
MONASH UNl'/ERSITY

THESIS ACCEPftD 11- SAT.�FACTI N OF THE
REQu:� [M�. s f-). r= JEGRH OF

DO": OR OF PHILOSOP Y
ON f.Q .0�cg� (�.f::;r.

..... (;, .. ��

SEC. PM.D & R BC ARCH COMMITTEE

COMPUTER HARDWARE TO SUPPORT

CAPABILITY BASED ADDRESSING

IN A IARGE VIRTUAL MEMORY

Thesis

submitted for the Degree of

Doctor of Philosophy

by

DAVID ANDREW ABRAMSON

B.Sc. (Hons)

Department of Computer Science

Monas h University

August, 1982

1

TABLE OF CONTENT S

INTRODUCTION .

1 . 1 The MONADS Proj ect .

1 . 1 . 1 Aims of the MONADS Proj ect .

. .1 . 1 . 2 His tory of the Proj ect

1 .2 Obj ectives of the Thes is .

1 . 3 Layout of the Thes is .

2 CONVENTIONAL MEMORY ORGANI ZATIONS .

2 . 1 .So ftware Environment

2 . 1 . 1 Us er Programs .

2 . 1 . 2 The Operating Sys tem .

2 . 1 .3 Compilers .

2 . 2 Conventional Memory �..anagement Sys tems •

2 . 2 . 1 Linear Memo ries .

2 . 2 . 1 . 1 Single User Sys tems

2 . 2 . 1 . 2 Mul ti-user Sys tems

2 . 2 . 1 . 2 . 1 Sharing Memory

. .

.

.

2 . 2 . 1 . 2 .2 Protection between User Programs • • • • • • • • • • • • • • •

2 . 2 . 2 Paged Virtual Memories

2 . 2 . 2 . 1 Single Us er Sys tems

2 . 2 . 2 . 2 Multi-user Sys tems

2 . 2 . 2 . 3 Address Trans lation

.

.

.

.

2 . 2 . 2 . 3 . 1 Small Virtual �ddress Spaces • • • • • • • • • • • • • • • • • • •

Small Phys ical Memories •

2 . 2 . 2 . 3 . 3 Large Virtual Address Spaces • • • • • • • • • • • • • • • • • • •

2 . 2 . 2 . 3 .4 Very large virtual address spaces • • • • • • • • • • • • • •

2 . 2 . 2 . 3 .2

2 . 2 . 2 . 4 Protec tion .

2 . 2 . 2 .s Sharing .

. 2 . 2 . 2 . 6 Memory Allocation

2 . 2 . 2 . 6 . l Page Replacement

2 . 2 . 2 . 6 . 2 Internal Fragmentat ion

.

.

2 . 2 .3 Segmented Memory Schemes . , .

1

1

1

2

3

4

6

6

6

7

8

8

8

9
9

1 2

1 3

1 4

1 6

1 6

1 6

1 7

18

19

20

20

21

22

22

23

23

2 . 2 . 3 . 1 Address Translation .

2 . 2 . 3 . 1 . 1 Segment Lis ts

2 . 2 . 3 . 1 . 2 Tagged Des criptors

.

. .

. .2 . 2 . 3 .2 Memory Allocat ion

2 . 2 . 3 . 2 . 1 Compaction .

2 . 2 . 3 . 2 .2 External Fragmentat ion .

2 . 2 . 3 . 2 . 3 Segment Rep lacement

2 . 2 . 3 .2 .4 Dynamic Segments
. .

.
2 . 2 . 3 . 3 Protection .

2 . 2 . 3 . 4 Sharing .
2 . 2 . 3 . 4 . 1 Uniform Address ing

2 . 2 . 3 . 4 .2 Indirect Evaluation

.

.
2 . 2 . 3 . 4 . 3 Multip le Segment Lis ts •

2 . 2 .4 Segmented and Paged Memories •

2 . 2 . 4 . 1 Address Translat ion .

2 . 2 . 4 . 2 Protection

2 . 2 . 4 . 3 Sharing

.
.

2 . 2 . 4 . 4 Memory Allocation .

2 . 3 Conclus ion .

3 COMPUTER MEMORY HARDWARE .

3 . 1 Introduct ion .

3 . 2 Memory Building Blocks .

3 . 2 . 1 Regis ters .

3 . 2 .2 Fast Addressab le Memories .

3 . 2 . 2 . 1 . Serial Devices

3 . 2 . 2 .2 Random Access Devices .

. 3 . 2 .� . 2 . 1 Core Memories

3 . 2 . 2 . 2 . 2 Modern Memory Devices .

3 . 2 . 3 Large Storage Devices

3 . 2 . 4 Associative Memories

. .

.

3 . 2 . 4 . 1 True Content Ad dressab le Memories • • • • • • • • • • • • • • • • • •

3 . 2 .4 . 2 Linear Scan Word serial - B it parallel • • • • • • • • • • •

3 . 2 . 4 . 3 Linear Scan Word parallel - B it serial • • • • • • • • • • •

3 . 2 . 4 .4 Skew Address ing .

3 . 2 . 4 . 5 Other Searching Algorithms •

3 . 2 . 5 Cache Memories .

23

24

25

25

26

26

27

27

27

28
29

30

32

32

33

35

35

36

37

39

39

39

39

40

40

4 1

4 1

4 1

42

42

44

45

4 6

4 7

4 8

4 8

3 . 2 . 5 . 1 Memory Wri te Operat ions •

3 . 2 . 5 . 2 Ins erting and Deleting I tems •

3 . 2 . 5 . 3 Data Caches and Address Trans lation Caches • • • • • • • • •

3 . 2 . 5 .4 Imp lementing Cache Memories •

3 . 2 . 5 . 4 . 1 The Freely Loadab le Cache •

3 . 2 . 5 . 4 .2 Direct Mapp ing .
3 . 2 . 5 . 4 . 3 The Set Asso ciate Cache •

3 .3 Imp lementing Memory Organizations •

3 . 3 . 1 Linear Memory Schemes •

3 • 3 . 1 . 1 Bas ic Scheme •

3 . 3 . 1 . 2 Relocation Regis ters •

3 . 3 .2 The Paged Memory Scheme •

3 . 3 . 2 . 1 Small Virtual Address Spaces •

3 . 3 . 2 . 2 Small Phys ical Memories •

3 . 3 . 2 . 3 Large Virtual and Phys ical Memories • • • • • • • • • • • • • • • • •

3 . 3 . 2 .4 Very Large Virtual Spaces •

3 . 3 . 3 Segmented Memories •

3 . 3 .4 Segmented-Paged Memories •

3 . 4 Conclusions .

4 CAPABILITY BASED ADDRES SING .

4 . 1 The Propert ies of Capab ilities •

4 . 2 Capabil ities and Obj ec ts •

4 . 3 Implement ing a Capab il ity Addressing Scheme • • • • • • • • • • • • • • • •

4 . 3 . 1 Pro tec ting and Us ing Capab ilities •

4 . 3 . 1 . 1 Partit ioned Segment s •

4 . 3 . 1 .2 Tagging •

4�3 . 2 Names and Mapping Information •

4 . 3 . 2 . 1 The Need for Mapping •

4 • 3 • 2 • 1 • 1 Direct Mapping •

4 . 3 . 2 . 1 .2 One Lev el Translation

4 . 3 . 2 . 1 . 3 Two Level Trans lation

. .

.

4 . 3 . 2 .2 Translating Names into Virtual Addresses • • • • • • • • • • •

4 .3 . 2 . 3 Trans lating Virtual Addresses into Real Addresses • •

4 . 3 . 2 . 3 . 1 Linear Lis ts •

4 . 3 . 2 . 3 . 2 Convent ional Page Tab les •

4 . 3 . 2 . 3 . 3 Reusab le Index Tables •

49

so
5d

50

51

51

53

53

54

54

54

55

55

57

58

59
60

60

61

62

62

64

65

65

65

6 7

6 8

68

69

70

71

72

76

76

7 7

7 8

4 . 3 . 2 . 3 . 4 liash Tab les •

4 . 3 . 2 . 3 .5 Ac tive and Pas sive Segments • • • • • • • • • •· • • • • • • • • • •

4 . 3 . 2 . 4 Ef f icient Address Trans lation •

4 . 3 . 2 . 4 . 1 Vis ible Address ing Registers • • • • • • • • • • • • • • • • • • •

4 . 3 . 2 . 4 . 2 Address Trans lat ion Caches •

4 . 3 . 2 .5 Log ical Proper ties of Obj ects •

4 . 4 Memory Segmentation •

4 . 4 . 1 Mapping Tables •

4 • 4 • 2 Memory Ma.nagemen t •

4 .5 Conclus ion •

5 A NEW CAPABILITY BASED ADDRES SING MODEL .
5 . 1 Aims of the Model .

5 . 1 . 1 Memory Management •

5 . 1 . 2 Address Translation Problems •

5 . 1 . 3 Uniformity and S implicity .
5 . 1 .4 Ef f iciency

5 . 1 . 5 Flexib ility

.
.

5 . 2 Obj ect Address ing .
5 . 3 Segment Address ing .

5 . 3 . 1 The Bas ic Form of a Capability .

5 . 3 . 2 'llle Load-capab ility-regis ter Ins truction • • • • • • • • • • • • • • •

5 . 3 . 3 Repres entation of a Capability •

5 . 3 . 4 Ref inement of Capab il ities •

5 . 3 . 5 Summary

5 . 4 Virtual Memory

. .

. .

5 . 4 . 1 Requirements of the Virtual Memory

5�4 . 2 A Small Segment Model

5 . 4 . 2 . 1 Simp le Real Memory Management

. .

. .

5 . 4 . 2 . 2 Simp le Virtual Memory Management • • • • • • • • • • • • • • • • • • •

5 . 4 . 2 .3 Support for Small and Large Segments • • • • • • • • • • • • • • •

5 . 4 . 3 App lying the Memory Management Model • • • • • • • • • • • • • • • • • • •

5 . 4 . 4 Summary

5 . 5 App lication of

. .

the Model ·
•

5 . 5 . 1 The INTEL iAPX4 32 .

5 . 5 . 1 . 1 The Intel Address ing Structure •

5 . 5 . 1 . 2 Mapp ing the Intel iAPX4 32 onto the Model • • • • • • • • • • •

79

8 1

82·

82

84

84

85

86

87

89

90

90

9 1

9 1

92

92

92

9 3

94

94

97

97

98

1 0 1

102

102

10 3

105

105

105

1 06

107

107

1 08

108

1 10

5 . 5 . 2 CAP-3 .

5 . 5 . 2 . 1 CAP-3 Address ing Structure •

5 . 5 . 2 . 2 Mapping CAP-3 onto the Model •

5 . 5 . 3 MONADS .

5 . 5 . 3 . 1 The MONADS Address ing Struc ture •

5 . 5 . 3 . 2 Mapping the MONADS Sof tware Struc ture onto the Model
5 . 5 . 4 Summary .

5 .6 Evaluation of the Hardware Model •

5 . 6 . 1 Model Aims .

5 . 6 . 1 . 1 Memory Management •

5 . 6 . 1 . 2 Address Trans lat ion Prob lems •

5 . 6 . 1 . 3 Uniformity and Simp licity •

5 . 6 . 1 . 4 Ef f iciency .
5 . 6 . 1 .5 Flexibility .

5 . 6 . 2 Comparison to Other Sys tems •

5 . 6 . 2 . 1 The Use of Registers

5 . 6 . 2 . 2 The Capab ility Format
.

.

5 . 6 . 2 . 3 Ref inement .
5 . 6 . 2 . 4 Real Store Management •

5 . 6 . 2 .5 Virtual Store Management •

5 . 6 . 2 . 6 Small and Large Segments •

5 . 6 . 2 . 7 Address Trans lation .
5 . 7 Conclusion .

6 AN ARCHITECTURAL ENHANCEMENT TECHNIQUE •

6 . 1 Realizing a New Architecture •

6 . 2 Using an Existing Computer System •

6 . 2 . 1 A Sof tware Emulation •

6 . 2 .2 A Firmwart Imp lementation •

6 . 2 . 3 Modifying the Sou rce Hardware •

6 .3 Hardware Modif ications •

6 . 3 . 1 Processor Conf igurations •

6 . 3 . 2 Breaking the Address Bus •

6 . 4 An Enhancement Model •

6 .5 Application of the Enhancement Model •

6 . 5 . 1 Dividing the Address Space into Areas • • • • • • • • • • • • • • • • • •

6 . 5 .2 Some Architec tural Enhancements • • • • • • • • • • • • • • • • • • • • • • • •

11 1

1 1 1

1 13

1 1 3
1 1 3

1 15

1 1 6

1 17

11 7

1 1 7

1 1 8

1 1 8

1 18

1 19

1 19

1 19

120

1 20

120

120

1 2 1

1 2 1

1 2 1

1 22

122

123

124

1 25

126

1 27

1 2 7

1 28

1 29

1 3 1

1 3 1

1 31

6 . 5 . 2 . 1 Adding New Regis ters .

6 . 5 . 2 .2 Adding New Ins truc tions .
6 . 5 . 2 . 3 Adding New Address ing Modes .
6 .5 . 2 .4 Adding a Virtual Memory . •

6 . 5 . 2 . 5 Expanding the Address Size . •

6 . 5 . 2 .6 Detecting Errors .

6 . 6 Conclus ions .

7 THE MONADS SERI ES II SY STEM - AN IMPLEMENTATION

132

1 32

1 34·

1 35
136

1 36

136

1 38
7 . 1 The MONADS SERIES II Sys tem - Primary Aims • • • • • • • • • • • • • • • • • 1 38
7 .2 The HP 2 100A Proces sor .

7 . 2 . 1 The View of Memory •

7 . 2 . 2 The Instruc tion Format .
7 . 2 . 3 The Input-Output {I /O) Sys tem •

7 . 2 .4 The Direct Memory Access System {DMA) • • • • • • • • • • • • • • • • • •

1 39

1 39

140

14 1

1 4 1
7 . 2 . 5 Th e Control Sys tem • 142
7 . 2 .6 Interrup ts • ·• 142

7 . 3 The Intermediate Processor . 142
7 . 3 . 1 Functionality • 142

1 . 3 . 1 . 1 Privilege Modes • 142
7 . 3 . 1 .2 Address ing Structure • 143

1 . 3 . 1 . 2 . 1 The Capab ility Regis ters • 143
7 . 3 . 1 . 2 .2 The Modif ier Registers • 144
7 . 3 . 1 . 2 . 3 The Counter Regis ters • 145
7 . 3 . 1 . 2 . 4 Ext ra Capability Regis ters • 1 45
7 . 3 . 1 . 2 . 5 Summary • 146

7 . 3 . 1 . 3 Process Changes • 147
7 . 3 . 1 . 4 The Kernel • .. • • • • • 147
7 . 3 . 1 . s �ont rol Registers • 147
7 . 3 . 1 . 6 Additional Features • 148

7 . 3 . 2 Address Mapping • 148

1 . 3 . 3 Imp lementation Details • 149
7 . 3 . 3 . 1 The Intermediate Proces sor Bus Struc ture • • • • • • • • • • • 1 49
7 . 3 . 3 . 2 The Dedicated Regis ters • 1 5 1

1 . 3 . 3 . 2 . 1 The Des crip tor Registers • 1 5 1

7 . 3 . 3 . 2 . 2 'nl e Wat chdog Timer Regis ters • • • • • • • • • • • • • • • • • • • 152

7 . 3 . 3 . 2 .3 The Instruction Counters • 152

7 . 3 . 3 . 2 . 4 The Display Regis ters •

7 . 3 . 3 . 2 .5 The Time Regis ters •

7 . 3 . 3 . 2 . 6 The Process Number Regis ter •

7 . 3 . 3 . 2 . 7 The HP 21 00A Memory Address Reg ister • • • • • • • • • • • •

7 . 3 . 3 . 2 . 8 The HP 21 00A Memory Data Regis t er • • • • • • • • • • • • • • •

7 . 3 . 3 . 2 . 9 The Viola tion Register •

7 . 3 . 3 . 3 The High Speed Arithmet ic Unit and Accumulator . .
7 . 3 . 3 .4 The Register File

7 . 3 . 3 . 5 The Cont rol Unit
.

. .
7 . 3 . 3 . 6 Summary .

7 . 4 The Memory Ma.nag er •

7 . 4 . 1 Func tionality •

7 . 4 .1 .1 Nature of the Problem •

7 . 4 .1 .2 Aims of the MONADS II Address Translation • • • • • • • • • •

7 . 4 . 1 . 3 The MONADS II Address Trans lation Hardware • • • • • • • • •

7 . 4 . 1 . 4 Ret rieval •

7 . 4 .1 . 5 Insertion •

7 . 4 . 1 .6 Deletion Algorithm •

7 . 4 . 2 Implementat ion Details

7 . 4 . 2 .1 Internal Struc ture

. .

.

. .7 . 4 . 2 . 2 Hashing Unit

7 .4 . 2 .3 The Hash Table .

7 . 4 . 2 . 3 . 1 The Virtual Address Identif ier

7 . 4 . 2 . 3 .2 The Physical Page Number •

7 . 4 . 2 . 3 . 3 Ac cess Control Field •

. .7 . 4 . 2 . 3 .4 Valid Field

7 . 4 . 2 . 3 . 5 The Link Field .

. .1 . 4 . 2 . 3 . 6 Foreigner Field

7 . 4 . 2 . 3 . 7 End of Chain Field .

7 . 4 . 2 . 3 . 8 Summary .

7 . 4 . 2 . 4 The Comparator .

7 . 4 . 2 . 5 The Finite State Control Machine • • • • • • • • • • • • • • • • • • •

7 . 4 . 2 . 6 The So ftware Algorithms •

7 . 4 . 2 . 7 Communicating with the Hash Table •

7 . 4 . 2 . 8 Address Spaces 1 , 2 , 3 and 4 •

7 . 4 . 2 . 9 The Peek Operation •

7 . 4 . 2 . 1 0 Performance of the Addres s Trans lator • • • • • • • • • • • • •

1 52

1 5 2

152

152

153

1 53

1 53

1 5 3
1 54

154

1 54

1 54

154

1 55

156

1 57

157

1 58

160

1 61

161

162

162

162

162

1 6 3

1 6 3

1 63

164

1 64

164

1 64

164

1 66

166

167

1 67

7 . 4 . 3 Al ternative Solutions .
7 . 4 . 4 Conclus ions .

7 . 5 Mod if ications to the HP 2 1 00A Hardware .
7 . 5 . 1 'lh e Memory Contro ller .

7 . 5 . 2 DMA Logic .
7 . 5 . 3 More Writable Control Store .

7 . 5 . 4 Mapp ing to Top Leaf

7 . 5 . 5 Interrup t Logic .
7 . 5 . 6 Asynchronous Interface .
7 . 5 . 7 Summary .

7 . 6 Sof tware Packages .

7 . 6 . 1 'lh e Intermediate Processor Microcode

7 .6 .2 The Microcode Assembler .

7 . 6 . 3 The Bootstrap .
7 . 6 . 4 Utilities . '• . .

7 . 7 Conclusion .

8 CONCLUSION .

8 . 1 Limitat ions of the MONADS II Sys t em .

8 . 1 . 1

8 . 1 . 2

The Address Size .

Special Capab ility Registers .

8 . 1 .3 The Hashing Function .

8 . 1 . 4 Proces sor Speed .

8 . 1 .5 The HP 2 1 00A Instruction Set .

8 . 1 . 6 Page Replacement .

8 . 1 . 7 Offs ets from Capab ility Registers .

8 . 2 Future Research

8 • 2 . 1 MONAns I II

8 . 2 . 2 MONADS II /2

.

.

.

8 . 2 .3 Future Work •

8 . 3 Achievements and Signif icance •

8 . 3 . 1 The Address ing Model •

8 . 3 . 1 . 1 Sharing of Data and Code •

8 . 3 . 1 . 2 Protection of Information . •

8 . 3 . 1 . 3 Flexibility •

8 . 3 . 1 .4 Efficiency •

a . 3 . 1 . s Un if ormity •

1 69

1 70

l 7ff

17 1

1 7 1

1 71

1 7 1

1 72

1 7 2

1 72

1 72

1 72

1 73

1 7 3

1 73

1 73

1 75

1 75

1 75

1 76

1 76

1 7 7

1 7 7

1 7 7

1 7 8
1 78

1 78

1 79

1 79

1 80

1 80

1 80

1 8 1

1 8 1

1 8 1

182

8 . 3 . 2 The Enhancement Model .
8 . 3 . 3 Prac tical Achievements •

8 . 4 Final Remarks •

APPENDIX A - Ins truction Set • • • • • • • • • • • Al - 6

APPENDIX B - Mapping Details • • • • • • • • • • • • B l - 2

APPENDIX C - Microcode • • • • • • • • • • • • • • • • • • C l - 18

APPENDIX D - Address Space Zero • • • • • • • • • Dl - 3

APPENDIX E - Publ ished Papers El - E39

BIBLIOGRAPHY • BIB I - B IB9

182

182

183

SUMMARY

The research described in this thes is was undertaken with the aim

of providing a sui table comput er architecture for supporting the

development and execution of large software systems decompos ed into

modules accord ing to the information hiding princip le . In the cour se of
this work , the author develop ed two models relevant to the achievement

of this aim .

The first model is framed in terms of a memory management and

address ing scheme which bas es p rotection on capab ilities and overcomes

the maj or memory management and address trans lation problems found in

other capab ility-bas ed archit ec tures .

The second model arose from the author's practical work in

modifying an exis ting computer (a Hewlett Packard HP 2 1 00A) to support

this architecture . It proposes a general technique for upgrading

relatively p rimitive computers to support more advanced features , in

terms of addressing modes , add itional regis t ers , new instructions and

vi rtual memory .

Chap ter 1 provides background informat ion which led the author to

undertake this research, and exp lains the s truc ture of the thes is .

Chap ter 2 surveys the convent ional memory management sys tems , and

des c ribes a number of the more counnon p rob lems associated with them .

Chap ter 3 describes the hardware used by most memory management

syst�ms .

Chap ter 4 surveys current capab il ity based address ing schemes and

highlights their problems .

Chapter 5 describes the new architectural model and shows how it

solves the p roblems rais ed in earlier chapt ers .

Chapter 6 addresses the problem of how to implement the new model

both cheap ly and quickly . In doing so, it d evelops a general technique

which can be used to implement new computer architectures .

Chap ter 7 desc ribes a practical imp lementation of the address ing

s cheme described in chapter 5 using the technique def ined in Chap ter 6 .

The concluding chap ter examines the extent to which the two models

proposed in this thes is have been succes sful and prac tical .

The two maj or cont ribu tions of this res earch work are the new

address ing model proposed in Chap ter 5 , and the architectural

enhancement model proposed in Chap t er 6 .

The new address ing model avoids the two maj or problems of current
capab ility bas ed computers , namely memory management problems associated

with small and large segments , and also address trans lation prob lems

which aris e in sys tems which make abundant use of s egments . The model
is shown to be more eff icient than the address ing schemes used in other

capab ility sys tems . Unlike other capab ility bas ed and conventional

comput ers , it is flexible enough to efficiently implement many different

capability addres sing structures . Consequent ly , the software ideas can
change and evolve , without affecting the hardware .

The new enhancement technique allows many different architectural

enhancements to be implemented and tes ted as an extens ion of an exis t ing

computer system, and thus allows a full s cale evaluation of the ide�s to

be made . Because the technique allows comp lex structures to be

constructed quickly, accurately and cheap ly , it avoids the p rob lems

found in many theses which propose new architectures without coming to

t erms wi th their practical implications .

In addition to these contributions , during the course of the

imp lementation work , a new address trans lation unit was devis ed which,

whilst not s ignif icantly dif ferent in concept , is s ignif icantly

d if ferent in imp lementation f rom many other units .

DECLARATION

This thes is contains no material which has been accep t ed f or the award

of any other degree or dip loma in any other univers ity , and to the bes t

of rey knowledge contains no material p revious ly published or written by

another person , excep t where reference has been made in the text of the

thes is .

Signed :

David Abramson

Department of Computer Science ,

Monash Univers ity ,

Augus t , 1 982 .

ACKNOWLEDGEMENTS

I am most grateful to Dr Les Keedy, who has unoff icially supervised

my post-graduate work . He has always been ready to lis ten to my ideas

and guide my research . Without his enthusiasm this thes is would never

have been completed .

I am also grateful to my supervisor , Profes sor Chris Wallace . He

has contribut ed greatly , part icularly wh ile I was des igning the MONADS

II hardware . Many comp lex problems and solutions became easier to

understand b ecause of his as sis tance .

Dr John Rosenberg has had a large inf luence on the direction of my
res earch . I am not only thankful for his profess ional advice , but also

his friendship . I also appreciate his time spent proof reading this

manuscript .

The des ign of the MONADS II processor has been inf luenced greatly

by the membe rs of the MONADS p roj ect , particularly Mr . Peter Dawson , Dr.
E d Gehringer , Mr . Mark Halpern , Dr K . Ramamohanarao , Dr. Ian Richards ,

Mr . David Rowe, and Mr . John Wells .

I am indebted to the department technical off icers , part icularly Mr

David Duke and Mr Steve Garrison, who constructed much of the MONADS II

hardware .

Many of the bugs in the MONADS II sys tem would not have been found

without the help of Brian Wallis , who developed the hardware kernel for

the sys tem .

I would like to thank Ms. Lyn Winberg for typing part of the

manuscrip t . Thanks are also due to Dr Ken McDonell , who helped with the

text formatt ing .

During the f irs t year of my candidature I was funded by a

Connnonweal th Pos t Graduate Award which I app reciate greatly .

Without the friendship and encouragement of my very close friends

over the last f our years this thesis would never have been completed . In

p articular , Heather has off ered much support during the long process of

writ ing . I am grate ful for the love and pat ience of my family , who have

put up with so much .

Finally , I app reciate the love and sacrif ice of my parent s . They
created an environment in which it was pleasant to learn and study ,

of ten at their own expense . I only wish that my father had lived to see

this work comp let ed .

DEDICATION

This thesis is dedicated to my loving father , Dr

Phillip Abramson , who died shortly before it was

comp leted . I miss his encouragement , love and

f riendship so much .

- 1 -

1 . Introduction

The research des cribed in this thes is was conducted as part of the

MONADS proj ect in the Department of Computer Science at Monash
Pniversity . The thes is topic is concerned with the development of

comput er hardware , in the form of the MONADS II sys tem, but in addition

to des crip tions of the actual MONADS II development the thes is des cribes

two general models which have more general app licability . The first of

these is a model for building capab ility-based computer sys tems in a

more flexible way than has hitherto been attempted . The second model

des cribes a general approach which can be adop ted to enhance exis ting

relatively simp le computers to supp ort a wide variety of extens ions ,

such as the addition of new address ing modes , new regis ters and support
f or a virtual memory .

1 . 1 . The MONADS Proj ect

l·l·!· Aims of the MONADS Proj ect

The MONADS proj ect (Keedy , 1 9 7 8 , 198 1 ; Keedy , Abramson , Rosenberg

and Rowe , 1 982) began in 1 976 with the intention of inves tigating

methods for developing large complex sof tware sys tems . The techniques

us ed in the p roj ect are based on the information hiding princip le, as

advocated by Parnas (1 97 1 , 1 9 7 2) and others (Wirth , 197 7 ; Liskov and

Zilles , 1 9 7 4 ; Keedy and Rosenberg , 1 98 1 ; Keedy and Rosenberg , 1 982b) .

Us ing this princip le software sys tems are decomposed into small

inf ormation hid ing modules , each of which perf orms a specif ic task . The

data structures and algorithms used by these modules are to tally hidden

f rom other modules which make use of their s ervices , and connnunication

between modules is by a procedural interface . Unlike many language based
solutions (Lisk�v , Snyder , Atkinson , and Schaf�ert , 1 9 7 7 ; Dahl ,

Myhrhaug and Nygaard , 1968 ; Wulf , London and Shaw, 1 9 7 6) , the MONADS

p roj ect p rovides support f or the inf ormation hid ing module at an

architectural level (Keedy , 1 982b) . Moreover , modules are used

unif ormly to rep resent all addressable obj ects , even those which

conventionally have their own mechanisms for address ing , protection and

sharing , such as f iles (Keedy and Richards , 1 9 82) .

From an imp lementat ion

segments of memory , each

CHAPTER 1

viewpoint , modules are cons tructed from

of which must be addressed from within the

INTRODUCTION

- 2 -

module and protected from access by other modules . For this reason , both

modules and segments are addressed by capabilities (Fabry , 1 9 74) .
Algorithms are implemented by code segments , and data structures can be.

held in da ta segments . Because the int erf ace is s trictly p rocedural the

segments can only be directly addressed from within a module .

1·1·1· His tory of the Project

The f irst phase of the proj ect involved building an operating
·sys tem (Keedy , 1 978) . The idea was to demons trate that an operating
sys tem, and in fact any large sof tware sys tem, could be broken into
small units , each of which is imp lemented by an inf ormation hiding
module . During the sys tem des ign it became clear that a convent ional
computer architec ture was ill-suited to the new sof tware methodology .

The maj or area of concern was the way that information and modules are

shared and p rotected . Consequently, the MONADS I p rocessor was developed

in about 1 97 8 (Hagan and Wal lace , 19 79 ; Wallace , 1 97 8 ; Hagan 1 9 7 7) from

a modif ied Hewlett Packard HP 2100A . This p rocessor p rovided a small

virtual memory (4 x 32k word address spaces) and a number of previous ly

unsupported addressing modes , such as p rocess s tack addressing and base

and index regis ter address ing . This new hardware was still unab le to

implement all of the required suppo rt func tions , and the idea of a

hardware kernel was developed in an attemp t to bridge the hardware-

software gulf (Rosenberg and Keedy , 1 9 78 ; Rosenberg , 1 97 9) . Much was

learned from this preliminary implementation . Apart from the concept of

a hardware

(Ramamohanarao

kernel, a

and Keedy ,

p rocess s truc turing

1 9 78 ; Ramamohanarao ,

model

1980 ;

was designed

Keedy and

Ramamohanarao , 1 979) , and a model was developed to des cribe the way that

the informat ion hiding modules should be address ed and protected

(Richards and Keedy , 1 97 8 ; Richards , 1 9 82) .

The MONADS I hardware present ed a number of maj or imp lementation

prob lems . First , the hardware was not to tally secure . While individual

user programs could be protected from each other , it was dif f icult to

protect a p rogram f rom corrup ting sens itive inf ormat ion held on the

process s tack (e .g . linkage or parameter information) , allowing security

violations to occur . Second , us er p rograms (and the ass ociated data and

s tack space) could not be larger that 32k words , the size of one address

space . This s ev erely res tric ted the use of the system . Thi rd , the

CHAPTER 1 INTRO DUCT ION

- 3 -

hardware provided a paged address ing scheme , which presented sharing and

p rotec tion prob lems . Fourth , the hardware cou ld only support three
concurrent user programs . Finally , because many of the important

func tions were imp lemented in the kernel (due to insuf fic ient room in
the microprogram control store) the sys t em was qui te ineff icient .

Because of these drawbacks , the author developed the MONADS II

processor in 1 980 , again from a Hewlet t Packard HP 2 100A minicomputer .

However , this computer differed f rom MONADS I in two important respects .

First , a different cons truction technique was used (Abramson , 1982a) .

Second , the MONADS II hardware was not specif ically designed f or the

MONADS software methodo logy , but was a general capab il ity based
address ing processor ab le to imp lement many different software

s tructures (Abramson , 1 982b) . At the same time as the new hardware was
being designed , the MONADS software g roup was defining the address ing

s tructure of the information hiding modules , which was then mapped onto

the hardware . Following this , a new hardware kernel (Wallis , 1 980) and
a new operating sys tem were des igned . M>NADS II removed some of the

restrictions of MONADS I by p roviding a large virtual memory (Abramson ,

1 9 8 1) , a unif orm address ing mechanism and many new address ing modes

(Abramson , 1 980) .

Whilst MONADS II demons trated all of the princip les of the new

sof tware s truc tures , it was developed as a p ilot sys tem capable of

support ing only a limited number of concurrent user programs . Thus ,

work began on a new processor , MONADS I II (Keedy and Rosenberg , 1 982) ,

which built on the experience gained from the MONADS II sys tem, but

which would be powerful enough to p rovide a fast computer util ity to a

number of users . While MONADS II and MJNADS III have many features in

connnon· (Keedy , Ros�nberg , Ab ramson and Rowe , 1 9 82) , and may be coup led

to form a multi-computer sys tem, they dif fer signif icantly at the

implementation level .

1 . 2 . Objectives of the Thesis

This thes is contributes to the imp lementation of the MONADS

software ideas by developing two g eneral models , which are us ed in the

MONADS II processor des ign . The first provides a hardware address ing

unit , which allows inf ormation to be shared and p rotected in a uniform,

CHAPTER 1 INTRODUCTION

- 4 -

f lexib le and eff icient manner . This unit should be ab le to be used with
a number of d iff erent software s tructures . The model draws a clear

dis tinction between functions which should be supported in hardware (for.

ef ficiency reasons) and func tions which shou ld be imp lemented in

software or f irmware (for flexibility reas ons) . Because of this

f lexib ility the hardware may be us ed in other capability proj ects as
well as the MONADS proj ect .

The second model def ines a technique for implementing complex and

diff erent computer architectures quickly and cheap ly . This not only

enab les a full scale evaluat ion of the new address ing model to be

p erformed (in terms of supporting a real program development

environment) but also serves as a general technique for evaluating many

new architectural ideas . This scheme has many advantages over existing

techniques , particularly in terms of ef f iciency and simplicity .

1 . 3 . Layou t of the Thes is

Chap ter 2 des cribes the memory management models used by

conventional computer systems , such as linear memories , paged memories ,

segmented memories and paged and segmented memories . By examining these

sys tems in t erms of their abil ity to protect and freely share

information , we show that they do not provide an adequate addressing

scheme . The chapter concludes that the s egmentation scheme offers the

bes t logical advantages , but acknowledges that it al so has many

imp lementation problems .

Chap ter 3 examines the address ing hardware currently used in

computer sys tems , and des crib es the connnon building blocks . These blocks

are then used later in the thes is to imp lement a new address ing model .

Chapter 4 examines an address ing model based on the segmentation

scheme , cal led capab ility bas ed address ing , and shows how it solves some

of the shortcomings of conventional architec tures . The p roblems

associated with the implementation are also dis cussed in detail .

Chap ter 5 des cribes a new addressing model which is bas ed on the

capab il ity address ing scheme , but which solves the outs tanding problems

and p rovides a f lexible and unif orm hardware addressing mechanism . A

maj or des ign cons iderat ion is that the address ing hardware should not

only be ab le to imp lement the MONADS software structures , b ut should be

CHAPTER 1 INTRODUCTION

- 5 -

f lexib le enough to implement those of other capab ility based processors .

Chapter 6 examines the ways in which the new addressing model cou ld

be imp lemented , and shows that many conventional techniques are not

suitab le . Build ing a totally new computer is dis carded because of lack

of time and money , and other int erpret ive techniques (such as sof tware

and f irmware imp lementations) are of ten too ineff icient . The chapter

then describes a general model for enhancing primit ive computer

architec tures , and demonstrates some of the enhancements which are

possible .

Chap ter 7 describes the MONADS II computer sys tem, and demons trates

the practically of the two new models p roposed in this thesis .

Chapter 8 concludes the thes is , comment ing on the relevance of this

research and suggesting add itional work which might be undertaken .

CHAPTER 1 INTRODUCTION

- 6 -

2 . Conventional Memory Organizat ions

This chap ter examines the conventional memory management models
used in many computer sys tems . First , we cons ider the types of requests

which a memory sys tem must be ab le to satisfy . These requests come from

a number of diff erent types of software . Second , we describe the

conventional memory management models used in many current computer

systems . These models can then be examined in terms of the dif ferent

sof tware reques ts , exposing the advantages and disadvantages of each

scheme .

2 . 1 . Sof tware Environment

From the viewpoint of the information storage sys tem of a

p ro cess or , memory demands come f rom three classes of sof tware : us er

programs , the operat ing sys tem and compilers .

1 ·l·l· User Programs

User programs are des igned to perform some task on behalf of a

us er . They require the inf ormat ion s tore to possess a number of

attributes , namely :

- The s tore mus t be ab le to save and retrieve both high speed

computational data (e .g . p rogram variables) and permanent data (e .g .

f ile data) .

- User programs which share the central processor mus t be protected from

corrup ting data belong ing to other us ers .

- User programs should be protected from corrupting their own co�e and

read-only data .

- Us er programs should be able to share certain data with other users .

This al lows p rocesses to cooperate with each o ther in perfo rming one

task .

- The information storage , sharing and protection sys tem should be

s imp le to use .

CHAPTER 2 CONVENTIONAL MEMORY ORGANIZATION S

- 7 -

- The inf ormation storage sys tem should be ef ficient in space and time .

- The store shou ld be large enough to hold all computat ional and ·

permanent data .

- The store should allow dynamic memory allocation for dynamic data

structures .

A user program demands a number of functions from the memory

sys tem, and is not concerned with the way that the reques ts are

imp lemented . As we shall see when we examine the various conventional

memory management models in use, some of these bas ic requirements are

not well supported .

1·1·1· The Operating Sys tem

The operating sys tem has the task of controlling all the user

programs which execute on the p rocessor . With respect to the information -

storage sys tem, the operat ing sys tem mus t :

- allocate memory when a us er p rogram is loaded , or requires more

memory ;

- deallocate memory when a user program terminates , or releases nemory ;

- control the p rotection sys tem ;

- control the sharing sys tem;

- c'-nt rol any address modif ication hardware ;

- be ab le to share code modules between users , in order to save space

(this f orm of sharing , unlike data sharing, is not vis ible to the user

program) .

Unlike user programs , which only use the memory , the operat ing

sys tem must also manage and control the memory sys tem . These

requirements demand that the memory sys tem is easy to manage and

control . Again , not all of these are well supported in conventional

CHAPTER 2 CONVENTIONAL MEMORY ORGANI ZATIONS

- 8 -

memory management s chemes .

1 ·!·1· Compilers

Compilers are affected by the memory sys tem in two respects . Firs t ,

most compilers execute as a normal program { although they may have some

extra privileges) on behalf of a user , and thus have the same needs as a

us er program . Second , they are used to trans late user p rograms f rom

high level languages into the machine code of the processor , and are

expected to unders tand how to address memory . The main requirement that

the compilers make on the memory sys tem is that the address ing , sharing

and p rotection systems are simp le to use . This means that the code is

easy to generate , and the compiler code generator is simple in des ign .

The memory system shou ld be able to rep res ent and address the logical

s tructures of a program, e .g . arrays and subrout ines , rather than

requiring the comp iler to trans late them into units which are meaningful

to the memory .

2 . 2 . Conventional Memory Management Sys tems

This section des cribes a number of conventional memory management

models used for address ing the main , or computat ional , memory of a

p rocessor . Most conventional computer sys tems also use a secondary

memory { such as a disk or drum) to hold permanent data . Whils t some

also use the secondary s tore as part of their main memory s torage s ystem

{as in virtual memory sys tems) , the mechanisms for address ing secondary

memory are not considered , because they only affect the operating system

software , rather than the addressing hardware .

l·l·l· L inear Memories

The earlies t memory management model used was the ' linear memory '

model . In this s cheme the main memory of a p roces sor is viewed as a s et

of linear ly arranged address ab le storage locations , and each word {or

location) of memory is accessed by supp ly ing an address . These ab solute

address es may be manipulated by a user prog ram in order to access

various data items . The way that linear memories are used varies

depending on how many concurrent users the sys tem mus t support .

CHAPTER 2 CONVENTIONAL MEMORY ORGANI ZATIONS

- 9 -

l·l·.!.·.!.· Single User Systems

In the earlies t computer sys tems , the central processor was

allocated to a part icular us er when a j ob commenced , and was only

relinquished when that job had terminated . In such sys tems , the program

and associat ed computational data is loaded into the linear memory, and

execut ion begins at the start of a program . The sequencing , loading and

unloading of j obs is controlled by a supervisor program, which is loaded

into the bottom of the memory . (In very early comput er sys tems the

supervis or was only cap able of loading binary p rogram tapes into

memory .) User programs are then loaded int o the memory ab ove the

supervisor . The ' linear memory ' scheme , shown in Figure 2 . 1 , has the

advantage that it is simp le . It also has a number of disadvantages .

Firs t , no program can be larger than the

(al though some sys tems use a manual overlaying
size of the main memory

scheme) . Second , if a

program starts a slow autonomous operation , such as an input-output

trans fer , the p rocessor must remain idle unt il the transfer is -

comp leted . Third , there is no way of protecting the supervisor program

from being corrup ted by the user program. This p roblem was resolved by

introducing a ' fence regis ter ' into the processor , which is loaded with

the highest address of the monitor p rogram . By p reventing the user

program from writing into memory below that address the supervisor can

be p rotected . Fourth , because the supervis or p rogram res ides at the

bottom of the memory , the user program no _longer res ides at address

zero . Consequently , the s tart address , and the addres ses of all

variab les and labels , mus t be adjus ted so that the program begins at the

top of the supervisor . This op eration is called s tatic relocation and

can be quit e expens ive . The linear memory scheme has been used in many

o�d s ingle us er sys tems , such as the HP 2 100A (Hewlett Packa�d , 1 9 72) .

2 . 2 . 1 . 2 . Mult i-user Sys tems

The linear address ing model can also support a mult i-user

environment . In this case the central p rocessor is shared amongst many

dif ferent use r programs . Each program receives a slice of processor

t ime , and is suspended either when the time s lice exp ires or an input

output transfer is started . Multi-user sys tems are ab le to use the

p rocess or mo re ef f iciently , because it is us ed to execute another j ob

while other users are suspended , rather than being lef t idle .

CHAPTER 2 CONVENTIONAL MEMORY ORGAN! ZATIONS

supervisor

us er
program

- 10 -

low addresses

high addresses

Figure 2 . 1 - a single user linear memory

The problem with cons tant ly swapping the execut ing program is how

to allocate the main memory . Two main s olutions have been used . Firs t ,

the ent ire memory is allocated to a program when it enters its time

s lice . All of the program code and data is loaded into memory (from a

secondary storage device) . When the time slice is over , the memory image

is cop ied back into s econdary memory , and the next p rogram is loaded .

This method has a number of disadvantages . While it may utilize the

central p rocessor better than in the s ingle user system, the memory·.may

s till be under-utilized . A small program still uses the entire user

area of main memory , was ting the rest of the space . Al so , the time spent

swapping code and data in and out of main memory is excess ive , during

which time the p rocessor cannot be used . To avoid the load and unload

operations every time slice , a second memory allocation scheme can be

us ed , as shown in Figure 2 . 2 . In this method all , or many , of the

currel..t: programs are loaded into memory , each packed into the a ."ail�b le

space . When a p rogram enters its time s lice , the old register values are

reloaded and the program is res tarted . At the end of the time sl ice , the

regis ter values are saved and another p rogram is restarted . This scheme

avoids copying the code and data for a program into memory before it can

be executed , and is thus much more ef f icient than the f irst solution . I t

also has a number of prob lems . Firs t , because programs contain absolute

addres s es the code must be statically relocated before it can be loaded .

In a single user sys tem once the code has been relocated , it can be used

repeatedly . However , in a mul ti-user system, the code mus t always be

CHAPTER 2 CONVENTIONAL MEMORY ORGANIZATIONS

- 1 1 -

low addresses

sup ervisor

user p rogram 1

user program 2

user program 3
' high addresses

Figure 2 . 2 - a l inear memory mul ti user system

relocated before it is loaded , as its position may change each time the

p rogram is executed . This operation is expensive . Second , the simp le
f ence regis t er scheme cannot protect programs from corruption . A more

elab orate p ro tection scheme p laces a base register at the lowest address

of a program, and a limit regis ter at the top of the program . Addresses

can then be restricted to a particular address ing region . Third , as

programs are loaded and unloaded , the memory may become fragmented . This
' external fragmentation ' complicates loading new programs , as

insufficient free space may be available to hold an entire program . To

s implify the prob lems of static relocation and nemory management , a

dynamic reloca tion scheme was devised .

In the dynamic relocation scheme each program assumes that it is

loaded at address z ero , and the p rocessor augments each address by the

contents of a base regis ter before it reaches the memory . This new

address can also be validated against a limit reg ister , thereby

protecting other programs from corrup tion . These dynamic relocation

registers also ass ist with memory management . A s tatically relocated

prog ram cannot be moved in memory once it has been loaded , because it

may have abs olute addresses in data variables . Thus , if insuff icient
cont iguous space is availab le , it may be imposs ib le to load a program

into memory . Dynamic relocation reg isters , however , allow a p rogram to

be moved ; thus the memory may be periodically reorganized . Unf ortunately
the cost of moving programs in memory is quite high, and it may be more

CHAPTER 2 CONVENTIONAL MEMORY ORGANIZATION S

- 12 -

ef f icient to waste some of the main memory .

Another solution aimed at simplifying the external fragmentation.
p rob lem is the partitioned scheme, us ed in the !CL Sys tem 4 (ICL , 1 9 71)

and some of the IBM 360 range (Belady , Parmelee and Scalzi , 198 1) . In

this s cheme the main memory is divided by the operating sys tem into a

number of fixed s ize partit ions . When a program is loaded into memory it

is p laced in a free partition . Because memory is allocated in fixed size
units , the task of memory management becomes much simpler , and external

fragmentation is eliminated . Unf ortunately internal fragmentation
occurs , as programs which are smaller than a partition wil l was te space .

Thus , while memory management may be simp ler , the f ixed partition scheme

may was te even more space than a variab le space allocation scheme . Also ,

large p rograms must be manually overlayed so that they f it in a

part ition . The ef fect of internal fragmentation may be diminished by

using small partitions ; however , this limi ts the maximum size of a

program (unless it is broken down into overlays) .

Another problem with the linear memory model is that from the

compilers ' viewpoint the memory image is total ly uns tructured . It must

allocate space within the address space f or all of the data structures

and code of a program without any ass is tance form the memory management

sys tem .

1·1 ·!·1·!• Sharing Memory

I t is of ten des irable to share access to areas of memory between

us er p rograms . In the swapping scheme sharing is awkward . The
supervisor program nust allocate an area of shared memory at a reserved
address , and as p rograms are loaded and unloaded this area must remain
unaltered . In this way many programs can share access to a s tat ically
def ined set of data items . In the scheme which loads all programs into
memory at the same time , data items may be shared by using the absolute
address of the item . This p rocedure does not work if base and limit
regis ters are used to protect a program, or if dynamic relocation
regis ters are used . Sharing of code is extremely d if f icu lt in a linear
memory scheme . Because of the problems , very few linear memory comput ers
allow sharing at all .

CHAPTER 2 CONVENTIONAL MEMORY ORGANIZATIONS

- 13 -

1·1·1·1·1 · Protection between User Programs

We have already shown that user programs may be protected from

corruption by base and limit registers . This scheme has been used in
many linear memory computers , such as the ICL 1900 series (ICL , 19 7 6) •

The partition scheme can al so p rovide inter-program protection, as shown
in Figure 2 . 3 . In this scheme the hardware recognizes a number of fixed

s ize areas (in the IBM 360 range this was 2k words in size) , and

associated with each area is a protection lock which holds the identity

of the program . (If the partition size chosen by the operating system is

larger than the area size recognized by the hardware then a number of

p rotection locks may be assigned to the same partition .) The central

processor has a current-protection-key register , which holds the

identity of the currently executing p rogram . When a p rogram enters its
.. time slice the current-protection-key regis ter is loaded with the

identity of the- p rogram . Each time memory is addres s ed , this value is
compared to the protection lock for the area being addressed . If they -

diff er , then a p rotection violation has occurred , and the p rogram is
aborted . Consequently , a program can only address areas which it owns .

Whil st it is concep tually possible to dynamically change the values held
in the protection locks to facilitate controlled sharing , this has not

been imp lemented . Thus , it is very d if f icult to share memory between

..---------------.... �lock 1

Partition 1

-----------ot lock 2

Partition 2

1-----------------+--tlock 3

Partition 3

...,.. ______________,.. ... lock 4

processor
regis ter

Figure 2 . 3 - the protection key sys tem

CHAPTER 2 CONVENTIONAL MEMORY ORGANI ZATIONS

- 14 -

programs . None of the protection systems discussed protect a program

from corrup ting its own code . Most of these schemes make the sharing of

memory extremely d iff icult .

2 . 2 . 2 . Paged Virtual Memories

The concept of a paged virtual memory was first proposed and

imp lemented by the Atlas design team in the late 1 950s (Fotheringham,

1 96 1 ; Kilburn , Edwards , Lanigan and Sumner , 196 2) . The scheme consis ts

of detaching the logical view of memory as seen by a program from the

phys ical organizat ion of the main memory . The logical memory , or virtual

memory , is mapped onto the main memory by a mapp ing function . The

implementat ion of this address ing structure requires that both the

virtual and phys ical memories are divided into a number of f ixed size

pages . Consequent ly , an address (either virtual or phys ical) cons is ts of

two po rtions , a page number f ield and a within page displacement f ield ,

as shown in Figure 2 . 4 . A mapping unit can then map pages of virtual

memory onto pag es of physical memory as shown in Figure 2 . 5 . The within

p age disp lacement from the virtual address is used as a within page

disp lacement f or the physical page .

The paged scheme has a number of general advantages . First , the

type of ref erence app lied to a page of virtual memory may be controlled .

Associated with each page of virtual memory may be some access rights ,

which determine whether the page may be read from, written into, or

executed as code . With this information , the processor can monitor every

memory reference and rep ort addressing errors . Unlike a linear memory ,

the paged memory organization can protect a user program from modifying

its own code , and pag es of cons tants can be p rotec t ed f rom being

modif ied . Second , a contiguous area of virtual memory · need not be

allocated contiguous ly in main memory . The mapp ing function can map

J page number disp lacement

Figure 2 .4 - a paged virtual address

CHAPTER 2 CONVENTIONAL MEMORY ORGANI ZATIONS

- 15 -

mapping
Page 1 functioh

Page 2 >

Page 3 >

Page 4 >

Page 5 >

Virtual address space
Main memory

Figure 2 .5 - a paged virtual memory

pages of virtual memory arbitrarily onto main memory , allowing large
contiguous areas of virtual memory to be created . This makes memory

management eas ier and eliminates the external fragmentat ion experienced

in the linear memory s cheme . Third, the virtual space may be larger

than the phys ical space . Any pages of virtual memory which are not

mapped onto a page of phys ical memory can be tagged ab sent . A reference

to these pages causes an address ing error , called a page fault , which is

similar to an access rights violation . Because the virtual address space

may be very large , programs larger than the main memory may be loaded .

If an abs ent page of virtual memory is addres s ed , a supervisor p rogram

may fetch a copy of the page required from secondary memory , find a free

page in main memory, p lace it in main memory, and update the mapping

function . When the reference is at tempted again , the processor will

address the correct page of phys ical memory . This operation is called

demand paging , as pages are only fetched into main memory on demand .

Some systems have experimented with p repaging , i .e . attemp ting to fetch

pages before they are required . Unfortunately , it is very dif f icult to

determine the access patterns of a program, and because the overheads of

moving unneeded pages into main memory are high , prepaging is not
-

coumonly used . Fourth , as we will s ee shortly, user p rograms may be

protected from interference from each other .

CHAPTER 2 CONVENTIONAL MEMORY ORGANI ZATIONS

- 16 -

The paged scheme also has some disadvantages . Because memory is
allocated in f ixed size units , some space will be wasted in the last

page of the virtual address space . This internal fragmentation is the ·

same p rob lem experienced in the partitioned linear memory . We shall

examine some more serious disadvantages later , in terms of the logical

propert ies of pages .

l ·l·l·l· Single User Systems

In a single user sys tem, the program executing on the processor is

load ed into the virtual address space . To the user program, the memory

appears to be linearly arranged . However , unlike the linear memory

model, the pages may be allocated randomly from main memory . In

addition , pages may be pro tected from inadvertent corruption . When the

program t erminates , the virtual address space can be loaded with a new

user program .

l·l·l·l· Multi-user Systems

Most paged computers support a multi-user facility by creating a

number of virtual address spaces . Each us er program is loaded into a

different address space and the main memory is composed of pages of many

diff erent p rograms . Each of the virtual spaces is then mapped onto the

main memory by its own mapping function , as shown in Figure 2 . 6 . When a

p rogram enters its time s lice , the app rop riate mapp ing function is

selected so the program can only address its own pages . When the t ime

slice is over , a new mapping func tion is selected . This arrangement is

similar to the swapping technique used in the linear memory scheme .

However , only the mapp ing function is altered after each time s l ice

(which can be performed very quickly) , rather than copying each address

space to and f rom aecondary memory . The demand paging system allows a

program to load its pages into main memory as they are required .

l·l·l.·1 · Address Trans lation

So far we have assumed a mapping funct ion between virtual addresses

and phys ical addresses , without cons idering how this function can be

imp lemented . This trans lation operation is performed each time the

p roces sor a ccesses memory . The virtual address may either be trans lated

into a main memory address , in which cas e the reference can proceed , or

CHAPTER 2 CONVENTIONAL MEMORY ORGANI ZATIONS

- 17 -

mapp ing
Page 1 function

Page 2 >

Page 3 >

User 1 >

Page 1 >

�

Us er 2 Main memory

Virtual addres s spaces

Figure 2 . 6 - a paged multi-user sys tem

a secondary memory address , in which case the page is fetched into main

memory . The imp lementation of the mapp.ing _ function depends on the size

of the virtual memory and the size of the main memory , and four

categories can be identif ied : small virtual address spaces , small main

memories , large virtual address spaces with large main memories and very

large virtual address spaces . These categories will be examined again in

the next chapter , which deals with the hardware necess ary to translate
addresses . Here we brief ly cons ider the implementation of these

diff erent categories f rom the view of the operating system sof tware .

1 ·1·1·1·! · Small Virtual Address Spaces

When the virtual address space is comparatively small the virtual

page numbers can be translated into phys ical page numbers by a directly

indexed tab le held in main memory, as shown in Figure 2 . 7 . The virtual

page number is used as an index to a page table entry . The page table

entry contains the physical page number , the access rights for the page ,

and an ab sent /present f lag , which is set if the page is present in main

memory . If the page is not pres ent , then the phys ical page number f ield

can be used to hold the secondary memory address of the page . When this

tab le is small enough , it may be held in a special address trans lation

memory , rather than in main memory , and this is dis cus sed in more detail

CHAPTER 2 CONVENTIONAL MEMORY ORGANI ZATIONS

- 18 -

Page 1 > Page 3 Page 1

Page 2 > Page 1 Page 2

Page 3 > Absent Page 3

Page 4 > Page 2 Page 4

Page 5 > Page 6 Page 5

> Page 5 Page 6

Virtual address space Page 7
Page table

Main memory

Figure 2 .7 - a small virtual address space

in the next chapter . The size of the main memory has little effect on -

the size of the mapping table , and only inf luences the wid th of each

page table entry . The size of the virtual memory af fects the length of

the table , and the scheme is thus only viable f or small virtual address

spaces .

In a single user sys tem only one page table is required . In a

mul ti-user sys tem, a page table is required for each virtual address

space . A regis ter is of ten used to hold the address of the current page

table . When a user program enters its time slice , this reg ister can be

modif ied to point to the new page tab le , thus changing the mapping

func tion . Similar address translation schemes have been successfully

used in processors such as the HP21MX (Hewlett Packard , 1 9 74) , Data

General Eclip se (Da ta General , 1 9 74) .

l·l·l·l·l· Small Physical Memories

If the main memory has a limited number of pages , a different

translat ion technique can be us ed . Rather than indexing the page tab le

on virtual page number , this method uses the main memory page number as

an index value , as shown in Figure 2 . 8 . Each page table entry contains

a virtual page number , some acces s rights and an inval id flag . When a

virtual address is t rans lated into a main memory addres s , the page tab le

CHAPTER 2 CONVENTIONAL MEMORY ORGANI ZATIONS

- 19 -

Page 1 Page 3 < Page 1

Page 2 Page 1 < Page 2

Page 3 Page 4 < Page 3

Page 4 Page 2 < Page 4

Page 5 Page 6 < Page 5

Page 5 < Page 6

Virtual address space Page 7
Page table

Main memory

Figure 2 . 8 - a small main memory

is searched associat ively for ·the virtual page number . If found , the _

index value of the page table entry is used as the main memory page

number . If not found , then the virtual page is not present in main

memory , and is fetched f rom secondary memory . If a page of main memory

is not mapped to a page of virtual memory , then the invalid flag mus t be

s et . Special hardware is required to s earch the page table , and this is

des cribed in Chap ter 3 . This technique is sens itive to the size of the

main memory , as this affects the leng th of the page table, and is only
used when the main memory is smal l . In a single user sys tem there is

only one page table . In a mul ti user system, each user address space

uses a dif ferent page tab le . Those pages of main memory which do not

pertain to a user p rogram, must have their page table entries f lagged

inval id .

1·1·1·1·1· Large Virtual Addres s Spaces

When both the virtual address space and the main memory become

large the techniques dis cussed ab ove become infeas ib le . A large virtual

address space makes the d irectly indexed page tab les too large to be

p laced permanent ly in main memory , or in a special hardware tab le .

Similarly, because of poor hardware an ass ociative search becomes

dif f icult . (In the next chap ter we will examine some associative schemes

which are effec tive .) One s olution p laces directly indexed tables in

CHAPTER 2 CONVENTIONAL MEMORY ORGANI ZATIONS

- 20 -

main memory (which can be addressed by a special processor regis ter) ,

and swaps them between memory and disk as they are required . In some

sys tems the page tables may be placed in virtual memory themselves , as ·

in the VAX 1 1 /780 computer (Dig ital Equipment Corp . , 1 979) , and the
paging mechanism can be used to addres s the page tab les . Consequent ly ,

the page tables are mapped onto main memory by page tables , which may

then be smal l enough to place permanently in main memory . When an

address is trans lated , the virtual page number is used to form a virtual

addres s of a page tab le entry . This virtual address is then translated

into a main memory address by the page table for the page tables . At any

s tage , either of these trans lat ions may cause a page fault , i . e . the

page tab le entry is not pres ent in main memory at the time . Each

address trans lation may cause a number of page faults to be generated .

Furth er page faul ts may be generated when a page is removed from main

memory (poss ibly to find room for a page which has already caused a

faul t) , as the present /ab s ent b it must be updated in the page tab le

entry . To prevent an endless loop of page faults , this scheme must

always have a pool of free pages . In this way a page may be brought into

memory without having to remove another page , and thus cause further

page faults . The scheme requires special hardware to assist in address

trans lation , and this is dis cussed . in the next chapter .

1·1·1·1·.i· Very large virtual addres s spaces

This class of virtual memory is typically used to hold file data as

well as computational data . The only p roces sor which has attemp t ed this

operat ion (namely MULTIC S (Organick , 1 972)) did not use a very large

virtual address , and could use normal page tables . In this class of

address space the page tab les would ce·rtainly be p lacetl in virtual

memory , an<l wou ld be very large indeed . Consequently it re quires

special hardware to trans late addresses . Such hardware is discussed in

Chap ters 3 , 4 and 7 .

1 ·1 ·1 ·.i· P rotection

A paged virtual memory offers a mul ti-user sys tem a number of

levels of p rotection . First , p rograms are p rotec ted from corrup tion by

each other . Because each program is loaded into its own virtual addres s

space , and has i ts own mapping function, it is impossible f or a program

CHAPTER 2 CONVENTIONAL MEMORY ORGANI ZATIONS

- 21 -

to inadvertently address the pages of another . Second , a prog ram may be

p revented f rom corrup ting pages of code, or non-mod if iable data . In this

way a prog ram is part ially protected from itself . Third , the operating ·
system (or supervisor p rogram) is treated as another user p rogram, and

is loaded into its own address space . Thus , fence regis ter schemes are

not needed to protect the operating sys tem f rom corrup tion .

1·1.·1·1· Sharing

Whilst enforcing an ef fective protection mechanis m, a paged memory

scheme also allows controlled sharing of data and code . The page table

structure al lows a page of main memory to appear in more than one

vi rtual address space , as shown in Figure 2 . 9 . Moreover , each address

space can have dif ferent acces s rights for the page . Thus , one program

may be allowed to read from a shared page , whilst another may be allowed

to read from and write to the page .

Because the operation of removing a page from ma in memory may

become comp licated by the need to locate and up date all page table

entries which refer to it , a variation of this sharing scheme may be

used . To simplify this p roblem, some systems maintain an additional

tab le , located between the page tab le entries and the main memory , as

shown in Figure 2 . 1 0 . Each ·page table entry which addresses a shared

Page tab le 1

Page table 2
Main memory

Figure 2 .9 - shared pag es

CHAPTER 2 CONVENTIONAL MEMORY ORGANI ZATIONS

- 22 -

page contains an index into the addit ional tab le . This tab le entry then

contains the main memory page number . If the page is banished from

memory , only one entry needs to be adj usted .

1·1·1·§.. · Memory Allocation

Memory al location in the paged scheme is much simpler than in the

linear model . Because memory is allocat ed in fixed size units , there

will always be an area of the correc t s ize availab le when space is

required , even if some other pag es must be removed from main memory .

1 ·1·1·§.. ·l· Page Replacement

When a page is brought into main memory from secondary memory , it

is often f irst necessary to remove another page . The choice of which

page to remove may have a signif icant ef fect on the ef f iciency of the

computer sys tem, i .e . if the wrong page is d is carded then it may need to
be fetched again soon af terwards , leading to an ineff icient situation

known as ' thrashing ' . Many different dis card algorithms have been

devis ed (Denning , 1 9 70) , the mo st common being Random, F ir st In F irst

Out (FIFO) , Leas t Recent ly Used , Atlas Loop Det ection (Kilburn , Edwards ,

Lanigan and Sumner , 1 9 62) and Working Sets (Denning , 1 968 , 1 980) ; these

of ten require hardware ass is tance (Morris , 1 9 7 2) and will not be

Page tab le 1

Page tab le 2

CHAPTER 2

Shared
Page Tab le

Main memory

Figure 2 . 10 - shared pages

CONVENTIONAL MEMORY ORGANI ZATIONS

- 23 -

dis cuss ed furth er .

l·1·1·i·1· Internal Fragmentation

Because memory is allocated in fixed size units , namely pages , each

address spa ce will totally occupy an integral number of pages , and only

partly occupy the las t page of the address space . Consequent ly , each

address space will waste , on average , half a page of memory . This

internal fragmentation is also experienced in the partit ioned linear

memory , and is a maj or dis advantage of the paged memory scheme . It has

been shown that a signif icant proportion of nemory may be was ted from

internal f ragmentation (Randell , 1 969) .

l.·1·1· Segmented Memory Schemes

The segmented memory scheme is similar to the paged memory model .

Bo th .map a logi cal view of memory onto the main memory of the p roces sor ,

and both allow information to be protected and shared amongs t users .

However , pages are an inapp ropriate unit of p rotection and sharing as

many tmrelated s tructures may be placed in the same page . Also , the

comp iler mus t p lace the logical struc tures of a program into the pages

of a linear address space , ,,,,-hich both hides the logical structure of

programs from the architec ture and requires more address calculation by

the compiler . To avoid these problems the segmented scheme divides the

virtual memory into a number of variable length s egments , instead of

fixed length pages . Each log ical component of a program , such as a code

procedure , data array, and s calar variab le, is loaded into a segment of

memory , rather than being arbitrarily decomposed into fixed length

pages . Each s egment is p rotec t ed by a set of access rights , in the same

way as _ pages may be pro tected .

Each proces s has access to a set of segments . Typically , a

s egmented address cons ists of a s egment number (which is usually

numbered relative to the segments of a program or process) and an off set

within the s egment . This address , as shown in Figure 2 . 1 1 , is then

t ranslated into a main uemory address before the reference can proceed .

2 . 2 . 3 . 1 . Address Translation
- - - -

For each segment address , the main memory base address of the

segment , and the size of the segment must be determined . Also , to allow

CHAPTER 2 CONVENTIONAL MEMORY ORGANI ZATIONS

- � -

j segment number displacement

Figure 2 . 1 1 - a segmented address

segments to be removed from main memory and f etched on demand (in the

same way as demand paging) it nus t be possible to flag a segment as

absent from main memory, and to supply its secondary memory address

ins tead . There are two common methods of address trans lation , segment

lists and tagged ab solute d esc rip tors .

1·1·1·1·!· Segment Lis ts

In this scheme , each process has access to a lis t of segments , as

shown in Figure 2 . 1 2 . Memory reference instructions can address segments

by supp lying a segment number relative to the process (i . e . starting at

zero) and a within segment o ffs et . The segment number , which forms an

index into the process segment lis t , mus t then be trans lated into a main

memory base address . Contained in each entry of the segment list is the

main memory base address of the segment , the size of the segment (or the

main memory limit address) , a s et of access rights and a p resent /absent

flag . The word in memory address is calculated by adding the base

address to the offset .

index

J

CHAPTER 2

address of segment
length & access

Figure 2 . 1 2 - a segment lis t

CONVENTIONAL MEMORY ORGANI ZATIONS

- 25 -

The current segment lis t is usual ly held in main memory , and may be

located by a special p rocessor register , in much the same way as a page

tab le . The segment lis t is protected from corruption by the user program ·

in the same way as other segments may be p rotected, as we will see

later .

l·l·l·l·.£· Tagged Des criptors

An al ternative address trans lat ion sys tem is the tagged ab solute

des criptor mechanism, as us ed in the B 6 700 family of computers

(Organick, 1 97 3) . In this scheme , each segment des crip tor , cons is ting of

a main memory base address , segment size , access rights and
present /ab sent f lag , is placed in the data area of a process , e .g . the

process s tack, and is possibly intermixed with program variables . These

des crip tors are then used as pointers to segments . A segment cannot be

address ed without the correct des crip tor . So that des crip tors cannot be

mod if ied , and used to address other segments of memory , it is poss ible

to protec t them by us ing tag bits (Feustal , 1 97 2 ; Myers , 1 978a , 1 978b) .

Each word of main memory has a tag field at tached to it . A word which is

tagged as a descriptor cannot be mod if ied by a normal user program .

(Al though the B6 700 hardware allows a program to modify descrip tors , the

comp ilers prevent high level language p rograms from changing them .) The

tags are also used for detecting the dif ference between integer

variables , character variables etc . Ab solute descrip tors have the

disadvantage that they are not always easy to find when they mus t be

updated (e .g . if a segment is removed f rom memory, the s egment address

and present flag must be updated) . An illustration can be found in the

B 6 700 computer , which p rovides a special instruction f or f inding all
descriptors for a part icular segment . This proces � is not only time

consuming , but al so means that the s tack segments can never be removed

from main memory , as they may hold ac tive descripto rs . Segment lis t

ent ries , unlike descrip tors , are always held in a well known p lace and

can be eas ily found .

l·l·l·l· Memory Allocat ion

In the paged memory scheme , memory is allocated in fixed size

units . Consequently , memory allocation is relatively easy . When space

is required , a page frame 111.1s t be found in ma.in memory wh ich , in the

CHAPTER 2 C ONVENTIONAL MEMORY ORGANIZATIONS

- 26 -

wor st case , may mean that another page may need to be removed from

memory . In the segmentat ion scheme , each segment is of a dif ferent size ,

and must occupy a contiguous area of main memory . Moreover, it must·

either be totally loaded into memory , or to tally ab sent . This may mean

that a large segment cannot ever be loaded into memory because there is

not enough space . (The B6700 uses a modif ied segmentat ion scheme and

allows very large segments to be divided into a number of ' pages ' . This

will be d iscuss ed later) . A number of allocation policies have been

used to try and allocate space in the most ef f icient manner such as Best

Fit , First Fit and the Buddy system (Knuth , 1 9 78) . O f ten these policies

are augmented by a compac tion scheme , in an at temp t to was te as little

main memory as possible . Compaction can al so be us ed when no part icular

allocation policy is used . Space is simp ly used up sequentially llllt il

there is none left , and then the . memory space is compacted .

·2 ·1·1·1·1· Compaction

Of ten the main memory may undergo some data compaction to try to

remove areas which are t oo small to be of any use . During this time ,

all the processes executing on the processor are stopped , and a special

operating system routine packs all the segments together . This scheme

has two important drawbacks . Firs t , the compaction operation is

expensive in time . It must be perf ormed by the central p rocessor , during

which time no other process can run . Second , all the segment tab le

ent ries must be updated to r ef lect the new segment addresses . While this

operat ion is poss ible , it also is extremely expensive . Moreover , if the

B6 700 type of ab solute descrip tors are us ed , these must al so be updated .

Unfortunately , such des crip tors are very dif f icult to locate , as they

may be mixed with data variables .

1·1·1·1·1· External Fragmentation

Regardless of the allocation policy , unless memory compaction is

us ed frequently (which would be far too expensive) a large amount of

memory space will be was ted , because very few areas will be exactly the

same size as the s egments . This is called external fragmentation, and is

a lso experienced in the linear memory model in wh ich memory is allocated

in variab le size units . It has been shown that this space loss can add

up to a signif icant proport ion of the availab le main memory space

CHAPTER 2 CONVENTIONAL MEMORY ORGANI ZATIONS

- 27 -

(Randell , 1 969) . External f ragmentation is , however, o f ten less serious

than the internal fragmentat ion found in paged memories .

1.•1•1•1•1 • Segment Replacement

If suf f icient space in main memory cannot be found for a segment ,

an already loaded segment may need to be removed . This operat ion is

similar to the removing a page from a paged main memory . It is po ssible
to app ly the same kind of algorithms us ed in the paged model , such as

Random, Leas t Recently Used , etc . However , in the segmented scheme the

segment which is removed from memory must leave suffic ient space to hold

the new segment . Consequently , algorithms such as Leas t Recently Used

can only be appl ied to those segments which are large enough (or to

groups of contiguous segments) .

1.·1·1·1·� · Dynamic Segments

One form of segment which complicates the task of memory management

· is the dynamic segment . These segments are initially allocated a fixed

amount of space , like all other segments . However , during the lifetime

of the s egment it may grow in size . Examp les of such s egments include

stacks , queues , lists and heaps . Space for dynamic s egments may be

allocated in two ways . Fir st , extra space may be found contiguously in

main memory , wh ich may mean that a segment must be removed .

Unfortunately, this may not always be pos s ible . Second , the s egment may

need to be copied from its current place in memory , to a new contiguous

area large enough to hold the entire segment . This is an expensive

operation , and is avoided if poss ible . If the data s tructure has

embedded link p ointers , such as in a heap , and if the p ointers are

ab solute memory address es , then contiguous space need not be allocated .

However , this organization is impract ical because it compl icates memory

management signif icant ly , as these pointers lD.lS t be updated when the

memory is rearranged .

1·1·1·1 · Protection

Because it is imposs ib le for user programs to modify segments �ich

are not addressed by the p rocess s egment l ist , us ers may be p rotected

f rom corrup t ion by other users . To ensure that the segment lis t entries

only point to the correct segments , the l ist its elf (and any des crip tor)

CHAPTER 2 CONVENTIONAL MEMORY ORGANI ZATIONS

- 28 -

is protec ted from being modif ied by a user program . Also , a program can

be p rotected f rom inadvertently mod ifying its own code or cons tant data

by set ting the acces s rights for each segment to prevent modif icat ion . ·

In the paging model inf ormation is randomly packed into pages of memory .
Because there is no logical link between the access rights of obj ects in

a page and the access rights of a page (unless this has been

specif ical ly arranged by the compiler) , pages form the wrong unit of

p rotec tion . Segments , however , are us ed to rep res ent logical obj ects ,

and thus form the correc t unit of protection . They also form the bes t

unit of sharing .

1 ·1.·l·i· Sharing

An important feature of the segmentat ion scheme is that many users

may share access to a single segment . Again , unlike pages , segments are

used to hold ind ividual obj ec ts . Two users may wish to share access to

an obj ect , such as an array , but may not wish to share all of the

obj ects held in a page of memory , unless the page holds only one obj ect .

A number of d if ferent schemes have been devis ed which allow p rograms to

share segments . The simples t implementation is achieved by loading the

same memory base and limit addresses into more than one segment l ist .

Thus , any process with the same segment lis t entry wil l automatically

address the correc t segment , regardless of the segment number chosen .

Furthermore , each segment lis t entry may use dif ferent access rights to

address the segment . This simp le imp lementation caus es two p roblems when

a code procedure is shared amongst a number of user processes , and is

illustrated by the examp le shown in Figure 2 . 13 (Fabry , 1 974) , where the

code addresses a shared subrout ine and a process-own data segment .

Fir st , it is not clear how the shat �d program should be coded to

allow each process , with a dif ferent segment lis t structure , to refer to

the same obj ect (e .g . the sub routine) . Process 1 should use a ' call

segment 2 ' wh ereas process 2 should use a ' call segment 1 ' . However ,

s ince the code is shared it must contain the same call operand in each

process . Second , it is not clear how the main program should be coded so

that the segment numbers which it has assigned to obj ects do not

conflic t with those used for dif ferent obj ects within the separately

comp iled sub routine . Thus , the segment number us ed for the data segment

must not be the same as the segment number used for the subroutine . A

CHAPTER 2 CONVENTIONAL MEMORY ORGANI ZATIONS

0
1
2
3

0
1
2
3

PRO C E S S 1

PRO C E SS 2

- 29 -

>

>

data fo r
p ro c e s s 1

Code for
mainl ine

call s eg ?

code f or
sub rout ine

read s eg ?

dat a for
p r o ces s 2

Figure 2 . 13 - shared segments

number of dif ferent solutions have been used , which we now describ e .

l·l·l ·.!·l· Uniform Addressing

The most obvious so lution is the unif orm address ing scheme , wh ich

has been success fu lly us ed in the B6 700 family of comput ers . The scheme

demands that all code , mainline and subrout ines , are compiled at the

same time . Because of this all images of shared segment references (e .g .

ins tructions) will have the same segment number , regardless of the

process in which the ref er ence o ccurs . Thus a segment which is shared

will be known by the same segment number . Also , since the segment

numbers for the mainline and the subroutine are assigned at the same

time , there will be no conf lic t . The scheme can be implemented by

maintaining a list of segment numbers at comp ile time . When a new

segment reference is dis covered , a new segment number is ass igned .

The scheme has two main d isadvantages . First , it is not always

convenient to compile all the subroutines together with the mainline ,

especially if subroutine l ibraries are us ed . Second , when a segment is

removed from memory , all of the segment lis ts which address the segment

CHAPTER 2 CONVENTIONAL MEMORY ORGANI ZATIONS

- 30 -

must be al tered . This operation may be extremely expensive . Another

proposal , the indirect evaluation scheme , attemp ts to remove these two

prob lems .

1·1·1·.i·l· Indirect Evaluat ion

The ind irect evaluation scheme solves the two sharing problems by

means of linkage segments , which are us ed to dynamically translate the

segment numbers used within a program (either the mainline or a

subroutine) into the segment numb ers held in the p rocess segment list .

An examp le is shown in Figure 2 . 1 4 .

Each process retains the segment lis t used in the uniform scheme .

However , additional linkage segments are as sociated with each code

segment . These linkage tab les then trans late the segment numbers in the

code into those required by the p rocess s egment list . Each linkage

segment is lo cated by an entry in the process segment lis t , and a

processor regis t er is us ed to address the current linkage segment . Whi le

the process is executing within the mainline , the linkage segment number

ass ociated with the mainline code is loaded into the processor reg ister .

Any ref erence to a segment is first translated into a process segment

number , via the linkage s egment . When the p rocess ent ers the subrout ine ,

the processor regis ter is altered to point to the new linkage segment .

Any segment ref erences are then trans lated by a d if f erent linkage

segment .

parameters
The

are
only exception

address ed f rom

segment numbers are used .

to these trans lat ion rules is when

a sub routine . In this case the process

The ind irect evaluation scheme so lves the sharing problems in two

ways . First , each subroutine (and the mainline) is ass ociated with its

own linkage segment . Thus , the segment numbers used in the mainline may

be the same as tho se us ed in the sub routine , and still . address dif ferent

s egments . Seco�d , the process segment lis ts may be ordered in any way ,

provided that the linkage segments f or a shared code segment map the

code segment numbers onto those of the process lis t correctly . Thus ,

d if f erent p rocess es may share the same code segment even though the

s truc ture of their process segment lis ts is dif ferent . The linkage

s egments f or each of the p rocess es can be order ed to correct the s egment

numbers . This solution is effective because it maps a program onto a

CHAPTER 2 CONVENTIONAL MEMORY ORGANI ZATIONS

linkage
segments

segments

process .

- 31 -

3 or 4 current linkage segment
number

PROCESS 1
I

segment
list

PROCESS
I

segment
list

data for
process 1

Code f or
mainline

call seg 0

code for ·
sub routine

read seg 0

data for
process 2

3 or 4 current linkage segment
number

Figure 2 . 1 4 - the indirect evaluation scheme

Ind irect evaluation has some problems . First , both the linkage

segment and the process segment list must be consult ed on every memory

reference . Second , the scheme does not solve the prob lem of searching

all process s egment lists f or ref erences to a segment when it is removed

from memory . Third , free s tand ing data struc tures do not have a linkage

s egment . These segments may , however , contain embedded p ointers to other

segments and like programs may be shared between processes . Thus , these

s egments suf f er all of the naming prob lems experienced with p rogram

CHAPTER 2 CONVENTIONAL MEMORY ORGANI ZATIONS

- 32 -

segments . The only sens ible solution to this problem is to not allow

free standing data s tructures to address other segments without a code

body , as proposed by Parnas (1 97 2) and others (Wirth , 1'97 7 ; Liskov and ·

Zilles , 1 974) . In spite of its prob lems , the ind irect evaluation scheme

is used by MULTICS (Organick, 1 97 2) . An op timizat ion of the ind irect

evaluation scheme is the mul t ip le segment list scheme .

l.·l.·1·i·1· Multiple Segment Lis ts

The multip le segment scheme , shown in Figure 2 . 1 5 , associates a
s egment list wi th each mainline and subroutine . A p rocessor register is

used to point to the current segment lis t , depending on whether the

mainline is executing or one of the sub routines . Any reference made

within a rout ine is trans lated into a main memory address via the

segment list associated with that routine . When a subroutine is entered

- the processor regis ter is modif ied . The scheme dif fers from the

indirect evaluation scheme by removing the p rocess segment l ist . Segment

addresses are translated directly by the segment lis t associated with

the code routine , rather than via a cent ral p rocess list . Thus , it is

more eff icient than the indirect scheme .

Whilst the removal of the process segment list may improve the

speed of the sys tem, it also des troys the mechanism for pas s ing

parameters . One solution to this p roblem is that each subroutine call
' creates entries for the parameters in the subrout ine s segment lis t

(Evans and LeClerc , 1 9 6 7) . Recursive calls are only allowed if multip le

copies of the new segment lis t can be created , an expens ive operation .

An alternative s olution address es parameters via des criptors , rather

than via the segment lis t , which may be held on the process s tack (as in

the B6 700) .

!·!·i· Segmented and Paged Memories

The segmented and paged memory scheme comb ines the segment ed memory

model and the pag ed memory organization with the aim of gaining both the

logical advantages of segmentation , and the memory management advantages

of paging . In this s cheme , the us er program address es a s et of segments .

However , in dis tinction from the segmentat ion scheme , each segment is

compos ed of a number of pag es . Thus , while the user p rogram perceives a

number of variab le length segments , the operating sys tem can allocate

CHAPTER 2 CONVENTIONAL MEMORY ORGANI ZATIONS

- 33 -

PROCE SS 1
I data for

0 process 1
MAIN 1

2
Code for

0 mainline
SUB 1

2 call seg 1

�
code for

PROCE SS 2 sub routine
I

0 J I�> read s eg 0
MAIN 1

2
data for

0 I p rocess 2
SUB 1 I 2

Figure 2 . 1 5 - multip le segment lis ts

main memory in units of fixed size pages . It al so has the advantage

that large segments can be addressed without the need to load the entire

segment into memory . Only tho se pages which are being referenced need be

loaded . If any other pages are accessed , a page fault is generated and

the pages can be load ed f rom secondary memory .

The processor addresses are now composed of three fields : a segment

number · (within the process) , a page number within the segment , and an

off set within the page . This address , as shown in Figure 2 . 16 , is then

translated into a main memory address before the reference can p ro ceed .

2 . 2 . 4 . 1 . Address Translation
- - - -

In the mos t widely used segmented and paged scheme , address

trans lation is performed by a c ombination of segment lists and page

tables , as shown in Figure 2 . 1 7 . Unlike the purely segmented scheme ,

the s egment list entries ho ld the main memory address of a page tab le

CHAPTER 2 CONVENTIONAL MEMORY ORGANI ZATION S

34 -

segment number page number disp lacement

Figure 2 . 1 6 - a paged and segmented address

segment # l page # disp lacement
p rogram
address

'----------------------------------->

.---------------->
main memory
address

.__ __ > page table address

segment
lis t

> real page number

-----------------------> -----------------. . .
page tab le

Figure 2 . 1 7 - pag ed and segmented address trans lation

for the segment . The page table contains entries which hold the main

memory page f rame numbers of the pages within the segment . Along with

the address of the page tab le , each segBent lis t entry also holds the

page table size (i .e . the segment size) , an ab s ent flag (which is set if

the page tab le for the segment is not in memory) and the access rights

of the segment . Thus , segmentation is s till us ed as the unit of

protection . The page tab le entries hold the main memory page number and

an abs ent /present f lag . Segments are paged in the same way as address

spaces in a purely paged sys t em . Because this technique uses two tab les

before main memory can be address ed , special hardware is o f ten us ed to

speed up the trans lation (such as a cache memory , as described in the

next chapter) .

CHAPTER 2 CONVENTIONAL MEMORY ORGANI ZATION S

- 35 -

Whilst the B6700 is class if ied as a purely segment ed machine , it

does allow very large segments to be divided into a number of f ixed

length pages . Address trans lat ion for large segments is accompl ished in ·
a manner similar to that described for the paged and segment ed memory

model , except that the processor views a large segment as a collection

of smaller segments , each of which is referenced by a d ifferent segment

descrip tor . It is then the respons ibility of the compiler to generate

code to address segments via lists of descrip tors . However , unlike the

paged and segmented model described above , the use of paging in the

B6 700 is not unif orm and therefore offers the operating system no

ass is tance with the . management of the virtual memory .

1 ·1.·.i·l· Protect ion
-

Since the paged and segmented address ing scheme provides a process

with a segment list in the same way as the segmented model , it inherits

the same prot ection properties as the segment ed scheme . Segments are

us ed as the logical unit of protection . O ther processes cannot address

segments for which they do not have segment lis t entries . Moreover ,

segments st ill have access rights associat ed wi th them as in the purely

segmented scheme . The introduc tion of paging only has an effect on

memory management .

l •1.•.i ·1 · Sharing

Segments may be shared between processes in this scheme by placing

the same segment list entry in more than one segment list . In this way,

more than one process has access to the same page tab le . This

arrangement is superior to the purely s egmented scheme, because when

various pages of a segment are removed from memory , only the one page

tab le entry needs to be updated . In the s �gmentation scheme every

segment lis t which addresses the segment mus t be updated if the segment

is removed f rom main memory . However, this simp le imp lementation has

s ome problems . First , if a segment is delet ed , or totally removed from

memory , all of the segment list entries must still be updat ed . Second ,
if the page tab le for the segment is 100ved in memory , all of the segment

list entries f or that segment must be updat ed . Some systems (such as the

ICL2900 series (Keedy , 1 97 7)) have solved these problems by introducing

an ext ra level of indirection between the s egment l ist and the page

CHAPTER 2 CONVENTIONAL MEMORY ORGANI ZATION S

- % -

tables of shared segments . In this scheme , each segment lis t entry for

a shared s egment points to an entry in a global segment list , which in

turn points to the correc t page table . Thus , if the segment is delet ed ,

or the page tab le is relocated, only the global segment list is updated .

The disadvantages of this solution are that it increases the number of

translation operations required to map segment addresses onto main

memory addres ses , and space mus t be al located for the global segment

list .

The paged and segmented memory scheme inherits the same problems

for address ing segments f rom shared code segments as the segmentation

model . Accordingly , the same solutions may be applied .

1·1 ·.!·.!· Memory Allocation

Whilst the paged and segmented model inherits the advantages and

disadvantages of segmentation f rom the us er programs viewpoint , it also

inherits the memory management advantages and dis advantages of the paged

model . As in the paged scheme , memory is allocated in fixed size units ,

thus large segments do not require contiguous areas of main memory . The

problem of external fragmentation , experienced in purely segmented

memories , is also removed . However , the int ernal fragmentation of the

paged memory scheme becomes far more serious . Rather than wasting half a

page of memory per address space , as in the paged scheme , the paged and

segment ed model wastes half a page per segment . If the segments are

small in size , as experiment s have shown to be a common occurrence

(Batson and Brundage , 1 9 77) , then this can waste a substantial amount of

memory . This effect can be diminished by us ing a very small page s ize .

Unfortunately, this increas es the size of the page tab les signif icantly ,
posing · memory management problems for th ?.se tab les (such as finding

space) and poss ibly creating mo re page faults .

A few solutions to this problem have been proposed . The MULTICS

des igners o riginally suggested that the p rocess or could supp ort two page

si zes , one of 64 words and one of 1 0 24 words . Because of the problems of

maintaining two different typ es of page tables , this scheme was never

imp lemented . Randell (1 969) proposes a scheme in wh ich segments may

still be d ivided into pages , but memory is allocated in smaller f ixed

size units (of powers of two) called quanta . The scheme uses

CHAPTER 2 CONVENTIONAL MEMORY ORGANI ZATIONS

- 37 -

conventional page and segment tables except that the page table entries

contain a main memory quantum number rather than a page frame number .

This quantum number is then added to the within page d isp lacement to·

produce a main memory address . Large segments are composed of pages

(and a number of quanta for the last page) and small segments are
composed purely of a number of quanta . Moreover , since smal l segments

only require one page table entry, this relocation information is held

in the segment lis t rather than in a page tab le . This organi zation ,

called partitioned segmentation, causes much less f ragmentation than the

segmented or paged and segment ed schemes . Also , since a number of small

segments are packed into one page, the co st of trans f erring small
segments between main and secondary memory is reduced . However , because

memory is allocated in variable size units (even though they are units

of quant a , which are powers of two) , memory management becomes

increas ingly d ifficult , and may even become as awkward as in the purely

segmented scheme . Consequently , neither of these solutions

satisfactorily solves the small segment p rob lems experienced in a

segmented and paged memory .

l·l· C onclusion

The aim of this chap ter was to determine the extent to which the

conventional memory management schemes fulf il the needs of computer

programs . We demons trated that programs can be divided into three
classes , each of which p laces d if f erent kinds of reques ts on the

information sys tem .

From this examination we have determined that the segmentation

scheme has by far the most advantages , because of its logical

properties . These properties are lacking in the linear and paged memory

organizat ions . User programs can be divided into segments of memory ,

allowing logical structures to be protected and shared between users .

The maj or d is advantage of the segmentation scheme is that it comp licates

the task of the operating sys tem, because memory is al located in

variab le size unit s . The paged and segment ed scheme attemp ts to s o lve

these prob lems by simplifying memory management , at the cos t of internal

f ragmentation . The few p ropos ed s olut ions to this p roblem appear to be

ineffective . Later in the thes is we shal l reconsider this prob lem, and

make use of another s olution .

CHAPTER 2 CONVENTIONAL MEMORY ORGANI ZATIONS

- 38 - . ·

Now that we have dis cussed the logical struc ture of the
conventional memory management models , we can describe the hardware

which is commonly used to implement these schemes .

CHAPTER 2 CONVENTIONAL MEMORY ORGANI ZATIONS

- 39 -

3 . Computer Memory Hardware

l·l· Introduct ion

In Chap ter 2 we examined the convent ional memory management models ,

but did not consider the hardware necessary to imp lement these

structures . This chapt er provides a summary of the current memory

technology , and shows how these conventional memory organiz ations can be

imp lemented . Later in this thes is , we develop a new memory

organiz ation, and show how it can be imp lemented with current

technology .

1·1.· Memory Building B locks

A number of dif ferent memory building blocks are available , each
suited to a particular environment . The f ollowing devices are discussed

in detail in this chap ter :

1 Registers

2 Fas t addressable memories

3 Large storage devices

4 As sociative memories

5 Cache memories

.1·1.·l· Registers

The mos t elementary form of computer storage device is the

regis ter , which is us ually capable of retaining one word of information .

The active components of a regis ter are flip-f lop devices , each capable

of remembering the s tate of a b inary digit presented at their inputs .

Flip-f lops may be concatenated to �orm a regis ter of any length , as

shown in Figure 3 . 1 .

The input values are usually saved when the regis t er is addressed ,

via a control l ine (or c lock input) . The output is always available , and
only changes state wh en the control line is puls ed .

Registers were f irst imp lemented us ing thermionic valve devices ,

but mos t modern types are made of semiconductors . It is also possib le to

p roduce very f ast registers , implemented with high speed logic .

CHAPTER 3 MEMORY HARDWARE

- 40 -

Many processors use registers for holding temporary results ,

ins truction operands , addres ses and short term data items . Registers are

not used for holding large amounts of data because of the high number of

inputs and outputs required , and al so because of their phys ical size .

l·l.·1.· Fas t Addressable Memories

Large fas t memory devices have been built us ing many different
media and techniques . These memories , unlike regis ters , are capable of

storing a large amount of data . Two class es of memory have been used ,

serial memories and random access memories . Both classes of memory have

been used to hold the data and the ins truction stream of a program .

1·1·1.·l· Serial Devices

Serial memories are only capable of storing a sequential bit

stream . To change the state of a bit , the unit must wait for the

correct digit to appear at the output of the memory , change the bit , and

restore the sequence .

A number of serial devices have been built , namely various delay

line units . The units are not in couunon use now, not only because a

processor cannot randomly extrac t data eff iciently (because on average

half of the memory must f irst be read) , but al so because they are

volat ile in nature .

CHAPTER 3

bit 0

data
in

b it n

flip
! lops

1--+--- b it 0

data
out

t--1---- b it n

Figure 3 . 1 - a regis ter device

MEMORY HARDWARE

- 4 1 -

The serial devices were supersede� when the core memory was

designed , in the early 1950s .

1·1·1·1· Random Acces s Devices

Random ac cess devices dif fer from serial memories by allowing any

b it in the memory to be address ed randomly, rather than by wait ing f or

the bit to appear in the serial bit stream . The main ef fect of such

devices is to imp rove the average speed at which the bits can be
retrieved . The first random access memory to achieve wide-spread use

was the core memory .

1 ·1·1·1·1· Core Memories

Core memories were introduced in the early 1 950s , and are still in

use in many modern computers . The s cheme relies on the magnetic

hysteres is properties of small ferrite cores . Each bit is saved in one
core .

Large matrices of cores may be cons tructed , forming a core plane of

many thousand bits . Core memories have two main advantages over serial

devices . Firs t , the core plane may be addressed by a row and column

number . Thus , inf ormation may be retrieved in any order from s tore .

Second , the cores are non-volatile , and withhold their magnetic

polarization indef initely .

Core memories are now being replaced by modern semiconductor

memories , f or two main reasons . First , each core plane requires a large

amount of extra electronics to address and retrieve data . Second , the

cons truction of each core p lane is a comp lex and time consuming

p rocedure . The modern semiconductor memories can be made with far les s

labour .

1·1·1·1·1· Modern Memory Devices

The introduction of mic ro electronic chips has enab led the

construct ion of very highly populated memory devices , capable of saving

many thousands of bits per chip . Two main clas ses of device are

available , s tatic and dynamic .

Stat ic memories are cons tructed from many thousand flip-f lop s , and

can thus hold many thousands of bits of information . The f lip-f lops are

CHAPTER 3 MEMORY HARDWARE

- 42 -

individually referenced via an address word and , like core memories , may

be randomly ac cessed . Current static memo ries can provide a ret rieval

time as low as 1 nanosecond and up to 2 microse conds .

Dynamic memories are also capable of storing many bits of

information . However , unlike static memories , each bit is saved in a
capacitive device , rather than a flip-f lop . Each capac itor can only

retain the data for a fixed length of time , and thus is dynamically
refreshed . Because their int ernal cons truc tion is more compact , dynamic

memories can achieve a higher bit dens ity than static memories . Like
s tatic memories , dynamic memories may be randomly address ed .

Both stat ic and dynamic memories suf fer the drawback that they are

volatile , and without power they lose their inf orma tion .

l·l·l· Large Storage Devices

The addressab le memories described are invariably too small and far
too expensive to ho ld large amounts of inf ormation for any length of

time . In addition , with the excep tion of core memories , they are

volatile , and are thus unsuitable f or long term s torage of data .

Large data bases are thus held in large permanent memories , such as

magnetic tape , disk and drum . The retrieval times , and s torage

capacit ies , vary across these dif ferent media . However , they are usually

too s low to use as the computational memory of a process or .

This chapter is concerned with the hardware implementations of main

computational memories , thus disk, drum and tape memories will not be

cons idered further .

l·l·.!· · AssQciat ive Memories

The most common form of computational memory is accessed via an

address word , which ac ts as a direct key identifying a data cell , shown

in Figure 3 . 2 . Most address ab le memories are usually constructed from

random access devices , though serial memories could be used . Another ,

less commonly used form of memory , is the ' associative ' or ' content

addressable ' memory . This memory is capab le of retrieving data via the

content of the cell , rath er than by the address of the cell .

CHAPTER 3 MEMORY HARDWARE

- 43 -

1
address

l
Figure 3 . 2 - an addressab le nemory

Typ ically, each cell in the memory is divided into a key f ield and

a data field , as shown in Figure 3 . 3 . When the roomory is addressed , all

key fields are compared to the search key . Any cells which have the same

key field as the search key (or bear some relationship with the key ,

such as less than or greater than) are read , and the data retrieved , or

up dated . If more than one match occurs , the memory must include some

multip le res olution logic to extract each response individually .

The use of such a memory may not be immediately apparent , and is

best illustrated by example . Cons ider a tab le of surnames and

residential addresses , each surname corresponding to an address . The

surname can be loaded into the key area of an associative memory ; the

/?-
key

..----l:=
1-
k
-
ey

....,
d
_
at

_
a

_--1

search

Figure 3 . 3 - an associative memory

CHAPTER 3 MEMORY HARDWARE

- 44 -

residential address into the data area . It is then obvious that the

memory can f ind al l occurrences of a given surname , and provide the

corresponding residential addresses .

Associative memories are extremely useful in improving the

perf ormance of central p rocessors , and this will be discussed in more

detail later . We wil l now des cribe some of the more common

imp lementation techniques used to cons truct associative memories .

1 ·1·.i·l· T rue Content Addressable Memories

The imp lementation chosen for a content addressable memory (CAM)

varies depending on how the memory is to be used . In many cases , the CAM

must perform very high speed ass ociation and retrieval ; in such cases a

true paral lel CAM is used .

For imp lementation reasons , a dis tinction is made between the key

f ield and the data f ield of a cell, as shown ' in Figure 3 . 4 . Since the

data field is not addressed by association , it may be held in a separate

word addressable memory . When a key f ield match is found , the

appropriate data field may be read and /or updated .

In a true parallel CAM, each bit of the key word is simultaneously

<---- n bits ---->

-' k
_

o
_
I k_i_I _kz_I _

k3 l _kn_I key

kO kl k2 k3

kO k l k2 k3

kO k l k2 k3

kO kl k2 k3

key memory

> data word 0

data word 1 1>

> data word 2 m words

> data word 3 l
data memory

Figure 3 . 4 - a content addressable memory

CHAPTER 3 MEMORY HARDWARE

- 45 -

compared with each bit of the key f ields of all the words of the CAM .

Any key field which indicates a match (i .e . the keys are the same , or

have a relationship to each other) is f lagged , and the appropriate data
cell retrieved . The wors t case retrieval time is clearly the sum of the

time to compare two keys and the time to read the data memory . This time

remains the same regardless of the number of cells in the memory .

The actual imp lementation of a true parallel CAM is , unfortunately ,

complex . Each bit of a cell must not only hold the bits of the key , but

al so contain a comparator . Thus , in a memory of m words , and a key size

of n bits , a total of m * n bits of storage mus t be provided , and m * n

comparator devices .

The high cos t of each cell places severe restrictions on the

ul timate size of the ass ocia tive memory . Consequently , most true

parallel as sociative memories are quite small in size . Other techniques

are availab le when larger , but s lower , ass ociative memories are

required .

1•1•.!•1• Linear Scan - Word serial - Bit parallel

If the speed at which the data is retrieved f rom the CAM is

unimportant , the memory may be scanned sequential ly , rather than all

cells testing their keys on parallel, as shown in Figure 3 . 5 . In this

scheme , the key memory is replaced by a fas t addressab le nemory , of m

rows and n columns . When a key is address ed , each row of the memory is

read sequential ly , and the n bits of the cel l are compared to the n bits

of the s earch key . If any cell indicates a match cond ition , the data

memory may be addressed in the same manner as the true parallel CAM .

The hardware required f or this s cheme is simp ler than the true

p arallel CAM . Rather then m * n comparators , only n are required .

Because the key memory . is word addressab le, and only a small number of

comparators are required , quite large word serial memories may be

construc ted . · The worst case retrieval time of these CAMs is the time

taken to read and compare all of the keys in the key memory , plus the

read time of the data memory .

This device reads each word serially , and compares all bits of the

key in parallel . Another CAM s tructure reads the words in parallel and

compares the key bits serially .

CHAPTER 3 MEMORY HARDWARE

row
counter

>

- 46 -

< --- n bits ---->

(compare with row)

kO kl k2 k3 -

kO kl k2 k3 �

kO kl k2 k3 �

kO kl k2 k3 -
l

> data word 0

data word 1 l>

> data word 2 m words

> data word 3 1
key memory data memory

Figure 3 . 5 - a word serial - bit parallel CAM

1·1·.i·1 · Linear Scan - Word parallel - B it serial

An alternative organis ation may be devised which is faster than the

word serial CAM, but s lower and less expensive than a true parallel CAM .

The word paral lel sys tem, shown in Figure 3 . 6 is the logical inversion

of the s erial scheme . In this method , the same bits of all key words

are compared in parallel . Each key field is writ ten serially into the

memory , rather than in parallel , and is saved down a column rather than

across a row .

When a key is addressed , each row is read sequential ly . Af ter each

read , all m b its are compared to the corresponding b it in the s earch

key • At each stage , a match for a column is saved . If , after the entire

n rows have been read , a column matched f or every row, then the data

word can be retrieved from the data memory .

This s cheme uses m comparators rather than n and , given that n is

usually les s than m, is usually more expens ive to implement than the

word s erial memory . Howev'er , only n reads are required to match all

keys , rather than m. Providing that there are more keys to be compared

than b its in a key , this app roach is f aster than the s erial scheme .

CHAPTER 3 MEMORY HARDWARE

- 47 -

The word parallel scheme poses an important problem . Whils t it is

capable of executing fas ter retrievals than the word serial memory , a

key field can only be updated serially , requiring n write operations .

It is also likely that all other m columns will be forced to execute an

update cycle (as all wil l share a write signal) , even though they are

not being modif ied .

A modif ication of this scheme al lows bit parallel access fo r write

cycles and word parallel access for as soc iative ret rievals .

l·l·i·i· Skew Addres sing

In this scheme , shown in Figure 3 . 7 , a key word is held diagonally

in the s tore , rather than being confined to a part icular row or column .

The address supplied to each column of the memory is skewed , or off set ,

by one relative to the next column . The memory s till possesses the

property that each row holds the same bit of each key field , and thus by

sequentially s canning the rows , the same as sociative search us ed in the

bit serial scheme may be used . However , when a key is updated , each bit

is held in a d iff erent column , and thus all bits of the key may be

written in parallel .

kO

I kl

k2 n bits

k3 1
key

CHAPTER 3

<---- m bits

kO kO kO kO

k l k l k l k l

k 2 k 2 k 2 k 2

> k3 k3 k3 k3

l

---->

data word 0

data word 1

r > data word 2

row counter

data word 3

if match on all
n reads

data memory

Figure 3 . 6 - a word parallel - bit serial CAM

MEMORY HARDWARE

< --- m bits

kO

1kl

kO

kl

k2 n bits k2

k3 l ->

key

k3

I

- 48 -

---->

-

rOY1 counter

data word 0

data word 1

> data word 2

data word 3

if match on all
n reads

data memory

Figure 3 . 7 - skew addres s ing

1·1·.!·1· O ther Searching Algorithms

It is theoret ically pos s ib le to implement other searching

strategies in an ass ociative memory , such as a binary s earches , tree

searches and hashing techniques . However , very few of these algorithms

have actually been imp lemented in hardware , and will not be des cribed

here . A hashing algorithm is used to implement a large as sociative

memory later in this thesis . A fu ll descrip tion of this unit may be

f ound in Chap ter 7 .

1·1·1· Cache Memories

Mos t processors are connected to their memory units via an address

bus arid a data bus , as shown in Figure 3 . 8 . When a memory read or write

reques t is ini tiat ed , the CPU must wait until the memory has completed a

memory cycle which , depend ing on the main memory speed , may be in the

order of micro seconds .

Substant ial speed savings may be experienced by placing a smal l ,

very fast , associative memory between the processor and the memory .

Thus a CAM is used to retain copies of the mos t frequently used memory

locations . The scheme relies on some address locality ; once a location

has been referenced it is likely to be used again . Thus , once a location

CHAPTER 3 MEMORY HARDWARE

- 49 -

is us ed , a copy of the data is placed into the cache . When a ref erence

t o the same location is made in the future , the cache copy may be used

rather than the s lower main s tore .

The key used in these associative memories is the main memory

address . The data field of the CAM is us ed to hold a copy of the data .

Cache memories can offer excellent speed improvements , as described in

(Strecker , 1 97 8) .

1 ·1·1 ·1· Memory Write Operations

When the central processor reques ts a write operat ion , two

dif f erent write algorithms can be us ed . First , the data can be updated

in both the cache locat ion (if it is present in the cache) and the main

store . This p rotocol , called 'wri te through ' , has many advantages , as

dis cuss ed in (Kohonen, 1 97 8 ; 1 9 80) . The second alternative is to only

update the location in the cache . The main store location is only

modified wh en the variable leaves the cache memory , in which case the

correct value is written to memory .

Whilst this solution avoids unneces sary memory wri te operations ,

it suff ers f rom two problems . First , special hardware must detect when

a locat ion leaves the cache , and write the data back to main store .

Second, two d ifferent copies of the same location exist , which

comp licates the sharing of variables in a nn.ilti-processor environment .

In addition, the 'write through ' approach may be implemented so

that it is no s lower than the cache only write solution , by overlapping

the main memory write with the next processor operat ion . Consequent ly ,

the f ormer s olution is usually imp lemented .

<-handshaking & control->
Processor Memory &

ADDRESSES > Peripherals
Control &
Regis ters < DATA >

Figure 3 . 8 - a typical processor configuration

CHAPTER 3 MEMORY HARDWARE

- 50 -

1·1·1·1 · Insert ing and Deleting Items

An important cons ideration af fecting the ef f ic iency of a cache
memory is which wo rds to insert into the cache and , when space is
required , which words to remove .

Mos t sys tems use a simple , but ef fective , demand insertion

pro tocol . When a word is fe tched from main s tore, it is au tomatically

copied into the cache . The likelihood that the word will be addres sed

again is qui te high , making it an ideal choice to insert in the cache .

Two dif ferent cases may arise when a word is to be inserted . First ,

if there is s uf f icient free spa ce, then any free location may be us ed .

If , however , there is no free space , then a word mus t be removed .

Various deletion algorithms are pos s ible, the most common being Random

or Leas t Recent ly Used .

Random selects a location at random from the cache . This algorithm
is easy to imp lement , especially in hardware , and chooses a word

quickly . Unfortunately , it often removes the wrong word . Leas t Recently
Us ed s elects the word which has remained unused for the longest time .

Whilst harder to imp lement than Random, and even though it is slower in

choosing a cel l , this algorithm tends to choose a better locat ion to

remove . In spite of these advantages , Ran�om is usual ly used because of

the ease of imp lementation, and the speed of op eration .

1·1·1·1· Data C aches and Address T rans lation Caches

The data cache memories discussed so far are capab le of retaining

copies of the mo st used words of memory in high speed memory . It is

of ten des irab le to retain entries from the address translation tab les ,

to improve the speed at which addresses can be tran� lat�d . In many

cases , a separate address translat ion cache is provided , and this will

be d iscuss ed in the latter part of this chapter . An important

dis tinction between these two is that an address translation cache is

not usually modified . Thus , the data from these caches need not usually

be written back to main memory .

1·1·1 ·.! · Implementing Cache Memories

An important attribut e of a cache memory is high speed . A s low

cache may o f f er no speed imp rovement over the main memory . Many

CHAPTER 3 MEMORY HARDWARE

- 51 -

different types of cache memory have been implemented , the most popular

being the freely loadab le cache , the direct mapping cache and the set

as sociative cache .

1 ·1·1·.i·l· The Freely Loadab le Cache

The most obvious imp lementation technique for building a cache

memory is by us ing a true parallel CAM . The cache may be searched very

quickly (as al l comparis ons are performed at the same time) , and

address-data pairs may be loaded in to any pos ition wi thin the CAM .

Unfortunately , true parallel CAMs are often too smal l to hold

enough main memory data locat ions . Consequently, other techniques have

been developed especially for use in cache memories .

1·1·1 ·.i·l · Direct Mapping

A direct mapping cache is cons tructed from very high speed

addressable memory . Each cell ho lds both the key f ield and the data

f ield , as shown in Figure 3 . 9 . The key field is used to hold the main

memory address and the data f ield holds the memory data at that address .

The index position of a cell in the cache is calculated from the

key value , and is often ext racted from the least signif icant b its of the

key (al though a randomis ing function may be app lied) . When the

processor requests a memory cycle, the cell contents at the calculated

index value are retrieved . The key field is then compared to the main

memory address and , if e qual , the data f ield is returned to the

> key data

address

I
Figure 3 . 9 - d irect mapping cache

CHAPTER 3 MEMORY HARDWARE

- 52 -

proces sor . If a write operation was requested the field in the cache is

updated .

This scheme is only limited in speed by the cache retrieval time

and the delay time of the comparator . Both . of these may be very fast ,

producing a CAM many times fas ter than ma.in memory . Unlike the freely

loadab le cache , this organization requires only a one word comparator ,

and is thus inexpens ive to produce .

The mos t important criticism of the scheme is that it in not truly

associative ; two addres ses which have the same low order bits will
' ' home to the same cache cel l , and cannot be held in the cache at the
same time .

This res tric tion is not serious for a number of reasons . First , the
choice of low order bits for a randomis ing function guarantee that

success ive ma.in memory lo cat ions can be held in the cache . Sequential

address ing is part icularly connnon when instructions are fetched , thus

the ' clashing ' is not a serious drawback . Second , the cache only needs
to hold a high percentage of the words being cons tantly addressed , not

all of them . If a word is not held in . the cache , either because there

was no room, or it clash ed with another address , then the process or may

still continue by using the main memory . Provided that only a small

percentage of connnonly us ed locations are ab s ent from the memory, the

cache will s till give a s ignif icant speed improvement . Third , the

effect of addresses homing to the same cell may be diminished by

increas ing the size of the cache itself . Thus more bits from the memory

address are used to calculate the index value , decreasing the likelihood

of a clash .

Unlike the true parallel CAM, an address can only be inserted into

one cell of a direct mapp ing cache . Thus , if an address is to be

inserted into the cache , it mus t be p laced in the correct index

pos ition , pos sibly removing an address . The same choice of insertion

algorithms is not available for the direct mapping cache ; the address is
either insert ed in the correct ce ll, or not at all .

An important opt imization of this style of cache which reduces the
size of the memory , is to only save the b i ts of the key not us ed to

calculate the index value . This can save many bits of high speed memory .

CHAPTER 3 MEMORY HARDWARE

- 53 -

Another modification of the direct mapping cache is the set associative

cache .

l ·l·1·.i·l· The Set Associate Cache

If more than one address homes to the same cell of a direct mapping

cache , then only one address entry can be saved . All others must res ide

in main memory . In a set associative cache this limit is extended to 2

or 4 such ent ries . A collection of addres ses which home to the same cell

is called a ' set '

The scheme is imp lemented by providing more than one direct mapping
cache , each placed side by side, as shown in Figure 3 . 10 . Thus , two

uni ts allow two different addresses to be held at the same index
position . When a third address is to be saved at an index position , a
choice is made of which address entry to discard . Either Random or Least

Recently Used may be app lied , however , because of the ease of

imp lementat ion random is usually chosen .

Two way and four way set as sociative memories o f fer extremely good

performance and are often used for· both data and address translation

caches (St recker , 1 97 8) .

3 . 3 . Implement ing Memory O rganizations

This sec tion examines the memory cons tructs which have been used to

imp lement the structures describ ed in Chapt er 2, namely l inear memories ,

> key 1 data 1 key 2 data 2

address

I

Figure 3 . 1 0 - a set associative memory

CHAPTER 3 MEMORY HARDWARE

- 54 -

paged memories , segmented memories and paged-segment ed memories .

1·1·1· L inear Memory Schemes

Linear memory schemes have been imp lemented with varying degrees of

hardware support . In all of these , the logical view of memory is the
same as the phys ical view, and no address dis tort ion is introduced

(excluding simp le linear offsets) . In the simp lest case very litt le

hardware is requi red to allow the processor to address memory .

1·1·l·l· B asic Scheme

In the most bas ic linear memory scheme , shown in Figure 3 . 8 , each

address generated by the processor is transferred directly to the memory

unit . Tile memory itself is constructed from the addressab le memory

described in s ection 3 . 2 . 2 .

The inclusion of a fence regis ter (see Chap ter 2) has no effect on

the actual addresses . The p rocessor addresses are simp ly compared to the

value of the fence reg ister and , if an address if detected below the

fence value , an interrupt is caused . The relocation s cheme (s ee Chapt er

2 . 2 . 1 . 2) requires slight ly more comp lex address ioodif ication hardware .

1•1•1•1 • Relocation Registers

When a sys tem is f it ted with base and limit regis ters , the

addres ses produced by the p roces sor are d if ferent from those accep t ed by

the memory unit , as shown in Figure 3 . 1 1 .

Processor

Control &
Regis ters

CHAPTER 3

<->base l
· ----> +

Memory & -----1-----> Peripherals

<->limit ----> ?

<--------------�'
yes /no

Figure 3 . 1 1 - relocation hardware

MEMORY HARDWARE

- 55 -

Whils t the linearity of the address space is preserved , a program

may be relocated in the ma in memory . Each address from the processor is

augmented by the contents of a base regis ter , and the result may be

validated against the contents of a limit reg ister . The address is

modif ied by a fas t adder , which has lit tle ef fect upon the to tal memory

acces s time .

When the processor addresses are dis torted , such as in a paged

memory , much more hardware must be provided .

1·1·1 · The Paged Memory Scheme

The . paged memory scheme was first imp lemented on the Atlas computer
(Fotheringham, 1 96 1 ; Kilburn , Edwards , Lanigan and Sumner , 1 962) in

1 958 . Since that time many dif ferent hardware imp lementations have been

designed and built . As s tated in Chapter 2 , these imp lementations fall

into four classes :

(1) Processors with small virtual address spaces
(2) Proces sors with small main memories

(3) Processors with large main and virtual memories
(4) Processors with very large virtual memories

Each clas s has dif ferent propert ies , wh ich inf luence the techniques

used to imp lement them .

1·1·1·l· Small Virtual Address Spaces

This class includes processors in which the address ing range of an

individual p ro cess is quite small , even though the comb ined space of all

processes may be large .

Each time the processor generates a vir tual address , the address is

mapped onto the phys ical memory . The mapping operation is usually

performed by a page tab le , of ten held in main memory itself . If the

address space is small enough, it is pos s ib le to p lace the contents of

this page tab le in a special fas t mapping memory , placed between the

processor and the memory, as shown in Figure 3 . 1 2 .

Each time a virtua l address is generated , the page number is

extract ed from the rest of the address (leaving a within page

displacement) , and used as an index into the mapp ing memory . The entry

CHAPTER 3 MEMORY HARDWARE

- 56 -

t
� page/I real � >

J page II
>

processor main memory

indexed mapp ing table

disp lacement

Figure 3 . 1 2 - a small paged memory

addressed in the mapping table is us ed to hold the main store page

number , a set of access rights , and a val id flag . The main sto re page

number is concatenated with the page disp lacement to form a main memory

address . The other fields in the tab le are used to val idate the type of

access , and to detect page f aults .

The time requi red to translate an address in this method is the

time taken to read the mapp ing memory, which can be made a small

frac tion of the main memory cycle time . Us ing this scheme the overhead

incurred by address modif ication is extremely low .

Depending upon the number of processes concurrent ly execut ing on
the processor , it may be possible to ded icate a separate address

trans lat ion memory for each process , as found in (Hagan , 1 97 7) . However ,

if the processor execut es many proces ses , the contents of the mapp ing

memory may be loaded from the page tab les in main sto re when the process

is scheduled f or execution .

This method of address trans lat ion can only be used when the number

of virtual pag es in an address space is small, because one entry is

required for every page of virtual space . The amount of main memory has

little effec t on the size of the table , only on the width of the

individual mapping entries .

The mapping memory must usual ly be

addressab le memory . Consequently the cost

implement ed from fas t

of a mapp ing memory f or a

large address space becomes prohib it ive . In addition , the cos t of

CHAPTER 3 MEMORY HARDWARE

- 57 -

swapp ing the cont ents of the address t ranslator becomes too high . Thus ,

dif ferent techniques are used when the virtual address size becomes

large .

1·1·1.·1.· Small Phys ical Memories

When the size of the main store is small (as it was on the Atlas

computer } even though the vi rtual space may be large , a different

address translat ion mechanism may be used . In these cases , the page

tables contain many empty ent ries . By inverting the struc ture of the

page tab les and , rather than indexing the tab les by virtual page number ,

us ing the physical page number as a key, the size of the tables may be

reduced dramatically , as shown in Figure 3 . 1 3 . Address trans lation may

be accomplished by associatively matching the virtual page number with

the cel ls of the mapping memory . Because the address mapping must be

fast , the mapping memory must be cons truct ed from a true parallel CAM .

Thus , an associat ive memory large enough to ho ld the page tab le

entries for the ent ire main s tore can be us ed to t rans late all of the
processor virtual addresses . Any virtual address which cannot be found

in the memory, is not present in main store, and shou ld cause a page

fault .

In mos t sys tems the virtual addresses are not unique between

process es . Thus , the associative memory must either be cleared and

--- virtual freal �
page II page II

>

processor main nemory

associative memory

displacement

Figure 3 . 1 3 - a small main memory

CHAPTER 3 MEMORY HARDWARE

- 58 -

reloaded on each cont ext change, or the virtual address must contain the

process number .

Unfortunately , most true parallel CAMs are qui te small , and this

technique may only be used when the number of main memory pages is

small . The scheme is comparatively ins ens itive to the size of the

vi rtual address (unlike the previous method) , as this only af fects the

width of the memory entries and the comparators . The next technique is

us ed when both the virtual address size and the main memory address size
are large .

l·l·l·l· Large Virtual and Physical Memories

' ' Tradit ionally , very litt le hardware support has been ava ilable f or

the , trans lation of large virtual addresses . Clearly , a tab le indexed on

virtual page number cannot be p rovided , be cause of the size of the

virtual address space . Likewis e , a truly associat ive paral lel CAM

cannot be provided because of the size of the main memory . Thus , the

address translat ion in large memories is nearly always accomplished via

tree struc tured page tab les he ld in main memory . In some circumstances ,

these tab les are so large that they are held in virtual memory , and are

paged in and out of main memory like all other pages of virtual memory

(Digital Equipment Corp . , 1 979) , which causes many complications , as

discussed in Chap ter 2 .

Because the cost of consulting these tables on every memory

ref erence wou ld be proh ib itive , it is common to augment this mechanism

with an ass ociative memory , or address translation cache , capab le of

holding the mo st commonly us ed page table ent ries as shown in F igure

3 . 1 4 .

When a virtual address is trans lated , the cache memory is firs t

consulted . I f the translation tab le entry is not found , then the page

tab les are searched . This entry may then be placed in the cache in order

to ass ist fu ture references to this page .

Because virtual addresses are not usually tmique , the cache mus t be

cleared on each process switch, and be allowed t� reload itself when a

process is started . Because the entries of the cache are not modif ied ,

there is no need to write the entries back to the page tables when the

process is changed . Various forms of cache are ut ilized . Since the

CHAPTER 3 MEMORY HARDWARE

- 59 -

1-----> I CAM I > I programs &
data

page tab le
mismatch

processor main memory

Figure 3 . 1 4

cache need not be fully as s ociative (i . e . the page tables can always be

read in the case of a cache miss) , quite large set associative memories

are often us ed f or assisting this address trans lation .

Whilst this technique is effective for quite large virtual address
spaces , the space required by the page tables is still cons iderab le .

Consequently , this scheme has not been used on a virtual address size

above 32 b i ts (as in the VAX 1 1 / 7 80) .

1·1·1·.i· Very Large Virtual Spaces

When the virtual address becomes very large (for examp le 4 8 or 64

bits) conventional page tables are no longer an effective method of

address trans lat ion , for a number of reasons . First , an enormous amount

of space is required to ho ld the page tables . These page tables wou ld

certainly be held in virtual memory themselves . Second , because of the

the size o f the page tables , and the comp lexity of the retrieval

algorithms , trans lating an address using the tables is a slow process .

Even .if the address t ranslation cache provides .J very high ' hit ' rate ,

the small percentage of memory ref erences which use the page tables will

be so slow that the average memory reference time wil l fall

dramatically . Third, as d escribed in the last chapter , a page fau lt

operat ion may generate a number of further page faults in an att empt to

t ranslate an address .

To avoid the problems associated with holding the page tab les in

virtual memory another technique may be used . In this method , the page

tab les are never used to trans late main memory addresses , and are only

us ed to f ind the location of a page in secondary memory . This approach

CHAPTER 3 MEMORY HARDWARE

- 60 -

was used by the Atlas computer . All addresses for pages in main memory

were translated by an associative memory , which held page table ent ries
.

for every page of main store . Unfo rtunately , true paral lel associative

memo ries large enough to manage the large main memories now commonly in

use , are not availab le .

One comput er , MU6-G (Edwards , Knowles and Woods , 1 980) has used a

wo rd serial associative technique to emulate a la rge CAM . However ,

because this method is so slow , the processor also uses an addit ional

ps eudo associative cache to achieve a respec table t rans lat ion time .

Another computer , the IBM Sys tem/ 38 (IBM, 1 97 8 , 1 980 ; Houdek , Soltis and

Hoffman , 1 98 1) al so us es an associative translation technique , which is
described in Chap ter 4 .

1·1·1· Segmented Memories

Like large paged virtual memories , very little hardware support has
been deve loped for segmented memories . The two conventional translation

mechanisms are des criptors (as used in the B6700 family) and segment

lists . Wh ilst it may be possible to provide special mapping memory f or

the segment lis ts or the descriptors , they are usually held in main

store . Thes e t ranslation mechanisms a re augmented by cache memories to

improve their translation t imes .

Thus , when a proces s generates a segment address , the cache is

searched for the segment relocation information . If it is not found ,

then the segment list (or descriptor) is used to trans lat e the address ·,
and the information is placed in the cache f or future reference . Since

segment numbers , like page numbers , are not usually unique between

processes , it may be necessary to clear the cache on a process change .

If Additional ind irection tab les are used , the cache may alsc need to

retain entries from these tables .

1·1·.i· Segmented-Paged Memories

Address trans lat ion in segmented-paged virtual memories is similar

to that of purely paged memories , except that both page and segment

tab les are usually used to translate virtual addresses into main s tore

addresses . Thes e tab les can be augmented by a cache memory which holds

the most frequently used page and segment tab le entries . The key used

CHAPTER 3 MEMORY HARDWARE

- 61 -

for the as sociative s earch is the comb ined segment and page numbers . In

all other respects , the address translation is the same as f or the paged

memories .

3 . 4 . Conclusions

We have described the digital technology used in the cons truction

of memory systems , and have shown how to imp lement the conventional

address ing schemes . The next chap ter desc rib es a different method of

address ing memory , called capab ility based address ing , and shows how

schemes based in this technique are built .

CHAPTER 3 MEMORY HARDWARE

- 62 -

4 . Capability Based Address ing

In Chapters 2 and 3 we examined various conventional memory.
organizations , and compared the advantages and disadvantages of each .

The segmentat ion scheme appeared to of fer many logical advantages .

However , th is addressing s cheme usually app lies only to segments of

memory . The other obj ects which are addressed by a program , such as

files , I-0 devices and other p rograms , are addressed , shared , protected
and synchronis ed by dif ferent mechanisms .

For examp le , file data is not retrieved in the same way as data
from an array . Sharing a bounded buffer between processes is not

imp lement ed with the primitives us ed f or sharing access to a f ile .

Record access within f iles is of ten synchronised by ' record locks ' ,

wh ereas shared code and data may be synchronised by semaphores . F iles

are protected by directories , whereas code and data are protected by

isolated address spaces , or p ro tected domains .

A capab ility based address ing scheme (Dennis and Van Horn , 1 9 6 6)

attemp ts t o extend the log ical view o f segmentation t o addressab le

obj ects other than memory , and provides a unif orm scheme for sharing and

protecting these obj ects . This unif orm app roach has the advantage that

it simplif ies , and even removes , many of the mechanisms wh ich are

duplicated in most convent ional computer sys tems . This chapter

comprises four sections . The f irs t dis cusses the properties of

capab ilities . The second concent rates on the obj ects that they address .

The third sec tion categorises the various implementat ions , and develops

some general models . The fourth section examines some particular

obj ects which can be address ed and protected by capab ilities and the

ef f ec ts that they have on the models •

.! ·l· The Properties of Capabilities

A capab ility is a protected pointer which gives a program the

ability to address an obj ect . A capab ility is logically composed of two

f ields , <obj ect name> and <ac cess rights> . The name f ield holds the

name of the obj ect which the capab ility addresses . The access rights

f ield describes the way in wh ich the obj ect may be addressed by that

capability . Capabilities are normally regarded as pos sessing the

following intrins ic propert ies :

CHAPTER 4 CAPAB ILITY BASED ADDRESSING

- 63 -

- The obj ect name should uniquely def ine the obj ect . No two

obj ects shou ld ever have the same name . The name , which is

typically encoded as a long integer , is ass igned when the obj ect is·
created , and is never reused .

- Possession of a capab ility allows a program to address the

obj ect . If a p rogram does not possess a capab ility for an obj ect ,

then no other mechanism al lows the program to reference the obj ect .

This prop erty provides a means of imp lementing the p rinc ip le of

leas t privilege and of enf orcing a ' need to know' security policy .

- A capability des cribes how the obj ect may be manipulated . The

access rights may be used to res trict certain operations , whilst

allowing o thers . A capab ility f or a memory segment , for examp le ,

may contain access rights def ining whether a segment may be read by

a user and whether it may be mod if ied .

- A capab ility should not be forgeab le . The two fields within the

capab ility c ontain sens itive inf ormation . If possession of a

capab ility is the only means of access ing an obj ect , then a user

must be p revented from changing the name to p oint to another

obj ect , and from changing the access rights which def ine the way in

which the obj ect may be accessed .

- Obj ect names should never be reused , even af ter the obj ect has

been des t royed . This property is imp ortant if capab ilities f or

deleted obj ects are not reclaimed . If the names were reused , the

c.apab il ity f or the o ld obj ect could be used to address a new obj ect

ass igned the same name . Some sys tems relax this rule by collecting

all old capab ilities .

- Capab il it ies facil itate easy sharing . An obj ect may be shared

among st all users who possess cap ab il ities f or the obj ect . The

capab ility mechanism allows as few and as many users as necessary

to share access to an obj ect .

- Capab ilit ies facilitate dif ferent views of an obj ect . Because

CHAPTER 4 CAPAB ILITY BASED ADDRESSING

- 64 -

each capab il ity contains an ac cess rights field of its own ,

diff erent users may be g iven different views of the same obj ect .

Thus , one user may only be allowed to read a segment , whilst

another may be allowed to write to the same segment .

Having enumerated the propert ies of capab ilities , we shall now

brief ly cons ider the obj ec ts that they address .

4 . 2 . Capabilit ies and Obj ect s

Two dif ferent classes o f obj ects are impo rtant , memory segment s and
o ther types of obj ects .

A memory segment is a log ical collection of information held either
in main memory or in secondary memory . Capability sys tems often differ

f rom the convent ional architectures dis cussed in Chap ter 2 in that they

use a connnon segmentation mechanism for s toring both computational data

and file data . In both cases each segment is addressed by a segment

capab ility , which c�ntains a unique name permanently associated with the

s egment .

The ac cess rights field of a segment capab ility is typically used

t o indicate modes such as read access , write access or execute access .

Some sys tems dis tinguish between two sorts of segment ; one which holds

data, and one which holds capab ilities . These two properties are of ten

dis tinguished in the lis t of allowab le access rights . A segment with

capab ility access is p rotec ted from arb itrary modif ication by users ,

thus guaranteeing the integrity of the capab ilities which it contains .

Many o ther obj ec ts are traditionally addressed by special

address ing mechanisms . For example , mos t sys tems provide separate

input-·output sub-systems to access obj ec ts such ab card readers and

printers . But these , and other high level ab strac tions such as files ,

s tacks , queues , ports and us er def ined ab s tractions may also be

addressed by a uniform capab ility mechanism . In this case ins tances of

such obj ec ts are assigned unique names , which are then us ed within the

capab ilities which address them . The access rights field may be used to

rest rict certain operations on the obj ects in the same way as for memory

s egments . For example the holder of a capab i lity for a port might be

allowed to s end messages via the port but not receive them v ia the same

port .

CHAPTER 4 CAPABILITY BASED ADDRESSING

- 65 -

This chap ter concentrates on the �chanism used to address memory

segments within a capab ility bas ed address ing scheme . (The addressing of

other high level obj ects by capab ilities will be cons idered later .) The

addressing of memory segments is par ticularly imp ortant because of the

way in which segments are used . Each time an ins truction is fetched from
a code segment , the capab ility sys tem must be used . Each time an

ins truction addresses a data item, the capab ility mechanism must again

be used . Provid ed that an ef f icient and f lexible imp lementation is found

for address ing memory segments via capab ilities , an eff icient

imp lementation for other obj ects shou ld also be poss ible .

4 . 3 . Implementing !. Capab ility Address ing Scheme

This sec tion cons iders two important areas related to the

imp lement ion a capab ility address ing scheme . The first is how to protec t

and use the non-forg eable capab ilities . The second area is far more

comp lex , and involves the techniques for implementing the capab il ity

model on real p rocessors . Several existing sys tems are examined , and two

general models are drawn .

i ·l·l· Protecting and Us ing Capab ilit ies

The storage of capab ilities poses two implementation problems .

Firs t , as stated earlier, capab il it ies must be unf orgeab le . Thus , the

mechanism used for storing and using capab�lities mus t also protect them

f rom corrup tion . Second , capab ilities are quite long . It may be

infeas ible to use them directly as operands for instructions , and embed

them within the instruc tion stream . Two solutions to these p roblems have

been proposed , partit ioning and tagging .

i·1·!·! · Partitioned Segments

In a partitioned machine two different sorts of segment are

recognis ed , data segments and capab il i.ty segments . A capab ility s egment

may only be used for holding capab ilities , and may never be directly

manipulated by data instructions . Special ins tructions are p rovided for

manipulating capab ility segments which allow capab ilit ies to be moved ,

created , deleted and cop ied to other segments .

The capab il ity segment ass ociated with an executing program is

of ten called a C-list , shown in Figure 4 . 1 . Instructions may address

CHAPTER 4 CAPABILITY BASED ADDRES SING

- 66 -

index

J <name> <access> -------> to obj ect

C-list

Figure 4 . 1 - a partit ioned addressing scheme

obj ec ts by spec ify ing the index value of the capab ility in the C-list .

C-lis ts solve both of the problems described in 4 . 3 . 1 . Because
capab ili ties are held in a special p rotected segment , there is no way of

modifying pointers , or creating illegal pointers . This protection sys tem
can be enf orced by creating capab ilities which point to the C-list with

an access type of ' capab ility ' , rather than type ' data ' . Thus , the

capab ili ty mechanism can be us ed to p rotect C-lists themselves .

Moreover , the size of the index value is many times smaller than

the name of the obj ects , and may be eff iciently coded as an instruction

operand .

Whilst the C-lis t may appear to be the same as the segment list

discussed in Chap ter 2, the capability addressing scheme does not

inherit the linkage problems with shared code segments , as experienced

in the segmentation scheme (Fabry , 1 9 74) . The main reason for this is

that mos t capab ility sys tems associate a C-lis t with a code body . Thus ,

even if many p rocesses use the same ' code, they all use the same C-list .

Partitioning has the overhead of an extra segment per address ing

environment , but is still widely used . This scheme is us ed by P lessey

250 (England , 1 97 2) , Intel iAPX432 (Intel , 1 9 8 l a , 1 98 lb) , CAL (Lampson

and Sturg is , 1 9 76) , CAP (Needham, 1 97 7 ; Wilkes and Needham, 1 979) and

HYDRA (Wulf , et . al . 1 974 ; Wulf , Levin and Harbis on , 1 98 1) . A slight ly

mod if ied version of partitioning is us ed in StarOS (Gehringer and

Chans ler , 1 98 1) (and concep tually Hydra) . In this sys tem each segment

may be partitioned into a data portion and capab ility portion . Apart

from reducing the need for an extra segment , the two schemes are

CHAPTER 4 CAPAB ILITY BASED ADDRESSING

- 67 -

conceptually identical .

Wilkes (1 980) proposes placing some of a prog ram' s capab ilities i�

the same segment as the code , thus reducing the number of segments

required . Because the code itself is protected from corruption , the
capab ilit ies cannot be illegally mod if ied . In this scheme , care must be

taken that the capab ilit ies cannot be executed , which can be achieved by
some form of fence regist er scheme . Apart from re quiring extra

protection hardware , this scheme does not remove al l of the extra C

lists . Some capab ilities must be mod if ied and cop ied around the system ,
and others mus t be addressed as parameters to a program . Neither of

these two types of capab ility can be held in the code segment , mainly

because they are not necessarily owned by the code body . Thus , extra

addressing mechanisms must still exist to cater f or those capabilities

not held in a code segment .

i·1·!·1· Tagging

An al ternative so lut ion to the problems raised in 4 . 3 . 1 is the

tagged app roach . In this scheme each word of store, or each s truc ture in

store , is as s igned a tag f ield . This field def ines which operations are

allowed on the data, and is checked bef ore the data item is us ed . Thus ,
, ,

integers may be tagged as type integer , and may not be used as

operands f or a f loating-p oint instruc tion (My ers , 1 978a , 1 978b) .

Similarly , capab ilities may be tagged as type ' capab ility ' , which
p revents them from being us ed as data items , or from being mod if ied .

Tagging capab ilities solves the protection problem, but it does not

reduce the operand size . The length of the effec tive address is governed

by the. mechanism which references the capab il ity . Tagged capab ilities ,

however , may be p laced on the p rocess s tack, and addressett relative to

the stack regis t ers , reducing the operand size . The IBM Sys tem/ 38 {IBM,
1 9 80) us es an add itional addressing table to shorten the operand size .

Tagging has a number of advantages and disadvantages when used as a

general data p rotection mechanism . These are d iscussed by Gehringer and

Keedy (1 98 2) . It also possesses a number of disadvantages when

specif ically used to protect capabilities , some of which are relevant to

this dis cus s ion .

CHAPTER 4 CAPABILITY BASED ADDRES SING

- 68 -

First , it is somet imes necessary to garbage collect old

capabili ties . This task is more comp lex in a tagged architecture than in

a partit ioned organi zat ion . In a tagged sys tem, capab il ities will be

dist ribut ed over various segments of s tore , and are thus harder to find

than if they are al l grouped together in a special segment (Wilkes and

Needham , 1 9 79) . Second , in a tagged scheme , the type ' capab ility ' is

as sociated with the capability, rather than with the view of the

capab ility . It is of ten necessary for sys tem func tions to manipulate

capab il ities as though they were data . A sys tem which al lows different

views of a capab ility , such as the partitioned scheme , makes this

obj ec tive eas ier to achieve . Third , the tagging app roach only solves

the prob lem of protecting capab ilities . Another mechanism, which of ten

dupl icat es many features of a capab ility scheme , must be used to shorten

the operand size (such as in the IBM Sys tem/ 3 8) .

Tagging has only been us ed in the IBM System/38 to protect
capab ilit ies , but has

(Myers , 1 9 78a , 1 9 78b ;

Gehringer , 1 97 9) •

been proposed for use

Myers and Buckingham ,

.i ·l·l· Names and Mapping Information

in many other sys tems

1 980 ; Bishop , 1 97 7 ;

W e have shown how capab ilities may be used to address obj ects , and

how they may be p rotec ted . This section examines how the unique name of

an obj ect can ac tual ly be used to address the obj ect . Section 4 . 3 . 2 . 1

demonstrates the need f or some mapping inf ormation in capab ility

sys tems . Sections 4 . 3 . 2 . 2 and 4 . 3 . 2 . 3 describe the current

imp lementations of the mapping mechanism, and section 4 . 3 . 2 . 4 des cribes

the hardware required for an ef ficient imp lementat ion . Section 4 . 2 . 3 . 5

shows how the mapping information for memory s egment obj ects may be

extended and used to address ab stract , or extended , types of obj ects •

.i·l·l·l· The Need for Mapping

Like many conventional computer sys tems , most capab ility sys tems

f ind it neces sary to realize a number of d iscrete levels of addressing .

This occurs because the logical name space , which holds all obj ects that

have ever been created , will alway.s be many times larger than the amount

of real store which a sys tem can provide (either main memory or

secondary memory) . Three levels of address are of ten vis ible , def ining

CHAPTER 4 CAPABILITY BASED ADDRES SING

- 69 -

three spaces : the name space , the virtual space and the real space .

The name space must be large enough to ho ld all obj ects that have

ever exis ted , and al l obj ec ts which will ever exis t in the lifet ime of

the system .

The virtual space is sometimes as large as the name space , but may

ins tead def ine a smaller area , which is still larger than the amount of

real memory •

The real space must be large enough to hold al l current obj ects ,
and may cons ist of a combinat ion of secondary memory (such as a d isk)

and fas t main memory .

Unl ike name space addresses , virtual and real addresses may be

reus ed af ter obj ec ts have been destroyed , reducing their size

cons iderably . The relationship between the three levels is shown in

Figure 4 . 2 . Because the siz es of the spaces are d iff erent , it is
necessary to use a mapping func tion to trans late addresses from one

space to another .

! ·1·1·1·1· Direct Mapping

In the direct mapping model , shown in Figure 4 . 3 , a capab ility is

us ed directly to address the obj ect , without performing any name

Name
Sp.ace

Virtual
1----> Space
..--->

map

...... -�-� Real
Space

map

s ize (name space) > • s ize (virtual space) >>> s ize (real space)

Figure 4 .2 - the three addressing levels

CHAPTER 4 CAPABILITY BASED ADDRESSING

- 70 -

conversion or trans lat ion . Such a model could be real ized by one of two

different methods .

Firs t , the real store could be as sociatively addressed . In this
h h

, ,sc eme , t e name in a capab ility is recognised by the associative

s tore, and thus al lows the correct da ta to be addressed . Unfortunately ,

very large associative stores are not availab le , as ment ioned in Chapter

3, and this technique is not possible .

Se cond , the capab ility could contain an extra field , holding the

real address of an obj ect . This technique is also unsuitable, because
the task of memory management becomes extremely dif ficult . When obj ects

are moved in store , all capabil ities f or the obj ect must be updat ed ;

this is a time consuming operation . This problem is evident in the B6700

family of computers (Organick, 1 9 73) .

Thus , because of practical diff iculties , the direct mapping model

is never ac tually us ed in capabil ity bas ed systems •

.!·1·1·!·1· One Level T rans lation

Because of the problems encountered in a direct mapp ing sys tem,

most capab ility based comput ers place a mapping function, or structure ,

between the capab ility and the obj ect in real store , as shown in Figure

4 . 4 .

In this scheme , the unique name found in the capab ility is

translated , via a mapp ing s truc ture , into a real memory address . Real

memory addresses may be safely reused by modifying the mapping

inf ormation in such a way that no old names ever map to the reused real

s tore addresses .

!name access!�--------------->�
capab ility

Figure 4 . 3 - the direct mapping model

CHAPTER 4 CAPAB ILITY BASED ADDRESSING

name access

capab ility

map
names
to
real ----------------> addresses

- 71 -

�---->�
Figure 4 . 4 - one level trans lation

In such sys tems , the name space is the same size as the

space , and is usually very large . Sys tems which use this

HYDRA, the Intel iAPX432 , CAL , the Ples sey 2 50 and CAP . All

sys tems use the mapping structure to trans late segment names

virtual

ioodel are

of these

into main

store addres ses , and none allow vi rtual addresses to be reused . B ishop

(1 97 7) proposes a scheme which belongs to this class , but uses a smaller

name space than is necessary . He therefore allows names to be reused

propo sing a complex method of collecting old addresses to deleted

obj ects . Unlike the other systems in this class , B ishop uses the mapping

s truc ture to translate virtual page addresses into main store page

address es . Segments are loaded _into virtual pages without any further

mapping .

i ·1·1·!·1· Two L evel T ranslation

If the name space is larger than the virtual space , then two levels

of mapp ing are required between a capab ility and an obj ect , as shown in
Figure· 4 . 5 .

In the two level scheme names are first trans lated into virtual

addresses , and then virtual addres ses are trans lated into real

addresses . Whil st names are very large , both virtual addresses and real

address es may be safely reus ed when virtual and real obj ects are

des troyed . This model is emp loyed in the IBM Sys tem/ 38 and in a proposal

by Gligor (1 978) . Both of these systems use the second mapping structure

to trans late virtual page addresses into real page addresses .

CHAPTER 4 CAPAB ILITY BASED ADDRESSING

- 72 -

map

>EJ name acces s map virtual
names -> to

capab ility to real adrs
virtual

> address es map 2

map 1

Figure 4 . 5 - two level trans lation

The two level s cheme , whilst log ically equivalent to the one level

sys tem, has some effect upon the imp lementat ion ef f iciency , and on the
o rganization of the s tore . The next section examines the

implementat ions , both used and proposed , for mapping names onto virtual

address es

i·l·l·l· Translating Names into Virtual Addres ses

The task of trans la ting the very large obj ect names into smaller

virtual addresses has been attempted on two sys tems , the IBM Sys tem/ 38 ,

a real p roduc tion computer , and in a sys tem p ropos ed by Gligor (1 978) .

Gligor ' s so lution cons ists of two sections . The firs t involves an

additional field in the capabil ity , used to ho ld an index value . The

second involves the use of a large mapping tab le wh ich trans lates names

into virtual addresses . This scheme is shown in Figure 4 . 6 .

Each capab ility holds the name of the obj ect , and also a shorter

index · value into the obj ect mapf· ing table . When a capab ility is used ,

the obj ect mapping tab le is read , and the virtual addres s of the obj ect

determined . Entries in the obj ect map are only reus ed when all old

capab ilit ies have been found and des troyed . This garbage collection

operation only occurs when the obj ect map overf lows . Gligor proposes

p lacing the map in virtual memory itself in order to prolong the time

between garbage collections , because an obj ect map in virtual space can

afford to be longer than one held in main memory .

The IBM Sys tem/ 38 p r ovides two d if ferent addressing mechanisms ; one

which uses large unique obj ect names , and one wh ich only uses virtual

CHAPTER 4 CAPAB ILITY BASED ADDRESSING

- 73 -

name access index

capability

I
..._��------> virtual address

obj ect ma.pp ing
table

Figure 4 .6 - Gligor ' s name translation

address es . Wh en the uni que names are us ed , the names are mapped onto

virtual addresses ; however , when obj ects are referenced by their virtual

· address , this mapp ing p rocess is not us ed . Thus , the I BM p rocessor in

many ways may not be cons idered a true capab ility processor .

Obj ect addresses in the System/ 38 are 64 b its in length , whereas

virtual addresses are only 48 b its . The virtual space is composed of

paged segments . By allowing segment addresses to be reus ed , the 64 b it

names are mapped onto the 48 b it virtual addresses of the Sys tem/38

hardware .

Segments are grouped into segment groups , each of 256 segments . As

shown in Figure 4 . 7 , up to 2-24 diff erent segment groups may be f ormed

from a 48 b it address .

<-- · 16 -><-------- 24 ---><- 8 -><- 7 -><- 9 ->

extender segment group segment page byte
value number in group number o f fset

<·----------------------- 4 8 b its -------->
<---------------- 64 bits -------------------->

Figure 4 . 7 - the IBM System/ 38 address f ormat

CHAPTER 4 CAPABILITY BASED ADDRES SING

- 74 -

If no two segment groups of the same group number (but dif ferent

extender value) are allowed to exist at the same time , then the extend er

value can be dropped , and the remaining 4 8 bits used to address the

virtual store . A segment group can only be reus ed when all segments in

the group have been delet ed . When a segment group is reused , a new

extender value is assigned , giving the obj ect a unique 64 b it name . This

mapping scheme , whilst simp le , allows 64 bit names to be eff icient ly

mapp ed ont o 48 b it address es . Unlike Gligor ' s scheme , no ac tual mapping
tab le is required .

An obvious danger with reus ing segment group s in this way is that

capab ilities f or deleted obj ects may be kept , and later reus ed to

address a new obj ect with the same segment and group numbers as the old

obj ect . To p revent this p rob lem, the extender value f or a particular

segment group is stored in the header of the group . When a segment

within the g roup is addressed , the 1 6 bit extender f rom the capab ili ty

is compared with the extender in the appropriate group header . If they

are not the same , then the capab ility is for an o ld obj ect , and the

reference is aborted . This mapping technique has a number of

attr ibut es :

(i) N o mapping tab le is requi red . The mapping informat ion is

dis t r ib ut ed over the segments which are address ed .

(ii) The extender must be held in the group header . Whilst only two

bytes long , the entire header page must be p res ent in store when

the group is addressed .

(iii) Only 2"'24 dif ferent segmt:nt groups may exis t at any time .

This is such a large number that it is unlikely to be a

res t riction .

(iv) The group header must be read for every reference made to a

segment . This overhead in incurred only when 64 b it names are

t rans lated into 4 8 b it addresses , which may be avoided much of the

time .

CHAPTER 4 CAPABILITY BASED ADDRESSING

- 75 -

Because the capab ility mechanis m on the Sys tem/ 38 includes some

inherent inef ficienc ies , another method of addressing obj ects is

provided . In this method , 64 bit names are never used , and ins tructions

can directly use 48 bit virtual addresses .

Segments may instead be addressed via the Operand Descrip tion Tab le

(ODT) as sociated with a particular program . This table describes the

type and size of each operand used in the program . The type information

is us ed for validating that the data type is compatible with the

ins truction type . Many ins truc tions use this field for performing
automatic type conversions .

Operands are mapped onto the segmented memory via another tab le of
the same size as the ODT , the Operand Mapping Table (OMT) (which

conceptually can be regarded as an extens ion of the ODT) . Each ODT entry

corresponds to an OMT cell which ho lds the 48 bit virtual address of the

obj ec t . Because capab ilities are held in segments of store , they are
also addres s ed via the OMT . This addressing mechanism is demons trated by

an example in Figure 4 . 8 .

Because two dif ferent address ing mechanisms are present , one using

unique 64 b it names , and the other us ing 48 bit reus able virtual

addresses , care must be taken when unique names are generated . When an

OMT address is us ed , the obj ect is referenced without validating an

extender value ; thus the same segment group numbers must never be

ins truc tion stream

ADD n

operand t
n
t

..-.-------------> integer
4 byt es

48 bit
address

Figure 4 .8 - the IBM address ing mechanism

CHAPTER 4 CAPABILITY BASED ADDRESSING

- 76 -

allocated to a capability . Moreover , OMT entries mus t never be saved

betwe en p rogram invocat ions .

This section has demonstrated two dif ferent methods of mapping

names to virtual address es . The next section examines how virtual

addresses are mapped onto real addresses .

i ·1·1·1· Translating Virtual Addresses into Real Addresses

Both the one level and the two level mapping models require
t ranslation o f either names or virtual addres ses into real secondary
memory address es or main store addresses . As we will dis cover later ,
secondary memory and main memory addresses are usually p roduced by
different mechanis ms ; however , we will examine the main store addresses

primarily .

Unlike name space trans lat ion , all of the virtual address

translation systems use tables to map virtual addres s es onto real

addresses . Moreover , because these tab les implement the virtual memory

system, · they cannot be eas ily p laced in the virtual memory . Ins tead ,

they are placed in real memory , often at a ' well known ' p lace .

Virtual address t rans lation tables may be categorized into four

clas ses , each with a dif ferent organization : linear lis ts , conventional

page tables , reusab le index tables and hash tables . This s ection will

examine each organi zation , and explain how various capab ility bas ed

computers use the tab les .

i·1·1·1·l· L inear Lis ts

A common method of mapping addresses in convent ional computers is

to provide a mapp ing table , ind�xed by part of the virtual address . Each

cel l can contain the real memory address corresponding to each virtual

address . Such tables are us ed in small paged p roces sors , such as MONADS

I (Hagan , 1 97 7) and in segmented machines .

The technique becomes imprac tical in capab ility systems because the

virtual addres ses , or names , become far too large . In spite of early

documentation f or the Int el iAPX 4 32 , which sugg ests that this technique

can be used , no capab ility sys tems appear to have used a linear mapping

tab le .

CHAPTER 4 CAPABILITY BASED ADDRESSING

- 77 -

I
name

1 real address a..--- > memory

Figure 4 . 9 - a linear mapping table

_i. 3· ·1·1·1· Conventional Page Tables

Bishop (1 97 7) proposes the use of convent ional page tab les to

translate the virtual address es of a capab ility system into real page

addresses . The virtual address size sugges ted is in the range of 40 to

50 b its , and the virtual space is composed of a number of variable size

paged areas •

Whilst a processor was not built , Bishop ' s paper des ign relies on

normal page tables to t ranslate virtual addresses . Unfortunately, the

page tab le space for a 50 b it virtual address would be in the order of

2-40 page table entries . Because of the space required , these would need

to be placed in virtual space . A conventional sys tem wh ich supports its

paged s tore in this way is the VAX 1 1 / 780 (Digital Equipment Corp .

1979) . The VAX, however , only uses a 32 b it address , which is 2-1 a t imes

smaller than that of Bishop ' s processor .

Bishop al so suggests that an associative memory (similar in nature

to that of MULTICS (Organick , 197 2)) , with a hit rat e of only 50 %,

would significantly speed up the address trans lation . (This f igure is

calculated in the thes is (Bishop , 1 97 7)) However , if as many as half of

the add resses requiring trans lat ion used the page tab les , wh ich are many

orders of magni tude s lower than an associative memory, then the

ef fective memory cycle time would be excess ively slow .

Thus , in sp ite of B ishop ' s proposal , it would appear that

conventional page tables are not a suitable method f or t rans lating very

large virtual addresses . It is notable that Bishop ' s processor des ign

CHAPTER 4 CAPABILITY BASED ADDRESSING

- 78 -

was not built .

4 . 3 . 2 . 3 . 3 . Reusab le Index Tab les
- - - - -

A number of capab ility processors have used a small indexed tab le ,

and a modif ied capab ility format , to trans late unique names into real

addresses . The capab ility is altered to include an index value field , as

shown in Figure 4 . 1 0 .

The indexed tab le cont ains entries which hold the base address , the

siz e , and the pos s ible the res ident s tatus {whether the obj ect is in

memory or not) of the memory segment . The Plessey 250, Chicago Magic

Number Computer (Shepherd , 1 968 ; Yngve , 1 968) , and CAP-3 (Wilkes and
Needham, 1 979) use such a technique . In these processors , the base

addres s from the cent ral mapping tab le is added to an offset within the

segment to form a main store address . The offset is validated against

the s egment size , and the mode of access is compared to the access
rights . Vio lation of the size or access cons traints causes an except ion

condition .

In these three sys tems , the size and organization of the central

mapp ing table may have an ef fect on the ef ficiency of the system . If

this table is used to hold the mapping information for all of the

obj ects , th en it will become too large to hold in main store . It mus t ,

therefore , only hold the most active capab ilities .

In addi tion , unless a garbage collection scheme is built which

collects and inval idates capab ilities for obj ects which no longer exis t ,

name

CHAPTER 4

access index

.! ___________ > base , size

central
mapping
table

present

Figure 4 . 1 0 - a direc tly indexed table

CAPAB ILITY BASED ADDRESSING

- 79 -

or appear in the main s tore , the mapp ing tab le will continue to grow in
size . Entries can only be safely reused when all capab ilities which
address them are des troyed or invalidated . To avoid this garbage
collection , the CAL sys tem places the name of the obj ect in the central
mapp ing table as well as in the capability . In this way entries may be
safely reused . When a central mapping tab le entry is used , the name
f ield from the capability is compared to the name f ield in the entry . If

they are not equal , then the obj ect being referenced either no longer

exis ts or does not use that entry any more , and the s lot in the tab le

has been reused . Thus , unl ike the tab les in the Plessey sys tem, entries

can be reclaimed without having to collect all old capab ilities f irst .

The reusab le index tab les are effective provid ing that there is a

method o f reusing cells . The next section describes a hashed tab le

organizat ion •

.! ·1·1 ·1 ·.! · Hash Tab les

Hash tables of various forms have also been used to translate names

and virtual address es into real addresses . Fabry sugg es ts that a hash

table , indexed by a hashed form of an obj ect name could be used to hold
the mapp ing information about the obj ect (Fabry , 1 974) . Hydra uses a

number of hash tables to translate names into real addresses , and the

IBM System/38 us es a hash table to map virtual pages onto real pages .

The Sys tem/38 uses a hash tab le to trans late 4 8 bit virtual

addresses into main s tore addresses , shown in Figure 4 . 1 1 . As far as the

virtual address translator is concerned , the address is composed of a 39

bit page number, and a 9 b it o ffs et . The 39 b it page number is then

mapped onto. a main store page number . Because of the size of this

address , conventional page and segment tables are inapp rop riate .

The me chanism used is only respons ible for trans lating addresses in

which the page is ac tually in main memory . If a page is not in store ,

then other tab les are consulted . This app roach was chosen in the Atlas

(Fotheringham , 1 9 6 1) address translator, although the Atlas trans lation

mechanism was a true parallel content address ab le memory (CAM) .

The Sys tem/ 38 maintains a hash tab le in main memory , which is

indexed by a hashed ver sion of the virtual page number . The address

translat or microcode follows overf low chains unt il eith er the address ,

CHAPTER 4 CAPABILITY BASED ADDRESSING

- 80 -

39 b its ------------><-- 9 b its --->

virtual page number of fset

HASH

.,_ _______ _,.hash
page dir

r-------------------...., index
index
table

---->
Hash
tab le

r

�

I
re al pag e #

virtual page # I link l

virtual page I I link �

real page number o ff set

Figure 4 . 1 1 - the IBM address translator

or an end of chain , is found . The latt er causes a page fault . If the

page is found , then a t rans lated page number is formed and p laced in a

lookaside buf fer . IBM expect that an average �f 2 . 25 main store accesses

(IBM , 1 97 8) , plus the time spent in microcode, on top of every memory

reference which uses the address trans lator . (Some references use real

address es via a special register , and thus avoid this overhead) .

Mye rs proposes the use of a hash tab le to trans late obj ect names

into memory address es (Myers and Buckingham, 1 980) . However , rather than

incorporating an overflow strategy , Myers uses an allocation scheme

which does not allow any two names to hash to the same cell . Any name

which would clash with an exis ting one is not used . In practice this

scheme would was te an enormous number of potential names , which is

CHAPTER 4 CAPABILITY BASED ADDRESSING

- 81 -

particularly s erious in SWARD as they are only 32 bits in length .

Hydra uses a hash tab le , the Global Symbol Tab le (G ST) , to

translate obj ect names into memory page frame numbers . This tab le
maintains entries des crib ing the locat ion and the nature of the obj ects .

Hydra distinguishes b etween two classes of segments , ac tive
segment s and pas s ive segments . Ac tive segments are res ident in main

memory , whereas passive segments are resident in secondary memory .

Consequent ly , Hydra provides two different GST ' s , an ac tive GST and a

pass ive GST . The ac tive G ST , which is res ident itself in main memory ,

trans lates names for al l ac tive segments , and a small number of pass ive

segments . The passive G ST is res ident in secondary memory, and

trans lates names for all pass ive segments . This scheme is shown in

Figure 4 . 1 2 •

.!·1·1·1·1· Act ive and Pas s ive Segments

The dis t inction between ac tive (main store res ident) and pass ive

(disk res iden t) s egments is made not only in the Hydra system, but in

all of the capab il ity sys tems under dis cuss ion . The active segment tab le

is always much smaller than the passive table, and must be addressed f or

all active segment references . Consequently , the ac tive tables are

---------> �>

name ac cess

capab ility

..._ ____ > I HASH]----�

main

ac tive G ST

,,,,- --

memo
-
�

seco
addr

>

ry addresses

lmain memoryl
ndary memory
esses

1-------> disk
memory

passive G ST

Figure 4 . 1 2 - the Hydra address trans lator

CHAPTER 4 CAPAB ILITY BASED ADDRESSING

- 82 -

always loaded into main memory .

The pas s ive tab le , wh ich is much larger than the ac tive tab le and

is addres s ed much less f requent ly, can be placed in secondary memory .

Most of the literature fails to document the pas s ive trans lation table ,

however the tab le is pres ent in all systems , including the Ples sey 250 ,

CAL , CAP , Int el iAPX4 32 and the IBM Sys tem/ 38 •

.! ·1·1.·l!.· Eff icient Address Translat ion

In sys tems which use a central mapping table to locate segments ,

the tab le must be consult ed each time a capability is us ed to address a

segment of memory . Such references not only include address ing data , but

also £ etching ins truc tions f rom the code segments of a program . It was

demons trated by the CAL sys tem that without adequate hardware support a
capability bas ed addressing scheme cannot be eff ic iently imp lemented . A

graphic example can al so be drawn from the IBM Sys tem/38 . An average of
2 . 25 main store ref erences per memory access would s low the memory

access down to some 30% of full speed . Accordingly , the IBM processo r ,

and all oth er sys tems apart from CAL , have provided specif ic hardware

support . Such hardware can be divided into two classes , vis ible

address ing regis t ers and automatic caches .

i·l·l·i·l· Vis ib le Addressing Registers

The hardware provided by the Plessey 250 and Chicago processors was

in the form o f a number of high speed , directly addressed , capab ility

regist ers , as shown in Figure 4 . 1 3 .

When a program wishes to address a segment , it must f irst load a

capab ility regis ter with the main memory base address �f the segment ,
the main memory limit address and access rights information . This

information is taken f rom both the capab ility and the cent ral mapping

main memory base address limit address access

Figure 4 . 13 - a capab ility register

CHAPTER 4 CAPAB ILITY BASED ADDRESSING

- 83 -

tab le . Capab ilities which have not been loaded into reg is ters are termed

passive , and when a cap ability has been loaded into a reg is ter the

capab ility is termed ac tive (us ing Hydra terminology) . Since

instructions ref er . to data by the capabil ity register number, only
ac tive capab ilit ies can ac tually address store . Capab il ity regis ters are

usually us ed with a modif ier (or index) register , which augments the

base address .

The ad4ress ing regis ter scheme has the advantage that it is

extremely eff ic ient . This is because obj ect names are only translated

into memory addresses when the regis ter is loaded . Unfortunately , there

are also a number of disadvantages . The only time that logical names are

used to address segments is when the capab ility regis ters is loaded .

Once the b ase and limit values have been loaded into a register, it is

imposs ible to move the segment around in main memory , without checking

all capability regis ters in all domains (and in all p rocessors in the

Plessey 250) . It is also dif f icult to determine when a segment is no

longer being address ed, and when it can be saf ely moved without an old

register still being val id .

Hydra also uses some relocation regis ters to address store . Hydra

was imp lement ed on a PDP l l c omputer , which p rovides a number of small

(64 k byte) paged address spaces , each cons is ting of 8 pages . Each page

is addressed relative to a relocation reg ister . When capab ilities are

activated in Hydra , the obj ect is made vis ible in the 64 k byt e address
space of the us er p rogram, as shown in Figure 4 . 14 . This is done by

copying the relocation informat ion from the Global Symbol Tab le (GST)

into the approp riate relocation reg ister . Because the PDP l l is a paged

process or , segments in Hydra are all Bk bytes in size . Larger obj ects

are compos ed of bas ic ' page ' obj ects . Also , since the PDP l l cannot

support demand p aging (because some instructions are not repeatable) ,

the relocation regis ters must be specif ically loaded under program

control , like the address ing registers of the Plessey 2 50 . Since only a

small number of pages are allowed in an address space , and because large

obj ects must be compos ed of many pages , capab ilities are frequently made

active and pass ive in Hydra , an expens ive operation .

Becaus e of the p roblems as sociat ed with relocation regist er

schemes , many processors provide automatic address trans lat ion caches .

CHAPTER 4 CAPAB ILITY BASED ADDRESSING

- 84 -

relocation register 0 -->
code
page

relocation register 1 -->

obj ect 1

relocation register 2 --> �

relocation reg ister 7 -->

obj ect 7

figure 4 . 14 - the Hydra address space

.!·1·1·.! ·1 · Addres s Translation Caches

Address trans lation caches are used to augment the active tab les

us ed to translate names , or virtual addresses , into main memory

addresses . Such caches , which were des cribed in Chapter 3 , are used in

CAP , Intel iAPX432, and the IBM System/ 38 . The IBM system also provides

a Resolved Address Regis ter (RAR) , for use by the microcode , which

bypasses both the cache and the hash table (Houdek, Sol tis and Hoffman ,

1981) .

In general , these caches reduce the number of ma.in store accesses

per memory ref erence s ignif icantly . It would appear that the cache

chosen by Bishop (1 97 7) does not reduce the number of accesses by a

s ignif icant amount (as B ishop assumes a hit rate of only 50%) . To be

ef fective , such caches should aim for hit rates in excess of 90 % ,

becaus e the active table search times are much greater than the access

time of the caches (Strecker , 1 97 8) •

.i•1•1•1• Logical Properties of Obj ects

To date we have only cons idered the essent ial administrative

information which must be as sociated with obj ects , such as where the

obj ect ac tually resides , and how large it is . Some logical information

CHAPTER 4 CAPAB ILITY BASED ADDRESSING

- 85 -

can also be as sociated with the obj ect , poss ibly cont rolling the way in

which the obj ect may be addressed .

For segments , it is often des irab le to have, in add ition to the
acces s rights , an ext ra p roperty associated with the capability, namely

a length attribute . Such a field allows some capab ilit ies to only
address part of a segment , whilst others can address the entire segment .

CAP is the only processor of those des cribed which actually allows this
ref inement (although the capab ility format def ined for SWARD would allow

size refinement) • Each capab ility in CAP includes base and limit values

relative to the orig inal segment . Like the access rights f ield , these

can be validated when the capab ility is used . All other sys tems
associate the leng th of a segment wi th the segment itself .

If logical information pertains to an obj ect itself , rather than a

view, it can be placed in the central mapping table . For examp le , the

segment size in CAP and s imilar sys tems is held in the obj ect map .

Moreover , if we associate a logical type f ield with an obj ect , then

other ab strac t , or extended , types of obj ect can be addressed by the

same mechanism which addresses memory segments . In this case , segments

become a particular type of obj ect which may be addressed from memory

ref erence instructions . Other types of obj ect may be addressed by

special ins tructions (as in the IBM Sys tem/ 38) or in general by special
code bodies (called type managers (Wulf , Levin and Harb ison, 1 9 81) .

Processors such as CAP-3 , Int el iAPX4 32 and Hydra allow extended

type obj ects by p lacing a type field in the obj ect map entry . Such

sys tems as CAL , Gligor ' s scheme and Bishop ' s proposal associate the type

f ield with the view, and p lace this information in the capab ility .

Whilst· there appears to be no reason for such a decis iL� , it does allow

diff erent us ers to t reat an obj ect as dif f erent bas ic typ es .

Regardless of where log ical information is ac tually p laced , such

type f ields allow the p rocessor to support ab stract obj ects in a uniform

manner . For this reason , we have placed lit t le emphas is upon extended

types of obj ects , and have concentrat ed on memory segments •

.!·.!· Memory Segmentation

In this sec tion we cons ider some of the problems encountered in

addres sing segments in the capability schemes j ust d escribed . An

CHAPTER 4 CAPABILITY BASED ADDRESSING

- 86 -

important feature of a capab il ity based address ing scheme is that all
data is stored in segments of memory, regardless of how large or small .

Many segment s wil l , by nature , be either very large or quite small in

size .

Large segment s are of ten necessary to represent the data from

f iles . Particularly large f iles must be compos ed of many segments ; the

larger each segment is , the fewer segments required . Thus , the

capab ility mechanism should ideally be able to provide eff ic ient support

for large segments .

Small segments are generated from small procedures , data

struc tures , stack f rames etc . Stud ies have ind icated that it is not

uncommon for many very small segments to be generated , even in a

conventional computer architec ture (Batson and Brundage , 1 9 77) . The

problem of managing small segments has been realized by many (e .g .

Randel , 1 96 9 ; Fabry , 1 9 74 ; Wilkes and Needham, 1 97 9 ; Wilkes , 1 9 80 ;
Gligor , 1 97 8 ; Lanciaux , Schiller and Wulf , 1 9 7 6 and Keedy , 1 980) .

Most of the capab ility systems we have examined do not provide an

eff icient environment for using both small and large segments . Two

primary areas of contention appear to be the mapping tables and memory

management , which we will now discuss •

.i ·.i·l· Mapping Tab les

The mapping tab les become inef ficient to operate when a large

number of active segments must be supported . A large numb er of segments

often increases the size of the tab le signif icantly , and may increase

the access time as well . Moreover , if the ac tive tab le becomes too

large , . it cannot be held permanently in main sto re , se.i..·iously affecting

system eff ic iency .

Wilkes ' s proposal (1 98 0) s imply tries to remove some of the extra

small s egments pres ent , and does not attempt to solve the b asic

management problem (see section 4 . 3 . 1 . 1) . However , a few proposals have

been made to ease the management of the central mapping tables .

The scheme proposed by Gl igor (section 4 . 3 . 2 . 2) p laces the name

space translation tab le in virtual store rather than in real store .

Gligor sugges ts that because the obj ect map res ides in virtual memory ,

CHAPTER 4 CAPAB ILITY BASED ADDRESSING

- 87 -

it can grow to a much la rger size, allowing the memory to support many

small segment s . He claims that the obj ect map may be al lowed to grow in

virtual space , and s lots need not be reus ed for a long time .

Consequent ly , old capab ilit ies need not be found and delet ed as often .

Unfo rtunately , any locality of reference which is exhibited within pages

of store will not necessari ly be ref lected by locality within the map

pages . This is because the order of the map ent ries bears no

relationship to the locat ion of segments within pages . Thus , af ter a

short time it may be neces sary to keep all of the pages of the map
resident , even though only a few words of each page may be required .

Hence Gligor ' s scheme does not adequately so lve the bas ic problem of

many segments .

Bishop so lves the problem of map management by el iminating the

obj ect name map altogeth er . · Instead , his sys tem maps pag es of memory ,

rather than segments . The number of virtual pages wil l remain constant
regardless of how many s egments each page contains . It is unfortunate

that the conventional page tab les proposed by Bishop are unsuitable · for

translating 50 b it address es .

Lanciaux , Schiller and Wulf (1 97 6) sugges t that many small segments

could be plac ed together in a large segment . This scheme reduces the

number of map ent ries requi red , as each large obj ect contains map

entries for the obj ec ts which it contains . It does , however, create the

problem of large segments , which together with small segments compl icate

memory management •

.!•.!•!• Memory Management

The task of memory management becomes more complex when the sys tem

must support buth very small and very large obj ects . In segmented

schemes , such as the Pless ey 250 , Chicago Magic Number computer , CAP and

Intel iAPX4 32 , small s egments tend to fragment the main store

excessively . In addition , small segments are expens ive to trans fer

between p rimary and secondary memory . Large s egments , on the other hand ,

mus t either be totally res ident or ab sent from s tore . If insuff icient

space is available then the segment cannot be loaded , and the task which

causes the memory reference mus t be suspended unt il space is made

available . Such problems are al so experienced in the conventional

CHAPTER 4 CAPAB ILITY BASED ADDRESSING

- 88 -

segment ed proces sors , discus s ed in Chapters 2 and 3 .

In a paged machine , like Hydra , all segments mus t be exactly one

page in size . Consequently , large s egments cannot exist and must be
composed of much smaller ones . Small segments was te much of the page

that they occupy .

A paged and segmented memory , such as that of the IBM Sys tem/38 ,

manages large s egments very well by only loading those pag es which are

requi red , but this was tes a large amount of space for small segments ,

which mus t occupy at least one page . Again , such p roblems are

experienced in the conventional paged and segmented proces sors , such as

Multics .

A few of the processors which we have examined in this chapter have
attempted to alleviate the c omp lex memory management of both large and

small segments . The solutions involve placing many small segments into

each page o f virtual memory . Both B ishop and Gligor p lace segments

consecutively in virtual memory . Thus , many small segments can be placed

in one page, and large segments may occupy many pages .

In Gligor ' s scheme all segments are organized randomly in store .

Consequently , after a small amount of time, one would expect the virtual

store ·to become fragmented , as segments are deleted and created .

Moreover , there is no guarantee that s egments which are addressed

together will res ide in the same page . Thus , this scheme may behave as

badly as a p ag ed and s egmented scheme , in which the entire page is

required in order to address only a small segment .

Bishop attemp ts to place all segments which are address ed together

in an ' area ' , which cons is ts of a variable number of pages . Thus ,

segments which are address ed together will be swapped between primary

and secondary memory at the same time . Whilst the page locality of

Bishop ' s scheme is superior to Gligor ' s , one would still expect the

virtual spa ce to become as f ragment ed as the real store of other

capab il ity processors . Because areas are all of dif ferent sizes , when an

area is deleted , or moved, a hole is left in the virtual space . Even

though the capab ilities for the hole are deleted , it may not be possib le

to reuse the area without cons iderable store reorganization .

Accord ingly , Bishop provides a very elaborat e garbage collection scheme .

CHAPTER 4 CAPAB ILITY BASED ADDRESSING

- 89 -

Lanciaux ' s so lution sugges ts that many small segments may be placed

in one large s egment . Consequently, all s egments will be swapped between

primary and secondary memory at the same time . Unfortunately , whilst
solving the small segment prob lem, this scheme may create a large

segment problem ins tead •

.!·1· Conclus ion

This chap ter has des cribed all the signif icant current capab ility
bas ed computers , and has developed some general models into which these

sys tems can be placed . Mos t importantly , by this analys is , it has shown

the diff i culties that thes e sys tems experience in certain couunon

situations .

The next chap ter will reexamine these diff iculties , and propose an

address ing model which can avoid many of the p roblems .

CHAPTER 4 CAPABILITY BASED ADDRES SING

- 90 -

5 . !; New Capability Based Addres sing Model

This chap ter develops a new address ing scheme which is capab le of

addres s ing , protecting and sharing the log ical structures of a program
(or information hiding module } in a uniform manner . This scheme is based

on segmentation , which , as we saw in Chapter 2, has suitable propert ies

for structuring logical obj ects . The scheme also makes use of

capabilities as the mechanism f or addressing , sharing and protec ting

such segment s .

5 . 1 . Aims of the Model

In Chap ter 4 we examined some real capab il ity based processors and

some theoretical models . Whilst the philo sophy of many of these systems

was admirab le , their imp lementations of ten exhib ited cons iderable

problems . Some of these prob lems were intrins ically associated with the

approach , such as us ing a segmented store . Others , however , were pr esent

because of inade quate hardware . Examp les of the latter include Hydra , in

which the available hardware af fected the maximum segment size

dramatically, and CAL , which us ed a conventional, and quite unsuitable ,

computer . Because of inadequate hardware the CAL sys tem was ef fectively

useless and was abandoned .

The model presented in this chap ter def ines a hardware interface

which can successfully imp lement mo st , if not all , of the systems

dis cussed in Chap ter 4 . Proces sors for these sys tems based on the

propos ed model may even be simp ler and more eff icient than the original

hardware used to implement them .

The requirements of the model may be summari zed in terms of five

bas ic aims : to solve the memory management p roblems as soci�.ted with most

capab ility based processors , to so lve the address trans lation problems

associated with other capability bas ed systems , to produ ce a unif orm

address ing mechanism, to produce an efficient capability addressing

mechanism, and to p roduce a f lexible hardware unit . Some of these aims

are not shared by the exis ting capab ility sys tems . We shall now consider

these bas ic aims in turn .

CHAPTER 5 A NEW ADDRESSING K>DEL

- 91 -

..2.·l·l· Memory Management

Most of the capab il ity sys tems dis cussed in this thes is apply a

segmented main memory scheme in order to achieve segmented addressing .

Unfortunately , this scheme does not cater well for either very large

segments or f or very small segments . Large segments are awkward because

they mus t be held in cont iguous memory . Small segments are ineff icient

to swap between main and secondary memory because the time taken to

initiate the transfer may exceed the time taken to ac tually transfer the

data .

Some sys tems have attempted to use paging as a bas is for memory

management . Hydra us ed a paging sys tem by forcing all segments to be one

fixed size . This scheme simplif ies the memory management task , but does

not solve the small and large segment p roblem . Small segments was te

much of the page that they occupy , and large segments can not exis t .

Thus , this s cheme creates even more segments than are log ically
required , as large segments are cons tructed from many smaller segments .

Some solutions (Gligor and B ishop) have used paging as the memory

management model , and have superimposed a segmentation scheme on top of

the virtual memory . Whilst these p roposals have solved some of the

small and large memory management problems , they still have inherent

inef f iciencies , as d iscussed in Chap ter 4 . The model p roposed in this

chapter attemp ts to solve the outs tanding memory management problems of

all these capab ility based computers .

1·1·1· Address Trans lation Prob lems

Many of the capab ility based processors experience signif icant

prob le� in trans lating vir tual addresses into memory addresses ,

especially when the sys tem is burdened with many small segments . A

source of contention is the central obj ect tab le which contains an entry

for each segment in the sys tem and is usually split into an active tab le

and a p assive table . When the sys tem contains many small segments the

size of the central obj ect tab le becomes excessive , and trans lation
times may be increas ed .

In those sys t ems which have removed the central obj ect tab le , such

as Bishop ' s (Bishop , 1 97 7) , the task of address translation is

signif icantly simp l ified . The model p roposed in this chapter seeks to

CHAPTER 5 A NEW ADDRESSING M>DEL

- 92 -

remove the overhead of many small segment s , by removing the central

obj ect tab le al �ogether .

1·!·1· Uniformity and Simplic ity

In a true capab ility based address ing scheme all local and

permanent data shou ld be addressed by the same mechanism. Only one way

of addressing data should be provided , unl ike sys tems such as the IBM

System/38 which p rovide two d if ferent address ing mechanisms .

With one common address ing mechanism the sys tem des ign becomes much

simp ler . A simp ler design in not only eas ier to unders tand , but often

yields a more orthogonal and les s expens ive

only one sharing and p ro tec tion mechanism

proposed in this chap ter avoids unneces sary

only one way of address ing memory .

1·!·.i· Efficiency

implementation .

is required .

duplication by

Moreover ,

The model
providing

The CAL sys tem demons trated that a capab ility based addressing

scheme requires hardware support f or an eff icient imp lementation . Even

in those sys tems which have provided hardware support for addressing

memory , the use of capab il ities still creat es inef ficiencies , as

described in the las t chap ter . The model proposed in this chap ter

defines a hardware address ing s tructure which can be eff iciently

implemented with current techno logy . Moreover , the model is capable of

imp lementing many d if ferent software s tructures without signif icant

overheads .

1·!·1· Flexibility

Most processors , both capab ility based and of convent ional des ign ,

are built with a spec if ic addressing s tructure in mind . For examp le ,

the ins truction operands in the Intel iAPX432 processor expect a

particular C-list struc ture . The operands of the CAP sys tem expect a

dif ferent C-lis t structure . Because these organizations are so well

understood by the processor hardware (and f irmware) it is unlikely that

one processor could eff iciently or eas ily implement the C-lis t structure

of another p rocessor .

CHAPTER 5 A NEW ADDRESSING K>DEL

- 93 -

The lack of flexibility in some of the exis ting sys tems is not a

problem, only because the sys tem design does not change signif icantly at

any stage . However , in a research environment a flexib le processor is

ext remely desirable , as it allows the hardware to survive a number of
maj or redes igns of the sof tware ideas . The model proposed in this

chapter should be capable not only of efficiently imp lementing a

particular address ing structure , but also of implement ing any of the

other capability address ing struc tures desc ribed in Chap ter 4 , such as

the different C-lis ts of CAP , Intel iAPX432 etc . The model can achieve

this flex ib ility by p roviding a general hardware unit which provides a

capab il ity based address ing style , and a small section of sof tware (or

f irmware if the host machine is microcoded) which understands the

address ing structure . If the so ftware ideas change at any stage , then

the hardware may remain the same and the software or firmware may be

changed .

5 . 2 . Obj ect Address ing

The capab ility based address ing schemes des cribed in Chapter 4 all

have the property that all addressable obj ects are treated alike in

terms of addres s ing and protection . All are addressed via the

capability mec-hanism which the p rocessor us es . Such references can be

categorized into two clas ses , memory segments and high-level obj ects .

High-level obj ects include I /O devices , data ab stractions , program

modules (Keedy , 1 982a) and type managers (Wulf , Levin and Harbison ,
1 981) .

When a memory segment is addressed (via memory reference

ins tructions) the capab ility mechanism is used to find a segment of

memory· and make it availab le to the program . Thus , in a purely segmented

system the central obj ect table may contain the main memory address of

the segment , and the size of the segment . The access rights field of the

capab ility can then be us ed to res trict certain operations on the

segment . To produce eff ic ient memory references this uechanism is nearly

always augment ed by some special hardware .

High level obj ects are als o addressed via the capab ility mechanism.

However , the cent ral obj ect table contains information which declares

that the obj ect is not a uemory segment and requires further software or

CHAPTER 5 A NEW ADDRESSING MODEL

- 94 -

f irmware ass is tance . (Alternatively , this inf ormation may be held in the

capab ility (Lampson and Sturgis , 1 97 6 } . } These high level obj ects are

not usually address ed by the normal memory ref erence instructions . Type

checking information may then validate the type of ins truction against

the type of obj ect . For examp le , a memory segment may be addres sed by an

add ins truction , but a program module is addressed via a call

ins truc tion .

From this viewpoint , capab ility support can be buil t into a

processor in two separate areas : first , a sect ion of hardware which

allows ef f icient manipulation of memory segments ; second , a body of

software , or f irmware , which interprets operations on high level

obj ects . Thus , the knowledge of high level obj ects need not be built

into the p rocessor . The inf ormation which usually res ides in the central

obj ect table about high level obj ects (e .g . the type of the obj ect} can

now either reside in the capability f or the obj ect (as in the CAL

sys tem) or can be found in segments associated with the obj ect itself

(e .g . with the code which manipulates the obj ect (as in the MONADS

sys tem) . The implementation of operations on high level obj ects is lef t

entirely up t o the software or firmware concerned . This general app roach

in used in the address ing model des cribed in this chapter . This allows

us to design hardware which is very eff icient at address ing segments of

memory and yet , when combined with suitab le firmware , provides a

flexible address ing s tructure . We will now cons ider the f orm of the

memory segmentat ion hardware •

.2.•1• Segment Address ing

1·1•l• The Basic Form of .!. Capability

The virtual memory of the proposed capab ility based address ing

scheme is addres s ed via a number of capab ility regist ers , each of which

holds a segment capab il ity . 'lbese capab ility regis ters are the only

addres s ing mechanism availab le to the processor . Each register , shown

in Figure 5 . 1 , contains three fields : an address , a length and some

access rights . Before we d iscuss the p recise nature of these f ields , it

will be useful to cons ider the advantages of a scheme based on

regis ters :

CHAPTER 5 A NEW ADDRESSING K>DEL

- 95 -

(1) The p roblem of operand size for address ing memory via

capab ili ties , d iscuss ed in Chap ter 4 , disappears in a register based

sys tem because once a regis ter has been loaded with a capab ility

subsequent ref erences need only specify a register number , which is

likely to be of the order of four bits .

(2) Regis ters hide the nature and structure of the logical

address ing mechanism f rom the processor instruction set . The model is

invariant to the method of saving capab ilities {i .e . C-lis ts of various

struc tures or tagged protected memory) and the ac tual structure of a C

lis t or tagged memory need not be det ermined at the hardware level (for

examp le , whether the C-list allows tree struc tures or lattice

structures) . Thus , the scheme is flexible , because the sof tware

struc tures may be mod if ied without affecting the hardware .

(3) Because regis ters can unif ormly address all kinds of segment ,

no special reg isters are required , for examp le to imp lement a s tack
point er , disp lay regis ters , et c . Indeed , a combination of a capab ility

register and an index regist er can be us ed not only to address data but

also to control program sequencing .

(4) Because registers are normally buil t from high speed logic ,

they have the same advantag es as capab ility caches (cf . IBM System/ 38

and Intel iAPX4 32) , but they are generally less expens ive and in some

cas es eas ier to imp lement . Because the scheme only trans lates logical

addresses {of the form C-lis t number and slot number) into capab ilities

when the reg ist er is loaded, it avoids many unnecessary memory accesses

by removing repeated references to the C-lis t .

(5) Given the use of

implemented by allowing

regis ters , p rotection can be

only particular micr�coded

eff iciently

or kernel

instruc tions { or only ins tructions executing in a special machine state)

to modify their contents . This makes it impossible to modify a

capab ility illeg ally once it has been p laced in a reg ister . The

protec tion of capab ilities outs ide of regis ters depends on the C-lis t

struc ture, or tagg ing mechanism, which the p rocessor p rovides .

A regis ter based address ing scheme does have some bas ic

disadvantag es . First , it requires the comp iler or assembler p rogrammer

to al locate and deallocate the regis ters . This problem is not considered

CHAPTER 5 A NEW ADDRESS!� MODEL

- 96 -

address of segment length of segment access rights

Figure 5 . 1 - a capab ility regis ter

serious enough to overpower the advantag es of the scheme , for two

reasons . Assembler programmers are far better at judging the working set

of a program than a cache , and can choo se the correct registers to

allocate . Furthermore , compilers often have to allo�ate data registers ,
and have successfully done so for a long time . Addressing registers are

no more dif f icult to allocate than data regis ters . Also , the compiler
can form convent ions which dedicate the use of certain registers . For

example , one reg is ter may be used for address ing scalars at lexical

level zero , whilst another reg ister may be dedicated for addressing data

at the current lexical level . Such conventions can help regis ter

allocation significantly . Capab ility reg isters are also easier to

allocate than many of the address ing regis ters used in conventional

processors , because they are the only addressing mechanism . Thus , the

compiler is only concerned with one address ing scheme , rather than many .

Second , the registers may need to be sav ed and reloaded when a

module is ent ered by a call ins truction , or when a process switch is

executed . When a new module is entered the comp iler may either

inval idate the ac tive capab il ity regis t ers , or the call ins truction may

save their cont ents . If the regist ers are invalidated , then the program

must res tore . them af ter the call . If they are saved , then the return

ins truc tion must restore the orig inal contents . If a capab ility cache is

used instead of regis ters , then it mus t be inval idated when the call

instruction is execut ed . The cache will then reload itself after the

call as the capab il ities are used . Thus , the cache scheme is equivalent

to the register scheme which inval idates the contents of the reg isters .

If the reg is ters contents are saved prior to a call , then on return the

o ld capab ilities are simply cop ied from an image in memory (e .g . as part

of the linkage on the stack) . However , when the cache is reloaded , the

C-list ent ries must be retrieved , which cou ld take longer than a simp le

CHAPTER 5 A NEW ADDRESSING M:>DEL

- 97 -

copy operation .

When a process change is made , the regis ters nus t be saved for the
executing p rocess , and the registers for the new process must be loaded .

If a capab ility cache is used it mus t be cleared of capab ilities from
the o ld process , and wi ll automatically reload when operands are us ed .

Provid ing that some hardware support is provided to support ef f icient

process changes (such as described in chapter 7) there is no reason why

the regis ter based scheme should be less e�ficient than the cache
scheme .

1·1·1· The Load-capability-register Instruction

Because in the p ropos ed scheme the logical structure of the

address ing mechanism is hidden from the hardware , special sof tware (or

firmware) must be written which under� tands this struc ture . One such

instruction is the load-capab ility-regis ter ins truction . This

instruc tion (or kernel routine if the machine does not poss ess a

microcoded contro l unit) accepts a capab ility regis ter number and a

program address , and loads the capability found at that address into the

regis ter . If the process or uses a C-lis t for holding capab ilities , then

the program address may def ine a C-list number and a s lot number , as

des cribed in Chapter 4 . If the sys tem must at some later stage

unders tand a different C-list s truc ture , then only the load-capab il ity

regis ter ins truction need be altered . All other data manipulat ion

instructions address their operands via a capab ility register . This

combination of microcode and hardware gives the model a large degree of

f lexib ility but still al lows very eff icient address ing .

1·1·1· Representation of .!. Capability

A memory capab ility , shown in Figure 5 . 1 , is composed of three

sections : an address , a length and a s et of access rights . The key

dif ference between these regis ters and those of the Pless ey 25 0

(England , 1 972) is that our capab il ity uses a virtual address , rather

than a main memory address . As shown in Chap ter 4 , the use of main

memory address es both causes difficulties in re-organiz ing s tore and

also means that the main memory mus t be segmented . Apart from the

diff icul ties o f o rg aniz ing a segmented memory, a central obj ect table is

required in the P less ey 250 to map segment addres ses onto main memory

CHAPTER 5 A NEW ADDRESS!� MODEL

- 98 -

addresses , which caus es further problems related to the size of the

obj ect tab le , as discussed in chap ter 4 . The use of a virtual address

in the capab ility regist ers avoids these problems . First , the s tore can

be phys ically reorganized without af fe cting the addresses held in

registers . Second , f rom the viewpoint of the memory management system

the memory does no t appear to be segmented This removes the prob lems of
a segmented memory , and al so means that the system does not need a

central obj ec t tab le .

The length field of the capab ility holds the size of the segment ,

and must be large enough to allow large segments . Ideally, this f ield is

the same size as the virtual address . However , it may be cons iderab ly

les s without being rest rictive . By cont rast , the length f ield used in

Bishop ' s capab ility is too small (9 bits) to allow large obj ects to be
created if the length is treated as a byte or word count . Alt ernatively

if the length field is cons idered as a larger unit (e .g . a page) then

the unit of p rotec tion and s tore allocation is not suf f iciently granular

in Bishop ' s scheme .

The access rights field must allow operations to be performed or

restricted , such as read only, write only, read-write, execute etc .

These can be encoded in a bit pattern .

Thus the regis ters which we propose dif fer signif icantly from tho se

of the Plessey 250 . The format of the capab ility is similar to that of

Bishop , except that the length field of the model wil l be large enough

to address large segments . The model d iffers s ignif icantly f rom those

sys tems which implement segmentation at the memory level , and use a

central obj ect table , such as CAP , Hydra , Plessey 2 50, Gligor , Intel

etc . We shall now brief ly cons ider the ref inement prop��ties of the

capabilities .

1 ·1·i· Refinement of Capab ilities

In wil l be recalled that in Chap ter 4 we introduced the concept of

capab il ity ref inement . All of the systems d iscus s ed in this chapter

allowed the access rights of a capab ility to be reduced , and a

diminished copy of the capab il ity given to another user . These

capab ilities then have access to the same obj ect as the mas t er , but with

f ewer access p rivileges . A capab ility may al so be ref ined in range as

CHAPTER 5 A NEW ADDRES SING K>DEL

- 99 -

well as type of access • This type of ref inement is useful when a

procedure wishes to grant ano ther user access to only part of a data
structure (e .g . when pas sing a parameter by reference) . In the model
propos ed in this chapter , access to a segment may be ref ined by
mod ifying the bas e virtual address and the segment length fields of the

capab ility . The new capab il ity can then only address part of the

original structure , as shown in Figure 5 . 2 . Surpris ingly , very few

sys tems have allowed a capability to be reduced in range , al though the

Plessey 250 , Bishop and CAP could allow such ref inement .

Whilst the format of the Plessey 250 regis ters would in princip le

allow a segment addressed by a regis ter to be ref ined in size , the

capab ility format does not contain a limit f ield . All capabilities point

to a central obj ect tab le which contains the the main memory limit of

the obj ect . This limit is later cop ied into the regist er when it is

loaded . Also , because the Plessey 250 regis ters hold main memory

addresses , when moving a s egment in main s tore it would be d iff icult to

determine whether a capab ility pointed to part of the segment in

ques tion without checking if the ref ined base and limit were contained

in the segment . Thus , the P lessey 250 address ing scheme does not allow

segments to be ref ined in s iz e . This is shown in Figure 5 . 3 .

virtual memory base length Ll access

mast er capabil ity

"-----------------------------------> 1o---------------1 l
virtual memory bas e length L2 access

ref ined capab ility

> t---------... 1 L l

.,______...r j
virtual
memory

Figure 5 . 2 - a ref ined capab ility

r.HA'PTER .'i A NEW ADDRES SING M) DEL

name

- 1 00 -

a Plessey 250 capab ility

access rights index

[_> ... ma
_

i
_
n
_

me
_

m
_
o
_
r
_
y
--1

.---------------------� b ase , limit

access
rights

main memory
b ase

cent ral
obj ect
tab le

capability register

segment

-----------------> -----------�

main
memory

Figure 5 .3 -The P lessey 250 - no size refinement

Bishop ' s capab ility contains a virtual base address and also the

size of the segment . Thus a capab ility may be created which only

addresses part of the original segment . Unfortunately , Bishop does not

use enough b its to allow large obj ects to be addressed (or al ternatively

support suf f icient granularity) .

In CAP both the capab ility and the central obj ec t tab le contain a

size f ie ld and a base f ie ld as shown in Figure 5 . 4 . The f ields in the

central obj �ct tab le are used as absolute main memory bounds of the

segment , whereas the values in the capab ility are int erp reted relative

to the original bounds . Consequent ly , a ref ined capab ility , wh ich only

allows access to part of the segment , may be created .

The ref inement sys tem of the model capab ility regis ters closely

matches that o f Bishop ' s capab ilities . However , the s ize field of our

capab ility is large enough to allow large segments to be addressed .

Because bo th of these sys t ems use virtual addresses in capab ilities ,

there is no danger in allowing many capab ilit ies to ref erence part of an

CHAPTER 5 A NEW ADDRESSING K>DEL

- 101 -

obj ect . In CAP , however , one set of base and limit values must be

as sociated wi th the main memory p roperties of a segment , and another set

of values must be associated with the capab ility . Both of these values

must be validated before the ref erence can p roceed to memory . This

overhead is not present in the model capab ility sys tem . Thus , the

ref inement qual ities of the model appear to match , and in mo st cas es

improve on , those of other sys tems . It is noteworthy that very few

systems allow this useful operation at all .

1·1·1· Summary

So far , the capab ility address ing model fulf ils some of its primary

aims . The use of capab ility regis ters allows a f lexible hardware unit to

be constructed . If the address ing structure is modif ied at any stage ,

then the load-capability reg ister instruc tion can be mod if ied . Because
they are the only address ing mechanisms available to the processor , they

relative relative acces s
base 0 size S righ ts

mas t er capab ility

ref ined capability

relative relative a ccess
base B l s ize S l rights

..... I +
s Sl

l �

index

index

main
memory

t
B l

< .J.

> .,._ ___ ___
base B
size S

central
obj ect
table

F igure 5 . 4 - CAP r ef inement of capab il it ies

CHAPTER 5 A NEW ADDRESS!?{; MODEL

- 102 -

also provide a unif orm, simp le and eff icient method of addressing store .

In order to fulfil al l of the aims we mus t describe a virtual memory

which can hold small and large segments .

5 . 4 . Virtual Memory

..2. ·i·l· Requirements of the Virtual Memory

In Chap ters 2 , 3 and 4 we examined many different virtual memory

organi zat ions . In this section we will examine the requi rements of the

virtual memory which is us ed by the model . They are as follows :

(1) Virtual addresses should be large and unique . When a segment is
created it consumes a range of virtual addresses , which eventually

res ide in C-lis ts and capab il ity regis ters . When a segment is deleted ,

the address may either be found and destroy ed, or never reus ed . A large

address ing range means that it is not necessary to reuse addresses ,

saving on the number of addres s es which need to be found and deleted .

(2) The virtual memory mus t . be the only memory mechanism. This

uniform treatment of sto re means that all data , f iles and code, are

present in the same virtual memory without support from a separate f ile

store . This technique was pioneered in MULTICS and has been us ed in

other capab ility sys tems with many advantages (Rosenberg and Keedy ,

1 98 la) .

(3) The tab les , or mechanism, used to translate virtual addresses

to main s tore addresses should not af fect the way in which the virtual

memory management so f tware organizes the secondary store . This cond it ion

is not met in many existing systems , such as MULTICS . The page table

struc ture which is used by the hardware , or f irmware , to translate

virtual address es into main memory addresses is al 6o used by the

software to locate pages in secondary memory . If the so f tware wishes to

change the table f ormat then the hardware may also need to be modified .

Greater f lexib ility is des irab le because better secondary storage

methods may be devised aft er the hardware has been built . Thus secondary

memory address trans lation and main memory address trans lation should be

independent .

(4) Virtual sto re management should be simple . If virtual addresses

are ever reus ed , the virtual spa ce may become fragmented due to obj ects

CHAPTER 5 A NEW ADDRES SING K>DEL

- 1 03 -

being created and destroyed . Both Gligor (1 97 8) and B ishop (1 97 7)

propose the use of large paged virtual memories for holding segments .

Gligor packs segments into virtual space in a random manner , whereas

Bishop places conunon segments in areas , or groups . The f irst scheme ,
whilst conceptual ly simple , means that the virtual space may become very

fragment ed in time . Bishop ' s scheme does not totally avoid this prob lem,

as areas themselves are variab le in size . The virtual s tore shou ld be

organi zed so that if addresses are ever reused , the store can be

reorganiz ed without massive data manipulat ion .

(5) The virtual store should eff iciently support both large and

small segments . This p rob lem is vastly simp lif ied by imp lementing the

segmentat ion at the regis ter level . It then only becomes necessary for

the virtual space to ho ld both large and small areas . All of the models

previously dis cussed fail to provide an ac ceptab le mechanis m .

(6) Real s tore management should be simp le .· Unlike the segmented

schemes of some capab il ity sys tems , the model can choose another main

store organization without los ing the logical advantages of

segmentation . Thus a s impler main store scheme can be used instead of

the complex and ineff icient segmented scheme .

Unfortunately all of the virtual memory sys tems discussed in the

earlier part of this thes is fail to provide a suitable virtual memory

which supports all these requirements . An.other scheme , not previous ly

discuss ed , allows a conventional p rocessor to ef f iciently support small

and large segments . The next section will dis cuss this 11X>del .

1·i·1· A Small S egment Model

Keedy (1 980) p roposes a memory man�gement model which allows a

conventional p roces sor to supp ort both large and small s egments without

the ineff iciencies describ ed in Chap ters 2 and 4 . The scheme uses

capab il ities which hold a virtual address , segment length and access

rights . The virtual address is further composed of an address space

number and an offs et within the address space . Each offset is composed

of a page number and a with in page displacement .

Address t rans lation is performed via a number of tables , shown in

Figure S . S . The address space lis t is consulted to find the locat ion in

main memory of the page table for the space . Each page table entry

CHAPTER 5 A NEW ADDRESSING K:>DEL

capab ility
ident if ier

segment
o f fs et

- 104 -

ef fective
p rogram
address

-> j Virtual address j 1eng th access capab ili ty

+ segment off s et

address space page off set
number numb er

I "------------------------------------->

�> page tab le ! address
address I space

I length

address space
lis t

---------------->
main memory
address

---> real page present
number bit

....... -----------------------> ._ ______________ __.
page tab le

Figure 5 .5 - the Keedy addressing scheme

reveals either the main memory address of the page or the secondary

memory_ address . This model is siirilar to the paged and segmented scheme

dis cussed in Chapter 2 , and thus could be supported by a processor

s imilar in nature to MULTICS . Unlike MULTICS, however, a segment offset

is added to the virtual address before it is translated into a main

memory address . Thus , because many segments may be p laced in one page of

main memory , this model can support items 4 , 5 and 6 of the model aims ,

namely simp le real and virtual store management and support for small

and large segments . All the advantages of the scheme are dis cussed in

Keedy (1 980) . However , the following are particularly relevant .

CHAPTER 5 A NEW ADDRESSING MJDEL

- 105 -

1·.i·l·l · S imple Real Memory Management

The main memory is fa r eas ier to manage in this model than the

segmented s olu tions because store is allocat ed in fixed size pages .

Provided that some reference locality is achieved , several independent ly ·

address ed and p rotected segments can be packed into a s ingle address

space , and the amount of space lost to internal fragmentat ion is on

average only half a page p er address space rather than half a page per

segment (or more for small segments) . Thus wh ile internal fragmentation

is not entirely eliminated , the amount of space wasted in this way can

be great ly reduced .

1·.i·1·1· Simple Virtual Memory Management

The virtual memory is eas ier to manage than that o f Gligor or

Bishop because the virtual space , is al located in fixed size llllits ,

namely address spaces . Typ ically, because of reference locality, all the
segments of a module are placed together in a single address space . If

the module is deleted , and all old address es within the space are

collected and des troyed , then ilie address of the address space may be

reused . Because the address spaces are all of the same size , the ho le

left in the virtual space is not of a variab le size , unlike those of

Bishop and Gligor . Consequently, the virtual space will not become as

fragment ed as those of Bishop or Gligor .

Even though the address spaces are all of a fixed siz e , spaces

smaller than the maximum s ize do not ac tual ly require this fixed amount

of disk space to be allocated . Thus , the s cheme does not require any

more disk space or page tab le space than other schemes .

1•.! •1 •3 • Support for Small and Large S egments

The scheme does not use a large central obj ect table , but rather a

smaller addres s space list , and can therefore support many small

segments ef f ic ient ly . As more segments are added to an address space ,

the address space list will remain the same size, and not grow like the

central obj ect tables in many of the capab ility sys tems . Moreover ,

provided that a reasonab le amount of locality of reference is exhib it ed ,

many small rel at ed segments may be placed in one page , reducing the

amount of wasted space and making segment swapp ing more eff icient . Large

CHAPTER 5 A NEW ADDRESSING MJDEL

- 106 -

segments may be composed of many pages . Because only those pages

actually being address ed are he ld in main store the scheme does not have

the large segment problems experienced in segmented schemes .

Thus , the scheme solves both the memory management problems and the

address trans lat ion problems associated with many small and large

s egments . However , the model in this form does not supp ort requirements

1 , 2 and 3 of the model aims , namely large unique virtual addresses , a

uniform store and separate main and secondary memory address trans lation

systems . The next section shows how the model can be modif ied and used

to provide a virtual memory with all the required attributes .

1·.!·1· Applying the Memory Management Model

Requirement s 1 , 2 and 3 of the model demanded a large uniform
virtual memory and a separate main and secondary memory address
translation system . A large unif orm uniquely addressed memory which
holds all data and files implies an address size of the order of 64
bits , as used in some other capab ility systems . The model described in
section 5 . 3 imp lies an address size comparab le to processors such as the

ICL2900, MULTICS e tc, and of the order of 32 bits because it uses page

tables in main memory for address translat ion . Unfortunately , a simple

scaling up of the tables is not pos s ible because the large address is

2"'32 times that of the convent ional address . The problems with

conventional page tables were discuss ed in Chapter 4 . Moreover , the
tab le structure would be used for both main memory and secondary store

address translation, contrary to the requirements set out in section

5 . 4 . 1 . Thus , in order to use the memory model , the address size must be

expanded to about 64 bits in size and ano ther address translation

mechanism mus t be found . Al so , to allow large segments to be created ,

the size of an individual address space must be larger than 2"'1 6 words ,

as imp lied in the model (if half of the address is used for the address

spa ce numb er) . Thus , the 64 b it address must be compos ed of an address

space number f ield of about 32 bits , and a within address space

disp lacement of 32 bits . This would allow the largest address space to

be 2"'32 w ords in size . In order to find a sui table address trans lat ion

mechanism we can cons ider a number of the techniques des cribed in this

thes is .

CHAPTER 5 A NEW ADDRESSING M:>DEL

- 1 07 -

,
Gligor s address ing scheme assumes the presence of a robus t virtual

memory without indicating how to provide such a mechanism . Bishop

attempts to use convent ional page tab les to trans late addresses . We

showed in Chapter 4 that this technique is unsuitable because of the
size of the directly indexed page table . For the same reasons , the page

and segment tables propos ed by Keedy, and us ed by the ICL2900 series ,

MULTICS , Prime 750 (Prime , 1 979) et c , are unsuitable because of the

space required for the tab les , and the time taken to t rans late an

address .

The bes t form of address trans lat ion for an address of this size is
the as sociative technique us ed by Atlas , IBM System/ 38 and MU6-G . These
methods only attempt to trans late addresses for those pages resident in
main memory , and leave the software f ree to organize the secondary
memory trans lat ion tab les in any suitable way .

Thus , by increas ing the address size to 64 bits and by us ing an
associative address trans lation scheme the Keedy model can provide an

accep table virtual memory f or our capab ility model .

1·i·i· Summary

The specif ication for the capab ility address ing model of this

chapter is now comp lete , and is summarized in Figure 5 . 6 . The model

provides a flexible , unif orm, simple and ef fic ient method for address ing

store . The virtual memory required can be realistically provided by a

modif icat ion of the Keedy model .

1•1 • Application of � Model

The first three sec tions of this chap ter described a hardware model

which can be us ed to s uppo rt a capab il ity style of addres s ing . A maj or

cons ideration in the des ign was that the model be flexib le enough to

cater for a number of different software ideas . This section will

demons trate that the model is flexib le by applying it to three dif ferent

dif ferent software models : the Intel iAPX4 32, CAP-3 and MONADS .

As describ ed earlier , the implementat ion of the model cons is ts of

two separate sections , the hardware registers and address trans latio�

mechauism, and a body of so f tware or firmware . In each of the examples

to be cons idered, a diff erent load-capab ility-register instruc tion must

CHAPTER 5 A NEW ADDRESSING MJDEL

- 1 08 -

capab il ity regis t er number off set
effective
prog ram
address

-----> vi rtual address length ac cess

I
address space II
page II { st art address

"-------> f address space #
page #
start + o ff set

associative
address
trans lation
s cheme

capab ility regist ers

�-->

real page II
offset

Figure 5 .6 - the new address ing model

be imp lement ed to address segments . The hardware can then be used to

support ' the address ing struc ture . Access to high level obj ects will

typically be via a cal l instruction , which can be supported in microcode

or software and does not aff ect the hardware .

1·1 ·!· .!!!£ INTEL iAPX4 32

The Intel iAPX432 supports informat ion hiding modules , each of

which . cons ist of a number of memory s egments . �Je will nor...1 describe the

C-�is t structure used by the Intel processor .

1·1 ·!·!· The Intel Address ing Structure

The iAPX4 32 uses two different types of segment , data segments and

access s egments . Data s egments are us ed to hold data and code . The

address ing environment of a module is def ined by an acces s segment ,
\

which contains a ll of the capab ilities f or the address able segments . A

capab ility consis ts of a uni que segment number and a set of acces s

rights .

CHAPTER 5 A NEW ADDRESSING KlDEL

- 109 -

The segment number is trans lated into a main memory address by a

central segment table . Each segment table entry contains a sta rt

address , segment size , presence bit and addit ional segment information .

Whilst the literature sugg es ts that this central table is indexed
directly on segment number , such a scheme is qui te inappropriate and we

assumed in Chapt er 4 that in p rac tice some other scheme is us ed .

While other tab les are used to bind access and code segments to a

module (e .g . context and domain obj ec ts) , a program may address memory

by supp lying an index into the access segment , called the segment

selector, and an �ffset within the segment, as shown in Figure 5 . 7 . An

access segment may in turn address another access segment , and a tree

structured addres s ing environment may be created , as shown in Figure

5 . 8 . Thus , rather than ident ifying a number of specif ic classes of
segment the iAPX432 only recogniz es two main classes , and allows the

environment to be structured as a tree of capab ilities .

As discus s ed in Chap te r 4 , the Intel processor is particularly poor

at supporting very large and very small segments . Large segments

complicate store management and small segments are expensive to swap in

and out of store , and al so increase the size of the segment list . All of

these problems are removed when our hardware model is us ed to support·

the iAPX432 address ing struc ture .

�egment selector off set effective program address

�
s egll
+ > base l limit

:> segll AR

access segment segment lis t

Figur e 5 . 7 - the Intel iAPX432 addressing struc ture

CHAPTER 5 A NEW ADDRESSING K>DEL

access
segment

- 1 10 -

�--------���-----------
segment

data
segment

data
s egment

Figure 5 . 8 - a tree of access segments

1•1 •l•1• Mapping the Intel iAPX432 onto the Model

In order to map the Intel software configuration onto the model ,

the processor must adopt the capab ility format of the model . This change

does not affec t the use of acces s segments , but does allow the model to

be us ed to address store . In addition , a load-capabil ity-reg ister
ins truc tion mus t be provided to trans late addresses of the form <segment

selector> into a capab ility . This instruc tion must al so detect

capab il it ies for high level obj ects and stop them from being loaded into

registers . High level obj ect support can then be provided by special

software of firmJare . With these changes , which do not affect the aims

of the system, the iAPX432 inherits the simplicity and efficiency of the

model , in three areas .

Firs t , there is no long er any need for the central segment lis t .

Without this list , the sys tem can eff iciently support many small

segments . Se cond , the real s tore is no longer segmented , avoiding s tore

management p roblems with large s egments . Third , because the real store

is paged , many small segments may be swapped in one operat ion . The new

addressing scheme is shown in Figure 5 . 9 .

CHAPTER 5 A NEW ADDRESSING K>DEL

(segment selec tor I off set

I
+

virtual address

> ..,_ ____ ___

access
s egment

'

- 1 1 1 -

effective prog ram address

leng th access

capabil ity reg ister

Figure 5 . 9 - the new Intel addressing scheme

Access segments can be protec ted from corruption by only ever

granting capab il ities to them with read-only access to a user program .

Thus , a program may be able to use an access segment capab ility as the

target of a data manipulation ins truction , but cannot modify the

contents of the access segment its elf .

This implementation shows that the capab ility regis ter scheme is

not only f lexib le enough to imp lement the C-list structure of the Intel

iAPX4 32 , but also improves the ef ficiency of the f inal address ing

mechanism . The s econdary memory trans lation is no longer dependent on

the segment lis t , and may be freely modif ied .

CAP-3 is a capab ility based computer which addresses a segment ed

memory via a C-list structure .

1•1•1.•l• CAP-3 Addressing S tructure

Segments in CAP are addressed via one of the different C-lists

attach ed to a protection domain . Each C-l ist is address ed by a domain

descrip tor , and there are 16 domain descrip tors attached to any domain .

Each C-list entry holds a capab ility which def ines the bounds of the

CHAPTER 5 A NEW ADDRESSING K>DEL

- 1 12 -

reference and the access rights . Capab ilities also contain a pointer

into a central obj ect tab le , which holds the central mapping information

for the segment . A prog ram can address memory by forming a 32 bit

virtual address , which is cons tructed from a 4 bit C-l ist selec tor (one

of the 1 6 domain descrip tors) , an 8 bit capab ility number (relative to

the C-list chos en) , 1 6 bits of offset within a segment and 4 unused

bits . This address is mapped onto a real memory address via the central

obj ect tab le , which contains an entry for every ac tive segment . A

capab ility cache helps speed up the address trans lat ion for frequent ly
us ed s egments . The address ing structure is summarized in Figure s . 10 .

CAP-3 dif fers from the Intel processor by using a dif ferent C-lis t

organization . In CAP, a domain can only address one of the C-l ists for

which it has a domain des crip tor . Unlike the Intel processor , CAP-3

cannot construct a tree of capability segments . Since CAP-3 uses the

same ma.in store organi zation as the iAPX432 , it possesses the same

ineff iciencies when small and large segments are addressed . We will now

show how the capab ility regis t er address ing scheme may be applied to the

CAP-3 architecture .

capab ility segment s egment selector offset

virtual address

>
---�-----

1 6 -...,

domain 1i---------�---> segment
descrip tors

>

C-lis t

Figure 5 . 10 - the CAP addressing structure

CHAPTER 5 A NEW ADDRESSING MJDEL

- 1 13 -

1•1•1•1• Mapping CAP-3 onto the Model

As in the Int el processor a load-capab ility-register ins truction

must be written which unders tands the C-list structure of CAP-3 . This

ins truction accepts a 4 bit C-lis t selector value , an 8 bit capab ility

selector and loads a register with the capab il ity .

Ins tructions can then address the segments of s tore via the

capability registers . The s cheme inherits the advantages of the model .

Small and large segments can be ef ficiently addres sed and transferred in

and ou t of store . The prob lem of managing the cent ral obj ect table

disappears as the tab le is el iminated . Th e only ins truction which

understands the use of domain des crip tors and C-lists is the load

capab ility-regis ter instruction .

s .s . 3 . MONADS
- - -

The MONADS sys tem requires so ftware sys tems to be cons truc ted from
a number of information hiding modules , each compos ed of a number of

memory segments , namely local data segments , file data segments ,

retained data segments , code-related data s egments , parameter segments

and code segments (Keedy , 1 982a) . We wil l now describe the address ing

struc ture and show how the model hardware may be us ed to imp lement this

structure .

1·1·1·1· The MONADS Address ing Structure

An information hiding module in MONADS is active and may address

its data segments when a proces s is execut ing within the code segments

of the module . Under such circums tances a process stack will be p res ent .

This stack forms the centre of th e MONADS address ing structure . Each

class of s egment is address ed via a s eparate segment list . Thus , f or

example , each segment of local data is address ed via an off set relative

to the local s egment list , and each s egment of file data is addressed

via the f ile segment lis t . Each segment lis t contains a lis t of

capabilities for the segments of the class . A capab ility , shown in

Figure 5 . 1 1 , cons ists of a virtual address f ield, a leng th field and a

set of acces s rights . Thus , any segment may be addressed by a segment

list number (called the base number b) and a segment number (s) , as

shown in Figure s . 12 . Moreover , each segment lis t is addressed via the

CHAPTER 5 A NEW ADDRESS!?{; MODEL

- 114 -

Address of segment I length I access I
Figure S . 1 1 - a MONADS capab il ity

BASE tab le , as shown in Figure S . 1 3 .

The process stack forms a convenient place to ho ld the BASE table
and some of the C-lists , because some of these pertain to the module and

process intersection . Other C-lists , such as the file C-lis t , are held
off the stack . Thus , the BASE tab le concep tually holds capabilities f or

the C-lis ts , and each C-lis t ho lds capab ilities for each segment in the

. i

i
b
I
�

s

!

CHAPTER 5

capab ility

t-----------< - base b

Figure S . 1 2 - a segment lis t

LJ i
segment list

BASE tab le

segment lis t

Figure 5 . 13 - the BASE tab le

A NEW ADDRESSING MlDEL

- 1 15 -

class . Because the C-lis ts are not general purpose , like in the Intel

iAPX4 32 , but dedicated , capab ilities within a C-list cannot point to

another C-lis t •

An ins truction forms a logical address of the form <base number ,

segment number, offset> . The address ing s truc ture , summarized in Figure

S . 14 , allows this address to be translated into a capab ility and offset .

The next section shows how the model propos ed in this chapter may be

used to support this structure .

1·1•1•£.• Mapping the MONADS Sof tware Structure .Q!il.Q. the Model

In mapp ing the address ing struc ture described in 5 . 4 . 1 . 1 onto the

model hardware care must be taken to protect the contents of the BASE

table and the various C-lists . As wi th the other imp lementations , a

load-capab ility-regis ter ins truction mus t be developed which translates

a logical address , of the form <base number , s egment number> , into a

capability , and saves the capab ility in a regis ter . The regis ter number

may then be us ed as the operand for future memory reference

t
s
y

1
b
�

CHAPTER 5

segment lis t b

BASE table

Process s tack

capability

<· > I I .
segment s

Figure 5 . 14 - the MONADS address ing structure

A NEW ADDRESSIR; MODEL

- 116 -

instructions . This trans lati on is clearly ef ficient . The logical address

is only trans lated into a capab ility when a regis ter is loaded .

Subsequent acces s es to the segment bypass this trans lation .

In order for the load-capab ility-regis ter ins truction to translate

the logical addresses , it must have access to the BASE table and also

the various C-lis ts . Because the stack itself res ides in virtual memory ,

thes e tables are addressab le via the capab ility registers . The areas of

the stack which contain sens itive informat ion may be protected by never

issuing · to programs capab il ities to the information . Moreover , because

the tables are simply segments , there is no need for them necessarily to

reside on the s tack at all . In fact , those l is ts which do not belong to

a process res ide in other segments of

implementation is summariz ed in Figur e 5 . 1 5 .

1·1·i· Summary

virtual memory . The

In this section we have implement ed three different capab ility
address ing s t ructures using the addres sing hardware p roposed in this

s
"

l
b
�

segment lis t b

BASE t ab le

Process s tack

capab ility

<·

I add

. . . .
I add

<

capab ility registers

ress length access

ress length access

capab ility register
for BASE table

Figure 5 . 1 5 - the new M:>NADS addressing scheme

CHAPTER 5 A NEW ADDRESS!� MODEL

- 1 1 7 -

chap ter . In each case , the hardware remained unmod if ied , and a new

load-capab ility-regis ter ins truc tion was written for the new structure .

From the detailed examination of the capab ility sys tems in Chap ter 4 it

would appear that the model - could be applied to all of the dif ferent C

list structures in the same way as those described in this chapt er . In

addition , the hardware is no t concerned whether the capab il ities are
taken from a C-list or from tagged memory . Thus , the propos ed model

could also implement those sys tems which use tagged memory rather than
a segment list to ho ld capab ili ties .

Because the capab il it ies are interpreted by sof tware before they

are us ed to address memory , the scheme does not interfere with the way

that the . sys t ems manage high level obj ects . The only requi rement that

the hardware places on the load-capab ility-register instruction is that

only segment capab ilit ies can be placed in a regis ter . Thus , the model

s eems to have fulf illed its aim of f lex ib ility .

5 . 6 . Evaluation of the Hardware Model
- --

This sec tion addresses two ques tions . First , has the model proposed

in this chapt er fulfilled its primary aims ? Second , how does this

solution differ from the other capab ility based computers dis cussed in

Chap ter 4 ?

5 . 6 . 1 . Model Aims
- - -

We can now recons ider the aims of the model , cited in section 5 . 1 •

.2.·i·l·l· Memory Management

We showed in

managing a memory

these problems by

Chapter 4 that many sys tems have dif f iculty in

address ed by capab ilit ies . The model avoids many of

using the memory management model des cribed in

sec tion 5 . 4 . This scheme allows both large and small s egments to exist

in a paged virtual memory . Large segments may occupy as many pages of

real memory as required . Because many small s egments may be packed into

a page , many related segments may be swapped between main and secondary

memory at the same time . Thus , the model has solved many of the memory

management prob lems .

CHAPTER 5 A NEW ADDRESSING MJDEL

- 1 1 8 -

1·�·.!.. ·1· Addres s Translat ion Problems

In sys tems which use a central obj ect tab le for segment address

t ranslation , the size of the tab le may become excessive if the proces s or

addresses many small segments . The model proposed in this chap ter avoids

this problem by elimina ting the obj ect table al tog ether . Because

segment s are no longer a unit of main memory , no mapping informat ion

needs to be maintained about the s egment which cannot be placed s af ely

in the capab ility for the segment . Moreover , we sugges t that the virtual

address es are trans lated into main memory addresses by an associative

address translation sys tem, which can not only eff iciently translate

large addresses , but also detaches main memory address trans lation from

' secondary memory address trans lation . Thus , the model has solved many of

the problems associated with address trans lation .

1·�·l·l· Unif ormity and Simplicity

The scheme is unif orm in two respects . First , the capab ility

registers are the only way of address ing s tore . No extra mechanisms

exis t which bypas s the capab ility structure . Section 5 . 5 showed that

thes e registers alone are suff icient to imp lement a real addressing

structure above the hardware . Second , all data , regardless of how large

or small it is , or how long it exists , is s tored in the virtual memory .

No other secondary memory is vis ib le to the programmer .

Because of this uniformity, the overall address ing mechanism is

comparatively s imple . Only one address ing sys tem is availab le , and only

one protection sys tem is needed . Thus , the model satisf ies the aim of

unif ormity .

1·� ·.!..•4 • Et f iciency

The ef f ic iency of the solution may be j udged by cons idering two

separate functions : (i) the translation of a program address (e .g . of

the form C-lis t index and offset) into a capab ility , and (ii) the
translation of a capab ility into a main memory address . The f irst of
these is only performed when a capab ility reg is ter is loaded , or when a

domain switch is performed, and is dependent upon the access time of the

C-lis ts . Provided that (a) suf f ic ient c�pab ility reg is ters are

availab le to contain the working s et of the process (Denning , 1 968 ,

CHAPTER 5 A NEW ADDRESSING K>DEL

- 1 19 -

1980) , (b) capab il ity regis ters are allocated sens ib ly , and (c) some

hardware s uppo rt is provided for domain changes , then the cost of

load ing the reg is ters may be ignored .

The second function depends on two fac tors . The first is the access

time of the regis ters . This time is us ually so small that it may be

ignored . The second is the virtual address translation time . This time

depends on the translation technique chosen . In Chap ter 7 we propose a

mechanism which compa res favorably with schemes such as MU 6-G and IBM

System/38 . Provided that an as sociative s cheme is chos en , there is no

reason in princip le why this address trans lat ion should be ineffic ient .

1·.£ ·1·1· F lexibility

The hardware proposed in this chap ter was des igned to be f lexib le

enough to survive a number of changes in software ideas . In s ec tion 5 . 5

we app lied the model to a number of dif ferent address ing s tructures . In

each of th ese the model was capab le of imp lementing a dif ferent

address ing s truc ture with only a different load-capab il ity-regis ter

instruction, and with instructions for the d if ferent high level obj ects .

Thus , by example , it appears that the model is suf f iciently flexib le .

The model gains its f lexib ility from the clear dis tinction b etween those

functions which must be supported in hardware (purely for eff iciency

reasons) , and those functions which can be imp lemented by microcode (and

are thus easy to change) .

1 ·.£·1· Comparison to O ther Sys tems

Whilst cons ideration of the primary aims has highl ighted many

differences between the model and other capab ility bas ed sys tems , the

model ·can bes t be compa red with other work in this area by considering a

number of i ts features .

1·.£·1·!· The Use of Registers

The model is similar to the Plessey 250 and the Chicago magic

number computer in the use of capab ility registers . The model avoids

many of the problems associated with the P lessey 250 by us ing a virtual

address in the capab ility r egister rath er than a real address . No oth er

sys tems known to the author make use of such regis ters , or are as

f lexible as the propos ed sys tem .

CHAPTER 5 A NEW ADDRESSING M:> DEL

- 1 20 -

1 ·i ·1·1 · The C apab ility Format

The format of the model capab ility is similar to that of Bishop .

Both include a virtual address , a length f ield and access rights .

However , the leng th field of Bishop ' s capab ility appears to be too small

to allow large obj ects to be created , or for suff icient addres s ing

granularity . The CAP capab ilities dif fer in address specif ication but do

allow a leng th field . The model capab ility is al so similar to that of

the IBM Sys t em/38 . However , the Sys tem/38 allows store to be addressed

without capab ilit ies and provides two d if ferent addressing mechanisms .

Most of the other sys tems dis cussed use an obj ect number as an address

rather than a virtual address .

5 . 6 . 2 . 3 . Ref inement
- - - -

Whilst all of the capab ility sys tems al low the access rights of a

capab ility to be ref ined , CAP and Bishop are the only systems which

allow the bounds to be ref ined . As dis cussed in 5 . 3 . 4 Bishop ' s length

f ield is far too small t o be of any use . The CAP length f ield is

duplicated in bo th the capab ility and the central obj ect tab le because

of the s egmented s tore . This duplication is avoided in our model .

1·i·1·i· Real S tore Management

The use of paging vas t ly simplif ies the management of real s tore .

Sys tems which al so use paging are Hydra , IBM Sys tem/38 , B ishop and

Gl igor . In Hydra , paging has the ef fec t of restric ting the maximum

s egment s i ze to one page . In the IBM System/38 segments must be at least

one page in length , which was tes a great deal of space for small

segments . Because Gligor allows s egments to be p laced arb it rarily in

virtual space , there is no guarantee that segmen�s �"ith a common owner
' are placed within the same page . Bishop s scheme , like our model ,

guarantees this by using areas , or address spaces . This allows connnon

segments to be swapped in and out of store in one operation . The model

diff ers vas tly f rom s chemes such as Ples sey 250 , Chicago Magic Number

Computer , Int el iAPX432 and CAP which use a segmented store .

1 •i•1•1• Virtual Store Management

The only schemes which use virtual addresses in a s imilar way to

the model are Gl igor and B ishop . We showed in Chapt er 4 that both of

CHAPTER 5 A NEW ADDRESSING M:>DEL

- 1 21 -

these virtual spaces can become fragmented af ter use . The model avoids

this prob lem by allocating vi rtual space in f ixed size units .

1·�·1·�· Small and Large Segments

We showed in some detail the dif f iculties experienced by other

capab ility systems in supporting both small and large s egments . The

model uses a memory organi zat ion which allows most of these problems to

be avoided or minimized , al lowing it to be far more eff icient than the

sys tems dis cussed in Chapter 4 .

1·�·l·l · Addres s Trans lation

We showed that the model requires an associative address

translation scheme to operate efficiently . Two processors which provide

such a scheme are MU6-G and the IBM Sys tem/38 . In Chap ter 7 we wil l

propose another ass ocia tive mapping technique which compa res f avorably

with these two .

5 . 7 . C onclusion

This chapter has def ined a hardware model for implement ing a

capab ility bas ed address ing scheme . Many thes es conclude at this s tage

without demonstrat ing the effectiveness of their solution . We were

concerned that the model should be imp lemented to show that the solution

is prac tical . Unfortunately , in achieving such an implementation , we

faced two problems .

First , funds had to be found to produce this implementation .

Second , time had to be found to produce a working p rocess or . The next

chapter proposes a 100del which allowed a working implementation of the

hardware to be built both cheaply and quickly . Chap ter 7 then applies

this model to the capab il ity address ing scheme to produce a capab ility

bas ed computer sys tem .

CHAPTER 5 A NEW ADDRES SING MJDEL

- 122 -

6 . An Architectural Enhancement Technique

In Chap ter 5 we proposed a hardware model which can be used to

support many different sof tware struc tures , particularly those of the

MONADS proj ect . It was particularly important that these ideas be

imp lement ed as the internal struc ture of a new processor , and not remain

unt es ted . It was also important that the MONADS sof tware group could

have a capab ility bas ed computer sys tem to use for the development of

their so f tware s truc tures and ideas .

Many new ideas are

concep tual level and

of ten only des igned and documented at a

are never actually imp lement ed as the bas ic

s truc ture of a new processor , e .g . the Chicago Magic Number Computer

(Shepherd , 1 968 ; Yngve , 1 968) , Gligor (1 978) , and B ishop (1 9 77) .

Unfortunat ely , many maj or des ign flaws are not discovered unt il an

a ttemp t is made to imp lement the des ign . Moreover , some designs cannot

be implemented at al l . Thus , a real implementation determines both that

the ideas are bas ically sound and that they can be eff ic iently b uilt

with the avail ab le techniques . The problem faced by the author was how

to demonst rate the effec tiveness of the capab ility reg isters , both

cheaply and quickly , and s till produce a usab le computer sys tem .

This chap ter compris es three main sections . The f irst examines

some of the standard implementation techniques . The second proposes a

hardware enh ancement model , and the third demonstrates the model by

citing examples of some architec tural enhancements .

In the next chap ter we describe how the technique was actually used

to bu ild the MONADS SERIES II computer system, and to imp lement the

capab il ity reg is ters describ ed in Chapter 5 .

Realiz ing a New Architecture
- --

A sys t em des igner is present ed with two al ternatives when

a ttemp ting to imp lement a new archi tec ture . First , the architecture can

be incorporat ed into a · to tally new comput er sys tem . This approach ,

whils t logically the more des irable, of ten involves many more hours than

may superf ic ially appear necessary .

Apart from imp lementing the ins tructions which pertain to the new

architec ture , bas ic arithmetic and log ic instruc tions must al so be

CHAPTER 6 AN ENHANCEMENT IDDEL

- 123 -

imp lemented . 'nlese instructions , while concep tually simple , may occupy a

large part of the machine mic rocode (and/or hardware) . For examp le , to

realize a general shif t instruc tion , not only microcode must be written

but also some special hardware may need to be built (such as a parallel

shif ter) •

Extra devices (such as int erfaces and contro llers) must be

cons tructed purely to opera te the new proces sor . Some of these devices

may require a large amount of des ign effort ; effort which is not

direc tly connected to the orig inal architec tural aims . Many software

packages must then be developed , such as assemblers , compilers , loaders

and boot straps .

Consequent ly , the proj ect of ten grows in size and large group

management problems are encountered . Much of this ext ra effort appears
to be direc ted to the devices which must communicate with the processor ,

rather than to the proces sor itself . Thus , because of the ext ra effort

involved , the full scale production of a new computer simply to test out

some architec tural enh ancements is often not viab le in a research

environment .

The second al ternat ive cons is ts of modifying or using an exis ting
, ,

computer system (called the source architecture) in order to tes t out
, ,

a new architec tural design (called the target architecture) . This

approach has the advantage that the des ign time and effort may be

dramatically reduced . Many of the features of the source processor may

be inherited , for examp le the input-output system and the basic

ins truction set . However , great care must be exercised to prevent the

source architec ture f rom restricting the scope and ef fec tiveness of the

target .

6 . 2 . Using � Exis ting C omputer System

Three different techniques may be used when the target architecture

is const ruct ed on top of a simp ler source machine . First , an

environment may be cons truc ted in so f tware . Second , if the source

processor uses a microcod ed control unit , the target may be imp lemented

in firmware . Third , the ac tual hardware of the source processor may be

mod ified to imp lement the targ et architec ture .

CHAPTER 6 AN ENHANCEMENT K>DEL

- 1 24 -

i·l·l· A Sof tware Emulat ion

This so lut ion may take a number of forms . The most general is to

produce a program (called the int erpreter) which interprets instructions

for the target machine . 'lbe int erpret er emulates the fetch-execute
cycle of the target proces sor, and execut es target instructions by using

small sections of source ins truc tions . Int erpret ing the new

architec ture offers many advantages . Because the interp reter is a

program, of ten written in a high level language , it may be eas ily

modified . Comp lex debugging and monito ring aids may be incorporat ed in

the des ign , al lowing the des igners to measure and j udge the

effectiveness of the new processor . At the same time as emulating the

target architecture , the source machine may be executing many other

programs .

This approach also has some maj or disadvantages . The ultimat e

execu tion speed o f the target processor is often far too s low to suppo rt

realistic tes ts • Moreover , it is not always obvious whether eff icient

hardware can later be construct ed , somewhat diminishing the

effectiveness of the implementat ion .

A sl ightly more eff ic ient sof tware emulation involves another

d ifferent body of code (called the Kernel) which attemp ts to provide a

normal source machine program with attributes from the target processor .

Programs for the target machine are comp iled into source machine

instruc tions . When a target machine operation is required which cannot

be direct ly t ranslated into a short sequence of source instruc tions , a
call to the kernel is executed , which performs the task and returns

control to the source program .

Whilst fa r more eff ic ient than an int erpreter , the kernel soluti�n

tends to highl ight the architectural features of both the source

processor and the target , of ten with dis as trous effects . (Such an

examp le is found in CAL (Lampson and Sturg is , 1 9 76)) . Moreover , this

technique may not be able to manage a target machine which is

dramatically diff erent in design from the source . Thus , a target

program may degenerate mainly to kernel cal ls and appear the same as an

interpretive solution .

CHAPTER 6 AN ENHANCEMENT .M:>DEL

- 1 25 -

Because many source ins tructions may be requi red to emulate a

target instruc tion , the speed of the kernel is often far too s low to

suppor t a realis tic tes t environment . Many dif ferent types of kernel

have been written . A good review is found in Rosenberg (1 979) .

A common disadvantage is that bo th the kernel and the interpreter

of ten occupy large amounts of memory and may reduce the space ava ilab le

for user programs signif icant ly .

The advantages of these so lutions are mos tly logical . An
interpretive solution can usually emulate the target architec ture
success fully . The disadvantages are OX>s tly practical . Poor execution
speed o f ten makes the model useless .

i·1·1· A Firmware Implementation
-

Another technique used is to emulate the target archit ecture in

firmware (or microcode) . This solution is clearly only applicable if
the source machine uses a microcoded control unit and possesses a

writab le control s tore .

The int ernal microcycle of most processors is several times fas ter

than their fetch-execu te cycle . Consequently , target machine

instruc tions can be much more eff icient ly emulated with microcode than

with software . Because new instructions can be p laced in writab le

control store , the processor can continue to execut e normal source

machine p rograms at the same time as target programs .

Unfor tunately , mos t processors provide only a small writab le

control s to re and , more importantly, a limited number of uncommitted

operation codes . Thus , it is usually diff icult to microcode all of the

opera tions required by the target machine .

Even when suff icient s tore and entry points are available , this

technique of t en encounters another important problem • Many target

ins truc tions may implicitly require s torage space , which mus t be
provided by the source machine mains tore . (An obvious examp le is the

implementation of a virtual memory sys tem, which requi res page tab les in

order to t rans late address es) . In many cases the fact that target

operations are implemented in microcode may not be suff ic ient to make

them efficient . The operations may be limit ed in speed by the time

CHAPTER 6 AN ENHANCEMENT MlDEL

- 1 26 -

taken to scan or search various data struc tures which , if built into

hardware , would have us ed much f aster s tore and s earching s t rateg ies .

(Examples of such an address translat ion sys tem are found in Belgard

(1 9 76) , Cohen (1 973) , Tanenbaum (1 979) , D 'Hautcourt-Carrette (1 97 7) and

Sit ton and Wear (1 974) .

In addit ion , the s truc ture of the micro instruction is usually
des igned for the source ins truction s et , not the target . Consequently ,

it is of ten quite diff icult to wri te the target microcode on the source

machine .

Thus , a firmware emulation , whils t much more eff ic ient than a

kernel or int erp retive solution , is often still too s low to p rovide a

usable sys tem . Moreover , the implementation often leaves too much of

the source proces sor architec ture vis ible , af fecting the attributes and

view of the target architecture .

In the situation where speed is important , the only solut ion may be

to provide special hardware .

i·1·1· Modifying the Source Hardware

The third possib ility is to modify the hardware of an exis ting

machine . Clearly , this technique can of fer the best performance .

Tradit ional ly , however , this method is only used when the target

architecture does not differ greatly from the source a rchitec ture .

Small changes such as small modif ications to the instruction set ,

adding virtual memory hardware (an examp le is found in Hagan (1 977))

and det ec ting extra error modes (such as those in HYDRA) , have been done

successfully . Each of these changes , however , has not int roduced maj or

archi�ectural enhan."'ements to the source processor .

In fact , it is clear that

emulation environment are not

hardware of an exis ting machine .

the maj or chang es

always possible

poss ib le with

when modifying

an

the

The technique is often rej ected because it may al ter the

environment f or normal source machine p rograms as well as target machine

machine programs , dedicating the use of the source machine .

In sp ite of the d is advantages and p ractical d iff icul ties a number

of architectura l changes have been achieved by hardware changes . The

CHAPTER 6 AN ENHANCEMENT MO DEL

- 12 7 -

next section examines some of the more common hardware mod if ication

schemes used .

6 . 3 . Hardware Modif ications

Many specif ic changes are possible when the processor des ign is

mod if ied . These depend up on the internal implementation of the
processor its elf , and wil l not be cons idered further . This section

describes one of the most general mod if ication techniques us ed . This

requires an examination of the general struc ture of many computers •

.§. ·l ·l · Process or C onfigurat ions

Mos t computer sys tems can be divided into two main parts , the CPU

and the memory , connected usually by a ' clean ' set of interface signals ,

shown in Figure 6 . 1 .

The signal s involved in the interface can typical ly be divided into

three sections ; addres s es , data and control/handshaking information .

The CPU communicates with the memory mos tly by read and write commands .

When the CPU executes a read operation control information is generated

together with an address pat tern . The CPU may then wait for data ,

which is p as s ed back over the data pathway . When a write is executed
data is sent with the address to the memory tmit

The connections between the C PU and memory section may be

general ized to form a sys tem bus wh ich connects to devices other than

the memory .

<-handshaking & control->
Processor Memory &

ADDRE S SES > Peripherals
Control &
Registers < DATA >

Figure 6 . 1 - a typical processor configuration

CHAPTER 6 AN ENHANCEMENT MODEL

- 12 8 -

It is the ' clean ' nature of the interface between CPU and memory

which is o f ten emp loyed when architec tural enhancements are introduced .

i·1·1· Breaking the Address Bus

One technique used to enhance the architecture of the source
proces sor is to int roduce ext ra log ic into the address pathway between

the CPU and the memory , shown in Figure 6 • 2 .

If the archi tec tural enhancement is the add ition of a virtual

memory sys tem, then the extra log ic may be used to modify , or trans late ,

the processor addres s es before they reach the memory . Such a sys tem is

des cribed in Hagan (1 97 7) .

If , however , the target architecture is to include more registers ,

these may be as signed address es and p laced in the extra logic . Read and

write commands direc ted to these addresses are ' sto len ' by the extra

logic and may never reach the memory .

The extra log ic in some sys tems appears to the source processor as

a block of memory , but the data in the locations is calculated by the

logic rather than being the previously saved values . Such a sys tem is

described in Wallace (1 978) to imp lement a s tack mechanism and

address ing reg is t ers .

Many sys tems have been cons tructed wh ich place special signif icance

upon certain addres s es within the address space . Many rely on special

addresses for performing I /O operations (such as the PDP 1 1 and VAX

comput ers (Digital Equipment Corp . , 1 979)) . All , however , only ' steal '

a l imited number of address es for such operations , and perform very

specif ic ope rations . None of these sys tems make dramatic architectural

-Address-> a.------Address---->
c .p .u . EXTRA MEMORY

<--Data----> LOGIC <-----Data------->

<-Control-> <-----Control---->

Figure 6 . 2 - b reaking the address bus

CHAPTER 6 AN ENHANCEMENT MODEL

- 12 9 -

chang es . Such sys tems do , however , suggest that treating the address es

from a source processor in a special way may be used as a general
mechanism for enhancing an existing machine architec ture .

section proposes such a model .

6 . 4 . An Enhancement Model

The next

The sys tems dis cussed in the las t section used the processor

address es in various ways . If rather than using a dedicated p iece of

extra log ic , another fast processor is placed in the address path , a

general mechanism for dramatic architec tural enhancements is created .

In such a scheme , the processor addresses are treated as ins tructions by

another , small fast proces sor , the intermediate proces sor, as shown in

Figure 6 . 3 . These new ins truct ions may be tailored to the target

architecture .

The intermed iate processor reinterprets all of the CPU addresses ,

·and executes them as though they were instructions . Some may be s ent t o
the memory unit , whilst others may be used internally .

The i ntermediate p roces sor appears as a p ie ce of memory to the

source processor . When a memory reference occurs , the source processor

is suspended and the intermediate proces sor is s tart ed . The

intermediate processo r then execut es the func tion associated with the

memory address and return cont rol to the source p rocessor

The model possesses some particularly notab le attributes .

i) Many new operation codes are availab le , thus many new targ et

---Addresses-> Instruction

C .P .U . <--Data------>

<-Control->
Reg is ters

Intermediate
Proces sor

-Addresses>

<-Data--> MEMORY

<-Control->

Figure 6 .3 - the enhancement model

CHAPTER 6 AN ENHANCEMENT KlDEL

- 1 30 -

operat ions may be supported . The potent ial number of codes

availab le is the size of the address space .

ii) Because the intermediate processor is a general processor many
diff erent targ et op erations may be attempted , f rom very simp le

memory references to complex data manipulation .

iii) Ext ra target architec ture registers may be located in the

s tructure of the intermed iate processor , and can be manipulated by

read and write commands from the source processor .

iv) Normal memory references can be made to proceed from the source
proces sor to the memory wi th very little delay .

v) Comp lex target operations may be added to the source without maj or

mod if i cations to the source p rocessor hardware . Thus , the source

p rocessor may be a mainframe , a minicomputer or possibly even a

microprocessor .

vi) The new architecture is partly transportable among source

vii)

p roces sors . Most of the ta rget architecture is hous ed within the

intermed iate processor itself .

The intermediate processor

t ransparent ; thus it is

processor to execut e normal

machine programs .

may be removed ,

not difficult to

source programs

or made logically

allow the source

ins tead of target

viii) The target architecture inherits all of the input /output devices ,

cont ro llers , communication system, f rame and power supp lies from

the source processor . It also inherits the bas ic ins truction set

from the source p rocessor . This vastly reduces the amount of

ef f ort requi red to implement a working target architecture .

ix) Depending upon the address interpretations it may be possible to

execute source programs on the new target machine . At the very

least , these prog rams can execute on another source processor of

CHAPTER 6 AN ENHANCEMENT MODEL

- 1 31 -

the same type . Thus the assemblers , compi lers and loaders already

available f or the source processor may be mod if ied to produce code

for the target architecture . Consequently , some so f tware
development may be avoided .

x) Because the intermed iate processor only cons is ts of a central
proces sor unit it may be eas ily cons tructed , pos s ibly from b it

slice components . This processor is of ten simpler in des ign than
the source machine as it only imp lements those features of the

target wh ich are new .

The nex t section will cons ider the appl icat ion of this model and

give exampl es of the architec tural mod if ications which are poss ible .

6 . 5 . Appl icat ion of the Enhancement Model

!•.2. •l• Dividing the Addres s Space into Areas

In ord er to app ly the enhancement model , the address space of the

source process or must be divided into areas , and the new target

functions mus t be ass igned addresses from an area . Whilst an arbitrary
division is allowed , two key logical areas can be identif ied ; the code

area and a special area , as shown in Figure 6 . 4 .

Because the fetch phase of the source p rocessor remains unmod if ied ,

an area in the address space mus t be reserved for address es which are to

be interp ret ed as a region of code . When the source proces sor issues a

fetch in this reg ion , the intermed iate processor returns an instruction .

The second area can be further d ivided into the many new functions which

the target p rocec �or mus t provide . We wil l now cons ider the types of

functions that can be provided .

f ·1·1.· Some Architectural Enhancements

The model is capab le of a wide range of enhancements , many of which

cannot be achieved by the emulation techniques d iscuss ed earlier in this

chapter . We shall now consider some examples :

CHAPTER 6 AN ENHANCEMENT MODEL

- 132 -

Code

Special
Area

Figure 6 . 4 - dividing the address space

f •2. •1 •! • Adding New Regis ters .

Three clas ses of regis ters are of ten required in a processor : data

regist ers , address reg isters and s tatus registers . Each new register is

held within the intermediat e processor , and is ass igned an address from

the source p rocess or address space . The register may then be loaded f rom

or stored into from the source processor , as though it were ac tually a

word of store . The intermediate proces sor may treat the register purely

as an int ernal regis ter .

Data regis ters are the simp lest form of regis ter , and usual ly only

require load and store operations . Addressing registers can also be

loaded from and stored into by the source processor , but or may be used

indirectly to address store . Status regist ers are typ ically read f rom

the source processor and loaded from hardware control lines , such as

interrupt masks , error f lags , timers , etc . Figure 6 . 5 shows how the

regis ters may be integrated into the address space of the source

proces sor , where Ar is the address of the new reg ister in the address

space . Data may move between the source processor and the register via

the memory location allocated for the register , and may al so move

between the intermediat e processor via internal data pathways .

f •.2 •1 •1 • Adding New Inst ructions .

New ins tructions , which are

address is ref erenced , may be

CHAPTER 6

ac tivated when a particular source

imp lement ed within the intermediate

AN ENHANCEMENT K>DEL

- 1 33 -

t data
Ar
� 1----------+·----------> I register !

.._ ___ .,_. <---- . .

data t
data

address space

1
intermed iate
processor

I

Figure 6 . 5 - adding new regis ters

processor . Thus , the source address appears to act as an ins truc tion

word for the intermed iate processor . A range of addresses may be

allocated , all of which activate the same intermediate instruc tion , but

wh ich use some bits from the source address to specify an operand . This

scheme is shown in Figure 6 . 6 . In this d iagram Ai is the address of the

new ins truc tion , and the cons tant n can def ine a frame of addresses

rela tive to the instruction in the address space . The instruc tion

address may then be converted into a microcode entry point in the

intermediate p rocessor , which def ines code to interpret the new

instruction . Examples of ins tructions are :

- An instruc tion which manipulates some of the intermediat e proces sor

regis ters , e .g . add 1 to regis ter n . This type of ins truction is totally

execut ed within the intermediate processor .

�
Ai
�
t

--..

· l_n f--;
ins t operand

---------+-------->
.,_ ___ _,. entry

p'bint in
microcode

address space

intermed iate
p roces sor

microcode for
instruc tion
for Ai

Figure 6 . 6 - adding a new instruction

CHAPTER 6 AN ENHANCEMENI MO DEL

- 134 -

- A long move instruc tion , which us es two address ing reg is ters , and a

counter reg is ter , and moves data around the store . Tilis instruction

iteratively address es store until the b lock is moved .

- A cont ex t switch instruction , which changes processes within the

intermediate processor .

� ·1·1·1· Adding New Addressing Modes .

The bas ic address ing modes of the source processor may be augmented

by new modes , provided within the intermediate proces sor . Some examp l es

are :

Indexing .

Certain addresses within the address space may cause a mainstore

address to be calculated from a combination of addressing reg isters .
When the lo cation is referenced , the intermed iate p rocessor may

calculate a s tore address , retrieve the data , and return it to the

source processor . Th is dynamic address calculation may be used to

provide an index mode , which may not be present in the source

architecture . An example of index mode address ing is shown in Figure

6 . 7 . In this diagram Aa. def ines the location of the new addres sing mode

in the address space . If this location is referenced then the

intermediate proces sor forms a main memory address by adding the

cont ents of an address ing regis ter and a modif ier regis ter together .
This effec tive address is then us ed to ref erence s tore .

Stacks .

Certain modes may use an addrecs ing regis ter to reference s to re ,

and then mod ify the contents of the register . This operation cou ld

provide push and pop ins tructions . St ack frames may al so be def ined

relative to a s tack register, by res erving a number of locations within

the source address space . An examp le is shown in Figure 6 . 8 . Separate

address es are assigned f or push and pop operations . If either of these

addresses is referenced the value of the s tack pointer regis t er is

mod if ied , and a main memory address is generat ed . If a f rame relative to

a frame point er is requi red , the cons tant n is added to the value in

CHAPTER 6 AN ENHANCEMENT MODEL

t
Aa
�

address

- 135 -

_ _ _ , .. - - -� ,...1 -
ad
_

d
_
r
-
es

-
s
-.IJ+

�
\

\ modif ier

\\ \
,, space '

� '

ef fec tive
address

= ---->

...... -- - - - - -- - - - - _ -'t'
Store

Figure 6 . 7 - index mode address ing

this reg is t er in order to form a main memory address .

Cons tants .

If part of the source processor address is returned as data, by the
intermed iate proces sor , then a number of constants may be referenced

without read ing the ma.instore . This mode of address ing is of ten called

iuunediate mode . An examp le is shown in Figure 6 . 9 . The intermediate

processor returns the value i when the locat ion Ai is read .

� ·1 ·1 ·i • Adding ..! Virtual Memory .

Because the source processor addresses are iso lated from the

mainstore , the intermediate processor can develop virtual rather than

push
pop

s tack
f rame
:

v

. .

address space

CHAPTER 6

>I address

frame
;::.. address

+l -----> main memory
address

+ n ---> main memory
address

Figure 6 . 8 - s tack address ing

AN ENHANCEMENT MO DEL

- 136 -

t
Ai
�

i
<------------------
data

address space

Figure 6 . 9 - cons tant address ing

real address es . Special t ransla tion hardware may then be placed between

the intermediate processor and the memory subsystem .

i·.2.·1·1· Expanding the Address Size .

The size of the address ing regis ters within the intermediate

proces sor may be many times the size of the source processor address .

Thus , the effective address space size of the target architecture may be

much larger than that of the source p rocessor .

i·1·1·i· Detecting Errors .

The inte rmediate processor may detect many error cond itions , e .g .

removing too many items from a stack, addressing beyond the top of a

s tack , address ing memory which is pro tected , et c . These may then be

repo rt ed to the source proces sor . Control reg is ters may be us ed to

describe the nature of the error .

6 . 6 . Conclusions

In this chapter we have developed a general mechanism for expanding

the power of an existing computer . The solution is both cheap and

eff icient . By considering some examples we have shown that the model is ,

at least theoretically, realistic .

The next chapter will use this technique to expand the architecture

of a very simp le mini-computer and , at the same time, imp lement the

CHAPTER 6 AN ENHANCEMENT MJDEL

- 1 37 -

address ing s truc ture proposed in Chapter s .

CHAPTER 6 AN ENHANCll-IENT MODEL

- 138 -

7 . The MONADS SERIE S II Sys tem - An Implementation

Chap ter 6 des cribed a technique for enhancing the architecture of a

primitive source processor . In this chap ter we show how the enhancement

model has been applied to the imp lementation of a capab ility based

computer system according to the design proposed in Chapt er 5 , us ing a

primitive source minicomputer , an HP 21 00A (Hewlett Packard , 1 9 7 2) .

Sec tion 1 def ines the aims of this system, which is known as the

MONADS Series II computer . Section 2 describes the HP 2 1 00A source

processor hardware . Sec tion 3 des cribes the intermediate p roces s or
developed to expand the HP 2 1 00A . Sect ion 4 def ines the MONADS II

address transla tion hardware , and compares it to other similar schemes .

Section 5 comments on the modif ications made to the HP 2 1 00A processor .

Section 6 describes the software packages developed during the

construction of the MONADS II sys tem . The chapter concludes by

demonstrati ng that the MONADS II computer system fulf ils its primary

aims .

l•l• The MONADS SERIES II System - Primary Aims

The MONADS I I hardware has a number of maj or aims :

(1) To demons trate that the capab il ity regis ter address ing scheme ,

p ropos ed in Chapter 5 , is realis t ic and can b e eff iciently

imp lement ed . This aim is tes ted by us ing the archit ectural model as

the cen t re of the MONADS II addressing structure .

(2) To provide a pilot sys tem for future sof tware development work

on the MONADS proj ect . Because of time and f iscal constraints it

was not possib le to produce a computer ut ility with the speed and

power of large mainf rame computer systems . Howev er , the MONADS II

sys t em is suitab ly scaled down so that it can s till support a

number of users , each developing software modules . The process or

is cons idered a testbed for both the hardware and the software

ideas .

(3) To demons trate that the enhancement techni que proposed in

Chap ter 6 is both prac tical and powerful in s co pe .

CHAPTER 7 AN IMPLEMENTATION

- 1 39 -

(4) To provide support ing hardware for the address ing s tructure
describ ed in Chapt er 5 , in the form of a hardware address
translat ion scheme .

The MONADS Series II sys tem is composed of a number of key

components , as shown in Figure 7 . 1 . The system is cons tructed around a

HP 21 00A minicomputer which provides al l of the bas ic comput ing

facil ities , such as a standard instruc tion set , and an input-output

sys tem . All of the complex address ing modes which are required by the

MONADS architec ture are provid ed by the int ermed iate processor . This

unit develops a 3 1 bit virtual address , which is trans lated into a main

memory address by the virtual memory manager . The current configuration

is connected to 4 00k bytes of semi-conductor memory . The rest of this

chapter will examine these components in detail , and show how the entire

sys tem fulf ils these aims .

l·l · The HP 2 1 00A Processor

The HP2 1 00A is typical of many 16 b it minicomputers of the same

era , and incorporates a microcoded cont rol unit , two general purpose

accumulators and 32k words of memory . Processor addresses are

construc ted from 1 6 bit words , 1 5 bits of which form the memory address .

The top (most signif icant) bit determines whether addresses are direct

memory address es , or are part of a chain of indirect addresses .

l·l·l· The View of Memory

With its 1 5 b it addresses , the HP2 100A can address up to 32k 1 6 bit

words of core memory . This address space is divided into 32 lk word

' leaves ' 1 • Thus , the memory address is logically composed of a 5 bit

leaf number , and a 1 0 bit within leaf displacement . The leaf with a

number of zero is called the base leaf , and the leaf number in which an

instruc tion resides is cal led the current leaf .

1 The HP2 1 00A l iterature ref ers to leaves as pages . However , we have

adop ted the pres ent terminology , preferring to use the term ' ' page as a

unit of virtual memory transfers .

CHAPTER 7 AN IMPLEMENTATION

- 140 -

dma link

HP21 00A > > -> 400k
source > intermed iate > address -> bytes
processor > processor > trans lator -> main

memory

> 2 x 5Mb cart ridge
disks

6 809 disk > 80 Mb winchester
controller > disk

>D i> 1 6 channel terminals
multip lexor

+lock I >O
> 16 b it link to VAX 1 1 /780

Figure 7 . 1 - the MONADS Series II computer system

If a memory address is used directly , the contents of the location

are treated as data . However , if the address is used indirectly , then

the contents of the location are treated as an address . In general ,

arb itrarily long indirect address chains may be created in memory .

- 7 . 2 . 2 .· The Ins truction Format - - - --
Instruct ions are divided into two main clas ses , the memory

reference group and the register and I /O group . Most instructions are

held in 1 6 b its . The format of the memory reference ins tructions are as

follows :

CHAPTER 7 AN IMPLEMENTATION

b it 1 5
bit s 14 - 1 1
b it 1 0
bits 9 - 0

- 141 -

indirect bit
function code
base or current leaf b it
within leaf displacement

The function code specif ies which operation the instruction is to

perform . (Val id functions are load , store , or , and , add , compare ,

increment , j ump , j ump sub rout ine and exclusive or) . Some functions may

be app lied to either of the processor accumulators . The ins truction

operand is specified by the address f ield . Because this f ield is only 1 0
bits in length , the ins truction can only address one leaf o f store . The

base leaf or current leaf bit determines whether the 10 bit address is
used within the base leaf or the leaf in which the ins truction res ides .

To al low an instruction to ref erence all of the store , an address

may be p laced in a word of memory (called a link) and used indirectly ,

by s etting the indirect b it of the instruction . The proces sor will

follow an indirect chain of addresses until a word is found with a zero

top b it . The last address in the chain def ines the effective address of

the operand . The use of 10 bit addres s fields allows a program to

reference most of its data with 16 bit instruct ions and to use links

only when the data is not in the base or current leaf .

l·1·1 · The Input-Output C!/O) Sys tem

The HP2 1 00A processor supports a primitive input-output system

which · allows a p rogram to communicate with any of 64 devices (although

some of these have special meaning) . The bot tom 6 bits of an I /O

instruction specify which device the ins truction is addressing .

Trans fers of 1 6 b it data words may be directed to or from a device under

progra·m cont rol •

l·l·i· The Direct Memory Acces s System (DMA)

Certain devices , such as disks , require interword s ervice times

fas ter than a programmed I /O loop can operate . To communicate with these

devices , the proces sor p rovides two autonomous direct memory access

channels . Each channel , once set up , can trans fer a block of data

between memory and a device without p roces sor intervention . The DMA

sys tem operates by s tealing cycles from the processor when it requires

CHAPTER 7 AN IMPLEMENTATION

- 14 2 -

attention .

1·1·1· The Control System

The HP 2 1 00A is cont rolled by a micro-programmed state ma.chine . The
processor can be equipped with 256 x 24 bit words of bas ic instruction

set , 256 words of extended (f loating point) ins tructions , and up to 5 1 2

words o f writab le cont rol store . The writable cont rol store appears as

part of the I /O sys tem, and can be read from or written to under program
cont rol .

l ·l·�· Int errupts

The HP2 1 00A supports a vectored interrupt sys tem . When an interrupt

occurs , control is trans ferred to one of 64 base leaf memory locations ,

any of which can then trans fer cont rol to an interrup t service routine .

Interrup ts are normally processed at the end of an HP 2 1 00A instruction .

1·1· The Intermediate Process or

This section des cribes the main features of the intermediate

processor designed and imp lemented by the author to ext end the

functionality of the bas ic HP2 1 00A .

l ·l·l.· Functionality

1·1·!·.!.· Privilege Modes

In order to protect sens itive information within the intermediate

processor , the hardware may operate in one of two modes : kernel mode or

user mode .

I� kernel mode two cond it ions are created . Firs t , all code is

fetched f rom a special code address space , which ho lds the kernel

program . Se cond , the HP2 1 00A may modify any of the intermediate

processor registers . Kernel mode may be entered in one of two well

defined ways . First , every interrupt causes the processor to enter

kernel mode . This is necessary because the kernel software contains the

interrupt service routines . Second , a special HP 2100 micro ins truc tion

can s et the processor into and out of kernel mode . Thus HP 2 1 00A

ins tructions may enter kernel mode to addres s privileged regis ters .

CHAPTER 7 AN IMPLEMENTAT ION

- 14 3 -

In user mode code is fetched from the current so ftware sub sys tem,

and only certain int ermediate processor regist ers may be address ed .

l·.1·!·1· Address ing Struc ture

The intermediate processor enhances the HP 2100A architecture in the

following ways . First , the s ingle 32k address space in extended into a

virtual space of 2-3 1 words . This cons is ts of 2�1 6 separate address
spaces , in the s ense described in Chapter 5 , each of 32k words . While a

full scale capab ility sys tem would ideally require more and larger
address spaces (e .g . 2-32 by 2�32) , the MONADS II address ing range is

suff icient to demons trate the princip les involved and to support a pilot
system .

Second , the int ermediate processor supports 16 sets of new
registers , and so can eff iciently support process-swi tching between 16

processes . Each regis ter set includes 16 standard capab ility reg is ters ,

s ix sp ecial capability regis ters intended to address code, constant s ,

base leaf links , and scalars on the stack (there are three registers for

this task) , eight modifier registers for addressing relative to

capab ility reg is ters , and eight associated counter regis ters which can

be used for effic ient loop control . In addition , various cont rol

regis ters are provided to support timers , interrupt handling , etc .

l•.1•!•1•!• The Capability Regis ters

The intermediate processor provides each of the 1 6 proces ses

executing on the HP 2 1 00A with 16 capability regist ers f or addressing

segments of memory . Each regis ter is composed of 4

follows :

word 1 : Address space number - 16 b its
word 2: Disp lacement within address - 15 bits
word 3 : Length of segment - 16 b its

16 bit words , as

word 4 : Access b its - read , write, kernel , invalid - 4 b its

The address space number def ines one of the 64k byte addres s ing

regions in virtual memory . The displacement is used to mark the s tart of

the segment in the address space . The length field marks the end of the

segment in the address space . The read and write b its determine whether

CHAPTER 7 AN IMPLEMENTATION

- 144 -

the segment may be read from or written into . The kernel bit specif ies

that the s egment may only be address ed if the processor is in kernel

mode . The invalid bit prevent s the reg is ter from being used , and is set

when a r egis ter is uninit ialized . A capability register can only be
loaded when the processor is in kernel mode (e .g . executing a load

capability regis ter instruc tion) and thus its contents are protected

from corrup tion . Because the HP 2 1 00A only has 16 bit data pathways , four

write cycles are required to s et up each register . The HP 21 00A microcode

provides a load capab ility regis ter ins truction of the type discuss ed in
Chap ter 5 .

A capab ility regis ter may be used as an operand of any of the

HP 2 1 00A memory reference ins tructions . When used, the 3 1 bit address is

treated as a paged virtual a�dress . The displacement f ield is checked

agains t the length f ield , and an interrupt is sent to the HP 2 100A if a

violat ion occurs . If the mode of access is contrary to the read or write

bits , or the kernel bit is s et and the p rocessor is not in kernel mode ,

or a regis ter is inval id , an interrupt is sent to the HP 2100A .

The d isplacement held in the reg is ter may be modif ied by two

different methods . In the first , a small cons tant offset in the range 0

� 7 may be dynamically added to the value in the register . Alternatively

a value held in a modif ier regis ter can be used to index into a segment

def ined by a capab il ity register .

l·1·!·1·1· The Modifier Regis ters

The intermediat e processor provides each process with eight

mod if ier regis-ters . A modif ier may be combined with a capab ility

regis t er to dynamically address data relative to the capab ility . The

mod if ier may be treated as �ontaining either a word off set or a byte

offset . If a word off set is specif ied , the cont ents of the displacement

fie ld of the capability is added to the modif ier and , subj ect to checks

on the length field and the access field , a word of data is ref erenced .

If a byte o ffs et is s pecif ied , the modif ier is converted to a word

off set and the des ignated byt e is transferred to or from store .

Mod if ier reg ist ers are particularly useful f or s earching and

scanning through segments of store . A set of associated counter

registers assists in counting loop iterat ions .

CHAPTER 7 AN IMPLEMENTATION

- 145 -

1·1 ·1.·1·1 · The Counter ·Registers

Associated with each of the 8 mod if ier reg is ters is a counter
register . These regis ters may be set to an initial value and us ed as

loop cont rol regis ters . Special ins tructions are provided by the

intermed iate processor for manipulating a mod if ier and as sociated

counter as fo llows :

(1) set the counter regis ter to a value
s et the mod if ier to zero .

This ins truc tion is useful for ini tializing a loop count er .

(2) add 1 to a count er register
add 1 to a modif ier regis ter
return the contents of the counter .

This ins truction may be used for keeping track of the number of
loop iterations performed whil st stepp ing through a segment .

1·1·1.·l•i• Extra Capability Regis ters

Special capab ility regis ter s are provided for address ing code , a

frame of s calers on the stack , a set of cons tants and the HP 2 1 00A
address links . These items are addressed by extra capab ility regis ters ,

rather than the 16 general capab ility registers , because of

peculiarit ies of the HP2 1 00 proces sor and for ef f iciency reasons , and

consequent ly d iffer s light ly in format to the general capability

regis ters .

The regis ter used for address ing code is formed by the

concatenation of the HP 2 1 00A program counter with a code address space

regis ter . The code regis ter dif fers from the capab ility regis ters by not

checking the bounds of the ref erence and also by not checking the access

rights . When the processor was f irst built , the software group

as s ociated wi th the MONADS proj ect decided that all the code of a
subsys tem should res ide in a large single unit within the code addres s

space . Consequently , bounds checking was not required , and could be

safely removed . Subsequent work has revealed that this is not

sat isfactory , and that code shou ld be cons truct ed from p rotected

segment s . In the new scheme , the code address space regis ter would be

CHAPTER 7 AN IMPLEMENTATION

- 14 6 -

formed from one of the general capability registers . Similarly , because

no mechanism allows a program to write to its own code address space ,

there is no need to validate the access rights . Thus , code is not

addressed by the capab ility regis t_ers more for his torical reasons than
any logi cal reasons .

Three capab ility regis ters are used for address ing the process
stack ; one def ines the top of the computational area, and the o ther two

def ine local variab le stack frames . Whilst logically the same format as

the general capability regis ters , these three registers differ s lightly

in phys ical format . Because all requi re the same address space number ,

namely the current stack address space number , they may share the one

regis ter .

Another capab ility regis ter allows a program to directly address up

to 5 1 2 constants without the need for a modif ier register . Because only

a small cons tant off set may be specif ied from a capab ility regis ter

(i . e . 0-7) , modif ier registers must often be us ed to address scalers in

large segments . The offset of the scaler can be held in the cons tants

segment , which can then be addressed via the special constant capab ili ty

regis ter . Because of the special nature of these cons tants , a full

capability regi ster is not required . In a processor which allowed a

larger cons tant off set relative to the start of a segment this

would not be required , and is only need ed because of

address ing range of the HP2100A source processor .

regist er

the small

The last special capability register allows a program to address up

to 5 1 2 address links . Thes e links are required by the HP 2 1 00A to address

all of it s 32k word address space , and are usually only needed when an

ins truction wishes to trans fer control out of the leaf in whic� it

res ides . Because of their special signif icance , and the way that they

are addressed , a general capab ility regis ter is not required . In a

processor which did not require address links this regis ter would not be

needed .

1·1·!·1·1 · Summary

The intermediate processor allows a program to address the virtual

space by e ither the 16 capab ility regi sters or the s ix extra capab ili ty

regis t ers . No other address ing mechanisms exis t . The six extra

CHAPTER 7 AN IMPLEMENTATION

- 14 7 -

addres s ing regis ters diff er only in physical format f rom the 16

capab ility registers , mos tly because of the address ing res tr.ictions of

the HP 2 10 0 • Accordingly , the intermediate processor may be considered a

real imp lementat ion of the model cited in Chap ter s . The processor also

po3sess es a number of other features which ass ist the MONADS software ,

which we will now describe .

Z ·l ·l ·-� · Process Changes

All of the regis ters des cribed so far are held in an internal

" ·?-gister f ile of the intermediate processor . Most of these registers
pertain to a part icular process . . . ·

In an operating sys tem which app lies the in-process technique even

to j ob management (Ramamohanarao , 1 9 80) , such as the MONADS system, the

number of processes present at any time is quite small , ·as· no other

sys tem process es exist . Consequently , the MONADS II hardware currently

provides 1 6 sets of regis ters (although this number is eas ily expanded) .

When · a p rocess swi tch occurs , an intermediate p rocessor instruction

switches all of the regis ters , allowing very eff icient process changes

to be execut ed .

l·l·l·.i· The Kernel

Embedded in the intermediate processor is support for the MONADS

hardware kernel (Rosenberg , 1 979 ; Wallis , 1 980) . This body of code is

respons ible for providing high level support functions for the sof tware ,

for managing I /O func tions , for memory management and for responding to

int errupts . The kernel code is ac tivated when the processor enters

kernel mode . The intermed iate p roces s or as sumes that the kernel code is

held in dddress space number 1 , and a software convent ion dedicates

process register s et zero to the kernel .

l·l·!·1· Control Registers

The intermediate process or includes a number of other regis t ers

which are required by the operating system . A mask regist ers returns the

cause of the las t violation int errup t . A number of time regist ers

provide the time s ince boots trap and p rocess time limits . A reg ister

which counts the number of ins tructions executed ass is t s in monitoring

proces s behaviour .

CHAPTER 7 AN IlfPLEMENTATION

- 148 -

l ·l ·l·�· Additional Features

Whilst we have now des cribed the most important features of the

intermediate p rocessor , a number of other supp ort features are also

provided . These are des cribed in detail in Appendix A. In addition , a

large amount of HP 2 1 00A microcode provides instructions , including load

capab ility reg is ter , and these are dis cussed in Wallis (1 980) .

1 ·1·1 · Addres s Mapping

It will be recalled from Chap ter 6 that the technique proposed in

the proces s or enhancement model for address ing extens ions to the source

hardware (e .g . capab ility regis ters) involves sett ing as ide certain
address es in the source p roces sor

,
s address space which are

reinterpret ed by the intermediate processor .

The address mapping calculations are performed on a 1 6 bit HP21 00A

address , c onstructed f rom the 1 5 bits word address and an indirect b it

as the 1 6 th bit . The divis ion chosen is as fo llows :

0 - 777b

lOOOb - 1 3 7 7b

1400b - 2000b

2000b - 76 7 7 7b

76000b - 7 7 7 7 7b

frame relative to cons tant capab ility register

frame relat ive to stack capab ility regis ter 1

frame relative to stack capab ility register 2

code space , relative to code capab ility regis ter

special control leaf . This leaf contains access

pathways to all of the MONADS II regis ters and

address ing modes

lOOOOOb - 100 7 7 7b frame relat ive to links capab ility regis ter

1 0 1 000b - 1 7 77 7 7b ind'irect forms of address es l OOOb - 7 7 7 7 7b

Note : The charac ter
,
b

,
denotes the use of the octal

number system .

Us ing this allocation , the HP21 00A memory reference ins tructions

can easily address the cons tants , links and s tack f rames by s et ting the

base leaf bit to zero . To simp lify addres s ing the special control leaf ,

the HP 2 100A has been mod if ied so that any ins truction with the current

CHAPTER 7 AN IMPLEMENTATION

- 149 -

leaf bit set , except the jump ins truction , produces an address in the

special control leaf rather than the current leaf . Thus , the

base/current leaf bit of the ins truction is reinterpreted as a base or

special leaf b it . Because it is not sens ible for data instructions to

address the code space , the current leaf mode is only required for jump

instructions . In addition , the special cont rol leaf , like any leaf , may
be addressed via a link word .

The interpretations of the addresses within the special control

leaf vary great ly , and are found in Appendix B . Access to all the

capab ility regis ters , modif iers , counters and control regis ters is

gained through this leaf . In addition, access to the memory via the

capab ility regis ters and stack regis ters may be gained through this

leaf . The next s ection examines the imp lementation of the intermediate
processor .

l ·l·l· Implementation Details

l ·1 ·1 ·l · The Intermediate Processor � Structure

The intermediate processor is based around a 1 6 bit bi-directional

data bus , as shown in Figure 7 . 2 . Attached to the bus are a number of

units , namely :

(1) Various ind ividual dedicated registers (shaded lines in

Figure 7 .2)

(2) A high speed arithmet ic unit and accumulator (shaded dot s

i n Figur e 7 . 2)

(3) A register f ile (unshaded in Figure 7 . 2)

Units may claim the bus for the duration of one microcycle , and

either read a 1 6 b it pattern from the bus or place a 1 6 b it pat tern on

the bus . Th e 32 bit registers are imp lemented as two , individually

addressab le , 1 6 bit regis t ers . The next section examines the role of

each of the dedicated registers .

CHAPTER 7 AN IMPLEMENTATION

-
-

comp are

CHAPTER 7

. . . .
.
.
- .

.

.
.

. .
.

. .
. . .

. . .
.

. . .
. . . .

A .L .U
.
.

.
.

.

. .
.

.
.

.
. .

.
. . .

,_J

. .
. .

. .
. '
'

I

-

s
h
i
f
t
e
r

._

c ons t ant
l i s t

-. .
a . .
c
c
u
m
u
1
a
t
0
r
f

.,
,.,

�

l./

I I I
I

- 1 50 -

/ (/ / /
HP 2 1 00A MDR <

(/ 7/ / /

f r om HP 2 1 0 0

from HP 2 1 00

to HP 2 1 00
----- >

. / / / / /
Process Numb er

/ / / /

(/ /

code address s p a ce l
- >

d isp 1a cement -:s c r ip t or: >
l7 r 7 ? 7 .(. 7 7 7r--

/ ?' / C J / / /

l(/ / 7 7 J 7 /I r;ces s des crip)-o;: ... ---->
- / / / / · to memory

manager

F igure 7 . 2 - the int e rmediate proc e s s or st ruc ture

AN IMPLEMENTATION

- 151 -

1 ·1 ·1 ·1· The Dedicated Registers

Unlike many of the registers of the MONADS II sys t em, certain

internal regist ers require dedicated hardware support . Consequently ,

these are not held in fas t register memory , but are al located individual
regis ters . Fif teen such registers exist , namely :

(1) An address space des criptor

(2) A disp lacement des crip tor

(3) An access contro l des criptor

(4) Two watchdog timer registers

(5) Two instruction counter regis ters

(6) Two display registers

(7) Two time regis ters

(8) A p rocess number register

(9) The HP 2100A memory address regis t er

(10) The HP 2 1 00A memory data register

(1 1) A v iolation mask regis ter

1·1·1·1·! · The Des criptor Regis ters

The firs t three registers , the address space des criptor , the

displacement des crip tor and the access descriptor , are used for

address ing the virtual memory . lbey can be loaded with the contents of a

capab ility register (held in the register f i le) and are always availab le

for the memory manager .

When a memory reference is reques ted , the address space descriptor

and displacement des crip tor are concatenated to form a 31 bit virtual

address . At the same time , the bit pattern held in the access regis ter

is validat ed against the mode of ac cess . The b it s et of the access

regis ter is ident ical to that of the access f ield of a capab ility

register, and thus includes read , write, kernel and inval id access bits .

CHAPTER 7 AN IMPLEMENTATION

- 1 52 -

l ·l ·1 ·1·1 · The Watchdog Timer Registers

The watchdog timer regis ters are concatenated to form a 31 bit

timer register . If the mo st significant b it is clear , the timer

decrements its value every millisecond , until zero . When a zero value is

reached , an int errupt is s ent to the HP 2100A . If the most s ignif icant

bit of the timer is set , then the count is inh ib ited . This reg is ter is

us ed to alert the operating system when a process has exhausted its time
allocation .

l·1·1·1·1· The Ins truction Counters

The two ins truction counter regis ters are concat enated to form a 32
bit .. instruction count . Each time the HP 2 1 00A enters a f etch instruction

phase the counter is incremented . This counter is useful for monitoring
process behaviour .

l ·1·1·1·.i· The Display Registers

The disp lay regis ters allow the intermediate processor to display

1 6 b it values , in octal , on the front panel of the p ro cessor . In

addit ion , one of the disp lay regis ters may act as an index reg is ter into

the register f ile .

l ·1 ·1·1·..2.· The T ime Regis ters

The time register disp lays the number of milliseconds s ince the

internal proces sor was initialized . This 32 bit count allows p rograms to

accurately time events .

l ·1 ·1 ·1 ·2· The Proces s Number Register

The proces� number regis ter is used to select which bank of the

regis ter f ile is made vis ib le . A context switch consists mainly of

changing the value held in this register .

l�l·l·l·l· The HP 2 1 00A Memory Addres s Regis ter

This regis ter is held within the HP2 1 00A and is used· to determine

which funct ion should be executed by the intermediate p roces sor . In

addit ion , the regis ter contents may be placed on the internal bus .

CHAPTER 7 AN IMPLEMENTATION

- 153 -

1·1·1 ·1•1! • � HP2 1 00A Memory Data Register

Like the memory address regis ter , the memory data reg is ter is held

in the HP 2 1 00A, and may be loaded or read by the intermediate process or .

It is this regis ter which forms the data communication pa th between the
HP 2 100A and the intermed iate processor .

1·1·1·1·.2.· The Violation Regis ter

The violation regis ter ho lds a bit map in which each bit indicates

the cause of an interrup t , which may be examined by the operating system

kernel .

1·1·1·1· The High Speed Arithmetic Unit and Accumulator

The arithmetic and log ic unit (ALU) is attached to

allows high speed arithmetic and logic operat ions

between two inputs . One of the ALU inputs is permanently

the bus , and

to be performed

tied to the

bus , whilst the other may either be connected to the accumulator , or one

of seven predefined constants . The output of the ALU is returned to the

accumulator via a shif ter . The value of the accumulator may later be

placed onto the bus .

A comparator is always ac tively comparing the two inputs of the

ALU . The ALU is capable of ADD, SUBTRACT , AND, OR operations and of

LEFT or RIGHT shif ts .

1·1·1·.! · The Register File

Most of the regis ters described in section 7 . 3 . 1 (for example the

capability registers , counter registers , etc) are held in the register

file . When a register value is reques ted , the appropriate entry is read ,

and the da ta is p lac ed onto the bus . Those regist ers which require

hardware as s is tance have their data copied from the regis ter f ile into

the dedicat ed registers .

Each bank of regis ters holds 1 2 8 x 1 6 b it values . When the proces s

number register i s al tered , a different bank in the f ile is made

vis ible . When a context change is executed , those regis ter values held

in the dedicat ed 1 5 registers are copied back to the f ile . Because the

1 28 process own regis ters are only logically switched , rather than

physi cally moved , very f ast p rocess switches are pos s ible .

CHAPTER 7 AN IMPLEMENTATION

- 1 54 -

l ·1 ·1 ·1 · The Control Unit

The intermediate processor is controlled by a micro-programmed

state machine . The cont rol store cons ists of 1024 x 24 bit micro

ins truction words , 5 1 2 of which are devoted to implementing the MONADS

II instruction s et and 5 1 2 for debugging and diagno stic instructions .

When the HP 2100A is sues a memory reques t , the HP 21 00A memory

address register is mapped into a microcode entry p oint value , and a

s tream of microcode is executed . When an end-of-ins truction micro

instruction is executed control is returned to the HP2 1 00A .

Each micro-ins truction is composed of 7 f ields for controlling bus

act ivity , ALU func tion and interrupt generation . The format is described
in Appendix C, along with the MONADS II microcode listings .

l·1·1·�· Summary

Section 7 . 3 has described the functionality and structure of the
intermediate processor . Furth er details may be found in the append ices .

7 . 4 . The Memory Manager

The intermed iate processor develops a 3 1 bit virtual address , which

must be translat ed into a main memory address . This task is performed by

the MONADS address trans lation hardware , which we now describe .

l ·i ·l· Funct ionality

l·i·l·l· Nature of the P roblem

In Chap t er 3 we des cribed the address trans lation mechanisms

commonly us ed for mapping paged (or pag ed and segment ed) virtual

addresses onto paged ma.in memories . ThP schemes were divided into four

categories : -

1 Sys tems with small virtual memories

2 Sys tems with small main memo ries

3 Sys tems with large virtual memories

4 Sys tems with very large virtual memories

The MONADS II sys tem, like other capab ility based architectures ,

belongs to the fourth category . In Chapter 4 we explained why the

CHAPTER 7 AN IMPLEMENTATION

- 1 55 -

convent ional so lutions to category 4
capability bas ed addressing schemes .

sys tems

Those

cannot be used

solutions which

in

are

ef fective , however , are associative address trans lation �chanisms , such

as those of MU6-G (although this machine is not capability bas ed) and

the IBM Sys tem/ 38 . Consequently , the MONADS II sys tem also uses an

associative t rans lation mechanism, but emp loys a different

imp lementat ion technique to the MU6 sys tem and the IBM Sys tem/ 38 .

l ·l!. ·l·l · Aims of the MONAD S I I Addres s Translation

The MONADS II address trans lator has been des igned to fulf il a
number of aims , as follows : -

The mechanism used must emp loy an as sociative technique , for

reasons exp lained in Chap ters 3 and S .

The unit mus t only hold entries for those pages of virtual

memory ac tually pres ent in main store . This criterion reduces the

number of ent ries required and makes the tab le size proportional to

the size of the main memory .

The uni t should indicate a page fault for any page not present

in memory .

The unit nrust be fas t .

The unit should be sel f contained and not require software

suppo rt for translating addresses . This is necessary so that the

limited power of the HP ? lOO source engine is not wasted on address

translation .

Operating and loading the unit should be well defined and easy

to execute in software , again to avo id was ting the power of the

HP 2 1 00 .

A large associative memory is capab le of achieving all of these

aims . However , such memory is not currently available . The MONADS II

scheme attemp ts to emulate the functions of an associative memory and

thus fulf il thes e primary alms .

CHAPTER 7 AN IMPLEMENTATION

- 1 56 -

l ·.i ·.!.·l · The MONADS I I Addres s Trans lation Hardware

The MONADS II virtual address can be interpreted as being composed
of three f ields :

page disp lacement .
an address space number, a page number and a within

The address space and page numbers are concatenated

to form a virtual page number, which must be trans lated into a main
memory page number . The displacement is removed from the virtual

addres s and forms part of the main memory address . Any address is

either trans lated into a phys ical memory address or causes a page fault
interrupt to occur .

Figure 7 . 3 shows the logical organization of the address

translator . A high speed spars ely occup ied hash table with embedded

overflow chains is used to emulate a large associat ive memory . Each

hash table entry cons is ts of a valid f ield, a virtual page number f ield ,

a main memory page number field , and a link field .

During the translation of an address , the address space and page
numbers are hashed to produce a llllif ormly dis tributed hash tab le cel l

address . The virtual page number f ield of the hash tab le entry is

compared with the virtual page number being translated . If they are

equal and if the cell is val id , the main memory page number is us ed to

address main store . The link f ield is used to form a lis t of all

virtual address es which hash to the same cell . The link f ield is

followed unti l the virtual address being searched for is found , or an

11 valid f ield

virtual main link
page II pag e II

<-

Figure 7 . 3 - the address translator

CHAPTER 7 AN IMPLEMENTATION

- 157 -

end of chain is found . We will show later that provid ing the hash tab le

is sparsely occup ied , i . e . has more cells than there are pages of

phys ical memory , this hash tab le structure emulates a large associative
memory very ef f iciently .

The ret rieval algorithm is the simplest to implement , and in the
MONADS II system it is imp lement ed entirely in hardware . Consequently

the addres s trans lator can map addresses very eff ic iently . The
insertion and deletion algorithms are more comp lex and are imp lemented

in kernel sof tware . We will now des cribe the retrieval , insertion , and
deletion algo rithms in detail .

l·i·l·i· Retrieval

Retrieval of a mapp ing cel l is performed by the address translat ion

hardware , and conforms to the algorithm provided in Figure 7 . 4 .

A cel l is used providing that it is valid and the virtual page

number in the cell corresponds to the page number being t ranslated . An

overflow chain is only followed if (a) the cell is val id , (b) an

overf low chain is pres ent , and (c) the list pertains to the cell its elf

(i .e . it is not simply part of another lis t) . Condit ion (c) is detected

by hashing the virtual page number of the cell and val idating it against

the cell address . If a virtual address is not found in the hash tab le ,

then a page fault interrup t is s ent to the proces sor .

l·i·l·2· Insertion

Insertion of a page mapp ing entry into the hash tab le is performed

when a p age is brought into main store , and is handled by the kernel

sof tware . Th e algorithm, shown in Figure 7 . 5 , is sligh tly more complex

than that of retrieval , and is divided into three cas es . First , a

mapp ing entry is being ins erted into an empty cel l . In this case the

cell is loaded with the mapp ing informat ion, made val id and the overf low

chain terminated . Second , a mapping entry is being ins erted into a cell

which has an overf low chain . In this cas e , the entry is p laced in a

free cell of the table , and is chained into the second po sition of the

current overf low chain . Third , a mapping entry is being ins erted into a

cell which is part of another overflow chain . In this case , the cell is

us ed in the same way as the f irst case , but the o ld contents of the cell

CHAPTER 7 AN IMPLEMENTATION

- 1 58 -

{form of the hash tab le }

type tab leentry = record of
begin

var :

vpn : virtual-page-number ;
valid : boo lean ;
rpn : real-page-number ;
ov : link-f ield
end ;

vpn : virtual-page-number ;
rpn: real-page-number ;
table : array [l • • s ize] of tableentry ;

begin

end .

i : = hash (vpn) ;
j : = hash (tab le [i] .vpn) ;

if j <> i or
not tab le [i] .valid then error (' page fault ') ;

while

do

table [!] .vpn <> vpn and
tab le [i] .ov <> nil
i : = table [!] .ov ;

if vpn = tab le [i] .vpn
then rpn : = table [i] .rpn
else error (' page f ault) ;

Figure 7 . 4 - the retrieval algorithm

are placed in ano ther free cell of the tab le . The overf low chain of the

foreign cell is then updated to point to the new free cell .

l·i ·l.·� · Deletion Algorithm

A map entry is deleted from the hash table wh en a page is removed

from main s to re , and is again handled by the kernel software . The

algorithm is divided into three cases , shown in Figure 7 . 6 . Firs t , the

entry being deleted is in the correct cell of the table and has no

overf low chain . In this case the cell is made inval id . Second , the

entry being deleted is in the correct cell but has an overf low l ist . In

CHAPTER 7 AN IMPLEMENTATION

- 159 -

begin

i : = hash (vpn) ;
j : = hash (table [i] .vpn)

if i <> j
then

and table [i] .valid
begin {a foreigner is in home cell }

{ insert new page and banish foreigner }
{ category 3 }

while i <> j
{banish j }

begin last j : = j ; j : = tab le [j] .ov end ;

new : = freecell ;
tab le [new] .vpn : = table [i] .vpn ;
table [new] .rpn : = table [i] .rpn ;
tab le [new] .ov : = table [i] .ov ;
table [new] .val id : = true ;
tab le [las tj] .ov : = new ;
{ load in new page }
tab le [i] .vpn : = vpn ;
table [i] .rpn : = rpn ;
tab le [i) .ov : = nil
end
else

if table [i] .valid
then begin { chain in af ter this cell }

els e

end ;

CHAPTER 7

{ category 2 }
new : = f reecell ;
table [new] .vpn : = vpn ;
tab le [new] .rpn : = rpn ;
table [new] . ov : = table [i] . ov
tab le [new] .valid : = true ;
table [i] .ov : = new
end

begin { cell is invalid }
{ category l }

tab le [i] .vpn : = vpn ;
table [i] .rpn : = rpn ;
tab le [i] .ov : = .ni l ;
table [i] .val id : = true
end ;

Figure 7 . 5 - the insertion algorithm

AN IMPLEMENTATION

begin
home : = hash (vpn) ;
i : = home ;
j : = hash (tab le [i] .vpn) ;

- 160 -

if i <> j or not tab le [i] .valid then error (' not present ') ;

{try to f ind the page in the table}

while tab le [!] .vpn <> vpn and
table [i] . ov <> nil do

begin las ti : = i ; i : = table [i] .ov end ;

if table [i] .vpn <> vpn then error ('not present ')
el se begin {page is found }

if i <> home then {page is part of list }
{ category 3 }

e lse

begin
table [las ti] .ov : =
table [!] .valid : =
end
begin {page is in
k : = table [i] .ov ;
if k <> nil then

begin

tab le [i] .ov ;
f alse

home cell }

{there is a lis t }
{ category 2 }

table [home] .vpn : = tab le [k] .vpn ;
table [home] .rpn : = table [k] .rpn ;
table [home] .ov : = tab le [k] .ov ;
table [k] .valid : = false

end .

this case ,

end
end

end
else { category 1 }

table [home] .valid : = false

Figure 7 . 6 - the deletion algorithm

the next entry of the list is copied into the head of the

liz:; t , and the old cel l made invalid . Third , the entry is found within

an overf l ow chain . In this cas e , the cell is made invalid and is

removed from the chain . The cell wh ich previously pointed to the

deleted ce ll is changed to point around the cell .

l•i•l• Implementation Details

The address translator is buil t as a stand alone piece of hardware .

The interface cons ists of an incoming virtual address , an outgoing main

memory address and a page fault signal , shown in Figure 7 . 7 .

CHAPTER 7 AN IMPLEMENTATION

<--1 page fault

------>
3 1 bit virtual
address

- 16 1 -

-------->
22 bit main
memory address

Figure 7 . 7 - the virtual address trans lat or

l ·i ·l·l · Internal Structure

The hardware cons is ts of three dis tinct components , a hashing unit ,
the hash tab le and a comparator , shown in Figure 7 . 8 . These three areas

are controlled by a fas t finite state machine , which performs the
retrieval algorithm .

l ·!!.. ·1 ·1 • Hashing !!.!!.!!
The hashing unit accepts a 22 bit virtual page number and generates

a 10 bit uniformly distribut ed index into the hash table . The current

---------------------------------------•1>
9 bit disp lacement

hashing
-> unit .-.-->

1 2
bits

ge no

10
bits

>
trol

- virtual pa
link field
access con
val id bit
foreigner b
end of cha
phys ical pag

f ield

it
in bit

e number

> comparator

3
bits

->

EQUAL ? "--> page fault
no

,.__ >
1 1 1 13

bit bit bit bits

>
>

>
>

Figure 7 . 8 - the hash tab le format

CHAPTER 7 AN IMPLEMENTATION

- 162 -

hashing unit as sumes a simp listic form and merely extracts the low order

bits of both the address space number and the page number . More comp lex

hashing algo rithms can produce a better randomising effect f or litt le

extra cost , and may be included in later vers ions of the hashing unit if
necess ary .

The hash table differs slight ly in format from the tab le des cribed
in 7 . 4 . 1 . The unit is he ld in high speed b ipolar memory , with a cyc le

time of 50 nano-seconds . Each cell of the hash tab le is 4 1 b its in size
and the current vers ion of the hardware us es 1024 cells . (This size

hash table can eas ily support the 400k bytes of main memory at tached to

the system, as we will see later } . The seven f ields of each cell are as

fo llows : -

1 virtual address ident if ier
2 phys ical page number
3 Access field
4 - valid f ield (V}
5 link field
6 f oreigner f ield (F}
7 end of chain field (E)

l·.!·1·1 ·.!. · The Virtual Address Identif ier

1 2 bits
13 bits

3 b its
1 b it

10 bits
1 bit
1 b it

This field is used to ident ify the virtual address which uses the

cell . The f ield is only 1 2 bits in length as the 10 b its used in the

hashing function need not be saved . The identity of the virtual page

may be recovered by combining the 10 bit cell address and the 1 2 b it

virtual address identif ier field . All the information held in the cel l

pertains t o this virtual address .

l·i·1·1·1· The Phys ical Page Number

This field is used to hold the page number in main memory of the

virtual page . This number is combined with the disp la cement to form a

full 2 2 bit main memory address .

l·.! ·1·1·1· Access Control Field

The acces s control f ield governs the type of access wh ich the page ,

as oppos ed to the segments within the page , may receive, such as read ,

CHAPTER 7 AN IMPLEMENTATION

- 163 -

write and kernel . This field is not normally required , because such

access checks are made by the capability registers . However, because

some of the extra capab ility regis ters lack an access control field (for

imp lementation reasons) , one is p laced in the hash table . Consequently ,

i f a segment is addressed via one of the general capab ility regis ters ,

the access right s f ie ld is validated for both the capability register

and the page of memory . If either one of these checks fails a vio lation

interrup t is generated . Thus , if s everal segments are loaded into one
page , the page access must be the union of the access rights of all of

the segments . For examp le , if a capab ility to a segment has an access

of read only , and another capab ility has an access of write only to a

diff erent segment in the same page , then the page must have both read
. and write access •

l •i ·l ·1 ·i • Valid Field

This boolean field declares a cell to be valid . When the hash
tab le is initialized , all ce lls are invalid . However , when page map

entries are loaded into the tab le , cells become valid . The hardware

ignores the contents of an invalid cell .

7 . 4 . 2 . 3 . 5 . The Link Field
- - - - - -- ---

This field contains the addres s of the next cell in a list . The

last cell of the list is linked to the head , so that the software can

find the home cel l . A special field (rather than a nil value) s igni f ies �

the end of a list .

l·i ·l·l·§.. · Foreigner Field

Because the virtual address ident if ier field does not contain all

the bits of a virtual page number , it is not poss ible to det ermine

whether a cell is part of another lis t or belongs at its current

address . The foreigner bit is s et if the virtual page number would not

hash to the cell address at which the mapping information is held .

Thus , all ce lls which are part of a l is t , except the head , are tagged as

foreign cells .

CHAPTER 7 AN IMPLEMENTATION

- 164 -

l·i ·l ·l ·l · End of Chain Field

This boo lean field declares a cel l to be at the end of a lis t . It

is required be cause no special null value is reserved for the link

field . This also allows the las t cell of a chain to be linked to the

top of the list and yet still be recognized by the hardware as the last

cel l .

l ·i ·1 ·1 ·�. Summary

The cel l format in the ac tual address translator dif fers from that

described in section 7 . 4 . 1 by the addition of the access f ield , the

foreigner field and the end of chain f ield . The foreigner f ield is

required be cause the virtual page f ield is smal ler than the size of the

virtual page number . This op timization represents a saving of 9 bits .

The end of chain field is required because no special null address is

reserved . The access field is not logically required , but is present

because some of the ext ra capability registers are not of the same

format as the 1 6 s tandard regis ters provided .

l·!!·l·!! · The Comparator

This uni t tes ts the virtual address identifier f ield , and those

bits of the virtual page number not used by the hashing func tion, f or

equality . If equal , the phys ical page number field value is used as the

trans lated page number .

l ·i ·£ ·1· The Finite State Control Machine

The hash tab le , hashing unit and comparator are cont rolled by a

small f inite state ma.chine . This machine is des igned to follow overf low

chains · and detect varivus page f ault conditions . The f lowchart shown in

Figure 7 . 9 describes the cycle of the machine .

When a virtual address requires trans lation the machine is s tart ed .

The cycle either retrieves a main memory page number from the hash

table, or exits with a page fault cond ition .

l·!!•l•.i• The Sof tware Algorithms

The algorithms used for inserting and deleting items from the hash

table are bas ically the same as those des cribed i n 7 . 4 . 1 . However ,

CHAPTER 7 AN IMPLEMENTATION

use
phys ical

page
number
f ield

translate
virtual
address

hash
virtual
page
number

- 165 -

look at cell
pointed to by
link field

cause
page
fault

Figure 7 . 9 - the hardware retrieval algorithm

because the ac tual tab le f ormat diff ers s lightly , the algorithms als o

differ s l ightly . Tile foreign bit simplifies the steps wh ich det ermine

whether a ce ll belongs at a particular address . The mod if ied algorithm

only needs to tes t the value of this field , rather than hashing the

virtual page number held in the cell . The end of chain bit must be

tes ted rather than examining the link field in order to determine if a

CHAPTER 7 AN IMPLEMENTATION

- 166 -

chain has ended . The last item in a list must be chained to the head of

lis t , so that the algorithms can find the head of any lis t . This was

previous ly determined by hashing the virtual page number held in a cell .

In all other respects , the algorithms remain unaltered .

l·!!. ·J:.·l· C ommunicating with the Hash Tab le

To the sof tware respons ible for ini tialis ing and maintaining the

data in the mapp ing hardware , the hash table and associated registers

appear in a special address space , the memory control address space

(number zero) . Values may be saved into or read f rom the various f ields

of the hash tab le by executing memory reference ins truc tions on this

address space . The contents of the hardware tables are protected by the

normal capab ility address ing mechanism . The format of the memory

control address space is defined in Appendix D .

l·!!.·J:.·�· Address Spaces !,]:_, l and !

Four of the 2-1 6 address spaces are not mapped by the hash tab le

address trans lator , but by directly indexed map tables , held in high

speed bipolar memory . Address space 1 holds the code of the kernel ,

whilst address space 2 is reserved for the kernel data . Address spaces

3 and 4 are res erved for the two DMA channels . Because the kernel

itself must hand le the page rep lacement and mapping algorithms and it

has its own locked down pages , the kernel is mapped by its own address

translator . Whil st not st rictly necessary, this decis ion simp lif ies the

memory management . Moreover , the directly indexed tab les can trans late

an address in unit time , unlike the hash table in which the t ranslation

time varies depending on the chain length . This timing consideration is

not of cons equence f or nor�al programs , but is extremely important f or

the DMA channels , which mus t receive immediate and fas t attention , when

address ing a f ast device (such as disk) . It is also desirable that the

kernel program execut e as fas t as is actually possible .

Another reason for the inclusion of the s pecial map tables is that

they signi f icant ly simp l if ied the hardware development . A base level

address translat or was availab le, and allowed the processor to execute
'kernel like ' tes t programs before the hash tab le unit was debugged .

The map tables for these address spaces are also referenced via address

space zero , the format of which is found in Appendix D .

CHAPTER 7 AN IMPLEMENTATION

- 167 -

l ·i ·l•.2. • The P eek Operation

For an eff icient implementation of the page rep lacement sof tware it

is impo rtant to determine whether a page reference wou ld cause a page

fault to occur , without ac tually generating a page fault . Whilst this
software could execu te a software ret rieval algorithm, the hardware

provides a fas t mechanism which al lows an ins truction to tes t for a page

fault . This is imp lemented by means of a special bit in the access

f ield of a capab ility regis ter , which , if set , causes the page fault

int errup t f or the ref erence to be inhibited . The program may then

examine the vio lation regis ter (see section 7 . 3 . 3 . 2 . 9) to determine

wh ether an interrup t would have result ed . For security reasons , the

peek operation only inhib its the ac tual interrup t if a fault condit ion

exis ts ; the ref erence is s till abort ed , wh ether or not the peek bit is
set .

7 . 4 . 2 . 1 0 . Performance of the Address Translator
- - - - - --

A potential danger with using · a hash table is that the number of

collis ions (or clashes) , to any one cell and the average chain length

may become unaccep tably high . Accep table per formance can , however , be

ob tained if the hash tab le is sparsely occupied (i .e . a low loading

factor) . Providing that the hashing unit generat es a uniform

distribut ion of hash keys , the expected number of probes (E) to retrieve

an item in the hash table can be calculated from:

E = 1 + a/2 wh ere a is the loading factor (Morris , 1 968)

The current version of the MONADS II proces sor us es a hash tab le

size four t imes the number of pages of phys ical memory (i .e . a = 1 /4) ,
so E = 1 + 1 /8 = 1 .1 2 5 , which is accep tably low . In a true as sociative

memory E = 1 .

The hash tab le performance is also affected by the eff iciency of

the hashing f unction , which should guarantee a uniform distribution of

hash keys . The current vers ion of hashing uni t uses a comb inat ion of

low order bits f rom both the . address space number and the page number .

Should this function yield poor results , experiments may be made with

more comp lex hashing functions , such as the one used in the IBM

CHAPTER 7 AN IMPLEMENTATION

- 1 68 -

System/38 (IBM, 1 978) .

Figure 7 . 1 0 shows the timing delays inherent in the Series II

address translation unit . It can be s een that the minimum access time

(t min) will be

t = 0 + 50 + 50 + (300 - 700) ns
min

= 400 - 800 ns

On average

t = (400 - 800) + (E-1) x 100
av

= 412 - 81 2 ns

The variation in the main memory time is dependent on the cycle stealing

of the refresh hardware f or the dynamic memories us ed .

To maintain acceptab le performance , the value E must be kep t low .

Thus when additional ma in memory is added the hash table size must be

expanded proportionally . This increas e in s ize

affect any o f the f ie lds within the hash tab le .

does not necessarily

If the hash table is
divided into blocks , links may be res tricted to the ' block ' of hash

table in which they exist .

The MONADS II virtual address s ize is only 3 1 bits in size , whereas

other capability processors use a much larger address . If the MONADS II

address were expanded to 6 4 b its , the size of each cell in the hash

tab le would increase from 4 1 b its to 73 bits . This increase is less

hashing
function

�>
..-

h
_
a
_
s
_
h
--�

> table

link chain

comparator
-> >

main
memory

I <- 0 ns ---> I <- 50 ns -> I <-- 50 ns ----> l <-300 - 700 ns-> I

Figure 7 . 10 - the address translator timing

CHAPTER 7 AN IMPLEMENTATION

- 1 69 -

s ignif icant than doubling the size of main memory , i .e . adding a bit to

the hash key . Thus , the address trans lator is relatively unaf fected by

changes in virtual address size .

Performance of the hash tab le may be optimized by overlapping the

comparison of the virtual page identif ier in the current cell to the

virtual page number , with the fetch of the cell linked to the current

cell . This op timization, however , has little ef fect if the value E- 1 is

low .

l·!!.. ·1· Alternative Solutions

Only two other computers have att empted to translate long virtual

address es without using the conventional solutions , one is the MU6-G

processor des cribed in Chapter 3 (which provides a hardware ass ociative

address t ranslator unit) and the IBM System/ 38 , des cribed in Chap ter 4

(which uses a pair of main memory hash tab les with firmware ass istance) •

The MU6-G p roces sor us es a s erial as sociative memory , with an

average retrieval time of 6 micro-seconds . This unaccep tab ly high time

is reduced by a small pseudo-associative cache memory . The IBM

Sys tem/38 uses a microcoded loop to search a hash tab le for a page table

entry which , s ince the tab les are held in main memory , is bounded in

time by the memory access time . Again , this trans lat ion process is

augmented by a small pseudo-assoc iative cache memory . Thus , both these

processors require two address trans lator units , and microcode (or

hardware) f or loading and maintaining the cache memories .

The MONADS II processor uses one hardware address translator , and

needs no microcode ass istance for trans lating address es . Moreover , the

techno�ogy used in the cons truc tion of the hash tab le , and thus the

cost , is little more than that of the cache memo ries us ed by the other

two sys tems . Thus , the overall complexity of the MONADS I I sys tem is

less than either the MU6-G or the IBM System/38 .

Not only is the technology of the hash table the same as that of

the cache memo ries , but the overf low chains are contained within the

table , without the need to address the slower associative tab les .

Consequently, one could expect the MONADS II t ranslati on unit t o

offer a t leas t equal , or superior performance to the MU6-G o r Sys t em/38

CHAPTER 7 AN IMPLEMENTATION

- 170 -

translation units .

l·i·i· Conclus ions

We have now described both the functionality and implementation of
the MONADS II virtual address t ranslator . We have demonstrated that

this unit can offer equal or superior performance to the other available

units (MU6-G and IBM System/ 38) and is slightly simp ler in des ign . The

technique chosen can eas ily cater for a larger virtual address , without

s ignifi cant increase in cost and no real increase in comp lexity . The

unit fulf ils its aims (section 7 . 4 . 1 . 2)

it us es an ass ociative address translation technique

it only maps " pages of virtual memory which are present in
mains tore

the unit generates a page fault for any page not present in
mains tore

the unit is fas t

so ftware ass is tance is only required for performing insertions

and deletions . Whil st these algorithms are more comp lex than the

retrieval algorithms , they are only performed when the processor

d isc overs a page fault , an inherently s low operation which can be

p erformed in paral lel with the insertion or deletion

load ing the address translator is e�sy .

The next maj or sec tion examines the changes made to the HP 2100

source processor .

1•1 • Modif ications _!2 the HP2 1 00A Hardware

One of the advantages of the enhancement technique des cribed in

Chapter 6 is that it requires very few changes to the hardware of the

source p rocesso r . In reality , s ix small modif ications to the HP 2 100

were required , partly for log ical reasons and partly to enhance the

eff iciency of the processor . These changes were not comp lex .

CHAPTER 7 AN IMPLEMENTATION

- 1 71 -

l·.2.·l· � Memory Controller

The bas ic HP2100A processor is divided into three areas ; the

central engine , the input-ou tput system and the memory unit . The lat ter

consists of up to 32 k words of core memory , many driver cards and a

logic controller card . The logic cont roller card generates the timing

signals for the core stack , and also contains the memory data and

address registers .

The controller card was replaced by a plug compatible , but much

simpler , card which int erfaces the HP 2 1 00 to the intermediate processor .

The memory data and address regis ters are made available to the

int ermediate processor via an interface cable , which connects the

processor to the HP2100A .

l•.2.•1.• DMA Logic

Unfortunately , the DMA sys tem used by the HP2100 has full knowledge

of the timing and nature of the processor . When the DMA system requires

a cycle , it reques ts the next processor transfer cycle , and without

checking the respons e as sumes that the cycle may be us ed . It als o

manipulates the maj or processor buses when transferring data . Thus ,

when the intermediate processor interface was introduced the DMA logic

was also changed to accommodate the new logic . The DMA log ic bypass es
the intermediate proces sor , and int erfaces directly to the memory

manager .

l ·1 ·1 · More Writable Control Store

The bas ic HP2 1 00 only allows 5 1 2 x 24 bit words of writable contro l

store . In order to eff iciently imp lement the MONADS operating sys tem ,

the size o f the control s tore was expanded to 4096 wc�ds . This

mod ification was carried out by Dr . J . Rosenberg .

l·1·i· Mapping to Top Leaf

The HP 2 1 00 memory reference ins tructions can eas ily address the

bas e leaf and the current instruction leaf . Whilst special address

interpretations are placed on the base leaf , it was not sens ible for

da ta manipulation instructions to address the current instruction leaf ,

as this only contains code in the new architecture . To s imp lify the

CHAPTER 7 AN IMPLEMENTATION

- 172 -

address ing of the top leaf , which has very many address interpretations ,

the current leaf data ins tructions were altered to address the top leaf .

Only the control instructions , such as j umps , can address the current

code leaf .

l ·1·1· Interrupt Logic

The interrup t logic of the HP 2 100 was modif ied to allow the

intermediate p rocessor to abort an instruction af ter a fatal error .

This allowed page faults to be trapped correctly . In addition , the

int errup t vector was moved from the base leaf to the f irst leaf of the

kernel code space .

l•1•.§. • Asynchronous Interface

The bas ic HP2 1 00 assumes a standard delay time for the core memory
cycle time . Because the intermediate processor takes a variable amount

of time to execute dif ferent sized instructions , the HP 2100 was modif ied
to allow it to wait for a memory acknowledge signal befo re continuing .

l·1·l· Summary

Most of the changes made to the HP 2 100 were relat ively small and

easy to imp lement . The mo st comp lex change was to the DMA logic , mainly

because of its poor initial des ign .

1·2.. · S of tware Packages

During the development of the MONADS II hardware a number of

software packages were developed by the author . These packages either

formed an integral part of the processor , such as the microcode for the

intermediate proces sor , or ass � sted the cons truction of the hardware and

f irmware . Th is section wil l brief ly describe these modules .

7 . 6 . 1 . The Intermediate Processor Microcode
- - -

The 1024 words of intermediate processor microcode are generated

from a microcode source f ile of about 1 400 lines of code . This

microcode is resp ons ible for executing the target instruction set ,

performing diagnostic functions and for conf iguring the processor map

tab les prior to bootstrap . A full lis ting of the code is found in

Appendix C .

CHAPTER 7 AN IMPLEMENTATION

- 1 73 -

l ·&. ·1· The Microcode Ass embler

The intermediate processor microcode is assembled by a microcode

assemb ler , written f or the HP 2100A minicomputer running under the DO S-M

system . The assemb ler generates a compiled listing , code f iles , a

symbol table lis ting and an entry point lis ting .

l ·&. ·l · The B ootstrap

A number of levels of boots trap are provided . The lowest level is

imp lemented as a microcoded instruction in the intermediate proces sor .
The next level is held in read only memory of the virtual space , and is
written in assembler . The last level is held on d isk, and loads the
operating sys tem into memory • The middle level bootstrap may also
communicate with another HP 2 100 and act as a fast link monitor .

l·&.·!!.. · Utilities

Various utilities were developed , such as a PROM programmer

program, and a signal cross ref erence generator .

l·l· Conclusion

This section concludes the description of the MJNADS II sys tem, and

demonstrates that the system has fulfilled i ts primary aims .

(1) The intermediate processor provides a programmer with 1 6

capability registers . Software has been written which uses these

regis ters and microcode exis t s which maps the regis ters onto the MONADS

addres s ing s tructure . The registers are held in a fast register f ile ,

and receive hardware ass is tance when they are used (for examp le , the

access descriptor register checks that the mode of access is not

contravened .) 'nlus , it is possible to ef f ic iently implement the

address ing s tructure . All the HP 2 1 00 memory reference instructions can

address the 3 1 b it virtual space by using only the 4 bit capab ili ty

regis ter number . Thus , the regis ters can be eff iciently address ed .

Moreover , whilst the intermediate processor provides extra regis t ers for

address ing code and the s tack, some of the 16 capability reg is t ers cou ld

have eas ily been dedicated for these purposes . Consequent ly , the M>NADS

II sys t em demons trates the p racticality of the capability reg is t er

address ing s cheme proposed in Chapter 5 .

CHAPTER 7 AN IMPLEMENTATION

- 174 -

(2) Software is at this present time being developed for the MONADS

II processor . The repertoire of programs cons ists of a macro assembler ,

a Pascal compiler and a Modula compiler , and many tes t and diagnos tic

programs . An operating sys tem is being developed which will allow the
system to be used as a development tes tbed . Since the �l>NADS II sys tem

is basically a scaled down imp lementation of the MONADS architecture, it

may be used to develop sof tware us ing the MONADS concep ts .

(3) The enhancement technique developed in Chap ter 6 has clearly

been demons trated as prac tical and powerful . The MONADS II processor is

based around a very simp le 1 6 bit minicomputer and yet it provides an

advanced architecture to the assembler level programmer . The building

of the intermediate proces sor was demonst rably simp ler than developing a

totally new processor .

(4) The MONADS address translation hardware is capable of mapping

very large virtual address es onto main memory addresses quickly and

simp ly . The scheme compares very favourably with al ternative so lut ions .

CHAPTER 7 AN IMPLEMENTATION

- 175 -

8 . C onclus ion

This chapter serves three purposes . First , we discuss some of the

limitations of the MONADS I I computer system . Second , we ind icate areas

in which future research will be useful . Third , we evaluate the

s ignif icance of the work describ ed in this thes is .

8 . 1 . L imitations of the MONADS II System

The MONADS

implementat ion

of limitations .

removed .

II computer sys tem, while representing a real

of the two models developed in this thes is , has a number

We now discuss these, and cons ider how they might be

�·l·l· The Address Size

As des cribed in Chapter 7 , the MONADS II address is 31 bits long ,

cons isting of a 1 6 b it addr ess space number and a 1 5 b it disp lacement .

While this may be suff icient for a pilot sys tem, a production

environment would require both many more address spaces , and much larger

address spaces •

A small address space number means that the number of address

spaces will be exhausted quite quickly , and old address space numbers

must be reused . As exp lained in Chapter S , this requires that all

capabili ties f or these address spaces be found and deleted before the

number can be safely reass igned . Whilst this is less serious in the

MONADS sys tem tha� in other capab ility bas ed computers (because

capab il it ies are not freely dis tributed) it is still inconvenient and

time consuming . A larger address space number allows many more address

spaces to be allocated before they must be reused .

The maximum size of an address space sho�ld be large enough to hold

the data of mos t large segments (e .g . containing f ile data) and only

very large s egments should be composed of many address spaces . If the
address space s ize is too smal l , then many address spaces are required

to contain the da ta f rom large s egments . This then complicates the way

that data is addressed , and uses many more address space numbers than

are logically required .

If the MONADS II computer sys tem were being redes igned both of

these res t rict ions could be removed . The address space number held in

CHAPTER 8 CONCLUSION

- 1 76 -

the capab ility registers could be expanded (e .g . to 32 bits) and the

within address space disp lacement (in capab ility registers and mod if ier

reg is ters) could also be expanded (e .g . to 3 1 bits) . If this we re done a

res t riction would need to be placed on code address spaces , as the

Hewlett Packard can only fetch code from a 32k word space . All other
address spaces would ne ed to be address ed via capab ility reg is ters and

modif ier registers , in the same way as they are currently referenced .

A larger address spa ce would al so increase the size of the address

translation unit . The unit would need to ho ld an extra 32 bits of

informa ti on per ce ll because of the larger virtual address . This is a

small increase in cos t (less than twice the size) for a very large

increase in the size of the virtual space (from 2-31 to 2-63 words) .

Later we will ment ion a new version of the MONADS II computer which

imp lements one of these enhancements namely , more address spaces .

Spec ial Capability Regis ters

It will recal led that the MONADS II hardware provides 16 general

capab ility regis ters and 6 special registers . These s ix special

regis ters (for address ing the process stack , code , inter-leaf links and

code related data) were imp lemented dif ferently partly for historical

reasons and partly because of peculiarities of the HP21 00A, rather than

for theoretical reasons , and could eas ily have been constructed from

general capab ility regis t ers . In a new imp lementation , all of these

would be general capability registers , as described in Chap ter 5 .
Without these extra regis ters the address ing mechanism is completely

uniform, which simplif ies the construction of the hardware , removes the

need for acces s rights at the page level and also simplif ies the code

genera�ion uhase of the comp ilers .

�·!·1· The Hashing Function

As des cribed in Chapter 7 , the hashing funct ion used in the

prototype address trans lation unit of MONADS II is very simp le , and it

is not expected that this function will yield a particularly uniform

dis t ribution of hash keys . Because of this , a more comp lex hashing

function (such as des cribed in (IBM , 1 9 7 8) and (Ramamohanarao and

Sacks-Davis , 1 9 81)) could eas ily be imp lement ed , without increas ing the

total address translation time .

'

CHAPTER 8 CONCLUSION

- 1 77 -

�·l·i· Process or Speed

The MONADS II sys tem, while far fas ter than a sof tware or firmware

imp lementation (as discuss ed in Chap ter 6) , is st ill s lower than

des ired . The most signif icant cause for this lack of speed is the
current imp lementation of the int ermediate process or, which us es 300

nano-second Programmab le Read Only Memories to hold its microcode . This

limits the micro-cycle time to 300 nano-seconds . This microcode cou ld

instead be placed in fas ter 7 0 nano-second Read Only Memories , which

would allow the p rocessor to achieve a micro-cycle time of about 1 50

nano-seconds . (A decrease to 7 0 nano-seconds is not possible because of

o�her timing const raints .) Such a mod if ication would improve the speed

of the MONADS II sys tem signif icantly , because all memory traff ic

proceeds via the intermediate proces sor .

�·!·1· The HP2 1 00A Instruction Set

While there were many advantages in inheriting the HP2 100A bas ic

instruction s et in terms of speed of imp lementation (see Chap ter 6) ,

this ins truction set is not ideally suited to the sof tware methodo lo�y

of the MONADS proj ect . The only solution to this problem is to build a

new processor , which was not a viable alternative at the time that

MONADS I I was built . Since that time funds have become available and a

new processor , MONADS III , which we wil l briefly dis cuss later , is being

des igned .

�·!·�· Page Replacement

The MONADS II process or provides no support for page replacement

algo rithms (e . g . in the form of ' use ' b its or ' modify ' bits) . Thus , the

operating sys tem r as no knowledge of which pages have been mod ified , or
which pages are being used , and mus t use a random replacement algorithm .

Whilst it is pos s ible to simulate some of this information in software ,

as in the VAX 1 1 /780 (Digital Equipment Corp . , 197 9) , this is an

expensive proces s , and would consume much of the power of the HP 2 1 00A .

Consequently , it was decided that special hardware would be buil t when

time was available , and that it was more impo rtant to have a s low, but

complete , sys tem than an impress ive but incomplet e one . Taking

advantage of the concep t of the hardware kernel (Rosenberg , 1 97 9 ;

Rosenberg and Keedy , 1 978) , this hardware could then be introduced at a

CHAPTER 8 CONCLUSION

- 178 -

lat er s tage , without any ef fect on the main operating system software

other than improved performance .

!•l•l• O ffsets f rom Capability Regis ters

Another limitation of the MONADS II hardware is the size of literal

of fsets which may be us ed with capability registers . Because this is

only three bits , only a small frame of words may be addressed without

using a mod if ier register . Ideally this of fs et should be as large as the

size of an address space , however , there are not enough free bits in the

memory ref erence ins tructions . The only solution to this prob lem is to

create some new HP2 1 00 memory reference ins tructions which are two words

long . In this cas e the f irst word could contain the op eration code , and

the second word could contain a 1 6 b it literal off set •

.!•1.• Future Research

In this section we brief ly ind icate the direction in wh ich the
research des crib ed in this thes is may be extended .

!•£•1• MONADS III

Because of the limitations of the MONADS II sys tem a grant was

requested (ARGC Grant Number FB0/ 1 5 1 91) to build a totally new computer

sys tem, cal led MONADS III (Rosenberg , Rowe and Keedy , 1982 ; Keedy and

Rosenberg , 1 9 82a , 1 9 82b) . The role of this processor is diff erent from

MONADS II . It is des igned to support a large number of terminals and

provide a fast and power ful computer u tility . Eventually the MONADS II

processor wil l form part of the MONADS III sys tem, and provide its

communications . facilities . Mos t of the software for MONADS III will

initially be prepared on the MONADS II sys tem .

Unfortunately, the design of the MONADS III processor has been

suspended due to the res ignation of the proj ect ' s chief inves tigators

and an alternative plan has been adop t ed . In order that a full system

could be realized , work was s tarted on another processor wh ich was
basically the same as the MONADS II system, b ut which removed some of

the limitations .

CHAPTER 8 CONCLUSION

- 1 79 -

�·1·1· MONADS II /1

MONADS II /2 removes some of the res trictions cited above . The

processor increas es the address space number field to 32 bits , and us es

a larger page size (10 24 words instead of 5 12) . In addition , the main

memory limit has been extended f rom a maximum of 5 1 2k bytes in MONADS II

to 2M bytes . It also provides support for more processes , and a number

of additional reg isters . In this way , MONADS II /2 is less of a p ilot

sys tem and more of a production machine . Unfortunately , it will never
achieve the power of the propos ed MONADS III .

8 . 2 . 3 . Future Work
- - -

There are a number of areas in which future research could be

directed . The MONADS II computer provides no support for the paging

software . Th is is partly becaus e there was not time to des ign such

hardware , and partly because it is not obvious what paging criteria

should be app lied to address spaces when a page must be removed from

main memory . Whilst the working set model (Denning , 1 96 8 , 1 980) is

appropriate for computational virtual memories in conventional computer

environments , it is not clear that this is the case in a system whi ch

supports a large uniform virtual memory which contains permanent data

(e .g . f iles) as well as computational data . Further work needs to be

done to det ermine the best policy for removing (and fetching) pages of a

module , and then to develop a hardware unit (in the same spirit as the

MANIAC II unit (Morris , 1 97 2)) wh ich can monitor and provide this
information . (The MONADS II sys tem already allows different page

placement po licies to be developed and evaluated because the address

translation sys tem is not concerned with the o rganization of the page

tab les � Thus , al ternative secondary storage and uage fetching techniques

may be attemp ted without affecting the hardware .)

Another appropriate topic for future work is in the area of backup

and recovery . In the event of a hardware (or software) malfunc tion , the

operating sys tem should be ab le to provide recovery of any data wh ich

may have become corrup ted . Conventional f ile sys tems provide such

features by maintaining backup and recovery information when file data

is modif ied . However , in a uniform virtual memory there is no longer a

clear dis t inction between f ile data and computat ional data , wh ich

CHAPTER 8 CONCLU SION

- 180 -

compl icat es the task of recovery .

The MONADS II operat ing sys tem provides a symbolic debugger

sub system for use in tracing errors in Pascal or Modula programs

(Dawson , 1 982) . Since the processor provides no hardware support , all

the debugger func tions are emulat ed by comp iler generated software .

Consequently , the debugger is very inefficient . The author is currently

designing hardware which detec ts when breakpoints have been reached

(either for data or code addresses) and when variab le values have
changed . This research will be reported in a separate paper (Abramson

and Ro senberg , 1 982) .

�·1 · Achievement s and Significance

The mos t signif icant achievements of this thes is are threefold .

First , we have developed a new hardware model for capability based
address ing . Second , we have developed a general technique which can be

used to imp lement comp lex and novel computer architec tures quickly and
cheaply . Th ird , we have implemented a real computer sys tem which

demons trat es the viability of these ideas .

�·1·!· The Addressing Model

In Chap ter 1 we stated that one of the obj ectives of this thesis

was to p rovide a hardware unit which allowed information to be shared

and protected in a uniform, flexib le and ef f icient manner . We can now

determine if these obj ectives have been met .

: �·1·!·!· Sharing of Data and Code

Because of the clear dis tinction between hardware and sys tem

firmwa�e th � new model does not enforce any particular sha ring polic:1 ,

but leaves this to the firmware which manipulates capab ilities . If a

module has a capab ility for a segment in a register , then it has access

to the segment . The firmware must determine whether this capab ility may

be placed in a register . In the MONADS system, sharing of data and code

is allowed only through the sharing of the modules themselves , in

accordance wi th the information hiding princip le . Thus s egment

capab ilities are never pas s ed freely around the sys tem (Keedy , 1982c) ,

as is the case in many oth er capab ility systems , such as Hydra , StarO S ,

etc . Because the hardware is not concerned with the management of

CHAPTER 8 CONCLUSION

- 181 -

capabili ties it supports either method of sharing .

!·l·l·l.· Protection of Informat ion .

Since the model uses a capab il ity based address ing scheme
information can be protected from inadvertent corrup tion either by the
owner or another user . A module may only address a segment if the
capab ility has been loaded into a capab ility regis ter . As this is
controlled by sys tem firmware , segments are protected . The access rights

f ield of the capability only allows val id operations to be performed on

segments . For example , code segments and read only data segments can be
pro tec ted from being mod if ied . In addition , since the model has
attrac tive refinement properties , it is possible to res tric t access to a

particular part of a reference parameter .

!·1·1·1· Flexibili'ty

The model proposed in this thes is is flexible because it conf ines
the use of hardware (which is diff icult to change) to mechanisms which

(for eff iciency reasons) have to be fas t , and leaves all important

policy decisions to firmware (which is relatively easy to modify) . We

have demons trated this flexib ility , both on paper and by practical
experience . In Chap ter 5 we proposed mappings of various sof tware

structures onto the hardware , and each time the result was a unif orm and

eff icient address ing struc ture . In addition, the hardware f or MONADS II

was bui lt and tes ted before the MONADS software group had def ined the
1format and nature of the capab ility structure of a " module . This

struc ture was then mapped onto the hardware without dif f iculty , which
was a realis tic and practical demonstration of the f lexib ility of the
hardware .

!·l·l·i· Efficiency

The model proposed in Chapter 5 is eff ic ient because it places

those operations which must occur quickly in hardware , and uses firmware

to support those which do not . Thus , capab ilities are held and used in

fast hardware reg isters . The virtual address es are then mapp ed onto main

memory addresses by a hardware address trans lator . The struc ture of the

capability lists , and operations on high level obj ects , are left to the

high level f irmware as these do not requi re the same level of ef ficiency

CHAPTER 8 CONCLUSION

- 182 -

(e .g . the cap ab ility list is only consulted when a capab ility register

is loaded) . These may then change and evolve with the software ideas .

The imp lementation of the MONADS operating system, which will support a

number of concurrent user programs , demonstrates the overall effic iency

of the propo s al .

!·1·!·2.· Unif ormity

The capab ility regis ters are the only way of address ing memory ,

thus providing one uniform method for address ing , protecting and sharing

information in the computer ut ility . This simplif ies the hardware
construc tion , the comp ilers , the hardware kernel, the main operating

sys tem and also the task of the computer user .

!•1 •1.• The Enhancement Model

Af ter we had developed the address ing model , we faced to problem of

how to produce an imp lementation with which we could evaluate its

effectivenes s . In Chap ter 6 we examined a number of alternat ives , such

as various software imp lementations , microcode techniques and some

limited hardware modif icat ions . Because of time and fis cal cons traints

we were fo rced to modify an existing computer . The enhancement model

which was developed allowed us to produce a real implementation wh ich is

efficient enough to suppo rt a number of concurrent us er programs .

The value of this model is best illustrated by considering the time

taken to design and build MONADS II . The intermediate p roces sor was

designed by the author over a period of a few months , built in about 6

weeks , and tested in about 2 weeks . The address trans lation unit , which

was not part of the intermediate processor , took about the same period

of ti�e again . Without the new imp lementation t�chnique, a totally new

processor would have been required which would have taken much more

man-power than was needed to build MONADS II . For examp le , MONADS I II

has already consumed ab out 4 man-years of effort , and has not yet been

completed •

.! •1•1• Practical Achievements

The pra c tical achievements of this research work are embodied in

the MONADS II system, which is a comp lete working computer utility . As

described in Chap ter 7 , the MONADS II sys tem cons is ts mainly of the

CHAPTER 8 CONCLUSION

- 183 -

central p roces sor , main memory , 80 Mbytes of disk and a terminal

multip lexor which can be connected to 16 terminals . This conf iguration
can support a number of concurrent us er programs .

Af ter comp letion of the hardware , a hardware kernel was writ ten

(Wa llis , 1 980) . This body of code res ides partly in firmware and partly

in the kernel address space of the processor . It provides a higher level

interf ace to the hardware f or the main operating sys tem . At this s tage

of the proj ect , the primit ive components of an operating sys tem have

been developed , together wi th a command line interpreter (Patterson ,

1 98 1) . Compilers have already been developed for assembly code (Rees ,

1 9 81) , Modula 2 (Wirth , 1 9 77) and Pas cal, and programs written in any of

these languages can be executed directly on the MONADS II sys tem . In

addition , a C comp iler is currently been written (Bird , 1 982) . At

present all compilers and ass emblers execute on a VAX 1 1 /780 processor ,
and code is down-line loaded to MONADS II . It is expec ted that shortly

the compilers will execut e directly under the MONADS II operating

system .

Once the

comp ilers are

main operating

resident on the

sys tem has been comp leted , and the

MONADS II processor , the system will

support a sof tware tes t and development environment similar in nature to

other commercial systems .

� ·i. Final Remarks

This thesis has made a contribution in the area of hardware support

us ed in capab ility bas ed computers . It provides a hardware framework

around which a sof tware des igner may experiment with different

capability struc tures . The widespread avail�bility of a machine which

imp leme1; ts the memory and capab ility features of this 100del (e .g . with
V .L . S . I . technology) would greatly aid research into operating systems

in bo th univers ities and industry .

The thes is has also demonstrated a technique which should allow

dif ferent computer architectures to be evaluated without the need f or

many man years of ef fort by expert staff . Once new ideas have been

evaluated they may then become the framework f or new computer designs .

CHAPTER 8 CONCLUSION

- A l -

Appendix A

This append ix def ines the new operands which are executed by the
intermediate p roces sor . Most of these operands can be us ed with any of

the HP 2 100A memory reference ins tructions , and are al l located in the
top leaf of the address space . Some operands are only ef fective for load

type of ins tructions (i .e . a read from the address space) whereas others
,,_

are only ef fec tive when a store type instruc tion is us ed .

Immediate load ins truction

This operand takes the 8 b it value of the address and returns it to
the HP 2 1 00A . This value is treated as a 7 bit two ' s complement integer .

The bottom b it of the address is us ed as the s ign bit . Negative numbers

are s ign extended to the full 1 6 b its . The ins truction al lows a program

to use numb ers in the range o f - 1 28 to 1 2 7 without address ing a segment

of store .

This operand uses one of the general capab ility regis ters , CRr , to
address a s egment in memory . A small constant n (in the range 0-7) may

be specif ied as an off set to the segment start address . The off set is
added to the s tart address and validated against the segment leng th

before the memory reference is execut ed .

This ope rand also uses one of the general capab ility regis ters ,

CRr, to address memory . However , the segment s tart address may be

modif ied by the contents of one of the 8 modif ier regis ters , Mm. Thus ,

the mod if ier value is added to the start address and validated against

the segment length before the segment is referenced .

This operand is the same as the previous one , except the mod if ier

is treat ed as a byte count rather than a word count . The modif ier value

is halved before it is added to the segment start address . When the word

of memory is addres s ed , either the left or the right byte of the word is

used depending on the leas t signif icant bit of the modif ier regis t er .

APPENDIX A IN STRUCTION SET

- A2 -

CRr . subsys tem

This operand is used to address the sub sys tem field of a capab il ity
register . This f ield has not been described in the thesis , and is no

longer used by the hardware . When the capab il ity regis ters were first

des igned , this f ield held the identity of the subsystem which owned the

cont ents of a capab il ity regis ter . Validation checks were performed to
only allow the sub system which had originally loaded a register to use
the regis ter . This removed the need to invalidate reg is ters when a
domain change was executed .

CRr .address-space-number

This operand is used to address the address space field of a
capab ility register .

CRr .displacement

This operand is used to address the contents of the displacement
f ield of a capab ility register .

f!!_ . segment-limit

This operand is used to address the segment limit field of the

capab ility register .

CRr .access-rights (decrease only)

This operand allows a program to reduce the set of access rights

within a capab ility register . When a store operation' is performed on

this address , the data pattern from the HP2 100A is ' anded ' with the

contents of the access rights f ield , reducing the allowed access .

CRr . access-r!ghts

This operand addresses the access rights field of a capab ility

register .

STACK . address-space-number

This operand is used for address ing the contents of the STACK

address space number register . This register is used to form addresses

in the process stack , and is combined with various displacement and

length register to form a one of the special capab ility registers .

APPENDIX A IN STRUCTION SET

- A3 -

,!l(T)

This operand is used to access scaler variab les held on the process
s tack . A virtual address is formed from the displacement in the T

regis ter (Top of stack) and the STACK address space number regis ter . The
value n may be us ed to modify the displacement . Unlike the general

capab il ity regis ters , this value may be in the range 0-3 1 , and is
subtracted f rom the disp la cement .

T . limit

This operand is used to address the limit field of the Top of stack
capab ility register . No stack ref erence is allowed below this register .

+(T)

This operand performs a push operation on the process stack . The

Top of stack d isp lacement is incremented and , providing it is not below

the T . l imit reg is ter , data is saved on the stack .

(T) -

This operat ion performs a pop operation on the process stack . Data

is read f rom the current top of stack location, and then the Top of

stack disp lacement regis ter is decremented . The Top of stack

displacement reg ister is not allowed to f all below the T . limit register .

T

This operand is used for address ing the Top of stack displacement

register .

T=T+MDR
- - --

This operand is used to modify the contents of the Top of stack

displacement r egister . The value in the HP 2 100A memory data register is

added to the contents of the Top of stack regis ter in one operat ion .

Mm

This operand is used for address ing the 8 modif ier regis ter .

APPENDIX A IN STRUCTION SET

- A4 -

This ope rand is used for addres s ing the 8 counter regis ters .

This operation is only execut ed when a load type of ins truct ion is

used . The contents of counter register Cc is incremented, the contents
of mod if ier reg is ter Mc is also incremented , and the new value of the

counter register is returned . The instruction is useful for scanning

through segment s of memory .

� C c - (s tore � Cc

This operat ion is only executed when a store type of ins truc tion
is executed . Data is s aved in the counter register Cc , and the

associated mod if ier regis ter , Mc , is set to zero . This ins truction is
useful for ini tializ ing the mod if ier and loop counter regist ers .

L i .displacement

This operand is used to address the contents of the L i d isplacement
register . This reg ister def ines a frame of 25 6 words in the current

STACK address space , and forms one of the special capab ility reg is ters .

L i . limit

This operand is used to address the Li .limit reg is ter . This

register forms the limit f ie ld of the capab ility register for address ing

scalars on the L i s tack frame .

This ope rand is used to mod ify the cont ents of the L i disp lacement

register . The contents o f the memory data register is added to the

contents of the Li reg is ter .

L2 .displacement

This operand is used to address the cont ents of the L2 d isp lacement

register . This reg ister def ines a f rame of 256 words in the current

STACK address space , and forms one of the special capab ility regis ters .

APPENDIX A IN STRUCTION SET

- AS -

L 2 . limit

This operand is used to address the L2 . limit regis ter . This

register forms the limit f ield of the capab ility regis ter for addressing

scalars on the L2 s tack frame .

L2=L2+MDR
- - --

This operand is used to modify the cont ents of the L2 displacement

register . The contents of the memory data register is added to the
content s of the L2 regis ter .

CONSTANT .address-space-number

This operand is used to address the address space number of the
constant address space . It froms one of the special capab ility
regis ters .

CODE . address-space-number

This operand is used to address the address space number of the

code address space . It froms one of the special capab ility registers .

PROCESS-NUMBER

This operand is used to address the process number regis ter . When

this reg is t er is alt ered , the current process is exchanged for the new

process . All of the process own regis ters are swapped by the

intermediate processor .

CURRENT-SUB SYSTEM

This operand is used to address the current subsys tem regis ter .

This reg ister is us ed to hold the identity of the currently executing

sub sys tem . When the capab ility regis ters held a subsys tem f ield , this

regis ter was us ed for val idation purposes .

VIOLATION-MASK

This operand is used to address the violation regis ter . When the

int ermediate processor causes an interrup t , this register is loaded with

a bit map wh ich describes the cause of the int errupt .

APPENDIX A IN STRUCT ION SET

- A6 -

KERNEL-OFF

Th is operand is used to take the intermed iate processor out of

kernel mode . The kernel executes this instruction before it returns to a
user program .

PROCESS-TIME-MSW -- --

This operand is used to address the most signif icant word of the

process time limit register . This register is decremented every 2-1 6 ' th

milliseconds and if it reaches z ero an interrupt is generated .

PROCE S S-TIME-L SW ---- --- --

This operand is used to address the leas t signif icant word of the
process time limit register . This register is decremented every

millis econd and if it reaches zero the mos t signif icant word is
decremented .

INSTRUCTION-COUNTER-MSW

This operand is used to address the most signif icant

instruction

instruction .

counter

INSTRUCTION-COUNTER-L SW

reg ister . It is incremented

word

every

of the

2-1 6 ' th

This operand is used to address the least signif icant word of the

instruction counter reg ister . It is incremented time an instruction is

executed .

TIME-MSW -- --

This operand returns the most s ignif icant word of the clock .

TIME-LSW -- --

This operand returns the leas t signif icant word of the clock .

APPENDIX A IN STRUCTION SET

- B l -

Appendix B

This append ix def ines the mapping details of the HP 21 00A top leaf

addresses . The table shows the BASE address for a part icular

ins truction , followed by the wi thin leaf disp lacement used for the

instruc tion . These address patterns are decoded by the intermediate

processor , and are translated into microcode entry points . The R bit

denotes whether the reference is a read from the address space of the

HP 21 00A or a write . Various charac ters are used in the within leaf
displacement . Four b its ,

,
r

,
, are used to form a capab il ity regis ter

number . These are always taken from b its 3-6 of the address . Three

bits , ,
c

,
, are used to ident ify a count er regis ter and are taken from

bits 0-2 of the address . These same b its are us ed to address the

modif ier regis ters , called ,
m

,
, and to form the small three bits

capab ility offs et , called
,
n

,
. A five bit stack offset is taken from

b its 0-4 of the address . An
,
x

,
in any pos ition signif ies a don ' t care

cond ition .

APPENDIX B MAPPING DETAILS

- B2 -

BASE M9 MB M7 M6 MS M4 M3 M2 Ml MO R
- - - - - - -- -- -- -- - Ins truction

76000 0 0 n n n n n n n n Immediate load ins truction
76400 0 1 0 r r r r n n n n (CRr)
76600 0 1 1 r r r r m m m (CRr) [Mm]
7 7000 1 0 0 r r r r m m m (CRr) [Mm/2]
7 7 200 1 0 1 r r r r 0 0 0 CRr .subsys tem
7 7 20 1 1 0 1 r r r r 0 0 1 CRr .address-space-number
77202 1 0 1 r r r r 0 1 0 CRr .disp lacement
77 203 1 0 1 r r r r 0 1 1 CRr .s egment-limit
7 7 204 1 0 1 r r r r 1 0 0 CRr .access-rights (decrease only)
77205 1 0 1 r r r r 1 0 1 CRr .access-rights
77400 1 1 0 x 0 n n n n n n(T)
77 440 1 1 0 x 1 0 0 c c c r ldw +cc
77 440 1 1 0 x 1 0 0 c c c w stz Cc
77460 1 1 0 x 1 1 0 m m m Mm
77470 1 1 0 x 1 1 1 c c c Cc
7 7601 1 1 1 x 0 0 0 0 0 1 + (T)
7 7 602 1 1 1 x 0 0 0 0 1 0 +(T)
7 7 603 1 1 1 x 0 0 0 0 1 1 T
77 604 1 1 1 x 0 0 0 1 0 0 Li .displacement
7 7 605 1 1 1 x 0 0 0 1 0 1 L2 .displacement
7 7606 1 1 1 x 0 0 0 1 1 0 CONSTANT .address-space-number
7 7 607 1 1 1 x 0 0 0 1 1 1 CODE . address-space-number
7 7 6 1 0 1 1 1 x 0 0 1 0 0 0 STACK .address-space-number
7 76 1 1 1 1 1 x 0 0 1 0 0 1 PROCESS-NUMBER
7 7 6 1 2 1 1 1 x 0 0 1 0 1 0 CURRENT-SUB SYSTEM
7 76 1 3 1 1 1 x 0 0 1 0 1 1 r VIOLATION-MASK
776 1 3 1 1 1 x 0 0 1 0 1 1 w KERNEL-OFF
7 76 14 1 1 1 x 0 0 1 1 0 0 PROCESS-TIME-MSW
7 7 6 1 5 1 1 1 x 0 0 1 1 0 1 PROC ESS-TIME-LSW
7 76 1 6 1 1 1 x 0 0 1 1 1 0 IN STRUCTION-COUNTER-MSW
776 1 7 1 1 1 x 0 0 1 1 1 1 IN STRUCTION-COUNTER-LSW
7 76 20 1 1 1 x 0 1 0 0 0 0 T=T+MDR
7 7 6 2 1 1 1 1 x 0 1 0 0 0 1 Ll=L l+MDR
7 7622 1 1 1 x 0 1 0 0 1 0 L2=L2+MDR
7 7 624 1 1 1 x 0 1 0 1 0 0 TIME-MSW
7 7 6 25 1 1 1 x 0 1 0 1 0 1 TIME-LSW
7 7 6 2 6 1 1 1 x 0 1 0 1 1 0 T . limit
7 7627 1 1 1 x 0 1 0 1 1 1 L l . limit
77630 1 1 1 x 0 1 1 0 0 0 L2 . limit
7 7 6 31 1 1 1 x 0 1 1 0 0 1 (T) -
77632 1 1 1 x 0 1 1 0 1 0 (T) -
77633 1 1 1 x 0 1 1 0 1 1 Clear CR .access-rights
77634 1 1 1 x 0 1 1 1 0 0 Double Pop
77635 1 1 1 x 0 1 1 1 0 1 Doub le Push

APPENDIX B MAPPING DETAILS

- C l -

Appendix C

This appendix contains the details of the microcode ins truction
fo rmat along with the intermediate p rocessor mic rocode . Each
microins truction is 24 b its in length , and is composed of 7 f ields , as

follows :

(1) BUS l f ield 7 bits bit 23
(2) BUS I -0 f ie ld 1 bit
(3) BUS2 f ield 4 b its
(4) CON STANT f ield 3 b its
(5) FUNCTION f ield 4 b its
(6) SPEC IAL f ield 3 b its
(7) MEMORY f ield 2 b its bit 0

The source l ine of a microinstruc tion cons ists of these 7 f ields and

also a label field (before the BUS l f ield) , a jump target field (af ter

the memory f ield) and a comment field (after the jump target field) .

The operands which are allowed in the various f ield are shown in Tables
C l through C7 . We will brief ly describe the purpose of each field of the

microinstruction .

The BU S I f ield
-- ---

The BUS l f ield determines which regis ter is connected to the

central bus of the intermedite p roces sor . The allowed operands are shown

in Table C l . The operand REGSTR takes the contents of DISPLAY regis ter

one as the register number . This allows a microprogram to scan through

the int ermediate processor regis ters .

The BUS I-0 f ie ld
-- -- - -

This field determines whether the regis ter specif ieci b1 the BUS l

f ie ld i s p laced onto the bus , or the bus contents are saved into the

regis ter . The allowed operands are shown in Tab le C2 . If an INTO

direc tive is issued, the accumulator is p laced onto the bus .

The BUS 2 f ield

This field allows the bus contents to be saved in one of the

dedicated registers at the same time as another register is specif ied in

the BUSl f ield . Allowed operands are shown in Tab le C3 .

APPENDIX C MICROCODE

Op code
NOP OR BLANK
MDR
MAR
PROCN
STIMEl + 2
ADRSPC
DI SP
ACCESS
DI SPLl + DISPL 2
INST
WCHIX;l + 2
SVR
IN ST2
C . SSN
C .ASN
C .DI SP
C .LEN
C .ACC S
M
c
T
L l
L2
CASN
CCAS
C SAS
CSSN
PTIME l
PTIME2
PINSTl
PIN ST2
TRl
TB
L lL
L2L
REGSTR

Op code
BLANK
NOP
ONTO
INTO

APPENDIX C

C ode
0
1
2
3
4-5
6
7
8
9- 10
13
1 1- 1 2
1 4
1 5
16
32
48
64
80
96
104
1 1 2
1 1 3
1 14
1 1 5
1 16
1 1 7
1 18
1 1 9
1 20
1 2 1
1 22
123
1 24
125
1 26
1 2 7

- C 2 -

Description

Memory Data regis ter
Memory Address register
Process Number regis ter
Tim�
Address Space descriptor
Disp lacement descrip tor
Access descriptor
Disp lay registers
Ins truction count er
Watchdog timers
Stack violat ion regis ter
Instruction counter - lsw
CR Subsys tem field
CR Address Space f ield
CR Disp lacement field
CR Length f ield
CR Access field
Modif ier regis ters
Counter regis ters
Top of s tack register
L l regis ter
L 2 register
Constant Address Space I
Code Address Space I
Stack Address Space I
Current Subsystem number
Process time - msw
P rocess time - lsw
Ins truction count - msw
Instruction count - lsw
Temporary regis ter
T Base register
L l Limit regis ter
L2 Limit register
Regis ter file indirect

Table C l - the BUS l f ield

Code
0
0
0
1

Description

Place regis ter Onto bus
Store bus into regis ter

Tab le C2 - the BUS I-0 field

MICROCODE

- C 3 -

OE code Code Descri2tion
BLANK 0
NOP 0
MDR 1 Memory Data regis ter
MAR 2 Memory Address register
PROCN 3 Process number regis ter
STIME l + 2 4-5 Time
ADRSPC 6 Address Space descriptor
DI SP 7 Disp lacement descrip tor
ACCESS 8 Access descriptor
DI SPLl + 2 9- 10 Disp lay registers
WCHDG l + 2 1 1- 1 2 Watchdog timers
IN ST l 13 Instruction counter - msw
INST2 1 5 Ins truction counter - lsw

Table C3 - the BUS 2 f ield

The CONSTANT f ield

This f ield specif ies the cont ents of one of the inputs of the ALU .

This may be either one of 7 predef ined cons tants , or the accumulator

value . The allowed operands are shown in Tab le C4 .

The FUNCTION f ield

This field specif ies the operation which the ALU is to perform .

Apart f rom the s tandard arithmetic and logic operations , the f ield may

also be used for set ting various processor states (such as kernel mode

02code C ode DescriEtion
BLANK 0
NOP 0
ACC 0 Accumulator
377 1 Cons tant 377B
FF 1 Cons tant 377B
FFOO 6 Cons tant 1 7 7400B
1 7 7400 6 Cons tant 1 77400B
7 2 Cons tant 7
0 3 Cons tant 0
1 4 Cons tant 1
2 5 Constant 2
7 7 7 7 7 7 Cons tant 7 7 777B
7FFF 7 Cons tant 7 7 7 7 7B

Tab le C4 - the CON STANT field

APPENDIX C MICROCODE

- C 4 -

or debug s tate) , and for performing a microcode jump . When a j ump is

specif ied , the 1 0 mos t signif icant bits of the ins truction are used for

the jump target address . The allowed operands are shown in Table C S .

The SPECIAL f ield

The special f ield is used to det ect error conditons , cause
interrup ts , and to generate conditional microprogram skip operations . If

the processor is not in debug mode (which is a special processor state)

then any condition which is f lagged will cause an interrupt and set a

particular bit in the violat ion regis ter . If the processor is in debug
mode , then a f lagged cond ition will cause a microprograunned skip to

occur . The allowab le operands are shown in Tab le C6 .

OE code
NOP
BLANK
ADD
SUB
OR
AND
SWAP
LEFT
RIGHT
JUMP
END
KNLOFF
DBGON
DBGOFF

OF��
NOP
BLANK
MPL
MPS
MPK
MPO
LSB S
UNMAP

APPENDIX C

C ode
0
0
1
2
3
4
5
6
7
8
9
10
1 1
12

Code
0
0
1
2
3
4
5
6

Des criEtion

Function add
Function sub tract
Func tion logical or
Function logical and
Swap byt es of input
Left shift input
Right shif t input
Micro code j ump
Return to HP2 1 00 ins truction
Tum the kernel b it of f
Turn Debug bit on
Turn Debug b it off

Table CS - the FUNCTION f ield

DescriEtion

f lag BUS < accumulator
f lag BUS > accumulator
f lag processor not in kernel mode
f lag BUS <> accumulator
Skip if leas t sig bit set
Tum on Unmap b it

Table C6 - the SPECIAL f ield

MICROCODE

- C S -

The MEMORY control f ield

This field allows the intermed iate processor to start memory

ref erences . The processor may issue a read request , a write request , or

a conditional reques t . The lat ter kind will be either a read or a write

depending on the type of operation which the HP 2 1 00 request ed of the
int ermed iate processor . The allowab le operands are shown in Tab le C7 .

02code
NOP
BLANK
READ
WRITE
RW

Code
0
0
1
2
3

Descri2tion

Perform a memory Read
Per form a memory Write
Perform a Read or a Write

Table C7 - the MEMORY cont rol f ield

The remainder of this appendix contains the microcode used by the

intermediate p rocessor . The f irst sec tion contains the bas ic MONADS II

ins truction set , while the second section contains microcode used for

ini tial bootstrapp ing and diagnostic purposes .

APPENDIX C MICROCODE

!A
b

e
l

•
••

•

1
t-O

B

u
s

2

Cn
n11

t
F

u
n

e

S
p

e
e

H

e
m

Ta

t"g
et

C

o
11

1111en
t

L
a

b
e

l

B
u

e

l
1-0

B

u
e

2

C
o

n
s

t

F
u

n
•�

Sp

e
e

M•

'm

T
a

r
g

e
t

Co

:n"
'l�·

.it

?d
*

*

*

l
H

T
f

RM
F.

D
IA

T
E

P

R
O

C
E

S
S

O
R

MI

C
R

O

C
O

D
E

T

Y
P

E
)

C

.A
S

N

O
N

T
O

AD

R
S

P
C

GE

T
,\:\

S
"d

*

V
E

R
S

IO
ff

9

R

lG
HT

GE"l'

 .._,
,,!\.

!)
t<:

O

t!j

M

O
N

TO

z

*
R

E
V

I
S

IO
N

2

C
.D

I
S

P

O
N

T
O

A

C
C

A

D
D

F

O
R

..'1

3�
1

�

*

R
EI

.E
A

S
E

3

D
I

S
P

I

N
TO

SA

\'
r�

IT

..
...

*
A

UT
HO

R

D
A

V
I

D
 AB

RAM
SO

N
.

C
.L

E
N

O

N
T

O

A
C

C

S
U

B
MP

L

cm:
n•

 L
EN

.
><

*

D
A

T
E

.
2

9
/

2
/

8
0

C

.A
C

C
S

O

N
T

O

A
C

C
E

S
S

*

C
R

EA
T

ED
.

2
9

/
5

/
8

0
.

RF.AD

n

*
H

O
 D

I F
I

 E
D

1

/9
/

8
0

.
M

O

NTO

0

A
D

D

L
SB

S

L
E

Fl'
 O

R
 R

I
G

HT
?

*
M

O
D

I
F

I
E

D
·

2
9

/
9

/
8

0
.

JU
MP

LH

S.
R

*
H

O
D

I
F

I
E

D
.

1
4

/
8

/
8

0
.

RH
S

.R

M
D

R

O
N

TO

3
7

7

A
N

D

R
I

C
HT

B

Y
T

E

*
M

O
D

I
F

I
E

D
.

0
3

/
1

2
/8

0
.

MD
R

IN
TO

E

ND

R
E

T
l!

;U�

*

M
O

D
IF

I
E

D
.

1
1

/
1

2
/

8
0

.
A

D
D

IT
IO

N

O
F

D

E
B

tX;

C
O

D
E

L

R
S

.R.

H
O

R

O
N

TO

SW
AP

S\.:

AP
 B

YT
ES

*

M
O

D
I

F
I

E
D

.
16

/0
2

/8
1

.

A
D

D
IT

IO
N

O

F

CL
E

A
R

C

.A
C

C
S

MD

R

IN
T

O

5A
\'r

:
IT

*

!1

0
D

lF
I

E
D

.
0

3
/

0
4

/
8

1
D

E
L

E
T

IO
N

 O
F

 S
U

B
S

Y
S

T
Df

 C
H

EC
K

JU

MP

R
K

S
.R

R

E7
t:

R
�

*

MO
D

I
F

I
E

D
.

0
7

/
10

/
8

1
A

D
D

IT
O

N

O
F

++
(T

)
A

N
D

(T

)--
N

O
P

*

M

O
D

I
F

I
ED

.

0
8

/
1

2
/

8
1

S
P

E
E

D
UP

C

O
DE

F

E
T

C
H

E
S

N

O
P

*

*

*

IMH

E
D

IA
T

E

LO
A

D

+
 O

R

-
1

*
C

O
D

E

'l'O

HA
N

DL
E

A

WR

IT
E

IN

T
O

m

R
D

*

L

SB

IS

S
I

G
N

*

WH
E

R
E

T

H
E

M

O
D

IF
IER

H

O
L

D
S

A

B
Y

TE

C
O

U
NT

*

*

TY
P

E
O

HA

R
O

N
T

O

1
7

7
4

0
0

oa

·
L

S
B

S
G

E
T

B

Y
T

E

T
Y

P
E

S

C
.A

S
N

O

N
T

O

A
D

R
S

P
C

JUM

P

PO
S

PO

S
IT

IV
E

?
H

O
R

O

NT
O

3

7
7

AN

O
GE

T
D..\.

TA

H
O

R

I
N

TO

NO

T
R

l
IN

TO

SA
V!

�
lT

MD

R
O

N
T

O

R
IG

H
T

GE

T
1

B
IT

S

M

O
N

TO

RI
GH

T
\JO

RD
 SO

?
H

O
R

I

N
TO

C

.D
I

S
P

ON

TO

A
C

C

A
D

D

FO
R't

 B
+!i

H

D
R

O

U
T

O

1
7

74
0

0

O
il

S

IG
N

EX

T
E

N
D

D

I
S

P

IN
TO

SA

\.'t
·;

IT

M
D

R

l
N

to

E
N

D

RET
U

R
N

C

.L
EN

O

N
TO

A

C
C

S

U
B

MP

L

Cl
lE

CI\
 L

1:�
,;n

1
N

O
P

C

.A
C

C
S

O

N
T

O

A
C

C
E

S
S

AN

P.
AC

Cr.
�S

n

*

R
E

A
D

°'

*

TH

I
S

CO

D
E

HA

N
D

L
E

S

R
E

F
E

R
E

N
C

E
S

O

F

TH
E

Fo

RM

M
O

N
T

O

0

A
D

D

L
S

B
S

LE

FT
 O

R
R I

CH
T

7
*

B

(B
)

+
 H

JU

MP

L
H

S
.W

L

E
F

T

*

R
H

S
.W

M

D
R

O

N
to

1

7
7

4
0

0

A
N

D

SA
Vf.

 u
:r

r
TYP

E
l

C
.A

S
H

O

N
T

O

A
D

R
SP

C

UNMA
P

C

F.
T

A

SN

R
R

S+
l

T
R

l
O

N
T

O

AC
C

O
R

Pl.

&

itl
l�H

T
rn

MAit

ON

TO

7
A

N
D

GET

 N

H
O

R
IN

TO

WR
I

T
E

SA

\''F:

IT

C
 .

D
I

S
P

O

N
T

O

A
C

C

A
D

D

FO
RM

 B
+N

E

N
D

RET

\IR.
N

D
I

S
P

IN

TO

S
A

VE

IT

NO
P

c

.L
E

N
O

N
T

O

A
C

C

SU
B

MP

L

C
H

E
C

K

L
E

N
.

*
C

.A
C

C
S

O

N
TO

A

C
C

E
S

S

C
H

E
C

K

A
C

C

*

R
E

A
D

A

B

SU

B
S

Y
S

T
EM

 N
UMB

E
R

RW

*

E
N

D

R
E

T
U

R
N

TY

P
E

7
C

.S
S

H

O
N

T
O

H

D
R

EN

D
GE

T
DA.

TA

*
NO

P

*

TH
I

S

CO
D

E

HA
N

D
L

E
S

R

E
F

E
R

E
N

C
E

S

O
F

TH

E

PO
RH

1
N

O
P

*

B
(B

)
+

 M
(H

)
N

O
P

*

*

T
Y

P
E

2
C

.A
SN

O

N
TO

A

D
R

S
P

C

UNHA
P

G

E
T

A

SN

*

RA
N

D
L

E

PO
S

I
T

tV
E

CA

S
�

O

F

TY
P

E

0

H
O

N
T

O

7
7

7
7

7

A
N

D

A
D

D

IN

H
O

D
.

*

C
.D

I
S

P

O
N

T
O

A

C
C

A

D
D

A

N
D

D

IS
P

L
.

P
O

S

HA
R

O
N

T
O

3

7
7

AN

D

G
E

T
 a

 B
I

T
S

D
I

S
P

IN

'l'O

S
A

VE

I
T

H

D
R

IN

'l'O

O
F

DA

TA

C
.L

E
N

O

N
T

O

A
C

C

S
U

B

HP
L

C

H
E

C
K

LE

N
.

M
D

R

O
N

T
O

R

IG
H

T

GE
T

7
B

IT
S

C

.A
C

C
S

O

NTO

A
C

C
E

S
S

C

R
E

a.

A
CC

M

D
R

IN

TO

E
N

D

R
ET

U
R

N

a
w

*

�
E

N
D

•

L
O

A
D

A

B

SU

B
S

Y
S

T
EM

RE

G
IS

T
E

R

n

*

*

�
*

R
E

A
D

A

B

YT
E

FR

O
M

m

R
D

H

E
L

D

A
T

B

Y
T

E

CO
U

N
T

IN

 K>
D

I
F

I
E

R

T
Y

P
E

S

KD
R

O

N
TO

0

A

D
D

SA

VE
 DA

'l'A

n

0

0

tz:i

La
b

e
l

B

u
e

1

I
-0

B

u
e

2

C
o

n
 e

t
r

u
n

e

S
p

e
e

M

ea

T
a

r
g

e
t

C
o

11
1111e

n
t

L
a

b
e

l

B
u

a

1
I-0

B

u
a

2
C

o
n

 e
t

F

u
n

e

S
p

e
e

H

em

T
a

r
g

e
t

C
o

11
1111en

t

·
La

b
e

l

Bu
e

l
1-0

Bu

e
2

Co
na

t
Fu

ne

S
p

e
e

Me
•

T

a
r

g
e

t
Coa

aen
t

La

b
e

l

Bu
e

l
1-0

Bu

e
2

C
o

n
s

t

Fu
ne

S

p
e

e

K
e

m

T
a

r
g

e
t

Co

:mi
t0n

t

>

c.
sSR

I

N
TO

A

C
C

E

N
D

R

ET
U

RN

*
R

E
A

D

TH
E

c

.L
E

N
CT

H

R
EG

IS
T

E
R

�

�

N

O
P

*

t%3

N
O

P

TY
P

E
l

l

C
.L

E
N

O

N
T

O

KD
R

E

ND

CU
 L

EN
GT

H
z

N

O
P

NO

P

'='

N
O

P

N
O

P

H

NO
P

N

O
P

>:

H

O
P

N

O
P

n

•
N

O
P

•

l!A
D

A
 C

.A
SR

llEG

I
S

TE
R

N

O
P

•

N
O

P

TY
P

E
9

HP

JC

P
R

O
T

E
C

T
E

D

*
C

.A
SN

O

N
TO

M

D
R

E

N
D

G

ET

D
A

T
A

*

LO
A

D

TH
E

C

.L
E

N
CT

R

R
E

G
I

S
T

E
R

N

O
P

*

N
O

P

TY
P

E
14

HD

R

O
N

T
O

0

A

D
O

MP
K

S

A
\'

E

MD
R

IN

N

O
P

C

.L
EN

IN

TO

A
C

C

EN
D

L

E
N

G
TH

N
O

P

N
O

P

N
O

P

N
O

P

N
O

P

N
O

P

*
N

O
P

*

LO
A

D

A
 C

.A
S

R

RF.G
I

S
T

E
R

N

O
P

*

N
O

P

TY
P

E
lO

MP

K

P
R

O
T

E
C

T
E

D

*
M

D
R

O

N
TO

0

A

D
D

G

ET

D
A

T
A

*

R
E

A
D

A

C

.A
C

C
E

S
S

R

EG
I

ST
E

R

C
.A

S
N

I

N
T

O

A
C

C

EN
D

R

ET
UR

N

*
NO

P

T
Y

P
E

lS

C
.A

C
C

S

O
N

T
O

KDR

E

N
D

G

E
T

A

C
C

E
S

S

N
O

P

N
OP

N

O
P

N

O
P

N

O
P

N

O
P

N
O

P

N
O

P

C"l

*
N

O
P

..

....
*

R
EA

D

A

D
I

S
P

L
A

C
EM

E
N

T

RE
G

I
S

T
E

R

N
O

P

*
NO

P

T
Y

P
E

l
l

C

.D
I

S
P

O

H
T

O

H
D

R

E
N

D

G
E

T

ll\
T

A

*
*

*
O

F.
C

R
E

A
S

E

T
H

E

C

R
E

G
I

S
T

E
R

AC

C
E

S
S

R

I
G

H
T

S

*
T

H
I

S

I
S

TH

E

EX
T

E
N

S
IO

N

O
P

TH

!

BY
T

E

WR
IT

!

*
*

T
Y

P
E

1
6

C

.A
C

C
S

O

N
T

O

0

A
DD

G

E
T

A

C
C

E
S

S

L
H

S
.W

TR

l

O
N

T
O

SW

A
P

SW

A
P

BY

TE
S

H
D

R

O
N

TO

A
C

C

O
R

MA

SK
 S

IT
S

T
R

l
IN

TO

SA
VE

 IN
 T

R
l

C
.A

C
C

S

IN
TO

E

N
D

S

A
\"

E

A
W

A
Y

KD
R

O

N
T

O

3
7

7

AN
D

G

E
T

BO

T
T

O
M

BYT

E

NO
P

JUMP

R
H

s+
l

T
R

E
A

T

A
S

RH
S

N

O
P

N

O
P

N

O
P

N
O

P

N
O

P

N
O

P

N
O

P

•
*

*
LO

A
D

A

D

I
S

P
L

A
C

EM
EN

T

R
EG

IS
T

E
R

*

P
R

I
V

I
L

E
DC

E
D

C

O
D

E

*
*

L
O

A
D

 A

C
.A

C
C

E
S

S

RE
G

I
S

T
E

R

TY
P

E
l2

KD

R

O
N

T
O

0

A

D
D

HP

K

S
A

V
E

D

IS
P

LA
C

EM
E

N
T

*

C
.D

I
S

P

I
N

TO

A
C

C

E
N

D

R
ET

U
RN

T

Y
P

E
1

7

MP
K

P

RO
T

EC
T

E
D

N
O

P

M
D

R

O
NT

O

0

A
D

D

SA
\'F.

A

C
C

E
S

S

N
O

P

C
.A

C
C

S

I
N

T
O

EN

D
R

I
G

H
T

S

N
O

P

N
O

P

::(

N
O

P

N
O

P

H

N
O

P

N
O

P

n

N
O

P

N
O

P

�

•
N

O
P

0

n

0

�

t%3

La

be
l

B
u

a

1
1-0

B

u
a

2

Co

n
s

t

l'
u

n
c

S

p
e

e

Ke
a

T
a

r
g

e
t

e
o

-
e

n
t

L
a

b
e

l

B
u

a

l
1

-0

B
u

a

2
C

o
n

s
t

F
u

n
e

S

p
e

e

M
e

m

T
a

r
g

e
t

C

o
tl

lllle
n

t

La
b

e
l

B

u
•

1

1
-0

B

u
•

2

C
o

n
s

t

F
u

n
e

S

p
e

e

M
e

m

T
a

r
g

e
t

C

o
m

m
e

n
t

La

be
l

B
u

•

l
1-0

ll

u
•

2

Co
ns

t
Fu

ne

S
p

e
e

M

e
m

T

a
r

g
e

t

C
o

m
o

<i!
n

t

>

*
N

O
P

�

�

*
L

�
C

R
F.M

EN
T

CO

U
N

T
E

R

R
EG

I
S

T
E

R

N
O

P

�
*

A
ND

M

O
D

I
F

I
ER

 O
F

S.\ME

NU

MB
E

R

N
O

P

*
R

E
T

U
R

N

OO
U

N
T

E
R

*

t:
:J

*
*

RE
AD

 A
 CO

U
N

T
E

R

REG
I

S
T

E
R

H

><

TTP
E1

8
H

O
N

T
O

l

A
D

D

I
N

C
R

EM
E

N
T

*

K
I

N
'l'O

M

O
D

I
F

I
ER

ll

EG

T
t

P
E

2
3

c

O

N
T

O

HD
R

E

N
D

C

E
T

Di\

T
A

n

c

O
N

T
O

l

AD
D

I

N
C

R
DI

E
N

T

NO
P

c

IN
TO

C

O
U

N
T

ER

RE
G

I
S

T
E

R

N
O

P

KOR

I
N

T
O

r .

• o

R
ET

UR
N

OO

U
N

T
E

R

N
O

P

N
O

P

ll>
P

N

O
P

N

O
P

N

O
P

tl

O
P

N

O
P

*

*
*

ST
O

R
E

IN

OO

U
N

T
E

R

*
LO

A
D

A

CO
U

NT
E

R

R
E

G
I

S
T

E
R

*

C
L

!
�

K

O
D

I
P

I
E

I

*
* TYH

19

MD
I.

O

N
T

O

0

A
D

D

D
A

T
A

I

M
'l'O

TT

P
E

2
4

HD

R

O
N

T
O

0

A

D
D

S

A
V

E

Di\
T

A

c
IN

TO

E
N

D

c
I

N
TO

C

O
U

N
T

E
R.

N

O
P

H

O
N

T
O

0

AN

D

C
L

E
A

R

M

I
N

TO

E
N

D

M
O

D
I

F
I

E
R

N

O
P

N

O
P

N

O
P

N

O
P

N

O
P

N

O
P

N

O
P

N

O
P

N

O
P

*

* *
C

O
DE

TO

RA

N
DL

E
T

-

T

*
C

O
D

E

TO

RA
N

D
L

E

T

PU
SH

 I
N

S
T

R
U

C
T

IO
N

*

* TY
P

E
2

0

C
S

A
S

O

N
T

O

A
D

R
S

P
C

S

T
A

C
K

SP

A
C

B

?
Y

P
E

2
S

C

S
A

S

O
N

T
O

A

D
R

S
P

C

GE
T

S1'
AC

R

MAil

O
N

T
O

3

7
7

A

ND

G
ET

T

T

O
N

T
O

1

A
D

D

T
+

l
(")

T

O
N

T
O

A

C
C

S

U
B

T

-
T

D

I
S

P

IN
T

O

S
A

V
E

IT

CX>

D
l

S
P

I

N
TO

S

A
V

E

I
T

.T

B

O
N

TO

A
C

C

SUB

MP
S

C

lft
:C:

K

L
E

N

T
B

O

N
T

O

A
C

C

S
U

B
MP

S

C
H

E
C

K

L
E

N
GT

H

R
W

00

 R
/W

RV

T

O
N

TO

1
A

D
D

RE

FO
l\M

 T
H

E
N

D

R
ETUR

N

T

IN
T

O

SA
VE

 I
T

E
N

D

RET
UR

N
ll>

P

*
*

*
C

O
DE

'l'O

HA

N
D

L
E

T

PO

P

IN
S

T
R

U
C

T
IO

N

*
..

R
EA

D

A
 K>

D
I

P
I

E
R

R

EG
I

S
T

E
R

*

* T
Y

P
E

2
1

M

O
N

T
O

MO

R

E
N

D

G
E

T

Do\
T

A

T
Y

P
E

2
6

C

S
A

S

O
N

T
O

A

D
R

S
P

C

S
T

A
C

K

T

O
N

T
O

D

IS
P

0

A

D
D

G

E
T

T

ll>

P

T
B

O
N

T
O

A

C
C

SU

B
MP

S

CH
EC

K
LE

N<.
'T

H
N

O
P

N

O
P

R

W

IX)
 R

/W

T

O
N

TO

1
.

S
UB

F

O
RK

T

-
1

N

O
P

T

I

N
T

O

A
C

C

S
A.

V
E

IT

N

O
P

EN

D
N

O
P

N

O
P

N

O
P

*

*
*

R
E

A
D

TH

B

'ro
P

or

 S
T

A
C

K

R
E

G
I

S
T

E
R

*

LO
A

D

A
 K>

D
I

F
I

E
R

llEG

I
S

T
E

R

*
* TYP

E
2

2

MO
R

O

N
T

O

0

A
D

D

R
E

TUR
N

!».

T
A

T

Y
P

E
2

7

T

O
N

T
O

HD

R

E
N

D

N
O

P

�
H

IN
TO

EN

D

N
O

P

N
O

P

N
O

P

(")

N
O

P

�
N

O
P

N

O
P

n

0

t:
:J

tzi

L
a

b
e

l

l
u

.

1
1

-0

l
u

a
 2

C

o
n

s
t

F

u
n

e

S
p

e
e

H

e
•

T

a
r

a
•

t

C
o

-
e

a
t

La

b
e

l
•

u
•

1

1
-0

B

u
s

 2

C
o

 n
et

F

u
n

e

S
p

e
e

M

ea

T
a

r
g

e
t

C

o
aa

e
n

t

L
a

b
e

l

l
u

e

1
I�

B

u
e

2

C

o
n

s
t

F
u

n
e

>

t-d

N
O

P

"'d

N
O

P

tZj

N
O

P

2:

*
�

H

*

LO
AD

 TH
E

 TO
P

o

r

ST
A

C
IC

UG

I
S

T
E

R

>=

* TtP
E

2
8

MD

I
O

R
TO

0

AD

D

n

,

T

I
N

TO

EN
D

N
O

P

N
O

P

N
<'

.
N

O
P

N

O
P

N

O
P

• *

R
E

A
D

nut

 L
1

R
EG

I
S

T
E

R

*
•

TY
P

E
2

9

L
l

O

NTO

MD
I

EN
D

N

O
P

N

O
P

N

O
P

N

O
P

N

O
P

N

O
P

* *

LO
AD

 TH
!

L

l
UG

I
S

T
E

R.

ft TYP
E

 J
O

H

D
R

O

N
TO

0

A

D
D

L

l

IN
T

O

E
N

D

N
O

P

N
O

P

N
O

P

N
O

P

N
O

P

* *
REA

D
TH

E

L
2

R
EG

I
S

T
E

R

ft TYP
1

3
1

L
2

O

N
T

O

MD
I.

E

N
D

N

O
P

N

O
P

N

O
P

N

O
P

N

O
P

N

O
P

N

O
P

* *

LO
AD

 TH
!

L

2
R

E
G

I
S

T
E

R

• TY
P

E
J

2

�
H

Dl
l

O
N

T
O

0

A

D
D

L
2

IN

T
O

E

N
D

n

N

O
P

�
N

O
P

n

0

�

tZj

La
b

e
l

l

u
•

1

1
-0

l

u
•

2

C

o
n

a
t

r
u

n
e

S
p

e
e

H

e
a

T

a
r

g
e

t

Com
m

e
n

t

MP
K

P

R
O

T
E

C
T

E
D

MP
IC

P

R
O

T
E

C
T

E
D

I

.

MP
K

S
p

e
e

H

em

T
a

r
g

e
t

C
o

ma
e

n
t

-
..

-·

··

.
-

L
a

b
e

l

* * * Tt
P

E
3

3

* * * Tt
P

E
J

4

* • • T
Y

P
E

J
S

* * * T
Y

P
E

J
6

* * * T
Y

P
E

J
7

La
b

e
l

B
u

e

1
1�

B

u
s

2

Co

n
s

t
F

u
n

e

S
p

e
e

Me

 ID
Ta

rg
et

Co

m11
1"•n

t

N
O

P

N
O

P

N
O

P

R
E

A
D

 TB
B

CO
N

S
T

AN
T

AD

D
R

E
S

S

SP
A

C
E

NUMB

E
R

MP
K

CA
SN

O

N
TO

H

D
R

E

N
D

N

O
P

N

O
P

N

O
P

N

O
P

N

O
P

N

O
P

LO
A

D

TH
E

CO

N
S

T
AN

T

AD
D

R
E

S
S

S

P
A

C
E

NU

M
B

E
R

MP
IC

M

D
R

O

NTO

0

A
D

D

C
A

S
N

IN

T
O

E

ND

N
O

P

N
O

P

N
O

P

N
O

P

N
O

P

·R
EA

D

TH
E

CUtl

R
E

N
T

CO

D
E

AD

D
R

E
S

S

S
P

A
C

E

NUK
B

F.
R

MP
K

n

C
C

A
S

O

N
TO

H

D
R

E

N
D

\0

N

O
P

N

O
P

N

O
P

·N

O
P

N

O
P

N

O
P

LO
A

D

TR
I

CUR
R

E
N

T

CO
D

E

AD
D

R
E

S
S

S

P
A

C
E

 NUMB
E

R

MP
IC

M

D
R

O

N
TO

D

I
S

P
L

2

0

A
D

D

C
C

A
S

I

N
T

O

t:
N

D

N
O

P

N
O

P

N
O

P

N
O

P

N
O

P

R
E

A
D

TH

E

CU
R

R
EN

T

ST
A

C
K

AD

D
R

E
S

S

S
P

A
C

E
 m

m
E

R

MP
K

C

S
A

S

O
N

TO

H
D

R

E
N

D

N
O

P

N
O

P

N
O

P

B
u

a

1
1

-0

B
u

a

2

C
o

n
a

t

F
u

n
e

S

p
e e

H

e
m

T

a
r

g
e

t

C
o

mm
e

n
t

La
b

el

B
u

•

l
I-0

B

u
•

2

Co

n
•

t
F

u
n

e

Sp
ee

M

e
•

T

ar
ge

t
Couie

n
t

L
ab

el

B
u

a

l
1-0

B

u
a

2

C
on

s
t

'V

u
n

c

S
p

e
e

H

em

T
a

r
g

e
t

C

o
::i

o
�

n
t

>

N
O

P

•
�

�

N

O
P

TY

P
E

42

MP
K

t:lj

N
O

P

M
D

R

O
N

TO

D
I

S
P

L
l

0

A

D
D

z

•

C
S

S
N

I

N
TO

E

N
D

t='

•

LO
A

D

nl
E

CU
RR

EN
T

ST
A

CI.

AD
DR

ES
S

S
P�

Ci
 NUM

BE
R

N

O
P

..

....
><

*

N
O

P

TTP
l3

8
MP

I.

N
O

P

(")

KD
R

ONTO

0

A
DD

N

O
P

C

SA
S

IN
TO

EN

D
N

O
P

N

O
P

•

N
O

:.-
•

R
E

A
D

nl

E

ST
A

C
K

VI

O
LA

T
I

O
N

RE

G
I

S
T

E
R

N

O
P

*

N
O

P

T
Y

P
E

43

M
P

K

N
O

i'

S
VR

O

N
TO

H

DR

•
SV

R
IN

T
O

EN

D
•

RE
A

D

nl
E

CU
RR

EN
T

PR
OC

ES
S

lfl

N
O

P

*
N

O
P

TTP

l
3

9

P
RO

C
N

ON

TO

HD
R

E

N
D

N

O
P

•

N
O

P

•
!«>

RE

<:O
DE

FO

R
 TH

E
CO

NT
EXT

SW

I
TC

H

N
O

P

•
•

M
OR

E
I

N
S

T
2

O

N
T

O

0

AD
D

•

H
IT

T

H
E

L

IN
K

W

O
R

D

P
IN

ST
2

I

N
TO

T

Y
P

E
44

M

P
K

M

D
R

O

N
T

O

P
R

O
C

H

ICN
I.

O
F

F

P
T

U1
E

l
O

N
T

O

W
C

ll
D

G
l

F.N
D

PT
I

H
E

2

O
N

T
O

W

C
H

DC
2

N

l)
P

P

IN
S

T
l

O

N
TO

IN

ST
l

N

O
P

JUMP

K>

R
E

l

N
O

P

(")

•
N

O
P

..

..
•

C
O

D
E

FO

R
 A

CO

N
T

E
X

T

lM
I

T
C

H

I
N

S
T

R
U

C
T

I
O

N

N
O

P

0

•
*

TT
P

E
40

MP

I.

•
GE

T
F

IR
ST

WO

R
D

O

F

PT
I

K
E

W

C
H

OG
l

O

N
TO

0

A

D
D

*

P
T

I
K

E
l

I
N

T
O

T

Y
P

E
45

W

C
H

DC
l

O

N
T

O

KD
R

£

1'\
D

W

C
H

DG
2

O

N
T

O

0

AD
D

N

O
P

P

T
I

H
F.

2

I
N

TO

N
O

P

I
N

S
T

l
O

N
T

O

0

A
D

D

N
O

P

P
I

N
ST

l

I
N

TO

N
O

P

JUMP

K>
RE

N

O
P

*

N
O

P

•
R

E
A

D

nl
E

CU
R

R
E

N
T

SU

B
S

Y
S

T
EM

NUM

B
E

R

N
O

P

•
*

TY
P

E4
1

C

S
S

N
ON

TO

KD
R

EN
D

*

GE
T

WO
R

D

2

OF
 PT

IH
E

*
*

•
!

V
EN

K>

RE

CO
D

E

FO
R

TH
E

CO

N
T

E
X

T

lM
I

T
C

R

T
Y

PE
46

W

C
H

DC
2

O

N
T

O

KD
R

EN

D
•

N
O

P

HO
R

El

P
IN

S
T

2
ON

TO

I
N

S
T

2

N
O

P

C
S

SN

O
N

TO

D
l

S
P

L
l

N
O

P

CC
A

S
O

NT
O

D

I
S

P
L

2

E
N

D

N
O

P

N
O

P

N
O

P

N
O

P

N
O

P

�
N

O
P

N

O
P

N
O

P

•
(")

•

*
SE

T
UP

WO

R
D

1

OF

PT
IK

E

�
•

LO
A

D
TH

I
CUR

REN
T

SU
BS

YS
TEM

 NU
MB

ER

•

(")

0

t='

t:lj

La
be

l
B

u
a

1

1
-0

Bu

a
2

C

on
s

t
P

u
n

c

Sp
ee

H

em

T
ar

ge
t

Co
11

111en
t

La
be

i
Bu

a
l

1
-0

Bu

a
2

Co

n
s

t

F
u

n
e

Sp
ee

H

e
m

T

ar
ge

t
Co

m
m

e
n

t

La
be

l
·

B
u

e

l
I

-0

B
u

e

2

Co
ns

t
Fu

ne

Sp
ee

H

e
m

T

ar
ge

t
Co

1D1D
en

t
t.

ab
el

Bu

a
1

I
-0

B

u
a

2

Co
ns

t
Fu

ne

S
p

.a
c

M�

m
Ta

rg
e·t

C

o
m

iu
e

n
t

�
TYP

E
4

7

MP
K

T

Y
P

E
S

2

S
T

I
H

E
2

O

N
T

O

MD
ll

E
N

D

�

MD
R

O

N
TO

0

A

D
D

N

O
P

�

WC
H

DC
l

I

N
T

O

E
�

D

N
O

P

2:

N
O

P

N
O

P

t:
::I

N
O

P

N
O

P

H

�

N
O

P

N
O

P

N
O

P

N
O

P

(")

N
O

P

N
O

P

*
*

*
S

ET

UP

WO
R

D

2

or

PTI
ME

•

U
P

DA
T

E

TO
P

O

F

ST
A

C
K

R

E
G

I
S

T
E

R

*
•

TY
PE

48

MP
K

T

Y
P

E
S

3

T

O
N

T
O

0

A

D
O

MD
R

O

N
TO

0

A

D
D

H

D
R

O

N
TO

AC

C
AD

D
W

C
H

DC
2

I

N
T

O

E
N

D

T
I

N
T

O

E
N

D

N
O

P

N
O

P

N
O

P

N
O

P

N
O

P

N
O

P

N
O

P

N
O

P

N
O

P

N
O

r

*
*

•
C

ET
 K>

ST

S
I

G

WO
R

D

O
F

NO

IH
S

T
R

U
C

T
l

O
N

S

*
U

P
DA

T
E

L

l

R
E

G
I

S
T

E
R

·

*
*

TY
P

E4
9

I
N

S
T

l
O

N
T

O

MO
il

E

N
D

TY

P
E

S
4

MP

K

N
O

P

L
l

O

N
TO

0

A

D
D

t1
0

P

:-f
D

R

O
N

T
O

A

C
C

AD

D
N

O
P

Ll

I

N
TO

E

N
D

N
O

P

t
:O

P

N
O

P

N
O

P

N
O

P

N
O

P

(")

N
O

P

N
O

P

..
..

..
..

*
*

•
G

E
T

L

E
A

S
T

S

I
G

.WO
R

D

O
P

NO

o

r

I
N

S
T

R
U

C
T

I
O

N
S

•

U
P

DA
T

E

L
2

R

E
G

I
S

T
E

R

•
*

T
T

P
E

S
O

I

N
S

T
2

O

N
T

O

HDR

EN
D

TY

P
E

 S
S

MP

K

N
O

P

L
2

O

N
TO

0

A

D
D

N
O

P

H
O

R

O
N

T
O

A

C
C

AO

O
N

O
P

L

2

I
N

TO

E
N

D

N
O

P

N
O

P

N
O

P

N
O

P

N
O

P

N
O

P

N
O

P

N
O

P

*
*

*
C

E
T

K>

S
T

S

I
G

WO

R
D

O

P

ST
A

C
K

T

I
M

E

*
UN

MA
P

P
E

D

VE
R

S
I

O
N

O

F

B

R
EG

I
S

T
E

R

R
E

F
E

R
E

N
C

E

*
*

O
N

L
Y

U

S
E

D

I
P

I

N
D

I
R

E
CT

A

N
D

UN

HAP
 D

I
R

E
C

T
I

V
E

I

S
S

U
E

D

TYP
E

S
l

S

T
I

M
E

l

O
N

T
O

HD

R

E
N

D

•
N

O
P

T

Y
P

E
S

6

HA
R

O

N
T

O

7
7

7
7

7

AN
D

N
O

P

D
I

S
P

I

N
TO

N
O

P

C
.L

E
N

O

N
T

O

A
C

C

S
U

B

MP
L

N
O

P

C
.

D
I

S
P

O

N
TO

0

A

D
D

N
O

P

D
I

S
P

O

N
T

O

A
C

C

S
U

B

MP
L

N
O

P

R
W

t3
N

O
P

E

N
D

*
N

O
P

(")

*
GE

T
 L

EA
ST

SI

C
 WO

R
D

or

ST

A
C

K

T
I

M
I

*

�
•

•
R

E
F

E
R

EN
C

E

TO

L
l

+
H

(")

0

t:
::I

�

La
b

el

l
u

.
1

I
-0

B

u
e

2

Co

o
e

t

ru
ne

Sp

ee

He
a

T
a

r
g

e
t

C
oa

me
n

t
L

ab
el

B

u
e

1

I
-0

B

u
e

2

Co

n
e

t

Fu
ne

S

p
e

e

Me
a

T
ar

ge
t

C
o

m
me

n
t

..-

La
be

l
l

u
•

1

I
--0

B

u
e

2

Co
ns

t
Fu

ne

Sp
ee

H

ea

T
ar

ge
t

c
o-

en
t

La
be

l
Bu

e
1

I--0

Bu
e

2
C
ons

t

F
u

n
e

Spe

e
M

e
m

T

a
rr.

et

C
o

11
1111e

n
t

>

*
*

RE
AD

 TH
E

L
l

LI
M

IT
 R

EG
IS

T
ER

to'd

n

PE
S7

CS
A

S
ON

TO

AD
RS

PC

ST
AC

I.

*
to'd

MAR.

ON

TO

37
7

A
N

D

T
YP

E6
6

L
lL

ON

TO

M
DR

EN

D
�

z

L

l
ON

TO

AC
C

>·
,;,

t«>

P
t:

:I
D

IS
P

I
N'TO

.
*

H

L
l

L

ON
TO

AC

C
SU

i
MP

L

*
'R

EA
D

TH
E

L

2
LI

M
IT

· RE
GI

ST
ER

><

RW

*

(")

EN
D

T
YP

E6
8

L
2L

ON

TO

HD
R

EN
D

N
O

P

t«>
P

*
PU

SH
l

JU
M

P
++

(T
)

1
*

ll
EF

EN
CE

 TO
 L

2

+
H

EN
D

•
T

YP
E6

2
.nJ

H
P

CL
BV

AL

TY
P

!
5

8

CS
A

S
ON

TO

AD
RS

PC

ST
A

Clt

NO
P

MAR.

ON
TO

·
37

7
A

ND

PU
SH

2
JU

M
P

++
(T

)2

L
2

ON
TO

A

CC

A
DD

t«>

P

D
IS

P
IN

TO

PO
P

l
JU

H
P

(T
)-

1
L

2L

ON
TO

AC

C
SU

B

MP
L

t«>

P
RV

PO

P2

JUM
P

(T
)-

2
EN

D
.

NO
P

NO

P
•

*
•

TH
IS

IN

ST
RU

CT
IO

N
CL

EA
RS

 TH
E

PI
NS

T
 R

EG
IS

T
ER

•

CO
D!

AD

DR
ES

S
SP

A
CE

RE

FE
RE

NC
E

*
·*

T

YP
E6

3
PI

NS
T

l
ON

TO

0

AN
D

MP

K

TY
P

E
5

9

CC
A

S
O

RT
O

AD

RS
PC

CO

DE

IN
ST

l
IN

TO

MAR.

ON
TO

D

lS
P

RW

WH
ERE

IN

ST
2

IN
TO

EN

D
EN

D
NO

P
NO

P
*

•
*

WR
IT

E
to

 TH
E

L2
 L

IM
IT

RE

GI
ST

ER

•
LO

A
D

TH
E

T
BA

S
E

R

EG
IS

T
ER

•

(")

•
T

YP
E6

9
HP

K

�

TY
PE

65

HP
K

M

DR

ON
TO

0

A

DD

N

K
DR

ON

TO

0
A

DD

L2
L

IN
TO

EN

D
TB

IN

TO

E
N

D

NO
P

NO
P

*
•

*
•

DA
TA

 A
DD

R
ES

S
SP

A
CE

RE

FE
RE

NC
E

*
D

E
B

U

G

C
0

D
E

*
BO

TTO
M

5

12
 WO

R
DS

.

*
*

*
tfP£

60

CA
SH

ON

TO

A
DR

SP
C

DA
TA

*

·TH
IS

 CO
DE

ST

A
RT

S
TH

E
If:

BU
G

SE
CT

IO
N

or
 TH

E
CX>

NT
RO

L
STO

RE

MAR.

ON
TO

DI

SP

•
RW

*

IT

IS

EN
TE

RP.
D

WI
TH

A

 L
OA

D
IM

ME
DI

A
T

E
0

IN
ST

RU
CT

IO
N

EN
D

•
W

ITH
 T

H
E

DE

BUG

B
IT

 O
N

*
*

•
WR

IT
!

to
 nl

!

LI

LI
M

IT

R
EG

IS
T

ER

*
SE

CT
IO

N
l

.
*

*
n

PE
67

. MP

J\

*
T

HI
S

SE
CT

IO
N

IS
 R

ES
PO

NS
IB

L
E

FO
R

TH
E

K
DR

ONTO

0

A

DD

*
T

ES
TI

NG
 O

F
THE

PR

OC
ES

SO
R

RE
G

IS
TE

RS

L
lL

IN

TO

EN
D

*
NO

P
*

TH
E

FO
LL

OW
IN

G
RE

GI
ST

ER
S

AR
E

CY
CL

ED
:

*
*

*
llEA

D
TH

E

T
BA

SI
 REG

IS
T

ER

*
DI

SP
L

I
*

*
DI

SP
L

2
�

n
P

E
6

4

TB

ON
TO

HD

R
D

O
•

HD
R

H

ll>
P

*

A
 DR

S P
C

(") ::0

•
•

DI
SP

0

(") 0

t:

:I
tz:i

l

u
•

2

Co

n
e

t

F
u

n
e

Spe

e

M
e

a

T
a

r
g

e
t

C:O-
n

t
La

b
e

l

B
u

e

l
1

-0

l
u

•

2
Co

ns
t

Fu
n

e
Sp

ee

M
em

T

ar
ge

t
Co

m
me

nt

La
b

e
l

B

u
a

1

1-0

La
be

l
l

u
•

J

I
-0

l

u
•

2
C

o
n

a
t

P'

u
n

e

Sp
ee

Ke

m
T

a
r

g
e

t

C
o

m
e

n
t

L

a
be

l
B

u
e

l

I
-0

'
B

u
e

2

Co
n

s
t

'F

u
n

e

S
p

e
e

Me

m
T

R
r

g
e

t.

Co
11'.r.i

en
t

>

•
S

VR

*
"'d

*

P
R

O
C

N

*
"'d

*

*
Cz:I

*

I
N

A

D
D

IT
IO

N

TO

TH
E

S
E

,
T

H
E

r

I
S

R
T

*

IN
T

E
R

N
A

L

O
P

E
RA

T
IO

N

IS

A
S

FO

L
L

O
W

S
:

2:

0

•
P

R
O

C
E

S
S

IN

T

HE

ST
A

C
K

I

S

T
E

S
TE

D

*
H

•

*
P

R
O

C
N

•

0

�

•

*
A

D
R

S
P

C

•

0

*
..

.
*

D
I

S
P

•

10

0

n

•
*

C
S

SN

•

0

•
LOC

A
T

IO
R

0

3
E

O
 MU

S
T

HA

VI
 AR

 !N
D

S'l'

A
T

!H
I

N
T

*

C
A

S
N

•

1
(AN

Y

PA
T

T
E

R
N

WI

L
L

DO

)
•

*
S

V
R

•

0

•
O

P
E

RA
T

I
O

N
.

*
L

ll
.

•

7
7

7
7

7

•
*

L
2L

•

1

7
7

7
1

•
.I

N
T

E
R

N
A

L

PR
E

S
E

T

*
TB

 •

0

•
E

X
T

E
R

N
A

L

P
R

E
S

E
T

*

C
C

,\
S

•

1
*

B
OO

T

*
•

R
U

N

*
M

O
R

•

1

7
7

7
3

7

*
*

W
R

IT
E

•

I
F

AL

L

I
S

WE

L
L

,
CO

N
T

R
O

L

WI
L

L

B
E

P

A
S

S
E

D

*
D

I
S

r

•

10
2

•

O
N

TO

T

HE

B
O

O
T

S
T

RAP

*
M

O
R

•

1

7
7

7
3

6

*
*

WR
I

T
E

*

1P
 AN

ER

RO
R

OC

C
UR

S
,

TH
E

2

10
0

W

IL
L

EX

P.
C

UT
!

A

HA

L
T

XX

*

D
IS

P

•

20
0

•
I

N
S

T
R

U
C

T
IO

N

*
H

D
R

•

17

7
7

3
4

•

TH
E

CO

D
E

V

AL
UE

o

r

xx
 W

IL
L

AL

S
O

Af

'P
E

A
R

IN

TH

E

D
I

S
P

L
2

*

W
R

IT
E

*

R
E

G
I

S
T

E
R

,
A

N
D

I

N
D

I
C

A
T

E
S

T

HE

C
A

U
S

E

o
r

T

HE

E
R

R
O

R
.

*
D

I
S

P

•

20
2

*
*

H
D

R

•

7
7

7
7

7
,

*
*

W
R

IT
F.

•

I
F

AN

ER

R
O

R

OC
C

UR
S

,
T

R
E

P

R
O

C
E

S
SO

R

WI
L

L

R
F.MA

IN

*
H

O
R

•

1

2
4

0
0

2

•
IN

D

E
B

U
G

S

T
A

T
E

.
T

H
I

S

C
AN

B

E

R
F.

S
ET

W

I
TI

I
IN

T
E

R
N

AL

P
R

!
S

ET

*
O

F.
B

U
G

O

F
F

n

*

*
E

N
D

;
..

....
*

*
VJ

*

C
O

N
 P

I
G

0

A
N

D

EN
n

Y

KA
R

O

N
T

O

7
A

N
D

G

E
T

L

S
B

P

R
OC

N

IN
T

O

HAR

IN
TO

0

NO

P

M
PO

•

O
?

T
B

IN

T
O

JU
H

P

T
S

l
Y

E
S

C

C
A

S

IN
T

O

HAR

IN
TO

l

NO
P

H

PO

•
l

T
C

S
S

N

IN
T

O

JU
M

P

T
S

1
7

Y

E
S

A

 O
R

S
 P

C

IN
T

O

HAR

I
N

TO

2

NO
P

K

PO

•
2

1
C

C
A

S

O
N

T
O

1

A
D

D

JUMP

C
O

N
r

IC

YE
S

C

C
A

S

IN
T

O

*
C

A
S

N

I
N

T
O

*

S
VR

IN

T
O

*

S
E

C
T

IO
N

2

.

*
*

P
R

O
C

N

O
N

T
O

7

7
7

7
7

A

D
D

*

TH
I

S

CO
DE

I

N
I

T
I

A
L

I
Z

F.
S

T

H
E

SY

S
T

EM

110
0T

S
T

RA
P

L

JL

IN
TO

*

IT

C
O

N
F

I
G

U
R

E
S

T

HE

HA
P

S

A
S

P

O
L

LO
W

S
s

L
2

L

IN
T

O

*
*

•·

10
0

4

0

L
I

N
K

S

P
R

O
C

H

O
N

T
O

7

A
D

D

*
10

2
4

1
C

O
D

E

T
R

l
IN

T
O

1

A
D

D

*
20

0

4
3

D

A
T

A

T
R

I
IN

T
O

L

E
F

T

*
2

0
2

0

S

T
A

C
K

T

R
l

IN
TO

L

E
FT

*

T
R

l

IN
T

O

L
E

F
T

*

T
R

l
IN

T
O

�
*

I
F

AN

E

R
R

O
R

I

S

DE
T

E
C

T
E

D

IN
 S

E
C

T
IO

N

l,

S
E

C
T

IO
N

2

W

IL
L

D

I
S

P

IN
T

O

n

"
N

OT

H
 E

H
T

E
R

E
D

T

R
l

O
N

T
O

R

I
G

H
T

�
*

S
E

C
T

IO
N

1

HA
Y

B

E

BY
P

A
S

S
E

D

WI
T

H

A

R
P.G

B

IT

2
S

E
T

M

D
R

IN

TO

1
A

D
D

n

0

0

Cz:I

La
b

e
l

B
u

•

1
I�

B

u
e

2

C

o
n

 e
t

r

un
e

S
pe

e
H

e
m

T

a
r

g
e

t
C

o
11

111e
n

t
La

b
e

l

I
H

1

1�

l
u

a

2

Co
n

a
t

F

u
n

e

S
pe

e

H
e

m

T
a

r
g

e
t

C

o
m

m
e

n
t

La
be

l
l

u
a

1

I�

l
u

•

2

Co
aa

t
F

u
n

e

S
p

•
e

H

em

T
a

ra
 e

t

Co
mm

en
t

La
be

l
'

Bu
a

l
I

--0

B
u

•

2

Co
na

t
F

u
n

e

Sp
ee

K

em

Ta
rg

et

C
omn

en
t

�
P

ROC
N

O

N
T

O

AC
C

SU
B

JU

M
P

E
R

R
O

R

GO
 E

RR
OR

""d

HD
R

IN
TO

*

tzi

WR
IT

!
*

TE
ST

 CO
D!

 -
TE

ST

DI
SP

L
2

FO
R

0

2:

HO
R

O
N

T
O

1

S
UB

*

�

KD
1l

IN

T
O

T

S
3

0

AN
D

D

IS
?L

2•
0

..
...

DI
SP

O

N
T

O

2
A

D
D

'
D

lS
PL

2
INT

O

�

D
I

S
P

INTO

D

I
S

P
L

2

O
N

T
O

A

CC

N
O

P
MPO

D

IS
PL

2<
>

n

WR
IT

E
JU

M
P

TS
4

AL
L

O
K

TR
I

O
NTO

·
L

EPT

D
IS

PL
2

IN
T

O

2
AD

O
ER

RO
R

l
D

IS
P

IN
T

O

DI
SP

L2

I
N

TO

1
AD

D
H

O
R

O

N
T

O

2
SU

B

DI
SP

L2

I
N

T
O

MO

R
H

OR

IN
TO

JU

M
P

E

R
R

O
R

CO

E

RR
O

R

WR
IT

E
*

D
I

S
P

o

rrr
o

2

A

DD

*
T

ES
T

 CO
DE

-

T
ES

T

D
IS

PL
2P

O
R

-
1

D
IS

P

IN
T

O

*

P
R

O
C

H

O
N

T
O

11

71
7

A
DD

T

S4

17
74

00

O
R

D1

SP
L2

•-

K
OR

IN

TO

DI
SP

L2

IN
'l'O

37

7
O

R

WR
IT

E

DI
SP

L
2

IN
TO

T

R
l

OH
TO

7

A
JD

DI

SP
L2

O

N
T

O

AC
C

N
OP

MPO

D

il'
rL

2<
>

T
R

l
IN

TO

l
A

DD

JU
M

P
T

S5

AL
L

O
K

T
R

l
IN

T
O

7

AD
D

0
A

N
D

E

RR
O

R

4
TR

I
IN

T
O

l

AD
D

D
IS

PL
2

IN
'l'O

2

AD
D

T
R

I
IN

'l'O

DI
SP

L
2

IN
TO

LE

FT

T
R

l
O

N
T

O

L
E

FT

DI
SP

L
2

IN
TO

H

D
R

T
R

I
IN

T
O

1

A
DD

JUM

P

E
R

R
O

i\

CO
 E

RR
OR

Tl

ll
IN

T
O

1

AD
D

*

TI
U

ltl
'l'O

S

W
A

P

*
T

E
S

T

CO
DE

 -
TE

ST
 HD

R
PO

R
0

T
I

U
IN

TO

2

A
DD

*

H
OR

I

N'l'O

T
SS

0

AN
D

n

DB
CO

FF

H
D

R

IN
'l'O

M

DR
•O

..

...

EN
D

HD
R

O
N

T
O

D

I
S

P
I.

l
AC

C
N

O
P

KPO

M

D
R

<
>

O

.i:
:--

•
JU

M
P

TS

6
A

L
l.

OK

•

EN
T

R
Y

TO

TE

ST

<X>
DE

D

IS
PL

2
IN

T
O

2

A
DD

ER

RO
R

5

•
DI

SP
L2

IN

'l'O

LE
FT

•

DI
SP

L2

IN
T

O

l
A

DD

•
T!

ST

CO
DE

-

T
E

S
T

D

IS
P

L
l

FO
R

0

DI
SP

L
2

I
N

'l'O

H
DR

•
JUM

P

E
RR

O
R

00

 E
RR

OR

T
S

l
0

AN
D

Dl
SP

L
l•

O

*

D
I

S
P

L
l

I
N

TO

*
T

E
S

T

CO
D

E

-
TE

ST

HD
R

FO

R

-
1

D
IS

PL
I

O
N

T
O

A

CC

N
O

P

HPO

D
I

S
P

L
l<

>

*

JUMP

TS
2

EQ
UA

L
T

S6

17
74

00

O
R

MD

R•
-1

D

I
S

P
L

2

IN
T

O

1
AD

D
E

R
R

O
R

1

M
DR

IN

TO

37
7

O
R

D
lS

P
L

2

I
N

TO

HD
R

MD
R

IN

TO

JUM
P

E

R
R

O
R

GO

ER

RO
R

H

O
R

O

N
T

O

D
I

S
P

L
l

AC
C

NO
P

MPO

MD
R

<
>

-
1

•
J

UM
P

T

S7

ALL
 O

tt

•
TE

ST
 CO

D
E

-

T
!

S
T

D

I
S

P
L

l
FO

R
-1

1

AN
D

ER
RO

R
6

*
H

DR

IN
'l'O

1

SU
B

T
S

2

17
74

00

O
il

D

I
S

P
L

l-
DI

SP
L

2
IN

T
O

HO

il

DI
SP

L
l

IN
'l'O

37

7
O

R

JUMP

E
R

R
O

R

GO
 E

R
R

O
R

D
I

S
P

L
l

IN
TO

•

D
lS

PL
l

ON
TO

AC

C
NO

P

HPO

D
I

S
P

L
2

<
>

*

T
ES

T
 C

OD
E

-
TE

ST

AD
RS

PC

FO
R

0

JUMP

T
S3

EQ

UAL

*

�
0

.. AN
D

E
RR

O
R

2

T
S7

0

AN
D

A
DR

SP
C•

O

n

D
t5

PL
2

I
NTO

2

A
D

D

A
DR

SP
C

I
N

'l'O

�
D

I
S

P
L

2

IM
T

O

HD
R

A

DR
SP

C
O

N
T

O

AC
C

N
O

P
HPO

A

l>R
SP

C<
>

n

0

0

tzi

La
be

l
lu

a
l

1-0

B
u

a

2

Co
n

e
t

r

u
n

r.

S
p

e
e

M

ea

T
ar

ge
t

eo
 ..

. at

La
be

l
B

u
•

l

I
--0

B

u
•

 2

C
o

n
 e

t

Fu
ne

S

p
ee

K

ea

T
ar

ge
t

Co
mm

en
t

L
a

b
e

l
B

u
•

I

I
�

B

u
•

2

Co

n
•

t
F

u
n

e

Sp
e

e

He
m

T
a

r
g

e
t

Coam
e

n
t

La

b
e

l
B

u
a

1

I
�

B

u
a

2

C

o
n

 a
t

F

u
n

e

S
p

e
e

Me

a
T

ar
Re

t
C

o
mm

e
n

t

�
JU

MP

T
S

8
A

L
L

O

K

D
I

S
P

I

N
TO

A

C
C

L

E
F

T

C
E

T

ZO
!S

7

AN
D

E

R
R

O
R

7

D

I
S

P

IN
T

O

�

D
I

S
P

L
2

I

N
'l'O

MD

I

tzj

•

�

JUHP

I
H

O
I

GO

 ER
RO

R

0

M
m

P

R
O

C
N

•
O

�

•
P

R
OC

N

IN
T

O

H

•
TE

S
T

CO

DI

-
T

E
S

T

ADR
S

P
C

PO

R

-
1

•
>c:

•

*
NO

W
S

A.
V

I

0

llf
 AL

L

UG
I

S
T

E
R.

S

O
N

ST

A
C

K

n

T
S

I

1
7

7
4

0
0

01

A

D
R

S
P

C
 •

•

A
D

R
S

P
C

I

N
TO

3

7
7

O

R

D
IS

P

O
N

T
O

0

A
D

D

D
I

S
P

L
1•

2

A
D

R
S

P
C

IN

T
O

T

S
l

l-
1

D
I

S
P

L
l

IN
TO

A
D

R
S

P
C

O

N
T

O

A
C

C

N
O

P

HPO

A
D

R
S

P
C

<
>

0

AN

D

G
F.

T
 0

JUK
p

T

S
9

A

U.

O
lt

R

E
C

S
T

R

I
N

TO

"'
D

I
S

P
T.

l•

7

A
N

D

ll
lO

R

8
D

I
S

P
L

l
O

N
T

O

1
AD

D

D
I

S
P

L
2

I

N
TO

l

A
D

D

A
D

R
S

P
C

O

N
TO

NO

P

M
PO

D

I
S

P
l.l

 <>

.
D

I
S

P
L

2

I
N

T
O

KDR

JUM

P

T
S

l
l-

4

JUMP

E
R

R
O

R

GO

ER
RO

R

J
U

M
P

T

S
l

l
-

1

HO
RE

•

•
•

TE
S

T

CO
D

E

-
T

E
S

T

D
I

S
P

l'O

R

0

*
RO

W

T
R

Y

TO

REA
D

TH

E

REG
I

S
T

E
R

S

B
A

C
K

•
*

T
S

9

0

AN
D

D

IS
P

•
O

T

S
l

l-
4

D

I
S

P

O
N

T
O

0

A

D
n

C

i:
T

:?O

B
D

I
S

P

I
N

TO

T
S

l
l

-
2

D

I
S

P
L

l
I

N
T

O

D
I

S
P

O

N
T

O

A
C

C

N
O

P

HPO

D
I

S
P

<
>

O

R
E

G
S

T
R

O

N
T

O

0

N
O

P

MPO

"'
D

I
S

P
l.

l
<

JUM
P

T

S
lO

A

L
L

O

lt

JU
MP

T

S
l

l
-

3

A
L

L

OK

7

AN
D

I

D
O

i

9
R

E
C

S
T

R

O
N

T
O

A

D
R

S
P

C

SH
OW

 D
A

T

D
I

S
P

l.
2

I

N
TO

2

A

D
D

7

A
N

D

E
R

R
O

R

ll

D
I

S
P

L
2

IN

T
O

HDl

l
D

I
S

P
L

2

IN
TO

2

A

D
D

.1UM
P

D

R
O

I

GO
 !IUlO

I

D
I

S
P

L
2

I

N
T

O

2

A
D

D

•
D

I
S

P
L

2

I
N

TO

M
O

R

•
T

E
S

T

C
O

D
E

-

T
E

S
T

D

IS
P

PO

R

-
1

JU
M

P

ER
RO

R
CO

 E.
R

R
O

R

C"l

•
*

..
..

T
S

lO

1
7

7
4

0
0

O

R

D
I

S
P

-
1

*
IN

C
R

EM
E

N
T

T

H
E

PO

IN
T

E
R

-

A
L

L

O
K

VI

D
I

S
P

I

N
TO

3

7
7

O
R

•

D
I

S
P

I

N
T

O

T
S

l
l-

3

D
I

S
P

L
l

O
N

T
O

1

A
D

D

D
I

S
P

O

N
T

O

A
C

C

N
O

P

HPO

D
I

S
P

<
>

-
1

A
D

R
S

P
C

O

N
TO

A

C
C

NO

P

M
PO

D

I
S

P
L

1
•

2

J
UM

P

T
S

l
l

A

L
L

O

lt

JU
M

P

T
S

1
2

N

E
X

T

TE
S

7

AN
D

I

E
RR

O
R

10

JU

M
P

T

S
l

l-
2

00

 A
G

A
IN

D
I

S
P

L
2

I

N
TO

2

A

D
D

*

D
I

S
P

L
2

I

N
T

O

l
A

D
D

*

EN
D

O

F

TE
S

T

PO
R

ZF.

R
O

-

A
L

L

O
K

D
I

S
P

L
2

I

N
TO

M

DI

*

JUKp

E
RR

O
R

GO

 ER
RO

i

*
HO

W
T

R
Y

TO

WR

I
T

E

1
7

7
7

7
7

T

O

AL
L

R

E
G

I
S

T
E

R
S

•
*

•
EN

D

O
F

S

IN
G

L
E

REG

I
S

T
E

R

T
E

S
T

S

T
S

12

D
I

S
P

O

N
T

O

0

A
D

D

G
E

T

2
0

8

•
T

S
U

-
1

D
t

S
P

L
l

IN
T

O

•
.

;_
1

7
7

4
0

0

O
R

G

E
T

-

1

•
TE

S
T

TH

E

RE
G

IS
T

Z
I

ST

A
C

K

R
EC

S
T

R

IN
T

O

3
7

7

O
R

•
R

E
G

S
T

R

IN
T

O

•
A

.DR
S

P
C

•

2

0
0

1

D
I

S
P

L
l

O

N
T

O

l
A

D
D

I

N
C

D

I
S

P

•
D

I
S

P

-
2

o
a

;

S
T

A
R

T

OF
 ST

A
C

K

REG
I

S
T

E
R

S

A.
D

R
S

 P
C

O

N
T

O

A.
C

C

N
O

P

M
PO

·o

t
S

P
L

1
•

2

•
JUMP

TS

1
2

-4

T
S

l
l

3

7
7

AN

D

G
E

T

3
7

7

JU
MP

T

S
1

2
-

l
CO

 A
G

A
I

N

A
D

R
S

P
C

INTO

R

I
G

HT

C
!T

1

7
7

..

A
D

R
S

P
C

I

N
T

O

1
A

D
D

C

E
T

2

0
0

*

NO
W

TR
Y

TO

READ

TH

E

R
EG

I
S

T
E

R
S

BA

C
K

�
A.

D
R

S
 P

C

I
NTO

..

C"l

7

AN
D

C

I
T

1

T
S

12
-4

D

I
S

P

O
N

T
O

0

A

D
D

D

I
S

P
L

1
•

2

"'

D
I

S
P

INTO

1

A
D

D

C
BT

8

T
S

1
2

-
2

D

I
S

P
L

l
I

N
'IO

0

n

0

0

�

L
a

b
e

l

l
u

e

l
l

�

l
u

•

2

Oo
n

a
t

r

u
n

e

Sp
e

e

Me
a

T
a

q
e

t
C:O-.

n
t

La
b

e
l

l
u

•

l
l

�

l
u

•

2

Co
n

e
t

'F

u
n

e

Sp
e

e

He
•

·

T
a

r
g

e
t

Co

m
me

n
t

•

La
b

e
l

B

u
•

I

I
-0

B

u
•

2

C

o
n

•
t

F

u
n

e

S
p

e
e

M

e
•

T

a
r

g
e

t
C

oa
ae

n
t

L

a
b

e
l

.

B
u

a

1
1

-0

B
u

a

2

C
o

n
 a

t

F
u

n
e

S

p
e

e

K
e

m

T
a

r
g

e
t

C

o
11

1111o•n
t

�
1

7
7

4
0

0

O
R

G

E
T

-

1
*

D
I

S
P

L
2

I

N
TO

3

7
7

O

R

*
T

E
S

T

IF

WE
 CAN

 CL
E

A
R

T

H
E

SV

R
T

�

R
E

G
S

T
R

O

N
T

O

A
C

C

NO
P

MPO

R

EG
S

T
R

<
>

*

tZ2

�

JU
M

P

T
S

12
-

3

A
L

L

O
K

T

S
14

S

V
R

IN

'r
O

S

V
R

•
O

t:='

RE
GS

TR

O
N

T
O

AD

R
S

P
C

S

H
O

W

M
T

A

S
V

R

O
N

TO

D
I

S
P

L
l

0

NO
P

M

PO

•
O

T
H

7

A

N
D

·
E

R
R

O
R

1

2

J
UM

P

T
S

1
5

>4

D

l
S

P
L

Z

I
NTO

2

A

D
D

7

A

N
D

E

R
R

O
R

1

4

n

D
I

S
P

L
2

I

N
TO

2

A

D
D

D

I
S

P
L

2

IN
TO

A

C
C

L

E
FT

D

I
S

P
L

2

I
N

TO

1
A

D
D

D

I
S

P
L

2

IN
T

O

MD
R

D

1S
P

L
2

IN

T
O

MD

R

J
U

M
P

E

RR
O

R

CO
 E

R
R

O
R.

JUM

P

E
R

R
O

R

*
•

*
T

E
S

T

T
HA

T

P
R

O
C

N

RE
G

I
S

T
E

R

�
R

K
S

•

I
N

C
R

EM
E

N
T

TH

E

PO
I

N
T

E
R

*

*
T

S
1

5

0

A
N

D

G
E

T

0
T

S
1

2
-

l

D
l

S
P

L
l

O
N

T
O

1

A
D

D

IN
C

D

I
S

P

P
R

O
C

H

IN
TO

A

 D
R

S
 P

C

O
N

TO

A
C

C

NO
P

M

PO

D
I

S
P

L
l

<
>

P

R
O

C
N

O

N
T

O

D
I

S
P

L
l

0

N
O

P

MPO

P
R

O
C

N
•

O
T

JUMP

T
S

1
3

lllXT

 T
E

S

JUM
P

T

S
16

A.L

t.
O

K

JU
MP

T

S
U

-
2

00

 A
G

A
IN

7

AN

D

E
RR

O
R

1

5

•
D

I
S

P
L

2

I
N

TO

A
C

C

L
EF

T

•
EN

D

o
r

-

1
TE

S
T

D

I
S

P
L

2

IN
T

O

l
A

D
D

•

D
I

S
P

L
2

I

N
'IO

H

O
R

*

JU
M

P

E
R

R
O

R

CO

E
R

R
O

R

*
*

*
TE

S
T

TR

E

R
PA

t
S

T
E

R

ST
A

C
K

B

Y

WR
tT

lN
C

*
T

E
S

T

WR
IT

E

O
F

3

77

DI
T

O

PR
O

C
N

*

T
H

E

RE
G

I
S

T
E

R
S

A

D
D

R
E

S
S

DI

 T
H

E

RE
G

I
S

T
E

R

*
•

T
S

1
6

3

7
7

A

N
D

G

F.
T

37

7
T

S
1

3

D
l

S
P

O

N
T

O

0

A
D

D

D
I

S
P

L
1

•
2

0

P
R

O
C

N

IN
T

O

T
S

1
3

-
1

D
I

S
P

L
l

IN
T

O

P
R

O
C

N

O
N

T
O

D

I
S

P
L

l
3

7
7

N

O
P

MPO

P

R
OC

S
<

>
3

7

R
E

�
S

T
R

I

N
T

O

S
A

V
E

D

IS
P

J

UM
P

T
S

1
7

A

l.
L

O
K

n

D

I
S

P
L

l
O

N
T

O

1
A

D
D

IN

C

D
I

S
P

L

7
AN

D

E
RR

O
R

1

6

..
...

A
D

R
S

P
C

O

N
T

O

A
C

C

N
O

P

HPO

D
I

S
P

L
1•

2
0

D

I
S

P
L

2

I
N

TO

A.
C

C

U
:

F
T

CJ\

JU

MP

T
S

1
3

-
4

D

I
S

P
L

2

IN
T

O

2

A
D

D

J
U

M
P

T

S
1

3
-

1
A

G
A

IN

D
I

S
P

L
2

IN

TO

M
O

R

*
J

UM
P

E

R
R

O
R

•

NO
W

TR

Y

TO

RE
AD

TH

E

R
P.

.Cl
S

T
!

R

BA
C

K

*
*

*
T

E
S

T

T
H

E

DE
D

IC
A

T
E

D

HAP

UN
I

T

T
S

1
3

-4

D
I

S
P

O

N
T

O

0

AD
D

D

I
S

P
L

1•
2

0

*
E

A
C

H

C
E

L
I,

O

F

T
HE

MAP

H

A
S

IT

S

A
D

D
R

E
S

S

lil
R

IT
T

EN

IN
T

O

T
S

1
3

-
2

D

l
S

P
L

l
IN

T
O

*

T
H

E

C
E

L
L

R
E

G
S

T
R

O

N
T

O

A
C

C

N
O

P

HPO

R
E

G
S

T
R

<
>

D

*
JU

MP

T
S

1
3

-
3

AL

L
O

K

*
D

I
S

P
L

1•
4

0
0

B

R
E

G
S

T
R

O

N
TO

A

D
R

S
P

C

S
H

O
W

DA

T
A

*

7

A
N

D

E
R

R
O

R

1
3

T

S
1

7

A
D

R
S

P
C

O

N
T

O

L
E

F
T

G

E
T

40

0!

. D
I

S
P

L
2

I

N
TO

L

E
FT

D

I
S

P
L

l
IN

T
O

D
I

S
P

L
2

IN

T
O

1

S
U

B

0

AN
D

S

E
C

M
F

n

0
D

I
S

P
L

2

I
N

TO

M
O

R

A
D

R
S

P
C

I

N
TO

JU
MP

!

Rl
lO

R.

00

ERl
lO

ll

T
S

l
 7

-
1

D
l

S
P

IN

T
O

DI

SP
 0

*

0

A
N

D

G
ET

0

*
I

N
C

R
EM

EN
T

PO

IN
T

E
R

H

D
R

I

N
T

O

FO
R

0-

*
D

I
S

P

O
N

TO

l
A

D
D

D

I
S

P
+

l

T
S

U
-

3

D
I

S
P

L
l

O
N

T
O

1

A
D

D

IN
C

PO

I
N

T

M
O

R

O
N

T
O

A

C
C

S

U
B

FO

il"!
 CO

MP

A
 D

R
S

 P
C

O

N
TO

N

O
P

H

PO

•
2

0
0

a
t

M

D
R

I

N
TO

D

I
S

P

JU
M

P

T
S

14

WR
I

T
E

DO

 \.
'R

IT
E

�
JU

MP

T
S

13
-

2

*

n

•
D

I
S

P

O
N

T
O

1

A
D

D

FO
RM

 D
I

S
P

�
•

Df
D

 o
r

ll!G
I

S
T

I
R

ST

A
C

K

TE
S

T

D
I

S
P

L
l

O
N

TO

A
C

C

N
O

P

MPO

-
�

0
0

8
?

n

(.

0

t:='

tsj

l
u

•

l

La
be

l
I

-0

B
u

a

2

Co
n

 a
t

Fu

ne

Sp
e

e
.

Ke
a

T

a
r

a
•

t
eo

-
n

t

La
b

e
l

B

u
a

1

1
-0

B

u
e

2

Co

n
a

t
F

u
n

e

S
p

e
e

H

e
m

T
a

r
g

e
t

Co

mm
en

t

La
be

l
B

u
•

l

1-0

l
u

•

2
C

on
•

t
r

u
n

e

I p
ee

Hem

Ta

r1
•t

C

om
ment

La

be
l

l
u

e

l
1

-0

l
u

e

2
C

o
n

e
t

F

u
n

e

S
p

e
e

H

ea

T
ar

ge
t

C

091
1e

n
t

�
JUM

P

T
S

l
7-4

D

l
S

P
L

l
IN

T
O

2

A
D

D

JUMP

T
l

l
7-

l
00

 A
C

A
IR

D

l
S

P
L

l
IN

TO

CEr
 8

0

'"d

•
•

tzj

z

•
AL

L

AD
D

R
E

S
S

E
S

SA

VE
D

 -
TI

T
TO

DAD

 TH
EM

Me

lt
O

N
T

O

1
AI

D

t:
:i

•
u

cs
n

IN

TO

..
...

TI
U

-•

0
AR

D
'

AT
 ST

A
RT

D

IS
P

L
l

O
N

T
O

1

AD
D

�

Tl
l7

-Z

D
UP

ll'l'O

D

lS
P

L
l

IN
TO

n

HAD

IUD
 MAP

•

ll>
P

O

N
T

O

1
AR

D

N
O

P

V
A

I
T

I
R

F.
C

ST
R

I

N
TO

M

D
I

or

rr
o

0

A
D

D

G
P.T

D

A
T

A

D
I

S
P

L
l

O

N
T

O

1
A

D
D

D
I

S
P

O

R
T

O

AC
C

NO

P

HPO

EQ
U

A
L

?
D

lS
P

L
l

IN
TO

J
U

M
P

T

S
17

-
3

Y
E

S

•
D

I
S

.,.
l

IN
T

O

AC
C

NO

P

1.
ET

Ul
lR

E
D

•

1
A

lt
D

El.IO

I
17

O

N
T

O

l
A

N
D

D
U

P
L

Z

I
R

TO

L
E

FT

R
E

C
STR

IN

TO

D
U

P
L

2
IN

T
O

1

A
D

D

D
I

S
P

L
l

O
N

T
O

1

AD
D

D
l

S
P

L
2

l

N
'l'O

2

A
D

D

D
I

S
P

L
l

I

N
TO

D
I

S
P

L
2

IN

T
O

MDl

l
•

JU
MP

!UO

R
CO

 ER
ROi

ON
T

O

1
AN

D

•
R

F.
G

ST
R

IN

TO

•
Il'

C
R

DI
EJI

T

TH
E

AD

DI
E

S
S

D

I
S

P
L

l
O

N
T

O

1
AD

D

•
D

I
S

P
L

l

IN
TO

T
S

U
-

3

D
IS

P

O
R

TO

l
AD

D

111C

DS
I

P

•
D

IS
P

L
l

O
N

TO

RO
P

HPO

•

4
0

0
8

7
O

N
T

O

1
AR

D

JUM
P

CO
N

F
IC

R

E
GS

'rR

I
N

TO

JU
MP

T

S
1

7-
2

A
C

A
IR

D

I
S

P
L

l

O
tl

T
O

1

A
D

D

"
D

I
S

P
L

l

I
N

TO

•
E

R
R

O
R

I

F.
PO

R
T

IN
G

CO

DE

•
n

•
O

NT
O

1

AN
D

�

•

T
H

I
S

CO

D
E

IS

PJf

T
E

R
E

D

W
HE

N

AR
 !R

RO
R

IS

DE

T
E

C
T

E
D

. R

E
C

ST
R

IN

TO

..
.....

•
T

H
Y.

l

R
Rl>

R

NU
M

BER

IS

C
O

N
T

RA
IN

E
D

IN

D

IS
P

L
2

A
RD

M

D
R

D

I
S

P
L

l

O
N

T
O

1

A
D

D

•
O

N

EX
IT

T

H
E

HD

R

CO
N

T
A

IN
S

A

HA
L

T

XX
 I

N
ST

R
U

C
T

IO
N

D

I
S

P
L

l

IN
TO

•
D

E
B

OO

MO
DE

IS

R

C7l

T
U

ll
N

E
D

O

F
F

•

•
O

N
T

O

1
AN

D

E
U

O
R

3

7
7

AI

D

R
E

G
ST

R

IN
TO

T
R

l
IN

T
O

l

A
D

D

F
O

RH

4
00

D

I
S

P
L

l

O
N

T
O

1

A
D

D

T
il

l
IN

T
O

L

E
F

T

10
0

0

D
I

S
P

L
l

IN
TO

T
R

l
IN

T
O

L

EFT

2
0

0
0

•

T
il

l
IN

T
O

11

11
1

A
D

D

O
R

T
O

l

AN
D

TIU

IN
T

O

l
A

D
D

R

E
C

ST
R

I

N
TO

HD
R

O

N
T

O

A
C

C

O
R

10

2
0

XX

D
lS

P
L

l
O

N
T

O

l
A

D
D

H
D

R

IN
T

O

D
I

S
P

L
l

IN

TO

E
N

D

R
ETUR

N

•
•

O
R

T
O

l

AN
D

•
TH

IS

IN
ST

R
U

C
T

IO
N

SE

T
S

AL

L

CA
P

A
B

IL
ITY

Jlf.C

I
ST

E
l.

S

IN
V

AL
I

D

RE
G

S
T

R

IN
TO

•
D

I
S

P
L

l

O
N

T
O

1

A
D

D

C
L

I
YA

L

0

AN
D

MP

l
D

I
S

P
L

l
IN

TO

D
I

S
P

L
l

IN
T

O

7
A

D
D

C

IT

7
•

D
I

S
PL

l

IN
T

O

l
A

D
D

O

N
TO

l

AN
D

D
I

S
PL

l

IN
TO

L

E
F

T

G
ET

16

R

E
C

ST
R

IN

TO

D
I

S
P

L
l

IN
T

O

L
E

F
T

C

E
T

32

D

I
S

P
L

l

O
N

T
O

1

A
D

D

�
D

I
S

P
L

l
I

N
TO

L

E
FT

en

 6
4

D

I
S

P
L

l
IN

TO

n

D
I

S
P

L
l

IN
T

O

1
AD

D

•

�
D

IS
P

L
l

u
rro

7

A
D

D

O
N

T
O

1

AN
D

n

0

t:
:i

tzj

La
be

l
l

u
•

l

1
-0

l

u
•

2

Co

ae
t

ru
ac

Sp

ee

•
•

T
a

r1
et

eo-

nt

La
be

l
l

u
e

l

1
-0

l

u
e

2

Co
ne

t
ru

ne

S
pe

e

Kea

T
a

r1
et

C

OC1
1111e

n
t

La
be

l
B

u
e

1

I�

l
u

a

2
Co

n
e

t

F
u

n
e

S

p
e

e

M
ea

T

a
r

g
e

t

Co
ll8

e
n

t
L

a
be

l
B

u
e

1

I
-<>

B

u
s

2

C
o

n
st

F
u

n
e

S

p
e

e

H
e

m

T
arg

e
t

C
o

r.u:i
e

n
t

>

R
!

C
S

T
R

I

N
TO

T

O

N
T

O

D
I

S
P

0

A

D
D

�

�

D

I
S

P
L

l

ON
TO

1

AD
D

T

B

O
N

TO

A CC

NO
P

M

P
S

tzJ

D
I

S
P

L
l

I
N

T
O

R

EAD

z

•
E

N
D

'=

='
ON

T
O

1
�

D

*
t-1

R

E
C

S
TR

I

N
TO

*

CO
D

E

'l'O
 RA

N
D

L
E

{T

)-
S

E
C

O
N

D

\O
R

D

><:

D
I

S
P

L
l

O

N
T

O

1
A

D
D

*

n

D
I

S
P

L
l

l

N
'l'O

{T

)-
2

C
S

A
S

ON

TO

AD
R

S
P

C

•
T

O

N
TO

1

S
U

B

O
N

T
O

1

AP
J

D
I

S
P

I

N
T

O

RE
GS

TR

I
N

TO

TB

ON
TO

A

C
C

NO

P

MP
S

D

I
S

P
L

l

OH
TO

1

A
D

D

R
E

A
D

D

I
S

P
L

l

I
N

TO

T

ON
TO

2

S
U

B

*
T

IN

'l'O

O
N

T
O

1

AH
D

EN

D

R
E

C
S

T
R

I

N
TO

*

D
l

S
P

L
l

ON

TO

1
AD

D

$O
R

I
G

I
N

0

3
£

0

D
I

S
P

L
l

I

N
TO

EN

D

*
$

DI
D

OR

TO

1
A

N
D

R

E
G

S
T

R

I
N

T
O

D

I
S

P
L

l

ON
TO

1

AD
D

D

I
S

P
J.

l
I

N
TO

*

ONT
O

1
AN

D

R
E

G
S

T
ll

I

N
TO

* •

NO
W

R
E

S
E

T

T
H

!

D
I

S
P

L
l

R

E
G

I
S

T
E

R

•
n

C

S
S

N

ON
T

O

D
I

S
P

L
l

..-
E

N
D

00

• *

C
O

D
E

'l'O

HA

N
D

L
E

++

{T
)

F
IR

S
T

\O
R

D

* ++
{T

)
l

C

S
A

S

O
N

T
O

A

D
R

S
P

C

S
T

A
C

lt

T

OH
TO

2

A
D

D

.
T

+
2

D
I

S
P

IN

TO

TI

O
N

T
O

A

C
C

N

OP

MP
S

WR
I

T
E

E

N
D

* *

C
O

D
E

TO

RA

N
DL

E

++
{T

)
S

E
C

O
N

D

W
R

D

* ++
{T

)2

C
5

A
S

O

N
T

O

ADR
S

P
C

T

.
ON

TO

l
A

D
D

D

I
S

P

I
N

T
O

TB

O
N

T
O

A

C
C

NO

P

MP
S

WR

I
T

!

T

ON
'l'O

2

A
D

D

T

IN
TO

EN

D

�
• *

CO
DI

 'l'O
 RAN

DL
E

{T

)-
F

I
R

S
T

W

R
D

n

*

�
{T

)-
1

C
S

A
S

O

N
TO

ADR

S
P

C

n

0

'=
='

tzJ

La
be

l
l

u
a

1

I�

l
u

a

2
Co

n
•

t

r
u

n
e

S

p
e

e

H
e

a

T
a

r
g

e
t

Co
a

a
e

n
t

.
Le

be
l

l
u

•

1
1�

l

u
a

2

C
o

n

- Dl -

Appendix D

Th is appendix des cribes the propert ies of addres s space zero , which

is used to communicate with the MONADS II address trans lat ion hardware .

This address space is not mapped onto memory , but is recognized as a

data pathway to the dedicated map units , the hash tab le address

trans lator , and a regis ter holding to address of the last page fault .

Each dedicat ed map tab le entry is 1 3 bits in length , and occupies

one 1 6 bit word of the address space . Thus , the four dedicated map units

occupy 256 words of the address space . Each hash table cell is 41 bits

in length , and is sp lit over 4 16 bits words . Thus , the 1 024 word hash

table occupies 4096 words of address space zero . The value of the last

legal address is saved in a special regis ter . When the operating sys tem

wishes to f ind out which page caus ed the last page fault it can read

this register . The 3 1 bit address is accessible through 2 words of

address space z ero . An overall pic ture of address space z ero is shown in

Figure 1 . The structure of each dedicated map cel l entry is shown in

Figure 2 . The structure of each hash tab le cell is shown in Figure 3 .

APPENDIX D ADDRESS SPACE ZERO

0-63

6 4- 1 2 7

1 28-1 9 1

192-255

256-257

5 1 2- 4 608

- D2 -

DMA channel 2 map entries

Kernel code map entries

Kernel data map entries

DMA channel 1 map entries

Address at las t interrupt

Hash tab le

Figure 1 - address space z ero

bit 1 5 1 4 1 3 12 1 1 10 9 8 7 6 5 4 3 2 1 0

main memory page frame number

Figure 2 - a dedicated map entry

APPENDIX D ADDRESS SPACE ZERO

- D3 -

bit 1 5 1 4 1 3 1 2 1 1 1 0 9 8 7 6 5 4 3 2 1 0

word 1 logical address

word 2 main memory page f rame number

word 3 R w K

word 4 F E link address v

where :

F is foreigner bit
E is end of chain b it
v is valid bit
R is read access allowed
w is write access allowed
K is kernel access allowed

Figure 3 - a hash tab le map entry

APPENDIX D ADDRESS SPACE ZERO

- E l -

Appendix E

This appendix contains copies of papers which have been published

by the au thor relating to the work des cribed in this thes is .

Abramson , D .A . (l 982b) "Hardware for Capab ility Based Address ing" , Proc .
9th Aus tralian Computer Conf erence , Hobart .

Abramson , D .A . (1 982a) "A Technique for Enhancing Process or

Architec ture" , P roc . Sth Aus tralian Computer Science Conference ,

Perth (Aus tralian Computer Science Communications 4 , 1 , pp . 4 7-5 7) .

Ab rams on , D .A . (1 9 8 1) "Hardware Management of a Large Virtual Memory" ,
Proc . 4th Aus tralian Computer Science Conf erence , Brisbane

(Australian Computer Science Communications 3 , 1 , PP • 1 - 1 3) .

APPENDIX E PUBLISHED PAPERS

APPENDIX E

- E2 -

Hardware for Capab ility Based Address ing

David Abramson
Department of Computer Science
Monash Univers ity
Clayton

This paper examines a number of capability bas ed
computer sys tems and des cribes some outs tanding
problems . A new addressing model is proposed which
not only alleviates these p roblems , but which is
als o ef ficient , flexible and unif orm . The K>NADS
Series II computer , which implements the new model ,
is described . Finally , the ef fectiveness of the new
s olutio� is evaluated .

PUBLI SHED PAPERS

- E3 -

1 . INTRO DUCTION
Capab ility based addres sing was first proposed by Dennis and Van

Horn (1 966) as a method for uniformly address ing and p rotecting obj ects
in a multiprogrammed computer ut ility . Since that time a number of
capability bas ed computer architectures have been imp lemented , such as
the Ples sey 2 50 (England , 1 9 72) , Hydra (Wulf et . al . , 1 981) , CAP
(Wilkes , 1 9 7 9) , IBM Sys tem/ 38 (IBM, 1 978) and the Intel iAPX4 32 (Intel ,
198 1) , and a number have been proposed , such as the Chicago Magic Number
Computer (Shepherd , 1 968) , and the s chemes outl ined by B ishop (1 977) and
Gligor (1 9 7 8) . This paper brief ly describes the address ing mechanism
common to these capab il ity schemes , and shows how they imp lement the
address ing s tructure . I t then considers some outstanding prob lems , and
propos es an alternative model . To demons trate that the new model can be
ef f iciently implemented , it was used as the central structure of the
MONADS II computer .

2 . CAPABILITY BASED ADDRE SSING

2 . 1 . Capabilities !.!. .!!!. address ing sys tem
A capab ility is a protected pointer which gives a program the

ability to address an obj ect (Fabry , 1 9 74) . A capability is log ically
composed of two fields , <obj ect name> and <access right s> . The name
field holds the name of the obj ect which the capab ility addresses . The
access rights field describes the way in which the obj ect may be
addressed by that capability . Capabilities pos s ess a number of
intrins ic properties :

- the obj ect name is a unique name which def ines the obj ect .

- pos session of a capability allows a program to address the obj ect .

- there may be several capab ilities for an obj ect .

- a capab ility des cribes how the obj ect may be addres s ed .

- a capab ility is not forgeab le .

- obj ect names are never reused , even after the obj ect has been
des troyed .

- capab ilit ies facilitate easy sharing of obj ects .

- cap a�ilities offe� diff erent views of the same obj ect .

All current capab ility sys tems allow the access rights of a
capab il ity to be reduced , and a diminished copy of the capability to be
given to another us er . These capab ilities (known as ref ined
capab ilities) then have access to the same obj ect as the master , but
with fewer access privileges . A capab ility may also be ref ined in range
as well as type of access . This type of ref inement is useful when a
procedure wishes to grant another user access to only part of a data
struc ture (e .g . when pass ing a parameter by reference) .

2 . 2 . Implement ing Capability Address ing

Two diff erent methods of addressing capab il ities are usually used .
One p laces the capab ilities in a small lis t , cal led a Capability Lis t
(or C-list) . The capab ility may then be addressed by supp lying an index
value into the lis t • The other , les s commonly used , scheme places

APPENDIX E PUBLI SHED PAPERS

- E4 -

capab ilities in tagged memory (IBM, 1 97 8) . Both schemes have their
advantages and dis advantages , which will not be dis cussed in this paper .

Because the unique name of an obj ect is very large , and because it
may not be reused , the virtual space of a capability sys tem is llD..lch
larger than the real memory at tached to the processor . Thus , the
process or hardware must translate a segment name into a real memory
address (either main memory or s econdary memory) before a reference can
p roceed . In addition to address trans lation , the sys tem mus t maintain
logical inf ormation about the obj ect , such as its type . Almost all of
the capab ility based processors use a central obj ect tab le , which holds
both the logical information and the mapp ing inf ormation (such as its
main memory address and size) about every obj ect in the sys tem . This
t ab le is usually sp lit into an active table (for currently addres sed
obj ects) and a pass ive table (for older obj ects) in an at temp t to speed
up address trans lation . Many different table organizations have been
used , such as linear lis ts , directly indexed tab les and hash tab les and
are us ed in sys tems such as Hydra , CAL , CAP , Gligor , Intel and Plessey .

Mos t of these sys tems place the active obj ect tab le in main memory .
To avoid the speed penality of accessing main memory on every memory
ref erence , mos t sys tems apart from CAL , provide some hardware support to
s peed up address trans lation . The Plessey 250 , Hydra and the Chicago
Mag ic Number Computer use some manual address ing regis ters which are
loaded with the main memory address of a segment before it is address ed .
O ther sys tems , such as Intel iPAX43 2 , IBM System/ 38 and CAP , use
automatic address trans lation caches , which retain the most frequently
used obj ec t tab le entries .

Placing the active obj ect tab le in main memory also limits its size
s ignif icantly . To avoid this problem, Gligor p laces the obj ect tab le in
virtual memory . The scheme proposed by Bishop (1 9 7 7) (and one of the
IBM Sys tem/ 38 addressing methods) eliminates the need for a central
obj ect table by including in a segment capability a virtual addres s ,
which is also a unique name , and a size f ield . This also has the
advantage that obj ect size ref inement is eas ily implemented . In such
systems the obj ect type is al so p laced in the capab ility .

2 . 3 . Outstanding problems

The exis ting capability based computers have two main problem
areas , memory management and address trans lation .

2 . 3 . 1 .
- - -

Memory Management
Many of the capab ility sys tems use a segmented main memory scheme

in order to achieve segmented addressing . Unfortunately, this scheme
does not cater wel l for either very large segments or for very small
segments . Large segments are awkward because they must be held in
contiguous memory . Small segments are ineff icient to swap between main
and secondary memory because the time taken to initiate the transfer may
exceed the time taken to actually transfer the dat a . These prob lems
have received much a t tention in the literature (Gligor , 1 978 ; Lanciaux ,
1 9 7 7 ; Randel 1 969 ; Fabry , 1 97 4 ; Wilkes , 1 97 9 ; Keedy , 1 9 80) .

Some systems have at temp ted to use paging as a bas is for memory
management . Hydra used a paging sys tem by forcing all segments to be one
f ixed s ize . This scheme simplifies the memory management task, but does
not solve the small and large segment problem . Small segment s waste
much o f the page that they occupy, and large segments can not exist .
Thu s , this scheme creates even more segments than are logical ly
required , as large segments are constructed from many smaller segments .

APPENDIX E PUBLISHED PAPERS

- ES -

Some solutions (cf Gligor and Bisho p) have used paging as the
memory management model , and have superimposed a segmentation s cheme
above the virtual memory . Whilst these proposals have solved some of
the small and large memory management problems , they s till suffer from
s ome memory management prob lems , as we shall see later .

l·l·l· Address Translation problems
Many of the capab ility based process ors experience signif icant

prob lems in trans lating virtual addresses into memory addresses ,
esp ecially when the sys tem is burdened with many small segments . One
source of contention is the central obj ect table which contains an entry
for each segment in the sys tem . When the sys tem contains many small
segments the siz e of the central obj ect table becomes excessive , and
trans lat ion times may be increased . In those sys tems which have removed
the central obj ect table , such as B ishop ' s , the task of address
trans lation is signif icantly simp lified .

In the processors which have used manual address ing regis ters with
a segmented memory another problem is experienced . Because they hold a
main memory address all regis ters (and all dormant images of registers)
of all p rocessors must be mod if ied when main memory is reorganiz ed . Such
reorganization is required when segments are brought into and banished
from main memory , and requires all ab solute p ointers to be modif ied .
Th is overhead is cons iderab le .

3 . AIMS OF THE MODEL �-- � �- -�--

The requirements of the model may be summarized in terms of five
basic aims : to s olve the memory management p roblems associated with most
capab ility bas ed process ors , to solve the address translation problems
associated with other cap ability based sys tems , to produce a unif orm
address ing mechanism, to produce an ef f icient capab ility address ing
mechanism, and to p roduce a f lexible hardware unit . Some of these aims
are not shared by the exis ting capab il ity sys tems . The f irst two
requ irements are as sociated with the outs tanding p roblems discussed in
s ection 2 . 3 . We shall now cons ider the other three bas ic aims in turn .

1•!•!• Uniformity and s implicity
In a t rue capability based address ing scheme all local and

permanent data should be address ed by the same mechanism . Only one way
of address ing data should be provided , unlike sys tems such as the IBM
Sys tem/ 38 which p rovide two d iff erent addressing mechanisms .

With one common address ing mechanism the sys tem des ign becomes much
s imp ler . A simp ler design in not only eas ier to und�rs tand, b ut often
yields a more orthogonal and less expens ive implementation . Moreover ,
only one sharing and p rotection mechanism is required . The model
p roposed in this paper avoids unnecessary duplication by providing only
one way of address ing memory .

1·!·1· Efficiency
The CAL sys tem demons trated that a capability based addres s ing

scheme requires hardware suppo rt for an eff ic ient imp lementation . Even
in those sys tems which have provided hardware support for addres sing
memory , the use of capab ilities s till creates ineff iciencies , as
des cribed in section 2 . 3 . The model proposed in this paper def ines a
hardware addres s ing struc ture which can be ef f iciently imp lemented with
current technology . Moreover , the model is capable of implementing many
d ifferent software struc tur es without signif icant overheads .

APPENDIX E PUBLI SHED PAPERS

l•l •l• Flexib ility

- E6 -

Most processors , both of convent ional design and capab il ity based ,
are designed with a specific address ing struc ture in mind . For examp le ,
the ins truction operands in the Intel iAPX432 processor expe ct a
particular C-list structure . The operands of the CAP sys tem expect a
different C-lis t structure . Because these organizations are so well
understood by the proces sor hardware (and firmware) it is unlikely that
one processor could ef ficient ly or easily implement the C-lis t structure
of ano ther proces sor .

The lack of flexib ility in some of the exis ting sys tems is not a
problem, only because the sys tem design does not change significantly at
any stage . However , in a research environment a flexib le processor is
extremely desirab le , as it allows the hardware to survive a number of
maj o� redes igns of the sof tware ideas . The model proposed in this paper
should be capable not only of eff iciently imp lement ing a particular
address ing s tructure , but also of implementing any of the other
capability address ing s truc tures , such as the d iff erent C-lists of CAP ,
Intel iAPX4 32 etc . The 100del can achieve this flexib ility by providing a
general hardware unit which provides a capab ility bas ed addressing
s tyle , and a small section of software (or firmware if the hos t machine
is microcoded) which unders tands the addressing structure . If the
software ideas change at any stage , then the hardware may remain the
same and the software or f irmware may be changed .

4 . OBJECT ADDRESSING

Mos t capab ility based address ing schemes have the property that all
address able obj ects are treated alike in terms of address ing and
protecting . All are addressed via the capab ility mechanism which the
proces s or us es . Such references can be categoriz ed into two classes ,
memory segments and high-level obj ects . High-level obj ects include I /O
devices , data ab stractions , p rogram modules (Keedy , 1 9 82) or type
managers (Wulf et . al . , 1 98 1) etc .

When a memory segment is addressed (via memory reference
ins truc tions) the capab ility mechanism is us ed to f ind a segment of
memory and make it available to the program . Thus , in a purely segmented
system the central obj ect table may contain the main memory address of
the segment , and the size of the segment . The ac cess rights field of the
capab ility can then be us ed to restrict certain operations on the
segment . To produce eff icient memory references this mechanism is nearly
always augmented by some special hardware .

High level obj ects are also addressed via the capab ility mechanism .
However , the central obj ect table contains inf ormat�on which declares
that the obj ect is not a memory segment and requires further sof tw�re or
f i rmware ass is tance . (Alternatively, this information may be he ld in the
capab il ity (Lampson , 1 97 6) .) These high level obj ects are not usually
addressed by the normal memory ref erence instructions . Type checking
informat ion may then validate the type of ins truction agains t the type
of obj ect . For examp le, a memory segment may be addres s ed by an add
ins truc tion , but a program module is addressed via a call ins truction .

From this v iewp oint , capab ility support can be b uilt into a
processor in two separate areas : firs t , a section of hardware wh ich
allows eff ic ient manipulation of memory segments ; second , a body of
software , or f irmware , which interprets operations on high level
obj ects . Thus , the knowledge of high level obj ec ts need not be b uilt
into the processor . The information which usually res ides in the central
obj ect tab le about high level obj ects can now either reside in the

APPENDIX E PUBLI SHED PAPERS

- E7 -

capability for the obj ect (e . g . the type of the obj ect) or can be found
in s egments ass ociat ed with the obj ect itself (e .g . with the code which
manipulates the obj ect) . The implementation of operat ions on high level
obj ects is left entirely up to the software or f irmware concerned . We
will now cons ider the form of the memory segmentation hardware .

5 . SEGMENT ADDRES SING

5 . 1 . The bas ic f orm of .!. capability
The virtual memory of the proposed capab ility based address ing

scheme is addres s ed v ia a number of capab ility regis ters , each of which
holds a segment capab il ity . These capab ility regis ters are the only
addressing mechanism availab le to the processor . Each register , shown
in Figure 1 , contains three fields : an address , a length and some access
rights . Before we d iscuss the precise nature of these f ields , it will be
useful to cons ider the advantages of a scheme based on regis ters :

(1) Because o f the size of capab ilities , they cannot be p laced
direc tly in the ins truction s tream itself . This problem of operand size
f or addres s ing memory v ia capab ilities disappears in a reg ister based
sys tem because once a regis ter has been loaded with a capab ility
subsequent ref erences need only specify a reg ister number , which is
likely to be of the order of four bits .

(2) Regist ers hide the nature and s tructure of the logical
addressing mechanism f rom the p roces sor ins truction set . The model is
invariant to the method of saving capab ilities (i . e . C-lis ts of various
s tructures or tagged p rotected memory) and the actual structure of a C
lis t or tagged memory need not be determined at the hardware level (for
examp le, whether the C-list allows tree structures or lattice
structures) . Thus , the scheme is flexible , because the sof tware
s truc tures may be modif ied without affecting the hardware .

(3) Because regis ters can unif ormly address all kinds of segment ,
no special regis ters are required , f or examp le to imp lement a s tack
pointer , disp lay regis ters , etc . Indeed , a comb ination of a capability
regis ter and an index register can be us ed not only to address data but
also to control program sequencing .

(4) Because regis ters are normally built from high speed logic ,
they have the same advantages as capab ility caches (cf . IBM System/38 ,
CAP and Intel iAPX432) , but they are generally less expens ive and in
some cases eas ier to imp lement . Because the scheme only trans lates
logical addresses (of the form C-list number and slot number) into
capab ili ties when the reg is ter is loaded , it avoids many unnecessary
�emory · references by removing many repeated references to the C-lis t .

(5) Giv en the use of registers , protection can be eff iciently
implemented by allowing only particular ins tructions (or only
ins truc tions executing in a special machine state) to modify their
cont ents . This makes it impo ss ib le to llW)dify a capab ility illegally once
it has been p laced in a regis ter . The protection of capab il ities outside
of regis ters depends on the C-lis t structure , or tagging mechanism,
whi ch the process or provid es .

A regis ter based address ing scheme does have some bas ic
disadvantages . F ir st , it requires the comp iler or assembler p rogrammers
t o allocate and deallocate the regis ters . This problem is not cons idered
s erious enough to cancel the adv antages of the scheme . F irst , assembler
programmers are far bet ter at judging the working set of a program than
a cache , and can choo se the correct registers to allocate . Second ,

APPENDIX E PUBLI SHED PAPERS

- ES -

address of segment length of segment access rights

Figure 1 - a capab ility regis ter

comp ilers of ten have to allocate data registers , and have success fully
done so for a long time . Address ing regis ters are no worse to allocate
c orrectly than data registers . Al so , the comp iler can form conventions
which dedicate the use of certain regis ters . For example , one regis ter
may be us ed for address ing s calars at lexical level zero , wh ilst another
regis ter may be ded icated for address ing data at the current lexical
leve l . Such conventions can help register allocation signif icantly .

Second , the regis ters may need to be saved
module is entered by a call ins truction, or
executed . Similar operations are also required
Thus domain changes in the regist er scheme are
than when a cache is used .

5 . 2 . The load-capability-regis ter ins truction

and reloaded when a
when a process switch is
for capability caches .
not signif icantly s lower

Because the logical structure of the address ing mechanism is hidden
from the hardware , special so ftware (or f irmware) must be written which
unders tands this structure . One such ins truction is the load
capab il ity-register instruction . This instruction (or kernel routine if
the machine does not possess a microcoded control unit) accepts a
capab ility reg is ter number and a p rogram address , and loads the
capab il ity found at that address into the regis ter . If the processor
us es a C-l is t for holding capab ilities , then the program address may
def ine a C-lis t number and a slot number . If the sys tem must at some
lat er s tage understand a d ifferent C-l ist struc ture , then only the
load-capab ility-regis ter ins truction need be altered . All other data
manipulat ion instructions address their operands via a capab ility
regis ter .

5 . 3 . Representation of .!.. capability

A memory capability , shown in Figure 1 , is composed of three
s ections : an address , a leng th and a set of access rights . The key
dif ference between thes e regis ters and those of the other manual
addre� sing reg ist er s chemes is that our capab ility us es a virtual
addres s , rather than a main memory addres s . As described in section 2 . 3 ,
the use of main memory address es both caus es d iff iculties in re
organiz ing memory and also means that the main �mory must be segmented .
Apart from the diff iculties of organizing a s egmented memory, a central
obj ect tab le is required to map segment addresses onto main memory
address es which causes fu rther problems related to the size of the
mapping tab le , as dis cus sed in section 2 . 3 . The use of a virtual
address in the capab ility regis t ers avoids these p roblems . F irst , the
memory can be phys ically reorganized without affecting the addresses
held in registers . Second , the memory does not have to be segmented
{ from the viewpoint of the memory management sys tem) . This removes the
p roblems of a s egmented memory, and al so means that the sys tem does not
need a central obj ect tab le .

APPENDIX E PUBLI SHED PAPERS

;- E9 -

The length field of the capab ility ho lds the
and must be large enough to allow large segments .
the same s iz e as the virtual address . However , it
less wi thout being rest ric tive .

length of the segment ,
Ideally, this f ield is

may be cons iderably

The ac ces s rights field must allow operat ions to be performed or
res tric ted , such as read only , write only, read-write , execute etc .
These can be encoded in a bit pattern .

6 . VIRTUAL MEMORY

This section comprises three subsections . The f irs t def ines the
nature of the virtual memory required by the capab ility register
address ing scheme . The second describes a memory management model wh ich
p rovides s ome of the required attributes , and the third shows what
modif ications are neces sary to this model to provide a virtual memory
which may be addressed by the registers d escribed in section 5 .

6 . 1 . Requirements of the virtual memory
In this s ection we will examine the requirements of the virtual

memory wh ich is used by the model . They are as follows :

(1) Virtual addres s es should be large and unique . When a s egment is
created it consumes a range of virtual addresses , which eventually
res ide in C-lists and capab ility registers . When a segment is deleted ,
the addres s may either be found and des troyed , or never reused . A large
addressing range means that it is not neces sary to reuse addresses ,
saving on the number of addres ses which need to be found and deleted .

(2) The virtual memory must be the only memory mechanism . This
uniform treatment of memory means that all data , files and code , are
present in the same virtual memory without support f rom a separate f ile
store . Thi s technique was pioneered in MULTIC S (Organick , 1 9 7 2) and has
been us ed in other capab ility sys tems with many advantag es (Rosenberg
and Keedy , 1 98 1) .

(3) The tab les , or mechanism, used to translate virtual address es
to main memory addresses should not affect the way in which the virtual
memory management sof tware organizes the secondary . memory . This
condition is not met in many exis ting systems , such as MULTIC S . The page
tab le s tructure wh ich is used by the hardware , or firmware , to trans late
virtual addres s es into main memory addresses is al so us ed by the
software to locate pages in secondary memory . If the sof tware wishes to
change the tab le format then the hardware may also need to be mod if ied .
Greater f lexib ility is des irab le because bet ter secondary storage
methods may be devised af ter the hardware has been built . Thus secondary
memory . address trans lat ion and main memory address trans lation should be
independent •

(4) Virtual memory management should be simple . If virtual
address es are ever reus ed , the virtual space may become fragmented due
to obj ects being created and des troyed . Both Gligor and B ishop propose
the use of large pag ed virtual memories for holding s egments . Gligor
packs segment s int o virtual space in a random manner , whereas Bishop
places common segments in areas , or groups . The f irst scheme , whil st
conceptual ly simple , means that the virtual space may become very
f ragmented in time . B ishop ' s scheme does not to tally avoid this prob lem,
as areas thems elves are var iab le in size . The virtual memory should be
organized so that if addres ses are ever reused , the memory can be
reorganiz ed without mas sive data manipulation .

APPENDIX E PUBLI SHED PAPERS

- E lO -

(5) The virtual memory should ef f icient ly support both large and
small s egments . This prob lem is vastly simplif ied by imp lementing the
s egmentation at the regis ter level . It then only becomes necess ary for
the vir tual space to hold both large and small areas . All of the models
previous ly dis cussed fail to provide an acceptab le mechanism .

(6) Real memory management should be simp le . Unlike the segmented
schemes of some capab ility sys tems , the model can choose another main
memory organization witho ut losing the logical advantages of
s egmentation . Thus a simpler main memory scheme can be used ins tead of
the comp lex and ineff icient segment ed scheme .

Unfortunately most virtual
suitable virtual memory which
scheme , not previous ly dis cussed ,
ef f iciently support small and
dis cuss this model .

6 . 2 . A small segment model

memory sys tems fail to provide a
supports these requirements . Another
allows a conventional processor to
large segments . The next section will

Keedy (1 980) proposes a memory management model wh ich allows a
conventional proces sor to supp ort both large and small segments without
many of the associated ineff iciencies . The scheme uses capab ilities
which hold a virtual address , segment leng th and access rights . The
virtual address is further composed of an address space number and an
of fset wi thin the address space . Each offset is composed of a page
number and a within page displacement .

Address trans lation is performed via a number of tab les . An
addres s space list is consulted to f ind the location of the p age tab le
for the space . The page tab le reveals either the ma.in memory address of
the pages or the secondary memory addresses . This model is similar to
various paged and segment ed schemes and thus could be supported by a
p rocessor s imilar in nature to MULTICS . Unlike MULTICS , however , this
model can support items 4 , 5 and 6 of the model aims , namely simp le real
and virtual memory management and support for small and large s egments .
All the advantages of the scheme are discussed in Keedy (1 980) . However ,
the following are particularly relevant :

i·l·l· Simple real memory management

The ma.in memory is far eas ier to manage in this model than the
s egmented s olutions because memory is allocated in f ixed size pages .
Provided some reference locality is experienced , several independent ly
address ed and p rotected segments can be packed into a s ingle address
space , and the amount of space lost to int ernal fragmentat ion is on
averag� only half a page per address space rather than half a � �ge per
segment (or more for small segments) . Thus while internal f ragmentat ion
is not entirely eliminat ed , the amount of space wasted in this way can
be greatly reduced .

i·l·l· Simple virtual memory management

The virtual memory is easier to manage than that of G ligor or
Bishop because the virtual space is allocated in fixed size units ,
namely address spaces . Typ ically, be cause of reference local ity, all the
segments of a module are placed together in one or more address spaces .
If the modu le is deleted , and all old addresses within the space are
collected and des troyed , then the address of the address space may be
reused . Because the address spaces are all of the same siz e , the ho le
lef t in the virtual space is not of a variable size , unlike those of
Bishop and Gligor .

APPENDIX E PUBLISHED PAPERS

- E l l -

Even though the address spaces are all of a fixed siz e , spaces
smaller than the maximum size do not ac tually require this fixed amount
of disk space to be al located . Thus , the scheme does not requi re any
more d i sk space or page tab le space than other schemes .

�·l·l· Support for small and large segments
The s cheme does not use a large central obj ect table , but rather a

smaller addres s space lis t , and can therefore support many small
segments efficiently . As more segments are added to an address space ,
the address space lis t will remain the same size , and not grow like the
central obj ect tables in many of the capab ility systems . Moreover ,
provided that a reasonab le amount of locality of reference is exhibited ,
many small related segments may be placed in one page , reducing the
amount of was ted space and making segment swapping more eff icient . Large
s egments may be composed of many pages . Because only those pages
actually being addressed are held in main memory the scheme does not
have the large s egment p rob lems exp erienced in segment ed schemes .

Thus , the scheme so lves both the memory management problems and the
addres s trans lation prob lems associated with many small and large
s egment s . However , the model in this form does not support requirements
1 , 2 and 3 of the model aims , namely large unique vir tual addresses , a
unif orm memory and separate main and secondary memory address
trans lation sys tems . The next section shows how the model can be
modif ied and used to provide a virtual memory with all the required
attributes .

6 . 3 . Applying the memory management model

Requi rement s 1 , 2 and 3 of the model demanded a large uniform
virtual memory and a separate main and secondary memory address
t ranslation sys tem . A large unif orm uniquely address ed memory which
holds all data and files implies an address size of the order of 64
b i ts , as us ed in some other capab il ity systems . The model describ ed in
section 6 . 2 imp lies an address size comparab le to processors such as the
ICL2 9 00 (Keedy , 1 97 7) , MULTICS etc, and of the order of 32 b its because
it uses page tables in main memory for address trans lation .
Unfortunately, a simp le s caling up of the tables is not pos s ible because
the large address is 2-32 times that of the conventional addres s .
Moreov er , the table structure would be us ed for both main memory and
secondary memory address trans lation , contrary to the requirements set
out in 6 . 1 (3) . Thus , in order to use the memory model, the address size
mus t be expanded to about 64 bits in s ize and another address
t rans lation mechanism must be found . We can cons ider a number of the
techni ques used by other capab ility based computers .

Gligor ' s address ing scheme assumes the presence of a robust virtual
memory without indicating how to provide such a mechanism . B ishop
attemp ts to use convent ional page tables to translate addresses . This
technique is unsuitable because of the size of the directly indexed page
tab le . For the same reasons , the page and segment tables proposed by
Keedy , and us ed by the ICL2 900 s eries , MULTICS, Prime 750 (Prime) etc ,
are unsuitab le because of the space required for the tab les , and the
time taken to t ranslate an address .

The bes t form of address trans lation for an address of this size is
the associa tive technique us ed by Atlas (Kilburn et . al . 1 9 62) , IBM
Sys tem/ 38 , MU 6-G (Edwards et . al . 1 980) , and MONADS II (Abramson , 1 981) .
These methods only attemp t to trans late addresses for those pages
res ident in main memory , and leave the sof tware free to organiz e the

APPENDIX E PUBLI SHED PAPERS

- E 1 2 -

s econdary memory trans lation tables in any suitable way (Rosenberg and
Keedy , 1 9 8 1) •

Thus , by increas ing the address size to 64 b its and by using an
associative address trans lation scheme the Keedy model can provide an
acceptab le virtual memory for our capab ility model . The new address ing
scheme is summarized in Figure 2 .

7 . MONADS

l·l· Background

The MONADS II computer was
Science at Monash Univers ity in
an HP2 100A minicomput er us ing
(1 982) , and us es the address ing
method for address ing memory .

built in the Department of Computer
1 980 . The p rocessor is cons truc ted · ab ove

the technique des cribed in Abramson
struc ture des cribed in this paper as the

7 . 2 . Address ing s tructure

The MONADS II sys tem supports the capab ility regis ter scheme in two
way s . Firs t , the processor p rovides a virtual space of 2-31 words . This
cons is ts of 2-1 6 separate address spaces , in the sense described in this
paper , each of 32k words . While a full s cale capability sys tem would
ideally require more and larger address spaces (e .g . 2-32 by 2-32) , the
MONADS II address ing range is suff icient to demonstrate the princ ip les
involved and to support a pilo t sys tem .

Second , the processor provides 1 6 sets of regis ters . Thus , the
system can eff iciently support p rocess-switching between 1 6 processes .
Each regis ter set includes 1 6 s tandard capab ility regis ters , six special

capab ility regis ter number offset
effec tive
program
address

..._ _______ > virtual address length access

----------:> �address space #
pag e II
s tart + off set

'

I

Daddress space #
page #
s tart address

capab ility registers

ass ociative
address
t rans lation
s cheme

.,_ __ >
real page fl
o ffset

Figure 2 - The new addressing model

APPENDIX E PUBLISHED PAPERS

- El3 -

capab ility reg is ters int ended to
l inks (Hewlet t Packard , 1 9 70)
other ass ociated regis ters .

address code , cons tants , base leaf
and scalars on the stack, and various

l ·l· The capability regis ters
Each of the 16 processes executing �n the HP 2100A is provided with ·

1 6 capability regis ters for address ing segments of memory . Each reg is ter
is composed of 4 16 b it words , as follows :

word
word
wor d
word

1 :
2 :
3 :
4 :

Addr ess space number - 16 b i ts
Displacement within address - 15 b its
length of segment - 16 b its
ac cess bits - read , wri te ,kernel , invalid - 4 bits

The address space number defines one of the 32k word addressing
regions in virtual memory . The displacement is used to mark the start of
the s egment in the address space . The length f ield marks the end of the
s egment in the address space . The read and write bits determine whether
the s egment may be read f rom or wri tten into . The kernel b it specif ies
that the segment may only be addressed if the processor is in kernel
mode . The invalid b it prevents the register from being us ed , and is s et
when a regis ter is uninit ialized . A capability regis ter can only be
loaded when the processor is in kernel mode (e .g . executing a load
capab ility regis ter ins truction) and thus its contents are protected
f rom corrup tion . Because the HP 2100A only has 16 b it data pathways , four
write cycles are required to set up each regis ter . The HP 2 100A microcode
p rovides a load capab ili ty register instruction of the type des cribed in
section s . 2 .

A capab il ity regis ter may be used as an operand of any of the
HP 2 100A memory ref erence instructions . When used , the 31 b it address is
treated as a paged virtual address . This virtual address is mapped onto
the main memory by the MONADS II address trans lation hardware , des cribed
in Abramson (1 981) . The displacement field is checked agains t the length
f ield, and an interrupt is s ent to the HP 2 1 00A if a violation occurs . If
the mode of access is contrary to the read or write bits , or the kernel
bit is s et and the p roces sor is not in kernel mode, or a reg ister is
inval id , an interrup t is sent to the HP 21 00A .

The d i splacement held in the register may be modif ied by two
dif ferent methods . In the first , a small cons tant offset in the range 0
- 7 may be dynamically added to the value in the reg ister . Alternatively
a value held in a modif ier regis ter can be used to index into a segment
d�f ined by a capab ility register .

7 . 4 . The load-capability-regis ter instruction
There is not sufficient space in this paper to d escribe the details

of the MONADS C-lis t structure . However , MONADS II uses a microcoded
instruc tion to map this s truc ture onto the capability reg isters . Bef ore
a segment can be addressed , the capab ility mus t be loaded into one of
the 16 capab ility registers . Instructions may then address memory by
specifying the 4 b it capab ility regis ter number . Other ins tructions are
p rovided f or managing high level obj ects such as inf ormation hiding
modules .

APPENDIX E PUBLISHED PAPERS

- E14 -

8 . CONCLU SION

Many sys tems have dif ficulty in managing a memory addressed by
capab il ities . The model avoids many of these prob lems by us ing the
memory management model described in section 6 . In sys tems which use a
cent ral obj ect table f or s egment address translation, the size of the
tab le may become excess ive if the processor addresses many small
segment s . The model p roposed in this paper avoids this problem by
eliminat ing the obj ect tab le al together . The scheme is uniform in two
respects . First , the capab ility registers are the only way of addressing
memory . Second , all data , regardless of its size or lifet ime , is s tored
in the virtual memory . The efficiency of the solution is dependent on
two main fac tors . First , suf ficient capab ility regis ters must be
availab le to contain the working set of the process (Denning , 1 980) .
Capab ility regis t ers must be allocated sens ibly , and some hardware
support is provided for domain changes . Second, an as sociative address
trans lat ion scheme must be used . All of these are true in MONADS II .
The hardware p ropos ed in this paper was designed to be f lexible enough
to survive a number of changes in software ideas . Whilst there is not
spa ce in this pap er to demonstrate the flexibility, the address ing model
has ac tual ly been applied to a number of different C-lis t s tructures
quite success fully . In each of these the model was capable of
imp lement ing a dif ferent addres s ing struc ture with only a dif ferent
load-capab ility-register instruc tion and new high level obj ect
ins truct ions .

ACKNOWLEDGEMENTS

This work was only possible af ter many hours of discuss ion with Les
Keedy and John Rosenberg to whom I am eternally grateful . This paper
would never have been finished without many more hours of help from Les
Keedy . I am also grateful to the rest of the MONADS group who
contributed s ignif icantly to the MONADS II processor and associated
sof tware .

REFERENCES

Abramson , D . (1 98 1) "Hardware Management of a Large Virtual Memory" ,
Proc . 4th Austral ian Computer Sc ience Conference , Brisbane
(Aus tralian Computer Science Communications 3 , 1 , PP • 1-1 3) .

Ab ramson , D . (1 982) "A Technique for Enhancing Processor Architecture" ,
Proc . 5th Aus tralian Computer Science Conference , Perth
(Aus tralian Computer Science Couununications 4 , 1 , PP • 4 7-57) .

Bishop , P (1 97 7) "Computer sys tems with a very large address space and
g arbage collec tion" PhD Thesis , MIT •

Denning P . J . , (1 980) "Working sets past and present " IEEE Transactions
on Software Engineering, Vol SE-6 Number 1 pp 64 - 84 .

Dennis . J , Van Horn , E (1 96 6) "Programming semant ics for multiprogrammed
c omputations " Comms of ACM, Vo l 9 , No 3 pp 1 43- 1 55 .

Edwards n .B .G , Knowles A . E and Woods J .v · (1 980) "The MU6-G : A new
design to achieve mainf rame performance from a mini sized
computer " , Proc . of the 7 ' th Annual Sympos ium on Computer
Architec ture , pp 1 6 1 - 1 6 7 .

England , D .M . (1 97 2) "Archit ectural features of the sys tem 250" Infot ech

APPEN DIX E PUBLI SHED PAPERS

- E l 5 -

s tate of the art report 14 on Operating sys tems . pp 3 95-4 2 6 .

Fabry , R . s . (1 9 74) "Capab ility Based Addressing" Couuns . of ACM, Vol 1 7 ,
Num 7 , pp 4 03-4 1 2

Gligor , V • (1 978) "Architec tural implicat ions
imp lementations" Dep t of Comput er
Univers ity of Maryland . TR-659 .

of ab s trac t data type
Science internal report ,

Hewlet t Packard (1 970) "A Pocket Guide to the HP 2 1 00A minicomputer" ,
Hewlett Packard Co . , California , U . S .A .

Intel • (1 98 1) " Int roduction to the iAPX432
corporat ion manual 1 7 1 82 1 -00 1 .

architecture�'

IBM . (1 97 8) "IBM System/ 38 Technical developments " IBM Corporation .

Inte l

Keedy J .L • (1 9 7 7) "An outline of the ICL2900 Series sys tem architecture"
The Australian Computer Journal Vol 9 Number 2 , pp 53 - 62 .

Keedy , J .L . (1 980) "Pag ing and small segments : a memory management roodel"
Proceedings of 8 th World Computer Conference IFIP-80 .

Keedy , J .L • "The MONADS View of Sof tware Modules " , Proc . 9 th Aus tralian
Comput er Conf erence , Hobart .

Kilburn T . , Edwards D .B .E . ,Lanigan M .J . and Sumner F .H . (1 96 2) "One Level
Storage System" , I .R .E Trans . Electronic Computation, EC- 1 1 ,
No 2 , pp 223-234

Lampson , B . , Sturg is , H (1 976) "Ref lections on an Operating Sys tem des ign"
Comms of ACM, Vol 1 9 , No 5 , pp 25 1 -2 65 .

Lanciaux D , Schiller L , Wulf W " Supporting small obj ects in a capab ility
system" Carnegie Mellon Univers ity , Internal report , Dec 1 977 .

Organick E . r . (1 9 72) "The MULTIC S Sys tem : An examinat ion of its
s truc ture" , MIT Press , Cambridge MAS & London .

Prime . "The Sys tem architecture reference guide" PDR 306 0 .

Randel , B . (1 969) "A note on s torage fragmentation and program
segmentation" Comms . of ACM, Vol 1 2 , Num 7 , pp 36 5-372

Rosenberg J . , KPedy J .L (1 98 1) "Software Management of a Large Virtual
Memory " Proc . 4th Australian Comput er Science Conference ,
Brisbane (Australian Comput er Science Communications 3, 1 , pp
1 7 3- 1 8 1 .

Shepherd J .H . , (1 968) "The principle des ign features of the multi
comput er Chicago Mag ic Number Computer " ICR quart erly report
1 9 , Nov 1 968 , Univers ity of Chicago .

Wulf , W et al (1 98 1) "HYDRA/Cmmp An experimental system" , McGraw-Hill

Wilkes , M . V . , Needham, R .M . (1 97 9) "The Cambridge CAP computer and its
operating system" North Holland .

APPENDIX E PUBLISHED PAPERS

Abstract :

APPENDIX E

- E 1 6 -

A Technique for Enhancing Processor Architecture

D . Abramson
Dept . of Computer Science ,
Monash Univers ity .

The MONADS II comput er implements an
archi tecture with a large s egment ed and paged
virtual memory , an ' inprocess ' stack
o rganiz ation and a capab ility b as ed addressing
s cheme .

The processor is const ructed around a 1 6 bit
minicomputer , a HP 2 1 00A .

This paper describes the techniques used in the
MONADS II p rocess or to enhance a p rimitive
architecture and proposes this technique as a
general method of construc ting research
p rocessors cheap ly and quickly .

PUBLI SHED PAPERS

- E l 7 -

1 . Introduct ion
Since the time that Charles Babbage des igned his mechanical

analytical engine in 1 8 37 , many new and d iff erent computer architectures
have been proposed . The rapid changes in technique have enab led many
struc tures to be built which previously could not be imp lemented . _
Moreover , the view of computer archit ecture has altered dramatically and
has been affected by computer language research , providing architec tures
capable of directly supporting some high level languages [l] and
operating sys tems .

Currently , much research is being conducted into architectures
which , whil st basically VonNeuman, have new and d ifferent memory
organizat ions (such as capab ility based address ing [2]) and which can
manipulate higher level data cons truct� (such as sets and queues) .

Many of these ideas are of ten only des igned and documented at a
concep tual level and are never ac tually imp lement ed as the basic
s tructure of a new processor . Unfortunately , many maj or design flaws
are not d is covered until an attempt is made to imp lement the design .
Moreover , some des igns cannot be implemented at all . Thus , a real
imp lementa tion determines both that the ideas are bas ically sound and
that they can be ef f iciently buil t with the available techniques .

A problem of ten faced is how to realize a new computer architecture
in an environment in which resources are both expensive and limited , as
in many Universities and res earch ins titutes .

This paper dis cusses some of the common prac tices and proposes an
interes ting technique .

2 . Realizing � .B.fil! architecture
A sys tem des igner is presented with two alternatives when

attemp ting to imp lement a new architecture . First , the architecture can
be incorporated into a totally new 'Computer sys tem . This approach ,
whils t l ogically the more des irable, of ten involves many more hours than
may superfic ially appear necessary .

Extra devices (such as interfaces and controllers) mus t be
construct ed purely to operate the new p rocessor . Some may require a
large amount of des ign effort ; effort which is not directly connected to
the original architectural aims . Many software packages must then be
developed , such as ass emblers , compilers , loaders and bootstraps .

Consequently, the proj ect often g rows in size where ' large group
manage�ent pro� lems ' are encount ered . Much of this extra effort appears
to be directed to the devices which must conununicate with the processor ,
rather than to the processor itself . Thus , because of the extra eff ort
involved , the full s cale produc tion of a new computer simply to t est out
some architectural enhancements is of ten not viable in a research
environment .

The second alternative cons is ts of modifying or using an exis ting
computer sys tem (called the ' source' architecture) in order to test out
a new architectural des ign {called the ' target ' architecture) . This
approach has the advantage that the d es ign time and effort may be
dramat ically reduced . However , great care must be exercis ed to prevent
the source architec ture from rest ric t ing the s cope and effectiveness of
the target .

APPENDIX E PUBLI SHED PAPERS

- E 1 8 -

1 • Us ing ,!!!. existing computer system
Three dif ferent techniques may be used when the target architecture

is cons tructed on top of a simpler source machine . First , an
environment may be cons tructed in so ftware . Second , if the source
process or us es a microcoded control unit , the target may be imp lemented
in firmware . Third , the actual hardware of the source processor may be
mod if i ed to imp lement the target architec ture .

3 . 1 . A Software Emulation
This so lution may take a number of forms . The mos t general is to

produce a program (called the interpret er) which interprets ins truc tions
for the target machine . The interpreter emulates the fetch-execute
cycle of the target proces sor , and executes target instructions by using
smal l sections of source ins tructions . Interpreting the new
architecture of fers many advantag es . Because the interpreter is a
program, of ten written in a high level language , it may be eas ily
mod ified . Comp lex debugging and monitoring aids may be incorporated in
the des ign , allowing the des igners to measure and judge the
effectiveness of the new processor . At the same time as emulating the
target architec ture , the source machine may be executing many other
programs .

This app roach also has some maj or dis advantages . The ultimate
execution speed of the target proces sor is of ten far too s low to support
real is tic tes ts • Moreover , it is not always obvious whether ef f icient
hardware can later be cons tructed , somewhat diminishing the
ef fec tivenes s of the implementat ion .

A slightly more eff icient sof tware emulation involves another
d if f erent body of code (called the Kernel) which attempts to provide a
normal source machine program with attributes from the target processor .
Programs for the target machine are compiled into source machine
ins tructions . When a target machine operat ion is required wh ich cannot
be direc tly t ranslated into a short sequence of source ins tructions , a
call to the kernel is executed , which performs the task and returns
control to the source program .

Whils t far 100re eff icient than an interpreter , the kernel solution
tends to highlight the architec tural features of both the source
processor and the target , often with disas trous effects . (Such an
examp le is found in [4]) . Moreover , this technique may not be able to
manage a target machine which is dramatical ly dif ferent in des ign from
the source . Thus , a target program may be reduced mainly to kernel
cal ls and app ear the same as an int erpret ive solution .

Because many source instruc tions may be required to emulate a
target ins truction , the speed of the kernel is of ten far too slow to
support a real is t ic test environment .

Many different types of kernel have been written . A good review is
found in [1 6] .

A common dis advantage is that both the kernel and the interpreter
of ten occupy la rge amounts of memory and may reduce the space availab le
for user programs signif icant ly .

The advantages of these so lutions are mos tly logical . An
interpretive s olution can usually emulate the target architecture
success fully . The dis advantages are mos t ly practical . Poor execution
speed of t en makes the model useless .

APPENDIX E PUBLISHED PAPERS

- E l 9 -

In spite of the disadvantages , manysucces sfully emulated in software . Most ,
p rovide a usable , long term computer util ity
ef ficiency .

1·1· A Firmware Implementation

architectures
however , have

[4 , 5) because

have been
failed to

of poor

Another technique used is to emulate the target architecture in
firmware (or microcode) . This solution is clearly only app licable if
the source machine uses a microcoded control unit and possesses a
writable control s tore .

The internal microcycle of 100s t processors is several times faster
than their fetch-execu te cycle . Consequently, target machine
ins tructions can be much 100re ef ficiently emulated with microcode than
with sof tware . Because new instructions can be p laced in writab le
control s tore , the processor can continue to execute normal source
machine programs at the same time as target programs .

Unfortunat ely , most processors provide only a small writab le
control s tore and , more importantly, a limited number of uncommitted
operat ion codes . Thus , it is usual ly dif f icult to microcode al l of the
operations required by the target machine .

Even when suf f icient store and entry points are availab le , this
technique of ten encounters another imp ortant problem . Many target
ins truc tions may implicitly require s torage space , which mus t be
provided by the source machine mains tore . (An obvious examp le is the
imp lementat ion of a virtual memory sys tem, which requires page tab les in .
ord er to trans late address es) . In many cas es the fact that target
operations are implemented in microcode may not be sufficient to make
them ef ficient . The operations may be limit ed in speed by the time
taken to scan or search various data struc tures which , if built into
hardware , would have us ed much f aster store and searching strategies .
(examp les of such an address trans lation sys tem are found in [6] and
[7]) .

In addition , the structure of the micro instruction is usual ly
des igned f or the source instruction s et , not the target . Consequently ,
it is of ten qui te dif ficult to write the target microcode on the source
machine .

Thus , a firmware emulation , whilst much more eff icient than a
kernel or interpretive solution, is often s t ill too s low to p rovide a
usab le sys tem . Moreover , the implementation often leaves too much of
the source p roces s or architecture visible, affecting the attributes and
view of the_ target architecture .

I·n the situat ion where speed is important , the only solution may be
to p rovide s pecial hardware .

1 ·1 · Modifying the source hardware

The third poss ib ility is to modify the hardware of an exis t ing
machine . Clearly , this technique can offer the best performance .
Traditionally , however , this method is only used when the target
architecture does not d iffer greatly from the source archit ec ture .

Small changes such as small modif ications to the instruction set ,
adding virtual memory hardware (8) and detec ting extra error modes (5) ,
have been done success fully . Each of these changes , however , has not
int roduced maj or architectural enhancements to the source processor .

APPENDIX E PUBLISHED PAPERS

- E20 -

In fac t , it is clear that the maj or changes possible with an
emulation environment are not always possible when mod ifying the
hardware of an exis ting machine .

The t echnique is often rej ected because it may al ter the
environment for normal sour ce machine programs as well as target machine
machine programs , dedicating the use of the source machine .

In sp ite of the disadvantages and prac tical difficul ties a number
of architectural changes have been achieved by hardware changes . The
next section examines some of the more common hardware mod if ication
schemes used .

4 . Hardware modifications

Many specif ic changes are possible when the processor des ign is
mod if ied . These depend up on the internal imp lementation of the
processor itself , and will not be cons idered further . This section
concent rates on some of the more general mod if ication techniques
availab le •

.i·l· Processor Conf igurations

Mos t computer sys t ems can be divided into two main parts , the CPU
and the memory, connected usually by a ' clean' s et of interface signals ,
shown in Fi2ure 1 •

...,_ __ handshaking & control)
roces sor Memory &

•-----� ADDRESSES -------------� Peripherals
Control &

egis ters ••(-------- DATA----------------�

f igure 1 .

The s ignals involved in the interface can typ ically be divided into
three sections ; addresses , data and control/ handshaking information .
The CPU communicates with the memory mostly by read and write commands .
When the CPU executes a read operat ion control information is generated
t ogether with an address pattern . The CPU may then wait for data ,
which is pas sed back over the data pathway . When a write is executed
data is sent wi th the address to the memory unit

The connections
generalized to f orm
the me�ory .

between the CPU and memory section may be
a sys tem bus which connects to devices other than

I t is the ' clean ' . nature of the interface between CPU and memory
which is often emp loyed when architectural enhancements are introduc ed .

4 . 2 . B reaking the address bus

One technique used to enhance the architecture of the source
proces sor is to int roduce extra log ic into the address pathway between
the CPU and the memory , shown in Figure 2 .

If the a rchitec tur al enhancement is the addition of a virtua l
memory sys tem, then the extra logic may be used to modify , or translate ,
the p roces sor address es before they reach the memory . Such a system is
des crib ed in [8] .

APPENDIX E PUBLI SHED PAPERS

- E21 -

-Address -+ - Address �
C .P .u . EXTRA MEMORY

Data LOGIC " Data L
,

Control Control L ,

f igure 2 .

If however , the target architec ture is to include mo re registers ,
these may be ass igned addresses and placed in the extra log ic . Read and
write commands directed to these addres s es are ' s tolen' by the extra
logic and may never reach the memory .

The extra logic in some sys tems appears as a block of memory , but
the data in the locations is calculat ed by the logic rather than being
the previously saved values . Such a sys tem is described in [9] to
imp lement a s tack mechanism and address ing registers .

Many sys tems have been constructed which place special s ignificance
upon certain addresses within the address space . Many rely on special
addresses for performing I /O operat ions . Al l , however , only ' steal ' a
limited number of address es for such op erations , and perform very
s pecif ic opera tions . None of these sys tems make dramatic architectural
changes . Such sys tems do , however , suggest that treating the address es
f rom a source processor in a special way may be used as a general
mechanism for enhancing an existing machine architec ture . The next
section proposes such a model .

5 . A general model

The sys tems dis cussed in section 4 used the processor addresses in
various ways . If rather than us ing a d edicat ed p iece of extra logic ,
another fas t processor is p laced in the address path , a general
mechanism f or dramatic architec tural enhancements is created . In such a
scheme , the processor addresses are treated as ins tructions by another ,
small fast p roces sor , the intermediate p rocess or, as shown in Figure 3 .
These new ins tructions may be tailored to the target architecture .

Address es

c . P .u . ALU

Int ermed iate
Processor

Addresses

MEMORY

+- Control

f igure 3 .

The intermediate proces sor reinterprets all of the CPU addres s es ,
and executes them as though they were ins tructions . Some may be sent to
the memory unit , whil st others may be us ed internally .

The intermed iate processor appears as a piece of memory to the
source processor .

The model possesses some part icularly notable attribut es .
i) Many new operation codes are available, thus many new target

opera t ions may be supported . The potent ial number of codes
availab le is the size of the address space .

APPENDI X E PUBLI SHED PAPERS

- E 22 -

i i) Because the intermediate processor is a general processor many
diff erent target operations may be at tempted , from very simp le
memory ref erences to complex data manipulation .

iii) Extra target architecture registers may be locat ed in the
s tructure of the intermediate processor , and can be manipulated by _
read and write connnands from the source processor .

iv) Normal memory references can be made to proceed from the source
proces sor to the memory with very little delay .

v) Comp lex target operat ion may be added to the source without maj or
mod if ica tions to the source proces sor hardware . Thus , the source
processor may be a mainframe , a minicomputer or pos s ib ly even a
microp roces sor .

vi) The new architecture is partly transportable among source

vii)

proces sors . Mo st of the target architec ture is hous ed within the
int ermed iate processor itself .

The intermed iate processor
transparent ; thus it is
processor to execute normal
machine p rograms .

may be removed ,
not diff icult to

source programs

or made logically
allow the source

ins tead of target

viii) The target architecture inherits all of the input /output devices ,
controllers , communications , frame and power suppl ies from the
s ource processor . This vas tly reduces the amount of effort
required to imp lement a working target architec ture .

ix) Depend ing upon the address interpretations it may be possib le to
execute source programs on the new target machine . At the very
leas t , these programs can execute on another source processor of
the same type . Thus the assemblers , comp ilers and loaders a lready
avail ab le for the source processor may be modif ied to produce code
for the target architecture . Consequently, s ome software
development may be avoided .

x) Because the intermediate processor only cons is ts of a central
proces sor unit it may be eas ily constructed , poss ibly from bit
slice component s .

The next section examines the MONADS II processor , wh ich was
designed and built us ing this general model .

6 . MONADS II

The MONADS proj ect began in 19 76 with the
inves tigating methods for develop ing large software
operat ing sys t em [10-14] was written to execute on M:>NADS
HP2 100 minicomput er [8] [9] •

intent ion of
systems . An

I , a modif ied

The princip les underlying the des ign of the operating sys tem extend
f ar beyond that sys tem and can be applied to any large software system .

During the development of the MONADS I sys tem it became obvious
tha t the availab le hardware was not entirely suitable f or the MONADS
software s truc tures . This prompted the building of a second computer ,
MONADS II , which is des igned around the general model propos ed in
Section 5 , and uses a HP2 100A minicomputer as the source processor .

APPENDIX E PUBLI SHED PAPERS

- E 23 -

6 . 1 . The HP2 1 00

The HP 2100 [15] is typical of many 1 6 bit minicomputers of the · same
era , and incorporates a microcoded control unit , some general
accumulators and 32k words of memory . Addresses are cons tructed from a
word of 1 6 bits , 15 of which form the memory address . The top bit
represents whether addresses are to be used indirectly . [1 5 , page 2-s ·
] .

Phys ically , the processor is divided into three areas ; the central
processor its elf , the input output sec t ion and the memory sec tion .

The int erface between the memory section and the processor cons is ts
of 15 address b its , 16 b idirec tional data bits and a number of control
signals . The memory section is self contained and uses 1 6 bit words of
co re memory .

6 . 2 • The MONADS .!!. Ar chi tee tu re

I t is beyond the scope of this paper to describe the archit ecture
of the MONADS II sys tem . It is , however, easy to demonst rate that the
target archit ecture could never be eff iciently emulated , either by
software or f irmware , totally within the HP 2 1 00A .

The MONADS II processor supports a number of processes directly in
hardware and provides each process with 1 24 ext ra 16 bit registers .
Some of these are used as capab il ity regis ters to address a segmented
virtual memory with 31 bit virtual addresses . The proces sor also
supports the MONADS subsys tem [1 3] and inprocess [1 2 , 1 3] architecture
with a p rotected stack structure . Most of these concep ts are so al ien
to the HP 2 100A that an emulation would be extremely ineff icient .

i•l • The MONADS I I system

The MONADS II sys tem comprises four sections ; The HP 2 100A
processor and I /O logic , the int ermediate processor , the virtual memory
manager and the sys tem mainstore . The old HP2 100A core controller has
been removed and the interface is us ed to conununicate with the
intermed iate processor , as shown in Figure 4 .

rocessor

figure 4 .

i·l·!· The HP2 1 00 process or
The changes made to the HP 2100 engine itself were minimal . Some of

these were ess ential for the correct operation of MONADS II , whil st
others were made for eff iciency reasons . Four changes were made .

First , the microcode control store of the HP 2 1 00A was increased in
size from 1 0 24 , 24 b it words to 4096 words . This modif ication whilst
not ess ential , simp l if ied the imp lementation and improved the eff iciency
of the operat ing sys tem .

Second , the direct memory access (DMA) logic
communicate d irectly with the virtual memory manager .
was essent ial , and guaranteed that the DMA sys t em would
immediate servi ce .

APPENDIX E

was modif ied to
This modif ication

always receive

PUBLISHED PAPERS

- E24 -

Third , minor changes were made to the interrup t logic to al low the
int ermediate processor to interrupt the HP 2 1 00A and abort the current
ins truction .

Fourth , smal l changes were made to the control signals between the
HP 2 1 00A and the intermediate proces sor to make them asynchronous with
respec t to each other .

The core controller board and associated cards were removed from
the f rame and an interface to the intermed iate proces sor substitut ed .

�·1·1· The intermediate processor
The int ermed iate processor is fas t microcoded processor . Each

instruction from the source processor is interpret ed by a stream of
microcode . It accep ts all HP2100 addresses and reinterprets them
according to the following rule :

if address is direct and =< 7 7 7B then read from current data
segment else

if address is ind irect and =< 777B then read from current link
segment else

if address >= lOOOB and =< 1377B then read from stack frame 1 else
if addres s >= 1400B and =< 1 7 7 7B then read from stack f rame 2 else
if address >= 2000B and =< 757 7 7B then read from current code

s egment else
if address >= 76000B and =< 77 7 7 7B then use another special set of

interp retations .

The special interpretations allow the HP 2 100 to perform many
other operations , including modifying registers , address ing the top of
the s tack , using push and pop operations on the stack , using and loading
the capab ility reg is ters , changing p rocesses , reading the time, set ting
process time limits and address ing cons tants . The details of the
address interpretations are beyond the scope of this paper and range
widely in comp lexity .The simples t ins truction manipulates a regis ter
whereas the mo st comp lex performs byte operations on word oriented
segments . The intermediate processor is described in more detail in
[1 7] •

� ·1·1 · The memory manager and real memory

The intermediate processor is capable of expanding the 15 b it
HP 2100A address to a 3 1 bit virtual address . The virtual memory manager
translates this address into a mainstore address and is described in
detail in [1 8] .

l• Achievements
The int ermediate processor was des igned by one person over a period

of months , built in about 6 weeks and tested in about 2 weeks . The
processor was implemented for two reasons .

First , and most obvious , to provide the MONADS group with a new
process or capable of suppor ting the goals of the MONADS proj ect .

Second , to determine whether the general model proposed in sec tion
5 was real is tic .

Both of these obj ectives were successfully met . The MONADS group
is currently using the MONADS II sys tem for software development .
Moreover , the fac t that such a complex architecture was developed
efficiently on a very simp le computer demonstrates that the model is

APPENDIX E PUBLI SHED PAPERS

- E 25 -

indeed real is tic . The implementat ion appea rs to support the advantages
cit ed in Sec tion 5 . The number of internal mod if ications made to the
HP2 1 00 was smal l . Whilst the processor is ef fectively ded icated to the
MONADS proj ec t it would be poss ible to make the intermed iate processor
log ically transparent and al low the HP2 100A to execut e normal programs .

Provid ing certain rules were obeyed it would al so be po ssible to
move the intermediate processor to another 1 6 bit minicomputer , with
very little change to the intermediate proces sor .

Init ial ly , a hardware diagnostic and monitor sys tem was developed .
This sys tem was writt en in no rmal HP as sembler and comp iled and linked
us ing the normal DO S-M ass embler and loader sof tware .

The ef fec tive speed pos s ible within the intermediate processor
would sugges t that the implementation chosen is far more eff icient than
an interpretive or firmware solution . The design of the intermediate
processor is signif icant ly less complex than the des ign of a complete
CPU module , and avoids all of the extra device logic described in
Sec tion 2 .

An unexpected advantage was found in the init ial boots trap of the
system . The intermediate processor has a special instruction which ,
when executed , sets up the address translation hardware and performs
internal register diagnos tics .

The mos t notab le disadvantage of this technique , like the firmware
solution , is that the source architec ture is s till somewhat vis ible .
For examp le , the data paths in the target machine are s til l 16 bits
wide . In sp ite of the simp licity of the source machine , these features
did not appear to limit the target too significantly .

8 . Conclusions

The success of the implementation of MONADS II clearly demonstrates
that the model developed in Sec tion 5 is realistic .

The end result of this res earch is a usab le implementat ion of a new
computer a rchitecture .

Acknowledgement s .

The des ign of the int ermediate processor was only possib le through
many hours of discussion with Professor Chris Wallace , Dr . Les Keedy and
Dr . John Ros enberg .

The technical s taff , namely Mr . David Duke and Mr . Steve Garrison ,
d id �� excellent j ob of construc ting the intermediate proce� sor and
memory management unit .

The bugs would never have been found without the help of Mr . Brian
Wallis and the rest of the MONADS group .

References .

[1] Wes tern Digital (1 979)
March .

"Pas cal MICROENGINE Reference Manual"

[2] Fabry , R . S . (1 97 4) - "Capab ility Based Address ing" , Comms . of
ACM, Vol . 1 7 , No . 7 pp 4 03-412 .

[3] Ramamohanarao , K . (1 980) -"A New Model For Job Management Sys tems "
PhD . Thes is . Monash Univers ity .

APPENDIX E PUBLISHED PAPERS

- E26 -

[4] Lampson , B . , Sturgis , H . (19 76) "Ref lections
Sys tem Design " , Comms . of ACM, Vol . 1 9 , No . 5 ,

on an Operating
pp 251-265 .

[5] Wulf , w . et al (1 98 1)
McGraw-Hill .

"Hydra /Cmmp An Experimental Sys tem" ,

[6] Sitton , W .G . & Wear , L .L . (1 974) - "A Virtual Memory Sys tem for the
Hewlet t-Packard HP 2 1 00A" , ACM 7 th Annual workshop on
Microprogramming , pp 1 1 9 - 12 1 .

[7] D 'Hau tcourt-Carette , Francoise (1 9 71) , "A Micro progranuned Virtual
Memory for the Ec lipse " , SIGMICRO , ACM , June .

[8] Ilagan , R . (1 977) "Virtual memory hardware for a HP 2 1 00A
Minicomputer" , M . Sc . Thes is , Monash Univers ity .

[9] Wallace , C . s . (1 978) "Memory and Addressing Extens ions to a
HP 2 100A" , Proc . of the 8 th Australian Computer Conference .

[1 0] Keedy , J .L . (1 978) - "The MONADS Operating Sys tem" , Proc . of 8 th
Austral ian Computer Conference .

[1 1] Rosenberg , J . and Keedy , J .L . (1978) "The MONADS hardware
Kernel" , proc . of 8 th Aus tralian Comput er Conference .

[1 2] Ramamohanarao , K . and Keedy, J .L . (1978)
MONADS Operating Sys tem" , Proc . of
Conference .

"Job
8th

Management in The
Aus tral ian Computer

[1 3] Richards , I . and Keedy , J .L . , (1 978) "Subsys tem Management in the
MONADS Operating System" Proc . of 8 th Aus tralian Computer
Conference •

[14] Georgiades , A . , Richards , I . and Keedy , J .L . (1 978) "A File Sys tem
for the MONADS Operating Sys tem" Proc of 8th Australian Comput er
Conference .

[1 5] Hewlett Packard , "Hp 2 100A Pocket Guide" , Hewlet t-Packard Company ,
California , U . S .A .

[1 6] Rosenberg , J . (1 979) "The Concept of a Hardware Kernel" PhD .Thes is
Monash Univers ity .

[1 7] A}>ramson , D .A (l 980) "A Users Guide to the MONADS Extended Hardware"
MONADS Internal Rep.ort No 9 •

[1 8] Abramson , D .A . (1 980) "Hardware Management of a Large
Memory" . Proceedings of ACSC 4 , pp l- 1 3 .

Virtual

APPENDIX E PUBLISHED PAPERS

- E27 -

HARDWARE MANAGEMENT OF

A LARGE VIRTUAL MEMORY .

D . Abramson ,
Dep t . of Computer Science ,

Monash University .

AB STRACT

The MONADS II Comp uter was built in the Computer Science department at
Monash Univers-ity in 1980 . Among its many features , the Series II
utili.zes a capabil i ty based addressing s cheme , in a large virtual ,
memory .

S tandard technique s unfor tunately fail to provide an e fficient mechanism
_for translating the Series I I virtual addres ses in to main memory
addres ses .

Another technique is proposed for mapping very large addre sses , which
operates very e fficiently for a relatively low cos t .

The addres s tran slation units o f two o ther comp uters are examined and
are compared to the Series II llllit .

APPENDIX E PUBLI SHED PAPERS

- E28 -

1 . 0 In troduc tion

1 . 1 The MONADS Proj ect .

'I'he MONADS p roj ec t began in 1976 , wi th the inten tion of investigating
me thods for developing large so ftware systems . An opera ting system
([l] - [6]) was implemented to execute on the MONADS Series I computer ; a
modified HP2100A minicomputer [2] , [7] . The principles underlying the
design of the ope rating sys tem extend far beyond that sys tem, and
indeed ·can be applied to the development o f any large so ftware sys tem .

During the development of the Series I sys tem, i t became evident that
the available hardware was not entirely sui table for suppo.r ting the
MONADS so f tware s tructures . This promp ted the building o f a second
computer , the MONADS Series II [8] [9] , which is par tly based on a vas tly
modified HP2 100A minicomputer .
1 . 2 MONADS Series II .

The ·MONADS Series II proces sor was designed to support an environment
sympathe tic to the philosophy o f the MONADS project . It p rovides
cons tructs for e fficiently managing and supporting the key features o f
MONADS , some o f which are no t well ' unders tood ' by o ther computers ,
.includin g the Series I processor . This paper describes one o f these
areas , the Virtual Memory System .

Sec tion 2 _ portrays a logical view of virtual memory sys tems whils t
Sec tion 3 comments on some s tandard implementations and their problems .
Section 4 describes the Series II addres s translation uni t and Sec tion 5
comp ares i t with two o ther virtual memory sys tems .

2 . 0 Logica� View o f Memory

2 . 1 Serie s II Virtual MemoTy .

It was demons trated by the Mul tics designers (10] in 1964 that i t was
highly desirable to treat the memory o f a processor in a homogeneous
manner . From a �ser ' s viewpoint , there is no concep tual dif ference
between a block o f core (or semiconductor) memory and a block o f disc
memory ; the only prac tical di fference being the way in which the data is
retrieved and the relative speed at which it is re turned .

It was therefore · decided that th e Serie s II processor would provide the
user (and sys tem) wi th a very large vir tual memory , and like multics ,
draw no dis t inction between fas t and s low memory (or be tween files and
arrays) .

It was also deemed de�irab le that programs could be broken into their
logical sec tions , or segments , so that these segments could be treated
separately .

Thus the Vir tual memory o f the Series I I i s designed as a very large
segmen ted memory (as this· is· now the only form o f s torage) . Each
segment is paged to simplify the enormous task o f managing a segmented
memory [15] .

APPENDIX E PUBLI SHED PAPERS

L . L l\u u 1.· � � � J.ransJ.aL.i.on .
- E29 -

Addres s translation i:s the process of mapping an address as viewed
from the pro ce ssor onto the physical addres s required by the main
memory sys tem . If the addres s to be translated is not residen t in main
memory a page faul t i'nterrup t is caused , and the supervisor program
fetches the page into mainstore .

The virtual address is typically divided into two sections , a virtual
page number (poss·ioly including a segment identifier) and an o ffse t
within page . · The address translator maps the virtual page number onto
a main memory page number , which is combined with the unaffec ted offset
to form a main memory addres s . The model translation process is shown
in Figure 1 .

virtual
addres s

.(.-

vir tual

page faul t
- - - - - - - - .,

I
I

Addres s
translator

offset

FIGURE 1

3 . 0 Virtua; Memory Sys tems
'

3 . 1 Vir tual Memory Cate gories .

main
memory
page no .

'

main

For the purpose of implementing address translation hardware , virtual .
memory sys tems mav be divided into three ca tegories :

(1) Small Virtual memories
(2) Large Virtual memories with small main memories
(3) Large Virtual memories with large main memories .

3 . 1 . 1 Category (1) refers to sys tems where the address space viewed from
a program is small enough to allow the addres s translation tables

to be held direc tly in the hardware [7] [11] • Some such sys tems allow
the operating sys te� to swap these tables into and out of the hardware ,
so that individual processes may execute their own isolated addres s spaces .

These sys tems are relatively \lllaffected by chaqges in the size of the
main memory , as this only alters the width o f the translation tables .
However , they are greatly a ffec ted by the size o f the virtual addres s space ,
as this alters the length o f the translation tables . A simple address
translation unit is s·hown in Figure 2 .

Hardware mappin g table

�irtual virtual 1 page
main

no .
main

������-+-������ memory
address

addres s page no .

offset F IGURE 2
APPENDIX E PUBLI SHED PAPERS

- E 30 -
3 . 1 . 2 In sys tems wi th a large vir tual memory and a small main memory (c . f . Atlas fl2]) , address transla tion is typically accomplished by utilis ing an associative memory to hold the transla tion tables . Eachpage of main memory is associated wi th one page address re gis ter , which
holds the virtual address per taining to that main memory page .

Translation is accomplished by the simul taneous comparison o f the con tents
of each page address regis ter wi th the page number par t of the virtual
address ; the ma tching re gis ter then pointing to the page in main memory
is the required one . Con trary to ca te gory (]) , this technique is
rela tively unaffec ted by changes in the size of the vir tual memory .
However , i t is greatly affec ted by the size of the main memory , as this
alters the number of page address re gis ters and comparators required .
Such a s cheme is described in Figure 3 .

vir tual
address ? ma in

�---4 virtual page no . 1---""""'""--�------...,.

I

memory
address

comparators page address
regis ters

o ffset

FIGURE 3

The use o f an associative memory cannot , tmforttmately , be extended to
provide tran�lation for category (3) sys tems due to the number of page
addres s regis ters and comparators required .

3 . 1 . 3 nie classical solution for sys tems with large vir�ual memories and
large main memorie s (category 3) [10] [13] involves the use o f

page tables , (and segmen t tables) which are held either in main memory o r
virtual memory . ..These tables , which are maintained and searched b y
system software and firmware , o ffer a mul ti level indexed address
translation table .

To achieve respectable translation times , this mechanism is usually
a�gme�ted by a small as�ociative memory , which holds the mos � re�ently
used page table entries . This scheme is shown in Figure · 4 .

Segmen t table

offse t

FIGURE 4

APPENDIX E

page table

ma in
memory
addres s

PUBLI SHED PAPERS

- E 3 1 -

3 . 2 This classical solution would unfortunately fail to provide an
efficient address tr�n�la ti_on mechani.s.m for the Series II

�rocessor . The a�dressing s tyle of Series II (which is capability
based) [22] would introduce a very large number of small segments (14] .
In addi tion , the page tables , which would be too large to reside · in .
main memory , would be forced into virtual memory . Th:ts would greatly
complicate the address trans·lation software , and cuase the translation
process to become extremely inefficiept .

3 . 3 Logically , the solution adop ted by sys tems such as Atlas (category
(2) sys tems) would offer the best performance . However , the

production o f an associative memory capable of managing the many
thousand pages of main memory , has not yet become feasible .

The next sec tion des cribes an address translation unit which emulates a
large associative memory very efficiently.

4 . 0 The Series II Vir tual Memory Sys tem

4 . 1 The Vir tual Address .

The vir tual memory of the Series II processor is addressed by a 31 bit
vir tual address , which is un forgeable and unique across the sys tem .
From the viewpoint o f the vir tual memory hardware , this �ddress
< segment no (16 bits) , page no , (6 bits) displacement (9 bits) > may be
considered as 2 2 bits o f virtual page identifier , and 9 bi ts of wi thin
page displacement , < vir tual page no (22 bits) , displacement (9 bits) >

Because the address is unique , the mapping hardware need never concern
itsel f with the identity of the executing process and the sys tem
sof tware need never swap mapp in g entries when switching processes .

4 . 2 The Physical Addres s .

The Series II phys ical address , for the main memory , consis ts o f 1 3 bits
of page number and 9 bits of within page displacement . This 2 2 bit
address < pa ge no (1 3 b i ts) , displacement (4 bits) > allows a maximum
main memory s i ze of 8 MB .

4 . 3 Con trol o f the Vir tual Memory .

Con trol° of the virtual memory may be divided into three sections , namely :

(1) Mapping Hardware
(2) Swap out sof tware
(3) Swap in s o f tware .

Sec tions (2) and (3) are responsible for moving pages out o f and into
ma.in memory respec tively , and are managed by the Series II Hardware
Kernel [16] . This software is fully described in a companion paper
(1 7] . The remainder of this paper is concerned only with sec tion (1) .

4 . 4 Mapp ing Hardware.

The Mapping Hardware is sole ly responsible for mapping the 31 bit
vir tual address onto a 2 2 bit phys ical address··· The external appearan ce
is charac terized in Figure 5 .

APPENDIX E PUBLI SHED PAPERS

- E 32 -

page fault
-.

CPU 31 bits ·22 bits r-------,------�
mapping 13 bits 22 bit
hardware --------physical

address

9 bfts displacement

FIGURE 5

When presented wi th a vir tual address , the mapping hardware may
ei ther produce a physical address , or a page fault signal . If the
page required is in main memory , a physical addres s will be
produced . However , if the page required is in secondary memory , a
page faul t interrup t will be signalled to the system , in order that
r�medial action may be taken .

4 . 5 In ternal Operation .

The mapping hardware is organised as a high speed sparsely occupied
hash table , wi th embedded overflow chains , as characterized in Figure
6 .

The unit cons is ts o f thre� �in c�mponents , a hashing uni t , a hash
table . and a comp8:r�tor . · · ·

., . : .·
·

· · . . ·
·

9 bits displaceuent

12 10 3 13
____ __ � hashing .._ __ -;;w bits bits bits 1 1 1 bits Unit t-----+----f.--4-4-�-'----�

12 bits

key

-----· �·
Comparator

EQUAL?

�--- ----- - - - - - - � page faul t
x

4 . 5 . 1 Hashing Unit .

· . Virt- link Jcces V F E Physical
ual f:lel Con- pageno
pa gen trol

/

FIGURE 6

The hashing unit accep ts a 22 bit vir tual page number and generates a
10 .bits uniformly dis tributed index . into the hash table .

� The curren t ver sion o f the hashing uni t uses low order b i ts from both
the segment f ield an d the page field o f the virtual addres s (See 4 . 9 . 2 .)
APPENDIX E PUBLI SHED PAPERS

4 . 5 . 2 Hash Table .
- E 33 -

The hash table is implemen te d using very high speed bipolar memory . Each cell i s addressed by a 1 0 bit hash key , and con tains seven fields :

(1) vir tual address identifier 12 bits (2) Physical page number 13 bits (3) Access field 3 bits (4) Valid field (V) 1 bit
(5) Link field 10 bits
(6) Forei gner field (F) 1 bi t
(7) end o f chain fiel d (E) 1 bit

4 . 5 . 2 . 1 Virtual Address Iden tifier .

Tilis field con tains the remaining 12 bits o f the vir tual page number
no t used by the hashing func tion . All o ther information in the cell
pertains to this virtual page .

4 . 5 . 2 . 2 Phys ical Page number .

Tile field holds the page number to which the virtual page is mapped .

4 . 5 . 2 . 3 Acces s Con trol Field

This field consis ts of three access control bits , controllin g read ,
write and execute access respec tively .

If a re ference to a page con travenes any of the access control bi ts ,
an interrup t is generate·d and the re ference is abor ted .

4 . 5 . 2 . 4 Valid field .

This field spe cifies whe ther the virtual address iden ti fie r field
c on·tains a valid address . If an address hashes to an invalid cell , a
page faul t signal is genera ted .

4 . 5 . 2 . 5 Link fiel d .

I f more than one vir tual addres s hashes to a given cell (i . e . clashes
occur) , an overflow chain is ma in tained by using ano ther unused cell in
the hash table . This field holds the addres s o f the next cell in the
overflow chain . I t is maintained by the kernel software and is
searched by the mapping hardware .

4 . 5 . 2 . 6 For� igner field .

An addres s is forei gn to a cell if its hash key value is not equal to the
cell number in which i t is hel d . If an addres s is foreign , the foreign bit
is set . This bit is required because the Virtual address iden tifier field .
does no t hold the en tire vir tual page number .

4 . 5 . 2 . 7 End o f chain field .

This bi t is se t to signify tha t the cel l is at the end o f a link chain .

4 . 5 . 3 The comparator .

Tilis uni t tes ts the virtual address iden tifie r field , and those bits o f
the virtual page number no t u s e d by the hashin g uni t , f o r equali ty . I f
equal , the phys ical page number field value is used a s the translated
page nurr.ber .

APPENDIX E PUBLI SHED PAPERS

- E 34 -

4 . 6 Mappin g Unit Ope ration .

Operation o f the mapping unit is s ummarised in Figure 7 . The entire
translation process is managed by the mapping hardware , including the
following o f overflow chains . Con trol is re turned to the software once
the memory reference is comple ted (or after a page fault) .

Use
Physica
pa ge no
field

EXIT

APPENDIX E

translate
virtual
addre s s

hash
vir tual
page
number

x

look at cell
poin ted to b
link field

t
FIGURE 7

Cause
Page
faul t

PUBLISHED PAPERS

- E 35 -
4 . 7 '·Peek ' Operation

For cer tain critical sys tem so ftware , it is important to know whe ther a
page re ference will cause a page faul t . This may be achieved with the
' peek ' operation .

When a peek operation is performed on a virtual address , the mappin g unit
a ttemp ts to transla te the address . The software may then examine a
Series II s tatus re gis ter (SVR) to de termine whether the re ference would
have caused a page faul t . If the peek opera tion indica tes that no page
faul t would have occured , then the re ference is regarded as a normal
(non peek) reference .

However , if the s tatus regis ter indicates a page faul t , .. on di tion , then
the page mus t be fe tched into main memory .

4 . 8 Con trol o f the Mapping Hardware .

To the software responsible for initializing and maintaining the data in
the mapping hardware , the hash table and associated regis ters appear in
a special s e gment , the memory control segmen t (segment �) . Val ues may be
saved in to or read from the various fields o f the has� table by e�ecuting
memory reference ins truc tions on this segment .

4 . 8 . 1 Insertion and dele tion .

Algori thms for inserting and dele ting entries from the translation unit
are fully defined in [23] , and thus are not des cribed here . Correct
operation of the hardware demands tha t the software responsible for
insertions and deletions conforms to these algorithms .

4 . 9 Performance o f the Translation Unit .

4 . 9 . 1 Loading Fac tor .

A po ten tial dan ger with using a hash table is that the number of .
collisions to any one cell (or clashes) , and the average chain length .
may become unaccep tably high . Accep table performance can , however , be
ob tained i f the hash table is sparsely occupied (i . e . low loading factor) .
Providing tha t the hashing unit generates a uniform dis tribution of hash
keys , the expec ted number of probes to re trieve an item in the hash table
can be calculated from

E = 1 + a: /2

where = loading fac tor [1 8] , [23] .

The curren t version o f the Series II processor has a hash table size four
time s the number o f pages· in physical memory , so in this ver sion
E � 1 . 125 which is acceptably low .

(No te that for a true associative memory , E = 1)

4 . 9 . 2 Hashing Function .

The hash table per formance is also affected by the efficiency o f the
hashing func tion , which should guarantee a uniform dis tr ibution of hash
keys . The c urrent version o f the hashing uni t uses a comb ination o f low
order bi t s f rom bo th the segmen t field and the page field o f the vir tual

· addre s s . Should this func tion yield poor resul t s , e>q>eriment s may be
m� n P wi t.h more complex hashing ftmc tions .
APPENDIX E PUBLI SHED PAPERS

4 . 9 . 3 Timing . - E36 -

Figure 11 shows the timing delays inheren t in the Series II address
translation uni t . It can be seen tha t the minimum access time will be

On ave rage

t . = 0 + S O + 50 + (300 -700) ns min

= 400 -soo ns

t a v = (400 ·soo) + { E-1) x 1 00

= 412 -s12 ns

The varia tion in the main memory time is dependent on the cycle
s tealing o f the re fresh hardware for the dynamic memorie s used .

Vir tual
Addres s

·� hashing
' func tion

�
�

tl

link chain
� '

_J
hash �omparator table

main
memory

I � 0 ns -4 I � 50 ns � I <--- 50 ns __,. I � 300 -100 ns �

4 . 9 . 4 Expansion o f main memory .

FIGURE 8

To main tain acceptable performance , the value E mus t be kep t low, thus
on addi tion o f main memory the hash table size must be expanded
proportionally . Tilis increase in size does no t necessarily affec t any
o f the fields wi thin the hash table . I f the hash table is divided in to
blo cks , l inks may be res tric ted to the ' block ' of hash table in which
they exis t .

4 . 9 . 5 Op timi za tion .

Performance of the hash table may be op timized by overlapping the
comp arison o f the vir tual page id�ntifier in the curren t cell to the
vir tual page number , with the fe tch o f the cell linked to the current
cell . This op timi za ti on , however , has li ttle effec t i f the value E-1 is
low .

5 . 0 Al ternative Solutions

Two o ther comp uters have made attemp ts a t solving the problem of
transla ting very long vir tual addresses , bo th using unconventional
technique s .

5 . 1 MU6-G [19]

The MU6-G was recen tly developed at Manche s ter University as a "high
per formance machine use ful for general and scientific app lications" ·

.
Among its many fea tures , �ru6-G includes a Memory Acces s Controller , or
MAC , for translating virtual to phys ical addresses .

APPENDIX E PUBLISHED PAPERS

- E37 -

Memory Managment

The vir tual address forma t in the MU6-G processor is as follows

< process no .
segment no .
block no .
bit no .

(8 bits)
(8 bits) ,
(7 b i ts) ,
(14 bits)>

MU6-G associates one Page Address Re gister (PAR) with each physical
page , as in Atlas [12] . However , rather than using a fully associative
mechanism, which would be prohibitively expens ive , a sequential search
is made of these regis ters .

PARs are or ganized in banks o f 256 locations , which gives an average
transla tion time a little under f>its . This unaccep tably high t_ime is
reduced by the use o f a tran slation look aside buffer . If the main
memory cache on MU6-G is ignore d , a mains tore access time o f 750 ns is
achieve d .

5 . 2 The IBM Sys tem/ 38

The IBM System 38 [20] [21] is the most recent computer in the IBM range ,
·and was developed by the Gener al Sys tems Division in 1978 .

Like the Series I I , the Sys tem/ 38 translates an extremely lon g virtual
address into a smaller mains tore address .

The translation process involves the use o f a sparse hash table in the
main memory o f the Sys tem/ 38 . Two tables are involved ; the hash index
table and tne page directory . The page directory serves as an over flow
table , unlike the Series II address translator which uses overflow chains
embe dded in the hash table . In addition , the ha sh index table , which is
equivalent to the hash table in Series II , is held in the main memory
of the sys tem/ 38 . This memory is far slower than the high speed bipolar
RAM use d in Series II .

Accep table tran slation time s are only achieved by the addition of a
translation look aside buffer .

No timing values have been published for the Sys tem/ 38 .

5 . 3 Conclusion .

Bo th MU6-G and Sys tem/ 38 require the use o f high speed look aside buffers
to achieve respec table transla tion times . The design o f such buffers is
usually similar to the design of the Series II mapping unit , i .e . as high
speed hash tables , but with · no overflow s trategy , and usually o f much
smaller size . When the lookaside buffers in MU6-G and Sys tem/ 38 fail to
translate an address , some . form o f slower overflow s trategy is utilized .
When a clash condi tion in the Ser ies I I mapp ing uni t occurs , (which is less
likely than a lookaside buffer failure) a high speed search is made within
the hash table .

The paper has demons trated tha t the addres s translation technique
uti lize d by the MONADS Series I I computer is prac tical , and offers very
accep table performance . It suggests that the Series II translation unit
should o ffer equal or superior performance to the MU6-G or Sys tem/ 38
transla tion units .

APPENDIX E PUBLISHED PAPERS

- E 38 -
Acknowledgmen ts

.
The author wishes to acknowledge the following people , wi thout whose help· this work would never have been possible .

Re ferences

Pro fessor Chr i s Wallace
Dr . Les . Keedy ,
Dr . John Rosenberg ,
Mr . Brian Wallis .

,

[l] Keedy � .J . L . (1 9 7 8) "The MONADS Operating Sys tem" , Pro c . o f 8 th
Aus �ral ian Computer Conference .

[2 1 Wallace s C . S . (1 9 7 8) "Memory and Addressing Exten s ion s to a

HP2100A" , Proc . o f the 8 th Aus tralian Computer Conference .

[3] Rosenberg , J . and Keedy , J .L . (1978) "The MONADS Hardware Kernel " ,
Pro c . o f the 8 th Aus tralian Computer Conference .

[4.] Ramamohanarao , K . and Keedy , J .L . (19 78) "Job Managemen t in the
MONADS Operating Sys tem" , Proc . o f the Sth Aus tralian Computer
Conference .

[5] Richards , I . and Keedy , J .L . (19 78) "Subsys tem management in the
MONADS Operating Sys tem" , Proc . o f the Bth Aus tralian Computer
Conference .

[6] Georgiades , A . , Richards , I . and Keedy , J .L . (19 78) "A File Sys tem
for the MONADS Operating Sys tem" , Proc . of the Sth Aus tralian
Computer Conference .

[7] Hagan , R . A . (1980) , MSc . Thesis "Virtual Memory Hardware for a
HP2100A Minicomputer" .

[8] Abramson , D .A . (1 980) "A Users Guide to the MONADS Extended Hardware:"
MONADS In ternal Report No . 9 .

[9] Abramson , D .A . (1980) "A Users Guide to the MONADS Memory Managemen t
Hardware" , MONADS Internal Report No . 10 .

[10] Organick," E . I . (1972) "The MULTICS Sys tem: An Examina tion o f i ts
S truc ture " , MIT Press , Cambridge , MAS . & London .

[11] Hewlett Packard , "The HP21MX Reference Manual "

[12] Kilburn , T . , Edwards , D . B . E . , Lanigan, M . J . and Sunmer , F .H . (1962)
"One Level S torage Sya tem" , I . R . E . Trans . Elec tronic Computation ,
EC-11 No . 2 , pp 2 2 3-2 34 .

(13] Prime , "The Sys tem Architec ture Re ference Guide" , PDR 3060 , Section 2 .

(14] Keedy , J . L . (1980) "Paging and Small Segments : A Memory Management
Mode l" , P roc . o f IFIP World Congress 1980 .

(15] Randell , B . (1969) , "A Note on S torage Fragmentation and Program
Segmen tation" , Comms . of A . C . M . , July 1969 , Vol . 12 , No . 7 ,
pp 365 -372 .

APPENDIX E PUBLI SHED PAPERS

- E39 -

Rieterences (contd .)

[16 1 Wallis , B . (1980) "A Hardware Kernel o f the MONADS Ser ies II
computer" , Honours Report - Dep t . of Computer Science ,
Monash University .

[1 7) Rosefiberg , J . and Keedy , J . L . (1981) "Software Management of a Large
Vir tual Memory" , Proc . o f ACSC 4 , Brisbane 1981 .

(18] Morris , R . (1 968) " S ca t ter Storage Techniques" , Comins . o f A . C .M . ,
Jan . 1968 , pp 38-4 3 .

[19] Edwards , D . B . G . , Knowles , A . E . and Woods , J . V . (1980) "The MU6-G .
A New Design to Achieve Mainframe Performance from a Mini
Sized Computer" , Proc . o f the 7th Annual Sympos ium on Computer
Architec ture , 1980 pp 161 - 16 7 .

[2.0) Houdek , M .E . and Mi tchell , G .R . "Translating a Large Virtual
Address" IBM Sys tem/ 38 Technical Developmen ts (1978)
pp 19-21 .

(21) Hof fman , R .L . and Sol t is , F . G . ''Hardware Organi za tion of the
Sys tem/ 38" IBM Sy� tem/ 38 Technical Developments (19 78)
pp 19-21 .

[22] Fabry , R . S . (19 74) " Capability-based Addressing" , Comins . of A .C .M . ,
July 19 74 , Vol . 1 7 , No . 7 � pp . 403-411 .

(23] Knuth , D . E . , "The Ar t o f Computer Programming" , Vol . 3 , Sec tion 6 . 4 ,
pp 506 - 549 .

[Editor ' s note : Thi s paper and its companion , " Software Management of a

Large Vi rtual Memory " , �y J . Rosenberg and J . L . Keedy , together fall

within the page l imit for two contributed papers .]

APPENDIX E PUBLI SHED PAPERS

- BIB l -

Ab rams on , D .A • (1 980) "A Us ers Guide to the MONADS Extended Hardware"

MONADS Internal Report No 9 . Monash Univers ity .

Abramson , D .A • (1 98 1) "Hardware Management of a Large Virtual Memory" ,
Proc . 4th Aus tralian Computer Science Conference , Brisbane
(Australian Computer Science Communicat ions 3 , 1 , pp . 1- 1 3) .

Abramson , D .A . (l 982a) "A Technique for Enhancing Processor
Architec ture" , Proc . 5th Australian Computer Science Conf erence ,
Perth (Australian Computer Science Communications 4 , 1 , PP • 4 7-5 7) .

Abramson , D .A . (l 982b) "Hardware for Capability Based Addressing" , Proc .

9 th Aus tralian Computer Conference , Hobart .

Abramson , D .A. and Rosenberg J . (1 982) "Hardware Supp ort for Program

Debugger s " , (in preparat ion) .

Bats on , A .P . and Brundage , R . E . (1 97 7) "Segment Sizes and Lifetimes in

Algol 60 P rograms" Comm . ACM. Vol 20 Num 1 , PP • 36-44 .

Belady , L .A . , Parmelee , R . P . and Scalzi , C .A . (1 98 1) ''The IBM His tory of

Memory Management Technology" , IBM Journal of Research and

Development , Vol 2 5 , Num 5 , September 1 981 .

Belgard , R . (1 9 76) "A Generaliz ed Virtual Memory Package for

Interpreter Writer s " SIGMICRO Dec 1 97 6 .

B l 700

Bird , A . (1 9 82) Honours Report , Department of Computer Science , Monash

University . (in preparat ion) .

Bishop , P . (1 97 7) "Computer Sys tems with a Very Large Address Space and

Garbage Collection " PhD Thesis , MIT (MIT TCS TR- 1 78) .

Cohen , S . J . (1 97 3) "A Virtual Memory Facility for Emulation" SIGMICRO

Jan 1 9 73 .

D ' Hautcourt-Carret te , F . (1 97 7) "A Micro-programmed Virtual Memory for

BIBLIOGRAPHY

- BIB2 -

the Eclipse" SIGMICRO June 1 97 7 .

Dahl , O .J . ,Myhrhaug , B . and Nygaard , K. (1 968) "The Simula 6 7 Common

Base Language " , Norwegian Computer Centre , Oslo .

Data General (1 9 7 4) "Programmers Reference Manual , Eclipse Computer" ,
Number 0 1 5-000024-02 , Data General Corporation , 1 9 74 .

Daws on , P • (1 982) " A Users Guide to the MONADS II Debugger" , Department
of Computer Science , Monash Univers ity .

Denning , P . J • (1 968) "The Working Set Model for Program Behaviour" Comm .
ACM, Vo l 1 1 , Num 5 , PP • 323-333 .

Denning , P .J . (1 9 70) "Virtual memory" Computing Surveys , Vol 2 , Num 3 ,
pp . 1 53- 1 89 .

Denning , P .J • (1 980) ''Working Sets : Pas t and Present " IEEE Trans . of

s of tware engineering. Vol SE-6 , Num 1 , pp . 64-84 .

Dennis , J .B . and VanHorn , E . c . (1 96 6) "Programming Semantics for

Multiprogrammed Computations" Comm . ACM, Vol 9, Num 3 , pp . 1 43- 1 55 .

Digital Equipment Corp . (1 97 9) "VAX 1 1 Architecture Handbook" , Digital

Equipment Corporation .

Edwards , D .B .G . , Knowles , A .E . and Woods , J .V . (1 980) "MU6-G : A New

Design to Achieve Mainframe Performance from a Mini Sized

Computer" Proc . of l' th Annual symposium 2!!, computer architecture ,

pp • 1 61 - 1 6 7 •

England , D .M . (1 972) "Architectural Features of Sys tem 250" Infotech

s tate of the art report J.i, Operating systems , PP • 395-426 .

Evans , D .C . and Leclerc , J .Y . (1 96 7) "Address Mapping and Control of

Access in an Interacive Computer" Proc . of 1 967 Spring Joint

Computer Conference , pp . 2 3-30 .

BIBLIOGRAPHY

- BIB3 -

Fabry , R . s . (1 974) "Capability Bas ed Address ing" Comm . ACM, Vo l 1 7 , Num
7 , pp . 403-4 1 2 .

Feus tal , E .A • (1 972) "The Rice Research Computer
Architecture" AFIP S conference , Vo l 40, pp . 369-377 .

a Tagged

Fotheringham, J . (1 96 1) "Dynamic Storage Allocation in the Atlas
Computer including an automatic use of backing s tore" Comm . ACM,
Vo l 4 , Num 1 0 , pp . 435-436 .

Gehringer , E .F • (1 97 9) "Functionality and Performance in Capab ility

based Operating Sys tems " , Ph .D . Thes is , Purdue University , May
1 9 7 9 .

Gehringer , E .F . and Chansler , R . J . (1 981) " STARO S User and Sys tem

Struc ture Manual" , Department of Computer Science, Carnegie-Mellon
Univers ity , Pit tsburgh , Pennsylvania .

Gehringer , E .F . and Keedy , J .L . (1 982) "Tagged Architecture : How

Compelling are its Advantages ? " , (submitted for publication) .

Gligor , v . (1 9 7 8) "Architectural Implications of Ab stract Data Type
Implementations " Department of Computer Science , University of

Maryland, TR-6 59 .

Hagan , R . (1 97 7) "Virtual Memory Hardware for a HP2 1 00A Minicomputer" ,

M . Sc . Thes is , Monash Univers ity .

Hagan , R .A . and Wal lace , c . s . (1 97 9) "A Virtual Memory Sys tem for the

Hewlett Packard 2 1 00A" , ACM Computer Architecture News , 6 , 5 , PP •

5- 1 3 .

Houdek , M. E . , Sol tis , F .G . and Hoffman , R.L . (1 9 8 1) "IBM Sys tem Support

f or Capab ility Bas ed Addressing" �' th SIGARCH symposium fil!. computer

architecture , PP • 34 1-348 .

Hewlet t Packard (1 972) "A Pocket Guide for the HP2 1 00 Mini-computer" ,

BIBLIOGRAPHY

- B IB4 -

Hewlett Packard Co . , California , U . S .A .

Hewlet t Packard (1 974) Hewlet t Packard Journal , October , 1 974 .

IBM (1 9 78) "IBM System/38 Technical Developments" General Systems

Divis ion .

IBM (1 980) "IBM Sys tem/ 38 Functional Concepts Manual" File S38-0 l .

ICL (1 9 7 1) "J-Level Dis c Operating System, Technical Publication 4558 ,

International Computers Ltd , Putney UK, 1 9 7 1 .

ICL (1 9 76) "Central Processors : the ICL 1 900 Series " ICL Technical

Publication , 44 1 2 , May 1 97 6 .

Intel (1 98la) "Obj ect Based Computer Architecture" Computer Architecture
News , ACM, 1 98 1 .

Intel (1 98 1b) "Introduction to the iAPX4 32 Architecture" , Intel Corp .

Manual Order No . 1 7 1 821-001 .

Keedy J .L . (1 97 7) "An Out line of the ICL2900 Series Sys tem

Architectu re" , Australian Computer Journal , 9 , 2, pp . 53-62 .

Keedy , J .L . (1 978) "The MONADS Operating Sys tem" , Proc . 8th Australian

Computer C onference , Canberra , PP • 903-9 10 .

Keedy , J .L . (1 980) "Paging and Smal l Segments : A Memory Management

Model" , P roc .8th World Computer Congress , IFIP-80, Melbourne, PP •

337-342 .

Keedy , J .L . (1 98 1) "A Progress Report on the MONADS Proj ect" Australian

Computer Science Communicat ions , 3 , 2 , PP • 2 70-2 7 7 .

Keedy , J .L . (1 982a) "The K>NADS View of Software Modules " , Proc . 9 th

Aus tralian Computer C onference , Hobart .

BIBLIOGRAPHY

- BIBS -

Keedy , J .L . (1 9 82b) " Support for Information-Hiding Modules in the

MONADS Architecture" (submit ted for publication) .

Keedy , (1 9 82c) "Module Capab ility Management in the MONADS Systems" ,
(submit t ed for publ icat ion) .

Keedy , J .L . , Ab ramson , D . , Rosenberg , J . and Rowe , D .M . (1 982) "The
MONADS Proj ect Stage 2 : Hardware Des igned to Support Software
Engineering Techniques " , Proc . 9th Australian Computer Conference ,
Hobart .

Keedy , J .L . and Ramamohanarao , K . { 1 97 9) "A Job Management Model for

In-Process Systems " , MONADS Report No . 7, Monash Univers ity .

Keedy , J .L . and Richards , I . (1 982) "A Sof tware Engineering View of

Files " , Australian Computer Journal , 1 4 , .2 .

Keedy , J .L . and Rosenberg , J . (1 981) "Information Hiding - A Key to

Successful Software Engineering" , Proc . Conference .Q!l Computers in

Engineering, 1 981 , Ins titut ion of Engineers , Australia , Publication

No . 8 1 /8 , PP • 1 -5 .

Keedy , J .L . and Rosenberg , J . {1 982a) "The MONADS III Computer Design : A

Sys tem to Support So ftware Engineering" (submitted f or

publ ication) .

Keedy , J .L . and Rosenberg , J . (1 982b) "Architectural Support for

Software in the MONADS III Computer Design" , Proc . 1 2 th Annual

Conference Gesellschaf t fuer Informatik , Kaisers lautern , 1982 .

J Ab D d R D M (1 9 82) "A Keedy, J .L . , Ros enberg , . , ramson • an owe , • •

Comparison of the MONADS II and III Comput er Sys tems " , Proc • 9 th

Aus tralian ·computer C onference , Hobart .

Knuth , D .E . (1 97 8) "The Art of Computer Programming : Fundamental

Algorithms " , Add ison Wesley Publishing Company, Second Ed ition ,
1 97 8 , PP • 435-456 .

BIBLIOGRAPHY

- B IB6 -

Kohonen , T • (1 978) "Associative Memory - a System Theoretical Approach"

Springer-Ver lag , Berlin , Heidelberg , New York .

Kohonen , T • (1 980) "Content Addressable Memories" Springer-Verlag ,

Berlin , Heidelberg , New York .

Kilburn T • , Edwards D .B .E . , Lanigan M.J . and Sumner F .H . (1 962) "One
Level Storage System" , !.·R . E Trans . Elec tronic Computation , EC-1 1 ,
No 2 , PP • 223-234 .

Lampson , B • and Sturgis , H . (1 976) "Ref lections on an Operating Sys tem
Design" C omm . ACM, Vol 1 9 , No 5 , PP • 251-2 65 .

Lanciaux D . , Schiller L . and Wulf W . (1 97 6) "Supporting Small Obj ects in
a Capab ility System" Carnegie-Mellon Univers ity , Internal report ,
Dec 1 97 7 .

Liskov , B . and Zilles , s . (1 97 4) ''Programming with Abstract Data Types " ,

P roc . A .C .M. Sigplan Conf On Very High Level Languages, A .C .M . ,

Sigp lan Not ices , Vol 9 , Num 4 , pp . 50-59 .

Liskov , B . , Snyder , A . , Atkinson , R . and Schaf fert , c . (1 977)
"Ab strac tion Mechanisms in CLU" , Comm . ACM, 20, 8 , pp . 5 64-5 76 .

Morris , R . (1 968) " Scatter Storage Techniques" , Comm . ACM, Jan , 1 968 ,

PP • 38-4 3 .

Morris , J .B . (1 972) "Demand Paging through Ut ilization of Working Sets

i!! the MANIAC II" , C omm . ACM, Vol 6 , Num 1 , PP • 1-1 7 .

Myers , G .J . (1 978a) "Advances in Comput er Architecture" , New York :

Wiley-Interscience , 1 9 78 .

Myers , G .J . (1 978b) "Storage Concepts in a Software Reliab il ity Directed

Computer Archhitec ture" !!:.2£.· F if th Annual �· on Computer

Architecture , New York , ACM, pp . 107- 1 1 3 .

B IBLIOGRAPHY

- BIB7 -

Myers , G . J . and Buckingham, B .R . S . (1 980) "A Hardware Imp lementation of
Capab ility Based Address ing" Computer Architecture News , October ,
1 980, pp . 12-24 .

Needham, R .M . (1 97 7) "The CAP Proj ect - an Interim Evaluation" Proc . of
&_' th ACM sympos ium 2!!. Operating Sys tem principles , pp . 1 7-22 .

Organick , E . I . (1 9 72) "The MULTICS System: An Examination of its
Structure" , MIT Press , Cambridge, Mass .

O rganick , E .I . (1 9 73) "Computer Systems Organization , the B 5 700/6700

Series " , Academic Press , New York .

Parnas , D .L . (1 9 71) " Information Distribution Aspects of Design
Methodology" , Proc . Sth World Computer Congress , IFIP-71 , pp . 339-

344 .

Parnas , D .L . (1 97 2) "On the Criteria to be Used in Decomposing Sys tems

into Modules " , Comm . ACM, 1 5 , 1 2 , pp . 1 053-1058 .

Pat terson , G . (1 981) "MONADS Command Language Interpreter" , Department

of Computer Science , Monash University , Honours Report .

Prime . (1 979) "The Sys tem Architecture Reference Guide" PDR 3060 .

Ramamohanarao , K . (1 980) "A New Model for Job Management Systems " , Ph .D .

Thes is , Monash University .

Ramamoha.narao , K . and Keedy , J .L . (1 97 8) "Job Management in the IDNADS

Operating System" , !!.2£.. · 8 th Australian Computer Conference ,

Canberra , pp . 1476- 1 4 88 .

Ramamohanarao , K . and Sacks-Davis , R . (1 981) "Hardware Address

Trans lation for Machines with a Large Virtual Memory" , Information

Processing Letters , 1 3 , 1 , PP • 23-2 9 .

Randell , B . (1 96 9) "A Note on Storage Fragmentation and Program

BIBLIOGRAPHY

- B IBS -

Segmentation" Comm . ACM, Vol 1 2 , Num 7 , pp . 365-3 72 .

Rees , S • (1 98 1) "The MONADS Series II Assembler Manual" , Department of -

Computer Science , MONADS II Technical Report I , Monash University .

Richards , I • (1 982) "The Organisation and Protection of Information in a

Computer Utility" , Ph . D . Thes is , Monash University , 1 982 .

Richards , I . and Keedy , J .L . (1 97 8) "Subsys tem Management in the IDNADS
Operating System" , P roc . 8 th Australian Computer Conference ,
Canberra , pp . 1520- 1529 .

Rosenberg , J . (1 979) "The Concept of a Hardware Kernel and its
Imp lementation on a Minicomputer", Ph . D . Thesis , Dept . of Computer

Science , Monash University .

Rosenberg , J . and Keedy , J .L . (1 978) "The MONADS Hardware Kernel" , Proc .

8 th Aus t ralian Computer C onference, Canberra , pp . 1 542- 1 552 .

Rosenberg , J . and Keedy , J .L . (l 981a) "Software Management of a Large

Virtual Memory" , Proc . 4th Australian Computer Science Conference ,

Brisbane , PP • 1 73-1 81 .

Rosenberg , J . and Keedy , J .L . (1 98lb) "Informat ion Hiding - A Case

Study" , Proc . Conference on Computers in Engineering, 1 981 ,

Ins titution of Engineers , Australia , Publication No . 8 1 /8 , pp . 6-9 .

Rosenberg, J . , Rowe , D .M. and Keedy, J .L . (1 982) "An Overview of the

MONADS Series III Architecture" , Proc . 5th Aus tralian Computer

S cience C onference , Perth , PP • 58-6 7 .

Shepherd , J .H . , (1 968) "The princip le Des ign Features of the Multi

c omputer Chicago Mag ic Number Computer" ICR quarterly report !.2.,

Nov 1 968 , University of Chicago .

Sit ton, w .G . and Wear , L .L . (1 9 74) - "A Virtual Memory System for the

Hewlet t-Packard HP2 1 00A" , ACM 7 th Annual workshop .Q!l.

BIBLIOGRAPHY

- B IB 9 -

Microprogramming, PP • 1 19 - 1 2 1 .

Strecker , W .D . (1 978) "Cache Memories for the PDP-1 1 Family Computers " ·

Chapter 1 0 , "The PDP- 1 1 family" "Computer engineering - a DEC view

of hardware sys tem des ign" Digital Press .

Tanenbaum, A . (1 97 9) "A Method f or Imp lementing Paged Segmented Virtual
Memories in Microprogrammed Computers " SIGOP S , ACM Vo l 1 3 , Num 2 ,
pp . 26-32 .

Wal lace , c . s . (1 97 8) ''Memory and Address ing Extensions to a HP2 100A"
Proc . 8 th Australian Computer Conference , pp . 1 796-1 81 1 , Canberra .

Wal lis , B .R . (1 980) "A Hardware Kernel for the MONADS II Computer" ,

Honours Thesis , Department of Computer Science , Monash University .

Wilkes , M .V . and Needham, R .M . (1 979) "The Cambridge CAP Computer and

i ts Operating System" , North Holland, Oxford .

Wilkes , M .w . (1 980) "A New Hardware Capab ility Architecture" Operating

Sys tem Reviews , April 1 980, pp . 1 7-20 .

Wirth , N . (1 97 7) "Modula A Language for Modular Programming" ,

Sof tware-Practice and Experience , 7 , 1 , PP • 3 .

Wulf , W .A . et . al . (1 974) "HYDRA: The Kernel of a Multiprocessor

Operating System" , Comm . �' 1 7 , 3 , PP • 336-345 .

W lf W A T d R and Shaw M (1 97 6) "An Introduction to th� U , • . , uOn on , • , •

Construc tion and Verif ication of Alp hard Programs" IEEE

Transactions � Software Engineering, SE-2 , 4, PP • 25 3-2 64 .

\
Wulf , W .A . , Levin , R . and Harb ison , S .P . (1 981) "HYDRA/C .mmp : An

Experimental Computer Sys tem" , McGraw-Hill , New York .

Yngve , V .H . (1 968) "The Chicago Magic Number Computer" !CR quarterly

report 12., Nov 1 968 , Univers ity of Chicago .

BIBLIOGRAPHY

	computer_hardware_0001
	computer_hardware_0002
	computer_hardware_0003
	computer_hardware_0004
	computer_hardware_0005
	computer_hardware_0006
	computer_hardware_0007
	computer_hardware_0008
	computer_hardware_0009
	computer_hardware_0010
	computer_hardware_0011
	computer_hardware_0012
	computer_hardware_0013
	computer_hardware_0014
	computer_hardware_0015
	computer_hardware_0016
	computer_hardware_0017
	computer_hardware_0018
	computer_hardware_0019
	computer_hardware_0020
	computer_hardware_0021
	computer_hardware_0022
	computer_hardware_0023
	computer_hardware_0024
	computer_hardware_0025
	computer_hardware_0026
	computer_hardware_0027
	computer_hardware_0028
	computer_hardware_0029
	computer_hardware_0030
	computer_hardware_0031
	computer_hardware_0032
	computer_hardware_0033
	computer_hardware_0034
	computer_hardware_0035
	computer_hardware_0036
	computer_hardware_0037
	computer_hardware_0038
	computer_hardware_0039
	computer_hardware_0040
	computer_hardware_0041
	computer_hardware_0042
	computer_hardware_0043
	computer_hardware_0044
	computer_hardware_0045
	computer_hardware_0046
	computer_hardware_0047
	computer_hardware_0048
	computer_hardware_0049
	computer_hardware_0050
	computer_hardware_0051
	computer_hardware_0052
	computer_hardware_0053
	computer_hardware_0054
	computer_hardware_0055
	computer_hardware_0056
	computer_hardware_0057
	computer_hardware_0058
	computer_hardware_0059
	computer_hardware_0060
	computer_hardware_0061
	computer_hardware_0062
	computer_hardware_0063
	computer_hardware_0064
	computer_hardware_0065
	computer_hardware_0066
	computer_hardware_0067
	computer_hardware_0068
	computer_hardware_0069
	computer_hardware_0070
	computer_hardware_0071
	computer_hardware_0072
	computer_hardware_0073
	computer_hardware_0074
	computer_hardware_0075
	computer_hardware_0076
	computer_hardware_0077
	computer_hardware_0078
	computer_hardware_0079
	computer_hardware_0080
	computer_hardware_0081
	computer_hardware_0082
	computer_hardware_0083
	computer_hardware_0084
	computer_hardware_0085
	computer_hardware_0086
	computer_hardware_0087
	computer_hardware_0088
	computer_hardware_0089
	computer_hardware_0090
	computer_hardware_0091
	computer_hardware_0092
	computer_hardware_0093
	computer_hardware_0094
	computer_hardware_0095
	computer_hardware_0096
	computer_hardware_0097
	computer_hardware_0098
	computer_hardware_0099
	computer_hardware_0100
	computer_hardware_0101
	computer_hardware_0102
	computer_hardware_0103
	computer_hardware_0104
	computer_hardware_0105
	computer_hardware_0106
	computer_hardware_0107
	computer_hardware_0108
	computer_hardware_0109
	computer_hardware_0110
	computer_hardware_0111
	computer_hardware_0112
	computer_hardware_0113
	computer_hardware_0114
	computer_hardware_0115
	computer_hardware_0116
	computer_hardware_0117
	computer_hardware_0118
	computer_hardware_0119
	computer_hardware_0120
	computer_hardware_0121
	computer_hardware_0122
	computer_hardware_0123
	computer_hardware_0124
	computer_hardware_0125
	computer_hardware_0126
	computer_hardware_0127
	computer_hardware_0128
	computer_hardware_0129
	computer_hardware_0130
	computer_hardware_0131
	computer_hardware_0132
	computer_hardware_0133
	computer_hardware_0134
	computer_hardware_0135
	computer_hardware_0136
	computer_hardware_0137
	computer_hardware_0138
	computer_hardware_0139
	computer_hardware_0140
	computer_hardware_0141
	computer_hardware_0142
	computer_hardware_0143
	computer_hardware_0144
	computer_hardware_0145
	computer_hardware_0146
	computer_hardware_0147
	computer_hardware_0148
	computer_hardware_0149
	computer_hardware_0150
	computer_hardware_0151
	computer_hardware_0152
	computer_hardware_0153
	computer_hardware_0154
	computer_hardware_0155
	computer_hardware_0156
	computer_hardware_0157
	computer_hardware_0158
	computer_hardware_0159
	computer_hardware_0160
	computer_hardware_0161
	computer_hardware_0162
	computer_hardware_0163
	computer_hardware_0164
	computer_hardware_0165
	computer_hardware_0166
	computer_hardware_0167
	computer_hardware_0168
	computer_hardware_0169
	computer_hardware_0170
	computer_hardware_0171
	computer_hardware_0172
	computer_hardware_0173
	computer_hardware_0174
	computer_hardware_0175
	computer_hardware_0176
	computer_hardware_0177
	computer_hardware_0178
	computer_hardware_0179
	computer_hardware_0180
	computer_hardware_0181
	computer_hardware_0182
	computer_hardware_0183
	computer_hardware_0184
	computer_hardware_0185
	computer_hardware_0186
	computer_hardware_0187
	computer_hardware_0188
	computer_hardware_0189
	computer_hardware_0190
	computer_hardware_0191
	computer_hardware_0192
	computer_hardware_0193
	computer_hardware_0194
	computer_hardware_0195
	computer_hardware_0196
	computer_hardware_0197
	computer_hardware_0198
	computer_hardware_0199
	computer_hardware_0200
	computer_hardware_0201
	computer_hardware_0202
	computer_hardware_0203
	computer_hardware_0204
	computer_hardware_0205
	computer_hardware_0206
	computer_hardware_0207
	computer_hardware_0208
	computer_hardware_0209
	computer_hardware_0210
	computer_hardware_0211
	computer_hardware_0212
	computer_hardware_0213
	computer_hardware_0214
	computer_hardware_0215
	computer_hardware_0216
	computer_hardware_0217
	computer_hardware_0218
	computer_hardware_0219
	computer_hardware_0220
	computer_hardware_0221
	computer_hardware_0222
	computer_hardware_0223
	computer_hardware_0224
	computer_hardware_0225
	computer_hardware_0226
	computer_hardware_0227
	computer_hardware_0228
	computer_hardware_0229
	computer_hardware_0230
	computer_hardware_0231
	computer_hardware_0232
	computer_hardware_0233
	computer_hardware_0234
	computer_hardware_0235
	computer_hardware_0236
	computer_hardware_0237
	computer_hardware_0238
	computer_hardware_0239
	computer_hardware_0240
	computer_hardware_0241
	computer_hardware_0242
	computer_hardware_0243
	computer_hardware_0244
	computer_hardware_0245
	computer_hardware_0246
	computer_hardware_0247
	computer_hardware_0248
	computer_hardware_0249
	computer_hardware_0250
	computer_hardware_0251
	computer_hardware_0252
	computer_hardware_0253
	computer_hardware_0254
	computer_hardware_0255
	computer_hardware_0256
	computer_hardware_0257
	computer_hardware_0258
	computer_hardware_0259
	computer_hardware_0260
	computer_hardware_0261
	computer_hardware_0262
	computer_hardware_0263
	computer_hardware_0264
	computer_hardware_0265
	computer_hardware_0266
	computer_hardware_0267
	computer_hardware_0268
	computer_hardware_0269
	computer_hardware_0270
	computer_hardware_0271
	computer_hardware_0272
	computer_hardware_0273
	computer_hardware_0274
	computer_hardware_0275
	computer_hardware_0276
	computer_hardware_0277
	computer_hardware_0278

