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An ideal phase-preserving linear amplifier is a deterministic device that adds to an input signal the minimal
amount of noise consistent with the constraints imposed by quantum mechanics. A noiseless linear amplifier
takes an input coherent state to an amplified coherent state, but only works part of the time. Such a device is
actually better than noiseless, since the output has less noise than the amplified noise of the input coherent state;
for this reason we refer to such devices as immaculate. Here we bound the working probabilities of probabilistic
and approximate immaculate amplifiers and construct theoretical models that achieve some of these bounds. Our
chief conclusions are the following: (i) The working probability of any phase-insensitive immaculate amplifier is
very small in the phase-plane region where the device works with high fidelity; (ii) phase-sensitive immaculate
amplifiers that work only on coherent states sparsely distributed on a phase-plane circle centered at the origin
can have a reasonably high working probability.
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I. INTRODUCTION AND MOTIVATION

Classical noninverting amplifiers take a macroscopic input
signal, such as a time-varying voltage, and produce an output
signal that is a rescaled version of the input signal. The ratio of
the input amplitude to the output amplitude is called the gain g

of the amplifier. Classical amplifiers are used ubiquitously,
e.g., to boost signal strength for classical communications
or to increase the power of signals driving loudspeakers.
In principle, a classical amplifier can be noise free in the
sense that no noise is added to the input signal. The only
truly fundamental limit on amplification comes from quantum
mechanics.

The canonical quantum amplifier is called a phase-
preserving linear quantum amplifier. It takes an input bosonic
signal and produces a larger output signal [1–3], while preserv-
ing the phase. The quantum constraints on the operation of such
a device are ultimately a consequence of unitarity and can be
thought as coming from the prohibition on transformations that
increase the distinguishability of nonorthogonal states [4,5].
The quantum constraint on a high-gain device can be expressed
as the requirement that the amplifier must add noise that, when
referred to the input, is at least as big as an extra unit of vacuum
noise. A device that achieves the minimal added noise is called
an ideal linear amplifier.

To understand the purpose of quantum amplifiers, it is
instructive to look at how they are used. An illustrative
case involves experiments probing quantum mechanics at
microwave frequencies. Experimenters wish to measure the
small amplitude and phase shifts of a field that is used to probe
another quantum system. It turns out that quantum-limited
simultaneous measurements of both amplitude and phase
shifts introduce the same additional unit of vacuum noise
as does an ideal linear amplifier [6]. Thus, in principle,
measuring at the input or amplifying and measuring at the
output both provide the same signal-to-noise ratio (SNR); the
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practical question becomes whether it is easier to do quantum-
limited measurement or to do quantum-limited amplification
and subsequent measurement at the output. The answer at
microwave frequencies is that amplifiers operate closer to
quantum limits.

Recently, Ralph and Lund [7] proposed a device, which they
call a “nondeterministic noiseless linear amplifier,” previously
considered by Fiurášek [8] in the context of probabilistic
cloning. The idea behind the Ralph-Lund device is that it
might be possible to improve the SNR in some number of
trials or experiments, while the device fails in the remaining
runs. Specifically, what Ralph and Lund proposed is a device
that takes an input coherent state |α〉 to a target coherent state
|gα〉 with (success) probability p� and fails with probability
1 − p�. Such a device is even better than noiseless, because
when the output noise is referred to the input, it is smaller
than the original coherent-state noise by a factor of 1/g2. In
particular, it is better than a device that amplifies the input
noise to the output without the addition of any noise, a device
that we call a perfect amplifier. Because it is better than
perfect, we call Ralph and Lund’s proposal an immaculate
amplifier. The purpose of this paper is to analyze in detail and
to bound the performance of immaculate linear amplifiers.

In Sec. II we review recent work on deterministic linear
amplifiers [3], which allows us to consider on the same
footing ideal linear amplifiers and (unphysical) perfect and
immaculate amplifiers. We use this discussion to motivate the
idea of nondeterministic, or probabilistic, versions of perfect
and immaculate amplifiers, and we use a simple uncertainty-
principle argument to bound the working probability of
probabilistic perfect and immaculate amplifiers.

Section III reviews the relation between amplification
and cloning, thus connecting the results in this paper to
the literature on cloning of coherent states, and Sec. IV
reviews proposals for and experimental implementations of
immaculate linear amplifiers.

Sections V and VI are the heart of the paper, the place where
we derive bounds on the operation of immaculate amplifiers.
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Immaculate amplifiers that produce the target coherent state
exactly, but are allowed to fail, are the subject of Sec. V; they
are closely related to unambiguous state discrimination [9,10],
in which one discriminates among a set of linearly independent
states exactly, but can declare a failure to discriminate. We use
results from unambiguous state discrimination to bound the
working probability of an immaculate amplifier that amplifies
M coherent states uniformly spaced around a circle of radius
|α| centered at the origin of the phase plane. In the case of many
coherent states on both the input and the output circles, i.e.,
assuming M � g2|α|2, the working probability is bounded by

p� � e(g2−1)|α|2

g2(M−1)
�

(√
e

g2

)2(M−1)

. (1.1)

This success probability decreases exponentially with M and
goes to zero in the phase-insensitive limit M → ∞. We stress
that this means that an immaculate amplifier that works exactly
on an entire circle of input coherent states never works.

For an immaculate amplifier that acts on all coherent states
on M equally spaced spokes of a disk of any radius |α| > 0
centered at the origin, the success probability is governed by
the limiting circle of zero radius and thus is bounded by

p� � 1

g2(M−1)
(1.2)

for any M � 2. This success probability goes to zero in the
phase-insensitive limit M → ∞.

On a more optimistic note, we also show in Sec. V that
if the M coherent states are more than about a vacuum unit
apart on the input circle, they can be immaculately amplified
with a success probability exceeding a half. This suggests that
practical applications of immaculate amplifiers are likely to
be as amplifiers that are both phase sensitive and amplitude
specific in that they only work well on a discrete set of states
on a particular phase-plane circle. Such an amplitude-specific,
phase-sensitive amplifier might prove useful, for example, in
discriminating the coherent states used in phase-shift keying
[11,12].

The results of Sec. V indicate that exact immaculate
amplification and phase insensitivity do not go well together.
In Sec. VI we explore this incompatibility further by dropping
exactness and investigating the performance of approximate,
probabilistic immaculate amplifiers that are explicitly phase
insensitive. We characterize such a device by its amplitude gain
and by the radius

√
N/g of the disk, centered at the origin, over

which it amplifies an input coherent |α〉 to the target output
state |gα〉 with near unit fidelity. The high-fidelity outputs thus
lie within a disk of radius

√
N . By finding the optimal such

amplifier, we show that the best success probability in the
high-fidelity input region is

p� = e−|α|2

g2N
, |α|2 � N/g2, (1.3)

which decreases exponentially with N . We use our results to
investigate the performance of phase-insensitive immaculate
amplifiers within the context of the SNRs for measurements
of amplitude and phase shifts discussed above.

Because the success probability (1.3) is so small, we
suggest that a good performance measure for phase-insensitive

immaculate amplifiers must include both the fidelity with
the target output |gα〉 and the success probability. A natural
combination is the product of the two, which can be thought of
as the overall probability to reach the target. We show that over
the whole range of operation of the optimal phase-insensitive
immaculate amplifier, this probability-fidelity product is never
better than that of the identity operation. This can be sum-
marized by saying that in terms of the probability-fidelity
product, phase-preserving immaculate amplification is never
better than doing nothing, thus reenforcing our conclusion that
any practical application of immaculate amplification lies in
phase-sensitive amplification.

A concluding Sec. VII wraps up by summarizing our key
results and discussing avenues along which future research
might and should proceed.

II. PHYSICAL AND UNPHYSICAL LINEAR AMPLIFIERS

A. Context

The setting for our investigation is a signal carried by a
single-mode field,

E(t) = 1

2
(ae−iωt + a†e−iωt ) = 1√

2
(x1 cos ωt + x2 sin ωt).

(2.1)

This primary mode, which we label by A, is to undergo phase-
preserving linear amplification. The annihilation and creation
operators, a and a†, are related to the Hermitian quadrature
components, x1 and x2, by a = (x1 + ix2)/

√
2, a† = (x1 −

ix2)/
√

2, where [a,a†] = 1 or, equivalently, [x1,x2] = i.
The annihilation operator is a complex-amplitude operator

for the field, measured in photon-number units; the expectation
value of the field, 〈E(t)〉 = Re(〈a〉e−iωt ), oscillates with the
amplitude and phase of 〈a〉. The variance of E characterizes
the noise in the signal; for phase-insensitive noise, for which
〈(�a)2〉 = 0 (we use �O = O − 〈O〉 here and throughout),
this variance is constant in time and given by

2〈(�E)2〉 = 〈|�a|2〉 = 1
2

(
�x2

1 + �x2
2

)
� 1

2 . (2.2)

Here 〈|�a|2〉 ≡ 1
2 〈�a�a† + �a†�a〉 is the symmetrically

ordered second moment of a. The inequality follows directly
from the uncertainty principle for the quadrature components,
〈(�x1)2〉〈(�x2)2〉 � 1/4. The lower bound is the half-quantum
of zero-point (or vacuum) noise and is saturated if and only if
the mode is in a coherent state |α〉.

The objective of phase-preserving linear amplification is
to increase the size of the input signal by a (real) amplitude
gain g, regardless of the input phase, while introducing as
little noise as possible. The amplification of the input signal
can be expressed as a transformation of the expected complex
amplitude,

〈aout〉 = g〈ain〉. (2.3)

A perfect linear amplifier would perform this feat while
adding no noise; in the Heisenberg picture, the primary mode’s
annihilation operator, not just its expectation value, would
transform from input to output as

aout = gain. (2.4)

033852-2



QUANTUM LIMITS ON PROBABILISTIC AMPLIFIERS PHYSICAL REVIEW A 88, 033852 (2013)

The second-moment noise would be amplified by the power
gain g2, i.e., 〈|�aout|2〉 = g2〈|�ain|2〉. The amplifier’s output
would be contaminated by the same noise as the input, blown
up by a factor of g2, but the amplification process would not
add any noise to the amplified input noise.

There are, however, no perfect phase-preserving linear
amplifiers; the transformation (2.4) does not preserve the
canonical commutation relation and thus violates unitarity.
Physically, this is the statement that amplification of the
primary mode requires it to be coupled to other physical
systems, not least to provide the energy needed for amplifi-
cation; these other systems, which can be thought of as the
amplifier’s internal degrees of freedom, necessarily add noise
to the output. This physical requirement is expressed in an
input-output relation [1,2],

aout = gain + L†, (2.5)

where the added-noise operator L is a property of the internal
degrees of freedom. One usually assumes that 〈L†〉 = 0 so as to
retain the expectation-value transformation (2.3). Preserving
the canonical commutation relation between input and output
requires that

[L,L†] = g2 − 1, (2.6)

which implies an uncertainty principle for the added noise,

〈|�L|2〉 � 1
2 (g2 − 1). (2.7)

The amplifier must be prepared to receive any input in
the primary mode, without having any idea what that input
is going to be. This places the restriction that the primary
mode and the internal degrees of freedom cannot be correlated
before amplification. The total output noise is then the sum of
the amplified input noise and the noise added by the internal
degrees of freedom:

〈|�aout|2〉 = g2〈|�ain|2〉 + 〈|�L|2〉 � g2 − 1
2 . (2.8)

The lower bound follows from the uncertainty principles (2.2)
and (2.7). An amplifier that achieves the lower bound in
Eq. (2.7), thus adding the least amount of noise permitted
by quantum mechanics, is called an ideal linear amplifier.

B. Ideal, perfect, and immaculate linear amplifiers

We can formulate a more general description of linear
amplifiers by using the formalism developed in Ref. [3], where
we showed that for any phase-preserving linear amplifier,
its action on an input state ρ of the primary mode can be
represented by an amplifier map,

ρout = E(ρ) = TrB[S(r)ρ ⊗ σS†(r)]. (2.9)

In this expression, σ is the input state of a (perhaps fictitious)
ancillary mode B, which has annihilation and creation opera-
tors b and b†, and S(r) = er(ab−a†b†) is the two-mode squeeze
operator. The amplitude gain is given by g = cosh r , and the
noise properties of the amplifier are encoded in σ . The main
result of Ref. [3] is that the amplifier map is physical, i.e., is
completely positive, if and only if σ is a physical ancilla state.

The P function of the output state can be written as a
convolution of the P function of the input state with the Q

distribution of σ :

Pout(β) =
∫

d2α
Qσ [−(β∗ − gα∗)/

√
g2 − 1 ]

g2 − 1
Pin(α).

(2.10)

We specialize for the remainder of this section to a coherent-
state input |α〉, for which the input P function is a δ distribution
and the output P function is obtained by displacing and
rescaling the Q distribution of σ ,

Pout(β) = Qσ [−(β∗ − gα∗)/
√

g2 − 1 ]

g2 − 1
. (2.11)

Moments of α calculated using the P function give normally
ordered moments of a and a†.

An ideal linear amplifier corresponds uniquely to the case
where the input ancilla state is vacuum, i.e., σ = |0〉 〈0|, giving
rise to an output P function,

Pout(β) = e−|β−gα|2/(g2−1)

π (g2 − 1)
. (2.12)

The displacement of the Q distribution indicates that the
input complex amplitude is amplified as in Eq. (2.3), and
the rescaling of the Q distribution confirms that the total
(symmetric) output noise is 〈|�aout|2〉 = 〈�a

†
out�aout〉 + 1

2 =
g2 − 1

2 .
We can embed the ideal-amplifier map in a sequence

of maps for both physical and unphysical amplifiers by
considering ancilla states of thermal form,

σ = 1

μ2

(
1 − 1

μ2

)a†a

= 1

μ2

∞∑
n=0

(
1 − 1

μ2

)n

|n〉 〈n| .

(2.13)

When μ2 ∈ [1,∞), σ is a physical thermal state, with dimen-
sionless inverse temperature β given by μ2 = (1 − e−β )−1;
μ2 = 1 gives the vacuum state. When μ2 ∈ [0,1), however,
σ has negative eigenvalues and thus is unphysical. When
μ2 ∈ ( 1

2 ,∞), the trace of σ is well defined and equal to 1,
but when μ2 ∈ [0,1/2], the series for the trace of σ diverges;
μ2 = 1/2 makes σ the parity operator. The amplifier maps
corresponding to unphysical σ are not completely positive
and thus are unphysical [3]. In the following, we sometimes
use quotes to warn the reader that σ might not be physical.

The Q function for σ , Qσ (α) = e−|α|2/μ2
/πμ2, is well

behaved on the entire range μ2 ∈ (0,∞) and becomes a δ

function when μ2 = 0. The output P function is the Gaussian

Pout(β,μ2) = 1

πμ2(g2 − 1)
e−|β−gα|2/μ2(g2−1), (2.14)

which has normally ordered output noise 〈�a†�a〉 = μ2(g2 −
1) and, hence, symmetrically ordered output noise [13],

〈|�aout|2〉 = 〈�a
†
out�aout〉 + 1

2 = μ2(g2 − 1) + 1
2 . (2.15)

The output Q distribution is

Qout(β,μ2) = 1

π [μ2(g2 − 1) + 1]
e−|β−gα|2/[μ2(g2−1)+1].

(2.16)
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We now focus on three amplifiers of interest, which
correspond to three values of μ2:

(1) the ideal linear amplifier (physical), which corresponds
to μ2 = 1 and which adds the minimal amount of (symmetri-
cally ordered) noise permitted by quantum mechanics;

(2) the perfect linear amplifier (unphysical), μ2 = 1/2,
whose (symmetrically ordered) output noise consists only of
the amplified input noise;

(3) the unphysical μ2 = 0 amplifier, which we christen the
immaculate linear amplifier, because it is better than perfect,
and which takes an input coherent state |α〉 to an amplified
output coherent state |gα〉; we let A denote the amplifier map
(2.9) for the case of an immaculate linear amplifier, i.e.,

A(|α〉〈α|) = |gα〉〈gα|. (2.17)

The operation of these three amplifiers can be understood
intuitively in terms of how the output noise arises from
amplified input noise and added noise. The three canonical
quasidistributions, the P function, the Wigner W function, and
the Husimi Q distribution [14], with their different operator
orderings, quantify the noise differently and thus provide
three different perspectives on the relation between input
and output noise. In Fig. 1 we illustrate the amplification
transformations for ideal, perfect, and immaculate amplifiers.
The transformations can be summarized in terms of ball-and-
stick phase-space diagrams that depict the input and output
noise as circles of uncertainty centered at the input and output
mean complex amplitudes. We give such diagrams for the
normally ordered variances corresponding to input and output
P functions, as in Eq. (2.14), and also for the symmetrically
ordered moments of input and output Wigner W functions and
the antinormally ordered moments of input and output Husimi
Q distributions.

The P -function perspective, with its normally ordered
moments, is matched to the immaculate amplifier map (2.17).
The immaculate amplifier takes an input coherent state to an
amplified coherent state; in the P -function depiction, it takes
an input dot in the phase plane to an output dot, without adding
any noise. All the output noise for a perfect or an ideal amplifier
appears to be added noise.

The symmetrically ordered moments of the Wigner function
give the traditional perspective on amplifier noise. A perfect
amplifier amplifies input coherent-state noise without adding
any noise. An ideal amplifier adds further noise 〈|�L|2〉 =
1
2 (g2 − 1), and an immaculate amplifier subtracts the same
amount of noise.

The antinormally ordered moments of the Q function give
a picture matched to an ideal amplifier. The input noise of a
coherent state is amplified by an ideal amplifier to produce
the output noise without addition of any further noise. A
perfect amplifier has less output noise by 1

2 (g2 − 1), and an
immaculate amplifier has less noise by g2 − 1.

C. Naive uncertainty-principle bounds
on probabilistic μ2 amplifiers

The antinormally ordered noise of the Q function has a
physical interpretation that sheds light on the performance of
linear amplifiers. Suppose one wishes to determine the center
of a coherent state by making simultaneous measurements

FIG. 1. (Color online) Ball-and-stick phase-space depictions of
input and output noise for ideal (μ2 = 1), perfect (μ2 = 1

2 ), and
immaculate (μ2 = 0) amplifiers defined by the amplifier map (2.9)
with initial ancilla “state” (2.13). Color and fill conventions: Solid
(purple) fill is used for input noise; (red) fill with slanted lines for
the output noise of an ideal amplifier; (blue) fill with dots for the
output of a perfect amplifier; and solid (green) fill for the output of
an immaculate amplifier. The primary-mode input is a coherent state
|α〉 with |α| = 1, and the gain is g = 4, giving the output state a
mean that lies on a circle of radius g|α| = 4. The input and output
states are represented by noise circles centered at the mean complex
amplitude (the stick) and having radius 
/2

√
2 (the ball), where


2 = 〈|�α|2〉 is the variance of the complex amplitude calculated
from the appropriate quasidistribution: for the normal ordering of
the P function, 
2

P = 〈�a†�a〉; for the symmetric ordering of the
Wigner W function, 
2

W = 1
2 (〈�a†�a〉 + 〈�a�a†〉) = 
2

P + 1
2 ; for

the antinormal ordering of the Q distribution, 
2
Q = 〈�a�a†〉 =


2
W + 1

2 . The P -function depiction is the one suggested by the
amplifier map (2.9): The dot (
P = 0) for the input coherent state
|α〉 is amplified by an immaculate amplifier to a dot for the output
coherent state |gα〉; the output for a perfect amplifier has additional
noise 
2

P = 1
2 (g2 − 1), and the output for an ideal amplifier has

additional noise 
2
P = g2 − 1. The symmetrically ordered moments

of the Wigner W function give the traditional picture of amplifier
noise: the input coherent state, represented by a circle corresponding
to 
2

W = 1
2 , has its noise amplified by a perfect amplifier along the

(gray) radial lines to the circle with 
2
W = 1

2 g2; the output of an
ideal amplifier has additional noise 1

2 (g2 − 1), giving total noise

2

W = g2 − 1
2 , and the output of an immaculate amplifier has its

noise reduced by 1
2 (g2 − 1) to the coherent-state value 
2

W = 1
2 .

The antinormally ordered moments of the Husimi Q distribution
give a picture suited to discussion of simultaneous measurements
of the quadrature components (see text): The input coherent state,
represented by a circle corresponding to 
2

Q = 1, has its noise
amplified by an ideal amplifier along the (gray) radial lines to a
circle with 
2

Q = g2; the output of a perfect amplifier has less noise
by 1

2 (g2 − 1), giving total noise 
2
Q = 1

2 (g2 + 1), and the output
of an immaculate amplifier has its noise reduced by g2 − 1 to the
coherent-state value 
2

Q = 1.

of the two quadrature components. The statistics of ideal
simultaneous measurements are given by the Q distribution
[6], so in ν such measurements, one can determine the
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center with uncertainty (δx1)in/
√

ν = (δx2)in/
√

ν = 1/
√

ν;
the uncertainties here, distinguished by a δ, are calculated
from the Q distribution, i.e., using antinormal ordering.
Alternatively, one could amplify the coherent state with an
ideal linear amplifier and determine the center of the output
state with uncertainty (δx1)out/

√
ν = (δx2)out/

√
ν = g/

√
ν;

this allows one to determine the center of the input coherent
state with the same uncertainty as measurements at the
input, i.e., (δx1)out/g

√
ν = (δx2)out/g

√
ν = 1/

√
ν. The point

of linear amplification is to make a signal much larger so it can
be detected by less sensitive measurements. That it is possible
to determine the input with exactly the same sensitivity by
measuring either the input or the output is an alternative way
of characterizing the performance of an ideal amplifier.

It is interesting to apply this sort of thinking to the
unphysical amplifiers with μ2 < 1; if one could construct
such an amplifier, one could determine the center of an input
coherent state with uncertainty

(δx1)out

g
√

ν
= (δx2)out

g
√

ν
=

√
μ2(g2 − 1) + 1

g
√

ν
. (2.18)

This violates the uncertainty-principle bound for any μ2 < 1
and thus provides another way of seeing why the amplifiers
with μ2 < 1 are unphysical.

A potential way to make such an amplifier physical is to
make it nondeterministic, so that it only works with probability
p�. Then, since only p�ν of the trials are effective, one
can determine the center of the input coherent state with
uncertainty (δx1)out/g

√
p�ν = (δx2)out/g

√
p�ν. Requiring

that this uncertainty not best the uncertainty-principle bound,

(δx1)2
out

p�g2
= (δx2)2

out

p�g2
� 1, (2.19)

gives us a bound on the working probability,

p� � (δx1)2
out

g2
= (δx2)2

out

g2
= μ2 + 1 − μ2

g2
. (2.20)

Another way to express the bound (2.20) is in terms of the
root-probability–SNR product,

√
p�SNR, where if x1 and x2

represent the amplitude and phase quadratures (〈x1〉 = √
2|α|

and 〈x2〉 = 0), the SNR is defined as SNR ≡ 〈x1〉/δx1 =
〈x1〉/δx2. The root-probability–SNR product is a measure of
the resolvability of states. The uncertainty-principle bound
(2.20) on success probability is equivalent to the requirement
that amplification not increase this resolvability, i.e.,

√
p� SNRout � SNRin =

√
2|α|. (2.21)

The root-probability–SNR product provides the same in-
formation as the uncertainty-principle bound, but without
referring output quantities to the input. We consider the
root-probability–SNR product again in Sec. VI.

It is worth noting that since the output state ρout is Gaussian,
its fidelity with |gα〉 is the inverse of the antinormally ordered
output variances:

F (μ2) = 〈gα|ρout|gα〉 = πQout(gα) = 1

μ2(g2 − 1) + 1
.

(2.22)

This gives a bound on the probability-fidelity product,

p�(μ2)F (μ2) � 1

g2
, (2.23)

which is independent of μ2 and achieved by an ideal linear
amplifier. The probability-fidelity product can be regarded as
the overall probability to reach the target state |gα〉. Such
products appear again throughout our analysis.

For the remainder of the paper, we focus on the immac-
ulate linear amplifier (μ2 = 0), for which the probability
bound (2.20) becomes p� � 1/g2. Our analysis shows that
a nondeterministic immaculate linear amplifier only works
with high fidelity on a portion of phase space, where it has
considerably less chance of working than this bound. It thus
does considerably worse than a deterministic linear amplifier in
determining the center of an input coherent state. This suggests
that such devices should not be thought of primarily as linear
amplifiers. They could be used, however, as probabilistic,
approximate cloners, a task that we consider now.

III. AMPLIFIERS AND CLONING

Exact, deterministic cloning is not allowed by quantum
mechanics [4,5,15]. For coherent states, the impossibility of
exact, deterministic cloning corresponds to the impossibility of
deterministic immaculate amplification. If one has M clones
of a coherent state |α〉, they can be coherently combined in
an M-port device to produce M − 1 vacuum states and a
single amplified coherent state |gα〉, with g = √

M; running
an amplified coherent state |gα〉 backwards through the same
device splits that state into M clones. This equivalence between
cloning and immaculate amplification is the basis for links
between cloning and amplification (see, e.g., Refs. [4,16]);
here we summarize the links and the terminology relevant to
this paper [17,18].

The cloning literature phrases the task of cloning in terms
of transforming N replicas of the state to be cloned into some
number M of identical clones; this is termed “N to M” cloning
and is often denoted N → M . An amplifier with amplitude
gain g can be thought of as doing 1 → M = √

g cloning. Since
exact, deterministic cloning is ruled out by the no-cloning
theorem when M > N , one must drop either exactness,
considering instead noisy or approximate cloning [19], or
determinism, considering instead probabilistic cloning.

Consider first approximate, deterministic cloning. The stan-
dard measure of performance for approximate cloning is the fi-
delity F of the clones with the desired target state. If the clones
all have the same fidelity with the target state, the cloning
process is said to be symmetric. If the fidelity of the clones is
independent of the input state, the cloning is called universal.

It is known [17,20] that the optimal fidelity for cloning
coherent states |α〉 to M clones that have Gaussian noise is
achieved by using an ideal linear amplifier with gain g = √

M ,
followed by an M-port device that splits the amplified state
into M approximate clones, each of which has the marginal
state ρα . The state ρα has P function Pα(β) = g2Pout(gβ) [see
Eq. (2.12)], and the corresponding Q distribution is

Qα(β) = e−|β−α|2/(2−1/g2)

π (2 − 1/g2)
. (3.1)
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The output fidelity,

F1→M = 〈α|ρα|α〉 = πQα(α) = M

2M − 1
, (3.2)

is a function of the gain alone, independent of the amplitude
of the input state [17,21]. This output fidelity limits to 1

2 as
M → ∞.

Suppose instead that one desires perfect clones and is thus
willing to put aside determinism. This is called exact (F =
1), probabilistic cloning [22], and the appropriate measure of
performance is the probability p� that the cloning process
works. In probabilistic cloning, one usually restricts to a finite
set of input states and attempts to clone these states optimally.
The restriction on input states is referred to as state-dependent
cloning.

In Sec. V, we consider exact, but probabilistic immaculate
amplification. Given the equivalence between immaculate
amplification and exact cloning, this can equally well be
thought of as exact, probabilistic, 1 → M = √

g cloning of
coherent states. We show that exact, probabilistic immaculate
amplification of all coherent states—or even of all the coherent
states on a circle centered at the origin of phase space—cannot
occur with a nonzero probability of success. If, however,
the input coherent states are restricted to a finite set equally
spaced around a circle centered at the origin, exact immaculate
amplification can occur with a success probability given by
the probability of unambiguously discriminating the input
coherent states [9,10]. Once one has identified unambiguously
the input state, one can do any state transformation, including
making an amplified coherent state or making as many exact
clones as one wants. Thus, we have a recipe for making
an exact, probabilistic immaculate amplifier or an exact,
probabilistic, state-dependent cloner.

In Sec. VI, we derive rigorous bounds on the success
probability of an amplifier that amplifies coherent states near
the origin immaculately with fidelity near unity, but has output
fidelity that decreases to zero as the amplitude of the input
coherent states increases. Since the output states do not have
Gaussian noise, the connection to cloning is not precise, but
for coherent states near the origin, these amplifiers can be
thought of as cloners that are approximate, probabilistic, and
state dependent.

There is some cloning literature that considers various com-
binations of approximate, probabilistic, and state-dependent
cloning. For example, Chefles and Barnett [23] interpolate
between exact, probabilistic, state-dependent cloners and
approximate, deterministic cloners, including both fidelity and
success probability as performance measures, but only for two
input states, a restriction that makes their results too limited for
our purposes. There is also work on cloning for a distribution
of input coherent states [24], which derives the optimal average
fidelity of a 1 → 2 cloner that acts on a Gaussian distribution
with width � centered at the origin. As the width goes to zero,
the average fidelity not surprisingly approaches unity.

IV. PRIOR WORK ON PROBABILISTIC IMMACULATE
AMPLIFICATION

Ralph and Lund [7] conceived the notion of an immaculate
linear amplifier and proposed a probabilistic implementation

(what they called a nondeterministic, noiseless linear ampli-
fier) described by a quantum operation

Eamp(ρ) = E�(ρ) + Efail(ρ), (4.1)

where E� is the quantum operation when the amplifier works
and Efail, the quantum operation when it fails, describes its
fallible nature.

Ralph and Lund [7] and collaborators [25] suggested
that the most straightforward incarnation of a probabilistic
immaculate amplifier is to have

E�(|α〉 〈α|) = p� |gα〉 〈gα| (4.2)

for all input coherent states, where p� is the state-independent
probability that the amplifier works. Since this makes E� =
p�A, i.e., a multiple of the map (2.17) for a deterministic
immaculate amplifier, it is not completely positive unless the
success probability is zero. Indeed, quite generally, if E�
works as a linear amplifier with uniform success probability
over the entire phase plane, complete positivity imposes the
same restrictions on E� as for a deterministic linear amplifier;
in particular, Eamp would be just as noisy as a deterministic
amplifier, the only difference being that some of the time
the amplifier would not work at all. To make an immaculate
amplifier physical, one must make it not just probabilistic,
but also drop the idea that it can work immaculately over
the entire phase plane with uniform success probability. In
making models of immaculate amplification, this is precisely
what Ralph and Lund [7] and Fiurášek [8] did.

For the remainder of this section, we review some of
the theoretical proposals for and experimental realizations
of Eq. (4.1). Here implementation is interpreted as meaning
that the amplifier works immaculately with high fidelity in a
restricted region of phase space near the origin and with the
success probability p� depending on the distance of the input
coherent state from the origin.

Quantum-scissors proposal. Ralph and Lund originally
proposed to implement Eq. (4.2) using a network of beam
splitters, single-photon sources, and single-photon detectors,
as illustrated in Fig. 2. An input coherent state |α〉 is split
up equally at an N -port splitter, each output |α/

√
N〉 is

processed through a modified “quantum scissors” (MQS) [26],
and the outputs of the quantum scissors are recombined at a
second N -port splitter. Successful immaculate amplification
requires heralding on the MQSs so that they work correctly
and on vacuum detection in N − 1 outputs of the second
splitter. These heralding requirements mean that the quantum-
scissors proposal is probabilistic, and its region of high-fidelity
immaculate amplification is restricted by the requirement that
|α|2 � N . Even within this phase-plane region, the fidelity
with the target state |gα〉 is a function of the amplitude |α| of
the input coherent state.

In Ref. [27], Jeffers tried to reduce the need to make N so
large by constructing a quantum-scissors device that works at
the two-photon level, i.e., that implements the truncation-and-
amplification transformation |α′〉 = c0 |0〉 + c1 |1〉 + c2 |2〉 +
O(|α′|3) → c0 |0〉 + gc1 |1〉 + g2c2 |2〉. Though this is a nice
idea, there is a catch: It requires lossy beam splitters or a
beamtritter. Numerically it was shown that, for |α|2 = 0.1, a
single two-photon device performs better than N = 3 single-
photon MQSs with respect to the fidelity of the output with
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FIG. 2. (Color online) Device that approximates an immaculate
amplifier (figure based on Fig. 1 of Ref. [25]). An incident coherent
state is split equally into N modes at an N -port splitter. The
state of each mode is a coherent state |α′〉, where α′ = α/

√
N ;

N is chosen large enough that α′ = α/
√

N � 1, so that |α′〉 =
|0〉 + α′ |1〉 + O(|α′|2) is well approximated by its vacuum and
one-photon pieces. Each of the N modes enters a modified “quantum
scissors” (MQS) [26], shown on the right, which is the heart of
the amplifier. When the two detectors in the MQS get results 1,0
or 0,1, the MQS is said to work; a feedforward phase shift (FPS)
by π , controlled on one of the two outcomes, is applied to the
device’s output mode. The result of these manipulations is that,
conditioned on the MQS working, it implements the transformation
|α′〉 → (1 + gα′a†) |0〉 = |gα′〉trunc, i.e., truncation of the state to the
vacuum–one-photon sector and change of the relative weights of
the vacuum and one-photon contributions so that the one-photon
weight is increased; the gain is determined by the transmissivities
and reflectivities of the beam splitters in the MQS. The amplified
and truncated states, |gα′〉trunc, are recombined at a second N -port
splitter. Conditional on detecting vacuum in N − 1 outputs of this
splitter, the output mode is in the amplified state |gα〉 in the limit
that N → ∞. Successful immaculate amplification thus corresponds
to heralding on the desired outcome of all of the MQSs, as well as
vacuum detection in the N − 1 ports of the final N -port splitter.

the target amplified state |gα〉 and the success probability. No
mention is made in either Jeffers’s or Ralph and Lund’s work
of how close these implementations are to limits imposed by
quantum theory.

Quantum-scissors implementations. One-photon scissors
devices have been implemented experimentally by Xiang et al.
[25] and Ferreyrol et al. [28,29].

The experiment by Xiang et al. [25] used an attenuated
spontaneous parametric down-conversion source to produce an
input state ρin = (1 − |α|2) |0〉 〈0| + |α|2 |1〉 〈1|, where |α|2 ∈
[10−3,10−1]. This state is an approximation to a uniform
mixture of coherent states of fixed amplitude; the motivation
for considering this input state was to investigate the action
of the amplifier on all states in the mixture simultaneously.
As the value of |α| was so small, i.e., α = α′, only N = 1
quantum-scissors device is needed. The domain of gains
used in the experiment was g ∈ [

√
2,2]. For g = √

3, the
experimental data showed that the amplifier was linear over
the range |α| ∈ [10−3,2 × 10−2].

Ferreyrol et al. [28,29] implemented quantum-scissors-type
amplifiers with N = 1, input coherent states with |α| ∈ [5.5 ×
10−2,1], and g ∈ [0.25,2]. Their theoretical modeling and
experimental results are in agreement with the modeling and

results in Ref. [25]. The first data point is in the region of phase
space where the device has linear gain. Very quickly, however,
the gain decreases for input states with |α| > 5.5 × 10−2.
Their data also show that as the coherent-state amplitude
increases, the probability of the amplifier’s working increases,
and the output state is increasingly distorted away from the
target coherent state. These behaviors appear in our analysis
of quantum limits on immaculate amplifiers in Sec. VI.

Photon addition and subtraction proposals. Fiurášek [30]
and, separately, Marek and Filip [31] attempt to approximate
the transformation in Eq. (4.2) by adding and then subtracting
M photons from a low-amplitude coherent state. The transfor-
mation for M = 1 is aa†(|0〉 + α |1〉) → a(|1〉 + √

2α |2〉) →
|0〉 + 2α |1〉, which has a gain of 2. This will not act like a linear
amplifier unless |α| � 1. Generalizing to M-photon addition
and subtraction, the gain becomes g = M + 1. The chief
problem with this method is the experimental infeasibility of
M-photon addition and subtraction for M more than a very
few.

Photon addition and subtraction implementations. Zavatta
et al. [32] reported an experimental implementation of a
single-photon addition and subtraction device (M = 1), which
had |α| ∈ [0.2,1], and g ∈ [1.25,2]. For input |α| > 0.5 the
fidelity of the output state with |gα〉 dropped dramatically,
and the appearance of the output Wigner function departed
noticeably from the target Wigner function in a way to which
we return in Sec. VI. The authors point out that an equivalent
quantum-scissors device performs worse with respect to gain
and fidelity, both of which decrease quicker with increasing
|α| in the scissors case.

Proposals for noise addition followed by photon sub-
traction. To overcome the difficulties of adding M photons,
Marek and Filip [31] suggested one could simply add phase-
insensitive noise (random displacements on the phase plane)
and then do M-photon subtraction. Intuitively this can be
understood as follows: Adding noise increases the phase space
area of the state; the subsequent photon subtraction enhances
the larger photon numbers, producing an amplified final state
that is, roughly speaking, squeezed in the amplitude direction.
An explicit formula is given for the success rate as a function
of the input coherent state, M , and the mean number of thermal
photons added.

Implementation of noise addition followed by photon
subtraction. Usuga et al. [33] and Usuga [34] describe the
preparation of a displaced thermal state which is intended
to correspond to a coherent state with added thermal noise.
The parameters used in their experiments are |α| = 0.431,
g ∈ [1,2], and M ∈ [1,4]. For g > 2 (M > 1), the authors
found that the probability of success decreased drastically,
and the state started to deform (also see Ref. [35]).

Discussion. From the theory and experiments summarized
above, several conclusions can be drawn. First, all of the
devices produce an output state with high fidelity to the target
coherent state |gα〉 only over a restricted region of the phase
plane centered on the origin. Second, although the theoretical
proposals allow for high gains and high input amplitudes,
current implementations are restricted to small gains g � 2
and small input amplitudes |α| � 2 by technical limitations.
Third, even for these small gains and small input amplitudes,
these devices fail almost all of the time.
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Most previous work on this subject has focused on
proposing and analyzing the performance of specific schemes
for probabilistic immaculate amplification. We take a different
tack: We provide a general analysis of the performance of
any device that attempts to approximate immaculate linear
amplification. We characterize the amplifier by its gain and
the region of the phase plane over which it operates with high
fidelity, and we derive fundamental quantum limits on the
probability that the amplifier works.

V. USD BOUNDS ON PROBABILISTIC IMMACULATE
AMPLIFICATION

Quantum state discrimination is a decision-theoretic task
in which an agent, who has the ability to perform any
measurement he wishes, is handed a single state drawn from
a known set of states and is told to determine which of the
states he received. Our chief interest here is unambiguous state
discrimination (USD): The agent is told never to misidentify
the state, at the cost of sure and sudden death, but is allowed
throw up his hands in despair and refuse to make a decision. A
set of states can be discriminated unambiguously if and only if
they are linearly independent [9]; there is a nonzero probability
for no decision unless the states are orthogonal. In this section
we apply USD bounds to the performance of exact immaculate
amplifiers. We use the USD formalism in two ways.

The first is to provide upper bounds on the working
probability of an immaculate amplifier. Let ℘(�) be the
probability that an immaculate amplifier works exactly on a
set of input coherent states. Suppose that P B is the optimal
probability for discriminating the input states and P A is
the corresponding optimal probability for discriminating the
amplified states. The amplified states, being further apart on
the phase plane than the input states, are easier to distinguish,
so P A > P B. The overall probability of successfully discrim-
inating the amplified states is ℘(�)P A. Since P B is optimal,
the amplification process cannot increase the distinguishability
of the states, so we must have P B � ℘(�)P A. The result is
a strict upper bound, ℘(�) � P B/P A, on the probability that
the immaculate amplifier works; we cannot warrant, however,
that this upper bound can be achieved.

The second way we use the USD formalism is to construct
models of immaculate amplifiers that have an achievable
working probability. Once one has used USD to identify one
of the input states, one can perform any unitary transformation
on that state. This procedure always produces the right
transformed state when it makes a decision; consequently,
we call it, somewhat cumbersomely, an exact, finite-state,
probabilistic state transformation. The transformation could
be the displacement of a coherent state required to amplify it.
Since the optimal USD discrimination probability P B can be
achieved in principle, the result is a model for an immaculate
amplifier that works with probability P B on a finite set of
input coherent states. We call such a model a finite-state,
probabilistic immaculate amplifier.

We note this formulation and subsequent analysis is similar
to the analysis performed by Dunjko and Andersson in Ref.
[36]. Their results are not explicit about the dependence of the
success probabilities on gain and input amplitude, whereas we
are.

A. Helstrom bound for two coherent states

Before turning to USD bounds on immaculate amplifiers,
we consider a related bound provided by the minimal error
probability in discriminating two nonorthogonal states. Con-
sider two coherent states, |α〉 and |β〉. A measurement that
minimizes the chance of incorrectly identifying the state is
known as a Helstrom discrimination measurement [37,38].
The probability of successful identification is

P B
Hel(�) = 1

2 (1 +
√

1 − |〈β|α〉|2)

= 1
2 (1 +

√
1 − e−|α−β|2 ), (5.1)

where the superscript “B” reminds us that this probability
is before immaculate amplification. It is apparent that as
the separation, |α − β|, between the two states grows, the
states become orthogonal, and the probability of successful
discrimination approaches unity. In contrast, when |α − β| →
0, the success probability limits to guessing.

Now we use the above-described procedure, modified to
Helstrom discrimination, to bound the working probability
℘(�) of an immaculate amplification device. The device
takes |α〉 to |gα〉 and |β〉 to |gβ〉. Amplification increases
the distinguishability of the states so that the probability of
successful identification of the state is

P A(�) = 1
2 (1 +

√
1 − e−g2|α−β|2 ), (5.2)

where the superscript “A” reminds us this is after amplification.
The overall probability to identify the input state correctly after
amplification is

P A
Hel(�) = 1

2 [1 − ℘(�)] + ℘(�)P A(�)

= 1
2 [1 + ℘(�)

√
1 − e−g2|α−β|2 ]. (5.3)

Since the probability for successful discrimination cannot
increase, we must have P A

Hel(�) � P B
Hel(�), which gives an

upper bound on the amplifier’s success probability,

℘(�) �
√√√√ 1 − e−|α−β|2

1 − e−g2|α−β|2
. (5.4)

This bound, which holds for any pair of states, has its minimum
value when the two coherent states become very close to each
other, i.e., |α − β| → 0; in this case the bound on the working
probability becomes

℘Hel � 1

g
. (5.5)

For constructing models of immaculate amplifiers,
Helstrom-type discrimination has the problem that it some-
times misidentifies the input state. Such misidentification
inevitably leads to noise in the amplifier output, which cannot
be part of a model of an exact immaculate amplifier.

B. USD bounds

1. Two coherent states

Unambiguous state discrimination does discriminate states
without error, but this providence requires a sacrifice, namely,
the no-decision measurement result. For two input states, |α〉
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and |β〉, the probability of successfully identifying them is [38]

P B
USD(�) = 1 − |〈β|α〉|2 = 1 − e−|α−β|2 . (5.6)

In this expression, as in the Helstrom case, it is apparent
that as the separation, |α − β|, between the two states grows,
the probability of discrimination approaches unity. When the
states get close together, |α − β| → 0, the probability of
successful discrimination goes to zero.

After amplification we have a discrimination probability,

P A(�) = 1 − |〈gβ|gα〉|2 = 1 − e−g2|α−β|2 (5.7)

and an overall probability for successfully identifying the input
state,

P A
USD(�) = ℘(�) P A(�). (5.8)

Since amplification cannot increase the distinguishability of
the states, we have P A

USD(�) � P B
USD(�) and thus an upper

bound on the working probability,

℘(�) � P B
USD(�)

P A(�)
= 1 − e−|α−β|2

1 − e−g2|α−β|2
, (5.9)

as pointed out in Ref. [25]. Being the square of the Helstrom
bound (5.4), this is always the tighter bound. The minimum of
the bound is found in the limit that the coherent states become
very close to each other, i.e., |α − β| → 0, in which case the
bound becomes

℘USD � 1

g2
. (5.10)

The allowed working probability is a factor of 1/g smaller
than the Helstrom bound (5.5). This USD bound is the same
as the bound (2.20), which was derived by considering how
to distinguish neighboring coherent states using quadrature
measurements; the two bounds are the same because both are
based on discriminating neighboring coherent states.

2. M coherent states on a circle

The USD bound (5.10) is not at all a tight bound on the
working probability for a probabilistic immaculate amplifier.
We can get much tighter bounds by applying USD to more than
two input states. Indeed, we work toward a phase-insensitive
amplifier, which must act symmetrically on all input coherent
states with the same |α|. Thus, what we do is to consider a set
of M coherent states, |αj 〉 = |ᾱeiφj 〉, all located on a circle of
radius ᾱ with phases

φj = 2πj

M
, j = 0,1,2, . . . ,M − 1, (5.11)

distributed uniformly around the circle. To avoid clutter in
what follows, we use, as here, ᾱ = |α|. To apply USD to the
states |αj 〉, they must be linearly independent. This property
was shown in Ref. [39], and it emerges naturally as part of
the USD construction. In contrast, the continuum of states
on the circle are complete, spanning the entire Hilbert space,
but are not linearly independent; we review these facts in
Appendix A.

Chefles and Barnett [10] solved the USD problem for sets
of linearly independent symmetric states (see also [9]). For
the case of coherent states on a circle, the unitary operator

that rotates between states is the phase-plane rotation by
angle 2π/M , i.e., U = ei2πa†a/M . Restricted to the subspace
spanned by the set of input coherent states, U has the
eigendecomposition

U =
M−1∑
r=0

eiφr |γr〉 〈γr | , (5.12)

where the (orthonormal) eigenstates are given by

cr |γr〉 = 1

M

M−1∑
j=0

e−i2πrj/M |αj 〉. (5.13)

Here cr , chosen to be real, is the magnitude of the vector on
the right:

c2
r = 1

M

M−1∑
j=0

e−i2πrj/M〈α0|αj 〉

= 1

M

M−1∑
j=0

e−irφj exp[ᾱ2(eiφj − 1)]. (5.14)

It is useful to manipulate c2
r into a quite different form and also

to write it in terms of

qr = Mc2
r = e−ᾱ2 dM−r

dxM−r

M−1∑
j=0

exp(xeiφj )

∣∣∣∣
x=ᾱ2

= Me−ᾱ2
∞∑

k=0

ᾱ2(kM+r)

(kM + r)!
. (5.15)

That the states |γr〉 are orthonormal establishes that they
and the original coherent states |αj 〉 span an M-dimensional
subspace and thus that the |αj 〉 are linearly independent.

The vectors

|α⊥
j 〉 = 1

M

M−1∑
r=0

1

cr

ei2πrj/M |γr〉 (5.16)

are reciprocal (or dual) to the original coherent states in
the sense that 〈α⊥

j |αk〉 = δjk . This duality property is what
is needed to construct the USD positive-operator-valued
measure (POVM). This POVM has M POVM elements Ej =
P (�)|α⊥

j 〉〈α⊥
j |, j = 0, . . . ,M − 1, for the results that identify

the input states, where P (�) is the success probability, and a
single failure POVM element, Efail = I − E, where

E =
∑

j

Ej = P (�)
∑

r

1

qr

|γr〉 〈γr | . (5.17)

The largest eigenvalue of E must be no larger than 1, which
gives an optimal success probability for discriminating among
M coherent states symmetrically placed on a circle of radius
ᾱ [10]:

P (�|ᾱ,M) = min
r ∈ {0, . . . ,M − 1}

qr . (5.18)

This success probability has two important limits: (i) many
states on the circle or, equivalently, small coherent-state
amplitude, i.e., M � ᾱ2, and (ii) states sparse on the circle
or, equivalently, large coherent-state amplitude, i.e., M � ᾱ.
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The reason for the difference in powers of ᾱ in the two limits
emerges as we examine each limit in turn.

Notice first that the sums for qr/M in Eq. (5.15) consist of
terms drawn with period M from a Poisson distribution that has
mean ᾱ2, a distribution we denote throughout by Pr[ n|ᾱ2 ] =
e−ᾱ2

ᾱ2n/n!. When the first term in the sum for r = M − 1 lies
beyond the maximum of the Poisson distribution, as it does in
the case of many states on the circle, it takes only a moment’s
contemplation to realize that the terms in the sum for qM−1

are term by term smaller than the corresponding terms in the
sums for other values of r , provided that the first term in qM−1

is smaller than the first term in q0, i.e., ᾱ2(M−1)/(M − 1)! < 1,
which is certainly true when M � ᾱ2. Thus, for many coherent
states on the circle, the minimum in Eq. (5.18) is achieved by
r = M − 1 [10], so

P (�|ᾱ,M) = qM−1 = Me−ᾱ2
∞∑

k=0

ᾱ2(kM+M−1)

(kM + M − 1)!
. (5.19)

Moreover, the Chernoff bound for a Poisson random variable
n with mean ᾱ2 [40], applied to the terms in the sum (5.19)
after the first,

∞∑
k=1

ᾱ2(kM+M−1)

(kM + M − 1)!
< eᾱ2

Pr[ n � 2M − 1|ᾱ2 ]

�
(

eᾱ2

2M − 1

)2M−1

, (5.20)

shows that, in the limit M � ᾱ2, we need to keep only the
first term, k = 0, of the sum (5.19). The result is a simple
expression for USD success probability in the case of many
coherent states on a circle (small coherent-state amplitude):

P (�|ᾱ,M) = Me−ᾱ2
ᾱ2(M−1)

(M − 1)!
, M � ᾱ2. (5.21)

Now consider the case of sparse coherent states on the
circle. For fixed M , as ᾱ → ∞, Chefles and Barnett [10]
showed that all of the qr limit to 1, so

P (�|ᾱ,M) = 1. (5.22)

Since, for fixed M , the input states limit to being orthogonal
as ᾱ → ∞, this simply means that orthogonal states can be
discriminated with unity probability of success. More useful
than the limit, however, is the correction to the limit.

To find this correction, we begin by noting that since
ᾱ � M � 2, we can approximate the Poisson distribution in
Eq. (5.15) as a Gaussian of the same mean and variance and
extend the sum on k to −∞ on the grounds that the Gaussian
is negligible for these additional terms:

qr = M√
2πᾱ

∞∑
k=−∞

exp

(
− (kM + r − ᾱ2)2

2ᾱ2

)
. (5.23)

By introducing δ functions, we can write this in the form

qr = M√
2πᾱ

∞∑
k=−∞

∫ ∞

−∞
dx e−(x−ᾱ2)2/2ᾱ2

δ(x − kM − r)

= 1√
2π

∫ ∞

−∞
du e−u2/2

∞∑
k=−∞

δ

(
k − ᾱ

m
+ s − u

m

)
,

(5.24)

where x is a continuous version of kM + r and where in
the second expression we introduce the integration variable
u = x/ᾱ − ᾱ and rescaled variables m = M/ᾱ � 1 and s =
r/ᾱ � 1. Now we write ᾱ/m = [ᾱ/m] + ℵ, where [z] denotes
the nearest integer to z and, hence, − 1

2 � ℵ < 1
2 (half-integers

are rounded up), redefine the dummy summing variable to be
k − [ᾱ/m], and use

∞∑
k=−∞

δ(k − v) =
∞∑

j=−∞
e−i2πjv (5.25)

to put Eq. (5.24) in the form

qr = 1√
2π

∞∑
j=−∞

ei2πj (s/m−ℵ)
∫ ∞

−∞
du e−u2/2e−i2πju/m

= 1 + 2
∞∑

j=1

cos

[
2πj

(
s

m
− ℵ

)]
e−2π2j 2/m2

= θ3

[
π

(
s

m
− ℵ

)
; e−2π2/m2

]
. (5.26)

Here θ3 denotes a Jacobi θ function [41].
When m � 1, we only need to keep the j = 1 term in

the sum to get the dominant correction to unity in qr . To
minimize qr , we choose r/M − ℵ = s/m − ℵ as close to 1

2
as possible, consistent with letting r be an integer. Thus, we
choose r = [M(ℵ + 1

2 )], which gives

cos

[
2π

(
s

m
− ℵ

)]

= −1 +
(

irrelevant errors of size � π2

2M2

)
. (5.27)

Keeping more terms in the sum and then minimizing could
provide a better approximation, but the lowest-order, j =
1 correction already provides a good approximation for a
reasonably dense set of coherent states so the following
analysis is restricted to it.

The resulting success probability in the case of sparse
coherent states (large coherent-state amplitudes) is

P (�|ᾱ,M) = 1 − ε � 1 − 2e−2π2ᾱ2/M2
, M � ᾱ. (5.28)

The key result here is that in this limit the success probability
only depends on the ratio ᾱ/M . Indeed, using this expression,
we can turn the question around and determine the ratio that
gives a deviation ε:

ᾱ2

M2
≡ a(ε) � − ln(ε/2)

2π2
= −0.050 66 ln ε + 0.0351.

(5.29)

For example, to achieve P (�|ᾱ,M) = 0.9 for any M , one
chooses ᾱ2 � 0.15M2. The dependence (5.29) has been tested
numerically over the ranges ε ∈ [0.5,10−5] and M ∈ [2,40];
the numerics give

a(ε) = −0.0508 ln ε + 0.035, (5.30)

in good agreement with the analytic approximation. Figure 3
compares the numerics with the analytic approximation; the
analytic approximation works quite well for ε � 0.5.
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FIG. 3. (Color online) Dependence of the ratio ᾱ2/M2 = a(ε) on
the deviation ε of the success probability P (�|ᾱ,M) from unity:
Numerical results are plotted as (red) circles; analytic approximation
of Eq. (5.29) as (blue) squares. The analytic approximation works
quite well for ε ∈ [0,0.5], but breaks down progressively beyond
ε = 0.5.

Figure 4 plots the success probability for USD of coherent
states on a circle, comparing the exact, numerically determined
result with the approximations that apply for many coherent
states and sparse coherent states. The two approximations
work better than we have any right to expect: The plots and
a consideration of the next term in the sum (5.19) suggest
that the many-coherent-states approximation (5.21) works well
for M � 2ᾱ2; provided ᾱ is somewhat bigger than 1, the
sparse-coherent-states approximation (5.28) works well for
M � 4ᾱ. The two approximations overlap when ᾱ � 1 and M

are both small, but because of the different powers of ᾱ in the
two approximations, generally there is a gap between the two
that must be filled in with numerics.

These results in hand, we can apply them, first, to obtain
bounds on the success probability of immaculate amplifiers
and, second, to constructing a model of an immaculate
amplifier based on USD. For the first task, we use the
same notation as previously for before and after probabilities
of USD; the USD bound on the success probability of an
immaculate amplifier that works on the M input coherent states
is

℘(�|ᾱ,M) � P B
USD(�)

P A(�)
= P (�|ᾱ,M)

P (�|gᾱ,M)
. (5.31)

The important cases of this bound require only our approxi-
mate results for the USD success probabilities.

A first such case is when the input coherent states are sparse
and, hence, so are the amplified output states. In this case, the
numerator and the denominator in the bound (5.31) are both
close to one, and the bound on success probability is also close
to one, reflecting the fact that one can discriminate and amplify
such nearly orthogonal states.

More interesting is the case of many input coherent states,
M � ᾱ2. If the gain is large enough that the amplified states are
sparse, i.e., M � gᾱ—this requires that g � ᾱ—the bound
(5.31) reduces to

℘(�|ᾱ,M) � P B
USD(�) = Me−ᾱ2

ᾱ2(M−1)

(M − 1)!
. (5.32)

This bound, which is plotted in Fig. 4 as (red) circles in the
left column and a (red) dashed line in the right column, can

FIG. 4. (Color online) Success probability P (�|ᾱ,M) = P B(�).
(Left column) As a function of M with fixed ᾱ2; (black) asterisks
are the exact, numerically determined success probability (5.18);
(red) circles give the approximate result (5.21) for many coherent
states (small coherent-state amplitude); (blue) squares give the
approximate result (5.28) for sparse coherent states (large coherent-
state amplitude). (Right column) As a function of ᾱ2 with fixed M;
(black) solid line is the exact result; (red) dashed line, many coherent
states; (blue) dotted line, sparse coherent states.

be regarded as the g → ∞ bound on an immaculate amplifier
that works on a fixed number M � ᾱ2 of input states.

Most interesting is the case in which M is large enough that
both the input and amplified output can be treated in the many-
coherent-states limit, i.e., M � g2ᾱ2. In this case, the bound
(5.31) becomes ℘(�|ᾱ,M) � e(g2−1)ᾱ2

/g2(M−1). This case is
the most interesting because we can let M become arbitrarily
large and thus approach the limit in which the amplifier acts
phase-insensitively on the entire circle of coherent states. Since
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M − 1 � (g2 − 1)ᾱ2, we have e(g2−1)ᾱ2 � eM−1 and thus

℘(�|ᾱ,M) � e(g2−1)ᾱ2

g2(M−1)
�

(√
e

g2

)2(M−1)

. (5.33)

This shows that the success probability of an exact immaculate
amplifier goes to zero in the phase-insensitive limit M → ∞,
even when the amplifier is only required to work on a single
circle of input coherent states.

We can make a more precise statement for an immaculate
amplifier that amplifies exactly all the coherent states on
M spokes spaced equally in angle and of length ᾱ. Such
an amplifier acts immaculately on M coherent states on all
circles with radius �ᾱ. The success probability is bounded by
the ᾱ → 0 limit of the bound (5.33), where the assumptions
underlying the bound are satisfied for any M � 2:

℘USD � 1

g2(M−1)
. (5.34)

This is one of the two chief results of this section: an
immaculate amplifier that works exactly on M spokes within
a phase-space disk centered at the origin has a working
probability that decreases exponentially with M , with the base
of the exponential, g2, given by the gain, and goes to zero in
the phase-insensitive limit M → ∞.

It is useful to pause here to relate these results to the
discussion at the end of Sec. II. For the disk amplifier,
the measurement-based performance measure (2.19), which
uses antinormal ordering to calculate the uncertainties, is
1/℘USDg2 � g2(M−2); this is greater than the uncertainty-
principle lower bound of one, achieved by an ideal linear
amplifier, for M > 2 and far worse than the bound as M

gets large. (These same arguments hold for the bound on
the root-probability–SNR product, which is equivalent to the
uncertainty bound.) The related probability-fidelity product
is given by ℘USD � 1/g2(M−1), since an exact immaculate
amplifier has unit output fidelity; this is worse than the
probability-fidelity product 1/g2 achieved by an ideal linear
amplifier for M � 2 and far worse as M gets large.

As we discussed in the introductory paragraphs of this
section, we can construct a USD-based model of an im-
maculate amplifier in which the M input coherent states are
first discriminated and then the identified input is amplified
immaculately by any amount. The quantum operation for this
model is

A(ρ) =
M−1∑
j=0

℘(�|ᾱ,M)|gαj 〉〈α⊥
j |ρ|α⊥

j 〉〈gαj |. (5.35)

This map can be applied to any input state, not just the M

coherent states used to construct it, but applied to one of those
special input states, |αj 〉, A outputs the amplified state |gαj 〉
with probability

℘(�|ᾱ,M) = P B
USD(�) = P (�|ᾱ,M). (5.36)

This success probability is plotted in Fig. 4.
When M � ᾱ2, the success probability is given by

Eq. (5.21),

℘(�|ᾱ,M) �
√

M

2π
e−ᾱ2

(
eᾱ2

M − 1

)M−1

, (5.37)

where here we apply Stirling’s approximation to the factorial
to make clear that the success probability goes to zero in the
phase-insensitive limit M → ∞.

The case of sparse input states is where immaculate
amplification shines with the radiance its name evokes. As
the plots in Fig. 4 show, the success probability for this case is
captured by the sparse-states approximation (5.28), which is
plotted in Fig. 4 as (blue) squares in the left column and a (blue)
dotted line in the right column. The approximation works well
for success probabilities 1 − ε � 0.5, which corresponds to
M � 4ᾱ. To achieve a success probability 1 − ε requires that
ᾱ/M = √

a(ε) be chosen as in Eq. (5.29). To get a feeling
for what these results mean, notice that a success probability
of 1 − ε corresponds to a distance between states, measured
along the arc of the circle, given by 2πᾱ/M = 2π

√
a(ε); for

example, a success probability of 0.5 corresponds to
√

a �
0.265 and a distance of about 1.67. These states might seem
pretty crowded, but the distance makes sense when compared
with the one-standard-deviation diameter of a coherent state,
which is 1. These input states are just beginning to overlap,
but they are far enough apart that they can be distinguished
and amplified immaculately half the time.

The lesson here is important: USD-based devices can
outperform ideal linear amplifiers if they are both phase-
sensitive and amplitude-specific, amplifying immaculately
only a relatively sparse set of input coherent states on a
particular input circle. This realization leads to a set of
interesting questions that we consider briefly in the Conclusion
as the basis for future work. The flip side is that success
probability goes to zero when an exact immaculate device
is required to work phase-insensitively on even a single input
circle. This suggests that phase insensitivity is a key property,
which does not play well with exact immaculate amplification.
In the next section, we explore this further by considering
probabilistic immaculate amplifiers that are required to be
phase insensitive but, unlike USD-based amplifiers, are not
exact.

VI. BOUNDS ON PHASE-INSENSITIVE, APPROXIMATE,
PROBABILISTIC IMMACULATE AMPLIFICATION

In this section we canonize phase insensitivity as a primary
requirement for amplification. This means that the amplifier’s
operation must be invariant under phase-plane rotations. We
relax the requirement of unit fidelity with the target output
state, thus obtaining a model of an approximate immaculate
amplifier. We would like the amplifier to work with high
fidelity for input coherent states |α〉 within a disk centered
at the origin, but we allow the fidelity with the target amplified
state |gα〉 to fall off for inputs outside the disk of interest.
There are two motivations for this assumption: First, as we
noted in Sec. IV, an immaculate amplifier cannot work over the
entire phase plane; second, as was true for the implementations
reviewed in Sec. IV, such a cutoff is a property of practical
devices.

We characterize the high-fidelity output region as a disk
of radius

√
N ; the corresponding input disk thus has radius√

N/g. After translating this description into the language
of amplifier maps and Kraus operators, we characterize the
amplifier in terms of the fidelity with the target state, F (ᾱ),
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and the probability that the amplifier works, p(�|ᾱ), both
of which are functions of the input amplitude ᾱ = |α|. We
maximize the fidelity at each ᾱ given a working probability
at that ᾱ, after which we maximize the working probability
consistent with the amplifier’s map being trace decreasing.
We thus obtain an optimal immaculate amplifier that is both
approximate and probabilistic.

We note that a similar analysis has been performed
by Fiurášek [8,42] in the context of cloning and arbitrary
state transformations; we point out below similarities to and
differences from our analysis.

We describe the amplification process by a quantum
operation, which we write in terms of a canonical Kraus
decomposition in which the Kraus operators are orthogonal.
We assume that these Kraus operators have the form PNKj ,
where PN is the projector onto the subspace SN spanned by the
first N + 1 number states. The amplifier quantum operation is
thus

AN =
∑

j

PNKj � K
†
j PN, (6.1)

where the �, technically a tensor product, can be regarded as
designating the slot for the input to the quantum operation.
The projector PN provides a sharp cutoff in the number basis,
beyond which the amplifier’s output has no support; notice that
we can let the operators Kj map outside SN without having
any effect on the quantum operation (6.1). Shortly we extend
the Kraus operators in a way that allows the outputs to have
support outside SN ; this extension smooths the rough edges in
the amplifier map (6.1), and it provides marginal improvements
in the output fidelity. Phase insensitivity is the requirement that
AN commutes with phase-plane rotations; this implies, as we
show in Appendix B, that each Kraus operator has nonzero
number-basis matrix elements on only one diagonal strip, as
in Eq. (B5). Additionally, the Kraus operators must satisfy the
trace-decreasing requirement,∑

j

K
†
j PNKj � I. (6.2)

Suppose now that the input state to the amplifier is a
coherent state |α〉. The probability of outcome j is

pj (�|ᾱ) = 〈α|K†
j PNKj |α〉, (6.3)

and the overall success probability is

p(�|ᾱ) =
∑

j

pj (�|ᾱ) = tr[AN (|α〉〈α|)]. (6.4)

The fidelity of the output with the target output state |gα〉 is

F (ᾱ) = 〈gα|AN (|α〉〈α|)|gα〉
p(�|α)

. (6.5)

Because of the rotational symmetry, these quantities depend
only on the magnitude ᾱ = |α|.

The problem we solve is the following. Fix a circle of
coherent states with amplitude ᾱ, and find the maximum
fidelity F (ᾱ) on this circle for a fixed success probability
q = p(�|ᾱ). We do this first for a single Kraus operator and
later argue that a single Kraus operator is better than more than

one. The optimization problem is thus to maximize

F (ᾱ) = |〈gα|PNK|α〉|2
p(�|ᾱ)

, (6.6)

subject to the constraint

q = p(�|ᾱ) = 〈α|K†PNK|α〉. (6.7)

We can, of course, rephrase this as maximizing |〈gα|PNK|α〉|2
subject to the constraint on working probability.

Introducing a Lagrange multiplier μ, we maximize

|〈gα|PNK|α〉|2 − μ(〈α|K†PNK|α〉 − q). (6.8)

Varying K gives

0 = 〈α|δK†(PN |gα〉〈gα|PNK|α〉 − μPNK|α〉)
+ (Hermitian conjugate), (6.9)

so we conclude that

PNK|α〉 = PN |gα〉 〈gα|PNK|α〉
μ

. (6.10)

The Lagrange multiplier is given by the probability for the first
N + 1 photons in the target state |gα〉,

μ = 〈gα| PN |gα〉 = e−g2|α|2eN (g2|α|2), (6.11)

where we introduce a standard shorthand for the first N + 1
terms in the expansion of the exponential,

eN (x) ≡
N∑

n=0

xn

n!
. (6.12)

Without changing the Kraus operator PNK , we can let K map
outside the subspace SN in such a way that

K|α〉 = |gα〉 〈gα|PNK|α〉
μ

. (6.13)

Since

ga†a|α〉 = e(g2−1)|α|2/2|gα〉, (6.14)

we can simplify this by letting K = Lga†a . The result,

L|gα〉 = |gα〉 〈gα|PNL|gα〉
μ

, (6.15)

says that |gα〉 is an eigenstate of L. Since the coherent states
on a circle are a basis for the Hilbert space, this determines L

to be a function of the annihilation operator a. The rotational
symmetry further requires that L have number-state matrix
elements on only one diagonal strip, implying that L = λak ,
where k is a non-negative integer and λ can be taken to be real
without loss of generality.

The possible optimal Kraus operators are

Kk = λakga†a = λga†a(ga)k

= λ

∞∑
n=0

gn+k

√
(n + k)!

n!
|n〉〈n + k|, (6.16)

k = 0,1,2, . . . .

This operator has nonzero matrix elements only on the kth
diagonal strip above the main diagonal. It is not surprising
that this class of operators emerges, because they do take |α〉
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to a multiple of |gα〉, just as we would like an immaculate
amplifier to do. The success probability and fidelity become

p(�|ᾱ) = λ2g2ke(g2−1)ᾱ2
ᾱ2k〈gα|PN |gα〉, (6.17)

F (ᾱ) = 〈gα| PN |gα〉 = e−g2ᾱ2
eN (g2ᾱ2) = μ. (6.18)

We can increase the success probability without changing
the fidelity by letting λ2 increase, but there is a limit to this
increase set by the requirement that

I � K
†
kPNKk = λ2

N∑
n=0

g2(n+k) (n + k)!

n!
|n + k〉〈n + k|.

(6.19)

Since the eigenvalues increase with n, the constraint is set by
the largest eigenvalue (n = N ). Choosing the largest possible
value,

λ2 = N !

(N + k)!

1

g2(N+k)
, (6.20)

maximizes the success probability.
The final results of these considerations are the Kraus

operators

Kk =
√

N !

(N + k)!

akga†a

gN+k
=

√
N !

(N + k)!

ga†aak

gN
(6.21)

and the corresponding success probability and fidelity,

p(�|ᾱ) = N !

(N + k)!

e−ᾱ2
ᾱ2k

g2N
eN (g2ᾱ2), (6.22)

F (ᾱ) = e−g2ᾱ2
eN (g2ᾱ2). (6.23)

Equation (6.23) was derived by Fiurášek [8] (our amplitude
gain g is his

√
M) by maximizing an average fidelity. Fiurášek

considers a Gaussian distribution of input coherent states. His
average fidelity includes, first, an average over the success
probability, normalized to an average success probability,
averaged over the input Gaussian, and, second, an average
over the input Gaussian. He does not quote the probability of
success, and he only finds the k = 0 case. He formulates the
optimization problem as a semidefinite program, whereas we
use a simple Lagrange-multiplier maximization.

It is useful to pause here to summarize properties of the
fidelity and the success probability. The fidelity (6.23) is the
probability of the first N + 1 number states in the Poisson
distribution associated with the coherent state |gα〉. As we
anticipated, this fidelity is close to 1 for gᾱ � √

N , goes
to zero for gᾱ � √

N , and transitions between these two
extremes around gᾱ � √

N . Indeed, we can use the Chernoff
bound for the probability in the tails of a Poisson distribution
with mean g2ᾱ2 to bound the fidelity in the two extremes [40],

g2ᾱ2 � N : F (ᾱ) = 1 − Pr[ n � N + 1|g2ᾱ2 ]

� 1 − e−g2ᾱ2

(
eg2ᾱ2

N + 1

)N+1

, (6.24)

g2ᾱ2 > N : F (ᾱ) = Pr[ n � N |g2ᾱ2 ]

�
(

eg2ᾱ2e−g2ᾱ2/N

N

)N

. (6.25)

The width of the transition region can be estimated by re-
membering that the two-standard-deviation phase-plane radius
of a coherent state is 1. As a consequence, the amplified
output begins to contact the number state cutoff at N when
gᾱ + 1 � √

N and leaves the high-fidelity region entirely
when gᾱ − 1 � √

N . Thus, we expect the transition from unity
fidelity to zero fidelity to occur as ᾱ varies from (

√
N − 1)/g

to (
√

N + 1)/g.
The fidelity does not depend on k, but the success

probability does, so the value of k that maximizes the success
probability can change as ᾱ changes. The amplifier map
(6.1) cannot depend, of course, on the input amplitude, so
we must settle on a value of k and apply the resulting map
to all input coherent states. We are most interested in the
high-fidelity regime, where the leading-order behavior of the
success probability (6.22) is

p(�|ᾱ) = N !

(N + k)!

e−ᾱ2
ᾱ2k

g2N
, ᾱ �

√
N/g. (6.26)

In this regime all values of k have success probabilities that
are exponentially small in N , but k = 0 is the best of a sad lot,
indicating that it is the best value of k. Before investigating the
different values of k in detail, however, we extend the Kraus
operator PNKk so that it can map outside SN in a way that
increases the fidelity and success probability.

The extension we seek should preserve the phase insen-
sitivity of PNKk and should not interfere with the output
of PNKk in the subspace SN . A glance at Eq. (6.16)
shows that the extension must have the form ϒk = PNKk +∑∞

n=N+1 υn |n〉 〈n + k|. Now we impose the condition

I � ϒ
†
kϒk = K

†
kPNKk +

∞∑
n=N+1

|υn|2 |n + k〉 〈n + k| .

(6.27)

The term K
†
kPNKk already satisfies the inequality in the

subspace SN+k spanned by the first N + k + 1 number states
[see Eq. (6.19)], and we can maximize the amplifier’s success
probability by saturating the inequality for the second term,
i.e., by choosing υn = 1 for n = N + 1,N + 2, . . ., with the
result that

ϒk = PNKk +
∞∑

n=N+1

|n〉 〈n + k| . (6.28)

With this choice, notice that for k = 0, the additional term in
ϒk is simply the unit operator in the orthocomplement of SN .

The extension of the Kraus operator has essentially no im-
pact on the operation of the amplifier in the high-fidelity input
region. It does increase the fidelity marginally in the transition
region by including in the output number-state components
with n > N . The biggest effect is to increase dramatically
the success probability in the low-fidelity regime beyond
ᾱ � √

N + k, but this improvement is a pyrrhic victory: All
it does is to allow the amplifier to report that it worked on
inputs where the output has essentially the same fidelity with
the target as the input does.

Using the extended Kraus operators to calculate the success
probability and the fidelity of the output with the target
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|gα〉 gives

pk(�|ᾱ) = 〈α| ϒ†
kϒk |α〉 = e−ᾱ2

ᾱ2k

(
N !

(N + k)!

1

g2N
eN (g2ᾱ2) +

∞∑
n=N+1

ᾱ2n

(n + k)!

)
, (6.29)

Fk(ᾱ) = |〈gα|ϒk|α〉|2
pk(�|α)

= e−g2ᾱ2

pk(�|ᾱ)/e−ᾱ2
ᾱ2k

(√
N !

(N + k)!

1

gN
eN (g2ᾱ2) +

∞∑
n=N+1

gnᾱ2n

√
n!(n + k)!

)2

. (6.30)

With the extended Kraus operators, both the success prob-
ability and the fidelity depend on k. In the high-fidelity
regime, ᾱ � √

N/g, the extension terms have little impact:
The fidelity limits to unity, and the success probability has
the form given in Eq. (6.26), which decreases exponentially
with N . For ᾱ � √

N/g, the fidelity goes to zero much as
it did before. The success probability, however, has a new
transition that occurs at ᾱ2 � N + k: For ᾱ2 � N + k, only
the extension term matters, so the success probability becomes
nearly the entire probability under a Poisson distribution with
mean ᾱ2, i.e., pk(�|ᾱ) = Pr[ n � N + k + 1|ᾱ2 ], and this
limits to unity as ᾱ2 → ∞.

To gain insight into the success probability (6.29) and
output fidelity (6.30), we plot them in Fig. 5 as a function
of the input amplitude ᾱ for k = 0, 1, and 2. In Fig. 5(a), we
take an amplitude gain g = √

2 and N = 4, both of which are
too small to see some of the characteristic features we have
discussed. The three fidelity curves are approximately unity
until ᾱ ∼ √

N/g. After this point the fidelity decreases to zero.
Conversely, the three success-probability curves start close to
zero and rise to unity after |α| ∼ √

N/g. Figure 5(b) plots the

FIG. 5. (Color online) Fidelity Fk(ᾱ) of Eq. (6.30) (descending
curves) and success probability pk(�|ᾱ) of Eq. (6.29) (ascending
curves) plotted as functions of input amplitude ᾱ for different
extended Kraus operators ϒk with k = 0 (solid lines), 1 (dashed lines),
and 2 (dotted lines): (a) g = √

2, N = 4; (b) g = 3, N = 9. The inset
in (b) illustrates the small differences in fidelity, undetectable in the
main plot, among the three values of k.

same curves for g = 3 and N = 9, values big enough to see
the characteristic features of the two quantities. In particular,
it is apparent that the fidelity transitions from unity fidelity
to zero fidelity around ᾱ � √

N/g = 1, with the transition
occurring between (

√
N − 1)/g = 2/3 and (

√
N + 1)/g =

4/3, as anticipated. For all three values of k, the success
probability in panel (c) rises from its initial small value to
unity, with the rise occurring around the second transition at
ᾱ � √

N .
It turns out that the success probability and fidelity for any

value of k are bounded in the following way:

0 � pk(�|ᾱ) � p0(�|ᾱ), (6.31)

Fk(ᾱ) � F0(ᾱ). (6.32)

These bounds are illustrated by the examples plotted in Fig. 5,
and we have proven them analytically. The proof, which is
tedious, is contained in Appendix C. The bounds confirm that
the best value of k is k = 0. We also show in Appendix C that

F0(ᾱ) � 〈gα|PN |gα〉, (6.33)

which indicates that the k = 0 extension increases the fidelity
over that of the restricted Kraus operators.

If the amplifier quantum operation has Kraus operators
other than ϒ0, our analysis shows that these other Kraus
operators necessarily reduce the fidelity and the success
probability. This justifies our earlier assumption of a single
Kraus operator. The best Kraus operator is ϒ0, and this gives
an amplifier quantum operation AN = ϒ0 � ϒ

†
0 .

The three plots in Fig. 6, all for k = 0, have different
values of g and N , but roughly the same high-fidelity input
region: The ratio

√
N/g = 1 in panels (a) and (c), whereas

in (b) it is
√

2. The plots include the fidelity and success
probability coming from the extended Kraus operator ϒ0 and,
for comparison, the fidelity and success probability coming
from the restricted Kraus operator PNK0. Panels (a) and (b)
are interesting because they have gains typical of that achieved
in experiments, but the transitions are not very sharp, g and
N being too small to see the characteristic features of the
plotted quantities. In panel (c), where g = 3 and N = 9, the
characteristic features emerge: The extended Kraus operator
provides a small increase in fidelity through the transition
region; the success probability using ϒ0 ascends to 1 beyond
ᾱ � √

N , instead of falling back to nearly zero, as happens
with the success probability that comes from PNK0. These
plots illustrate the superior qualities of the extended Kraus
operator ϒ0; we do not consider the restricted Kraus operators
again.
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FIG. 6. (Color online) Fidelity F0(ᾱ) using the extended Kraus
operator ϒ0 [Eq. (6.30)] (solid line with solid circles); corresponding
success probability p0(�|ᾱ) [Eq. (6.29)] (dashed line with solid
squares); fidelity F (ᾱ) using the restricted Kraus operator PNK0

[Eq. (6.23)] (solid descending line); corresponding restricted success
probability p(�|ᾱ) [Eq. (6.22) with k = 0] (dashed line); probability-
fidelity product p0(�|ᾱ)F0(ᾱ) (solid humped line); and overlap
|〈α|gα〉|2 (dotted line), all plotted as functions of input amplitude
ᾱ: (a) g = √

2, N = 2; (b) g = √
2, N = 4; (c) g = 3 N = 9.

Figure 6 plots two other quantities: the probability-
fidelity product, p0(�|ᾱ)F0(ᾱ) = |〈gα|ϒ0|α〉|2, for our phase-
insensitive immaculate amplifier and the overlap |〈α|gα〉|2 =
e−(g−1)2ᾱ2

. The latter can be regarded as the fidelity against
the target state of a device that does nothing, i.e., outputs
the input. Since nothing can be done with unit probability,
|〈α|gα〉|2 is also the probability-fidelity product for a device
that does nothing. A minimal requirement for a useful
amplifier is that it be better than doing nothing. The plots
suggest that, as far as the probability-fidelity product is
concerned, the phase-insensitive immaculate amplifier is never
better than doing nothing—indeed, |〈gα|ϒ0|α〉|2 � |〈gα|α〉|2
follows immediately from the fact that ϒ0 is diagonal in the
number basis with positive eigenvalues bounded above by
1—and approaches that standard only for ᾱ �

√
N , where,

as we have already seen, ϒ0 becomes the identity map. For
comparison, the probability-fidelity product for an ideal linear
amplifier is 1/g2 [see Eq. (2.23)], which beats the do-nothing
standard for ᾱ2 � ln g2/(g − 1)2.

The key features of the output state of the immaculate
amplifier AN = ϒ0 � ϒ0 are illustrated by the Q-distribution
plots in Fig. 7. In Fig. 7(a), an input state within the high-
fidelity input region is transformed to an output state that
is very close to the target output coherent state. In panel
(b), however, the input state is beyond the high-fidelity input
region; the output state gets plastered against the output arc of
radius

√
N , producing a flattening and distortion along this arc.

This distortion is very much like that seen in experiments that
implement immaculate linear amplification [28,29,32–34].
(It is worth noting that for the unextended Kraus operator

FIG. 7. (Color online) Q distribution of the output state of the
immaculate linear amplifier given by the extended Kraus operator
ϒ0, with g = 3 and N = 9, for four amplitudes of input coherent
state: (a) ᾱ = 0.5, (b) ᾱ = 1.5, (c) ᾱ = 3, (d) ᾱ = 5. The (red) dot
denotes the center of the input coherent state. The transition at input
radius

√
N/g = 1 is marked by a (red) arc, and its image at the

output by the (black) arc at radius
√

N = 3. Thus (a) lies within the
high-fidelity region, and the output looks like an amplified coherent
state; (b) lies beyond the transition, and its output is flattened along
the arc of radius

√
N . A second transition occurs near ᾱ � √

N , as
ϒ0 transitions to being the identity operator. Thus (c), lying right in
the middle of this second transition, has output that is little amplified
and is flattened along the radial direction, whereas (d), lying well
beyond the second transition, has output that is nearly identical to the
input coherent state.

PNK0, as ᾱ increases beyond
√

N/g, the output state becomes
essentially the Fock state |N〉.) Panels (c) and (d) illustrate the
passage through the second transition at ᾱ � √

N , as the action
of ϒ0 transitions to being that of the unit operator.

In Fig. 8 we plot the SNR-based performance measure
defined in Sec. II C, with the key difference that we have two
such SNRs: SNR1 = 〈x1〉 /δx1 = √

2ᾱ/δx1 for the amplitude
(radial) quadrature x1 and SNR2 = 〈x1〉 /δx2 for the phase
quadrature x2 (〈x2〉 = 0). As in Sec. II C, the uncertainties
in the SNRs are calculated using antinormal ordering, which
applies when one intends to measure both quadratures [43].
Figure 8 plots the SNR quantities for an input coherent state
|α〉, the target output state |gα〉, and the output of an ϒ0

immaculate amplifier. As discussed in Sec. II C, the right way
to take into account the success probability of the immaculate
amplifier is to multiply the SNRs by the square root of
the working probability; thus Fig. 8 also shows plots the
root-probability–SNRs,

√
p0(�|ᾱ)SNR1 and

√
p0(�|ᾱ)SNR2

for the output of the immaculate amplifier.
Panel (a) of Fig. 8 plots these quantities for a gain typical of

that achieved in experiments. Panel (b) has a larger gain that
shows the characteristic features of these quantities. Within
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FIG. 8. (Color online) Antinormally ordered quadrature SNRs
as a function of the input amplitude ᾱ. The SNR is defined as
SNR1 = 〈x1〉 /δx1 for the amplitude (radial) quadrature x1 or as
SNR2 = 〈x1〉 /δx2 for the phase quadrature x2. Four of the plots are
for (i) the input state |α〉 (dotted line), for which SNR1 = SNR2

[this is also the bound given in Eq. (2.21)]; (ii) the output target
state |gα〉 (solid line), for which SNR1 = SNR2; and (iii) and (iv)
the output state of the ϒ0 immaculate amplifier (SNR1, solid line
with crosses; SNR2, solid line with circles). The other two plots give
the amplifier SNRs multiplied by the square root of the working
probability,

√
p0(�|ᾱ), as described in the text: The dashed line with

crosses plots
√

p0(�|ᾱ)SNR1, and the dashed line with circles plots√
p0(�|ᾱ)SNR2. For the amplifier plots, (a) has g = √

2, N = 2, and
(b) has g = 3, N = 9.

the high-fidelity input region, the output SNRs of the amplifier
match those of the target output state, but they fall away from
the target as ᾱ moves out of the high-fidelity region. The
root-probability–SNRs show that once the success probability
is taken into account, the immaculate amplifier does not do as
well as the input coherent state; it always satisfies the bound
(2.21) and is not even close to the bound in the high-fidelity
region.

One could use other SNR-based performance measures, an
example being one based on the statistics of number of quanta.
Doing this can lead to different conclusions. In Fig. 9, we
consider a number-based SNR defined as SNRN = 〈N〉 /�N ,
where N = a†a is the number operator and �N is the
uncertainty in N . Figure 9 shows that, in terms of SNRN ,
first, the output of the immaculate amplifier can do better
than the target output state and, second, the number-based
root-probability–SNR, which includes the square root of the
success probability, can exceed that of the input coherent
state. The first of these improvements seems to arise from the
distortion of the output state as it leaves the high-fidelity region
at ᾱ � √

N/g, which is 1 in both plots; this distortion amounts
to squeezing in the radial direction, as is illustrated in Fig. 7(b).
The second improvement is due to the same distortion, but is
also aided by the increase in success probability, displayed
in Fig. 6, for ᾱ �

√
N . Since these improvements arise

from effects outside the region of high-fidelity immaculate
amplification, they seem to be incidental to the operation of
the device as an immaculate amplifier.

FIG. 9. (Color online) Number-based SNR measure as a function
of the input amplitude ᾱ. The four plots are SNRN for the input
state |α〉 (dotted line); SNRN for the output target state |gα〉 (solid
line); SNRN for the output state of the ϒ0 immaculate amplifier
(solid line with crosses); and the root-probability–SNR measure√

p0(�|ᾱ)SNRN for the output state of the ϒ0 immaculate amplifier
(dashed line with crosses). For the amplifier plots, (a) has g = √

2,
N = 2, and (b) has g = 3, N = 9.

We conclude this section by reiterating that in the high-
fidelity regime, the k = 0 extended-Kraus-operator immacu-
late amplifier has a success probability [see Eq. (6.26) with
k = 0]

p0(�|ᾱ) = e−ᾱ2

g2N
. (6.34)

This can be regarded as the chief result of this section:
Within the high-fidelity region of operation, an approximate
phase-insensitive immaculate linear amplifier has a success
probability that decreases exponentially with the size N/g2 of
the high-fidelity input region, with the base of the exponential
being g2g2

. This result, for the optimal phase-insensitive
immaculate amplifier, indicates that the very low success
probabilities seen in experiments [25,28,29], though they
might be depressed yet further by technical difficulties, are
an unavoidable consequence of trying to perform phase-
insensitive immaculate amplification.

VII. CONCLUSION

Immaculate amplification is an attempt to evade the
uncertainty principle. Our chief conclusion is that immaculate
amplifiers, if they operate phase-insensitively, cannot achieve
both high fidelity to the target output state and even reasonably
high working probability. Indeed, in phase-plane regions
where a phase-insensitive device amplifies immaculately with
high fidelity, the probability that the device works is extremely
small. The small working probabilities seen in experiments
that implement immaculate amplification are not solely a
consequence of technical imperfections; they are inherent in
the nature of phase-insensitive immaculate amplification.

We suggest several changes in focus that might reconcile
the concept of immaculate amplification and quantum theory,
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as well as leading to more positive results than those reported
here. The first of these is simple: Phase-insensitive immaculate
amplification, with its reduction in noise from input to output,
might be a step too far; perhaps a better sort of device to seek
is a probabilistic perfect amplifier, which would amplify the
symmetrically ordered input noise without adding the noise of
a (deterministic) ideal linear amplifier. Working probabilities
for probabilistic perfect amplifiers might be better than those
we have found for immaculate amplifiers.

The second change is to abandon hope for invariance
under phase-plane rotations and of working on more than
one circle of input coherent states, focusing instead on the
quite encouraging probabilities we have found for immaculate
amplification of sparse collections of coherent states on a
single input circle. Nondeterministic devices have found many
uses in quantum information science, a notable example being
the KLM scheme for linear-optical quantum computing [44].
Immaculate amplifiers, like the one described formally by
Eq. (5.35), which are both phase sensitive and amplitude
specific, can work on sparse collections of coherent states
with high success probability; they might find application in
problems such as discrimination of the coherent states used
in phase-shift keying [11,12]. There are important questions
regarding communications protocols based on such devices:
How robust are they against amplitude and phase noise in
the preparation of the input coherent states? How badly are
rates impacted by the success probability? These questions are
certainly worth investigating.

Finally, we suggest a change in the quantum-information-
science approach to analyzing amplifying devices. The liter-
ature on immaculate amplification has focused on the fidelity
of the output with the immaculate target. We have stressed that
fidelity cannot be considered as a performance measure alone;
the probability-fidelity product is a better measure of overall
performance. Instead of attempting to optimize the probability-
fidelity product, however, it might be better to develop perfor-
mance measures suited to specific applications. For metrolog-
ical applications, the root-probability–SNR impresses us as
an appropriate measure of performance. Continuous-variable
quantum key distribution is a communication protocol that
might use immaculate amplification and where key rates are
an obvious performance measure. Some steps have been taken
to optimize key rates in this context [45,46], but more work is
needed. To paraphrase Emerson, a foolish fidelity to fidelity
is the hobgoblin of small minds [48]; that is, each application
begs for its own performance measure.
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APPENDIX A: LINEAR DEPENDENCE OF COHERENT
STATES ON A CIRCLE

We review the linear dependence of the continuum of
coherent states on a phase-space circle of radius ᾱ centered
at the origin. The reader should also consult the appendix of
Ref. [36].

A coherent state is represented in the number basis by

|α = ᾱeiφ〉 = e−ᾱ2/2
∞∑

n=0

ᾱneinφ

√
n!

|n〉 . (A1)

The coherent states |ᾱeiφ〉, 0 � φ < 2π , on a circle of radius
ᾱ are complete, but they are not linearly independent.

These states are linearly dependent, as we can see from∫ 2π

0

dφ

2π
e−inφ |ᾱeiφ〉 =

{
e−ᾱ2/2 ᾱn√

n!
|n〉, n � 0,

0, n < 0.
(A2)

The vanishing of the integral for n < 0 shows that the states
are not linearly independent.

That these states are complete follows immediately from
expanding any vector as

|ψ〉 =
∞∑

n=0

|n〉〈n|ψ〉 =
∫

dφ

2π
χ (φ)|ᾱeiφ〉, (A3)

where the function χ (φ) has Fourier representation

χ (φ) =
∞∑

n=0

χne
−inφ, (A4)

with the positive Fourier coefficients uniquely determined to
be

χn = eᾱ2/2

√
n!

ᾱn
〈n|ψ〉, n > 0, (A5)

and the negative Fourier coefficients arbitrary. That the neg-
ative Fourier coefficients can be changed arbitrarily without
changing |ψ〉 expresses the linear dependence of the coherent
states on a circle.

APPENDIX B: ROTATIONALLY SYMMETRIC
QUANTUM OPERATIONS

The superoperator that effects a rotation by θ in the phase
plane is

R(θ ) = eiθa†a � e−iθa†a =
∑
n,m

ei(n−m)θ |n〉〈n| � |m〉〈m|.

(B1)

A quantum operation A is invariant under rotations if it
commutes with R(θ ) for all θ , i.e., R(θ ) ◦ A = A ◦ R(θ ).
The symmetry condition implies that A has the form

A =
∑

k

∑
n,m

A(k)
nm|n + k〉〈n| � |m〉〈m + k|. (B2)

That A is a quantum operation, i.e., is completely positive,
implies that A(k) is a positive Hermitian matrix and thus can
be diagonalized by a unitary matrix:

A(k)
nm =

∑
l

λ
(k)
l UnlU

(k)∗
ml . (B3)
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This brings A into the form

A =
∑
k,l

M
(k)
l � M

(k)†
l , (B4)

where the operators

M
(k)
l =

∑
n

√
λ

(k)
l U

(k)
nl |n + k〉〈n| (B5)

are orthogonal Kraus operators. Invariance under rotations
manifests itself as the requirement that these Kraus operators
have nonzero number-basis matrix elements only in one
diagonal strip specified by the integer k.

APPENDIX C: OPTIMAL SUCCESS PROBABILITY
AND FIDELITY

In this Appendix we show that the success probabilities and
fidelities of Eqs. (6.29) and (6.30) satisfy the bounds (6.31)–
(6.33).

We first show the inequalities

pk(�|ᾱ) � pk+1(�|ᾱ), (C1)

Fk(ᾱ) � Fk+1(ᾱ); (C2)

from these, we can also conclude that pk(�|ᾱ)Fk(ᾱ) �
pk+1(�|ᾱ)Fk+1(ᾱ). This proves that the best success proba-
bility and fidelity are achieved at k = 0, i.e., by the Kraus
operator ϒ0.

The success-probability inequalities (C1) follow straight-
forwardly from the difference

Qk = ϒ
†
kϒk − ϒ

†
k+1ϒk+1

= N !

(N + k)!

1

g2N

N∑
n=0

(n + k)!

n!
g2n

(
1 − n

N + k + 1

1

g2

)

× |n + k〉 〈n + k| � 0. (C3)

The manifest positivity of Qk means that 〈α|Qk|α〉 � 0, which
is the inequality (C1).

To show the fidelity inequalities (C2), we begin by writing
Kraus operator (6.28) in the form

ϒk =
∞∑

n=0

fk(n)

√
(n + k)!

n!
|n〉〈n + k|, (C4)

where

fk(n) =
⎧⎨
⎩

√
N!

(N+k)!
gn

gN , n = 0, . . . ,N,√
n!

(n+k)! , n = N + 1,N + 2, . . . .
(C5)

Notice that fk(n) does not decrease with n for n � N , reaches it
maximum value at n = N , and then is a nonincreasing function
of n for n � N .

Using fk(n), we can write

〈gα|ϒk|α〉 = e−(g2−1)ᾱ2/2αkE[gnfk(n)], (C6)

where E denotes an expectation value with respect to the
Poisson distribution Pr[ n|ᾱ2 ] = |〈n|α〉|2 ≡ Pn. We also have

pk(�|ᾱ) = 〈α|ϒ†
kϒk|α〉 = ᾱ2kE

[
f 2

k (n)
]
. (C7)

Thus, the fidelity (6.30) can be put in the form

Fk(ᾱ) = e−(g2−1)|α|2 (E[gnfk(n)])2

E
[
f 2

k (n)
] . (C8)

For any k = 0,1, . . . , we define

hk(n) ≡ fk+1(n)

fk(n)

=
{

1√
N+k+1

, n = 0, . . . ,N,
1√

n+k+1
, n = N + 1, N + 2, . . . .

(C9)

Notice that hk(n) is a nonincreasing function of n.
The fidelity inequality (C2) equivalent to

LHS = (E[gnfk+1(n)])2E
[
f 2

k (n)
]

� (E[gnfk(n)])2E[fk+1(n)2] = RHS. (C10)

Since, by the Schwarz inequality,

LHS � E[gnfk(n)]E
[
gnfk(n)h2

k(n)
]
E
[
f 2

k (n)
] ≡ I,

(C11)

we can achieve our objective by showing that I � RHS or,
equivalently, that

E
[
gnfk(n)h2

k(n)
]
E
[
f 2

k (n)
]

� E[gnfk(n)]E
[
f 2

k+1(n)
]
.

(C12)

Equation (C12) can be written as

0 �
∑
m,n

G(m,n) =
∞∑

n=0

n−1∑
m=0

G(m,n) + G(n,m), (C13)

where

G(m,n) = PnPmfk(n)fk(m)h2
k(m)[gmfk(n) − gnfk(m)].

(C14)

In the final form of Eq. (C13), we use the fact that G(n,n) = 0
to exclude the terms along the diagonal from the sum. Now
what we show is that

G(m,n) + G(n,m)

= PnPmfk(n)fk(m)[gmfk(n) − gnfk(m)]
[
h2

k(m) − h2
k(n)

]
(C15)
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is never positive for n > m. There are three cases to consider.
First, when m < n � N , hk(m) = hk(n), so the quantity (C15)
vanishes. Second, when m � N < n, hk(m) � hk(n) and

gmfk(n) − gnfk(m) = gm

[
fk(n) − gn

gN
fk(N )

]
� 0, (C16)

so the quantity (C15) is not positive. Third, when N < m < n,
hk(m) � hk(n) and gmfk(n) � gnfk(m), so the quantity (C15)
is not positive. This completes the proof of the inequalities
(C2).

Now we establish the bound (6.33) by writing the fidelity
F0(ᾱ) of Eq. (6.30) as

F0(ᾱ) = e−g2ᾱ2

[
eN (g2ᾱ2) + gN

∑∞
n=N+1

gnᾱ2n

n!

]2

eN (g2ᾱ2) + g2N
∑∞

n=N+1
ᾱ2n

n!

� e−g2ᾱ2

[
eN (g2ᾱ2) + gN

∞∑
n=N+1

gnᾱ2n

n!

]

� e−g2ᾱ2
eN (g2ᾱ2), (C17)

where the first inequality follows from using g2N � gNgn in
the denominator. This establishes the bound (6.33).
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