp listic form and merely extracts the low order 

bits of both the address space number and the page number . More comp lex 

hashing algo rithms can produce a better randomising effect f or litt le 

extra cost , and may be included in later vers ions of the hashing unit  if 
necess ary . 

The hash table differs slight ly in format from the tab le des cribed 
in 7 . 4 . 1 . The unit is he ld in high speed b ipolar memory , with a cyc le 

time of 50 nano-seconds . Each cell of the hash tab le is 4 1  b its in size 
and the current vers ion of the hardware us es 1024 cells . (This size 

hash table can eas ily support the 400k bytes of  main memory at tached to 

the system, as we will see later } . The seven f ields of each cell are as 

fo llows : -

1 virtual address ident if ier 
2 phys ical page number 
3 Access field 
4 - valid f ield (V} 
5 link field 
6 f oreigner f ield (F}  
7 end of chain field (E ) 

l·.!·1·1 ·.!. · The Virtual Address Identif ier 

1 2  bits 
13 bits 

3 b its 
1 b it 

10 bits 
1 bit 
1 b it 

This field is used to ident ify the virtual address which uses the 

cell . The f ield is only 1 2  bits in length as the 10  b its used in the 

hashing function need not be saved . The identity of the virtual page 

may be recovered by combining the 10  bit cell address and the 1 2  b it 

virtual address identif ier field . All the information held in the cel l  

pertains t o  this virtual address . 

l·i·1·1·1· The Phys ical Page Number 

This field is used to hold the page number in main memory of the 

virtual page . This number is combined with the disp la cement to form a 

full 2 2  bit main memory address .  

l·.! ·1·1·1·  Access Control Field 

The acces s  control f ield governs the type of access wh ich the page , 

as oppos ed to the segments within the page , may receive, such as read , 
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write and kernel . This field is not normally required , because such 

access checks are made by the capability registers . However,  because 

some of the extra capab ility regis ters lack an access control field (for 

imp lementation reasons ) ,  one is p laced in the hash table . Consequently ,  

i f  a segment is addressed via one of the general capab ility regis ters , 

the access right s f ie ld is validated for both the capability register 

and the page of memory . If either one of these checks fails a vio lation 

interrup t is generated . Thus , if s everal segments are loaded into one 
page , the page access  must be the union of the access rights of all of 

the segments . For examp le , if a capab ility to a segment has an access 

of read only , and another capab ility has an access of write only to a 

diff erent segment in the same page , then the page must have both read 
. and write access • 

l •i ·l ·1 ·i • Valid Field 

This boolean field declares a cell to be valid . When the hash 
tab le is initialized , all ce lls are invalid . However , when page map 

entries are loaded into the tab le ,  cells become valid . The hardware 

ignores the contents of an invalid cell . 

7 . 4 . 2 . 3 . 5 . The Link Field 
- - - - - -- ---

This field contains the addres s of the next cell  in a list . The 

last cell of the list is linked to the head , so that the software can 

find the home cel l . A special field (rather than a nil value ) s igni f ies � 

the end of a list . 

l·i ·l·l·§.. · Foreigner Field 

Because the virtual address ident if ier field does not contain all 

the bits of  a virtual page number ,  it is not poss ible to det ermine 

whether a cell is part of another lis t or belongs at its current 

address .  The foreigner bit is s et if the virtual page number would not 

hash to the cell address at which the mapping information is held . 

Thus , all ce lls which are part of a l is t ,  except the head , are tagged as 

foreign cells . 
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l·i ·l ·l ·l · End of Chain Field

This boo lean field declares a cel l  to be at the end of a lis t . It 

is required be cause no special null value is reserved for the link 

field . This also allows the las t cell  of a chain to be linked to the 

top of the list and yet still be recognized by the hardware as the last 

cel l . 

l ·i ·1 ·1 ·�.  Summary 

The cel l  format in the ac tual address translator dif fers from that 

described in section 7 . 4 . 1 by the addition of the access f ield ,  the 

foreigner field and the end of chain f ield . The foreigner f ield is 

required be cause the virtual page f ield is smal ler than the size of the 

virtual page number . This op timization represents a saving of 9 bits . 

The end of chain field is required because no special null address is 

reserved . The access field is not logically required , but is present 

because some of the ext ra capability registers are not of the same 

format as the 1 6  s tandard regis ters provided . 

l·!!·l·!! · The Comparator 

This uni t tes ts the virtual address identifier f ield , and those 

bits of  the virtual page number not used by the hashing func tion,  f or 

equality . If equal , the phys ical page number field value is used as the 

trans lated page number . 

l ·i ·£ ·1· The Finite State Control Machine 

The hash tab le ,  hashing unit and comparator are cont rolled by a 

small f inite state ma.chine . This machine is des igned to follow overf low 

chains · and detect varivus page f ault conditions . The f lowchart shown in 

Figure 7 . 9 describes the cycle of the machine . 

When a virtual address requires trans lation the machine is s tart ed . 

The cycle either retrieves a main memory page number from the hash 

table, or exits with a page fault cond ition . 

l·!!•l•.i• The Sof tware Algorithms 

The algorithms used for inserting and deleting items from the hash 

table are bas ically the same as those des cribed i n  7 . 4 . 1 .  However , 
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look at cell 
pointed to by 
link field 

cause 
page 
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Figure 7 . 9 - the hardware retrieval algorithm 

because the ac tual tab le f ormat diff ers s lightly , the algorithms als o  

differ s l ightly . Tile foreign bit simplifies the steps wh ich det ermine 

whether a ce ll belongs at a particular address . The mod if ied algorithm 

only needs to tes t the value of this field , rather than hashing the 

virtual page number held in the cell . The end of chain bit must be 

tes ted rather than examining the link field in order to determine if a 
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chain has ended . The last item in a list must be chained to the head of 

lis t , so that the algorithms can find the head of any lis t . This was 

previous ly determined by hashing the virtual page number held in a cell . 

In all other respects , the algorithms remain unaltered . 

l·!!. ·J:.·l·  C ommunicating with the Hash Tab le 

To the sof tware respons ible for ini tialis ing and maintaining the 

data in the mapp ing hardware , the hash table and associated registers 

appear in a special address  space , the memory control address space 

(number zero ) . Values may be saved into or read f rom the various f ields 

of the hash tab le by executing memory reference ins truc tions on this 

address space . The contents of the hardware tables are protected by the 

normal capab ility address ing mechanism . The format of the memory 

control address space is defined in Appendix D .  

l·!!.·J:.·�· Address Spaces !, ]:_, l and !

Four of the 2-1 6 address spaces are not mapped by the hash tab le 

address trans lator ,  but by directly indexed map tables , held in high 

speed bipolar memory . Address space 1 holds the code of the kernel , 

whilst  address space 2 is reserved for the kernel data . Address spaces 

3 and 4 are res erved for the two DMA channels . Because the kernel 

itself must hand le the page rep lacement and mapping algorithms and it 

has its own locked down pages , the kernel is mapped by its own address 

translator . Whil st not st rictly necessary, this decis ion simp lif ies the 

memory management . Moreover , the directly indexed tab les can trans late 

an address in unit time , unlike the hash table in which the t ranslation 

time varies depending on the chain length . This timing consideration is 

not of cons equence f or nor�al programs , but is extremely important f or 

the DMA channels , which mus t receive immediate and fas t attention , when 

address ing a f ast  device ( such as disk) . It is also desirable that the 

kernel program execut e as fas t as is actually possible . 

Another reason for the inclusion of the s pecial map tables is that 

they signi f icant ly simp l if ied the hardware development . A base level 

address translat or was availab le, and allowed the processor to execute 
'kernel like ' tes t programs before the hash tab le unit was debugged .

The map tables for these address spaces are also referenced via address 

space zero , the format of which is found in Appendix D .  
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l ·i ·l•.2. • The P eek Operation 

For an eff icient implementation of the page rep lacement sof tware it 

is impo rtant to determine whether a page reference wou ld cause a page 

fault to occur , without ac tually generating a page fault . Whilst this 
software could execu te a software ret rieval algorithm, the hardware 

provides a fas t mechanism which al lows an ins truction to tes t for a page 

fault . This is imp lemented by means of a special bit in the access 

f ield of a capab ility regis ter , which , if set ,  causes the page fault 

int errup t f or the ref erence to be inhibited . The program may then 

examine the vio lation regis ter (see section 7 . 3 . 3 . 2 . 9 )  to determine 

wh ether an interrup t would have result ed . For security reasons , the 

peek operation only inhib its the ac tual interrup t if a fault condit ion 

exis ts ; the ref erence is s till abort ed ,  wh ether or not the peek bit is
set . 

7 . 4 . 2 . 1 0 .  Performance of the Address Translator 
- - - - - --

A potential danger with using · a  hash table is that the number of 

collis ions (or clashes ) ,  to any one cell  and the average chain length 

may become unaccep tably high . Accep table per formance can , however , be 

ob tained if the hash tab le is sparsely occupied (i .e . a low loading 

factor) . Providing that the hashing unit generat es a uniform 

distribut ion of hash keys , the expected number of probes (E ) to retrieve 

an item in the hash table can be calculated from: 

E = 1 + a/2  wh ere a is the loading factor (Morris , 1 968 ) 

The current version of the MONADS II proces sor us es a hash tab le 

size four t imes the number of pages of phys ical memory ( i .e .  a =  1 /4 ) , 
so E = 1 + 1 /8 = 1 .1 2 5 ,  which is accep tably low . In a true as sociative 

memory E = 1 .  

The hash tab le performance is also affected by the eff iciency of 

the hashing f unction , which should guarantee a uniform distribution of 

hash keys . The current vers ion of hashing uni t  uses a comb inat ion of 

low order bits f rom both the . address space number and the page number . 

Should this  function yield poor results , experiments may be made with 

more comp lex hashing functions , such as the one used in the IBM 
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System/38 ( IBM, 1 978 ) . 

Figure 7 . 1 0 shows the timing delays inherent in the Series II  

address translation unit . It  can be  s een that the minimum access time 

( t  min) will be 

t = 0 + 50 + 50 + ( 300 - 700 ) ns 
min 

= 400 - 800 ns 

On average 

t = (400 - 800 ) + (E-1 ) x 100  
av 

= 412  - 81 2 ns 

The variation in the main memory time is dependent on the cycle stealing 

of the refresh hardware f or the dynamic memories us ed . 

To maintain acceptab le performance , the value E must  be kep t  low . 

Thus when additional ma in memory is added the hash table size must be 

expanded proportionally . This increas e in s ize 

affect any o f  the f ie lds within the hash tab le . 

does  not necessarily 

If the hash table is 
divided into blocks , links may be res tricted to the ' block ' of hash

table in which they exist . 

The MONADS II virtual address s ize is only 3 1  bits in size , whereas 

other capability processors use a much larger address . If the MONADS II 

address  were expanded to 6 4  b its , the size of each cell  in the hash 

tab le would increase from 4 1  b its to 73 bits . This increase is less 

hashing 
function 
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Figure 7 . 10 - the address translator timing 

CHAPTER 7 AN IMPLEMENTATION 



- 1 69 -

s ignif icant than doubling the size of main memory , i .e .  adding a bit to 

the hash key . Thus , the address trans lator is relatively unaf fected by 

changes in virtual address size . 

Performance of the hash tab le may be optimized by overlapping the 

comparison of the virtual page identif ier in the current cell to the 

virtual page number , with the fetch of the cell linked to the current 

cell . This op timization, however ,  has little ef fect if the value E- 1 is 

low . 

l·!!.. ·1· Alternative Solutions 

Only two other computers have att empted to translate long virtual 

address es without using the conventional solutions , one is the MU6-G 

processor des cribed in Chapter 3 (which provides a hardware ass ociative 

address t ranslator unit)  and the IBM System/ 38 , des cribed in Chap ter 4 

(which uses a pair of main memory hash tab les with firmware ass istance ) • 

The MU6-G p roces sor us es a s erial as sociative memory , with an 

average retrieval time of 6 micro-seconds . This unaccep tab ly high time 

is reduced by a small pseudo-associative cache memory . The IBM 

Sys tem/38 uses a microcoded loop to search a hash tab le for a page table 

entry which , s ince the tab les are held in main memory , is bounded in 

time by the memory access  time . Again , this trans lat ion process is 

augmented by a small pseudo-assoc iative cache memory . Thus , both these 

processors require two address trans lator units , and microcode (or 

hardware)  f or loading and maintaining the cache memories . 

The MONADS II processor uses one hardware address translator , and 

needs no microcode ass istance for trans lating address es . Moreover , the 

techno�ogy used in the cons truc tion of the hash tab le ,  and thus the

cost , is little more than that of the cache memo ries us ed by the other 

two sys tems . Thus , the overall complexity of the MONADS I I  sys tem is 

less than either the MU6-G or the IBM System/38 . 

Not only is the technology of the hash table the same as that of 

the cache memo ries , but the overf low chains are contained within the 

table , without the need to address the slower associative tab les . 

Consequently, one could expect the MONADS II t ranslati on unit t o  

offer a t  leas t equal , or superior performance to the MU6-G o r  Sys t em/38 
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translation units . 

l·i·i· Conclus ions 

We have now described both the functionality and implementation of 
the MONADS II virtual address t ranslator . We have demonstrated that 

this unit  can offer equal or superior performance to the other available 

units (MU6-G and IBM System/ 38 )  and is slightly simp ler in des ign . The 

technique chosen can eas ily cater for a larger virtual address ,  without 

s ignifi cant increase in cost and no real increase in comp lexity . The 

unit fulf ils its aims ( section 7 . 4 . 1 . 2 )  

it us es an ass ociative address translation technique 

it only maps " pages of virtual memory which are present in 
mains tore 

the unit generates a page fault for any page not present in 
mains tore 

the unit  is fas t 

so ftware ass is tance is only required for performing insertions 

and deletions . Whil st these algorithms are more comp lex than the 

retrieval algorithms , they are only performed when the processor 

d isc overs a page fault , an inherently s low operation which can be 

p erformed in paral lel with the insertion or deletion 

load ing the address translator is e�sy . 

The next maj or sec tion examines the changes made to the HP 2100 

source processor . 

1•1 • Modif ications _!2 the HP2 1 00A Hardware

One of the advantages of the enhancement technique des cribed in 

Chapter 6 is that it requires very few changes to the hardware of the 

source p rocesso r . In reality , s ix small modif ications to the HP 2 100 

were required , partly for log ical reasons and partly to enhance the 

eff iciency of the processor . These changes were not comp lex . 
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l·.2.·l· � Memory Controller

The bas ic HP2100A processor is divided into three areas ; the 

central engine , the input-ou tput system and the memory unit . The lat ter 

consists of up to 32 k words of core memory , many driver cards and a 

logic controller card . The logic cont roller card generates the timing 

signals  for the core stack , and also contains the memory data and 

address registers . 

The controller card was replaced by a plug compatible , but much 

simpler ,  card which int erfaces the HP 2 1 00 to the intermediate processor . 

The memory data and address regis ters are made available to the 

int ermediate processor via an interface cable ,  which connects the 

processor to the HP2100A .  

l•.2.•1.• DMA Logic 

Unfortunately , the DMA sys tem used by the HP2100 has full knowledge 

of the timing and nature of the processor . When the DMA system requires 

a cycle , it reques ts the next processor transfer cycle , and without 

checking the respons e as sumes that the cycle may be us ed . It als o  

manipulates the maj or processor buses when transferring data . Thus , 

when the intermediate processor interface was introduced the DMA logic 

was also changed to accommodate the new logic . The DMA log ic bypass es 
the intermediate proces sor , and int erfaces directly to the memory 

manager . 

l ·1 ·1 · More Writable Control Store 

The bas ic HP2 1 00 only allows 5 1 2 x 24 bit words of writable contro l 

store . In order to eff iciently imp lement the MONADS operating sys tem ,  

the size o f  the control s tore was expanded to 4096  wc�ds . This 

mod ification was carried out by Dr . J . Rosenberg . 

l·1·i· Mapping to Top Leaf 

The HP 2 1 00 memory reference ins tructions can eas ily address the 

bas e leaf and the current instruction leaf . Whilst special address 

interpretations are placed on the base leaf , it was not sens ible for 

da ta manipulation instructions to address the current instruction leaf , 

as this only contains code in the new architecture . To s imp lify the 
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address ing of the top leaf , which has very many address interpretations , 

the current leaf data ins tructions were altered to address the top leaf . 

Only the control instructions , such as j umps ,  can address the current 

code leaf . 

l ·1·1· Interrupt Logic 

The interrup t  logic of the HP 2 100 was modif ied to allow the 

intermediate p rocessor to abort an instruction af ter a fatal error . 

This allowed page faults to be trapped correctly . In addition , the 

int errup t  vector was moved from the base leaf to the f irst leaf of the 

kernel code space . 

l•1•.§. • Asynchronous Interface 

The bas ic HP2 1 00 assumes a standard delay time for the core memory 
cycle time . Because the intermediate processor takes a variable amount 

of time to execute dif ferent sized instructions , the HP 2100 was modif ied 
to allow it to wait for a memory acknowledge signal befo re continuing . 

l·1·l· Summary 

Most  of the changes made to the HP 2 100 were relat ively small and 

easy to imp lement . The mo st comp lex change was to the DMA logic , mainly 

because of its poor initial des ign . 

1·2.. · S of tware Packages 

During the development of the MONADS II hardware a number of 

software packages were developed by the author . These packages either 

formed an integral  part of the processor , such as the microcode for the 

intermediate proces sor , or ass � sted the cons truction of the hardware and 

f irmware . Th is section wil l  brief ly describe these modules . 

7 . 6 . 1 .  The Intermediate Processor Microcode 
- - -

The 1024 words of intermediate  processor microcode are generated 

from a microcode source f ile of about 1 400 lines of code . This 

microcode is resp ons ible for executing the target instruction set , 

performing diagnostic functions and for conf iguring the processor map 

tab les prior to bootstrap . A full  lis ting of the code is found in 

Appendix C .  
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l ·&. ·1· The Microcode Ass embler 

The intermediate processor microcode is assembled by a microcode 

assemb ler , written f or the HP 2100A minicomputer running under the DO S-M 

system . The assemb ler generates a compiled listing , code f iles , a 

symbol table lis ting and an entry point lis ting . 

l ·&. ·l · The B ootstrap 

A number of levels of boots trap are provided . The lowest level is 

imp lemented as a microcoded instruction in the intermediate proces sor . 
The next level is held in read only memory of the virtual space , and is 
written in assembler . The last level is held on d isk, and loads the 
operating sys tem into memory • The middle level bootstrap may also 
communicate with another HP 2 100 and act as a fast link monitor . 

l·&.·!!.. · Utilities 

Various utilities were developed , such as a PROM programmer 

program, and a signal cross ref erence generator . 

l·l· Conclusion 

This section concludes the description of the MJNADS II sys tem,  and 

demonstrates that the system has fulfilled i ts primary aims . 

( 1 )  The intermediate processor provides a programmer with 1 6  

capability registers . Software has been written which uses these 

regis ters  and microcode exis t s  which maps the regis ters onto the MONADS 

addres s ing s tructure . The registers are held in a fast  register f ile ,  

and receive hardware ass is tance when they are used (for examp le , the 

access descriptor register checks that the mode of access is not 

contravened . )  'nlus , it is possible to ef f ic iently implement the 

address ing s tructure . All the HP 2 1 00 memory reference instructions can 

address the 3 1  b it virtual space by using only the 4 bit capab ili ty 

regis ter number .  Thus , the regis ters can be eff iciently address ed . 

Moreover , whilst  the intermediate processor provides extra regis t ers for 

address ing code and the s tack, some of the 16 capability reg is t ers cou ld 

have eas ily been dedicated for these purposes . Consequent ly ,  the M>NADS 

II sys t em demons trates the p racticality of the capability reg is t er 

address ing s cheme proposed in Chapter 5 .  
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( 2 )  Software is at this present time being developed for the MONADS 

II processor . The repertoire of programs cons ists of a macro assembler , 

a Pascal compiler and a Modula compiler , and many tes t and diagnos tic 

programs . An operating sys tem is being developed which will allow the 
system to be used as a development tes tbed . Since the �l>NADS II sys tem 

is basically a scaled down imp lementation of the MONADS architecture, it 

may be used to develop sof tware us ing the MONADS concep ts . 

( 3 )  The enhancement technique developed in Chap ter 6 has clearly 

been demons trated as prac tical and powerful . The MONADS II processor is 

based around a very simp le 1 6  bit minicomputer and yet it provides an 

advanced architecture to the assembler level programmer . The building 

of the intermediate proces sor was demonst rably simp ler than developing a 

totally new processor . 

( 4 )  The MONADS address translation hardware is capable of mapping 

very large virtual address es onto main memory addresses quickly and 

simp ly . The scheme compares very favourably with al ternative so lut ions . 
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8 .  C onclus ion 

This chapter serves three purposes . First ,  we discuss some of the 

limitations of the MONADS I I  computer system . Second , we ind icate areas 

in which future research will  be useful . Third , we evaluate the 

s ignif icance of the work describ ed in this thes is . 

8 . 1 .  L imitations of  the MONADS II System 

The MONADS 

implementat ion 

of limitations . 

removed . 

II computer sys tem, while representing a real 

of the two models developed in this thes is , has a number 

We now discuss these, and cons ider how they might be 

�·l·l· The Address Size 

As des cribed in Chapter 7 ,  the MONADS II address is 31  bits long , 

cons isting of a 1 6  b it addr ess space number and a 1 5  b it disp lacement . 

While this may be suff icient for a pilot sys tem, a production 

environment would require both many more address spaces , and much larger 

address spaces • 

A small address space number means that the number of address 

spaces will be exhausted quite quickly , and old address space numbers 

must be reused . As exp lained in Chapter S ,  this requires that all 

capabili ties f or these address spaces be found and deleted before the 

number can be safely reass igned . Whilst  this is less serious in the 

MONADS sys tem tha� in other capab ility bas ed computers (because 

capab il it ies are not freely dis tributed ) it is still inconvenient and 

time consuming . A larger address space number allows many more address 

spaces to be allocated before they must  be reused . 

The maximum size of an address space sho�ld be large enough to hold 

the data of mos t large segments (e .g . containing f ile data)  and only 

very large s egments should be composed of many address spaces . If  the 
address  space s ize is too smal l ,  then many address spaces are required 

to contain the da ta f rom large s egments . This then complicates the way 

that data is addressed , and uses many more address space numbers than 

are logically required . 

If  the MONADS II computer sys tem were being redes igned both of 

these res t rict ions could be removed . The address space number held in 
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the capab ility registers could be expanded (e .g . to 32 bits ) and the 

within address space disp lacement (in capab ility registers and mod if ier 

reg is ters)  could also be expanded (e .g . to 3 1  bits ) . If this we re done a 

res t riction would need to be placed on code address spaces , as the 

Hewlett Packard can only fetch code from a 32k word space . All other 
address spaces would ne ed to be address ed via capab ility reg is ters and 

modif ier registers , in the same way as they are currently referenced . 

A larger address spa ce would al so increase the size of the address 

translation unit . The unit would need to ho ld an extra 32 bits of 

informa ti on per ce ll because of the larger virtual address . This is a 

small increase in cos t ( less than twice the size ) for a very large 

increase in the size of the virtual space ( from 2-31 to 2-63 words ) .

Later we will ment ion a new version of the MONADS II computer which 

imp lements one of these enhancements namely , more address spaces . 

Spec ial Capability Regis ters 

It will recal led that the MONADS II hardware provides 16 general 

capab ility regis ters and 6 special registers . These s ix special 

regis ters (for address ing the process stack , code , inter-leaf links and 

code related data) were imp lemented dif ferently partly for historical 

reasons and partly because of peculiarities of the HP21 00A,  rather than 

for theoretical reasons , and could eas ily have been constructed from 

general capab ility regis t ers . In a new imp lementation , all of these 

would be general capability registers , as described in Chap ter 5 .  
Without these extra regis ters the address ing mechanism is completely 

uniform, which simplif ies the construction of the hardware , removes the 

need for acces s  rights at the page level and also simplif ies the code 

genera�ion uhase of the comp ilers . 

�·!·1· The Hashing Function 

As des cribed in Chapter 7 ,  the hashing funct ion used in the 

prototype address trans lation unit of MONADS II is very simp le ,  and it 

is not expected that this function will yield a particularly uniform 

dis t ribution of hash keys . Because of this , a more comp lex hashing 

function (such as des cribed in (IBM , 1 9 7 8 )  and (Ramamohanarao and 

Sacks-Davis , 1 9 81 ) )  could eas ily be imp lement ed ,  without increas ing the 

total address translation time . 

' 
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�·l·i· Process or Speed 

The MONADS II sys tem,  while far fas ter than a sof tware or firmware 

imp lementation (as discuss ed in Chap ter 6 ) , is st ill s lower than 

des ired . The most  signif icant cause for this lack of speed is the 
current imp lementation of the int ermediate process or, which us es 300 

nano-second Programmab le Read Only Memories to hold its microcode . This 

limits the micro-cycle time to 300 nano-seconds . This microcode cou ld 

instead be placed in fas ter 7 0  nano-second Read Only Memories , which 

would allow the p rocessor to achieve a micro-cycle time of about 1 50 

nano-seconds .  (A  decrease to 7 0  nano-seconds is not possible because of 

o�her timing const raints . )  Such a mod if ication would improve the speed

of the MONADS II sys tem signif icantly , because all memory traff ic 

proceeds via the intermediate proces sor . 

�·!·1· The HP2 1 00A Instruction Set 

While there were many advantages in inheriting the HP2 100A bas ic 

instruction s et in terms of speed of imp lementation (see Chap ter 6 ) , 

this ins truction set is not ideally suited to the sof tware methodo lo�y 

of the MONADS proj ect . The only solution to this problem is to build a 

new processor , which was not a viable alternative at the time that 

MONADS I I  was built . Since that time funds have become available and a 

new processor , MONADS III , which we wil l  briefly dis cuss later , is being 

des igned . 

�·!·�· Page Replacement 

The MONADS II process or provides no support for page replacement 

algo rithms ( e . g .  in the form of ' use ' b its or ' modify ' bits ) . Thus , the

operating sys tem r as no knowledge of which pages have been mod ified , or 
which pages are being used , and mus t use a random replacement algorithm . 

Whilst it is pos s ible to simulate some of this information in software , 

as in the VAX 1 1 /780  (Digital Equipment Corp . ,  197 9 ) , this is an 

expensive proces s , and would consume much of the power of the HP 2 1 00A . 

Consequently ,  it was decided that special hardware would be buil t  when 

time was available ,  and that it was more impo rtant to have a s low, but 

complete , sys tem than an impress ive but incomplet e one . Taking 

advantage of the concep t of the hardware kernel (Rosenberg , 1 97 9 ;  

Rosenberg and Keedy , 1 978 ) , this hardware could then be introduced at a 
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lat er s tage , without any ef fect on the main operating system software 

other than improved performance . 

!•l•l•  O ffsets f rom Capability Regis ters 

Another limitation of the MONADS II hardware is the size of literal 

of fsets which may be us ed with capability registers . Because this is 

only three bits , only a small frame of words may be addressed without 

using a mod if ier register . Ideally this of fs et should be as large as the 

size of an address space , however , there are not enough free bits in the 

memory ref erence ins tructions . The only solution to this prob lem is to 

create some new HP2 1 00 memory reference ins tructions which are two words 

long . In this cas e the f irst word could contain the op eration code ,  and 

the second word could contain a 1 6  b it literal off set • 

.!•1.•  Future Research 

In this section we brief ly ind icate the direction in wh ich the 
research des crib ed  in this thes is may be extended . 

!•£•1• MONADS III 

Because of the limitations of the MONADS II sys tem a grant was 

requested (ARGC Grant Number FB0/ 1 5 1 91 )  to build a totally new computer 

sys tem, cal led MONADS III (Rosenberg , Rowe and Keedy , 1982 ; Keedy and 

Rosenberg , 1 9 82a , 1 9 82b ) . The role of this processor is diff erent from 

MONADS II . It is des igned to support a large number of terminals and 

provide a fast and power ful computer u tility . Eventually the MONADS II 

processor wil l form part of the MONADS III sys tem,  and provide its 

communications . facilities . Mos t  of the software for MONADS III will 

initially be prepared on the MONADS II sys tem . 

Unfortunately, the design of the MONADS III processor has been 

suspended due to the res ignation of the proj ect ' s chief inves tigators

and an alternative plan has been adop t ed . In order that a full system 

could be realized , work was s tarted on another processor wh ich was 
basically the same as the MONADS II system, b ut which removed some of 

the limitations . 
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�·1·1· MONADS II /1

MONADS II /2 removes some of the res trictions cited above . The 

processor increas es the address space number field to 32 bits , and us es 

a larger page size ( 10 24 words instead of 5 12 ) . In addition , the main 

memory limit has been extended f rom a maximum of 5 1 2k bytes in MONADS II 

to 2M bytes . It also provides support for more processes , and a number 

of additional reg isters . In this way , MONADS II /2  is less of a p ilot 

sys tem and more of a production machine . Unfortunately , it will never 
achieve the power of the propos ed MONADS III . 

8 . 2 . 3 .  Future Work 
- - -

There are a number of areas in which future research could be 

directed . The MONADS II computer provides no support for the paging 

software . Th is is partly becaus e there was not time to des ign such 

hardware ,  and partly because it is not obvious what paging criteria 

should be app lied to address spaces when a page must  be removed from 

main memory . Whilst the working set model (Denning , 1 96 8 ,  1 980 ) is 

appropriate for computational virtual memories in conventional computer 

environments ,  it is not clear that this is the case in a system whi ch 

supports a large uniform virtual memory which contains permanent data 

(e .g .  f iles )  as well as computational data . Further work needs to be 

done to det ermine the best policy for removing (and fetching ) pages of a 

module , and then to develop a hardware unit ( in the same spirit as the 

MANIAC II unit (Morris , 1 97 2 ) ) wh ich can monitor and provide this 
information . ( The MONADS II sys tem already allows different page 

placement po licies to be developed and evaluated because the address 

translation sys tem is not concerned with the o rganization of the page 

tab les � Thus , al ternative secondary storage and uage fetching techniques 

may be attemp ted without affecting the hardware . )  

Another appropriate topic for future work is in the area of backup 

and recovery . In the event of a hardware ( or software) malfunc tion , the 

operating sys tem should be ab le to provide recovery of any data wh ich 

may have become corrup ted . Conventional f ile sys tems provide such 

features by maintaining backup and recovery information when file data 

is modif ied . However ,  in a uniform virtual memory there is no longer a 

clear dis t inction between f ile data and computat ional data , wh ich 
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compl icat es the task of recovery . 

The MONADS II operat ing sys tem provides a symbolic debugger 

sub system for use in tracing errors in Pascal or Modula programs 

(Dawson , 1 982 ) . Since the processor provides no hardware support , all 

the debugger func tions are emulat ed by comp iler generated software . 

Consequently , the debugger is very inefficient . The author is currently 

designing hardware which detec ts when breakpoints have been reached 

(either for data or code addresses ) and when variab le values have 
changed . This research will be reported in a separate paper (Abramson 

and Ro senberg , 1 982 ) . 

�·1 · Achievement s and Significance 

The mos t  signif icant achievements of this thes is are threefold . 

First , we have developed a new hardware model for capability based 
address ing . Second , we have developed a general technique which can be 

used to imp lement comp lex and novel computer architec tures quickly and 
cheaply . Th ird , we have implemented a real computer sys tem which 

demons trat es the viability of these ideas . 

�·1·!· The Addressing Model 

In Chap ter 1 we stated that one of the obj ectives of this thesis 

was to p rovide a hardware unit which allowed information to be shared 

and protected in a uniform,  flexib le and ef f icient manner . We can now 

determine if these obj ectives have been met . 

: �·1·!·!· Sharing of Data and Code 

Because of the clear dis tinction between hardware and sys tem 

firmwa�e th � new model does not enforce any particular sha ring polic:1 , 

but leaves this to the firmware which manipulates capab ilities . If a 

module has a capab ility for a segment in a register ,  then it has access 

to the segment . The firmware must determine whether this capab ility may 

be placed in a register . In the MONADS system, sharing of data and code 

is allowed only through the sharing of the modules themselves , in 

accordance wi th the information hiding princip le . Thus s egment 

capab ilities are never pas s ed freely around the sys tem (Keedy , 1982c ) , 

as is the case in many oth er capab ility systems , such as Hydra , StarO S , 

etc .  Because the hardware is not concerned with the management of
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capabili ties it supports either method of sharing . 

!·l·l·l.·  Protection of Informat ion .

Since the model uses a capab il ity based address ing scheme 
information can be protected from inadvertent corrup tion either by the 
owner or another user . A module may only address a segment if the 
capab ility has been loaded into a capab ility regis ter . As this is 
controlled by sys tem firmware , segments are protected . The access rights 

f ield of the capability only allows val id operations to be performed on 

segments .  For example , code segments and read only data segments can be 
pro tec ted from being mod if ied . In addition , since the model has 
attrac tive refinement properties , it is possible to res tric t access to a 

particular part of a reference parameter . 

!·1·1·1· Flexibili'ty 

The model proposed in this thes is is flexible because it conf ines 
the use of hardware (which is diff icult to change) to mechanisms which 

(for eff iciency reasons ) have to be fas t ,  and leaves all important 

policy decisions to firmware (which is relatively easy to modify ) . We 

have demons trated this flexib ility , both on paper and by practical 
experience . In Chap ter 5 we proposed mappings of various sof tware 

structures onto the hardware , and each time the result was a unif orm and 

eff icient address ing struc ture . In addition,  the hardware f or MONADS II 

was bui lt and tes ted before the MONADS software group had def ined the 
1format and nature of the capab ility structure of a "  module . This 

struc ture was then mapped onto the hardware without dif f iculty , which 
was a realis tic and practical demonstration of the f lexib ility of the 
hardware . 

!·l·l·i· Efficiency 

The model proposed in Chapter 5 is eff ic ient because it places 

those operations which must occur quickly in hardware , and uses firmware 

to support those which do not . Thus , capab ilities are held and used in 

fast hardware reg isters . The virtual address es are then mapp ed onto main 

memory addresses by a hardware address trans lator . The struc ture of the 

capability lists , and operations on high level obj ects , are left to the 

high level f irmware as these do not requi re the same level of ef ficiency 
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(e .g .  the cap ab ility list is only consulted when a capab ility register

is loaded ) .  These may then change and evolve with the software ideas . 

The imp lementation of the MONADS operating system, which will support a 

number of concurrent user programs , demonstrates the overall effic iency 

of the propo s al . 

!·1·!·2.· Unif ormity 

The capab ility regis ters are the only way of address ing memory , 

thus providing one uniform method for address ing , protecting and sharing 

information in the computer ut ility . This simplif ies the hardware 
construc tion , the comp ilers , the hardware kernel,  the main operating 

sys tem and also the task of the computer user . 

!•1 •1.• The Enhancement Model 

Af ter we had developed the address ing model , we faced to problem of 

how to produce an imp lementation with which we could evaluate its 

effectivenes s .  In Chap ter 6 we examined a number of alternat ives , such 

as various software imp lementations , microcode techniques and some 

limited hardware modif icat ions . Because of time and fis cal cons traints 

we were fo rced to modify an existing computer . The enhancement model 

which was developed allowed us to produce a real implementation wh ich is 

efficient enough to suppo rt a number of concurrent us er programs . 

The value of this model is best illustrated by considering the time 

taken to design and build MONADS II . The intermediate p roces sor was 

designed by the author over a period of a few months , built in about 6 

weeks , and tested in about 2 weeks . The address trans lation unit , which 

was not part of the intermediate processor , took about the same period 

of ti�e again . Without the new imp lementation t�chnique, a totally new 

processor would have been required which would have taken much more 

man-power than was needed to build MONADS II . For examp le , MONADS I II 

has already consumed ab out 4 man-years of effort , and has not yet been 

completed • 

.! •1•1• Practical Achievements

The pra c tical achievements of this research work are embodied in 

the MONADS II system, which is a comp lete working computer utility . As 

described in Chap ter 7 ,  the MONADS II sys tem cons is ts mainly of the 

CHAPTER 8 CONCLUSION 



- 183 -

central p roces sor , main memory , 80 Mbytes of disk and a terminal 

multip lexor which can be connected to 16 terminals . This conf iguration 
can support a number of concurrent us er programs . 

Af ter comp letion of the hardware , a hardware kernel was writ ten 

(Wa llis , 1 980) . This body of code res ides partly in firmware and partly 

in the kernel address space of the processor . It provides a higher level 

interf ace to the hardware f or the main operating sys tem . At this s tage 

of the proj ect , the primit ive components of an operating sys tem have 

been developed , together wi th a command line interpreter (Patterson ,  

1 98 1 ) . Compilers have already been developed for assembly code (Rees , 

1 9 81 ) ,  Modula 2 (Wirth , 1 9 77 )  and Pas cal, and programs written in any of 

these languages can be executed directly on the MONADS II sys tem . In 

addition , a C comp iler is currently been written (Bird ,  1 982 ) . At 

present all compilers and ass emblers execute on a VAX 1 1 /780  processor , 
and code is down-line loaded to MONADS II . It is expec ted that shortly 

the compilers will execut e directly under the MONADS II operating 

system . 

Once the 

comp ilers are 

main operating 

resident on the 

sys tem has been comp leted , and the 

MONADS II processor , the system will 

support a sof tware tes t and development environment similar in nature to 

other commercial systems . 

� ·i. Final Remarks 

This thesis has made a contribution in the area of hardware support 

us ed in capab ility bas ed computers . It provides a hardware framework 

around which a sof tware des igner may experiment with different 

capability struc tures . The widespread avail�bility of a machine which 

imp leme1; ts the memory and capab ility features of  this 100del (e .g .  with 
V .L . S . I . technology ) would greatly aid research into operating systems 

in bo th univers ities and industry . 

The thes is has also demonstrated a technique which should allow 

dif ferent computer architectures to be evaluated without the need f or 

many man years of ef fort by expert staff . Once new ideas have been 

evaluated they may then become the framework f or new computer designs . 
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Appendix A

This append ix def ines the new operands which are executed by the 
intermediate p roces sor . Most of these operands can be us ed with any of 

the HP 2 100A memory reference ins tructions , and are al l located in the 
top leaf of the address space . Some operands are only ef fective for load 

type of ins tructions (i .e . a read from the address space ) whereas others 
,,_ 

are only ef fec tive when a store type instruc tion is us ed . 

Immediate load ins truction 

This operand takes the 8 b it value of the address and returns it to 
the HP 2 1 00A . This value is treated as a 7 bit two ' s complement integer .

The bottom b it of the address is us ed as the s ign bit . Negative numbers 

are s ign extended to the full  1 6  b its . The ins truction al lows a program 

to use numb ers in the range o f  - 1 28 to 1 2 7  without address ing a segment 

of store .

This operand uses one of the general capab ility regis ters , CRr , to 
address a s egment in memory . A small constant n ( in the range 0-7)  may 

be specif ied as an off set to the segment start address . The off set is 
added to the s tart address and validated against the segment leng th 

before the memory reference is execut ed . 

This ope rand also uses one of the general capab ility regis ters , 

CRr, to address memory . However , the segment s tart address may be 

modif ied by the contents of one of the 8 modif ier regis ters , Mm. Thus , 

the mod if ier value is added to the start address and validated against 

the segment length before the segment is referenced . 

This operand is the same as the previous one , except the mod if ier 

is treat ed as a byte count rather than a word count . The modif ier value 

is halved before it is added to the segment start address . When the word  

of  memory is addres s ed ,  either the left or the right byte of  the word is

used depending on the leas t signif icant bit of the modif ier regis t er . 

APPENDIX A IN STRUCTION SET 



- A2 -

CRr . subsys tem 

This operand is used to address the sub sys tem field of a capab il ity 
register . This f ield has not been described in the thesis , and is no 

longer used by the hardware . When the capab il ity regis ters were first 

des igned , this f ield held the identity of the subsystem which owned the 

cont ents of a capab il ity regis ter . Validation checks were performed to 
only allow the sub system which had originally loaded a register to use 
the regis ter . This removed the need to invalidate reg is ters when a 
domain change was executed . 

CRr .address-space-number 

This operand is used to address the address space field of a 
capab ility register . 

CRr .displacement 

This operand is used to address the contents of the displacement 
f ield of a capab ility register . 

f!!_ . segment-limit 

This operand is used to address the segment limit field of the 

capab ility register . 

CRr .access-rights ( decrease only) 

This operand allows a program to reduce the set of access rights 

within a capab ility register . When a store operation' is performed on 

this address ,  the data pattern from the HP2 100A is ' anded ' with the

contents of the access rights f ield ,  reducing the allowed access . 

CRr . access-r!ghts  

This operand addresses the access rights field of  a capab ility 

register . 

STACK . address-space-number 

This operand is used for address ing the contents of the STACK 

address space number register . This register is used to form addresses 

in the process stack , and is combined with various displacement and 

length register to form a one of the special capab ility registers . 
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,!l(T ) 

This operand is used to access scaler variab les held on the process 
s tack . A virtual address is formed from the displacement in the T 

regis ter (Top of stack) and the STACK address space number regis ter . The 
value n may be us ed to modify the displacement . Unlike the general 

capab il ity regis ters , this value may be in the range 0-3 1 ,  and is 
subtracted f rom the disp la cement . 

T . limit 

This operand is used to address the limit field of the Top of stack 
capab ility register . No stack ref erence is allowed below this register . 

+(T ) 

This operand performs a push operation on the process stack . The 

Top of stack d isp lacement is incremented and , providing it is not below 

the T . l imit reg is ter , data is saved on the stack . 

(T ) -

This operat ion performs a pop operation on the process stack . Data 

is read f rom the current top of stack location, and then the Top of 

stack disp lacement regis ter is decremented . The Top of stack 

displacement reg ister is not allowed to f all below the T . limit register . 

T 

This operand is used for address ing the Top of stack displacement 

register . 

T=T+MDR 
- - --

This operand is used to modify the contents of the Top of stack 

displacement r egister . The value in the HP 2 100A memory data register is 

added to the contents of the Top of stack regis ter in one operat ion . 

Mm 

This operand is used for address ing the 8 modif ier regis ter . 
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This ope rand is used for addres s ing the 8 counter regis ters . 

This operation is only execut ed when a load type of ins truct ion is 

used . The contents of counter register Cc is incremented, the contents 
of mod if ier reg is ter Mc is also incremented , and the new value of the 

counter register is returned . The instruction is useful for scanning 

through segment s of memory . 

� C c  - ( s tore � Cc

This operat ion is only executed when a store type of  ins truc tion 
is executed . Data is s aved in the counter register Cc , and the 

associated mod if ier regis ter ,  Mc , is set to zero . This ins truction is 
useful for ini tializ ing the mod if ier and loop counter regist ers . 

L i .displacement 

This operand is used to address the contents of the L i  d isplacement 
register . This reg ister def ines a frame of  25 6 words in the current 

STACK address space , and forms one of the special capab ility reg is ters . 

L i  . limit 

This operand is used to address the Li .limit reg is ter . This 

register forms the limit f ie ld of the capab ility register for address ing 

scalars on the L i  s tack frame . 

This ope rand is used to mod ify the cont ents of the L i  disp lacement 

register . The contents o f  the memory data register is added to the 

contents of the Li reg is ter .

L2 .displacement 

This operand is used to address the cont ents of the L2 d isp lacement 

register . This reg ister def ines a f rame of 256 words in the current 

STACK address space , and forms one of the special capab ility regis ters . 
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L 2 . limit 

This operand is used to address the L2 . limit regis ter . This 

register forms the limit f ield of the capab ility regis ter for addressing 

scalars on the L2 s tack frame . 

L2=L2+MDR 
- - --

This operand is used to modify the cont ents of the L2 displacement 

register . The contents of the memory data register is added to the 
content s of the L2 regis ter . 

CONSTANT .address-space-number 

This operand is used to address the address space number of the 
constant address space . It froms one of the special capab ility 
regis ters . 

CODE . address-space-number 

This operand is used to address the address space number of the 

code address space . It froms one of the special capab ility registers . 

PROCESS-NUMBER 

This operand is used to address the process number regis ter . When 

this reg is t er is alt ered , the current process is exchanged for the new 

process . All of the process own regis ters are swapped by the 

intermediate processor . 

CURRENT-SUB SYSTEM 

This operand is used to address the current subsys tem regis ter . 

This reg ister is us ed to hold the identity of the currently executing 

sub sys tem .  When the capab ility regis ters held a subsys tem f ield , this 

regis ter was us ed for val idation purposes . 

VIOLATION-MASK 

This operand is used to address the violation regis ter . When the 

int ermediate processor causes an interrup t ,  this register is loaded with 

a bit map wh ich describes the cause of the int errupt . 
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KERNEL-OFF 

Th is operand is used to take the intermed iate processor out of 

kernel mode . The kernel executes this instruction before it returns to a 
user program . 

PROCESS-TIME-MSW -- --

This operand is used to address the most signif icant word of the 

process time limit register . This register is decremented every 2-1 6 ' th

milliseconds and if it reaches z ero an interrupt is generated . 

PROCE S S-TIME-L SW ---- --- --

This operand is used to address the leas t signif icant word of the 
process time limit register . This register is decremented every 

millis econd and if it reaches zero the mos t  signif icant word is 
decremented . 

INSTRUCTION-COUNTER-MSW 

This operand is used to address the most signif icant 

instruction 

instruction . 

counter 

INSTRUCTION-COUNTER-L SW 

reg ister . It is incremented 

word 

every 

of the 

2-1 6 ' th

This operand is used to address the least signif icant word of the 

instruction counter reg ister . It is incremented time an instruction is 

executed . 

TIME-MSW -- --

This operand returns the most s ignif icant word of the clock . 

TIME-LSW -- --

This operand returns the leas t signif icant word of  the clock . 
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Appendix B

This append ix def ines the mapping details of the HP 21 00A top leaf 

addresses . The table shows the BASE address for a part icular 

ins truction , followed by the wi thin leaf disp lacement used for the 

instruc tion . These address patterns are decoded by the intermediate 

processor ,  and are translated into microcode entry points . The R bit 

denotes whether the reference is a read from the address space of the 

HP 21 00A or a write . Various charac ters are used in the within leaf 
displacement . Four b its , 

,
r

,
, are used to form a capab il ity regis ter 

number . These are always taken from b its 3-6 of the address . Three 

bits , ,
c

,
, are used to ident ify a count er regis ter and are taken from

bits 0-2 of the address . These same b its are us ed to address the 

modif ier regis ters , called ,
m

,
, and to form the small three bits 

capab ility offs et , called 
,
n

,
. A five bit stack offset is taken from 

b its 0-4 of the address . An 
,
x

, 
in any pos ition signif ies a don ' t care

cond ition . 
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BASE M9 MB M7 M6 MS M4 M3 M2 Ml MO R 
- - - - - - -- -- -- -- - Ins truction 

76000 0 0 n n n n n n n n Immediate load ins truction 
76400 0 1 0 r r r r n n n n ( CRr ) 
76600 0 1 1 r r r r m m m (CRr ) [Mm] 
7 7000 1 0 0 r r r r m m m ( CRr ) [Mm/2 ] 
7 7 200 1 0 1 r r r r 0 0 0 CRr .subsys tem 
7 7 20 1 1 0 1 r r r r 0 0 1 CRr .address-space-number 
77202  1 0 1 r r r r 0 1 0 CRr .disp lacement 
77 203 1 0 1 r r r r 0 1 1 CRr .s egment-limit 
7 7 204 1 0 1 r r r r 1 0 0 CRr .access-rights ( decrease only ) 
77205 1 0 1 r r r r 1 0 1 CRr .access-rights 
77400 1 1 0 x 0 n n n n n n(T)  
77 440 1 1 0 x 1 0 0 c c c r ldw +cc 
77 440 1 1 0 x 1 0 0 c c c w stz Cc 
77460 1 1 0 x 1 1 0 m m m Mm 
77470  1 1 0 x 1 1 1 c c c Cc 
7 7601  1 1 1 x 0 0 0 0 0 1 + (T )  
7 7 602 1 1 1 x 0 0 0 0 1 0 +(T ) 
7 7 603 1 1 1 x 0 0 0 0 1 1 T 
77 604 1 1 1 x 0 0 0 1 0 0 Li .displacement 
7 7 605 1 1 1 x 0 0 0 1 0 1 L2 .displacement 
7 7606 1 1 1 x 0 0 0 1 1 0 CONSTANT .address-space-number 
7 7 607 1 1 1 x 0 0 0 1 1 1 CODE . address-space-number 
7 7 6 1 0  1 1 1 x 0 0 1 0 0 0 STACK .address-space-number 
7 76 1 1  1 1 1 x 0 0 1 0 0 1 PROCESS-NUMBER 
7 7 6 1 2  1 1 1 x 0 0 1 0 1 0 CURRENT-SUB SYSTEM 
7 76 1 3  1 1 1 x 0 0 1 0 1 1 r VIOLATION-MASK 
776 1 3  1 1 1 x 0 0 1 0 1 1 w KERNEL-OFF 
7 76 14  1 1 1 x 0 0 1 1 0 0 PROCESS-TIME-MSW 
7 7 6 1 5  1 1 1 x 0 0 1 1 0 1 PROC ESS-TIME-LSW 
7 76 1 6 1 1 1 x 0 0 1 1 1 0 IN STRUCTION-COUNTER-MSW 
776 1 7  1 1 1 x 0 0 1 1 1 1 IN STRUCTION-COUNTER-LSW 
7 76 20 1 1 1 x 0 1 0 0 0 0 T=T+MDR 
7 7 6 2 1  1 1 1 x 0 1 0 0 0 1 Ll=L l+MDR 
7 7622  1 1 1 x 0 1 0 0 1 0 L2=L2+MDR 
7 7 624 1 1 1 x 0 1 0 1 0 0 TIME-MSW 
7 7 6 25 1 1 1 x 0 1 0 1 0 1 TIME-LSW 
7 7 6 2 6  1 1 1 x 0 1 0 1 1 0 T . limit 
7 7627  1 1 1 x 0 1 0 1 1 1 L l  . limit 
77630 1 1 1 x 0 1 1 0 0 0 L2 . limit 
7 7 6 31 1 1 1 x 0 1 1 0 0 1 (T) -
77632 1 1 1 x 0 1 1 0 1 0 (T ) -
77633 1 1 1 x 0 1 1 0 1 1 Clear CR .access-rights 
77634 1 1 1 x 0 1 1 1 0 0 Double Pop 
77635 1 1 1 x 0 1 1 1 0 1 Doub le Push 
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Appendix C

This appendix contains the details of the microcode ins truction 
fo rmat along with the intermediate p rocessor mic rocode . Each 
microins truction is 24  b its in length , and is composed of 7 f ields , as 

follows : 

( 1 )  BUS l  f ield 7 bits bit 23 
( 2 )  BUS I -0  f ie ld 1 bit 
( 3 )  BUS2 f ield 4 b its 
( 4 )  CON STANT f ield 3 b its 
( 5 )  FUNCTION f ield 4 b its 
( 6 )  SPEC IAL f ield 3 b its 
( 7 )  MEMORY f ield 2 b its  bit 0 

The source l ine of a microinstruc tion cons ists of these 7 f ields and 

also a label field (before the BUS l  f ield ) , a jump target field (af ter 

the memory f ield ) and a comment field (after the jump target field ) . 

The operands which are allowed in the various f ield are shown in Tables 
C l  through C7 . We will  brief ly describe the purpose of each field of the 

microinstruction . 

The BU S I  f ield 
-- ---

The BUS l  f ield determines which regis ter is connected to the 

central bus of the intermedite p roces sor . The allowed operands are shown 

in Table C l . The operand REGSTR takes the contents of DISPLAY regis ter 

one as the register number . This allows a microprogram to scan through 

the int ermediate processor regis ters . 

The BUS I-0 f ie ld 
-- -- - -

This field determines whether the regis ter specif ieci b1 the BUS l  

f ie ld i s  p laced onto the bus ,  or the bus contents are saved into the 

regis ter . The allowed operands are shown in Tab le C2 . If an INTO 

direc tive is issued, the accumulator is p laced onto the bus . 

The BUS 2  f ield 

This field allows the bus contents to be saved in one of the 

dedicated registers at the same time as another register is specif ied in 

the BUSl  f ield . Allowed operands are shown in Tab le C3 . 
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Op code 
NOP OR BLANK 
MDR 
MAR 
PROCN 
STIMEl + 2 
ADRSPC 
DI SP 
ACCESS 
DI SPLl + DISPL 2  
INST 
WCHIX;l + 2 
SVR 
IN ST2 
C . SSN 
C .ASN 
C .DI SP 
C .LEN 
C .ACC S 
M 
c 
T 
L l  
L2 
CASN 
CCAS 
C SAS 
CSSN 
PTIME l 
PTIME2 
PINSTl 
PIN ST2 
TRl 
TB 
L lL 
L2L 
REGSTR 

Op code 
BLANK 
NOP 
ONTO 
INTO 

APPENDIX C 

C ode 
0 
1 
2 
3 
4-5 
6 
7 
8 
9- 10 
13 
1 1- 1 2  
1 4  
1 5  
16  
32 
48 
64 
80 
96 
104 
1 1 2 
1 1 3  
1 14 
1 1 5 
1 16 
1 1 7  
1 18 
1 1 9  
1 20 
1 2 1  
1 22 
123  
1 24 
125  
1 26 
1 2 7  

- C 2  -

Description 

Memory Data regis ter 
Memory Address register 
Process Number regis ter 
Tim� 
Address Space descriptor 
Disp lacement descrip tor 
Access descriptor 
Disp lay registers 
Ins truction count er 
Watchdog timers 
Stack violat ion regis ter 
Instruction counter - lsw 
CR Subsys tem field 
CR Address Space f ield 
CR Disp lacement field 
CR Length f ield 
CR Access field 
Modif ier regis ters 
Counter regis ters 
Top of s tack register 
L l  regis ter 
L 2  register 
Constant Address  Space I
Code Address Space I
Stack Address Space I
Current Subsystem number 
Process time - msw 
P rocess time - lsw 
Ins truction count - msw 
Instruction count - lsw 
Temporary regis ter 
T Base register 
L l  Limit regis ter 
L2 Limit register 
Regis ter file indirect 

Table C l  - the BUS l f ield 

Code 
0 
0 
0 
1 

Description 

Place regis ter Onto  bus 
Store bus into regis ter 

Tab le C2 - the BUS I-0 field 
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OE code Code Descri2tion 
BLANK 0 
NOP 0 
MDR 1 Memory Data regis ter 
MAR 2 Memory Address register 
PROCN 3 Process number regis ter 
STIME l + 2 4-5 Time 
ADRSPC 6 Address Space descriptor 
DI SP 7 Disp lacement descrip tor 
ACCESS 8 Access descriptor 
DI SPLl + 2 9- 10 Disp lay registers 
WCHDG l + 2 1 1- 1 2  Watchdog timers 
IN ST l 13  Instruction counter - msw 
INST2 1 5  Ins truction counter - lsw 

Table C3 - the BUS 2 f ield 

The CONSTANT f ield 

This f ield specif ies the cont ents of one of the inputs of the ALU . 

This may be either one of 7 predef ined cons tants , or the accumulator 

value . The allowed operands are shown in Tab le C4 . 

The FUNCTION f ield 

This field specif ies the operation which the ALU is to perform . 

Apart f rom the s tandard arithmetic and logic operations , the f ield may 

also be used for set ting various processor states (such as kernel mode 

02code C ode DescriEtion 
BLANK 0 
NOP 0 
ACC 0 Accumulator 
377 1 Cons tant 377B 
FF 1 Cons tant 377B 
FFOO 6 Cons tant 1 7 7400B 
1 7 7400 6 Cons tant 1 77400B 
7 2 Cons tant 7 
0 3 Cons tant 0 
1 4 Cons tant 1 
2 5 Constant 2 
7 7 7 7 7  7 Cons tant 7 7 777B 
7FFF 7 Cons tant 7 7 7 7 7B 

Tab le C4 - the CON STANT field 

APPENDIX C MICROCODE 



- C 4  -

or debug s tate ) , and for performing a microcode jump . When a j ump is 

specif ied , the 1 0  mos t  signif icant bits of the ins truction are used for 

the jump target address . The allowed operands are shown in Table C S . 

The SPECIAL f ield 

The special f ield is used to det ect error conditons , cause 
interrup ts ,  and to generate conditional microprogram skip operations . If 

the processor is not in debug mode (which is a special processor state) 

then any condition which is f lagged will cause an interrupt and set a 

particular bit in the violat ion regis ter . If the processor is in debug 
mode ,  then a f lagged cond ition will cause a microprograunned skip to 

occur . The allowab le operands are shown in Tab le C6 . 

OE code 
NOP 
BLANK 
ADD 
SUB 
OR 
AND 
SWAP 
LEFT 
RIGHT 
JUMP 
END 
KNLOFF 
DBGON 
DBGOFF 

OF�� 
NOP 
BLANK 
MPL 
MPS 
MPK 
MPO 
LSB S  
UNMAP 
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C ode 
0 
0 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
1 1  
12  

Code 
0 
0 
1 
2 
3 
4 
5 
6 

Des criEtion 

Function add 
Function sub tract 
Func tion logical or 
Function logical and 
Swap byt es of input 
Left shift input 
Right shif t input 
Micro code j ump 
Return to HP2 1 00 ins truction 
Tum the kernel b it of f 
Turn Debug bit on 
Turn Debug b it off 

Table CS - the FUNCTION f ield 

DescriEtion 

f lag BUS < accumulator 
f lag BUS > accumulator 
f lag processor not in kernel mode 
f lag BUS <> accumulator 
Skip if leas t sig bit set 
Tum on Unmap b it 

Table C6 - the SPECIAL f ield 
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The MEMORY control f ield 

This field allows the intermed iate processor to start memory 

ref erences . The processor may issue a read request ,  a write request ,  or 

a conditional reques t .  The lat ter kind will be either a read or a write 

depending on the type of operation which the HP 2 1 00 request ed of the 
int ermed iate  processor . The allowab le operands are shown in Tab le C7 . 

02code 
NOP 
BLANK 
READ 
WRITE 
RW 

Code 
0 
0 
1 
2 
3 

Descri2tion 

Perform a memory Read 
Per form a memory Write 
Perform a Read or a Write 

Table C7 - the MEMORY cont rol f ield 

The remainder of this appendix contains the microcode used by the 

intermediate p rocessor . The f irst sec tion contains the bas ic MONADS II 

ins truction set , while the second section contains microcode used for 

ini tial bootstrapp ing and diagnostic purposes . 
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Appendix D 

Th is appendix des cribes the propert ies of addres s space zero , which 

is used to communicate with the MONADS II  address trans lat ion hardware . 

This address space is not mapped onto memory , but is recognized as a 

data pathway to the dedicated map units , the hash tab le address 

trans lator , and a regis ter holding to address of the last  page fault . 

Each dedicat ed map tab le entry is 1 3  bits in length , and occupies 

one 1 6  bit  word of the address space . Thus , the four dedicated map units 

occupy 256 words of the address space . Each hash table cell is 41 bits

in length , and is sp lit over 4 16  bits words . Thus , the 1 024  word hash 

table occupies 4096 words of address space zero . The value of the last 

legal address is saved in a special regis ter . When the operating sys tem 

wishes to f ind out which page caus ed the last page fault it can read 

this register . The 3 1  bit address is accessible through 2 words of 

address space z ero . An overall pic ture of address space z ero is shown in 

Figure 1 .  The structure of each dedicated map cel l entry is shown in 

Figure 2 .  The structure of each hash tab le cell is shown in Figure 3 .  

APPENDIX D ADDRESS  SPACE ZERO 



0-63  

6 4- 1 2 7 

1 28-1 9 1  

192-255 

256-257 

5 1 2- 4 608 

- D2 -

DMA channel 2 map entries 

Kernel code map entries 

Kernel data map entries 

DMA channel 1 map entries 

Address at las t interrupt 

Hash tab le 

Figure 1 - address space z ero 

bit 1 5  1 4  1 3  12 1 1  10 9 8 7 6 5 4 3 2 1 0 

main memory page frame number 

Figure 2 - a dedicated map entry 
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bit 1 5  1 4  1 3  1 2  1 1  1 0  9 8 7 6 5 4 3 2 1 0 

word 1 logical address 

word 2 main memory page f rame number 

word 3 R w K

word 4 F E link address v 

where : 

F is foreigner bit 
E is end of chain b it 
v is valid bit 
R is read access allowed 
w is write access allowed 
K is kernel access allowed 

Figure 3 - a hash tab le map entry 
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Appendix E 

This appendix contains copies of papers which have been published 

by the au thor relating to the work des cribed in this thes is . 

Abramson , D .A . ( l  982b )  "Hardware for Capab ility Based Address ing" , Proc . 
9th Aus tralian Computer Conf erence , Hobart . 

Abramson , D .A .  ( 1 982a )  "A Technique for Enhancing Process or 

Architec ture" , P roc . Sth Aus tralian Computer Science Conference , 

Perth (Aus tralian Computer Science Communications 4 ,  1 ,  pp . 4 7-5 7 ) . 
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David Abramson 
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This paper examines a number of capability bas ed 
computer sys tems and des cribes some outs tanding 
problems . A new addressing model is proposed which 
not only alleviates these p roblems , but which is 
als o  ef ficient , flexible and unif orm . The K>NADS 
Series II computer , which implements the new model , 
is described . Finally , the ef fectiveness of the new 
s olutio� is evaluated . 
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1 .  INTRO DUCTION 
Capab ility based addres sing was first proposed by Dennis and Van 

Horn ( 1 966)  as a method for uniformly address ing and p rotecting obj ects 
in a multiprogrammed computer ut ility . Since that time a number of 
capability bas ed computer architectures have been imp lemented , such as 
the Ples sey 2 50 (England , 1 9 72 ) , Hydra (Wulf et . al . ,  1 981 ) ,  CAP 
(Wilkes , 1 9 7 9) , IBM Sys tem/ 38 ( IBM, 1 978 )  and the Intel iAPX4 32 (Intel , 
198 1 ) , and a number have been proposed , such as the Chicago Magic Number 
Computer ( Shepherd , 1 968) , and the s chemes outl ined by B ishop ( 1 977 )  and 
Gligor ( 1 9 7 8 ) . This paper brief ly describes the address ing mechanism 
common to these capab il ity schemes , and shows how they imp lement the 
address ing s tructure . I t  then considers some outstanding prob lems , and 
propos es an alternative model . To demons trate that the new model can be 
ef f iciently implemented , it was used as the central structure of the 
MONADS II computer . 

2 .  CAPABILITY BASED ADDRE SSING 

2 . 1 .  Capabilities !.!. .!!!. address ing sys tem 
A capab ility is a protected pointer which gives a program the 

ability to address an obj ect (Fabry , 1 9 74 ) . A capability is log ically 
composed of two fields , <obj ect name> and <access right s> . The name 
field holds the name of the obj ect which the capab ility addresses . The 
access rights  field describes the way in which the obj ect may be 
addressed by that capability . Capabilities pos s ess  a number of 
intrins ic properties : 

- the obj ect name is a unique name which def ines the obj ect . 

- pos session of a capability allows a program to address the obj ect . 

- there may be several capab ilities for an obj ect . 

- a capab ility des cribes how the obj ect may be addres s ed . 

- a capab ility is not forgeab le . 

- obj ect names are never reused , even after the obj ect  has been 
des troyed . 

- capab ilit ies facilitate easy sharing of obj ects . 

- cap a�ilities offe� diff erent views of the same obj ect .

All current capab ility sys tems allow the access rights of a 
capab il ity to be reduced , and a diminished copy of the capability to be 
given to another us er . These capab ilities (known as ref ined 
capab ilities ) then have access to the same obj ect as the master , but 
with fewer access privileges . A capab ility may also be ref ined in range 
as well as type of access . This type of ref inement is useful when a 
procedure wishes to grant another user access to only part of a data 
struc ture ( e .g . when pass ing a parameter by reference ) . 

2 . 2 .  Implement ing Capability Address ing 

Two diff erent methods of addressing capab il ities are usually used .
One p laces the capab ilities in a small lis t ,  cal led a Capability Lis t
( or C-list ) .  The capab ility may then be addressed by supp lying an index
value into the lis t • The other , les s  commonly used , scheme places
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capab ilities in tagged memory (IBM, 1 97 8 ) . Both schemes have their 
advantages and dis advantages , which will not be dis cussed in this paper . 

Because the unique name of an obj ect is very large , and because it 
may not be reused , the virtual space of a capability sys tem is llD..lch 
larger than the real memory at tached to the processor . Thus , the 
process or hardware must translate a segment name into a real memory 
address (either main memory or s econdary memory) before a reference can 
p roceed . In addition to address trans lation , the sys tem mus t maintain 
logical inf ormation about the obj ect , such as its type . Almost all of 
the capab ility based processors use a central obj ect tab le , which holds 
both the logical information and the mapp ing inf ormation ( such as its 
main memory address and size)  about every obj ect in the sys tem .  This 
t ab le is usually sp lit into an active table ( for currently addres sed 
obj ects ) and a pass ive table (for older obj ects ) in an at temp t  to speed 
up address trans lation . Many different table organizations have been 
used , such as linear lis ts , directly indexed tab les and hash tab les and 
are us ed in sys tems such as Hydra , CAL , CAP , Gligor , Intel and Plessey . 

Mos t  of these sys tems place the active obj ect tab le in main memory . 
To avoid the speed penality of accessing main memory on every memory 
ref erence , mos t  sys tems apart from CAL , provide some hardware support to 
s peed up address trans lation . The Plessey 250 ,  Hydra and the Chicago 
Mag ic Number Computer use some manual address ing regis ters which are 
loaded with the main memory address of a segment before it is address ed . 
O ther sys tems , such as Intel iPAX43 2 ,  IBM System/ 38 and CAP , use 
automatic address trans lation caches , which retain the most frequently 
used obj ec t  tab le entries . 

Placing the active obj ect tab le in main memory also limits its size  
s ignif icantly . To  avoid this problem, Gligor p laces the obj ect tab le in 
virtual memory . The scheme proposed by Bishop ( 1 9 7 7 )  (and one of the 
IBM Sys tem/ 38 addressing methods )  eliminates the need for a central 
obj ect table by including in a segment capability a virtual addres s ,  
which is also a unique name , and a size f ield . This also has the 
advantage that obj ect size ref inement is eas ily implemented . In such 
systems the obj ect type is al so p laced in the capab ility . 

2 . 3 .  Outstanding problems 

The exis ting capability based computers have two main problem 
areas , memory management and address trans lation . 

2 . 3 . 1 . 
- - -

Memory Management 
Many of the capab ility sys tems use a segmented main memory scheme 

in order to achieve segmented addressing . Unfortunately, this scheme 
does not cater wel l  for either very large segments  or for very small 
segments .  Large segments are awkward because they must be held in 
contiguous memory . Small segments are ineff icient to swap between main 
and secondary memory because the time taken to initiate the transfer may 
exceed the time taken to actually transfer the dat a . These prob lems 
have received much a t tention in the literature (Gligor , 1 978 ; Lanciaux , 
1 9 7 7 ; Randel 1 969 ; Fabry , 1 97 4 ; Wilkes , 1 97 9 ;  Keedy , 1 9 80 ) . 

Some systems have at temp ted to use paging as a bas is for memory 
management . Hydra used a paging sys tem by forcing all segments  to be one 
f ixed s ize . This scheme simplifies the memory management task, but does 
not solve the small and large segment problem . Small segment s  waste 
much o f  the page that they occupy, and large segments can not exist . 
Thu s , this scheme creates even more segments than are logical ly 
required , as large segments are constructed from many smaller segments . 
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Some solutions ( cf Gligor and Bisho p )  have used paging as the 
memory management model ,  and have superimposed a segmentation s cheme 
above the virtual memory . Whilst these proposals have solved some of 
the small and large memory management problems , they s till suffer from 
s ome memory management prob lems , as we shall see later . 

l·l·l· Address  Translation problems 
Many of the capab ility based process ors experience signif icant 

prob lems in trans lating virtual addresses into memory addresses , 
esp ecially when the sys tem is burdened with many small segments .  One 
source of contention is the central obj ect table which contains an entry 
for each segment in the sys tem . When the sys tem contains many small 
segments the siz e of the central obj ect table becomes excessive , and 
trans lat ion times may be increased . In those sys tems which have removed 
the central obj ect table , such as B ishop ' s ,  the task of address
trans lation is signif icantly simp lified . 

In the processors which have used manual address ing regis ters with 
a segmented memory another problem is experienced . Because they hold a 
main memory address all regis ters (and all dormant images of registers ) 
of all p rocessors must be mod if ied when main memory is reorganiz ed . Such 
reorganization is required when segments are brought into and banished 
from main memory ,  and requires all ab solute p ointers to be modif ied . 
Th is overhead is cons iderab le . 

3 .  AIMS OF THE MODEL �-- � �- -�--

The requirements of the model may be summarized in terms of five 
basic aims : to s olve the memory management p roblems associated with most  
capab ility bas ed process ors , to  solve the address translation problems 
associated with other cap ability based sys tems , to produce a unif orm 
address ing mechanism, to produce an ef f icient capab ility address ing 
mechanism, and to p roduce a f lexible hardware unit . Some of these aims 
are not shared by the exis ting capab il ity sys tems . The f irst two 
requ irements  are as sociated with the outs tanding p roblems discussed in 
s ection 2 . 3 .  We shall now cons ider the other three bas ic aims in turn . 

1•!•!• Uniformity and s implicity 
In a t rue capability based address ing scheme all local and 

permanent data should be address ed by the same mechanism .  Only one way 
of address ing data  should be provided , unlike sys tems such as the IBM 
Sys tem/ 38  which p rovide two d iff erent addressing mechanisms . 

With one common address ing mechanism the sys tem des ign becomes much 
s imp ler . A simp ler design in not only eas ier to und�rs tand, b ut often 
yields a more orthogonal and less  expens ive implementation . Moreover , 
only one sharing and p rotection mechanism is required . The model 
p roposed in this paper avoids unnecessary duplication by providing only 
one way of address ing memory . 

1·!·1· Efficiency 
The CAL sys tem demons trated that a capability based addres s ing 

scheme requires hardware suppo rt for an eff ic ient imp lementation . Even 
in those sys tems which have provided hardware support  for addres sing 
memory , the use of capab ilities s till creates ineff iciencies , as 
des cribed in section 2 . 3 .  The model proposed in this paper def ines a 
hardware addres s ing struc ture which can be ef f iciently imp lemented with 
current technology . Moreover , the model is capable of implementing many 
d ifferent software struc tur es without signif icant overheads . 
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Most  processors , both of convent ional design and capab il ity based , 
are designed with a specific address ing struc ture in mind . For examp le , 
the ins truction operands in the Intel iAPX432 processor expe ct a 
particular C-list structure . The operands of the CAP sys tem expect a 
different C-lis t structure . Because these organizations are so well  
understood by the proces sor hardware ( and firmware) it  is  unlikely that 
one processor could ef ficient ly or easily implement the C-lis t structure 
of ano ther proces sor . 

The lack of flexib ility in some of the exis ting sys tems is not a 
problem, only because the sys tem design does not change significantly at 
any stage . However , in a research environment a flexib le processor is 
extremely desirab le ,  as it allows the hardware to survive a number of 
maj o� redes igns of the sof tware ideas . The model proposed in this paper 
should be capable not only of eff iciently imp lement ing a particular 
address ing s tructure , but also of implementing any of the other 
capability address ing s truc tures , such as the d iff erent C-lists of CAP , 
Intel iAPX4 32 etc . The 100del can achieve this flexib ility by providing a 
general hardware unit which provides a capab ility bas ed addressing 
s tyle , and a small section of software (or firmware if the hos t  machine 
is microcoded ) which unders tands the addressing structure . If the 
software ideas change at any stage , then the hardware may remain the 
same and the software or f irmware may be changed . 

4 .  OBJECT ADDRESSING 

Mos t  capab ility based address ing schemes have the property that all 
address able obj ects are treated alike in terms of address ing and 
protecting . All are addressed via the capab ility mechanism which the 
proces s or us es . Such references can be categoriz ed into two classes , 
memory segments and high-level obj ects . High-level obj ects include I /O 
devices , data ab stractions , p rogram modules (Keedy , 1 9 82 )  or type 
managers (Wulf et . al . ,  1 98 1 )  etc . 

When a memory segment is addressed (via memory reference 
ins truc tions ) the capab ility mechanism is us ed to f ind a segment of 
memory and make it available to the program . Thus , in a purely segmented 
system the central obj ect table may contain the main memory address of 
the segment , and the size of the segment . The ac cess rights field of the 
capab ility can then be us ed to restrict certain operations on the 
segment . To produce eff icient memory references this mechanism is nearly 
always augmented by some special hardware . 

High level obj ects are also addressed via the capab ility mechanism . 
However , the central obj ect table contains inf ormat�on which declares 
that the obj ect  is not a memory segment and requires further sof tw�re or 
f i rmware ass is tance . (Alternatively, this information may be he ld in the 
capab il ity (Lampson ,  1 97 6 ) . )  These high level obj ects are not usually 
addressed by the normal memory ref erence instructions . Type checking 
informat ion may then validate the type of ins truction agains t the type 
of obj ect . For examp le, a memory segment may be addres s ed by an add 
ins truc tion ,  but a program module is addressed via a call ins truction . 

From this v iewp oint , capab ility support can be b uilt into a 
processor in two separate areas : firs t ,  a section of hardware wh ich 
allows eff ic ient manipulation of memory segments ; second ,  a body of 
software , or f irmware , which interprets operations on high level 
obj ects . Thus , the knowledge of high level obj ec ts need not be b uilt 
into the processor . The information which usually res ides in the central 
obj ect tab le about high level obj ects can now either reside in the 
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capability for the obj ect (e . g . the type of the obj ect ) or can be found 
in s egments ass ociat ed with the obj ect itself (e .g . with the code which 
manipulates the obj ect ) . The implementation of operat ions on high level 
obj ects is left entirely up to the software or f irmware concerned . We 
will  now cons ider the form of the memory segmentation hardware . 

5 .  SEGMENT ADDRES SING 

5 . 1 . The bas ic f orm of .!. capability 
The virtual memory of the proposed capab ility based address ing 

scheme is addres s ed v ia a number of capab ility regis ters , each of which 
holds a segment capab il ity . These capab ility regis ters are the only 
addressing mechanism availab le to the processor . Each register , shown 
in Figure 1 ,  contains three fields : an address ,  a length and some access 
rights .  Before we d iscuss the precise nature of these f ields , it will be 
useful to cons ider the advantages of a scheme based on regis ters : 

( 1 )  Because o f  the size of  capab ilities , they cannot be p laced 
direc tly in the ins truction s tream itself . This problem of operand size 
f or addres s ing memory v ia capab ilities disappears in a reg ister based 
sys tem because once a regis ter has been loaded with a capab ility 
subsequent ref erences need only specify a reg ister number , which is 
likely to be of the order of four bits . 

( 2 )  Regist ers hide the nature and s tructure of the logical 
addressing mechanism f rom the p roces sor ins truction set . The model is 
invariant to the method of saving capab ilities (i . e . C-lis ts of various 
s tructures or tagged p rotected memory) and the actual structure of a C
lis t or tagged memory need not be determined at the hardware level (for 
examp le, whether the C-list allows tree structures or lattice 
structures ) .  Thus , the scheme is flexible ,  because the sof tware 
s truc tures may be modif ied without affecting the hardware . 

( 3 ) Because regis ters can unif ormly address all kinds of segment , 
no special regis ters are required , f or examp le to imp lement a s tack 
pointer , disp lay regis ters , etc . Indeed , a comb ination of a capability 
regis ter and an index register can be us ed not only to address data but 
also to control program sequencing . 

( 4 )  Because regis ters  are normally built  from high speed logic , 
they have the same advantages as capab ility caches (cf . IBM System/38 , 
CAP and Intel iAPX432 ) , but they are generally less  expens ive and in 
some cases eas ier to imp lement . Because the scheme only trans lates 
logical addresses (of the form C-list number and slot  number) into 
capab ili ties when the reg is ter is loaded ,  it avoids many unnecessary 
�emory · references by removing many repeated references to the C-lis t .  

( 5 )  Giv en the use of registers , protection can be eff iciently 
implemented by allowing only particular ins tructions (or only 
ins truc tions executing in a special machine state ) to modify their 
cont ents . This makes it impo ss ib le to llW)dify a capab ility illegally once 
it has been p laced in a regis ter . The protection of capab il ities outside 
of regis ters depends on the C-lis t structure , or tagging mechanism, 
whi ch the process or provid es . 

A regis ter based address ing scheme does have some bas ic 
disadvantages . F ir st , it requires the comp iler or assembler p rogrammers 
t o  allocate  and deallocate the regis ters . This problem is not cons idered 
s erious enough to cancel the adv antages of the scheme . F irst , assembler 
programmers  are far bet ter at judging the working set of a program than 
a cache , and can choo se  the correct registers to allocate . Second , 
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address of segment length of segment access  rights 

Figure 1 - a capab ility regis ter 

comp ilers of ten have to allocate data registers , and have success fully 
done so for a long time . Address ing regis ters are no worse to allocate 
c orrectly than data registers . Al so , the comp iler can form conventions 
which dedicate the use of certain regis ters . For example , one regis ter 
may be us ed for address ing s calars at lexical level zero ,  wh ilst another 
regis ter may be ded icated for address ing data  at the current lexical 
leve l .  Such conventions can help register allocation signif icantly . 

Second , the regis ters may need to be saved 
module is entered by a call ins truction, or 
executed . Similar operations are also required 
Thus domain changes in the regist er scheme are 
than when a cache is used . 

5 . 2 .  The load-capability-regis ter ins truction 

and reloaded when a 
when a process switch is 
for capability caches . 
not signif icantly s lower 

Because the logical structure of the address ing mechanism is hidden 
from the hardware , special so ftware (or f irmware) must be written which 
unders tands this structure . One such ins truction is the load
capab il ity-register instruction . This instruction ( or kernel routine if 
the machine does not possess a microcoded control unit )  accepts a 
capab ility reg is ter number and a p rogram address , and loads the 
capab il ity found at that address into the regis ter . If the processor 
us es a C-l is t for holding capab ilities , then the program address may 
def ine a C-lis t number and a slot number . If the sys tem must  at some 
lat er s tage understand a d ifferent C-l ist struc ture , then only the 
load-capab ility-regis ter ins truction need be altered . All other data 
manipulat ion instructions address their operands via a capab ility 
regis ter . 

5 . 3 .  Representation of .!.. capability 

A memory capability , shown in Figure 1 ,  is composed of three 
s ections : an address , a leng th and a set of access rights . The key 
dif ference between thes e regis ters and those  of the other manual 
addre� sing reg ist er s chemes is that our capab ility us es a virtual 
addres s , rather than a main memory addres s . As described in section 2 . 3 ,  
the use of  main memory address es both caus es d iff iculties in re
organiz ing memory and also means that the main �mory must be segmented . 
Apart from the diff iculties of organizing a s egmented memory, a central 
obj ect tab le is required to map segment addresses onto main memory 
address es which causes fu rther problems related to the size of the 
mapping tab le ,  as dis cus sed in section 2 . 3 .  The use of a virtual 
address  in the capab ility regis t ers avoids these p roblems . F irst , the 
memory can be phys ically reorganized without affecting the addresses 
held in registers . Second , the memory does not have to be segmented 
{ from the viewpoint of the memory management sys tem) . This removes the 
p roblems of a s egmented memory, and al so means that the sys tem does not 
need a central obj ect tab le . 
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The length field of the capab ility ho lds the 
and must be large enough to allow large segments .  
the same s iz e  as the virtual address . However , it
less wi thout being rest ric tive .

length of the segment , 
Ideally, this f ield is 

may be cons iderably 

The ac ces s  rights field must allow operat ions to be performed or 
res tric ted , such as read only , write only, read-write , execute etc . 
These can be encoded in a bit pattern .

6 .  VIRTUAL MEMORY 

This section comprises three subsections . The f irs t def ines the 
nature of the virtual memory required by the capab ility register 
address ing scheme . The second describes a memory management model wh ich 
p rovides s ome of the required attributes , and the third shows what 
modif ications are neces sary to this model to provide a virtual memory 
which may be addressed by the registers d escribed in section 5 .  

6 . 1 .  Requirements of the virtual memory 
In this s ection we will examine the requirements of the virtual 

memory wh ich is used by the model . They are as follows : 

( 1 ) Virtual addres s es should be large and unique . When a s egment is 
created it consumes a range of virtual addresses , which eventually 
res ide in C-lists and capab ility registers . When a segment is deleted , 
the addres s may either be found and des troyed , or never reused . A large 
addressing range means that it is not neces sary to reuse addresses , 
saving on the number of addres ses which need to be found and deleted . 

( 2 )  The virtual memory must be the only memory mechanism . This 
uniform treatment of memory means that all data , files and code , are 
present in the same virtual memory without support f rom a separate f ile 
store . Thi s  technique was pioneered in MULTIC S (Organick , 1 9 7 2 )  and has 
been us ed in other capab ility sys tems with many advantag es (Rosenberg 
and Keedy , 1 98 1 ) . 

( 3 )  The tab les , or mechanism, used to translate virtual address es 
to main memory addresses should not affect the way in which the virtual 
memory management sof tware organizes the secondary . memory . This
condition is not met in many exis ting systems , such as MULTIC S .  The page
tab le s tructure wh ich is used by the hardware , or firmware , to trans late 
virtual addres s es into main memory addresses is al so us ed by the 
software to locate pages in secondary memory . If the sof tware wishes to 
change the tab le format then the hardware may also need to be mod if ied . 
Greater f lexib ility is des irab le because bet ter secondary storage 
methods may be devised af ter the hardware has been built . Thus secondary
memory . address trans lat ion and main memory address trans lation should be
independent • 

( 4 )  Virtual memory management should be simple . If virtual 
address es are ever reus ed , the virtual space may become fragmented due 
to obj ects being created and des troyed . Both Gligor and B ishop propose 
the use of  large pag ed virtual memories for holding s egments . Gligor 
packs segment s int o virtual space in a random manner , whereas Bishop 
places common segments in areas , or groups . The f irst scheme , whil st 
conceptual ly simple , means that the virtual space may become very 
f ragmented in time . B ishop ' s scheme does not to tally avoid this prob lem,
as areas thems elves are var iab le in size . The virtual memory should be 
organized so that if addres ses are ever reused , the memory can be 
reorganiz ed without mas sive data manipulation . 
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( 5 )  The virtual memory should ef f icient ly support both large and
small s egments . This prob lem is vastly simplif ied by imp lementing the
s egmentation at the regis ter level . It then only becomes necess ary for
the vir tual space to hold both large and small areas . All of the models
previous ly dis cussed fail to provide an acceptab le mechanism .

( 6 )  Real memory management should be simp le .  Unlike the segmented
schemes of some capab ility sys tems , the model can choose another main 
memory organization witho ut losing the logical advantages of
s egmentation .  Thus a simpler main memory scheme can be used ins tead of 
the comp lex and ineff icient segment ed scheme .

Unfortunately most  virtual
suitable virtual memory which
scheme ,  not previous ly dis cussed ,
ef f iciently support small and
dis cuss this model .

6 . 2 .  A small segment model

memory sys tems fail to provide a 
supports these requirements . Another 
allows a conventional processor to 
large segments . The next section will 

Keedy ( 1 980)  proposes a memory management model wh ich allows a 
conventional proces sor to supp ort both large and small segments without 
many of the associated ineff iciencies . The scheme uses capab ilities 
which hold a virtual address , segment leng th and access rights . The 
virtual address is further composed of an address space number and an 
of fset wi thin the address space . Each offset is composed of a page 
number and a within page displacement . 

Address trans lation is performed via a number of tab les . An 
addres s space list is consulted to f ind the location of the p age tab le 
for the space . The page tab le reveals either the ma.in memory address of 
the pages or the secondary memory addresses . This model is similar to 
various paged and segment ed schemes and thus could be supported by a 
p rocessor s imilar in nature to MULTICS . Unlike MULTICS ,  however , this 
model can support items 4 , 5 and 6 of  the model aims , namely simp le real 
and virtual memory management and support for small and large s egments . 
All the advantages of the scheme are discussed in Keedy ( 1 980) . However , 
the following are particularly relevant : 

i·l·l· Simple real memory management 

The ma.in memory is far eas ier to manage in this model than the 
s egmented s olutions because memory is allocated in f ixed size pages . 
Provided some reference locality is experienced , several independent ly 
address ed and p rotected segments can be packed into a s ingle address 
space , and the amount of space lost to int ernal fragmentat ion is on 
averag� only half a page per address space rather than half a � �ge per 
segment (or more for small segments ) . Thus while internal f ragmentat ion 
is not entirely eliminat ed , the amount of space wasted in this way can 
be greatly reduced . 

i·l·l· Simple virtual memory management 

The virtual memory is easier to manage than that of G ligor or 
Bishop because the virtual space is allocated in fixed size units , 
namely address spaces . Typ ically, be cause of reference local ity, all the 
segments of a module are placed together in one or more address spaces . 
If the modu le is deleted ,  and all old addresses within the space are 
collected and des troyed , then the address of the address space may be 
reused . Because the address spaces are all of the same siz e ,  the ho le 
lef t  in the virtual space is not of a variable size , unlike those  of 
Bishop and Gligor . 

APPENDIX E PUBLISHED PAPERS 



- E l l -

Even though the address spaces are all of a fixed siz e ,  spaces 
smaller than the maximum size do not ac tually require this fixed amount 
of disk space to be al located . Thus , the scheme does not requi re any 
more d i sk space or page tab le space than other schemes . 

�·l·l· Support for small and large segments 
The s cheme does not use a large central obj ect table , but rather a 

smaller addres s space lis t ,  and can therefore support many small 
segments efficiently . As more segments are added to  an address space , 
the address space lis t will remain the same size , and not grow like the 
central obj ect tables in many of the capab ility systems . Moreover , 
provided that a reasonab le amount of locality of reference is exhibited , 
many small related segments may be placed in one page , reducing the 
amount of was ted space and making segment swapping more eff icient . Large 
s egments may be composed of many pages . Because only those pages 
actually being addressed are held in main memory the scheme does not 
have the large s egment p rob lems exp erienced in segment ed schemes . 

Thus , the scheme so lves both the memory management problems and the 
addres s trans lation prob lems associated with many small and large 
s egment s . However , the model in this form does not support requirements 
1 , 2  and 3 of the model aims , namely large unique vir tual addresses ,  a 
unif orm memory and separate main and secondary memory address 
trans lation sys tems . The next section shows how the model can be 
modif ied and used to provide a virtual memory with all the required 
attributes . 

6 . 3 .  Applying the memory management model 

Requi rement s 1 , 2 and 3 of the model demanded a large uniform 
virtual memory and a separate main and secondary memory address 
t ranslation sys tem . A large unif orm uniquely address ed memory which 
holds all data and files implies an address size of the order of 64 
b i ts , as us ed in some other capab il ity systems . The model describ ed in 
section 6 . 2 imp lies an address size comparab le to processors such as the 
ICL2 9 00 (Keedy , 1 97 7 ) , MULTICS etc,  and of the order of 32 b its because 
it  uses page tables in main memory for address trans lation . 
Unfortunately, a simp le s caling up of the tables is not pos s ible because 
the large address is 2-32 times that of the conventional addres s . 
Moreov er ,  the table structure would be us ed for both main memory and 
secondary memory address trans lation , contrary to the requirements set 
out in 6 . 1 ( 3 ) . Thus , in order to use the memory model, the address size 
mus t  be expanded to  about 64 bits  in s ize and another address 
t rans lation mechanism must be found . We can cons ider a number of the 
techni ques used by other capab ility based computers . 

Gligor ' s address ing scheme assumes the presence of a robust virtual
memory without indicating how to provide such a mechanism . B ishop 
attemp ts to use convent ional page tables to translate addresses . This 
technique is unsuitable because of the size of the directly indexed page 
tab le . For the same reasons , the page and segment tables proposed by 
Keedy , and us ed by the ICL2 900 s eries , MULTICS,  Prime 750 (Prime) etc , 
are unsuitab le because of the space required for the tab les , and the 
time taken to t ranslate an address . 

The bes t form of address trans lation for an address of this size is 
the associa tive technique us ed by Atlas (Kilburn et . al . 1 9 62 ) , IBM 
Sys tem/ 38 , MU 6-G ( Edwards et . al . 1 980) , and MONADS II (Abramson , 1 981 ) . 
These methods only attemp t to trans late addresses for those pages 
res ident in main memory , and leave the sof tware free to organiz e  the 
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s econdary memory trans lation tables in any suitable way (Rosenberg and
Keedy , 1 9 8 1  ) • 

Thus , by increas ing the address size to 64  b its and by using an 
associative address trans lation scheme the Keedy model can provide an 
acceptab le virtual memory for our capab ility model . The new address ing 
scheme is summarized in Figure 2 .

7 .  MONADS 

l·l· Background 

The MONADS II computer was
Science at Monash Univers ity in
an HP2 100A minicomput er us ing
( 1 982 ) , and us es the address ing
method for address ing memory .

built in the Department of Computer 
1 980 . The p rocessor is cons truc ted ·  ab ove 

the technique des cribed in Abramson 
struc ture des cribed in this paper as the 

7 . 2 .  Address ing s tructure

The MONADS II sys tem supports the capab ility regis ter scheme in two 
way s . Firs t ,  the processor p rovides a virtual space of 2-31 words . This 
cons is ts of 2-1 6 separate address spaces , in the sense described in this 
paper , each of 32k words . While a full s cale capability sys tem would 
ideally require more and larger address spaces (e .g . 2-32 by 2-32 ) ,  the 
MONADS II address ing range is suff icient to demonstrate the princ ip les 
involved and to support a pilo t sys tem .  

Second , the processor provides 1 6  sets of regis ters . Thus , the 
system can eff iciently support p rocess-switching between 1 6  processes . 
Each regis ter set includes 1 6  s tandard capab ility regis ters , six special 

capab ility regis ter number offset 
effec tive 
program 
address 

..._ _______ > virtual address length access 

----------:> �address space #
pag e II 
s tart + off  set 

' 

I 

Daddress space #
page #
s tart address 

capab ility registers 

ass ociative 
address 
t rans lation 
s cheme 

.,_ __ > 
real page fl 
o ffset

Figure 2 - The new addressing model 
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capab ility reg is ters int ended to 
l inks (Hewlet t  Packard ,  1 9 70 ) 
other ass ociated regis ters . 

address code , cons tants , base leaf 
and scalars on the stack, and various 

l ·l· The capability regis ters 
Each of the 16 processes executing �n the HP 2100A is provided with · 

1 6  capability regis ters for address ing segments of memory . Each reg is ter 
is  composed of 4 16  b it words , as follows :

word 
word 
wor d  
word 

1 :
2 :
3 :  
4 :  

Addr ess space number - 16  b i ts
Displacement within address - 15 b its
length of segment - 16 b its
ac cess  bits - read , wri te ,kernel , invalid - 4 bits 

The address space number defines one of the 32k word addressing 
regions in virtual memory . The displacement is used to mark the start of 
the s egment in the address space . The length f ield marks the end of the 
s egment in the address space . The read and write bits determine whether 
the s egment may be read f rom or wri tten into . The kernel b it specif ies 
that the segment may only be addressed if the processor is in kernel 
mode . The invalid b it prevents the register from being us ed ,  and is s et 
when a regis ter is uninit ialized . A capability regis ter can only be 
loaded when the processor is in kernel mode (e .g . executing a load 
capab ility regis ter ins truction)  and thus its contents are protected 
f rom corrup tion .  Because the HP 2100A only has 16  b it data pathways , four 
write  cycles are required to set up each regis ter . The HP 2 100A microcode 
p rovides a load capab ili ty register instruction of the type des cribed in 
section s . 2 .  

A capab il ity regis ter may be used as an operand of any of the 
HP 2 100A memory ref erence instructions . When used , the 31  b it address is 
treated as a paged virtual address . This virtual address is mapped onto 
the main memory by the MONADS II address trans lation hardware , des cribed 
in Abramson ( 1 981 ) . The displacement field is checked agains t the length 
f ield,  and an interrupt is s ent to the HP 2 1 00A if a violation occurs . If 
the mode of access is contrary to the read or write bits , or the kernel 
bit  is s et and the p roces sor is not in kernel mode, or a reg ister is 
inval id , an interrup t is sent to the HP 21 00A . 

The d i splacement held in the register may be modif ied by two 
dif ferent methods . In the first , a small cons tant offset in the range 0 
- 7 may be dynamically added to the value in the reg ister . Alternatively 
a value held in a modif ier regis ter can be used to index into a segment 
d�f ined by a capab ility register . 

7 . 4 .  The load-capability-regis ter instruction 
There is not sufficient space in this paper to d escribe the details 

of the MONADS C-lis t structure . However , MONADS II uses a microcoded 
instruc tion to map this s truc ture onto the capability reg isters . Bef ore 
a segment can be addressed , the capab ility mus t  be loaded into one of 
the 16 capab ility registers . Instructions may then address memory by 
specifying the 4 b it capab ility regis ter number . Other ins tructions are 
p rovided f or managing high level obj ects such as inf ormation hiding 
modules . 
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8 .  CONCLU SION 

Many sys tems have dif ficulty in managing a memory addressed by 
capab il ities .  The model avoids many of these prob lems by us ing the 
memory management model described in section 6 .  In sys tems which use a 
cent ral obj ect table f or s egment address translation, the size of the 
tab le may become excess ive if the processor addresses many small 
segment s . The model p roposed in this paper avoids this problem by 
eliminat ing the obj ect tab le al together . The scheme is uniform in two 
respects . First , the capab ility registers are the only way of addressing 
memory . Second , all data , regardless of its size or lifet ime , is s tored 
in the virtual memory . The efficiency of the solution is dependent on 
two main fac tors . First , suf ficient capab ility regis ters must  be 
availab le to contain the working set of the process (Denning , 1 980 ) . 
Capab ility regis t ers must be allocated sens ibly ,  and some hardware 
support is provided for domain changes . Second, an as sociative address 
trans lat ion scheme must be used . All of these are true in MONADS II . 
The hardware p ropos ed in this paper was designed to be f lexible enough 
to  survive a number of changes in software ideas . Whilst there is not 
spa ce in this pap er to demonstrate the flexibility, the address ing model 
has ac tual ly been applied to a number of different C-lis t s tructures 
quite success fully . In each of these the model was capable of 
imp lement ing a dif ferent addres s ing struc ture with only a dif ferent 
load-capab ility-register instruc tion and new high level obj ect 
ins truct ions . 
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A Technique for Enhancing Processor Architecture 

D .  Abramson 
Dept . of Computer Science , 
Monash Univers ity . 

The MONADS II comput er implements an 
archi tecture with a large s egment ed and paged 
virtual memory , an ' inprocess ' stack 
o rganiz ation and a capab ility b as ed addressing
s cheme . 

The processor is const ructed around a 1 6  bit 
minicomputer ,  a HP 2 1 00A .  

This paper describes the techniques used in the 
MONADS II  p rocess or to enhance a p rimitive 
architecture and proposes this technique as a 
general method of construc ting research 
p rocessors cheap ly and quickly . 
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1 .  Introduct ion
Since the time that Charles Babbage des igned his mechanical 

analytical engine in 1 8 37 , many new and d iff erent computer architectures
have been proposed . The rapid changes in technique have enab led many
struc tures to  be built which previously could not be imp lemented . _  
Moreover , the view of computer archit ecture has altered dramatically and 
has been affected by computer language research , providing architec tures 
capable of directly supporting some high level languages [ l ]  and 
operating sys tems .

Currently , much research is being conducted into architectures 
which , whil st  basically VonNeuman, have new and d ifferent memory 
organizat ions (such as capab ility based address ing [ 2 ] ) and which can 
manipulate higher level data cons truct� ( such as sets and queues ) . 

Many of these ideas are of ten only des igned and documented at a 
concep tual level and are never ac tually imp lement ed as the basic 
s tructure of a new processor . Unfortunately , many maj or design flaws 
are not d is covered until an attempt is made to imp lement the design . 
Moreover , some des igns cannot be implemented at all . Thus , a real 
imp lementa tion determines both that the ideas are bas ically sound and 
that they can be ef f iciently buil t  with the available techniques . 

A problem of ten faced is how to realize a new computer architecture 
in an environment in which resources are both expensive and limited , as 
in many Universities and res earch ins titutes . 

This paper dis cusses some of the common prac tices and proposes an 
interes ting technique . 

2 .  Realizing � .B.fil!  architecture 
A sys tem des igner is presented with two alternatives when 

attemp ting to imp lement a new architecture . First ,  the architecture can 
be incorporated into a totally new 'Computer sys tem .  This approach , 
whils t  l ogically the more des irable, of  ten involves many more hours than 
may superfic ially appear necessary . 

Extra devices (such as interfaces and controllers ) mus t  be 
construct ed purely to operate the new p rocessor . Some may require a 
large amount of des ign effort ; effort which is not directly connected to 
the original architectural aims . Many software packages must then be 
developed , such as ass emblers , compilers , loaders and bootstraps . 

Consequently, the proj ect often g rows in size where ' large group 
manage�ent pro� lems ' are encount ered . Much of this extra effort appears 
to be directed to the devices which must conununicate with the processor , 
rather than to the processor itself . Thus , because of the extra eff ort 
involved , the full s cale produc tion of a new computer simply to t est out 
some architectural enhancements is of ten not viable in a research 
environment . 

The second alternative cons is ts of modifying or using an exis ting 
computer sys tem ( called the ' source' architecture) in order to test out 
a new architectural des ign {called the ' target ' architecture ) .  This 
approach has the advantage that the d es ign time and effort may be 
dramat ically reduced . However , great care must be exercis ed to prevent 
the source architec ture from rest ric t ing the s cope and effectiveness of 
the target . 
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1 •  Us ing ,!!!. existing computer system 
Three dif ferent techniques may be used when the target architecture

is cons tructed on top of a simpler source machine .  First ,  an
environment may be cons tructed in so ftware . Second , if the source 
process or us es a microcoded control unit , the target may be imp lemented
in firmware . Third , the actual hardware of the source processor may be 
mod if i ed to imp lement the target architec ture .

3 . 1 . A Software Emulation
This so lution may take a number of forms . The mos t general is to 

produce a program (called the interpret er ) which interprets ins truc tions 
for the target machine . The interpreter emulates the fetch-execute 
cycle of the target proces sor , and executes target instructions by using 
smal l sections of source ins tructions . Interpreting the new 
architecture of fers many advantag es . Because the interpreter is a 
program, of ten written in a high level language , it may be eas ily 
mod ified . Comp lex debugging and monitoring aids may be incorporated in 
the des ign , allowing the des igners to measure and judge the 
effectiveness of  the new processor . At the same time as emulating the 
target architec ture , the source machine may be executing many other 
programs . 

This app roach also has some maj or dis advantages . The ultimate 
execution speed of the target proces sor is of ten far too s low to support 
real is tic tes ts • Moreover , it is not always obvious whether ef f icient
hardware can later be cons tructed ,  somewhat diminishing the 
ef fec tivenes s  of the implementat ion . 

A slightly more eff icient sof tware emulation involves another 
d if f erent body of code ( called the Kernel ) which attempts to provide a 
normal source machine program with attributes from the target processor . 
Programs for  the target machine are compiled into source machine 
ins tructions . When a target machine operat ion is required wh ich cannot 
be direc tly t ranslated into a short sequence of source ins tructions , a  
call to the kernel is executed , which performs the task and returns 
control to the source program . 

Whils t  far 100re eff icient than an interpreter , the kernel solution 
tends to highlight the architec tural features of both the source 
processor and the target , often with disas trous effects . (Such an 
examp le is found in [ 4 ] ) .  Moreover , this technique may not be able to  
manage a target machine which is dramatical ly dif ferent in des ign from 
the source . Thus , a target program may be reduced mainly to kernel 
cal ls and app ear the same as an int erpret ive solution . 

Because many source instruc tions may be required to emulate a 
target ins truction , the speed of the kernel is of ten far too slow to 
support a real is t ic test environment . 

Many different types of kernel have been written . A good review is 
found in [ 1 6 ] . 

A common dis advantage is that both the kernel and the interpreter 
of ten occupy la rge amounts of memory and may reduce the space availab le 
for user programs signif icant ly . 

The advantages of these so lutions are mos tly logical . An
interpretive s olution can usually emulate the target architecture 
success fully . The dis advantages are mos t ly practical . Poor execution
speed of t en makes the model useless . 
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In spite  of the disadvantages ,  manysucces sfully emulated in software . Most ,
p rovide a usable , long term computer util ity
ef ficiency . 

1·1·  A Firmware Implementation 

architectures 
however , have 

[ 4 ,  5 ) because 

have been 
failed to 

of poor 

Another technique used is to emulate the target architecture in
firmware (or microcode) .  This solution is clearly only app licable if 
the source machine uses a microcoded control unit and possesses a
writable control s tore .

The internal microcycle of 100s t  processors is several times faster 
than their fetch-execu te cycle . Consequently, target machine 
ins tructions can be much 100re ef ficiently emulated with microcode than 
with sof tware . Because new instructions can be p laced in writab le 
control s tore , the processor can continue to execute normal source 
machine programs at the same time as target programs . 

Unfortunat ely , most processors provide only a small writab le 
control s tore and ,  more importantly, a limited number of uncommitted 
operat ion codes . Thus , it is usual ly dif f icult to microcode al l of the 
operations required by the target machine . 

Even when suf f icient store and entry points are availab le ,  this 
technique of ten encounters another imp ortant problem . Many target 
ins truc tions may implicitly require s torage space , which mus t  be 
provided by the source machine mains tore . (An obvious examp le is the 
imp lementat ion of a virtual memory sys tem, which requires page tab les in . 
ord er to  trans late address es ) .  In many cas es the fact that target
operations are implemented in microcode may not be sufficient to make 
them ef ficient . The operations may be limit ed  in speed by the time 
taken to scan or search various data struc tures which , if built  into  
hardware , would have us ed much f aster store and searching strategies . 
(examp les of such an address trans lation sys tem are found in [ 6 ]  and 
[ 7 ] ) . 

In addition , the structure of the micro instruction is usual ly 
des igned f or the source instruction s et ,  not the target . Consequently , 
it  is of ten qui te dif ficult to write the target microcode on the source 
machine . 

Thus , a firmware emulation , whilst much more eff icient than a 
kernel or interpretive solution, is often s t ill too s low to p rovide a 
usab le sys tem .  Moreover , the implementation often leaves too much of 
the source p roces s or architecture visible, affecting the attributes and 
view of the_ target architecture . 

I·n the situat ion where speed is important , the only solution may be 
to p rovide s pecial hardware . 

1 ·1 ·  Modifying the source hardware 

The third poss ib ility is to modify the hardware of an exis t ing 
machine . Clearly , this technique can offer the best performance . 
Traditionally , however , this method is only used when the target 
architecture does not d iffer greatly from the source archit ec ture . 

Small changes such as small modif ications to the instruction set , 
adding virtual memory hardware ( 8 )  and detec ting extra error modes ( 5 ) , 
have been done success fully . Each of these changes , however , has not 
int roduced maj or architectural enhancements to the source processor . 
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In fac t ,  it is clear that the maj or changes possible with an
emulation environment are not always possible when mod ifying the
hardware of an exis ting machine .

The t echnique is often rej ected because it may al ter the
environment for normal sour ce machine programs as well as target machine
machine programs , dedicating the use of the source machine .

In sp ite of the disadvantages and prac tical difficul ties a number
of architectural changes have been achieved by hardware changes .  The
next section examines some of the more common hardware mod if ication
schemes used . 

4 .  Hardware modifications

Many specif ic changes are possible when the processor des ign is 
mod if ied . These depend up on the internal imp lementation of the 
processor itself , and will not be cons idered further . This section 
concent rates on some of the more general mod if ication techniques 
availab le • 

.i·l· Processor Conf igurations 

Mos t  computer sys t ems can be divided into two main parts , the CPU 
and the memory, connected usually by a ' clean' s et of interface signals , 
shown in Fi2ure 1 • 

...,_ __ handshaking & control ) 
roces sor Memory &

•-----� ADDRESSES -------------� Peripherals  
Control &

egis ters ••(-------- DATA----------------� 

f igure 1 .

The s ignals involved in the interface can typ ically be divided into 
three sections ; addresses , data and control/ handshaking information . 
The CPU communicates with the memory mostly by read and write commands . 
When the CPU executes a read operat ion control information is generated 
t ogether with an address pattern . The CPU may then wait for data , 
which is pas sed back over the data pathway . When a write is executed 
data is sent wi th the address to the memory unit 

The connections 
generalized to f orm 
the me�ory . 

between the CPU and memory section may be 
a sys tem bus which connects to devices other than 

I t  is the ' clean ' .  nature of the interface between CPU and memory 
which is often emp loyed when architectural enhancements are introduc ed . 

4 . 2 .  B reaking the address bus 

One technique used to enhance the architecture of the source 
proces sor is  to int roduce extra log ic into the address pathway between 
the CPU and the memory , shown in Figure 2 .  

If the a rchitec tur al enhancement is the addition of a virtua l  
memory sys tem, then the extra logic may be used to modify , or translate , 
the p roces sor address es before they reach the memory . Such a system is 
des crib ed in [ 8 ] . 
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-Address -+ - Address � 
C .P  .u . EXTRA MEMORY 

Data LOGIC " Data L 
, 

Control Control L , 

f igure 2 .

If however , the target architec ture is to include mo re registers , 
these may be ass igned addresses and placed in the extra log ic . Read and 
write commands directed to these addres s es are ' s tolen' by the extra 
logic and may never reach the memory . 

The extra logic in some sys tems appears as a block of memory , but 
the data in the locations is calculat ed by the logic rather than being 
the previously saved values . Such a sys tem is described in [9 ] to 
imp lement a s tack mechanism and address ing registers . 

Many sys tems have been constructed which place special s ignificance 
upon certain addresses within the address space . Many rely on special 
addresses for performing I /O operat ions . Al l ,  however , only ' steal ' a 
limited number of address es for such op erations , and perform very 
s pecif ic opera tions . None of these sys tems make dramatic architectural 
changes . Such sys tems do , however ,  suggest that treating the address es 
f rom a source processor in a special way may be used as a general 
mechanism for enhancing an existing machine architec ture . The next 
section proposes such a model . 

5 .  A general model 

The sys tems dis cussed in section 4 used the processor addresses in 
various ways . If rather than us ing a d edicat ed p iece of extra logic , 
another fas t processor is p laced in the address path , a general 
mechanism f or dramatic architec tural enhancements is created . In such a 
scheme , the processor addresses are treated as ins tructions by another , 
small fast  p roces sor ,  the intermediate p rocess or,  as shown in Figure 3 .  
These new ins tructions may be tailored to the target architecture . 

Address es 

c . P .u . ALU 

Int ermed iate 
Processor 

Addresses 

MEMORY 

+- Control 

f igure 3 .

The intermediate proces sor reinterprets all of the CPU addres s es ,  
and executes them as though they were ins tructions . Some may be sent to 
the memory unit , whil st others may be us ed internally . 

The intermed iate processor appears as a piece of memory to the 
source processor . 

The model possesses  some part icularly notable attribut es . 
i )  Many new operation codes are available, thus many new target 

opera t ions may be supported . The potent ial number of codes 
availab le is the size of the address space . 
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i i )  Because the intermediate processor is a general processor many 
diff erent target operations may be at tempted ,  from very simp le 
memory ref erences to complex data manipulation . 

iii)  Extra target architecture registers may be locat ed in the 
s tructure of the intermediate processor , and can be manipulated by _ 
read and write connnands from the source processor . 

iv) Normal memory references can be made to proceed from the source
proces sor to the memory with very little delay .

v )  Comp lex target operat ion may be added to the source without maj or
mod if ica tions to the source proces sor hardware . Thus , the source
processor  may be a mainframe , a minicomputer or pos s ib ly even a
microp roces sor .

vi ) The new architecture is partly transportable among source 

vii ) 

proces sors . Mo st of the target architec ture is hous ed within the 
int ermed iate processor itself . 

The intermed iate processor 
transparent ; thus it is 
processor  to execute normal 
machine p rograms . 

may be removed , 
not diff icult to 

source programs 

or made logically 
allow the source 

ins tead of target 

viii ) The target architecture inherits all of the input /output devices , 
controllers , communications , frame and power suppl ies from the 
s ource processor . This vas tly reduces the amount of effort 
required to imp lement a working target architec ture . 

ix ) Depend ing upon the address interpretations it may be possib le to 
execute source programs on the new target machine . At the very 
leas t ,  these programs can execute on another source processor of 
the same type . Thus the assemblers , comp ilers and loaders a lready 
avail ab le for the source processor may be modif ied to produce code 
for the target architecture . Consequently, s ome software 
development may be avoided . 

x )  Because the intermediate processor only cons is ts of a central 
proces sor unit it may be eas ily constructed ,  poss ibly from bit 
slice component s .  

The next section examines the MONADS II processor , wh ich was 
designed and built us ing this general model . 

6 .  MONADS II 

The MONADS proj ect began in 19 76  with the 
inves tigating methods for develop ing large software 
operat ing sys t em [ 10-14 ] was written to execute on M:>NADS 
HP2 100 minicomput er [ 8 ]  [9 ] • 

intent ion of 
systems . An 

I ,  a modif ied 

The princip les underlying the des ign of the operating sys tem extend 
f ar beyond that sys tem and can be applied to any large software system . 

During the development of the MONADS I sys tem it became obvious 
tha t  the availab le hardware was not entirely suitable f or the MONADS 
software s truc tures . This prompted the building of a second computer , 
MONADS II , which is des igned around the general model propos ed in 
Section 5 ,  and uses a HP2 100A minicomputer as the source processor . 
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6 . 1 . The HP2 1 00 

The HP 2100 [ 15 ]  is typical of many 1 6  bit  minicomputers of the · same 
era , and incorporates a microcoded control unit , some general 
accumulators and 32k words of memory . Addresses are cons tructed from a 
word of 1 6  bits , 15 of which form the memory address . The top bit 
represents whether addresses are to be used indirectly . [ 1 5 , page 2-s · 
] . 

Phys ically , the processor is divided into three areas ; the central 
processor its elf , the input output sec t ion and the memory sec tion . 

The int erface between the memory section and the processor cons is ts 
of 15  address b its , 16  b idirec tional data bits and a number of control 
signals . The memory section is self contained and uses 1 6  bit words of 
co re memory . 

6 .  2 • The MONADS .!!. Ar chi tee tu re 

I t  is beyond the scope of this paper to describe the archit ecture 
of the MONADS II sys tem . It is , however, easy to demonst rate that the 
target archit ecture could never be eff iciently emulated , either by 
software or f irmware , totally within the HP 2 1 00A . 

The MONADS II processor supports a number of processes directly in 
hardware and provides each process with 1 24 ext ra 16  bit registers . 
Some of these are used as capab il ity regis ters to address a segmented 
virtual memory with 31 bit virtual addresses . The proces sor also 
supports the MONADS subsys tem [ 1 3 ]  and inprocess [ 1 2 ,  1 3 ]  architecture 
with a p rotected stack structure . Most of these concep ts are so al ien 
to the HP 2 100A that an emulation would be extremely ineff icient . 

i•l • The MONADS I I  system 

The MONADS II sys tem comprises four sections ; The HP 2 100A 
processor and I /O logic , the int ermediate processor , the virtual memory 
manager and the sys tem mainstore . The old HP2 100A core controller has 
been removed and the interface is us ed to conununicate with the 
intermed iate processor , as shown in Figure 4 .  

rocessor 

figure 4 .  

i·l·!· The HP2 1 00 process or 
The changes made to the HP 2100 engine itself were minimal . Some of 

these were ess ential for the correct operation of MONADS II , whil st 
others were made for eff iciency reasons . Four changes were made . 

First ,  the microcode control store of the HP 2 1 00A was increased in 
size from 1 0 24 , 24 b it words to 4096  words . This modif ication whilst 
not ess ential ,  simp l if ied the imp lementation and improved the eff iciency 
of the operat ing sys tem .  

Second , the direct memory access (DMA) logic 
communicate d irectly with the virtual memory manager . 
was essent ial , and guaranteed that the DMA sys t em would 
immediate servi ce .
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Third , minor changes were made to the interrup t logic to al low the
int ermediate processor to interrupt the HP 2 1 00A and abort the current
ins truction . 

Fourth , smal l changes were made to the control signals between the
HP 2 1 00A and the intermediate proces sor to make them asynchronous with
respec t  to each other .

The core controller board and associated cards were removed from
the f rame and an interface to the intermed iate proces sor substitut ed .

�·1·1· The intermediate processor 
The int ermed iate processor is fas t microcoded processor . Each

instruction from the source processor is interpret ed by a stream of
microcode . It accep ts all HP2100 addresses and reinterprets them 
according to the following rule :

if address is direct and =< 7 7 7B then read from current data 
segment else 

if address is ind irect and =< 777B then read from current link 
segment else 

if address >= lOOOB and =< 1377B then read from stack frame 1 else 
if addres s >= 1400B and =< 1 7 7 7B then read from stack f rame 2 else 
if address >= 2000B and =< 757 7 7B then read from current code 

s egment else 
if address >= 76000B and =< 77 7 7 7B then use another special set of 

interp retations . 

The special interpretations allow the HP 2 100 to perform many 
other operations , including modifying registers , address ing the top of 
the s tack , using push and pop operations on the stack , using and loading 
the capab ility reg is ters , changing p rocesses ,  reading the time, set ting 
process time limits and address ing cons tants . The details of the 
address interpretations are beyond the scope of this paper and range 
widely in comp lexity .The simples t ins truction manipulates a regis ter 
whereas the mo st comp lex performs byte operations on word oriented 
segments . The intermediate processor is described in more detail in 
[ 1 7 ]  •

� ·1·1 · The memory manager and real memory 

The intermediate processor is capable of expanding the 15 b it 
HP 2100A address to a 3 1  bit virtual address . The virtual memory manager 
translates this address into a mainstore address and is described in 
detail in [ 1 8 ] . 

l• Achievements 
The int ermediate processor was des igned by one person over a period 

of months , built in about 6 weeks and tested in about 2 weeks . The 
processor was implemented for two reasons . 

First , and most obvious , to provide the MONADS group with a new 
process or capable of suppor ting the goals of the MONADS proj ect . 

Second , to determine whether the general model proposed in sec tion 
5 was real is tic . 

Both of these obj ectives were successfully met . The MONADS group 
is currently using the MONADS II sys tem for software development . 
Moreover , the fac t  that such a complex architecture was developed 
efficiently on a very simp le computer demonstrates that the model is 
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indeed real is tic . The implementat ion appea rs to support the advantages 
cit ed in Sec tion 5 .  The number of internal mod if ications made to the 
HP2 1 00 was smal l .  Whilst the processor is ef fectively ded icated to the 
MONADS proj ec t it would be poss ible to make the intermed iate processor 
log ically transparent and al low the HP2 100A to execut e normal programs . 

Provid ing certain rules were obeyed it would al so be po ssible to 
move the intermediate processor to another 1 6  bit minicomputer , with 
very little change to the intermediate proces sor . 

Init ial ly , a hardware diagnostic and monitor sys tem was developed . 
This sys tem was writt en in no rmal HP as sembler and comp iled and linked 
us ing the normal DO S-M ass embler and loader sof tware . 

The ef fec tive speed pos s ible within the intermediate processor 
would sugges t that the implementation chosen is far more eff icient than 
an interpretive or firmware solution . The design of the intermediate 
processor is signif icant ly less complex than the des ign of a complete 
CPU module , and avoids all of the extra device logic described in 
Sec tion 2 .  

An unexpected advantage was found in the init ial boots trap of the 
system . The intermediate processor has a special instruction which , 
when executed , sets up the address translation hardware and performs 
internal register diagnos tics . 

The mos t  notab le disadvantage of this technique , like the firmware 
solution , is that the source architec ture is s till somewhat vis ible . 
For examp le ,  the data paths in the target machine are s til l 16  bits 
wide . In sp ite of the simp licity of the source machine , these features 
did not appear to limit the target too significantly . 

8 .  Conclusions 

The success of the implementation of MONADS II clearly demonstrates 
that the model developed in Sec tion 5 is realistic . 

The end result of this res earch is a usab le implementat ion of a new 
computer a rchitecture . 
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HARDWARE MANAGEMENT OF 

A LARGE VIRTUAL MEMORY . 

D .  Abramson , 
Dep t . of Computer Science , 

Monash University .  

AB STRACT 

The MONADS II Comp uter was built in the Computer Science department at 
Monash Univers-ity in 1980 . Among its  many features , the Series II 
utili.zes a capabil i ty based addressing s cheme , in a large virtual , 
memory . 

S tandard technique s  unfor tunately fail to provide an e fficient mechanism 
_for translating the Series I I  virtual addres ses  in to main memory 
addres ses . 

Another technique is proposed for mapping very large addre sses , which 
operates very e fficiently for a relatively low cos t . 

The addres s  tran slation units o f  two o ther comp uters are examined and 
are compared to  the Series II llllit . 
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1 . 0 In troduc tion 

1 . 1  The MONADS Proj ect . 

'I'he MONADS p roj ec t began in 1976 , wi th the inten tion of  investigating
me thods for developing large so ftware systems . An opera ting system
( [ l ] - [ 6 ] ) was implemented to execute on the MONADS Series I computer ; a
modified HP2100A minicomputer [ 2 ] , [ 7 ] . The principles underlying the
design of the ope rating sys tem extend far beyond that sys tem, and
indeed ·can be applied to the development o f  any large so ftware sys tem . 

During the development of  the Series I sys tem, i t  became evident that 
the available hardware was not entirely sui table for suppo.r ting the 
MONADS so f tware s tructures . This promp ted the building o f  a second 
computer , the MONADS Series II [ 8 ] [ 9 ] , which is par tly based on a vas tly
modified HP2 100A minicomputer .  
1 . 2 MONADS Series II . 

The ·MONADS Series II  proces sor was designed to support  an environment 
sympathe tic to the philosophy o f  the MONADS project . It  p rovides 
cons tructs for e fficiently managing and supporting the key features o f  
MONADS , some o f  which are no t well ' unders tood ' by o ther computers , 
.includin g  the Series  I processor . This paper describes one o f  these 
areas , the Virtual Memory System . 

Sec tion 2 _ portrays a logical view of virtual memory sys tems whils t  
Sec tion 3 comments on some s tandard implementations and their problems . 
Section 4 describes the Series II addres s  translation uni t and Sec tion 5 
comp ares i t  with two o ther virtual memory sys tems . 

2 . 0  Logica� View o f  Memory 

2 . 1  Serie s  II  Virtual MemoTy . 

It was demons trated by the Mul tics designers ( 10 ]  in 1964  that i t  was 
highly desirable to treat the memory o f  a processor in a homogeneous 
manner . From a �ser ' s viewpoint , there is no concep tual dif ference
between a block o f  core ( or semiconductor) memory and a block o f  disc 
memory ; the only prac tical di fference being the way in which the data is 
retrieved and the relative speed at which it is  re turned . 

It was therefore · decided that th e Serie s II processor would provide the 
user ( and sys tem) wi th a very large vir tual memory , and like multics , 
draw no dis t inction between fas t and s low memory (or  be tween files and 
arrays ) . 

It was also deemed de�irab le that programs could be broken into their
logical sec tions ,  or segments , so that these segments could be treated
separately . 

Thus the Vir tual memory o f  the Series I I  i s  designed as a very large
segmen ted memory ( as this· is· now the only form o f  s torage) . Each 
segment is paged to simplify the enormous task o f  managing a segmented
memory [ 15 ] . 
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Addres s  translation i:s the process of  mapping an address as viewed 
from the pro ce ssor onto the physical addres s  required by the main 
memory sys tem . If the addres s  to be translated is not residen t in main 
memory a page faul t i'nterrup t is caused , and the supervisor program 
fetches the page into mainstore . 

The virtual address is typically divided into two sections , a virtual 
page number (poss·ioly including a segment identifier) and an o ffse t 
within page . · The address translator maps the virtual page number onto 
a main memory page number , which is combined with the unaffec ted offset 
to form a main memory addres s . The model translation process is shown 
in Figure 1 .  

virtual 
addres s  

.( .-

vir tual 

page faul t 
- - - - - - - - ., 

I 
I 

Addres s  
translator 

offset 

FIGURE 1

3 . 0  Virtua; Memory Sys tems 
' 

3 . 1  Vir tual Memory Cate gories . 

main 
memory 
page no . 

' 

main 

For the purpose of implementing address  translation hardware , virtual . 
memory sys tems mav be divided into three ca tegories : 

(1)  Small Virtual memories 
( 2) Large Virtual memories with small main memories 
( 3) Large Virtual memories with large main memories . 

3 . 1 . 1  Category (1)  refers to sys tems where the address  space viewed from
a program is small enough to allow the addres s  translation tables 

to be held direc tly in the hardware [ 7 ]  [ 11 ] • Some such sys tems allow 
the operating sys te� to swap these tables into and out of the hardware , 
so that individual processes may execute their own isolated addres s  spaces . 

These sys tems are relatively \lllaffected by chaqges in the size of  the 
main memory , as this only alters  the width o f  the translation tables . 
However , they are greatly a ffec ted by the size o f  the virtual addres s  space , 
as this alters the length o f  the translation tables . A simple address 
translation unit  is  s·hown in Figure 2 .  

Hardware mappin g  table 

�irtual virtual 1 page 
main 

no . 
main 

������-+-������ memory 
address  

addres s  page no . 

offset F IGURE 2 
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3 . 1 . 2  In sys tems wi th a large vir tual memory and a small main memory ( c . f . Atlas fl2 ] ) , address  transla tion is typically accomplished by utilis ing an associative memory to hold the transla tion tables .  Eachpage of main memory is associated wi th one page address re gis ter , which
holds the virtual address  per taining to that main memory page .

Translation is accomplished by the simul taneous comparison o f  the con tents
of each page address regis ter wi th the page number par t of the virtual 
address ; the ma tching re gis ter then pointing to the page in main memory
is  the required one . Con trary to ca te gory ( ] ) , this technique is 
rela tively unaffec ted by changes in the size of the vir tual memory . 
However , i t is greatly affec ted by the size of the main memory , as this
alters the number of page address re gis ters and comparators required .
Such a s cheme is described in Figure 3 .

vir tual 
address  ? ma in 

�---4 virtual page no .  1---""""'""--�------...,. 

I 

memory 
address  

comparators page address 
regis ters 

o ffset

FIGURE 3 

The use o f  an associative memory cannot ,  tmforttmately , be extended to 
provide tran�lation for category ( 3) sys tems due to the number of  page 
addres s  regis ters and comparators required . 

3 . 1 . 3  nie classical solution for sys tems with large vir�ual memories and 
large main memorie s  ( category 3) [ 10 ]  [ 13 ] involves the use o f  

page tables , (and segmen t  tables )  which are held either in main memory o r  
virtual memory . ..These tables , which are maintained and searched b y  
system software and firmware , o ffer a mul ti level indexed address  
translation table . 

To achieve respectable translation times , this mechanism is usually 
a�gme�ted by a small as�ociative memory , which holds the mos �  re�ently 
used page table entries . This scheme is shown in Figure · 4 .

Segmen t  table 

offse t

FIGURE 4 
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3 . 2 This classical solution would unfortunately fail to provide an 
efficient address tr�n�la ti_on mechani.s.m for the Series II  

�rocessor . The a�dressing s tyle of Series II (which is  capability
based ) [ 22 ]  would introduce a very large number of small segments (14 ] .
In addi tion , the page tables , which would be too large to reside · in . 
main memory , would be forced into virtual memory .  Th:ts would greatly 
complicate the address trans·lation software , and cuase the translation 
process to become extremely inefficiept . 

3 . 3 Logically , the solution adop ted by sys tems such as Atlas ( category 
( 2) sys tems ) would offer the best  performance . However , the 

production o f  an associative memory capable of  managing the many 
thousand pages of main memory ,  has not yet become feasible . 

The next sec tion des cribes an address translation unit which emulates a 
large associative memory very efficiently. 

4 . 0  The Series II Vir tual Memory Sys tem 

4 . 1  The Vir tual Address . 

The vir tual memory of  the Series II processor is addressed by a 31 bit 
vir tual address , which is un forgeable and unique across the sys tem . 
From the viewpoint o f  the vir tual memory hardware , this �ddress 
< segment no (16 bits) , page no , ( 6  bits )  displacement ( 9  bits ) >  may be
considered as 2 2  bits o f  virtual page identifier , and 9 bi ts of wi thin 
page displacement ,  < vir tual page no ( 22 bits ) , displacement ( 9  bits) > 

Because the address  is unique , the mapping hardware need never concern 
itsel f with the identity of the executing process and the sys tem 
sof tware need never swap mapp in g  entries when switching processes . 

4 . 2  The Physical Addres s . 

The Series II  phys ical address , for the main memory , consis ts o f  1 3  bits 
of page number and 9 bits of within page displacement . This 2 2  bit 
address < pa ge no ( 1 3  b i ts ) , displacement (4 bits ) > allows a maximum
main memory s i ze of  8 MB .  

4 . 3 Con trol o f  the Vir tual Memory . 

Con trol° of the virtual memory may be divided into three sections , namely :

(1 )  Mapping Hardware
( 2 )  Swap out sof tware 
( 3) Swap in s o f tware . 

Sec tions (2 )  and ( 3) are responsible for moving pages out o f  and into 
ma.in memory respec tively , and are managed by the Series II Hardware
Kernel [ 16 ] . This software is fully described in a companion paper
(1 7 ] . The remainder of this paper is concerned only with sec tion ( 1) .

4 . 4 Mapp ing Hardware. 

The Mapping Hardware is sole ly responsible for mapping the 31 bit 
vir tual address  onto a 2 2  bit phys ical address··· The external appearan ce 
is charac terized in Figure 5 .  
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page fault 
-. 

CPU 31 bits ·22 bits r-------,------� 
mapping 13 bits 22 bit
hardware --------physical 

address 

9 bfts displacement 

FIGURE 5 

When presented wi th a vir tual address , the mapping hardware may 
ei ther produce a physical address , or a page fault signal . If  the 
page required is in main memory , a physical addres s  will be 
produced . However ,  if the page required is in secondary memory , a 
page faul t interrup t  will be signalled to the system ,  in order that 
r�medial action may be taken . 

4 . 5  In ternal Operation . 

The mapping hardware is organised as a high speed sparsely occupied 
hash table , wi th embedded overflow chains , as characterized in Figure
6 .

The unit cons is ts o f  thre� �in c�mponents , a hashing uni t , a hash 
table . and a comp8:r�tor . · · · 

., . : .· 
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· · . . · 
· 

9 bits displaceuent 

12 10 3 13
___ ....._ __ � hashing .._ __ -;;w bits bits bits 1 1 1 bits Unit t-----+----f.--4-4-�-'----� 

12 bits 

key 

-----· �· 
Comparator  

EQUAL?

�--- ----- - - - - - - � page faul t 
x

4 . 5 . 1  Hashing Unit . 

· . Virt- link Jcces V F E Physical
ual f:lel Con- pageno 
pa gen trol 

/ 

FIGURE 6

The hashing unit  accep ts a 22 bit vir tual page number and generates a 
10 .bits uniformly dis tributed index . into the hash table .

� The curren t ver sion o f  the hashing uni t uses  low order b i ts from both 
the segment f ield  an d the page field o f  the virtual addres s  ( See 4 . 9 . 2 . )
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The hash table is implemen te d using very high speed bipolar memory .  Each cell i s  addressed by a 1 0  bit hash key , and con tains seven fields :

(1 )  vir tual address  identifier 12 bits ( 2 )  Physical page number 13 bits ( 3 ) Access  field 3 bits ( 4 )  Valid  field (V) 1 bit 
( 5 )  Link field 10 bits 
( 6 )  Forei gner field ( F) 1 bi t 
( 7 ) end o f  chain fiel d (E)  1 bit 

4 . 5 . 2 . 1 Virtual Address  Iden tifier . 

Tilis field con tains the remaining 12 bits o f  the vir tual page number 
no t used by the hashing  func tion . All o ther information in the cell 
pertains to this virtual page . 

4 . 5 . 2 . 2 Phys ical Page number . 

Tile field holds the page number to which the virtual page is mapped . 

4 . 5 . 2 . 3 Acces s  Con trol Field  

This field consis ts of  three access  control bits , controllin g  read , 
write and execute access respec tively . 

If a re ference to a page con travenes any of  the access control bi ts , 
an interrup t is generate·d and the re ference is abor ted . 

4 . 5 . 2 . 4 Valid  field . 

This field spe cifies  whe ther the virtual address  iden ti fie r  field 
c on·tains a valid address .  If an address hashes to an invalid cell , a 
page faul t signal is genera ted .  

4 . 5 . 2 . 5 Link fiel d . 

I f  more than one vir tual addres s  hashes to a given cell (i . e .  clashes 
occur) ,  an overflow chain is ma in tained by using  ano ther unused cell in
the hash table . This field holds the addres s  o f  the next cell in the 
overflow chain . I t  is maintained by the kernel software and is 
searched by the mapping hardware . 

4 . 5 . 2 . 6  For� igner field . 

An addres s  is forei gn to a cell  if  its hash key value is not equal to the 
cell number in which i t  is hel d . If an addres s  is foreign , the foreign bit 
is  set . This bit is required because the Virtual address  iden tifier field . 
does no t hold the en tire vir tual page number . 

4 . 5 . 2 . 7  End o f  chain field . 

This bi t is  se t to signify tha t the cel l  is at the end o f  a link chain . 

4 . 5 . 3  The comparator . 

Tilis uni t tes ts the virtual address  iden tifie r field , and those bits o f  
the virtual page number no t u s e d  by the hashin g uni t ,  f o r  equali ty .  I f  
equal , the phys ical page number field  value is  used a s  the translated 
page nurr.ber . 
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4 . 6 Mappin g  Unit Ope ration . 

Operation o f  the mapping unit  is s ummarised in Figure 7 .  The entire 
translation process is managed by the mapping hardware , including the 
following o f  overflow chains . Con trol is  re turned to the software once 
the memory reference is comple ted (or  after a page fault) . 

Use 
Physica 
pa ge no  
field 

EXIT 

APPENDIX E 

translate 
virtual 
addre s s  

hash 
vir tual 
page 
number 

x 

look at cell 
poin ted to b 
link field 

t 
FIGURE 7

Cause 
Page 
faul t 
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4 . 7 '·Peek ' Operation

For cer tain critical sys tem so ftware , it is important to know whe ther a
page re ference will cause a page faul t .  This may be achieved with the
' peek ' operation . 

When a peek operation is performed on a virtual address , the mappin g unit
a ttemp ts to transla te the address . The software may then examine a 
Series II s tatus re gis ter ( SVR) to de termine whether the re ference would
have caused a page faul t . If  the peek opera tion indica tes that  no  page 
faul t would have occured , then the re ference is regarded as a normal
(non peek) reference . 

However , if the s tatus regis ter indicates a page faul t , .. on di tion , then 
the page mus t be fe tched into main memory .

4 . 8 Con trol o f  the Mapping Hardware .

To the software responsible for initializing and maintaining the data in 
the mapping hardware ,  the hash table and associated regis ters appear in 
a special s e gment , the memory control segmen t  ( segment �) . Val ues  may be
saved in to or read from the various fields o f  the has� table by e�ecuting  
memory reference ins truc tions on this segment .  

4 . 8 . 1  Insertion and dele tion . 

Algori thms for inserting  and dele ting entries from the translation unit 
are fully defined in [ 23 ] , and thus are not des cribed here . Correct  
operation of  the hardware demands tha t  the software responsible for 
insertions and deletions conforms to these algorithms . 

4 . 9  Performance o f  the Translation Unit . 

4 . 9 . 1 Loading Fac tor . 

A po ten tial dan ger with using  a hash table is that the number of  . 
collisions to any one cell ( or clashes ) ,  and the average chain length .  
may become unaccep tably high .  Accep table performance can , however , be  
ob tained i f  the hash table is  sparsely occupied ( i . e .  low loading factor) . 
Providing tha t the hashing  unit generates a uniform dis tribution of  hash 
keys , the expec ted number of probes to re trieve an item in the hash table 
can be calculated from 

E = 1 + a:  /2 

where = loading fac tor [ 1 8 ] ,  [ 23 ] .

The curren t version o f  the Series II processor has a hash table size four 
time s  the number o f  pages· in physical memory , so  in this ver sion 
E � 1 . 125 which is acceptably low .

(No te that for a true associative memory , E = 1)

4 . 9 . 2  Hashing  Function .

The hash table per formance is  also  affected by the efficiency o f  the
hashing func tion , which should guarantee a uniform dis tr ibution of hash
keys . The c urrent version o f  the hashing  uni t  uses a comb ination o f  low
order  bi t s  f rom bo th the segmen t  field and the page field o f  the vir tual

· addre s s . Should this func tion yield poor resul t s , e>q>eriment s  may be 
m� n P  wi t.h more complex hashing  ftmc tions . 
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Figure 11 shows the timing delays inheren t in the Series II address
translation uni t .  It  can be seen tha t the minimum access time will be 

On ave rage 

t . = 0 + S O  + 50 + ( 300 -700) ns min 

= 400 -soo ns 

t a v = ( 400 ·soo) + { E-1 ) x 1 00

= 412 -s12 ns 

The varia tion in the main memory time is  dependent on the cycle 
s tealing o f  the re fresh hardware for the dynamic memorie s  used . 

Vir tual 
Addres s  

·� hashing 
' func tion 

� 
� 

tl 

link chain 
� ' 

_J 
hash �omparator table 

main 
memory 

I �  0 ns -4 I �  50 ns � I <--- 50 ns __,. I � 300 -100 ns � 

4 . 9 . 4 Expansion o f  main memory . 

FIGURE 8 

To main tain acceptable performance , the value E mus t be kep t low, thus 
on addi tion o f  main memory the hash table size must be expanded 
proportionally . Tilis increase in size does no t necessarily affec t any 
o f  the fields wi thin the hash table . I f  the hash table is divided in to 
blo cks , l inks may be res tric ted to the ' block ' of hash table in which 
they exis t .  

4 . 9 . 5 Op timi za tion . 

Performance of the hash table may be op timized by overlapping the 
comp arison o f  the vir tual page id�ntifier in the curren t cell to the 
vir tual page number , with the fe tch o f  the cell linked to the current 
cell . This op timi za ti on , however , has li ttle effec t i f  the value E-1 is 
low . 

5 . 0  Al ternative Solutions 

Two o ther comp uters have made attemp ts a t  solving the problem of  
transla ting very long vir tual addresses , bo th using unconventional 
technique s . 

5 . 1 MU6-G [19 ] 

The MU6-G was recen tly developed at Manche s ter University as a "high
per formance machine use ful for general and scientific app lications" ·

. 
Among its  many fea tures ,  �ru6-G includes a Memory Acces s  Controller , or
MAC , for translating virtual to phys ical addresses . 
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Memory Managment 

The vir tual address forma t in the MU6-G processor is as follows

< process no . 
segment no . 
block no . 
bit no . 

( 8  bits ) 
( 8  bits) , 
(7 b i ts) ,
( 14 bits )> 

MU6-G associates one Page Address Re gister (PAR) with each physical 
page ,  as in Atlas [ 12 ] .  However , rather than using a fully associative 
mechanism, which would be prohibitively expens ive , a sequential search
is made of these regis ters . 

PARs are or ganized in banks o f  256 locations , which gives an average
transla tion time a little under f>its .  This unaccep tably high t_ime is
reduced by the use o f  a tran slation look aside buffer . If  the main 
memory cache on MU6-G is ignore d ,  a mains tore access time o f  750 ns is 
achieve d . 

5 . 2  The IBM Sys tem/ 38 

The IBM System 38 [20 ] [ 21 ]  is the most recent computer in the IBM range , 
·and was developed by the Gener al Sys tems Division in 1978 .

Like the Series I I ,  the Sys tem/ 38 translates an extremely lon g  virtual
address  into a smaller mains tore address .

The translation process involves the use o f  a sparse hash table in the
main memory o f  the Sys tem/ 38 . Two tables are involved ; the hash index
table and tne page directory . The page directory serves as an over flow
table , unlike the Series  II address translator which uses overflow chains
embe dded in the hash table . In addition , the ha sh index table , which is
equivalent to the hash table in Series II , is held in the main memory
of the sys tem/ 38 . This memory is far slower than the high speed bipolar
RAM use d  in Series II .

Accep table tran slation time s  are only achieved by the addition of  a
translation look aside buffer .

No timing values have been published for the Sys tem/ 38 .

5 . 3 Conclusion .

Bo th MU6-G and Sys tem/ 38 require the use o f  high speed look aside buffers
to achieve respec table transla tion times . The design o f  such buffers is
usually similar to the design of the Series II mapping unit ,  i .e .  as high
speed hash tables , but with · no overflow s trategy , and usually o f  much
smaller size . When the lookaside buffers in MU6-G and Sys tem/ 38 fail to
translate an address , some . form o f  slower overflow s trategy is utilized .
When a clash condi tion in the Ser ies I I  mapp ing uni t occurs , (which is less
likely than a lookaside buffer  failure) a high speed search is made within
the hash table .

The paper has demons trated tha t  the addres s  translation technique
uti lize d  by the MONADS Series I I  computer is prac tical , and offers very
accep table performance . It suggests that the Series II translation unit
should o ffer equal or superior performance to the MU6-G or Sys tem/ 38
transla tion units .
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