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Abstract  

To choose among conservation actions that may benefit many species, managers need to 

monitor the consequences of those actions. Decisions about which species to monitor from a 

suite of different species being managed are hindered by natural variability in populations and 

uncertainty in several factors: the ability of the monitoring to detect a change, the likelihood of 

the management action being successful for a species, and how representative species are of 

one another. However, the literature provides little guidance about how to account for these 

uncertainties when deciding which species to monitor to determine whether the management 
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actions are delivering outcomes. We devised an approach that applies decision science and 

selects the best complementary suite of species to monitor to meet specific conservation 

objectives. We created an index for indicator selection that accounts for the likelihood of 

successfully detecting a real trend due to a management action and whether that signal provides 

information about other species. We illustrated the benefit of our approach by analyzing a 

monitoring program for invasive predator management aimed at recovering 14 native 

Australian mammals of conservation concern. Our method selected the species that provided 

more monitoring power at lower cost relative to the current strategy and traditional approaches 

that consider only a subset of the important considerations. Our benefit function accounted for 

natural variability in species growth rates, uncertainty in the responses of species to the 

prescribed action, and how well species represent others. Monitoring programs that ignore 

uncertainty, likelihood of detecting change, and complementarity between species will be more 

costly and less efficient and may waste funding that could otherwise be used for management.  
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Introduction 

Monitoring programs are crucial for learning about and detecting changes in systems, 

evaluating the success of management actions or policies, and understanding the effects of 

perturbations or disturbances (Nichols & Williams 2006; Lindenmayer & Likens 2009). 

However, monitoring costs money. Limited resources and time mean that not everything can 

be monitored and decisions need to be made about how, where, and what to monitor 

(McDonald-Madden et al. 2010; Possingham et al. 2012). To deal with this problem, many 

authors have suggested monitoring just one or a few indicator species rather than many species 

(Caro & O'Doherty 1999; Rice & Rochet 2005; Regan et al. 2008). The vast literature on 

indicators often ignores one of the basic motivations for their use – provision of cost-effective 

information on whether an action is working. Using network theory and decision science, we 

devised a new way to combine the benefits, costs, and uncertainties inherent in selecting 

species to monitor in a method that selects the best set of indicator species.  

Selection of indicator species that are surrogates for the responses of other species is one way 

to allocate resources to monitoring species that provide the most useful information for the 

least cost, especially when the target species for management are cryptic or more costly to 

monitor (Caro 2010; Tulloch et al. 2011). Here, we were concerned with situations where 

several species are co-managed with one kind of action. In general, previous research on 

indicator selection focused on either species surrogacy (capacity of 1 or 2 species to provide 

information about other species [Rodrigues & Brooks 2007; Halme et al. 2009; Cushman et al. 

2010]), species detectability [Quinn et al. 2011], or the ability of the indicators to detect trends 

(in the environment, or in response to management [Trenkel & Rochet 2009]). Only a few 

studies have accounted for costs of monitoring alternative indicators (Pannell & Glenn 2000; 

Kurtz et al. 2001; Rice & Rochet 2005). To date, no indicator-selection frameworks have 

combined all these components and accounted for complementarity between species.  
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Complementarity in reserve selection ensures that areas selected for conservation complement 

those already selected (Margules et al. 1988; Justus & Sarkar 2002). In the case of indicator 

selection, the principle of complementarity allows one to choose different species, each of 

which provides information (e.g., on behavioral ecology, habitat use, or responses to 

management) on other species, by measuring the extent to which one species contributes 

unrepresented values to an existing set of species. 

There are 2 kinds of errors one can make when choosing indicators: thinking an action is 

working when it is not (type I error) and believing an action is not working when it is (type II 

error). Each has consequences (Field et al. 2004), which may differ depending on the system 

change one is trying to monitor and the number or characteristics of species being represented 

by the indicator(s). In a threatened species management context, thinking an action is working 

when it is not could lead to the loss of a species because we fail to take further action (Field et 

al. 2004). Alternatively, one may manage the system, fail to detect the benefit to the indicator 

species, and stop management prematurely. 

Decision makers need a repeatable and systematic way to select a set of indicator species to 

monitor, to ensure changes are detected when they occur, and to reduce the chance of 

management errors. Variability in dynamic systems means it is not always clear how 

populations will change over time, which leads to uncertainty when deciding what, when, and 

how to monitor (Magurran et al. 2010; Wilson et al. 2011b). The ability to detect a change may 

differ depending on how long a population has been monitored or how long ago an action took 

place (Gerber et al. 2005; Magurran et al. 2010). Outcomes of actions may also be uncertain 

and thus make it difficult to predict whether a population is likely to increase or decline. These 

uncertainties lead to an inability to articulate clear objectives for a monitoring program (Legg 

& Nagy 2006) and make it difficult to interpret whether monitoring results reflect the true 

status of the system (e.g., whether management has been successful). Previous prioritization 

approaches to indicator selection generally used a scoring or ranking method (e.g., Rice & 
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Rochet 2005; Tulloch et al. 2011), which in its simplest form does not take into account 

uncertainty or complementarity (Justus & Sarkar 2002; Margules & Sarkar 2007). Using real 

time-series data to characterize population variability over time, we built on previous indicator 

prioritization work to investigate the effects of different forms of uncertainty (Ives et al. 2003; 

Wilson et al. 2011a).  

We solved the problem of selecting a complementary set of indicators that will detect a 

response to management, and demonstrated an example of candidate mammal species for 

monitoring the management of an invasive-predator (European red fox [Vulpes vulpes]) in 

Australia (Burbidge & Manly 2002). Finally, we compared our approach to finding optimal 

monitoring indicators with traditional methods of indicator selection.  

 

Methods 

Our new decision-science approach to cost-effective monitoring consisted of 6 steps: (1) define 

monitoring objectives and constraints; (2) list candidate indicators and calculate costs of 

monitoring each; (3) define data underlying species responses to management and determine 

likelihood of detecting a trend; (4) determine surrogacy value; (5) Combine information on 

trend detection and surrogacy to calculate monitoring benefits; and (6) solve optimization 

problems (Fig. 1). 

 

Defining objectives and constraints 

To optimally allocate resources among monitoring projects, it is important to clearly define the 

monitoring objectives and constraints, which might include resource limitations, and 

acceptable levels of risk (Possingham et al. 2001). Our objective was to design an optimal 

monitoring program for determining the effectiveness of a management action. We sought the 

best set of indicator species to monitor that would maximize the likelihood of detecting a 
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meaningful change in the target species for a given budget. Species to be monitored (i.e., 

indicator species) and species that are in need of conservation (i.e., target species) can be the 

same. We used 2 groups of target species: all mammals in the system that we believe are 

affected by the management action and only the mammals listed as threatened. 

  

Listing candidate indicators and calculating costs 

Candidate indicators are species that decision makers wish to monitor to measure the 

effectiveness of their actions (Supporting Information). We used the method outlined in 

Tulloch et al. (2011) to calculate the individual cost (c) of monitoring species i over time T, 

assuming a discount rate of γ (Gerber et al. 2005):  

 𝑐𝑖 = ∑ γ𝑡−1𝑐𝑖𝑡
T
t=1 ,        (1) 

where cit is the cost of monitoring species i in year t. We defined the cumulative cost of 

monitoring a set of Z species (C[Z]) as the sum of the individual monitoring costs (Supporting 

Information).  

 

Defining underlying data 

Determining likelihood of detecting a trend 

We defined the likelihood of detecting a real trend for each species as the difference between 

the likelihood of change in managed and unmanaged populations (Tulloch et al. 2011). This 

value depends on the magnitude of the response that we deemed significant (x), variability in 

count data (σn) and direction of the response to the action in the past (i.e., overall trend [μ̅n]), 

and amount of empirical data that documents a response (i.e., length of the data set [n]). Using 

time-series data for managed populations, we derived the likelihood of detecting a trend for 

positive and negative growth rates (Supporting Information):  
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Pi (μ > x) = 1 – Pi (μ ≤ x) and       (2) 

Pi (μ ≤ x) =   [(x – μ̅n / (σn / √𝑛)],      (3) 

where Pi (μ > x) is the probability that the observed growth rate (μ) is greater than a given 

growth rate threshold (x), Pi (μ ≤ x) is the probability that μ is ≤ x,  is the cumulative 

distribution function of the standard normal, and x can be any target growth rate set by the user. 

We refer to the likelihood of detecting a trend under management for each species as Pi (x). 

Similarly, using time-series data for unmanaged populations, we derived the probability Poi (x) 

of species i increasing in population size faster than x if that action had not occurred. Hence the 

likelihood of detecting a real trend is Pi (x) – Poi (x).  

 

Determining surrogacy value  

We defined sij to be the amount of information that indicator species i provides on target 

species j. Previous researchers have used a range of methods to account for the information that 

makes a species a good surrogate for others, including area-by-feature scoring matrices 

(Margules et al. 2002), predictive modeling of species-level or community-level distributions 

(Ferrier et al. 2002; Ferrier et al. 2007), similarity or cluster analyses of abundance and 

distribution patterns (Halme et al. 2009; Cushman et al. 2010), and expert opinion (Tulloch et 

al. 2011). Our method requires the surrogacy measure take a value that ranges from zero to 

one. If the surrogacy measure is zero, then a change in species i does not imply a likely change 

in species j. If the surrogacy measure is close to one, then a change in species i means species i 

is a good surrogate for species j. We calculated the surrogacy value as the product of 3 

attributes that reflect the similarity between the species: behavioral ecology, threat level, and 

habitat use overlap (Supporting Information). Other combining operators are possible, but the 

product operator results in a surrogacy value that is highest when the values of all 3 similarity 

indices are high.   



8 

 

Calculating monitoring benefits 

We defined the benefit of monitoring a single indicator species as the likelihood of successfully 

detecting a response for a given action combined with how well it represents a given target. We 

calculated a benefit (Bij [x]) that represents the value of monitoring indicator i for target j given 

x: 

 𝐵𝑖𝑗(𝑥) = [𝑃𝑖(𝑥) − 𝑃𝑜𝑖(𝑥)] × 𝑃𝑖(𝑥)𝑃𝑗(𝑥) × 𝑠𝑖𝑗.  .    (4) 

The value produced by calculating Pi (x) – Poi (x) is the likelihood of successfully detecting a 

trend due to management as defined by the underlying data. The second part of the equation 

represents the interaction between species i and j. A value of Pi (x)Pj(x) close to one means 

both species have a high likelihood of response under management, whereas sij tells one how 

much species i may inform one about species j. Because Pi, Pj, Pi(x) – Pio(x), and sij all take 

values from zero to one, the value of Bij (x) is also a value between zero and one; higher values 

of Bi (x) indicate greater benefits to species j of monitoring species i. The benefit of monitoring 

i for j is equal to the benefit of monitoring j for i only when the chance of detecting a real trend 

due to management is equal for both species, for example, Pi(x) – Pio(x) = Pj(x) – Pjo(x). When 

Pi (x) – Poi (x) is >Pj (x) – Poj (x), the benefit of monitoring i for j is greater than the benefit of 

monitoring j for i. We represented the benefit of monitoring a species for another as a benefit 

network (Fig. 2).  

We used 2 scenarios to calculate the monitoring benefits of a set of species Z. First, we defined 

a set benefit function (BS[x,Z]) that maximizes the complementary-monitoring benefits of Z for 

all target species and had a given growth rate x. For this benefit function we assumed 

overlapping benefits (i.e., all indicator species in set Z contribute in the same way to inform 

management success on the target species (Supporting Information). In this case, one should 

only account for species i that contribute the most to a target species j: 



9 

BS(𝑥, 𝑍) = ∑ maxi ∈ Z 𝐵𝑖𝑗(𝑥)𝑚
𝑗=1 . .     (5) 

Second, we explored the effects of uncertainty in species complementarity by using an 

alternative way to calculate the benefit of monitoring a set of species (BU[x,Z]). For this 

method we assumed all species in set Z contribute in different random ways (nonoverlapping or 

overlapping) to the total benefits. In this case, we summed rather than maximized the benefit 

values for each species selected: 

BU(𝑥, 𝑍) = ∑ {1 − ∏ [1 −𝑖∈ Z 𝐵𝑖𝑗(𝑥)]}𝑚
𝑗=1 .     (6) 

The BU(x,Z) represents a risk-averse approach in which it is uncertain whether the benefits are 

complementary and all the information for each species is included.  

 

Solving the optimization problems 

The optimization problem is to find the best set of species to maximize monitoring objectives 

under budget constraints. We calculated the solutions with traditional approaches we based on 

trend detection only or surrogacy only. We compared these solutions with solutions that 

combined trend detection and surrogacy.  

The best set of species Z (formally defined as Z*) determined on the basis of trend detection 

only corresponded to the set that maximized the chance of detecting a real trend within a given 

budget, formally  

𝑍∗(𝑥)  = argmax𝑍   ∑  [𝑃𝑖(𝑥) − 𝑃𝑜𝑖(𝑥)]i ∈ 𝑍   s.t. 𝐶(𝑍) ≤ 𝑏𝑢𝑑𝑔𝑒𝑡,  (7) 

where argmaxZ returns the set of species Z*(x) for which the function is maximized. 

With surrogacy data alone, Z* is the set that maximizes the surrogacy value of each species for 

a given budget, formally 

𝑍∗  = argmax𝑍   ∑ maxi ∈ Z 𝑠𝑖𝑗
𝑚
𝑗=1   s.t. 𝐶(𝑍) ≤ 𝑏𝑢𝑑𝑔𝑒𝑡.    (8) 
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With a combination of trend detection and surrogacy, Z* maximizes monitoring power for a 

given budget (Supporting Information), formally 

𝑍∗(𝑥) = argmax𝑍, BS(𝑥, 𝑍) s.t. 𝐶(𝑍) ≤ 𝑏𝑢𝑑𝑔𝑒𝑡,    (9) 

where BS(x,Z) is a benefit set function that maximizes the complementary monitoring benefits 

of a set of species Z for all target species and a given growth rate x. We explored the effects of 

uncertainty in species complementarity with the risk-averse benefit function BU(x,Z) instead of 

BS(x,Z).  

 

Example of selecting species for monitoring invasive predator control in south-western 

Australia 

To illustrate the method (Fig. 1), we applied our approach to a case study of monitoring 

management of invasive foxes in Western Australia. The European red fox costs over $400 

million/year to control (Reddiex et al. 2004). (All monetary units are Australian dollars.) 

Poison baits containing sodium monofluoroacetate (1080) are laid to reduce fox numbers in 

areas of high conservation significance, in particular where mammals in the critical weight 

range (between 35 and 5500g [Burbidge & McKenzie 1989]) occur. A growing body of 

literature describes the responses of a range of threatened species to fox management (Kinnear 

et al. 2002; Orell 2004; Saunders et al. 2010), but high monitoring costs mean that despite calls 

for a whole-community approach (Glen et al. 2009), it is rare for all species to be funded for 

monitoring. Managers need to identify which species are likely to be the most informative 

indicators with which to evaluate the effectiveness of their fox management within their budget 

constraints.   

The candidate indicator species were 14 mammals from south-western Australia (Supporting 

Information). We parameterized Eqs. 2 and 3 by setting the target growth rate threshold x at 

0%, 1%, 3%, 6%, and 10% for positive responses and at 0, –1%, –3%, –6% and –10% for 
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negative responses. For species with no time-series data, we collated information from time-

series data for other species with a similar weight range or life history (see Supporting 

Information for other methods when time-series were not available). To calculate the 

behavioral-ecology similarity index, we used a combination of similarity in microhabitat use 

(whether or not a species is ground dwelling, arboreal, or shelters in burrows or an 

aboveground nest) and similarity in body size (Burbidge & McKenzie 1989). The threat-

similarity matrix listed the major threat classifications identified by the International Union for 

Conservation of Nature (2001, 2008) for the candidate indicator species (urbanization, 

agriculture, persecution, fire, and invasive species). Thus, we assumed species sharing the 

same threats respond in similar ways. The habitat-similarity index was a measure of how much 

2 species share the same habitat (Supporting Information).  

We identified the set of indicator species that maximized the monitoring benefit for all 14 

target mammal species and the 6 threatened target species in the list of candidate indicator 

species. We also calculated the benefits of monitoring the set of species that are currently 

monitored at a broad scale in southwestern Australia and compared the benefits and costs of 

monitoring these species with the solutions from our approach. Finally, we conducted 

sensitivity analyses to test the underlying variables within our benefit function and to test the 

results of the optimization problems under different budgets. The MATLAB code is in 

Supporting Information. 

 

Results 

Trend detection with no surrogacy 

The average trend in candidate indicator species under management ranged from a decline in 

abundance of 27% per year (western ringtail possum) to an increase in abundance of 25% per 

year (western quoll) (Supporting Information). Scientific names are provided in Table 1. When 

foxes were managed, the probability that the observed growth rate for each species was >0 
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ranged from 13% (woylie) to almost 100% for 3 species (Table 1). With no management of 

foxes, the probability that the observed growth rate of each species was >0 ranged from almost 

0% (tammar wallaby) to >80% (woylie and honey possum) (Supporting Information). 

Incorporating the probability of increase with no management of foxes resulted in values for 

the likelihood of detecting a real trend due to management (Pi – Poi) that were significantly 

different from values that only accounted for the probability of increase when foxes were 

managed (t = 2.65, d.f. = 26, p = 0.01) (Supporting Information). As expected the likelihood of 

detecting an increase in growth rate decreased with increased target growth rate thresholds x (7 

species) (Supporting Information). The species with the greatest trends were the numbat, 

southern brown bandicoot, and dibbler.  

For a budget of $100,000 and a growth-rate threshold of 0 > x > 1%, the top suite of species 

selected for trend detection alone were the western brush wallaby, tammar wallaby, and dibbler 

(cost $82,528). The western brushtail possum replaced the dibbler for a target growth rate of x 

> 10% (cost $75,409). With negative target growth rates (–10% < x < 0), the woylie and 

western ringtail possum were selected (Table 1). Solutions that were based on only the 

probability of increase when foxes were managed without accounting for the likelihood of a 

trend in unmanaged populations contained different species for some target growth rates and 

were regularly more expensive (Supporting Information). 

 

Surrogacy with no trend detection 

The minimum multiplied surrogacy value sij between any pair of species was 0 (between the 

western ringtail possum and western brushtail possum), and the maximum was 1.00 (between 

the western mouse and numbat) (Supporting Information). The top surrogates selected as a 

suite of indicators under a budget of $100,000 were the southern brown bandicoot, western 

brushtail possum, and western mouse (cost $99,894). Each combining operator selected 

different species. Average surrogacy values resulted in selection of the tammar wallaby, 
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western mouse, and bush rat (cost $96,318); maximum values selected the tammar wallaby, 

western brush wallaby, and red-tailed phascogale (cost $96,352); and minimum values selected 

the western brush wallaby, western brushtail possum, and numbat (cost $76,113). 

 

Combination of surrogacy and trend detection  

When using our approach to maximize the benefit of monitoring by combining surrogacy and 

trend information, the selected set of species differed from those selected by just surrogacy or 

just trend information. For a budget of $100,000 and an objective of maximizing the likelihood 

of monitoring an increase in population growth for all species (using BS[x,Z] in Eq. 9) (Figs. 

3a & 4a), our selected species were similar to those for monitoring just the likelihood of 

response (western brushtail possum replaced the dibbler for a target growth rate of x > 3%), 

and we no longer monitored the western ringtail possum for growth rates of x < –3% (Fig. 3). 

When we adjusted the monitoring objective to consider only indicators that represented the 

trends of threatened species, the selected set changed; the western brush wallaby dropped out 

of the indicator species group for all positive growth rate thresholds and the western quoll was 

added to the group for a target growth rate of x > 10% (Table 1 & Figs. 3b & 4).  

Using the risk-averse benefit metric BU(x,Z) (Eq. 9), we selected similar species to those 

selected with the maximum benefit metric BS(x,Z) (Eq. 9, Fig. 3). For negative growth rates, 

we always monitored 2 species, the woylie and western ringtail possum, except for growth 

rates of 0.1 < x ≤ 0.06, for which we replaced the western ringtail possum with the southern 

brown bandicoot. The results for targeting threatened species with the risk-averse approach 

were similar to those for all species; the western quoll substituted the western brushtail possum 

for growth rates of x < 6%. 

For $200,000 up to 7 species could be monitored. Using the maximum benefit metric 

(BS[(x,Z]) in equation Eq. 9), we selected different species for detection of different positive 

growth rates. For negative target growth rates, we selected the same 2 species as for a budget 



14 

of $100,000. Using the risk-averse approach (BU[x,Z] in Eq. 9), the species selected differed 

on the basis of target growth rate for positive and negative target growth rates (Supporting 

Information).   

The comparison of objectives showed that combining surrogacy and likelihood of response 

always resulted in the highest benefit for detecting an increase or decrease compared with 

using just surrogacy or just likelihood of response, and almost always had the lowest cost 

(Table 2). This cost was considerably lower than the cost of monitoring the currently selected 

species (southern brown bandicoot, western quoll, woylie, and western brushtail possum). 

Changing the surrogacy classification resulted in changes to the best set of species to monitor 

for maximizing the benefit (Supporting Information).  

Discussion 

Monitoring the success or failure of management actions is important for learning about 

species dynamics, auditing conservation programs or policies, accounting for efficient 

spending of funding, and driving adaptive management decisions (Nichols & Williams 2006; 

Possingham et al. 2012). Deciding what, when, where, and how to monitor is difficult, 

particularly when the outcomes of actions are not certain (Williams 2001). Limited funding 

means one needs to choose species as surrogates or indicators for others. Past research on 

indicator selection has ignored the varying costs of monitoring different species, and has failed 

to account for uncertainties such as the likelihood of species responding to management,  

ability to detect real rather than spurious trends in populations, and how well one species 

represents another. Our new framework incorporates all these components in a transparent 

benefit function and can be used as a model for decision makers to select a set of species for 

monitoring that provides the most reliable information on the responses of other species that 

cannot all be monitored due to funding constraints (Fig. 1).   

The first step in designing and implementing an effective monitoring program is to set realistic 

objectives and determine targets for population responses that are measureable and 
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representative of the system (Legg & Nagy 2006; Lindenmayer & Likens 2009). We set clear 

objectives for species recovery during invasive predator control, which included positive and 

negative target growth rates. We the likelihood of detecting a response to management changes 

depended on the desired direction and magnitude of the response (Supporting Information). 

Sensitivity analyses showed that the level of knowledge available for a species (here the length 

of the monitoring data set) also altered the likelihood of detecting a trend and the subsequent 

value of the species for monitoring (Supporting Information). Monitoring objectives with too 

short a time frame or that do not account for the likelihood of positive and negative responses 

may result in more costly strategies that prioritize the wrong species for monitoring 

(Supporting Information). For our candidate species, we suggest that at least 5-10 years of 

monitoring is required for the best chance of detecting a real versus spurious effect of 

management. The choice of target growth rate depends on how risk averse managers are. A 

lower growth-rate threshold may result in a higher likelihood of a type I error (due to low 

growth-rate thresholds several species may decline or increase [Supporting Information]), 

whereas a higher growth-rate threshold may result in a higher chance of a type II error 

occurring (where managers are trying to detect too large a change and miss smaller 

changes).These findings highlight the importance of clearly stated goals an targets that reflect 

the level of knowledge of the system and the monitoring program constraints (e.g., acceptable 

level of risk or uncertainty [Supporting Information]). 

We argue that a cost-effective indicator should be responsive (with low variability in 

growth rates over time [Hilty & Merenlender 2000]), representative (i.e., have high surrogacy), 

complementary to the indicator already chosen, and cheap. Previous approaches have dealt 

only with responsiveness and surrogacy, usually separately (but see Tulloch et al. 2011). The 

quantitative benefit function that we developed is flexible for multiple scenarios and types of 

data (Supporting Information) but still able to account for responsiveness and representation. In 

particular, our benefit function accounts for species that do not represent others on the basis of 
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surrogacy information, and that are unlikely to respond to an action in the expected way (e.g., 

species likely to decline when others are expected to increase). Combining information on 

surrogacy and trend detection instead of treating these factors separately changes the species 

selected for monitoring (Table 2). Our benefit function is an improvement on the traditional 

methods of indicator selection because it allows one to select sets of complementary species for 

prioritization. Our results support previous findings that prioritization methods that account for 

complementarity are more efficient than ad hoc approaches (Pressey & Tully 1994) and 

ranking methods (Pressey & Nicholls 1989), the traditional approaches to indicator selection 

(Landres et al. 1988; Rice & Rochet 2005). Sensitivity analyses allowed us to explore the 

robustness of sets selected under different surrogacy scenarios. The value of monitoring 

different combinations of species depended on several factors (Fig. 4), but some species were 

always selected regardless of the surrogacy classification or the way benefit values were 

combined. These species could be considered more reliable than others that are selected only 

on the basis of one surrogacy classification or 1 of the 2 set benefit functions (Fig. 3 & 

Supporting Information).  

Our new benefit function showed that the species monitored in our case study were not the 

most representative, cheapest, or most informative indicators of the responses of species to 

invasive-predator management (Table 2). Our indicator-selection approach translated to more 

information and less cost. Only 2 of the 4 species that are now actually monitored in our study 

area were represented in our best sets (western brushtail possum and woylie) (Table 2). The 

species not selected were either too variable in their expected response (southern brown 

bandicoot) (Supporting Information) or had a high likelihood of showing a response in the 

absence of management (western quoll) (Supporting Information), findings that indicated the 

species may be reacting to factors other than the management action in question. The two 

species selected most frequently for detecting an increase under fox management (Fig. 3 & 

Supporting Information) were the tammar and western brush wallabies that, although rare, are 
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not listed as threatened (IUCN 2009), but they have low variability and high growth rates when 

managed (Supporting Information). The dibbler was also frequently selected as an indicator 

(Figs. 3 & 4). This species is highly threatened and found in few locations, but its high 

certainty of response to management meant it was often selected over other species with higher 

surrogacy values (Supporting Information).  

Monitoring choices should be driven by clear objectives, cost, and knowledge of 

uncertainty. Indicator species provide managers with a systematic, cost-effective, and 

repeatable way to measure and monitor the outcomes of conservation actions, which can feed 

into decisions for adaptive management (Caro & O'Doherty 1999). We developed a new 

decision-science framework to select indicators that maximize the benefit of monitoring 

complementary sets of species and account for natural variability in species growth rates, 

uncertainty in the responses of species to the prescribed action, and how well species represent 

others (Fig. 1). If costs and species complementarity are not incorporated into the planning 

process, decisions could be costly and inefficient, uninformative species might be monitored, 

with potential negative consequences for management. Many actions will not benefit all 

species – for invasive-predator management, we found a likelihood of negative effects on some 

species (Table 1). In these cases, we recommend a risk-averse strategy of selecting the set of 

species that maximizes the expected benefit of detecting any change (negative or positive) that 

informs actions relevant to most species. By setting measurable objectives and targets with a 

realistic time frame for monitoring and by exploring uncertainty before monitoring takes place, 

it will be easier to adaptively manage and monitor populations and audit investment decisions 

during and after monitoring programs. This framework can be used to design optimal 

monitoring strategies that can detect trends in population growth in spite of the variability and 

levels of uncertainty inherent in the system, which will enhance the utility and transparency of 

monitoring programs in the future. 

Acknowledgments 



18 

This research was conducted with funding from the Australian Government’s National 

Environmental Research Program and the Australian Research Council Centre of Excellence 

for Environmental Decisions, an Australian Research Council Linkage Grant (A.T.) and an 

Australian Research Council Federation Fellowship (H.P.). We thank K. Wilson, H. Wilson, V. 

Tulloch and T. Martin for comments on earlier drafts and Peter Orell, the Western Australian 

Department of Environment and Conservation, Australian Wildlife Conservancy, Bush 

Heritage, Nick Dexter, and Katherine Moseby for the use of unpublished data.   



19 

Supporting Information 

Detail explaining the methodology behind deriving the likelihood of detecting a real trend (Appendix 

S1), calculating monitoring costs (Appendix S2) and calculating surrogacy values (Appendix S3) for 
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Table 1. Likelihood of an increase or decrease under management (Pi [0]) compared with the 

likelihood of detecting a real trend (Pi [x] – Poi [x]) for target growth rates (x) of 0% and 10%.   

  Increasing growth rate Decreasing growth rate 

Species 

no. 

Species  Pi (0) Pi (0) 

– Poi 

(0) 

Pi (10%) 

– Poi 

(10%) 

Pi (0) Pi (0) 

– Poi 

(0)  

Pi (−10%) 

– 

Poi(−10%)  

1 Tammar wallaby,  

Macropus eugenii 

0.99* 0.99* 0.89* 0.01 0 0 

2 Western brush wallaby, 

Macropus Irma 

1.00* 0.99* 1.00* 0.00 0 0 

3 Western quoll, 

Dasyurus geoffroii 

1.00* 0.34 0.44 0.00 0 0 

4 Dibbler, 

Parantechinus apicalis 

0.85 0.79* 0.55 0.15 0 0 

5 Red-tailed phascogale, 

Phascogale calura 

0.57 0.57 0.45 0.43 0 0 

6 Southern brown bandicoot, 

Isoodon obesulus 

0.99 0.53 0 0.01 0 0.05 

7 Woylie, 

Bettongia penicillata 

0.13 0 0 0.87* 0.71* 0.62* 

8 Western brushtail possum, 

Trichosurus vulpecula 

1.00 0.49 0.60* 0.00 0 0 

9 Numbat, 

Myrmecobius fasciatus 

0.65 0.51 0.20 0.35 0 0 

10 Western ringtail possum, 

Pseudocheirus occidentalis 

0.39 0 0 0.61* 0.04* 0.21* 

11 Western mouse, 

Pseudomys occidentalis 

0.72 0.30 0.27 0.28 0 0 

12 Echidna, 

Tachyglossus aculeatus 

0.50 0.14 0.29 0.50 0 0 

13 Bush rat, 

Rattus fuscipes 

0.52 0.20 0.12 0.48 0 0 

14 Honey possum, 

Tarsipes rostratus 

0.87 0.05 0.41 0.13 0 0 

 
Monitoring cost 

(Australian dollars) 
96,352 82,528 75,409 79,297 79,297 79,297 

* Sets of species selected under a budget of $100,000 and only accommodating trend detection.  



25 

Table 2. Comparison of the best indicator sets of species selected under a budget of 

AU$100,000 and to detect an increase of at least 6% growth rate annually and a decline of at 

least 6% for all target species and for threatened target species (see also Fig. 4). 

 All target species Threatened species 

Monitoring objective and 

method of calculationa 

best set 

(Z) of 

speciesb 

benefit 

BS(𝑥, 𝑍) 

cost 

(AU$) 

best set 

(Z) of 

species 

benefit 

BS(𝑥, 𝑍) 

cost 

(AU$) 

Objective 1 

    increase x > 0.06 

Method 

      

  just trend: Pi and Poi 1  2  4 4.44 82,527 4  5 0.74 78,334 

  just trend: Pi only 1  2  3 4.38 96,352 3  4 1.01 78,334 

   just surrogacy 6  8  11 1.97 99,894 4  9  10 0.73 91,313 

   best indicator 1  2  8 4.68 75,409 1  4 1.18 57,391 

    currently monitored 3  6  7  8 2.55 156,461 3  6  7  8 0.86 156,461 

Objective 2 

    decrease x < –0.06 

Method 

      

just trend: Pi and Poi 7  10 2.33 79,297 7  10 1.33 79,297 

  just trend: Pi only 6  7 2.31 85,246 7  10 1.33 79,297 

   just surrogacy 6  8  11 0.47 99,894 4  9  10 0.14 91,313 

  best indicator 7  10 2.33 79,297 7  10 1.33 79,297 

    currently monitored 3  6  7  8 2.31 156,461 3  6  7  8 1.31 156,461 

Combined best set of 

objectives 1 and 2 

1 2 7 8 

10 
7.01 154,706 1 4 7 10 2.51 136,688 

a Variables: x, given growth rate threshold; Pi, likelihood of detecting a trend with fox 

management for each species; Poi, likelihood of detecting a trend without fox management for 

each species; Z, set of species; BS(x, Z), maximum benefit function (Equation 9). 

bSpecies names provided in Table 1. 
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Figure legends 

Figure 1. 

Decision framework for selecting indicator species to monitor given multiple species, species’ 

responses to management, and monitoring objectives. Methods 1 and 2 represent traditional 

approaches to selecting species to monitor. Method 3 is our new approach. 
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Figure 2. Benefit network for 3 species, where species are nodes and arrows are the species’ 

monitoring benefits (B). The benefit of monitoring indicator species (i) 7 (woylie) for target 

species (j) 10 (western ringtail possum) is shown as 𝐵𝑖→𝑗; sij is the surrogacy value of species i 

for species j; Pi and Pj are the likelihood of detecting a trend under management for species i 

and j respectively, and Poi is the likelihood of detecting a trend when species i is not managed. 

In this case, the benefit of monitoring the woylie to inform one of a trend in the ringtail possum 

is 0.05. We assume a significant decline rate is 10% . The bandicoot has no arrows leading to 

another species and thus has a monitoring benefit of zero for detecting a response of 10%.  
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Figure 

3. Best set of species to monitor under a range of growth rates for a budget of AU$100,000 for 

(a) all target species and (b) threatened target species only. Equations 5 and 6 are used to derive 

benefit values of BS(𝑥, 𝑍) (dark grey) and BU(𝑥, 𝑍) (light grey) respectively (BS, maximum 

benefit metric; BU, risk-averse benefit metric) Eq. 9 is used to solve the optimization (see also 

Fig. 4). The boxes represent whether or not that species was chosen on the basis of a given 

metric. For example, in (a) on the basis of a maximum benefit metric that assumes overlapping 

benefits (BS[x,Z]) and to detect a positive growth rate of 6%, the tammar wallaby, western 

brush wallaby, and western brushtail possum are selected at a cost of $75,409. On the basis of a 

risk-averse metric (BU[x,Z]) that assumes nonoverlapping benefits, this species set changes to 

tammar wallaby, western brush wallaby, and dibbler at a cost of $82,528. 
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Figure 4. The sets (Z) of species selected for monitoring under a given annual budget of 

AU$100,000 that maximize the summed benefits for detecting (a) an increase of 6% annually, 

(b) an increase of 6% annually in threatened species only, and (c) a decline of 6% annually (Eq. 

5 used to derive edge values of BS[x,Z]).  For example, in (c) species 7 (woylie) informs 

managers of changes in 9 species, and species 10 (western ringtail possum) informs managers 

of changes only in itself. 

 


